ARC: [plat-hsdk]: unify memory apertures configuration
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <linux/frame.h>
20 #include <linux/highmem.h>
21 #include <linux/hrtimer.h>
22 #include <linux/kernel.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/mm.h>
28 #include <linux/sched.h>
29 #include <linux/sched/smt.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include <linux/trace_events.h>
33
34 #include <asm/apic.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/internal.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "ops.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71         X86_FEATURE_MATCH(X86_FEATURE_VMX),
72         {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75
76 bool __read_mostly enable_vpid = 1;
77 module_param_named(vpid, enable_vpid, bool, 0444);
78
79 static bool __read_mostly enable_vnmi = 1;
80 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
81
82 bool __read_mostly flexpriority_enabled = 1;
83 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
84
85 bool __read_mostly enable_ept = 1;
86 module_param_named(ept, enable_ept, bool, S_IRUGO);
87
88 bool __read_mostly enable_unrestricted_guest = 1;
89 module_param_named(unrestricted_guest,
90                         enable_unrestricted_guest, bool, S_IRUGO);
91
92 bool __read_mostly enable_ept_ad_bits = 1;
93 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
94
95 static bool __read_mostly emulate_invalid_guest_state = true;
96 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
97
98 static bool __read_mostly fasteoi = 1;
99 module_param(fasteoi, bool, S_IRUGO);
100
101 static bool __read_mostly enable_apicv = 1;
102 module_param(enable_apicv, bool, S_IRUGO);
103
104 /*
105  * If nested=1, nested virtualization is supported, i.e., guests may use
106  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
107  * use VMX instructions.
108  */
109 static bool __read_mostly nested = 1;
110 module_param(nested, bool, S_IRUGO);
111
112 static u64 __read_mostly host_xss;
113
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116
117 static bool __read_mostly dump_invalid_vmcs = 0;
118 module_param(dump_invalid_vmcs, bool, 0644);
119
120 #define MSR_BITMAP_MODE_X2APIC          1
121 #define MSR_BITMAP_MODE_X2APIC_APICV    2
122
123 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
124
125 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
126 static int __read_mostly cpu_preemption_timer_multi;
127 static bool __read_mostly enable_preemption_timer = 1;
128 #ifdef CONFIG_X86_64
129 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
130 #endif
131
132 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
133 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
134 #define KVM_VM_CR0_ALWAYS_ON                            \
135         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
136          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
137 #define KVM_CR4_GUEST_OWNED_BITS                                      \
138         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
139          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
140
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150         RTIT_STATUS_BYTECNT))
151
152 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
153         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
154
155 /*
156  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
157  * ple_gap:    upper bound on the amount of time between two successive
158  *             executions of PAUSE in a loop. Also indicate if ple enabled.
159  *             According to test, this time is usually smaller than 128 cycles.
160  * ple_window: upper bound on the amount of time a guest is allowed to execute
161  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
162  *             less than 2^12 cycles
163  * Time is measured based on a counter that runs at the same rate as the TSC,
164  * refer SDM volume 3b section 21.6.13 & 22.1.3.
165  */
166 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
167 module_param(ple_gap, uint, 0444);
168
169 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
170 module_param(ple_window, uint, 0444);
171
172 /* Default doubles per-vcpu window every exit. */
173 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
174 module_param(ple_window_grow, uint, 0444);
175
176 /* Default resets per-vcpu window every exit to ple_window. */
177 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
178 module_param(ple_window_shrink, uint, 0444);
179
180 /* Default is to compute the maximum so we can never overflow. */
181 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
182 module_param(ple_window_max, uint, 0444);
183
184 /* Default is SYSTEM mode, 1 for host-guest mode */
185 int __read_mostly pt_mode = PT_MODE_SYSTEM;
186 module_param(pt_mode, int, S_IRUGO);
187
188 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
189 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
190 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
191
192 /* Storage for pre module init parameter parsing */
193 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
194
195 static const struct {
196         const char *option;
197         bool for_parse;
198 } vmentry_l1d_param[] = {
199         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
200         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
201         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
202         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
203         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
204         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
205 };
206
207 #define L1D_CACHE_ORDER 4
208 static void *vmx_l1d_flush_pages;
209
210 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
211 {
212         struct page *page;
213         unsigned int i;
214
215         if (!enable_ept) {
216                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
217                 return 0;
218         }
219
220         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
221                 u64 msr;
222
223                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
224                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
225                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
226                         return 0;
227                 }
228         }
229
230         /* If set to auto use the default l1tf mitigation method */
231         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
232                 switch (l1tf_mitigation) {
233                 case L1TF_MITIGATION_OFF:
234                         l1tf = VMENTER_L1D_FLUSH_NEVER;
235                         break;
236                 case L1TF_MITIGATION_FLUSH_NOWARN:
237                 case L1TF_MITIGATION_FLUSH:
238                 case L1TF_MITIGATION_FLUSH_NOSMT:
239                         l1tf = VMENTER_L1D_FLUSH_COND;
240                         break;
241                 case L1TF_MITIGATION_FULL:
242                 case L1TF_MITIGATION_FULL_FORCE:
243                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
244                         break;
245                 }
246         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
247                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248         }
249
250         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
251             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
252                 /*
253                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
254                  * lifetime and so should not be charged to a memcg.
255                  */
256                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
257                 if (!page)
258                         return -ENOMEM;
259                 vmx_l1d_flush_pages = page_address(page);
260
261                 /*
262                  * Initialize each page with a different pattern in
263                  * order to protect against KSM in the nested
264                  * virtualization case.
265                  */
266                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
267                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
268                                PAGE_SIZE);
269                 }
270         }
271
272         l1tf_vmx_mitigation = l1tf;
273
274         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
275                 static_branch_enable(&vmx_l1d_should_flush);
276         else
277                 static_branch_disable(&vmx_l1d_should_flush);
278
279         if (l1tf == VMENTER_L1D_FLUSH_COND)
280                 static_branch_enable(&vmx_l1d_flush_cond);
281         else
282                 static_branch_disable(&vmx_l1d_flush_cond);
283         return 0;
284 }
285
286 static int vmentry_l1d_flush_parse(const char *s)
287 {
288         unsigned int i;
289
290         if (s) {
291                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
292                         if (vmentry_l1d_param[i].for_parse &&
293                             sysfs_streq(s, vmentry_l1d_param[i].option))
294                                 return i;
295                 }
296         }
297         return -EINVAL;
298 }
299
300 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
301 {
302         int l1tf, ret;
303
304         l1tf = vmentry_l1d_flush_parse(s);
305         if (l1tf < 0)
306                 return l1tf;
307
308         if (!boot_cpu_has(X86_BUG_L1TF))
309                 return 0;
310
311         /*
312          * Has vmx_init() run already? If not then this is the pre init
313          * parameter parsing. In that case just store the value and let
314          * vmx_init() do the proper setup after enable_ept has been
315          * established.
316          */
317         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
318                 vmentry_l1d_flush_param = l1tf;
319                 return 0;
320         }
321
322         mutex_lock(&vmx_l1d_flush_mutex);
323         ret = vmx_setup_l1d_flush(l1tf);
324         mutex_unlock(&vmx_l1d_flush_mutex);
325         return ret;
326 }
327
328 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
329 {
330         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
331                 return sprintf(s, "???\n");
332
333         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
334 }
335
336 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
337         .set = vmentry_l1d_flush_set,
338         .get = vmentry_l1d_flush_get,
339 };
340 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
341
342 static bool guest_state_valid(struct kvm_vcpu *vcpu);
343 static u32 vmx_segment_access_rights(struct kvm_segment *var);
344 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
345                                                           u32 msr, int type);
346
347 void vmx_vmexit(void);
348
349 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
350 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
351 /*
352  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
353  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
354  */
355 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
356
357 /*
358  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
359  * can find which vCPU should be waken up.
360  */
361 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
362 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
363
364 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
365 static DEFINE_SPINLOCK(vmx_vpid_lock);
366
367 struct vmcs_config vmcs_config;
368 struct vmx_capability vmx_capability;
369
370 #define VMX_SEGMENT_FIELD(seg)                                  \
371         [VCPU_SREG_##seg] = {                                   \
372                 .selector = GUEST_##seg##_SELECTOR,             \
373                 .base = GUEST_##seg##_BASE,                     \
374                 .limit = GUEST_##seg##_LIMIT,                   \
375                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
376         }
377
378 static const struct kvm_vmx_segment_field {
379         unsigned selector;
380         unsigned base;
381         unsigned limit;
382         unsigned ar_bytes;
383 } kvm_vmx_segment_fields[] = {
384         VMX_SEGMENT_FIELD(CS),
385         VMX_SEGMENT_FIELD(DS),
386         VMX_SEGMENT_FIELD(ES),
387         VMX_SEGMENT_FIELD(FS),
388         VMX_SEGMENT_FIELD(GS),
389         VMX_SEGMENT_FIELD(SS),
390         VMX_SEGMENT_FIELD(TR),
391         VMX_SEGMENT_FIELD(LDTR),
392 };
393
394 u64 host_efer;
395
396 /*
397  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
398  * will emulate SYSCALL in legacy mode if the vendor string in guest
399  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
400  * support this emulation, IA32_STAR must always be included in
401  * vmx_msr_index[], even in i386 builds.
402  */
403 const u32 vmx_msr_index[] = {
404 #ifdef CONFIG_X86_64
405         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
406 #endif
407         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
408 };
409
410 #if IS_ENABLED(CONFIG_HYPERV)
411 static bool __read_mostly enlightened_vmcs = true;
412 module_param(enlightened_vmcs, bool, 0444);
413
414 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
415 static void check_ept_pointer_match(struct kvm *kvm)
416 {
417         struct kvm_vcpu *vcpu;
418         u64 tmp_eptp = INVALID_PAGE;
419         int i;
420
421         kvm_for_each_vcpu(i, vcpu, kvm) {
422                 if (!VALID_PAGE(tmp_eptp)) {
423                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
424                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
425                         to_kvm_vmx(kvm)->ept_pointers_match
426                                 = EPT_POINTERS_MISMATCH;
427                         return;
428                 }
429         }
430
431         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
432 }
433
434 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
435                 void *data)
436 {
437         struct kvm_tlb_range *range = data;
438
439         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
440                         range->pages);
441 }
442
443 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
444                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
445 {
446         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
447
448         /*
449          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
450          * of the base of EPT PML4 table, strip off EPT configuration
451          * information.
452          */
453         if (range)
454                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
455                                 kvm_fill_hv_flush_list_func, (void *)range);
456         else
457                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
458 }
459
460 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
461                 struct kvm_tlb_range *range)
462 {
463         struct kvm_vcpu *vcpu;
464         int ret = 0, i;
465
466         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
467
468         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
469                 check_ept_pointer_match(kvm);
470
471         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
472                 kvm_for_each_vcpu(i, vcpu, kvm) {
473                         /* If ept_pointer is invalid pointer, bypass flush request. */
474                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
475                                 ret |= __hv_remote_flush_tlb_with_range(
476                                         kvm, vcpu, range);
477                 }
478         } else {
479                 ret = __hv_remote_flush_tlb_with_range(kvm,
480                                 kvm_get_vcpu(kvm, 0), range);
481         }
482
483         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
484         return ret;
485 }
486 static int hv_remote_flush_tlb(struct kvm *kvm)
487 {
488         return hv_remote_flush_tlb_with_range(kvm, NULL);
489 }
490
491 #endif /* IS_ENABLED(CONFIG_HYPERV) */
492
493 /*
494  * Comment's format: document - errata name - stepping - processor name.
495  * Refer from
496  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
497  */
498 static u32 vmx_preemption_cpu_tfms[] = {
499 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
500 0x000206E6,
501 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
502 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
503 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
504 0x00020652,
505 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
506 0x00020655,
507 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
508 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
509 /*
510  * 320767.pdf - AAP86  - B1 -
511  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
512  */
513 0x000106E5,
514 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
515 0x000106A0,
516 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
517 0x000106A1,
518 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
519 0x000106A4,
520  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
521  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
522  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
523 0x000106A5,
524  /* Xeon E3-1220 V2 */
525 0x000306A8,
526 };
527
528 static inline bool cpu_has_broken_vmx_preemption_timer(void)
529 {
530         u32 eax = cpuid_eax(0x00000001), i;
531
532         /* Clear the reserved bits */
533         eax &= ~(0x3U << 14 | 0xfU << 28);
534         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
535                 if (eax == vmx_preemption_cpu_tfms[i])
536                         return true;
537
538         return false;
539 }
540
541 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
542 {
543         return flexpriority_enabled && lapic_in_kernel(vcpu);
544 }
545
546 static inline bool report_flexpriority(void)
547 {
548         return flexpriority_enabled;
549 }
550
551 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
552 {
553         int i;
554
555         for (i = 0; i < vmx->nmsrs; ++i)
556                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
557                         return i;
558         return -1;
559 }
560
561 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
562 {
563         int i;
564
565         i = __find_msr_index(vmx, msr);
566         if (i >= 0)
567                 return &vmx->guest_msrs[i];
568         return NULL;
569 }
570
571 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
572 {
573         vmcs_clear(loaded_vmcs->vmcs);
574         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
575                 vmcs_clear(loaded_vmcs->shadow_vmcs);
576         loaded_vmcs->cpu = -1;
577         loaded_vmcs->launched = 0;
578 }
579
580 #ifdef CONFIG_KEXEC_CORE
581 /*
582  * This bitmap is used to indicate whether the vmclear
583  * operation is enabled on all cpus. All disabled by
584  * default.
585  */
586 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
587
588 static inline void crash_enable_local_vmclear(int cpu)
589 {
590         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
591 }
592
593 static inline void crash_disable_local_vmclear(int cpu)
594 {
595         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
596 }
597
598 static inline int crash_local_vmclear_enabled(int cpu)
599 {
600         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
601 }
602
603 static void crash_vmclear_local_loaded_vmcss(void)
604 {
605         int cpu = raw_smp_processor_id();
606         struct loaded_vmcs *v;
607
608         if (!crash_local_vmclear_enabled(cpu))
609                 return;
610
611         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
612                             loaded_vmcss_on_cpu_link)
613                 vmcs_clear(v->vmcs);
614 }
615 #else
616 static inline void crash_enable_local_vmclear(int cpu) { }
617 static inline void crash_disable_local_vmclear(int cpu) { }
618 #endif /* CONFIG_KEXEC_CORE */
619
620 static void __loaded_vmcs_clear(void *arg)
621 {
622         struct loaded_vmcs *loaded_vmcs = arg;
623         int cpu = raw_smp_processor_id();
624
625         if (loaded_vmcs->cpu != cpu)
626                 return; /* vcpu migration can race with cpu offline */
627         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
628                 per_cpu(current_vmcs, cpu) = NULL;
629         crash_disable_local_vmclear(cpu);
630         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
631
632         /*
633          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
634          * is before setting loaded_vmcs->vcpu to -1 which is done in
635          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
636          * then adds the vmcs into percpu list before it is deleted.
637          */
638         smp_wmb();
639
640         loaded_vmcs_init(loaded_vmcs);
641         crash_enable_local_vmclear(cpu);
642 }
643
644 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
645 {
646         int cpu = loaded_vmcs->cpu;
647
648         if (cpu != -1)
649                 smp_call_function_single(cpu,
650                          __loaded_vmcs_clear, loaded_vmcs, 1);
651 }
652
653 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
654                                        unsigned field)
655 {
656         bool ret;
657         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
658
659         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
660                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
661                 vmx->segment_cache.bitmask = 0;
662         }
663         ret = vmx->segment_cache.bitmask & mask;
664         vmx->segment_cache.bitmask |= mask;
665         return ret;
666 }
667
668 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
669 {
670         u16 *p = &vmx->segment_cache.seg[seg].selector;
671
672         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
673                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
674         return *p;
675 }
676
677 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
678 {
679         ulong *p = &vmx->segment_cache.seg[seg].base;
680
681         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
682                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
683         return *p;
684 }
685
686 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
687 {
688         u32 *p = &vmx->segment_cache.seg[seg].limit;
689
690         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
691                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
692         return *p;
693 }
694
695 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
696 {
697         u32 *p = &vmx->segment_cache.seg[seg].ar;
698
699         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
700                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
701         return *p;
702 }
703
704 void update_exception_bitmap(struct kvm_vcpu *vcpu)
705 {
706         u32 eb;
707
708         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
709              (1u << DB_VECTOR) | (1u << AC_VECTOR);
710         /*
711          * Guest access to VMware backdoor ports could legitimately
712          * trigger #GP because of TSS I/O permission bitmap.
713          * We intercept those #GP and allow access to them anyway
714          * as VMware does.
715          */
716         if (enable_vmware_backdoor)
717                 eb |= (1u << GP_VECTOR);
718         if ((vcpu->guest_debug &
719              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
720             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
721                 eb |= 1u << BP_VECTOR;
722         if (to_vmx(vcpu)->rmode.vm86_active)
723                 eb = ~0;
724         if (enable_ept)
725                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
726
727         /* When we are running a nested L2 guest and L1 specified for it a
728          * certain exception bitmap, we must trap the same exceptions and pass
729          * them to L1. When running L2, we will only handle the exceptions
730          * specified above if L1 did not want them.
731          */
732         if (is_guest_mode(vcpu))
733                 eb |= get_vmcs12(vcpu)->exception_bitmap;
734
735         vmcs_write32(EXCEPTION_BITMAP, eb);
736 }
737
738 /*
739  * Check if MSR is intercepted for currently loaded MSR bitmap.
740  */
741 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
742 {
743         unsigned long *msr_bitmap;
744         int f = sizeof(unsigned long);
745
746         if (!cpu_has_vmx_msr_bitmap())
747                 return true;
748
749         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
750
751         if (msr <= 0x1fff) {
752                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
753         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
754                 msr &= 0x1fff;
755                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
756         }
757
758         return true;
759 }
760
761 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
762                 unsigned long entry, unsigned long exit)
763 {
764         vm_entry_controls_clearbit(vmx, entry);
765         vm_exit_controls_clearbit(vmx, exit);
766 }
767
768 static int find_msr(struct vmx_msrs *m, unsigned int msr)
769 {
770         unsigned int i;
771
772         for (i = 0; i < m->nr; ++i) {
773                 if (m->val[i].index == msr)
774                         return i;
775         }
776         return -ENOENT;
777 }
778
779 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
780 {
781         int i;
782         struct msr_autoload *m = &vmx->msr_autoload;
783
784         switch (msr) {
785         case MSR_EFER:
786                 if (cpu_has_load_ia32_efer()) {
787                         clear_atomic_switch_msr_special(vmx,
788                                         VM_ENTRY_LOAD_IA32_EFER,
789                                         VM_EXIT_LOAD_IA32_EFER);
790                         return;
791                 }
792                 break;
793         case MSR_CORE_PERF_GLOBAL_CTRL:
794                 if (cpu_has_load_perf_global_ctrl()) {
795                         clear_atomic_switch_msr_special(vmx,
796                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
797                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
798                         return;
799                 }
800                 break;
801         }
802         i = find_msr(&m->guest, msr);
803         if (i < 0)
804                 goto skip_guest;
805         --m->guest.nr;
806         m->guest.val[i] = m->guest.val[m->guest.nr];
807         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
808
809 skip_guest:
810         i = find_msr(&m->host, msr);
811         if (i < 0)
812                 return;
813
814         --m->host.nr;
815         m->host.val[i] = m->host.val[m->host.nr];
816         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
817 }
818
819 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
820                 unsigned long entry, unsigned long exit,
821                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
822                 u64 guest_val, u64 host_val)
823 {
824         vmcs_write64(guest_val_vmcs, guest_val);
825         if (host_val_vmcs != HOST_IA32_EFER)
826                 vmcs_write64(host_val_vmcs, host_val);
827         vm_entry_controls_setbit(vmx, entry);
828         vm_exit_controls_setbit(vmx, exit);
829 }
830
831 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
832                                   u64 guest_val, u64 host_val, bool entry_only)
833 {
834         int i, j = 0;
835         struct msr_autoload *m = &vmx->msr_autoload;
836
837         switch (msr) {
838         case MSR_EFER:
839                 if (cpu_has_load_ia32_efer()) {
840                         add_atomic_switch_msr_special(vmx,
841                                         VM_ENTRY_LOAD_IA32_EFER,
842                                         VM_EXIT_LOAD_IA32_EFER,
843                                         GUEST_IA32_EFER,
844                                         HOST_IA32_EFER,
845                                         guest_val, host_val);
846                         return;
847                 }
848                 break;
849         case MSR_CORE_PERF_GLOBAL_CTRL:
850                 if (cpu_has_load_perf_global_ctrl()) {
851                         add_atomic_switch_msr_special(vmx,
852                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
853                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
854                                         GUEST_IA32_PERF_GLOBAL_CTRL,
855                                         HOST_IA32_PERF_GLOBAL_CTRL,
856                                         guest_val, host_val);
857                         return;
858                 }
859                 break;
860         case MSR_IA32_PEBS_ENABLE:
861                 /* PEBS needs a quiescent period after being disabled (to write
862                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
863                  * provide that period, so a CPU could write host's record into
864                  * guest's memory.
865                  */
866                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
867         }
868
869         i = find_msr(&m->guest, msr);
870         if (!entry_only)
871                 j = find_msr(&m->host, msr);
872
873         if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
874                 (j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
875                 printk_once(KERN_WARNING "Not enough msr switch entries. "
876                                 "Can't add msr %x\n", msr);
877                 return;
878         }
879         if (i < 0) {
880                 i = m->guest.nr++;
881                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
882         }
883         m->guest.val[i].index = msr;
884         m->guest.val[i].value = guest_val;
885
886         if (entry_only)
887                 return;
888
889         if (j < 0) {
890                 j = m->host.nr++;
891                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
892         }
893         m->host.val[j].index = msr;
894         m->host.val[j].value = host_val;
895 }
896
897 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
898 {
899         u64 guest_efer = vmx->vcpu.arch.efer;
900         u64 ignore_bits = 0;
901
902         if (!enable_ept) {
903                 /*
904                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
905                  * host CPUID is more efficient than testing guest CPUID
906                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
907                  */
908                 if (boot_cpu_has(X86_FEATURE_SMEP))
909                         guest_efer |= EFER_NX;
910                 else if (!(guest_efer & EFER_NX))
911                         ignore_bits |= EFER_NX;
912         }
913
914         /*
915          * LMA and LME handled by hardware; SCE meaningless outside long mode.
916          */
917         ignore_bits |= EFER_SCE;
918 #ifdef CONFIG_X86_64
919         ignore_bits |= EFER_LMA | EFER_LME;
920         /* SCE is meaningful only in long mode on Intel */
921         if (guest_efer & EFER_LMA)
922                 ignore_bits &= ~(u64)EFER_SCE;
923 #endif
924
925         /*
926          * On EPT, we can't emulate NX, so we must switch EFER atomically.
927          * On CPUs that support "load IA32_EFER", always switch EFER
928          * atomically, since it's faster than switching it manually.
929          */
930         if (cpu_has_load_ia32_efer() ||
931             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
932                 if (!(guest_efer & EFER_LMA))
933                         guest_efer &= ~EFER_LME;
934                 if (guest_efer != host_efer)
935                         add_atomic_switch_msr(vmx, MSR_EFER,
936                                               guest_efer, host_efer, false);
937                 else
938                         clear_atomic_switch_msr(vmx, MSR_EFER);
939                 return false;
940         } else {
941                 clear_atomic_switch_msr(vmx, MSR_EFER);
942
943                 guest_efer &= ~ignore_bits;
944                 guest_efer |= host_efer & ignore_bits;
945
946                 vmx->guest_msrs[efer_offset].data = guest_efer;
947                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
948
949                 return true;
950         }
951 }
952
953 #ifdef CONFIG_X86_32
954 /*
955  * On 32-bit kernels, VM exits still load the FS and GS bases from the
956  * VMCS rather than the segment table.  KVM uses this helper to figure
957  * out the current bases to poke them into the VMCS before entry.
958  */
959 static unsigned long segment_base(u16 selector)
960 {
961         struct desc_struct *table;
962         unsigned long v;
963
964         if (!(selector & ~SEGMENT_RPL_MASK))
965                 return 0;
966
967         table = get_current_gdt_ro();
968
969         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
970                 u16 ldt_selector = kvm_read_ldt();
971
972                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
973                         return 0;
974
975                 table = (struct desc_struct *)segment_base(ldt_selector);
976         }
977         v = get_desc_base(&table[selector >> 3]);
978         return v;
979 }
980 #endif
981
982 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
983 {
984         u32 i;
985
986         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
987         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
988         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
989         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
990         for (i = 0; i < addr_range; i++) {
991                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
992                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
993         }
994 }
995
996 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
997 {
998         u32 i;
999
1000         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1001         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1002         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1003         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1004         for (i = 0; i < addr_range; i++) {
1005                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1006                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1007         }
1008 }
1009
1010 static void pt_guest_enter(struct vcpu_vmx *vmx)
1011 {
1012         if (pt_mode == PT_MODE_SYSTEM)
1013                 return;
1014
1015         /*
1016          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1017          * Save host state before VM entry.
1018          */
1019         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1020         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1021                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1022                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1023                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1024         }
1025 }
1026
1027 static void pt_guest_exit(struct vcpu_vmx *vmx)
1028 {
1029         if (pt_mode == PT_MODE_SYSTEM)
1030                 return;
1031
1032         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1033                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1034                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1035         }
1036
1037         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1038         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1039 }
1040
1041 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1042 {
1043         struct vcpu_vmx *vmx = to_vmx(vcpu);
1044         struct vmcs_host_state *host_state;
1045 #ifdef CONFIG_X86_64
1046         int cpu = raw_smp_processor_id();
1047 #endif
1048         unsigned long fs_base, gs_base;
1049         u16 fs_sel, gs_sel;
1050         int i;
1051
1052         vmx->req_immediate_exit = false;
1053
1054         /*
1055          * Note that guest MSRs to be saved/restored can also be changed
1056          * when guest state is loaded. This happens when guest transitions
1057          * to/from long-mode by setting MSR_EFER.LMA.
1058          */
1059         if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
1060                 vmx->guest_msrs_dirty = false;
1061                 for (i = 0; i < vmx->save_nmsrs; ++i)
1062                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1063                                            vmx->guest_msrs[i].data,
1064                                            vmx->guest_msrs[i].mask);
1065
1066         }
1067
1068         if (vmx->loaded_cpu_state)
1069                 return;
1070
1071         vmx->loaded_cpu_state = vmx->loaded_vmcs;
1072         host_state = &vmx->loaded_cpu_state->host_state;
1073
1074         /*
1075          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1076          * allow segment selectors with cpl > 0 or ti == 1.
1077          */
1078         host_state->ldt_sel = kvm_read_ldt();
1079
1080 #ifdef CONFIG_X86_64
1081         savesegment(ds, host_state->ds_sel);
1082         savesegment(es, host_state->es_sel);
1083
1084         gs_base = cpu_kernelmode_gs_base(cpu);
1085         if (likely(is_64bit_mm(current->mm))) {
1086                 save_fsgs_for_kvm();
1087                 fs_sel = current->thread.fsindex;
1088                 gs_sel = current->thread.gsindex;
1089                 fs_base = current->thread.fsbase;
1090                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1091         } else {
1092                 savesegment(fs, fs_sel);
1093                 savesegment(gs, gs_sel);
1094                 fs_base = read_msr(MSR_FS_BASE);
1095                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1096         }
1097
1098         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1099 #else
1100         savesegment(fs, fs_sel);
1101         savesegment(gs, gs_sel);
1102         fs_base = segment_base(fs_sel);
1103         gs_base = segment_base(gs_sel);
1104 #endif
1105
1106         if (unlikely(fs_sel != host_state->fs_sel)) {
1107                 if (!(fs_sel & 7))
1108                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1109                 else
1110                         vmcs_write16(HOST_FS_SELECTOR, 0);
1111                 host_state->fs_sel = fs_sel;
1112         }
1113         if (unlikely(gs_sel != host_state->gs_sel)) {
1114                 if (!(gs_sel & 7))
1115                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1116                 else
1117                         vmcs_write16(HOST_GS_SELECTOR, 0);
1118                 host_state->gs_sel = gs_sel;
1119         }
1120         if (unlikely(fs_base != host_state->fs_base)) {
1121                 vmcs_writel(HOST_FS_BASE, fs_base);
1122                 host_state->fs_base = fs_base;
1123         }
1124         if (unlikely(gs_base != host_state->gs_base)) {
1125                 vmcs_writel(HOST_GS_BASE, gs_base);
1126                 host_state->gs_base = gs_base;
1127         }
1128 }
1129
1130 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1131 {
1132         struct vmcs_host_state *host_state;
1133
1134         if (!vmx->loaded_cpu_state)
1135                 return;
1136
1137         WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
1138         host_state = &vmx->loaded_cpu_state->host_state;
1139
1140         ++vmx->vcpu.stat.host_state_reload;
1141         vmx->loaded_cpu_state = NULL;
1142
1143 #ifdef CONFIG_X86_64
1144         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1145 #endif
1146         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1147                 kvm_load_ldt(host_state->ldt_sel);
1148 #ifdef CONFIG_X86_64
1149                 load_gs_index(host_state->gs_sel);
1150 #else
1151                 loadsegment(gs, host_state->gs_sel);
1152 #endif
1153         }
1154         if (host_state->fs_sel & 7)
1155                 loadsegment(fs, host_state->fs_sel);
1156 #ifdef CONFIG_X86_64
1157         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1158                 loadsegment(ds, host_state->ds_sel);
1159                 loadsegment(es, host_state->es_sel);
1160         }
1161 #endif
1162         invalidate_tss_limit();
1163 #ifdef CONFIG_X86_64
1164         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1165 #endif
1166         load_fixmap_gdt(raw_smp_processor_id());
1167 }
1168
1169 #ifdef CONFIG_X86_64
1170 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1171 {
1172         preempt_disable();
1173         if (vmx->loaded_cpu_state)
1174                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1175         preempt_enable();
1176         return vmx->msr_guest_kernel_gs_base;
1177 }
1178
1179 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1180 {
1181         preempt_disable();
1182         if (vmx->loaded_cpu_state)
1183                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1184         preempt_enable();
1185         vmx->msr_guest_kernel_gs_base = data;
1186 }
1187 #endif
1188
1189 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1190 {
1191         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1192         struct pi_desc old, new;
1193         unsigned int dest;
1194
1195         /*
1196          * In case of hot-plug or hot-unplug, we may have to undo
1197          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1198          * always keep PI.NDST up to date for simplicity: it makes the
1199          * code easier, and CPU migration is not a fast path.
1200          */
1201         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1202                 return;
1203
1204         /* The full case.  */
1205         do {
1206                 old.control = new.control = pi_desc->control;
1207
1208                 dest = cpu_physical_id(cpu);
1209
1210                 if (x2apic_enabled())
1211                         new.ndst = dest;
1212                 else
1213                         new.ndst = (dest << 8) & 0xFF00;
1214
1215                 new.sn = 0;
1216         } while (cmpxchg64(&pi_desc->control, old.control,
1217                            new.control) != old.control);
1218
1219         /*
1220          * Clear SN before reading the bitmap.  The VT-d firmware
1221          * writes the bitmap and reads SN atomically (5.2.3 in the
1222          * spec), so it doesn't really have a memory barrier that
1223          * pairs with this, but we cannot do that and we need one.
1224          */
1225         smp_mb__after_atomic();
1226
1227         if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1228                 pi_set_on(pi_desc);
1229 }
1230
1231 /*
1232  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1233  * vcpu mutex is already taken.
1234  */
1235 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1236 {
1237         struct vcpu_vmx *vmx = to_vmx(vcpu);
1238         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1239
1240         if (!already_loaded) {
1241                 loaded_vmcs_clear(vmx->loaded_vmcs);
1242                 local_irq_disable();
1243                 crash_disable_local_vmclear(cpu);
1244
1245                 /*
1246                  * Read loaded_vmcs->cpu should be before fetching
1247                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1248                  * See the comments in __loaded_vmcs_clear().
1249                  */
1250                 smp_rmb();
1251
1252                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1253                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1254                 crash_enable_local_vmclear(cpu);
1255                 local_irq_enable();
1256         }
1257
1258         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1259                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1260                 vmcs_load(vmx->loaded_vmcs->vmcs);
1261                 indirect_branch_prediction_barrier();
1262         }
1263
1264         if (!already_loaded) {
1265                 void *gdt = get_current_gdt_ro();
1266                 unsigned long sysenter_esp;
1267
1268                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1269
1270                 /*
1271                  * Linux uses per-cpu TSS and GDT, so set these when switching
1272                  * processors.  See 22.2.4.
1273                  */
1274                 vmcs_writel(HOST_TR_BASE,
1275                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1276                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1277
1278                 /*
1279                  * VM exits change the host TR limit to 0x67 after a VM
1280                  * exit.  This is okay, since 0x67 covers everything except
1281                  * the IO bitmap and have have code to handle the IO bitmap
1282                  * being lost after a VM exit.
1283                  */
1284                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1285
1286                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1287                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1288
1289                 vmx->loaded_vmcs->cpu = cpu;
1290         }
1291
1292         /* Setup TSC multiplier */
1293         if (kvm_has_tsc_control &&
1294             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1295                 decache_tsc_multiplier(vmx);
1296
1297         vmx_vcpu_pi_load(vcpu, cpu);
1298         vmx->host_pkru = read_pkru();
1299         vmx->host_debugctlmsr = get_debugctlmsr();
1300 }
1301
1302 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1303 {
1304         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1305
1306         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1307                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1308                 !kvm_vcpu_apicv_active(vcpu))
1309                 return;
1310
1311         /* Set SN when the vCPU is preempted */
1312         if (vcpu->preempted)
1313                 pi_set_sn(pi_desc);
1314 }
1315
1316 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1317 {
1318         vmx_vcpu_pi_put(vcpu);
1319
1320         vmx_prepare_switch_to_host(to_vmx(vcpu));
1321 }
1322
1323 static bool emulation_required(struct kvm_vcpu *vcpu)
1324 {
1325         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1326 }
1327
1328 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1329
1330 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1331 {
1332         unsigned long rflags, save_rflags;
1333
1334         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1335                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1336                 rflags = vmcs_readl(GUEST_RFLAGS);
1337                 if (to_vmx(vcpu)->rmode.vm86_active) {
1338                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1339                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1340                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1341                 }
1342                 to_vmx(vcpu)->rflags = rflags;
1343         }
1344         return to_vmx(vcpu)->rflags;
1345 }
1346
1347 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1348 {
1349         unsigned long old_rflags = vmx_get_rflags(vcpu);
1350
1351         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1352         to_vmx(vcpu)->rflags = rflags;
1353         if (to_vmx(vcpu)->rmode.vm86_active) {
1354                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1355                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1356         }
1357         vmcs_writel(GUEST_RFLAGS, rflags);
1358
1359         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1360                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1361 }
1362
1363 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1364 {
1365         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1366         int ret = 0;
1367
1368         if (interruptibility & GUEST_INTR_STATE_STI)
1369                 ret |= KVM_X86_SHADOW_INT_STI;
1370         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1371                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1372
1373         return ret;
1374 }
1375
1376 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1377 {
1378         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1379         u32 interruptibility = interruptibility_old;
1380
1381         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1382
1383         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1384                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1385         else if (mask & KVM_X86_SHADOW_INT_STI)
1386                 interruptibility |= GUEST_INTR_STATE_STI;
1387
1388         if ((interruptibility != interruptibility_old))
1389                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1390 }
1391
1392 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1393 {
1394         struct vcpu_vmx *vmx = to_vmx(vcpu);
1395         unsigned long value;
1396
1397         /*
1398          * Any MSR write that attempts to change bits marked reserved will
1399          * case a #GP fault.
1400          */
1401         if (data & vmx->pt_desc.ctl_bitmask)
1402                 return 1;
1403
1404         /*
1405          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1406          * result in a #GP unless the same write also clears TraceEn.
1407          */
1408         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1409                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1410                 return 1;
1411
1412         /*
1413          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1414          * and FabricEn would cause #GP, if
1415          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1416          */
1417         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1418                 !(data & RTIT_CTL_FABRIC_EN) &&
1419                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1420                                         PT_CAP_single_range_output))
1421                 return 1;
1422
1423         /*
1424          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1425          * utilize encodings marked reserved will casue a #GP fault.
1426          */
1427         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1428         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1429                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1430                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1431                 return 1;
1432         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1433                                                 PT_CAP_cycle_thresholds);
1434         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1435                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1436                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1437                 return 1;
1438         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1439         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1440                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1441                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1442                 return 1;
1443
1444         /*
1445          * If ADDRx_CFG is reserved or the encodings is >2 will
1446          * cause a #GP fault.
1447          */
1448         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1449         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1450                 return 1;
1451         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1452         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1453                 return 1;
1454         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1455         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1456                 return 1;
1457         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1458         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1459                 return 1;
1460
1461         return 0;
1462 }
1463
1464
1465 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1466 {
1467         unsigned long rip;
1468
1469         rip = kvm_rip_read(vcpu);
1470         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1471         kvm_rip_write(vcpu, rip);
1472
1473         /* skipping an emulated instruction also counts */
1474         vmx_set_interrupt_shadow(vcpu, 0);
1475 }
1476
1477 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1478 {
1479         /*
1480          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1481          * explicitly skip the instruction because if the HLT state is set,
1482          * then the instruction is already executing and RIP has already been
1483          * advanced.
1484          */
1485         if (kvm_hlt_in_guest(vcpu->kvm) &&
1486                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1487                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1488 }
1489
1490 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1491 {
1492         struct vcpu_vmx *vmx = to_vmx(vcpu);
1493         unsigned nr = vcpu->arch.exception.nr;
1494         bool has_error_code = vcpu->arch.exception.has_error_code;
1495         u32 error_code = vcpu->arch.exception.error_code;
1496         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1497
1498         kvm_deliver_exception_payload(vcpu);
1499
1500         if (has_error_code) {
1501                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1502                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1503         }
1504
1505         if (vmx->rmode.vm86_active) {
1506                 int inc_eip = 0;
1507                 if (kvm_exception_is_soft(nr))
1508                         inc_eip = vcpu->arch.event_exit_inst_len;
1509                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1510                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1511                 return;
1512         }
1513
1514         WARN_ON_ONCE(vmx->emulation_required);
1515
1516         if (kvm_exception_is_soft(nr)) {
1517                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1518                              vmx->vcpu.arch.event_exit_inst_len);
1519                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1520         } else
1521                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1522
1523         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1524
1525         vmx_clear_hlt(vcpu);
1526 }
1527
1528 static bool vmx_rdtscp_supported(void)
1529 {
1530         return cpu_has_vmx_rdtscp();
1531 }
1532
1533 static bool vmx_invpcid_supported(void)
1534 {
1535         return cpu_has_vmx_invpcid();
1536 }
1537
1538 /*
1539  * Swap MSR entry in host/guest MSR entry array.
1540  */
1541 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1542 {
1543         struct shared_msr_entry tmp;
1544
1545         tmp = vmx->guest_msrs[to];
1546         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1547         vmx->guest_msrs[from] = tmp;
1548 }
1549
1550 /*
1551  * Set up the vmcs to automatically save and restore system
1552  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1553  * mode, as fiddling with msrs is very expensive.
1554  */
1555 static void setup_msrs(struct vcpu_vmx *vmx)
1556 {
1557         int save_nmsrs, index;
1558
1559         save_nmsrs = 0;
1560 #ifdef CONFIG_X86_64
1561         /*
1562          * The SYSCALL MSRs are only needed on long mode guests, and only
1563          * when EFER.SCE is set.
1564          */
1565         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1566                 index = __find_msr_index(vmx, MSR_STAR);
1567                 if (index >= 0)
1568                         move_msr_up(vmx, index, save_nmsrs++);
1569                 index = __find_msr_index(vmx, MSR_LSTAR);
1570                 if (index >= 0)
1571                         move_msr_up(vmx, index, save_nmsrs++);
1572                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1573                 if (index >= 0)
1574                         move_msr_up(vmx, index, save_nmsrs++);
1575         }
1576 #endif
1577         index = __find_msr_index(vmx, MSR_EFER);
1578         if (index >= 0 && update_transition_efer(vmx, index))
1579                 move_msr_up(vmx, index, save_nmsrs++);
1580         index = __find_msr_index(vmx, MSR_TSC_AUX);
1581         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1582                 move_msr_up(vmx, index, save_nmsrs++);
1583
1584         vmx->save_nmsrs = save_nmsrs;
1585         vmx->guest_msrs_dirty = true;
1586
1587         if (cpu_has_vmx_msr_bitmap())
1588                 vmx_update_msr_bitmap(&vmx->vcpu);
1589 }
1590
1591 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1592 {
1593         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1594
1595         if (is_guest_mode(vcpu) &&
1596             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1597                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1598
1599         return vcpu->arch.tsc_offset;
1600 }
1601
1602 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1603 {
1604         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1605         u64 g_tsc_offset = 0;
1606
1607         /*
1608          * We're here if L1 chose not to trap WRMSR to TSC. According
1609          * to the spec, this should set L1's TSC; The offset that L1
1610          * set for L2 remains unchanged, and still needs to be added
1611          * to the newly set TSC to get L2's TSC.
1612          */
1613         if (is_guest_mode(vcpu) &&
1614             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1615                 g_tsc_offset = vmcs12->tsc_offset;
1616
1617         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1618                                    vcpu->arch.tsc_offset - g_tsc_offset,
1619                                    offset);
1620         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1621         return offset + g_tsc_offset;
1622 }
1623
1624 /*
1625  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1626  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1627  * all guests if the "nested" module option is off, and can also be disabled
1628  * for a single guest by disabling its VMX cpuid bit.
1629  */
1630 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1631 {
1632         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1633 }
1634
1635 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1636                                                  uint64_t val)
1637 {
1638         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1639
1640         return !(val & ~valid_bits);
1641 }
1642
1643 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1644 {
1645         switch (msr->index) {
1646         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1647                 if (!nested)
1648                         return 1;
1649                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1650         default:
1651                 return 1;
1652         }
1653
1654         return 0;
1655 }
1656
1657 /*
1658  * Reads an msr value (of 'msr_index') into 'pdata'.
1659  * Returns 0 on success, non-0 otherwise.
1660  * Assumes vcpu_load() was already called.
1661  */
1662 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1663 {
1664         struct vcpu_vmx *vmx = to_vmx(vcpu);
1665         struct shared_msr_entry *msr;
1666         u32 index;
1667
1668         switch (msr_info->index) {
1669 #ifdef CONFIG_X86_64
1670         case MSR_FS_BASE:
1671                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1672                 break;
1673         case MSR_GS_BASE:
1674                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1675                 break;
1676         case MSR_KERNEL_GS_BASE:
1677                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1678                 break;
1679 #endif
1680         case MSR_EFER:
1681                 return kvm_get_msr_common(vcpu, msr_info);
1682         case MSR_IA32_SPEC_CTRL:
1683                 if (!msr_info->host_initiated &&
1684                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1685                         return 1;
1686
1687                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1688                 break;
1689         case MSR_IA32_SYSENTER_CS:
1690                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1691                 break;
1692         case MSR_IA32_SYSENTER_EIP:
1693                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1694                 break;
1695         case MSR_IA32_SYSENTER_ESP:
1696                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1697                 break;
1698         case MSR_IA32_POWER_CTL:
1699                 msr_info->data = vmx->msr_ia32_power_ctl;
1700                 break;
1701         case MSR_IA32_BNDCFGS:
1702                 if (!kvm_mpx_supported() ||
1703                     (!msr_info->host_initiated &&
1704                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1705                         return 1;
1706                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1707                 break;
1708         case MSR_IA32_MCG_EXT_CTL:
1709                 if (!msr_info->host_initiated &&
1710                     !(vmx->msr_ia32_feature_control &
1711                       FEATURE_CONTROL_LMCE))
1712                         return 1;
1713                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1714                 break;
1715         case MSR_IA32_FEATURE_CONTROL:
1716                 msr_info->data = vmx->msr_ia32_feature_control;
1717                 break;
1718         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1719                 if (!nested_vmx_allowed(vcpu))
1720                         return 1;
1721                 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1722                                        &msr_info->data);
1723         case MSR_IA32_XSS:
1724                 if (!vmx_xsaves_supported())
1725                         return 1;
1726                 msr_info->data = vcpu->arch.ia32_xss;
1727                 break;
1728         case MSR_IA32_RTIT_CTL:
1729                 if (pt_mode != PT_MODE_HOST_GUEST)
1730                         return 1;
1731                 msr_info->data = vmx->pt_desc.guest.ctl;
1732                 break;
1733         case MSR_IA32_RTIT_STATUS:
1734                 if (pt_mode != PT_MODE_HOST_GUEST)
1735                         return 1;
1736                 msr_info->data = vmx->pt_desc.guest.status;
1737                 break;
1738         case MSR_IA32_RTIT_CR3_MATCH:
1739                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1740                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1741                                                 PT_CAP_cr3_filtering))
1742                         return 1;
1743                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1744                 break;
1745         case MSR_IA32_RTIT_OUTPUT_BASE:
1746                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1747                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1748                                         PT_CAP_topa_output) &&
1749                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1750                                         PT_CAP_single_range_output)))
1751                         return 1;
1752                 msr_info->data = vmx->pt_desc.guest.output_base;
1753                 break;
1754         case MSR_IA32_RTIT_OUTPUT_MASK:
1755                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1756                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1757                                         PT_CAP_topa_output) &&
1758                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1759                                         PT_CAP_single_range_output)))
1760                         return 1;
1761                 msr_info->data = vmx->pt_desc.guest.output_mask;
1762                 break;
1763         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1764                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1765                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1766                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1767                                         PT_CAP_num_address_ranges)))
1768                         return 1;
1769                 if (index % 2)
1770                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1771                 else
1772                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1773                 break;
1774         case MSR_TSC_AUX:
1775                 if (!msr_info->host_initiated &&
1776                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1777                         return 1;
1778                 /* Else, falls through */
1779         default:
1780                 msr = find_msr_entry(vmx, msr_info->index);
1781                 if (msr) {
1782                         msr_info->data = msr->data;
1783                         break;
1784                 }
1785                 return kvm_get_msr_common(vcpu, msr_info);
1786         }
1787
1788         return 0;
1789 }
1790
1791 /*
1792  * Writes msr value into into the appropriate "register".
1793  * Returns 0 on success, non-0 otherwise.
1794  * Assumes vcpu_load() was already called.
1795  */
1796 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1797 {
1798         struct vcpu_vmx *vmx = to_vmx(vcpu);
1799         struct shared_msr_entry *msr;
1800         int ret = 0;
1801         u32 msr_index = msr_info->index;
1802         u64 data = msr_info->data;
1803         u32 index;
1804
1805         switch (msr_index) {
1806         case MSR_EFER:
1807                 ret = kvm_set_msr_common(vcpu, msr_info);
1808                 break;
1809 #ifdef CONFIG_X86_64
1810         case MSR_FS_BASE:
1811                 vmx_segment_cache_clear(vmx);
1812                 vmcs_writel(GUEST_FS_BASE, data);
1813                 break;
1814         case MSR_GS_BASE:
1815                 vmx_segment_cache_clear(vmx);
1816                 vmcs_writel(GUEST_GS_BASE, data);
1817                 break;
1818         case MSR_KERNEL_GS_BASE:
1819                 vmx_write_guest_kernel_gs_base(vmx, data);
1820                 break;
1821 #endif
1822         case MSR_IA32_SYSENTER_CS:
1823                 vmcs_write32(GUEST_SYSENTER_CS, data);
1824                 break;
1825         case MSR_IA32_SYSENTER_EIP:
1826                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1827                 break;
1828         case MSR_IA32_SYSENTER_ESP:
1829                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1830                 break;
1831         case MSR_IA32_POWER_CTL:
1832                 vmx->msr_ia32_power_ctl = data;
1833                 break;
1834         case MSR_IA32_BNDCFGS:
1835                 if (!kvm_mpx_supported() ||
1836                     (!msr_info->host_initiated &&
1837                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1838                         return 1;
1839                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1840                     (data & MSR_IA32_BNDCFGS_RSVD))
1841                         return 1;
1842                 vmcs_write64(GUEST_BNDCFGS, data);
1843                 break;
1844         case MSR_IA32_SPEC_CTRL:
1845                 if (!msr_info->host_initiated &&
1846                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1847                         return 1;
1848
1849                 /* The STIBP bit doesn't fault even if it's not advertised */
1850                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1851                         return 1;
1852
1853                 vmx->spec_ctrl = data;
1854
1855                 if (!data)
1856                         break;
1857
1858                 /*
1859                  * For non-nested:
1860                  * When it's written (to non-zero) for the first time, pass
1861                  * it through.
1862                  *
1863                  * For nested:
1864                  * The handling of the MSR bitmap for L2 guests is done in
1865                  * nested_vmx_merge_msr_bitmap. We should not touch the
1866                  * vmcs02.msr_bitmap here since it gets completely overwritten
1867                  * in the merging. We update the vmcs01 here for L1 as well
1868                  * since it will end up touching the MSR anyway now.
1869                  */
1870                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1871                                               MSR_IA32_SPEC_CTRL,
1872                                               MSR_TYPE_RW);
1873                 break;
1874         case MSR_IA32_PRED_CMD:
1875                 if (!msr_info->host_initiated &&
1876                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1877                         return 1;
1878
1879                 if (data & ~PRED_CMD_IBPB)
1880                         return 1;
1881
1882                 if (!data)
1883                         break;
1884
1885                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1886
1887                 /*
1888                  * For non-nested:
1889                  * When it's written (to non-zero) for the first time, pass
1890                  * it through.
1891                  *
1892                  * For nested:
1893                  * The handling of the MSR bitmap for L2 guests is done in
1894                  * nested_vmx_merge_msr_bitmap. We should not touch the
1895                  * vmcs02.msr_bitmap here since it gets completely overwritten
1896                  * in the merging.
1897                  */
1898                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1899                                               MSR_TYPE_W);
1900                 break;
1901         case MSR_IA32_CR_PAT:
1902                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1903                         if (!kvm_pat_valid(data))
1904                                 return 1;
1905                         vmcs_write64(GUEST_IA32_PAT, data);
1906                         vcpu->arch.pat = data;
1907                         break;
1908                 }
1909                 ret = kvm_set_msr_common(vcpu, msr_info);
1910                 break;
1911         case MSR_IA32_TSC_ADJUST:
1912                 ret = kvm_set_msr_common(vcpu, msr_info);
1913                 break;
1914         case MSR_IA32_MCG_EXT_CTL:
1915                 if ((!msr_info->host_initiated &&
1916                      !(to_vmx(vcpu)->msr_ia32_feature_control &
1917                        FEATURE_CONTROL_LMCE)) ||
1918                     (data & ~MCG_EXT_CTL_LMCE_EN))
1919                         return 1;
1920                 vcpu->arch.mcg_ext_ctl = data;
1921                 break;
1922         case MSR_IA32_FEATURE_CONTROL:
1923                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
1924                     (to_vmx(vcpu)->msr_ia32_feature_control &
1925                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
1926                         return 1;
1927                 vmx->msr_ia32_feature_control = data;
1928                 if (msr_info->host_initiated && data == 0)
1929                         vmx_leave_nested(vcpu);
1930                 break;
1931         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1932                 if (!msr_info->host_initiated)
1933                         return 1; /* they are read-only */
1934                 if (!nested_vmx_allowed(vcpu))
1935                         return 1;
1936                 return vmx_set_vmx_msr(vcpu, msr_index, data);
1937         case MSR_IA32_XSS:
1938                 if (!vmx_xsaves_supported())
1939                         return 1;
1940                 /*
1941                  * The only supported bit as of Skylake is bit 8, but
1942                  * it is not supported on KVM.
1943                  */
1944                 if (data != 0)
1945                         return 1;
1946                 vcpu->arch.ia32_xss = data;
1947                 if (vcpu->arch.ia32_xss != host_xss)
1948                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
1949                                 vcpu->arch.ia32_xss, host_xss, false);
1950                 else
1951                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
1952                 break;
1953         case MSR_IA32_RTIT_CTL:
1954                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1955                         vmx_rtit_ctl_check(vcpu, data) ||
1956                         vmx->nested.vmxon)
1957                         return 1;
1958                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
1959                 vmx->pt_desc.guest.ctl = data;
1960                 pt_update_intercept_for_msr(vmx);
1961                 break;
1962         case MSR_IA32_RTIT_STATUS:
1963                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1964                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1965                         (data & MSR_IA32_RTIT_STATUS_MASK))
1966                         return 1;
1967                 vmx->pt_desc.guest.status = data;
1968                 break;
1969         case MSR_IA32_RTIT_CR3_MATCH:
1970                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1971                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1972                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1973                                                 PT_CAP_cr3_filtering))
1974                         return 1;
1975                 vmx->pt_desc.guest.cr3_match = data;
1976                 break;
1977         case MSR_IA32_RTIT_OUTPUT_BASE:
1978                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1979                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1980                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1981                                         PT_CAP_topa_output) &&
1982                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1983                                         PT_CAP_single_range_output)) ||
1984                         (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
1985                         return 1;
1986                 vmx->pt_desc.guest.output_base = data;
1987                 break;
1988         case MSR_IA32_RTIT_OUTPUT_MASK:
1989                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1990                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1991                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1992                                         PT_CAP_topa_output) &&
1993                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1994                                         PT_CAP_single_range_output)))
1995                         return 1;
1996                 vmx->pt_desc.guest.output_mask = data;
1997                 break;
1998         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1999                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2000                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2001                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2002                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2003                                         PT_CAP_num_address_ranges)))
2004                         return 1;
2005                 if (index % 2)
2006                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2007                 else
2008                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2009                 break;
2010         case MSR_TSC_AUX:
2011                 if (!msr_info->host_initiated &&
2012                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2013                         return 1;
2014                 /* Check reserved bit, higher 32 bits should be zero */
2015                 if ((data >> 32) != 0)
2016                         return 1;
2017                 /* Else, falls through */
2018         default:
2019                 msr = find_msr_entry(vmx, msr_index);
2020                 if (msr) {
2021                         u64 old_msr_data = msr->data;
2022                         msr->data = data;
2023                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2024                                 preempt_disable();
2025                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2026                                                          msr->mask);
2027                                 preempt_enable();
2028                                 if (ret)
2029                                         msr->data = old_msr_data;
2030                         }
2031                         break;
2032                 }
2033                 ret = kvm_set_msr_common(vcpu, msr_info);
2034         }
2035
2036         return ret;
2037 }
2038
2039 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2040 {
2041         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2042         switch (reg) {
2043         case VCPU_REGS_RSP:
2044                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2045                 break;
2046         case VCPU_REGS_RIP:
2047                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2048                 break;
2049         case VCPU_EXREG_PDPTR:
2050                 if (enable_ept)
2051                         ept_save_pdptrs(vcpu);
2052                 break;
2053         default:
2054                 break;
2055         }
2056 }
2057
2058 static __init int cpu_has_kvm_support(void)
2059 {
2060         return cpu_has_vmx();
2061 }
2062
2063 static __init int vmx_disabled_by_bios(void)
2064 {
2065         u64 msr;
2066
2067         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2068         if (msr & FEATURE_CONTROL_LOCKED) {
2069                 /* launched w/ TXT and VMX disabled */
2070                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2071                         && tboot_enabled())
2072                         return 1;
2073                 /* launched w/o TXT and VMX only enabled w/ TXT */
2074                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2075                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2076                         && !tboot_enabled()) {
2077                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2078                                 "activate TXT before enabling KVM\n");
2079                         return 1;
2080                 }
2081                 /* launched w/o TXT and VMX disabled */
2082                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2083                         && !tboot_enabled())
2084                         return 1;
2085         }
2086
2087         return 0;
2088 }
2089
2090 static void kvm_cpu_vmxon(u64 addr)
2091 {
2092         cr4_set_bits(X86_CR4_VMXE);
2093         intel_pt_handle_vmx(1);
2094
2095         asm volatile ("vmxon %0" : : "m"(addr));
2096 }
2097
2098 static int hardware_enable(void)
2099 {
2100         int cpu = raw_smp_processor_id();
2101         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2102         u64 old, test_bits;
2103
2104         if (cr4_read_shadow() & X86_CR4_VMXE)
2105                 return -EBUSY;
2106
2107         /*
2108          * This can happen if we hot-added a CPU but failed to allocate
2109          * VP assist page for it.
2110          */
2111         if (static_branch_unlikely(&enable_evmcs) &&
2112             !hv_get_vp_assist_page(cpu))
2113                 return -EFAULT;
2114
2115         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2116         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2117         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2118
2119         /*
2120          * Now we can enable the vmclear operation in kdump
2121          * since the loaded_vmcss_on_cpu list on this cpu
2122          * has been initialized.
2123          *
2124          * Though the cpu is not in VMX operation now, there
2125          * is no problem to enable the vmclear operation
2126          * for the loaded_vmcss_on_cpu list is empty!
2127          */
2128         crash_enable_local_vmclear(cpu);
2129
2130         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2131
2132         test_bits = FEATURE_CONTROL_LOCKED;
2133         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2134         if (tboot_enabled())
2135                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2136
2137         if ((old & test_bits) != test_bits) {
2138                 /* enable and lock */
2139                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2140         }
2141         kvm_cpu_vmxon(phys_addr);
2142         if (enable_ept)
2143                 ept_sync_global();
2144
2145         return 0;
2146 }
2147
2148 static void vmclear_local_loaded_vmcss(void)
2149 {
2150         int cpu = raw_smp_processor_id();
2151         struct loaded_vmcs *v, *n;
2152
2153         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2154                                  loaded_vmcss_on_cpu_link)
2155                 __loaded_vmcs_clear(v);
2156 }
2157
2158
2159 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2160  * tricks.
2161  */
2162 static void kvm_cpu_vmxoff(void)
2163 {
2164         asm volatile (__ex("vmxoff"));
2165
2166         intel_pt_handle_vmx(0);
2167         cr4_clear_bits(X86_CR4_VMXE);
2168 }
2169
2170 static void hardware_disable(void)
2171 {
2172         vmclear_local_loaded_vmcss();
2173         kvm_cpu_vmxoff();
2174 }
2175
2176 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2177                                       u32 msr, u32 *result)
2178 {
2179         u32 vmx_msr_low, vmx_msr_high;
2180         u32 ctl = ctl_min | ctl_opt;
2181
2182         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2183
2184         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2185         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2186
2187         /* Ensure minimum (required) set of control bits are supported. */
2188         if (ctl_min & ~ctl)
2189                 return -EIO;
2190
2191         *result = ctl;
2192         return 0;
2193 }
2194
2195 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2196                                     struct vmx_capability *vmx_cap)
2197 {
2198         u32 vmx_msr_low, vmx_msr_high;
2199         u32 min, opt, min2, opt2;
2200         u32 _pin_based_exec_control = 0;
2201         u32 _cpu_based_exec_control = 0;
2202         u32 _cpu_based_2nd_exec_control = 0;
2203         u32 _vmexit_control = 0;
2204         u32 _vmentry_control = 0;
2205
2206         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2207         min = CPU_BASED_HLT_EXITING |
2208 #ifdef CONFIG_X86_64
2209               CPU_BASED_CR8_LOAD_EXITING |
2210               CPU_BASED_CR8_STORE_EXITING |
2211 #endif
2212               CPU_BASED_CR3_LOAD_EXITING |
2213               CPU_BASED_CR3_STORE_EXITING |
2214               CPU_BASED_UNCOND_IO_EXITING |
2215               CPU_BASED_MOV_DR_EXITING |
2216               CPU_BASED_USE_TSC_OFFSETING |
2217               CPU_BASED_MWAIT_EXITING |
2218               CPU_BASED_MONITOR_EXITING |
2219               CPU_BASED_INVLPG_EXITING |
2220               CPU_BASED_RDPMC_EXITING;
2221
2222         opt = CPU_BASED_TPR_SHADOW |
2223               CPU_BASED_USE_MSR_BITMAPS |
2224               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2225         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2226                                 &_cpu_based_exec_control) < 0)
2227                 return -EIO;
2228 #ifdef CONFIG_X86_64
2229         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2230                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2231                                            ~CPU_BASED_CR8_STORE_EXITING;
2232 #endif
2233         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2234                 min2 = 0;
2235                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2236                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2237                         SECONDARY_EXEC_WBINVD_EXITING |
2238                         SECONDARY_EXEC_ENABLE_VPID |
2239                         SECONDARY_EXEC_ENABLE_EPT |
2240                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2241                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2242                         SECONDARY_EXEC_DESC |
2243                         SECONDARY_EXEC_RDTSCP |
2244                         SECONDARY_EXEC_ENABLE_INVPCID |
2245                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2246                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2247                         SECONDARY_EXEC_SHADOW_VMCS |
2248                         SECONDARY_EXEC_XSAVES |
2249                         SECONDARY_EXEC_RDSEED_EXITING |
2250                         SECONDARY_EXEC_RDRAND_EXITING |
2251                         SECONDARY_EXEC_ENABLE_PML |
2252                         SECONDARY_EXEC_TSC_SCALING |
2253                         SECONDARY_EXEC_PT_USE_GPA |
2254                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2255                         SECONDARY_EXEC_ENABLE_VMFUNC |
2256                         SECONDARY_EXEC_ENCLS_EXITING;
2257                 if (adjust_vmx_controls(min2, opt2,
2258                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2259                                         &_cpu_based_2nd_exec_control) < 0)
2260                         return -EIO;
2261         }
2262 #ifndef CONFIG_X86_64
2263         if (!(_cpu_based_2nd_exec_control &
2264                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2265                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2266 #endif
2267
2268         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2269                 _cpu_based_2nd_exec_control &= ~(
2270                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2271                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2272                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2273
2274         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2275                 &vmx_cap->ept, &vmx_cap->vpid);
2276
2277         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2278                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2279                    enabled */
2280                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2281                                              CPU_BASED_CR3_STORE_EXITING |
2282                                              CPU_BASED_INVLPG_EXITING);
2283         } else if (vmx_cap->ept) {
2284                 vmx_cap->ept = 0;
2285                 pr_warn_once("EPT CAP should not exist if not support "
2286                                 "1-setting enable EPT VM-execution control\n");
2287         }
2288         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2289                 vmx_cap->vpid) {
2290                 vmx_cap->vpid = 0;
2291                 pr_warn_once("VPID CAP should not exist if not support "
2292                                 "1-setting enable VPID VM-execution control\n");
2293         }
2294
2295         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2296 #ifdef CONFIG_X86_64
2297         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2298 #endif
2299         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2300               VM_EXIT_LOAD_IA32_PAT |
2301               VM_EXIT_LOAD_IA32_EFER |
2302               VM_EXIT_CLEAR_BNDCFGS |
2303               VM_EXIT_PT_CONCEAL_PIP |
2304               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2305         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2306                                 &_vmexit_control) < 0)
2307                 return -EIO;
2308
2309         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2310         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2311                  PIN_BASED_VMX_PREEMPTION_TIMER;
2312         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2313                                 &_pin_based_exec_control) < 0)
2314                 return -EIO;
2315
2316         if (cpu_has_broken_vmx_preemption_timer())
2317                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2318         if (!(_cpu_based_2nd_exec_control &
2319                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2320                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2321
2322         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2323         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2324               VM_ENTRY_LOAD_IA32_PAT |
2325               VM_ENTRY_LOAD_IA32_EFER |
2326               VM_ENTRY_LOAD_BNDCFGS |
2327               VM_ENTRY_PT_CONCEAL_PIP |
2328               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2329         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2330                                 &_vmentry_control) < 0)
2331                 return -EIO;
2332
2333         /*
2334          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2335          * can't be used due to an errata where VM Exit may incorrectly clear
2336          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2337          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2338          */
2339         if (boot_cpu_data.x86 == 0x6) {
2340                 switch (boot_cpu_data.x86_model) {
2341                 case 26: /* AAK155 */
2342                 case 30: /* AAP115 */
2343                 case 37: /* AAT100 */
2344                 case 44: /* BC86,AAY89,BD102 */
2345                 case 46: /* BA97 */
2346                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2347                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2348                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2349                                         "does not work properly. Using workaround\n");
2350                         break;
2351                 default:
2352                         break;
2353                 }
2354         }
2355
2356
2357         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2358
2359         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2360         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2361                 return -EIO;
2362
2363 #ifdef CONFIG_X86_64
2364         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2365         if (vmx_msr_high & (1u<<16))
2366                 return -EIO;
2367 #endif
2368
2369         /* Require Write-Back (WB) memory type for VMCS accesses. */
2370         if (((vmx_msr_high >> 18) & 15) != 6)
2371                 return -EIO;
2372
2373         vmcs_conf->size = vmx_msr_high & 0x1fff;
2374         vmcs_conf->order = get_order(vmcs_conf->size);
2375         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2376
2377         vmcs_conf->revision_id = vmx_msr_low;
2378
2379         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2380         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2381         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2382         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2383         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2384
2385         if (static_branch_unlikely(&enable_evmcs))
2386                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2387
2388         return 0;
2389 }
2390
2391 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2392 {
2393         int node = cpu_to_node(cpu);
2394         struct page *pages;
2395         struct vmcs *vmcs;
2396
2397         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2398         if (!pages)
2399                 return NULL;
2400         vmcs = page_address(pages);
2401         memset(vmcs, 0, vmcs_config.size);
2402
2403         /* KVM supports Enlightened VMCS v1 only */
2404         if (static_branch_unlikely(&enable_evmcs))
2405                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2406         else
2407                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2408
2409         if (shadow)
2410                 vmcs->hdr.shadow_vmcs = 1;
2411         return vmcs;
2412 }
2413
2414 void free_vmcs(struct vmcs *vmcs)
2415 {
2416         free_pages((unsigned long)vmcs, vmcs_config.order);
2417 }
2418
2419 /*
2420  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2421  */
2422 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2423 {
2424         if (!loaded_vmcs->vmcs)
2425                 return;
2426         loaded_vmcs_clear(loaded_vmcs);
2427         free_vmcs(loaded_vmcs->vmcs);
2428         loaded_vmcs->vmcs = NULL;
2429         if (loaded_vmcs->msr_bitmap)
2430                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2431         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2432 }
2433
2434 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2435 {
2436         loaded_vmcs->vmcs = alloc_vmcs(false);
2437         if (!loaded_vmcs->vmcs)
2438                 return -ENOMEM;
2439
2440         loaded_vmcs->shadow_vmcs = NULL;
2441         loaded_vmcs_init(loaded_vmcs);
2442
2443         if (cpu_has_vmx_msr_bitmap()) {
2444                 loaded_vmcs->msr_bitmap = (unsigned long *)
2445                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2446                 if (!loaded_vmcs->msr_bitmap)
2447                         goto out_vmcs;
2448                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2449
2450                 if (IS_ENABLED(CONFIG_HYPERV) &&
2451                     static_branch_unlikely(&enable_evmcs) &&
2452                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2453                         struct hv_enlightened_vmcs *evmcs =
2454                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2455
2456                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2457                 }
2458         }
2459
2460         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2461
2462         return 0;
2463
2464 out_vmcs:
2465         free_loaded_vmcs(loaded_vmcs);
2466         return -ENOMEM;
2467 }
2468
2469 static void free_kvm_area(void)
2470 {
2471         int cpu;
2472
2473         for_each_possible_cpu(cpu) {
2474                 free_vmcs(per_cpu(vmxarea, cpu));
2475                 per_cpu(vmxarea, cpu) = NULL;
2476         }
2477 }
2478
2479 static __init int alloc_kvm_area(void)
2480 {
2481         int cpu;
2482
2483         for_each_possible_cpu(cpu) {
2484                 struct vmcs *vmcs;
2485
2486                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2487                 if (!vmcs) {
2488                         free_kvm_area();
2489                         return -ENOMEM;
2490                 }
2491
2492                 /*
2493                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2494                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2495                  * revision_id reported by MSR_IA32_VMX_BASIC.
2496                  *
2497                  * However, even though not explicitly documented by
2498                  * TLFS, VMXArea passed as VMXON argument should
2499                  * still be marked with revision_id reported by
2500                  * physical CPU.
2501                  */
2502                 if (static_branch_unlikely(&enable_evmcs))
2503                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2504
2505                 per_cpu(vmxarea, cpu) = vmcs;
2506         }
2507         return 0;
2508 }
2509
2510 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2511                 struct kvm_segment *save)
2512 {
2513         if (!emulate_invalid_guest_state) {
2514                 /*
2515                  * CS and SS RPL should be equal during guest entry according
2516                  * to VMX spec, but in reality it is not always so. Since vcpu
2517                  * is in the middle of the transition from real mode to
2518                  * protected mode it is safe to assume that RPL 0 is a good
2519                  * default value.
2520                  */
2521                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2522                         save->selector &= ~SEGMENT_RPL_MASK;
2523                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2524                 save->s = 1;
2525         }
2526         vmx_set_segment(vcpu, save, seg);
2527 }
2528
2529 static void enter_pmode(struct kvm_vcpu *vcpu)
2530 {
2531         unsigned long flags;
2532         struct vcpu_vmx *vmx = to_vmx(vcpu);
2533
2534         /*
2535          * Update real mode segment cache. It may be not up-to-date if sement
2536          * register was written while vcpu was in a guest mode.
2537          */
2538         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2539         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2540         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2541         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2542         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2543         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2544
2545         vmx->rmode.vm86_active = 0;
2546
2547         vmx_segment_cache_clear(vmx);
2548
2549         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2550
2551         flags = vmcs_readl(GUEST_RFLAGS);
2552         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2553         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2554         vmcs_writel(GUEST_RFLAGS, flags);
2555
2556         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2557                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2558
2559         update_exception_bitmap(vcpu);
2560
2561         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2562         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2563         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2564         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2565         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2566         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2567 }
2568
2569 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2570 {
2571         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2572         struct kvm_segment var = *save;
2573
2574         var.dpl = 0x3;
2575         if (seg == VCPU_SREG_CS)
2576                 var.type = 0x3;
2577
2578         if (!emulate_invalid_guest_state) {
2579                 var.selector = var.base >> 4;
2580                 var.base = var.base & 0xffff0;
2581                 var.limit = 0xffff;
2582                 var.g = 0;
2583                 var.db = 0;
2584                 var.present = 1;
2585                 var.s = 1;
2586                 var.l = 0;
2587                 var.unusable = 0;
2588                 var.type = 0x3;
2589                 var.avl = 0;
2590                 if (save->base & 0xf)
2591                         printk_once(KERN_WARNING "kvm: segment base is not "
2592                                         "paragraph aligned when entering "
2593                                         "protected mode (seg=%d)", seg);
2594         }
2595
2596         vmcs_write16(sf->selector, var.selector);
2597         vmcs_writel(sf->base, var.base);
2598         vmcs_write32(sf->limit, var.limit);
2599         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2600 }
2601
2602 static void enter_rmode(struct kvm_vcpu *vcpu)
2603 {
2604         unsigned long flags;
2605         struct vcpu_vmx *vmx = to_vmx(vcpu);
2606         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2607
2608         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2609         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2610         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2611         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2612         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2613         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2614         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2615
2616         vmx->rmode.vm86_active = 1;
2617
2618         /*
2619          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2620          * vcpu. Warn the user that an update is overdue.
2621          */
2622         if (!kvm_vmx->tss_addr)
2623                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2624                              "called before entering vcpu\n");
2625
2626         vmx_segment_cache_clear(vmx);
2627
2628         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2629         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2630         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2631
2632         flags = vmcs_readl(GUEST_RFLAGS);
2633         vmx->rmode.save_rflags = flags;
2634
2635         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2636
2637         vmcs_writel(GUEST_RFLAGS, flags);
2638         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2639         update_exception_bitmap(vcpu);
2640
2641         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2642         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2643         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2644         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2645         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2646         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2647
2648         kvm_mmu_reset_context(vcpu);
2649 }
2650
2651 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2652 {
2653         struct vcpu_vmx *vmx = to_vmx(vcpu);
2654         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2655
2656         if (!msr)
2657                 return;
2658
2659         vcpu->arch.efer = efer;
2660         if (efer & EFER_LMA) {
2661                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2662                 msr->data = efer;
2663         } else {
2664                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2665
2666                 msr->data = efer & ~EFER_LME;
2667         }
2668         setup_msrs(vmx);
2669 }
2670
2671 #ifdef CONFIG_X86_64
2672
2673 static void enter_lmode(struct kvm_vcpu *vcpu)
2674 {
2675         u32 guest_tr_ar;
2676
2677         vmx_segment_cache_clear(to_vmx(vcpu));
2678
2679         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2680         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2681                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2682                                      __func__);
2683                 vmcs_write32(GUEST_TR_AR_BYTES,
2684                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2685                              | VMX_AR_TYPE_BUSY_64_TSS);
2686         }
2687         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2688 }
2689
2690 static void exit_lmode(struct kvm_vcpu *vcpu)
2691 {
2692         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2693         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2694 }
2695
2696 #endif
2697
2698 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2699 {
2700         int vpid = to_vmx(vcpu)->vpid;
2701
2702         if (!vpid_sync_vcpu_addr(vpid, addr))
2703                 vpid_sync_context(vpid);
2704
2705         /*
2706          * If VPIDs are not supported or enabled, then the above is a no-op.
2707          * But we don't really need a TLB flush in that case anyway, because
2708          * each VM entry/exit includes an implicit flush when VPID is 0.
2709          */
2710 }
2711
2712 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2713 {
2714         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2715
2716         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2717         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2718 }
2719
2720 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2721 {
2722         if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2723                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2724         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2725 }
2726
2727 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2728 {
2729         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2730
2731         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2732         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2733 }
2734
2735 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2736 {
2737         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2738
2739         if (!test_bit(VCPU_EXREG_PDPTR,
2740                       (unsigned long *)&vcpu->arch.regs_dirty))
2741                 return;
2742
2743         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2744                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2745                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2746                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2747                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2748         }
2749 }
2750
2751 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2752 {
2753         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2754
2755         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2756                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2757                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2758                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2759                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2760         }
2761
2762         __set_bit(VCPU_EXREG_PDPTR,
2763                   (unsigned long *)&vcpu->arch.regs_avail);
2764         __set_bit(VCPU_EXREG_PDPTR,
2765                   (unsigned long *)&vcpu->arch.regs_dirty);
2766 }
2767
2768 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2769                                         unsigned long cr0,
2770                                         struct kvm_vcpu *vcpu)
2771 {
2772         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2773                 vmx_decache_cr3(vcpu);
2774         if (!(cr0 & X86_CR0_PG)) {
2775                 /* From paging/starting to nonpaging */
2776                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2777                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2778                              (CPU_BASED_CR3_LOAD_EXITING |
2779                               CPU_BASED_CR3_STORE_EXITING));
2780                 vcpu->arch.cr0 = cr0;
2781                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2782         } else if (!is_paging(vcpu)) {
2783                 /* From nonpaging to paging */
2784                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2785                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2786                              ~(CPU_BASED_CR3_LOAD_EXITING |
2787                                CPU_BASED_CR3_STORE_EXITING));
2788                 vcpu->arch.cr0 = cr0;
2789                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2790         }
2791
2792         if (!(cr0 & X86_CR0_WP))
2793                 *hw_cr0 &= ~X86_CR0_WP;
2794 }
2795
2796 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2797 {
2798         struct vcpu_vmx *vmx = to_vmx(vcpu);
2799         unsigned long hw_cr0;
2800
2801         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2802         if (enable_unrestricted_guest)
2803                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2804         else {
2805                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2806
2807                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2808                         enter_pmode(vcpu);
2809
2810                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2811                         enter_rmode(vcpu);
2812         }
2813
2814 #ifdef CONFIG_X86_64
2815         if (vcpu->arch.efer & EFER_LME) {
2816                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2817                         enter_lmode(vcpu);
2818                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2819                         exit_lmode(vcpu);
2820         }
2821 #endif
2822
2823         if (enable_ept && !enable_unrestricted_guest)
2824                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2825
2826         vmcs_writel(CR0_READ_SHADOW, cr0);
2827         vmcs_writel(GUEST_CR0, hw_cr0);
2828         vcpu->arch.cr0 = cr0;
2829
2830         /* depends on vcpu->arch.cr0 to be set to a new value */
2831         vmx->emulation_required = emulation_required(vcpu);
2832 }
2833
2834 static int get_ept_level(struct kvm_vcpu *vcpu)
2835 {
2836         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2837                 return 5;
2838         return 4;
2839 }
2840
2841 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2842 {
2843         u64 eptp = VMX_EPTP_MT_WB;
2844
2845         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2846
2847         if (enable_ept_ad_bits &&
2848             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2849                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2850         eptp |= (root_hpa & PAGE_MASK);
2851
2852         return eptp;
2853 }
2854
2855 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2856 {
2857         struct kvm *kvm = vcpu->kvm;
2858         unsigned long guest_cr3;
2859         u64 eptp;
2860
2861         guest_cr3 = cr3;
2862         if (enable_ept) {
2863                 eptp = construct_eptp(vcpu, cr3);
2864                 vmcs_write64(EPT_POINTER, eptp);
2865
2866                 if (kvm_x86_ops->tlb_remote_flush) {
2867                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2868                         to_vmx(vcpu)->ept_pointer = eptp;
2869                         to_kvm_vmx(kvm)->ept_pointers_match
2870                                 = EPT_POINTERS_CHECK;
2871                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2872                 }
2873
2874                 if (enable_unrestricted_guest || is_paging(vcpu) ||
2875                     is_guest_mode(vcpu))
2876                         guest_cr3 = kvm_read_cr3(vcpu);
2877                 else
2878                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2879                 ept_load_pdptrs(vcpu);
2880         }
2881
2882         vmcs_writel(GUEST_CR3, guest_cr3);
2883 }
2884
2885 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2886 {
2887         /*
2888          * Pass through host's Machine Check Enable value to hw_cr4, which
2889          * is in force while we are in guest mode.  Do not let guests control
2890          * this bit, even if host CR4.MCE == 0.
2891          */
2892         unsigned long hw_cr4;
2893
2894         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2895         if (enable_unrestricted_guest)
2896                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2897         else if (to_vmx(vcpu)->rmode.vm86_active)
2898                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2899         else
2900                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2901
2902         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2903                 if (cr4 & X86_CR4_UMIP) {
2904                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
2905                                 SECONDARY_EXEC_DESC);
2906                         hw_cr4 &= ~X86_CR4_UMIP;
2907                 } else if (!is_guest_mode(vcpu) ||
2908                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
2909                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2910                                         SECONDARY_EXEC_DESC);
2911         }
2912
2913         if (cr4 & X86_CR4_VMXE) {
2914                 /*
2915                  * To use VMXON (and later other VMX instructions), a guest
2916                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
2917                  * So basically the check on whether to allow nested VMX
2918                  * is here.  We operate under the default treatment of SMM,
2919                  * so VMX cannot be enabled under SMM.
2920                  */
2921                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
2922                         return 1;
2923         }
2924
2925         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
2926                 return 1;
2927
2928         vcpu->arch.cr4 = cr4;
2929
2930         if (!enable_unrestricted_guest) {
2931                 if (enable_ept) {
2932                         if (!is_paging(vcpu)) {
2933                                 hw_cr4 &= ~X86_CR4_PAE;
2934                                 hw_cr4 |= X86_CR4_PSE;
2935                         } else if (!(cr4 & X86_CR4_PAE)) {
2936                                 hw_cr4 &= ~X86_CR4_PAE;
2937                         }
2938                 }
2939
2940                 /*
2941                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
2942                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
2943                  * to be manually disabled when guest switches to non-paging
2944                  * mode.
2945                  *
2946                  * If !enable_unrestricted_guest, the CPU is always running
2947                  * with CR0.PG=1 and CR4 needs to be modified.
2948                  * If enable_unrestricted_guest, the CPU automatically
2949                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
2950                  */
2951                 if (!is_paging(vcpu))
2952                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
2953         }
2954
2955         vmcs_writel(CR4_READ_SHADOW, cr4);
2956         vmcs_writel(GUEST_CR4, hw_cr4);
2957         return 0;
2958 }
2959
2960 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
2961 {
2962         struct vcpu_vmx *vmx = to_vmx(vcpu);
2963         u32 ar;
2964
2965         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
2966                 *var = vmx->rmode.segs[seg];
2967                 if (seg == VCPU_SREG_TR
2968                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2969                         return;
2970                 var->base = vmx_read_guest_seg_base(vmx, seg);
2971                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2972                 return;
2973         }
2974         var->base = vmx_read_guest_seg_base(vmx, seg);
2975         var->limit = vmx_read_guest_seg_limit(vmx, seg);
2976         var->selector = vmx_read_guest_seg_selector(vmx, seg);
2977         ar = vmx_read_guest_seg_ar(vmx, seg);
2978         var->unusable = (ar >> 16) & 1;
2979         var->type = ar & 15;
2980         var->s = (ar >> 4) & 1;
2981         var->dpl = (ar >> 5) & 3;
2982         /*
2983          * Some userspaces do not preserve unusable property. Since usable
2984          * segment has to be present according to VMX spec we can use present
2985          * property to amend userspace bug by making unusable segment always
2986          * nonpresent. vmx_segment_access_rights() already marks nonpresent
2987          * segment as unusable.
2988          */
2989         var->present = !var->unusable;
2990         var->avl = (ar >> 12) & 1;
2991         var->l = (ar >> 13) & 1;
2992         var->db = (ar >> 14) & 1;
2993         var->g = (ar >> 15) & 1;
2994 }
2995
2996 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2997 {
2998         struct kvm_segment s;
2999
3000         if (to_vmx(vcpu)->rmode.vm86_active) {
3001                 vmx_get_segment(vcpu, &s, seg);
3002                 return s.base;
3003         }
3004         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3005 }
3006
3007 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3008 {
3009         struct vcpu_vmx *vmx = to_vmx(vcpu);
3010
3011         if (unlikely(vmx->rmode.vm86_active))
3012                 return 0;
3013         else {
3014                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3015                 return VMX_AR_DPL(ar);
3016         }
3017 }
3018
3019 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3020 {
3021         u32 ar;
3022
3023         if (var->unusable || !var->present)
3024                 ar = 1 << 16;
3025         else {
3026                 ar = var->type & 15;
3027                 ar |= (var->s & 1) << 4;
3028                 ar |= (var->dpl & 3) << 5;
3029                 ar |= (var->present & 1) << 7;
3030                 ar |= (var->avl & 1) << 12;
3031                 ar |= (var->l & 1) << 13;
3032                 ar |= (var->db & 1) << 14;
3033                 ar |= (var->g & 1) << 15;
3034         }
3035
3036         return ar;
3037 }
3038
3039 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3040 {
3041         struct vcpu_vmx *vmx = to_vmx(vcpu);
3042         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3043
3044         vmx_segment_cache_clear(vmx);
3045
3046         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3047                 vmx->rmode.segs[seg] = *var;
3048                 if (seg == VCPU_SREG_TR)
3049                         vmcs_write16(sf->selector, var->selector);
3050                 else if (var->s)
3051                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3052                 goto out;
3053         }
3054
3055         vmcs_writel(sf->base, var->base);
3056         vmcs_write32(sf->limit, var->limit);
3057         vmcs_write16(sf->selector, var->selector);
3058
3059         /*
3060          *   Fix the "Accessed" bit in AR field of segment registers for older
3061          * qemu binaries.
3062          *   IA32 arch specifies that at the time of processor reset the
3063          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3064          * is setting it to 0 in the userland code. This causes invalid guest
3065          * state vmexit when "unrestricted guest" mode is turned on.
3066          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3067          * tree. Newer qemu binaries with that qemu fix would not need this
3068          * kvm hack.
3069          */
3070         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3071                 var->type |= 0x1; /* Accessed */
3072
3073         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3074
3075 out:
3076         vmx->emulation_required = emulation_required(vcpu);
3077 }
3078
3079 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3080 {
3081         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3082
3083         *db = (ar >> 14) & 1;
3084         *l = (ar >> 13) & 1;
3085 }
3086
3087 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3088 {
3089         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3090         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3091 }
3092
3093 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3094 {
3095         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3096         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3097 }
3098
3099 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3100 {
3101         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3102         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3103 }
3104
3105 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3106 {
3107         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3108         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3109 }
3110
3111 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3112 {
3113         struct kvm_segment var;
3114         u32 ar;
3115
3116         vmx_get_segment(vcpu, &var, seg);
3117         var.dpl = 0x3;
3118         if (seg == VCPU_SREG_CS)
3119                 var.type = 0x3;
3120         ar = vmx_segment_access_rights(&var);
3121
3122         if (var.base != (var.selector << 4))
3123                 return false;
3124         if (var.limit != 0xffff)
3125                 return false;
3126         if (ar != 0xf3)
3127                 return false;
3128
3129         return true;
3130 }
3131
3132 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3133 {
3134         struct kvm_segment cs;
3135         unsigned int cs_rpl;
3136
3137         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3138         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3139
3140         if (cs.unusable)
3141                 return false;
3142         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3143                 return false;
3144         if (!cs.s)
3145                 return false;
3146         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3147                 if (cs.dpl > cs_rpl)
3148                         return false;
3149         } else {
3150                 if (cs.dpl != cs_rpl)
3151                         return false;
3152         }
3153         if (!cs.present)
3154                 return false;
3155
3156         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3157         return true;
3158 }
3159
3160 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3161 {
3162         struct kvm_segment ss;
3163         unsigned int ss_rpl;
3164
3165         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3166         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3167
3168         if (ss.unusable)
3169                 return true;
3170         if (ss.type != 3 && ss.type != 7)
3171                 return false;
3172         if (!ss.s)
3173                 return false;
3174         if (ss.dpl != ss_rpl) /* DPL != RPL */
3175                 return false;
3176         if (!ss.present)
3177                 return false;
3178
3179         return true;
3180 }
3181
3182 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3183 {
3184         struct kvm_segment var;
3185         unsigned int rpl;
3186
3187         vmx_get_segment(vcpu, &var, seg);
3188         rpl = var.selector & SEGMENT_RPL_MASK;
3189
3190         if (var.unusable)
3191                 return true;
3192         if (!var.s)
3193                 return false;
3194         if (!var.present)
3195                 return false;
3196         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3197                 if (var.dpl < rpl) /* DPL < RPL */
3198                         return false;
3199         }
3200
3201         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3202          * rights flags
3203          */
3204         return true;
3205 }
3206
3207 static bool tr_valid(struct kvm_vcpu *vcpu)
3208 {
3209         struct kvm_segment tr;
3210
3211         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3212
3213         if (tr.unusable)
3214                 return false;
3215         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3216                 return false;
3217         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3218                 return false;
3219         if (!tr.present)
3220                 return false;
3221
3222         return true;
3223 }
3224
3225 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3226 {
3227         struct kvm_segment ldtr;
3228
3229         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3230
3231         if (ldtr.unusable)
3232                 return true;
3233         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3234                 return false;
3235         if (ldtr.type != 2)
3236                 return false;
3237         if (!ldtr.present)
3238                 return false;
3239
3240         return true;
3241 }
3242
3243 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3244 {
3245         struct kvm_segment cs, ss;
3246
3247         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3248         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3249
3250         return ((cs.selector & SEGMENT_RPL_MASK) ==
3251                  (ss.selector & SEGMENT_RPL_MASK));
3252 }
3253
3254 /*
3255  * Check if guest state is valid. Returns true if valid, false if
3256  * not.
3257  * We assume that registers are always usable
3258  */
3259 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3260 {
3261         if (enable_unrestricted_guest)
3262                 return true;
3263
3264         /* real mode guest state checks */
3265         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3266                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3267                         return false;
3268                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3269                         return false;
3270                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3271                         return false;
3272                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3273                         return false;
3274                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3275                         return false;
3276                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3277                         return false;
3278         } else {
3279         /* protected mode guest state checks */
3280                 if (!cs_ss_rpl_check(vcpu))
3281                         return false;
3282                 if (!code_segment_valid(vcpu))
3283                         return false;
3284                 if (!stack_segment_valid(vcpu))
3285                         return false;
3286                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3287                         return false;
3288                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3289                         return false;
3290                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3291                         return false;
3292                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3293                         return false;
3294                 if (!tr_valid(vcpu))
3295                         return false;
3296                 if (!ldtr_valid(vcpu))
3297                         return false;
3298         }
3299         /* TODO:
3300          * - Add checks on RIP
3301          * - Add checks on RFLAGS
3302          */
3303
3304         return true;
3305 }
3306
3307 static int init_rmode_tss(struct kvm *kvm)
3308 {
3309         gfn_t fn;
3310         u16 data = 0;
3311         int idx, r;
3312
3313         idx = srcu_read_lock(&kvm->srcu);
3314         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3315         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3316         if (r < 0)
3317                 goto out;
3318         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3319         r = kvm_write_guest_page(kvm, fn++, &data,
3320                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3321         if (r < 0)
3322                 goto out;
3323         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3324         if (r < 0)
3325                 goto out;
3326         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3327         if (r < 0)
3328                 goto out;
3329         data = ~0;
3330         r = kvm_write_guest_page(kvm, fn, &data,
3331                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3332                                  sizeof(u8));
3333 out:
3334         srcu_read_unlock(&kvm->srcu, idx);
3335         return r;
3336 }
3337
3338 static int init_rmode_identity_map(struct kvm *kvm)
3339 {
3340         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3341         int i, idx, r = 0;
3342         kvm_pfn_t identity_map_pfn;
3343         u32 tmp;
3344
3345         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3346         mutex_lock(&kvm->slots_lock);
3347
3348         if (likely(kvm_vmx->ept_identity_pagetable_done))
3349                 goto out2;
3350
3351         if (!kvm_vmx->ept_identity_map_addr)
3352                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3353         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3354
3355         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3356                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3357         if (r < 0)
3358                 goto out2;
3359
3360         idx = srcu_read_lock(&kvm->srcu);
3361         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3362         if (r < 0)
3363                 goto out;
3364         /* Set up identity-mapping pagetable for EPT in real mode */
3365         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3366                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3367                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3368                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3369                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3370                 if (r < 0)
3371                         goto out;
3372         }
3373         kvm_vmx->ept_identity_pagetable_done = true;
3374
3375 out:
3376         srcu_read_unlock(&kvm->srcu, idx);
3377
3378 out2:
3379         mutex_unlock(&kvm->slots_lock);
3380         return r;
3381 }
3382
3383 static void seg_setup(int seg)
3384 {
3385         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3386         unsigned int ar;
3387
3388         vmcs_write16(sf->selector, 0);
3389         vmcs_writel(sf->base, 0);
3390         vmcs_write32(sf->limit, 0xffff);
3391         ar = 0x93;
3392         if (seg == VCPU_SREG_CS)
3393                 ar |= 0x08; /* code segment */
3394
3395         vmcs_write32(sf->ar_bytes, ar);
3396 }
3397
3398 static int alloc_apic_access_page(struct kvm *kvm)
3399 {
3400         struct page *page;
3401         int r = 0;
3402
3403         mutex_lock(&kvm->slots_lock);
3404         if (kvm->arch.apic_access_page_done)
3405                 goto out;
3406         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3407                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3408         if (r)
3409                 goto out;
3410
3411         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3412         if (is_error_page(page)) {
3413                 r = -EFAULT;
3414                 goto out;
3415         }
3416
3417         /*
3418          * Do not pin the page in memory, so that memory hot-unplug
3419          * is able to migrate it.
3420          */
3421         put_page(page);
3422         kvm->arch.apic_access_page_done = true;
3423 out:
3424         mutex_unlock(&kvm->slots_lock);
3425         return r;
3426 }
3427
3428 int allocate_vpid(void)
3429 {
3430         int vpid;
3431
3432         if (!enable_vpid)
3433                 return 0;
3434         spin_lock(&vmx_vpid_lock);
3435         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3436         if (vpid < VMX_NR_VPIDS)
3437                 __set_bit(vpid, vmx_vpid_bitmap);
3438         else
3439                 vpid = 0;
3440         spin_unlock(&vmx_vpid_lock);
3441         return vpid;
3442 }
3443
3444 void free_vpid(int vpid)
3445 {
3446         if (!enable_vpid || vpid == 0)
3447                 return;
3448         spin_lock(&vmx_vpid_lock);
3449         __clear_bit(vpid, vmx_vpid_bitmap);
3450         spin_unlock(&vmx_vpid_lock);
3451 }
3452
3453 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3454                                                           u32 msr, int type)
3455 {
3456         int f = sizeof(unsigned long);
3457
3458         if (!cpu_has_vmx_msr_bitmap())
3459                 return;
3460
3461         if (static_branch_unlikely(&enable_evmcs))
3462                 evmcs_touch_msr_bitmap();
3463
3464         /*
3465          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3466          * have the write-low and read-high bitmap offsets the wrong way round.
3467          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3468          */
3469         if (msr <= 0x1fff) {
3470                 if (type & MSR_TYPE_R)
3471                         /* read-low */
3472                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3473
3474                 if (type & MSR_TYPE_W)
3475                         /* write-low */
3476                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3477
3478         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3479                 msr &= 0x1fff;
3480                 if (type & MSR_TYPE_R)
3481                         /* read-high */
3482                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3483
3484                 if (type & MSR_TYPE_W)
3485                         /* write-high */
3486                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3487
3488         }
3489 }
3490
3491 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3492                                                          u32 msr, int type)
3493 {
3494         int f = sizeof(unsigned long);
3495
3496         if (!cpu_has_vmx_msr_bitmap())
3497                 return;
3498
3499         if (static_branch_unlikely(&enable_evmcs))
3500                 evmcs_touch_msr_bitmap();
3501
3502         /*
3503          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3504          * have the write-low and read-high bitmap offsets the wrong way round.
3505          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3506          */
3507         if (msr <= 0x1fff) {
3508                 if (type & MSR_TYPE_R)
3509                         /* read-low */
3510                         __set_bit(msr, msr_bitmap + 0x000 / f);
3511
3512                 if (type & MSR_TYPE_W)
3513                         /* write-low */
3514                         __set_bit(msr, msr_bitmap + 0x800 / f);
3515
3516         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3517                 msr &= 0x1fff;
3518                 if (type & MSR_TYPE_R)
3519                         /* read-high */
3520                         __set_bit(msr, msr_bitmap + 0x400 / f);
3521
3522                 if (type & MSR_TYPE_W)
3523                         /* write-high */
3524                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3525
3526         }
3527 }
3528
3529 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3530                                                       u32 msr, int type, bool value)
3531 {
3532         if (value)
3533                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3534         else
3535                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3536 }
3537
3538 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3539 {
3540         u8 mode = 0;
3541
3542         if (cpu_has_secondary_exec_ctrls() &&
3543             (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
3544              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3545                 mode |= MSR_BITMAP_MODE_X2APIC;
3546                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3547                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3548         }
3549
3550         return mode;
3551 }
3552
3553 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3554                                          u8 mode)
3555 {
3556         int msr;
3557
3558         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3559                 unsigned word = msr / BITS_PER_LONG;
3560                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3561                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3562         }
3563
3564         if (mode & MSR_BITMAP_MODE_X2APIC) {
3565                 /*
3566                  * TPR reads and writes can be virtualized even if virtual interrupt
3567                  * delivery is not in use.
3568                  */
3569                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3570                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3571                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3572                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3573                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3574                 }
3575         }
3576 }
3577
3578 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3579 {
3580         struct vcpu_vmx *vmx = to_vmx(vcpu);
3581         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3582         u8 mode = vmx_msr_bitmap_mode(vcpu);
3583         u8 changed = mode ^ vmx->msr_bitmap_mode;
3584
3585         if (!changed)
3586                 return;
3587
3588         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3589                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3590
3591         vmx->msr_bitmap_mode = mode;
3592 }
3593
3594 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3595 {
3596         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3597         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3598         u32 i;
3599
3600         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3601                                                         MSR_TYPE_RW, flag);
3602         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3603                                                         MSR_TYPE_RW, flag);
3604         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3605                                                         MSR_TYPE_RW, flag);
3606         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3607                                                         MSR_TYPE_RW, flag);
3608         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3609                 vmx_set_intercept_for_msr(msr_bitmap,
3610                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3611                 vmx_set_intercept_for_msr(msr_bitmap,
3612                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3613         }
3614 }
3615
3616 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3617 {
3618         return enable_apicv;
3619 }
3620
3621 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3622 {
3623         struct vcpu_vmx *vmx = to_vmx(vcpu);
3624         void *vapic_page;
3625         u32 vppr;
3626         int rvi;
3627
3628         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3629                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3630                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3631                 return false;
3632
3633         rvi = vmx_get_rvi();
3634
3635         vapic_page = vmx->nested.virtual_apic_map.hva;
3636         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3637
3638         return ((rvi & 0xf0) > (vppr & 0xf0));
3639 }
3640
3641 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3642                                                      bool nested)
3643 {
3644 #ifdef CONFIG_SMP
3645         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3646
3647         if (vcpu->mode == IN_GUEST_MODE) {
3648                 /*
3649                  * The vector of interrupt to be delivered to vcpu had
3650                  * been set in PIR before this function.
3651                  *
3652                  * Following cases will be reached in this block, and
3653                  * we always send a notification event in all cases as
3654                  * explained below.
3655                  *
3656                  * Case 1: vcpu keeps in non-root mode. Sending a
3657                  * notification event posts the interrupt to vcpu.
3658                  *
3659                  * Case 2: vcpu exits to root mode and is still
3660                  * runnable. PIR will be synced to vIRR before the
3661                  * next vcpu entry. Sending a notification event in
3662                  * this case has no effect, as vcpu is not in root
3663                  * mode.
3664                  *
3665                  * Case 3: vcpu exits to root mode and is blocked.
3666                  * vcpu_block() has already synced PIR to vIRR and
3667                  * never blocks vcpu if vIRR is not cleared. Therefore,
3668                  * a blocked vcpu here does not wait for any requested
3669                  * interrupts in PIR, and sending a notification event
3670                  * which has no effect is safe here.
3671                  */
3672
3673                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3674                 return true;
3675         }
3676 #endif
3677         return false;
3678 }
3679
3680 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3681                                                 int vector)
3682 {
3683         struct vcpu_vmx *vmx = to_vmx(vcpu);
3684
3685         if (is_guest_mode(vcpu) &&
3686             vector == vmx->nested.posted_intr_nv) {
3687                 /*
3688                  * If a posted intr is not recognized by hardware,
3689                  * we will accomplish it in the next vmentry.
3690                  */
3691                 vmx->nested.pi_pending = true;
3692                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3693                 /* the PIR and ON have been set by L1. */
3694                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3695                         kvm_vcpu_kick(vcpu);
3696                 return 0;
3697         }
3698         return -1;
3699 }
3700 /*
3701  * Send interrupt to vcpu via posted interrupt way.
3702  * 1. If target vcpu is running(non-root mode), send posted interrupt
3703  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3704  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3705  * interrupt from PIR in next vmentry.
3706  */
3707 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3708 {
3709         struct vcpu_vmx *vmx = to_vmx(vcpu);
3710         int r;
3711
3712         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3713         if (!r)
3714                 return;
3715
3716         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3717                 return;
3718
3719         /* If a previous notification has sent the IPI, nothing to do.  */
3720         if (pi_test_and_set_on(&vmx->pi_desc))
3721                 return;
3722
3723         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3724                 kvm_vcpu_kick(vcpu);
3725 }
3726
3727 /*
3728  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3729  * will not change in the lifetime of the guest.
3730  * Note that host-state that does change is set elsewhere. E.g., host-state
3731  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3732  */
3733 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3734 {
3735         u32 low32, high32;
3736         unsigned long tmpl;
3737         struct desc_ptr dt;
3738         unsigned long cr0, cr3, cr4;
3739
3740         cr0 = read_cr0();
3741         WARN_ON(cr0 & X86_CR0_TS);
3742         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3743
3744         /*
3745          * Save the most likely value for this task's CR3 in the VMCS.
3746          * We can't use __get_current_cr3_fast() because we're not atomic.
3747          */
3748         cr3 = __read_cr3();
3749         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3750         vmx->loaded_vmcs->host_state.cr3 = cr3;
3751
3752         /* Save the most likely value for this task's CR4 in the VMCS. */
3753         cr4 = cr4_read_shadow();
3754         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3755         vmx->loaded_vmcs->host_state.cr4 = cr4;
3756
3757         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3758 #ifdef CONFIG_X86_64
3759         /*
3760          * Load null selectors, so we can avoid reloading them in
3761          * vmx_prepare_switch_to_host(), in case userspace uses
3762          * the null selectors too (the expected case).
3763          */
3764         vmcs_write16(HOST_DS_SELECTOR, 0);
3765         vmcs_write16(HOST_ES_SELECTOR, 0);
3766 #else
3767         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3768         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3769 #endif
3770         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3771         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3772
3773         store_idt(&dt);
3774         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3775         vmx->host_idt_base = dt.address;
3776
3777         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3778
3779         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3780         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3781         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3782         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3783
3784         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3785                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3786                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3787         }
3788
3789         if (cpu_has_load_ia32_efer())
3790                 vmcs_write64(HOST_IA32_EFER, host_efer);
3791 }
3792
3793 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3794 {
3795         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3796         if (enable_ept)
3797                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3798         if (is_guest_mode(&vmx->vcpu))
3799                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3800                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3801         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3802 }
3803
3804 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3805 {
3806         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3807
3808         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3809                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3810
3811         if (!enable_vnmi)
3812                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3813
3814         /* Enable the preemption timer dynamically */
3815         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3816         return pin_based_exec_ctrl;
3817 }
3818
3819 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3820 {
3821         struct vcpu_vmx *vmx = to_vmx(vcpu);
3822
3823         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3824         if (cpu_has_secondary_exec_ctrls()) {
3825                 if (kvm_vcpu_apicv_active(vcpu))
3826                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
3827                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
3828                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3829                 else
3830                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
3831                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3832                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3833         }
3834
3835         if (cpu_has_vmx_msr_bitmap())
3836                 vmx_update_msr_bitmap(vcpu);
3837 }
3838
3839 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3840 {
3841         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3842
3843         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3844                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3845
3846         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3847                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3848 #ifdef CONFIG_X86_64
3849                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3850                                 CPU_BASED_CR8_LOAD_EXITING;
3851 #endif
3852         }
3853         if (!enable_ept)
3854                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3855                                 CPU_BASED_CR3_LOAD_EXITING  |
3856                                 CPU_BASED_INVLPG_EXITING;
3857         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3858                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3859                                 CPU_BASED_MONITOR_EXITING);
3860         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3861                 exec_control &= ~CPU_BASED_HLT_EXITING;
3862         return exec_control;
3863 }
3864
3865
3866 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3867 {
3868         struct kvm_vcpu *vcpu = &vmx->vcpu;
3869
3870         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3871
3872         if (pt_mode == PT_MODE_SYSTEM)
3873                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3874         if (!cpu_need_virtualize_apic_accesses(vcpu))
3875                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3876         if (vmx->vpid == 0)
3877                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3878         if (!enable_ept) {
3879                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3880                 enable_unrestricted_guest = 0;
3881         }
3882         if (!enable_unrestricted_guest)
3883                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3884         if (kvm_pause_in_guest(vmx->vcpu.kvm))
3885                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3886         if (!kvm_vcpu_apicv_active(vcpu))
3887                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3888                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3889         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3890
3891         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3892          * in vmx_set_cr4.  */
3893         exec_control &= ~SECONDARY_EXEC_DESC;
3894
3895         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3896            (handle_vmptrld).
3897            We can NOT enable shadow_vmcs here because we don't have yet
3898            a current VMCS12
3899         */
3900         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3901
3902         if (!enable_pml)
3903                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3904
3905         if (vmx_xsaves_supported()) {
3906                 /* Exposing XSAVES only when XSAVE is exposed */
3907                 bool xsaves_enabled =
3908                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3909                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3910
3911                 if (!xsaves_enabled)
3912                         exec_control &= ~SECONDARY_EXEC_XSAVES;
3913
3914                 if (nested) {
3915                         if (xsaves_enabled)
3916                                 vmx->nested.msrs.secondary_ctls_high |=
3917                                         SECONDARY_EXEC_XSAVES;
3918                         else
3919                                 vmx->nested.msrs.secondary_ctls_high &=
3920                                         ~SECONDARY_EXEC_XSAVES;
3921                 }
3922         }
3923
3924         if (vmx_rdtscp_supported()) {
3925                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
3926                 if (!rdtscp_enabled)
3927                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
3928
3929                 if (nested) {
3930                         if (rdtscp_enabled)
3931                                 vmx->nested.msrs.secondary_ctls_high |=
3932                                         SECONDARY_EXEC_RDTSCP;
3933                         else
3934                                 vmx->nested.msrs.secondary_ctls_high &=
3935                                         ~SECONDARY_EXEC_RDTSCP;
3936                 }
3937         }
3938
3939         if (vmx_invpcid_supported()) {
3940                 /* Exposing INVPCID only when PCID is exposed */
3941                 bool invpcid_enabled =
3942                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
3943                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
3944
3945                 if (!invpcid_enabled) {
3946                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3947                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
3948                 }
3949
3950                 if (nested) {
3951                         if (invpcid_enabled)
3952                                 vmx->nested.msrs.secondary_ctls_high |=
3953                                         SECONDARY_EXEC_ENABLE_INVPCID;
3954                         else
3955                                 vmx->nested.msrs.secondary_ctls_high &=
3956                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
3957                 }
3958         }
3959
3960         if (vmx_rdrand_supported()) {
3961                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
3962                 if (rdrand_enabled)
3963                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
3964
3965                 if (nested) {
3966                         if (rdrand_enabled)
3967                                 vmx->nested.msrs.secondary_ctls_high |=
3968                                         SECONDARY_EXEC_RDRAND_EXITING;
3969                         else
3970                                 vmx->nested.msrs.secondary_ctls_high &=
3971                                         ~SECONDARY_EXEC_RDRAND_EXITING;
3972                 }
3973         }
3974
3975         if (vmx_rdseed_supported()) {
3976                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
3977                 if (rdseed_enabled)
3978                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
3979
3980                 if (nested) {
3981                         if (rdseed_enabled)
3982                                 vmx->nested.msrs.secondary_ctls_high |=
3983                                         SECONDARY_EXEC_RDSEED_EXITING;
3984                         else
3985                                 vmx->nested.msrs.secondary_ctls_high &=
3986                                         ~SECONDARY_EXEC_RDSEED_EXITING;
3987                 }
3988         }
3989
3990         vmx->secondary_exec_control = exec_control;
3991 }
3992
3993 static void ept_set_mmio_spte_mask(void)
3994 {
3995         /*
3996          * EPT Misconfigurations can be generated if the value of bits 2:0
3997          * of an EPT paging-structure entry is 110b (write/execute).
3998          */
3999         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4000                                    VMX_EPT_MISCONFIG_WX_VALUE);
4001 }
4002
4003 #define VMX_XSS_EXIT_BITMAP 0
4004
4005 /*
4006  * Sets up the vmcs for emulated real mode.
4007  */
4008 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4009 {
4010         int i;
4011
4012         if (nested)
4013                 nested_vmx_vcpu_setup();
4014
4015         if (cpu_has_vmx_msr_bitmap())
4016                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4017
4018         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4019
4020         /* Control */
4021         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4022         vmx->hv_deadline_tsc = -1;
4023
4024         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4025
4026         if (cpu_has_secondary_exec_ctrls()) {
4027                 vmx_compute_secondary_exec_control(vmx);
4028                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4029                              vmx->secondary_exec_control);
4030         }
4031
4032         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4033                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4034                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4035                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4036                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4037
4038                 vmcs_write16(GUEST_INTR_STATUS, 0);
4039
4040                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4041                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4042         }
4043
4044         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4045                 vmcs_write32(PLE_GAP, ple_gap);
4046                 vmx->ple_window = ple_window;
4047                 vmx->ple_window_dirty = true;
4048         }
4049
4050         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4051         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4052         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4053
4054         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4055         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4056         vmx_set_constant_host_state(vmx);
4057         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4058         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4059
4060         if (cpu_has_vmx_vmfunc())
4061                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4062
4063         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4064         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4065         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4066         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4067         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4068
4069         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4070                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4071
4072         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4073                 u32 index = vmx_msr_index[i];
4074                 u32 data_low, data_high;
4075                 int j = vmx->nmsrs;
4076
4077                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4078                         continue;
4079                 if (wrmsr_safe(index, data_low, data_high) < 0)
4080                         continue;
4081                 vmx->guest_msrs[j].index = i;
4082                 vmx->guest_msrs[j].data = 0;
4083                 vmx->guest_msrs[j].mask = -1ull;
4084                 ++vmx->nmsrs;
4085         }
4086
4087         vm_exit_controls_init(vmx, vmx_vmexit_ctrl());
4088
4089         /* 22.2.1, 20.8.1 */
4090         vm_entry_controls_init(vmx, vmx_vmentry_ctrl());
4091
4092         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4093         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4094
4095         set_cr4_guest_host_mask(vmx);
4096
4097         if (vmx_xsaves_supported())
4098                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4099
4100         if (enable_pml) {
4101                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4102                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4103         }
4104
4105         if (cpu_has_vmx_encls_vmexit())
4106                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4107
4108         if (pt_mode == PT_MODE_HOST_GUEST) {
4109                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4110                 /* Bit[6~0] are forced to 1, writes are ignored. */
4111                 vmx->pt_desc.guest.output_mask = 0x7F;
4112                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4113         }
4114 }
4115
4116 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4117 {
4118         struct vcpu_vmx *vmx = to_vmx(vcpu);
4119         struct msr_data apic_base_msr;
4120         u64 cr0;
4121
4122         vmx->rmode.vm86_active = 0;
4123         vmx->spec_ctrl = 0;
4124
4125         vcpu->arch.microcode_version = 0x100000000ULL;
4126         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4127         kvm_set_cr8(vcpu, 0);
4128
4129         if (!init_event) {
4130                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4131                                      MSR_IA32_APICBASE_ENABLE;
4132                 if (kvm_vcpu_is_reset_bsp(vcpu))
4133                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4134                 apic_base_msr.host_initiated = true;
4135                 kvm_set_apic_base(vcpu, &apic_base_msr);
4136         }
4137
4138         vmx_segment_cache_clear(vmx);
4139
4140         seg_setup(VCPU_SREG_CS);
4141         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4142         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4143
4144         seg_setup(VCPU_SREG_DS);
4145         seg_setup(VCPU_SREG_ES);
4146         seg_setup(VCPU_SREG_FS);
4147         seg_setup(VCPU_SREG_GS);
4148         seg_setup(VCPU_SREG_SS);
4149
4150         vmcs_write16(GUEST_TR_SELECTOR, 0);
4151         vmcs_writel(GUEST_TR_BASE, 0);
4152         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4153         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4154
4155         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4156         vmcs_writel(GUEST_LDTR_BASE, 0);
4157         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4158         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4159
4160         if (!init_event) {
4161                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4162                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4163                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4164                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4165         }
4166
4167         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4168         kvm_rip_write(vcpu, 0xfff0);
4169
4170         vmcs_writel(GUEST_GDTR_BASE, 0);
4171         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4172
4173         vmcs_writel(GUEST_IDTR_BASE, 0);
4174         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4175
4176         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4177         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4178         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4179         if (kvm_mpx_supported())
4180                 vmcs_write64(GUEST_BNDCFGS, 0);
4181
4182         setup_msrs(vmx);
4183
4184         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4185
4186         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4187                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4188                 if (cpu_need_tpr_shadow(vcpu))
4189                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4190                                      __pa(vcpu->arch.apic->regs));
4191                 vmcs_write32(TPR_THRESHOLD, 0);
4192         }
4193
4194         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4195
4196         if (vmx->vpid != 0)
4197                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4198
4199         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4200         vmx->vcpu.arch.cr0 = cr0;
4201         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4202         vmx_set_cr4(vcpu, 0);
4203         vmx_set_efer(vcpu, 0);
4204
4205         update_exception_bitmap(vcpu);
4206
4207         vpid_sync_context(vmx->vpid);
4208         if (init_event)
4209                 vmx_clear_hlt(vcpu);
4210 }
4211
4212 static void enable_irq_window(struct kvm_vcpu *vcpu)
4213 {
4214         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4215                       CPU_BASED_VIRTUAL_INTR_PENDING);
4216 }
4217
4218 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4219 {
4220         if (!enable_vnmi ||
4221             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4222                 enable_irq_window(vcpu);
4223                 return;
4224         }
4225
4226         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4227                       CPU_BASED_VIRTUAL_NMI_PENDING);
4228 }
4229
4230 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4231 {
4232         struct vcpu_vmx *vmx = to_vmx(vcpu);
4233         uint32_t intr;
4234         int irq = vcpu->arch.interrupt.nr;
4235
4236         trace_kvm_inj_virq(irq);
4237
4238         ++vcpu->stat.irq_injections;
4239         if (vmx->rmode.vm86_active) {
4240                 int inc_eip = 0;
4241                 if (vcpu->arch.interrupt.soft)
4242                         inc_eip = vcpu->arch.event_exit_inst_len;
4243                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4244                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4245                 return;
4246         }
4247         intr = irq | INTR_INFO_VALID_MASK;
4248         if (vcpu->arch.interrupt.soft) {
4249                 intr |= INTR_TYPE_SOFT_INTR;
4250                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4251                              vmx->vcpu.arch.event_exit_inst_len);
4252         } else
4253                 intr |= INTR_TYPE_EXT_INTR;
4254         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4255
4256         vmx_clear_hlt(vcpu);
4257 }
4258
4259 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4260 {
4261         struct vcpu_vmx *vmx = to_vmx(vcpu);
4262
4263         if (!enable_vnmi) {
4264                 /*
4265                  * Tracking the NMI-blocked state in software is built upon
4266                  * finding the next open IRQ window. This, in turn, depends on
4267                  * well-behaving guests: They have to keep IRQs disabled at
4268                  * least as long as the NMI handler runs. Otherwise we may
4269                  * cause NMI nesting, maybe breaking the guest. But as this is
4270                  * highly unlikely, we can live with the residual risk.
4271                  */
4272                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4273                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4274         }
4275
4276         ++vcpu->stat.nmi_injections;
4277         vmx->loaded_vmcs->nmi_known_unmasked = false;
4278
4279         if (vmx->rmode.vm86_active) {
4280                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4281                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4282                 return;
4283         }
4284
4285         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4286                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4287
4288         vmx_clear_hlt(vcpu);
4289 }
4290
4291 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4292 {
4293         struct vcpu_vmx *vmx = to_vmx(vcpu);
4294         bool masked;
4295
4296         if (!enable_vnmi)
4297                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4298         if (vmx->loaded_vmcs->nmi_known_unmasked)
4299                 return false;
4300         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4301         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4302         return masked;
4303 }
4304
4305 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4306 {
4307         struct vcpu_vmx *vmx = to_vmx(vcpu);
4308
4309         if (!enable_vnmi) {
4310                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4311                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4312                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4313                 }
4314         } else {
4315                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4316                 if (masked)
4317                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4318                                       GUEST_INTR_STATE_NMI);
4319                 else
4320                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4321                                         GUEST_INTR_STATE_NMI);
4322         }
4323 }
4324
4325 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4326 {
4327         if (to_vmx(vcpu)->nested.nested_run_pending)
4328                 return 0;
4329
4330         if (!enable_vnmi &&
4331             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4332                 return 0;
4333
4334         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4335                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4336                    | GUEST_INTR_STATE_NMI));
4337 }
4338
4339 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4340 {
4341         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4342                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4343                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4344                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4345 }
4346
4347 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4348 {
4349         int ret;
4350
4351         if (enable_unrestricted_guest)
4352                 return 0;
4353
4354         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4355                                     PAGE_SIZE * 3);
4356         if (ret)
4357                 return ret;
4358         to_kvm_vmx(kvm)->tss_addr = addr;
4359         return init_rmode_tss(kvm);
4360 }
4361
4362 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4363 {
4364         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4365         return 0;
4366 }
4367
4368 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4369 {
4370         switch (vec) {
4371         case BP_VECTOR:
4372                 /*
4373                  * Update instruction length as we may reinject the exception
4374                  * from user space while in guest debugging mode.
4375                  */
4376                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4377                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4378                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4379                         return false;
4380                 /* fall through */
4381         case DB_VECTOR:
4382                 if (vcpu->guest_debug &
4383                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4384                         return false;
4385                 /* fall through */
4386         case DE_VECTOR:
4387         case OF_VECTOR:
4388         case BR_VECTOR:
4389         case UD_VECTOR:
4390         case DF_VECTOR:
4391         case SS_VECTOR:
4392         case GP_VECTOR:
4393         case MF_VECTOR:
4394                 return true;
4395         break;
4396         }
4397         return false;
4398 }
4399
4400 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4401                                   int vec, u32 err_code)
4402 {
4403         /*
4404          * Instruction with address size override prefix opcode 0x67
4405          * Cause the #SS fault with 0 error code in VM86 mode.
4406          */
4407         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4408                 if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4409                         if (vcpu->arch.halt_request) {
4410                                 vcpu->arch.halt_request = 0;
4411                                 return kvm_vcpu_halt(vcpu);
4412                         }
4413                         return 1;
4414                 }
4415                 return 0;
4416         }
4417
4418         /*
4419          * Forward all other exceptions that are valid in real mode.
4420          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4421          *        the required debugging infrastructure rework.
4422          */
4423         kvm_queue_exception(vcpu, vec);
4424         return 1;
4425 }
4426
4427 /*
4428  * Trigger machine check on the host. We assume all the MSRs are already set up
4429  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4430  * We pass a fake environment to the machine check handler because we want
4431  * the guest to be always treated like user space, no matter what context
4432  * it used internally.
4433  */
4434 static void kvm_machine_check(void)
4435 {
4436 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4437         struct pt_regs regs = {
4438                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4439                 .flags = X86_EFLAGS_IF,
4440         };
4441
4442         do_machine_check(&regs, 0);
4443 #endif
4444 }
4445
4446 static int handle_machine_check(struct kvm_vcpu *vcpu)
4447 {
4448         /* already handled by vcpu_run */
4449         return 1;
4450 }
4451
4452 static int handle_exception(struct kvm_vcpu *vcpu)
4453 {
4454         struct vcpu_vmx *vmx = to_vmx(vcpu);
4455         struct kvm_run *kvm_run = vcpu->run;
4456         u32 intr_info, ex_no, error_code;
4457         unsigned long cr2, rip, dr6;
4458         u32 vect_info;
4459         enum emulation_result er;
4460
4461         vect_info = vmx->idt_vectoring_info;
4462         intr_info = vmx->exit_intr_info;
4463
4464         if (is_machine_check(intr_info))
4465                 return handle_machine_check(vcpu);
4466
4467         if (is_nmi(intr_info))
4468                 return 1;  /* already handled by vmx_vcpu_run() */
4469
4470         if (is_invalid_opcode(intr_info))
4471                 return handle_ud(vcpu);
4472
4473         error_code = 0;
4474         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4475                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4476
4477         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4478                 WARN_ON_ONCE(!enable_vmware_backdoor);
4479                 er = kvm_emulate_instruction(vcpu,
4480                         EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
4481                 if (er == EMULATE_USER_EXIT)
4482                         return 0;
4483                 else if (er != EMULATE_DONE)
4484                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4485                 return 1;
4486         }
4487
4488         /*
4489          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4490          * MMIO, it is better to report an internal error.
4491          * See the comments in vmx_handle_exit.
4492          */
4493         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4494             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4495                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4496                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4497                 vcpu->run->internal.ndata = 3;
4498                 vcpu->run->internal.data[0] = vect_info;
4499                 vcpu->run->internal.data[1] = intr_info;
4500                 vcpu->run->internal.data[2] = error_code;
4501                 return 0;
4502         }
4503
4504         if (is_page_fault(intr_info)) {
4505                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4506                 /* EPT won't cause page fault directly */
4507                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4508                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4509         }
4510
4511         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4512
4513         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4514                 return handle_rmode_exception(vcpu, ex_no, error_code);
4515
4516         switch (ex_no) {
4517         case AC_VECTOR:
4518                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4519                 return 1;
4520         case DB_VECTOR:
4521                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4522                 if (!(vcpu->guest_debug &
4523                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4524                         vcpu->arch.dr6 &= ~15;
4525                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4526                         if (is_icebp(intr_info))
4527                                 skip_emulated_instruction(vcpu);
4528
4529                         kvm_queue_exception(vcpu, DB_VECTOR);
4530                         return 1;
4531                 }
4532                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4533                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4534                 /* fall through */
4535         case BP_VECTOR:
4536                 /*
4537                  * Update instruction length as we may reinject #BP from
4538                  * user space while in guest debugging mode. Reading it for
4539                  * #DB as well causes no harm, it is not used in that case.
4540                  */
4541                 vmx->vcpu.arch.event_exit_inst_len =
4542                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4543                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4544                 rip = kvm_rip_read(vcpu);
4545                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4546                 kvm_run->debug.arch.exception = ex_no;
4547                 break;
4548         default:
4549                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4550                 kvm_run->ex.exception = ex_no;
4551                 kvm_run->ex.error_code = error_code;
4552                 break;
4553         }
4554         return 0;
4555 }
4556
4557 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4558 {
4559         ++vcpu->stat.irq_exits;
4560         return 1;
4561 }
4562
4563 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4564 {
4565         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4566         vcpu->mmio_needed = 0;
4567         return 0;
4568 }
4569
4570 static int handle_io(struct kvm_vcpu *vcpu)
4571 {
4572         unsigned long exit_qualification;
4573         int size, in, string;
4574         unsigned port;
4575
4576         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4577         string = (exit_qualification & 16) != 0;
4578
4579         ++vcpu->stat.io_exits;
4580
4581         if (string)
4582                 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4583
4584         port = exit_qualification >> 16;
4585         size = (exit_qualification & 7) + 1;
4586         in = (exit_qualification & 8) != 0;
4587
4588         return kvm_fast_pio(vcpu, size, port, in);
4589 }
4590
4591 static void
4592 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4593 {
4594         /*
4595          * Patch in the VMCALL instruction:
4596          */
4597         hypercall[0] = 0x0f;
4598         hypercall[1] = 0x01;
4599         hypercall[2] = 0xc1;
4600 }
4601
4602 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4603 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4604 {
4605         if (is_guest_mode(vcpu)) {
4606                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4607                 unsigned long orig_val = val;
4608
4609                 /*
4610                  * We get here when L2 changed cr0 in a way that did not change
4611                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4612                  * but did change L0 shadowed bits. So we first calculate the
4613                  * effective cr0 value that L1 would like to write into the
4614                  * hardware. It consists of the L2-owned bits from the new
4615                  * value combined with the L1-owned bits from L1's guest_cr0.
4616                  */
4617                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4618                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4619
4620                 if (!nested_guest_cr0_valid(vcpu, val))
4621                         return 1;
4622
4623                 if (kvm_set_cr0(vcpu, val))
4624                         return 1;
4625                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4626                 return 0;
4627         } else {
4628                 if (to_vmx(vcpu)->nested.vmxon &&
4629                     !nested_host_cr0_valid(vcpu, val))
4630                         return 1;
4631
4632                 return kvm_set_cr0(vcpu, val);
4633         }
4634 }
4635
4636 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4637 {
4638         if (is_guest_mode(vcpu)) {
4639                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4640                 unsigned long orig_val = val;
4641
4642                 /* analogously to handle_set_cr0 */
4643                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4644                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4645                 if (kvm_set_cr4(vcpu, val))
4646                         return 1;
4647                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4648                 return 0;
4649         } else
4650                 return kvm_set_cr4(vcpu, val);
4651 }
4652
4653 static int handle_desc(struct kvm_vcpu *vcpu)
4654 {
4655         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4656         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4657 }
4658
4659 static int handle_cr(struct kvm_vcpu *vcpu)
4660 {
4661         unsigned long exit_qualification, val;
4662         int cr;
4663         int reg;
4664         int err;
4665         int ret;
4666
4667         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4668         cr = exit_qualification & 15;
4669         reg = (exit_qualification >> 8) & 15;
4670         switch ((exit_qualification >> 4) & 3) {
4671         case 0: /* mov to cr */
4672                 val = kvm_register_readl(vcpu, reg);
4673                 trace_kvm_cr_write(cr, val);
4674                 switch (cr) {
4675                 case 0:
4676                         err = handle_set_cr0(vcpu, val);
4677                         return kvm_complete_insn_gp(vcpu, err);
4678                 case 3:
4679                         WARN_ON_ONCE(enable_unrestricted_guest);
4680                         err = kvm_set_cr3(vcpu, val);
4681                         return kvm_complete_insn_gp(vcpu, err);
4682                 case 4:
4683                         err = handle_set_cr4(vcpu, val);
4684                         return kvm_complete_insn_gp(vcpu, err);
4685                 case 8: {
4686                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4687                                 u8 cr8 = (u8)val;
4688                                 err = kvm_set_cr8(vcpu, cr8);
4689                                 ret = kvm_complete_insn_gp(vcpu, err);
4690                                 if (lapic_in_kernel(vcpu))
4691                                         return ret;
4692                                 if (cr8_prev <= cr8)
4693                                         return ret;
4694                                 /*
4695                                  * TODO: we might be squashing a
4696                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4697                                  * KVM_EXIT_DEBUG here.
4698                                  */
4699                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4700                                 return 0;
4701                         }
4702                 }
4703                 break;
4704         case 2: /* clts */
4705                 WARN_ONCE(1, "Guest should always own CR0.TS");
4706                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4707                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4708                 return kvm_skip_emulated_instruction(vcpu);
4709         case 1: /*mov from cr*/
4710                 switch (cr) {
4711                 case 3:
4712                         WARN_ON_ONCE(enable_unrestricted_guest);
4713                         val = kvm_read_cr3(vcpu);
4714                         kvm_register_write(vcpu, reg, val);
4715                         trace_kvm_cr_read(cr, val);
4716                         return kvm_skip_emulated_instruction(vcpu);
4717                 case 8:
4718                         val = kvm_get_cr8(vcpu);
4719                         kvm_register_write(vcpu, reg, val);
4720                         trace_kvm_cr_read(cr, val);
4721                         return kvm_skip_emulated_instruction(vcpu);
4722                 }
4723                 break;
4724         case 3: /* lmsw */
4725                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4726                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4727                 kvm_lmsw(vcpu, val);
4728
4729                 return kvm_skip_emulated_instruction(vcpu);
4730         default:
4731                 break;
4732         }
4733         vcpu->run->exit_reason = 0;
4734         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4735                (int)(exit_qualification >> 4) & 3, cr);
4736         return 0;
4737 }
4738
4739 static int handle_dr(struct kvm_vcpu *vcpu)
4740 {
4741         unsigned long exit_qualification;
4742         int dr, dr7, reg;
4743
4744         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4745         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4746
4747         /* First, if DR does not exist, trigger UD */
4748         if (!kvm_require_dr(vcpu, dr))
4749                 return 1;
4750
4751         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4752         if (!kvm_require_cpl(vcpu, 0))
4753                 return 1;
4754         dr7 = vmcs_readl(GUEST_DR7);
4755         if (dr7 & DR7_GD) {
4756                 /*
4757                  * As the vm-exit takes precedence over the debug trap, we
4758                  * need to emulate the latter, either for the host or the
4759                  * guest debugging itself.
4760                  */
4761                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4762                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4763                         vcpu->run->debug.arch.dr7 = dr7;
4764                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4765                         vcpu->run->debug.arch.exception = DB_VECTOR;
4766                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4767                         return 0;
4768                 } else {
4769                         vcpu->arch.dr6 &= ~15;
4770                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4771                         kvm_queue_exception(vcpu, DB_VECTOR);
4772                         return 1;
4773                 }
4774         }
4775
4776         if (vcpu->guest_debug == 0) {
4777                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4778                                 CPU_BASED_MOV_DR_EXITING);
4779
4780                 /*
4781                  * No more DR vmexits; force a reload of the debug registers
4782                  * and reenter on this instruction.  The next vmexit will
4783                  * retrieve the full state of the debug registers.
4784                  */
4785                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4786                 return 1;
4787         }
4788
4789         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4790         if (exit_qualification & TYPE_MOV_FROM_DR) {
4791                 unsigned long val;
4792
4793                 if (kvm_get_dr(vcpu, dr, &val))
4794                         return 1;
4795                 kvm_register_write(vcpu, reg, val);
4796         } else
4797                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4798                         return 1;
4799
4800         return kvm_skip_emulated_instruction(vcpu);
4801 }
4802
4803 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4804 {
4805         return vcpu->arch.dr6;
4806 }
4807
4808 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4809 {
4810 }
4811
4812 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4813 {
4814         get_debugreg(vcpu->arch.db[0], 0);
4815         get_debugreg(vcpu->arch.db[1], 1);
4816         get_debugreg(vcpu->arch.db[2], 2);
4817         get_debugreg(vcpu->arch.db[3], 3);
4818         get_debugreg(vcpu->arch.dr6, 6);
4819         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4820
4821         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4822         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
4823 }
4824
4825 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4826 {
4827         vmcs_writel(GUEST_DR7, val);
4828 }
4829
4830 static int handle_cpuid(struct kvm_vcpu *vcpu)
4831 {
4832         return kvm_emulate_cpuid(vcpu);
4833 }
4834
4835 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4836 {
4837         u32 ecx = kvm_rcx_read(vcpu);
4838         struct msr_data msr_info;
4839
4840         msr_info.index = ecx;
4841         msr_info.host_initiated = false;
4842         if (vmx_get_msr(vcpu, &msr_info)) {
4843                 trace_kvm_msr_read_ex(ecx);
4844                 kvm_inject_gp(vcpu, 0);
4845                 return 1;
4846         }
4847
4848         trace_kvm_msr_read(ecx, msr_info.data);
4849
4850         kvm_rax_write(vcpu, msr_info.data & -1u);
4851         kvm_rdx_write(vcpu, (msr_info.data >> 32) & -1u);
4852         return kvm_skip_emulated_instruction(vcpu);
4853 }
4854
4855 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4856 {
4857         struct msr_data msr;
4858         u32 ecx = kvm_rcx_read(vcpu);
4859         u64 data = kvm_read_edx_eax(vcpu);
4860
4861         msr.data = data;
4862         msr.index = ecx;
4863         msr.host_initiated = false;
4864         if (kvm_set_msr(vcpu, &msr) != 0) {
4865                 trace_kvm_msr_write_ex(ecx, data);
4866                 kvm_inject_gp(vcpu, 0);
4867                 return 1;
4868         }
4869
4870         trace_kvm_msr_write(ecx, data);
4871         return kvm_skip_emulated_instruction(vcpu);
4872 }
4873
4874 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4875 {
4876         kvm_apic_update_ppr(vcpu);
4877         return 1;
4878 }
4879
4880 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4881 {
4882         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4883                         CPU_BASED_VIRTUAL_INTR_PENDING);
4884
4885         kvm_make_request(KVM_REQ_EVENT, vcpu);
4886
4887         ++vcpu->stat.irq_window_exits;
4888         return 1;
4889 }
4890
4891 static int handle_halt(struct kvm_vcpu *vcpu)
4892 {
4893         return kvm_emulate_halt(vcpu);
4894 }
4895
4896 static int handle_vmcall(struct kvm_vcpu *vcpu)
4897 {
4898         return kvm_emulate_hypercall(vcpu);
4899 }
4900
4901 static int handle_invd(struct kvm_vcpu *vcpu)
4902 {
4903         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4904 }
4905
4906 static int handle_invlpg(struct kvm_vcpu *vcpu)
4907 {
4908         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4909
4910         kvm_mmu_invlpg(vcpu, exit_qualification);
4911         return kvm_skip_emulated_instruction(vcpu);
4912 }
4913
4914 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4915 {
4916         int err;
4917
4918         err = kvm_rdpmc(vcpu);
4919         return kvm_complete_insn_gp(vcpu, err);
4920 }
4921
4922 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4923 {
4924         return kvm_emulate_wbinvd(vcpu);
4925 }
4926
4927 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4928 {
4929         u64 new_bv = kvm_read_edx_eax(vcpu);
4930         u32 index = kvm_rcx_read(vcpu);
4931
4932         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4933                 return kvm_skip_emulated_instruction(vcpu);
4934         return 1;
4935 }
4936
4937 static int handle_xsaves(struct kvm_vcpu *vcpu)
4938 {
4939         kvm_skip_emulated_instruction(vcpu);
4940         WARN(1, "this should never happen\n");
4941         return 1;
4942 }
4943
4944 static int handle_xrstors(struct kvm_vcpu *vcpu)
4945 {
4946         kvm_skip_emulated_instruction(vcpu);
4947         WARN(1, "this should never happen\n");
4948         return 1;
4949 }
4950
4951 static int handle_apic_access(struct kvm_vcpu *vcpu)
4952 {
4953         if (likely(fasteoi)) {
4954                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4955                 int access_type, offset;
4956
4957                 access_type = exit_qualification & APIC_ACCESS_TYPE;
4958                 offset = exit_qualification & APIC_ACCESS_OFFSET;
4959                 /*
4960                  * Sane guest uses MOV to write EOI, with written value
4961                  * not cared. So make a short-circuit here by avoiding
4962                  * heavy instruction emulation.
4963                  */
4964                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4965                     (offset == APIC_EOI)) {
4966                         kvm_lapic_set_eoi(vcpu);
4967                         return kvm_skip_emulated_instruction(vcpu);
4968                 }
4969         }
4970         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4971 }
4972
4973 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4974 {
4975         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4976         int vector = exit_qualification & 0xff;
4977
4978         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
4979         kvm_apic_set_eoi_accelerated(vcpu, vector);
4980         return 1;
4981 }
4982
4983 static int handle_apic_write(struct kvm_vcpu *vcpu)
4984 {
4985         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4986         u32 offset = exit_qualification & 0xfff;
4987
4988         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
4989         kvm_apic_write_nodecode(vcpu, offset);
4990         return 1;
4991 }
4992
4993 static int handle_task_switch(struct kvm_vcpu *vcpu)
4994 {
4995         struct vcpu_vmx *vmx = to_vmx(vcpu);
4996         unsigned long exit_qualification;
4997         bool has_error_code = false;
4998         u32 error_code = 0;
4999         u16 tss_selector;
5000         int reason, type, idt_v, idt_index;
5001
5002         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5003         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5004         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5005
5006         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5007
5008         reason = (u32)exit_qualification >> 30;
5009         if (reason == TASK_SWITCH_GATE && idt_v) {
5010                 switch (type) {
5011                 case INTR_TYPE_NMI_INTR:
5012                         vcpu->arch.nmi_injected = false;
5013                         vmx_set_nmi_mask(vcpu, true);
5014                         break;
5015                 case INTR_TYPE_EXT_INTR:
5016                 case INTR_TYPE_SOFT_INTR:
5017                         kvm_clear_interrupt_queue(vcpu);
5018                         break;
5019                 case INTR_TYPE_HARD_EXCEPTION:
5020                         if (vmx->idt_vectoring_info &
5021                             VECTORING_INFO_DELIVER_CODE_MASK) {
5022                                 has_error_code = true;
5023                                 error_code =
5024                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5025                         }
5026                         /* fall through */
5027                 case INTR_TYPE_SOFT_EXCEPTION:
5028                         kvm_clear_exception_queue(vcpu);
5029                         break;
5030                 default:
5031                         break;
5032                 }
5033         }
5034         tss_selector = exit_qualification;
5035
5036         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5037                        type != INTR_TYPE_EXT_INTR &&
5038                        type != INTR_TYPE_NMI_INTR))
5039                 skip_emulated_instruction(vcpu);
5040
5041         if (kvm_task_switch(vcpu, tss_selector,
5042                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5043                             has_error_code, error_code) == EMULATE_FAIL) {
5044                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5045                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5046                 vcpu->run->internal.ndata = 0;
5047                 return 0;
5048         }
5049
5050         /*
5051          * TODO: What about debug traps on tss switch?
5052          *       Are we supposed to inject them and update dr6?
5053          */
5054
5055         return 1;
5056 }
5057
5058 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5059 {
5060         unsigned long exit_qualification;
5061         gpa_t gpa;
5062         u64 error_code;
5063
5064         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5065
5066         /*
5067          * EPT violation happened while executing iret from NMI,
5068          * "blocked by NMI" bit has to be set before next VM entry.
5069          * There are errata that may cause this bit to not be set:
5070          * AAK134, BY25.
5071          */
5072         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5073                         enable_vnmi &&
5074                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5075                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5076
5077         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5078         trace_kvm_page_fault(gpa, exit_qualification);
5079
5080         /* Is it a read fault? */
5081         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5082                      ? PFERR_USER_MASK : 0;
5083         /* Is it a write fault? */
5084         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5085                       ? PFERR_WRITE_MASK : 0;
5086         /* Is it a fetch fault? */
5087         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5088                       ? PFERR_FETCH_MASK : 0;
5089         /* ept page table entry is present? */
5090         error_code |= (exit_qualification &
5091                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5092                         EPT_VIOLATION_EXECUTABLE))
5093                       ? PFERR_PRESENT_MASK : 0;
5094
5095         error_code |= (exit_qualification & 0x100) != 0 ?
5096                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5097
5098         vcpu->arch.exit_qualification = exit_qualification;
5099         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5100 }
5101
5102 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5103 {
5104         gpa_t gpa;
5105
5106         /*
5107          * A nested guest cannot optimize MMIO vmexits, because we have an
5108          * nGPA here instead of the required GPA.
5109          */
5110         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5111         if (!is_guest_mode(vcpu) &&
5112             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5113                 trace_kvm_fast_mmio(gpa);
5114                 /*
5115                  * Doing kvm_skip_emulated_instruction() depends on undefined
5116                  * behavior: Intel's manual doesn't mandate
5117                  * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
5118                  * occurs and while on real hardware it was observed to be set,
5119                  * other hypervisors (namely Hyper-V) don't set it, we end up
5120                  * advancing IP with some random value. Disable fast mmio when
5121                  * running nested and keep it for real hardware in hope that
5122                  * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
5123                  */
5124                 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
5125                         return kvm_skip_emulated_instruction(vcpu);
5126                 else
5127                         return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
5128                                                                 EMULATE_DONE;
5129         }
5130
5131         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5132 }
5133
5134 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5135 {
5136         WARN_ON_ONCE(!enable_vnmi);
5137         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5138                         CPU_BASED_VIRTUAL_NMI_PENDING);
5139         ++vcpu->stat.nmi_window_exits;
5140         kvm_make_request(KVM_REQ_EVENT, vcpu);
5141
5142         return 1;
5143 }
5144
5145 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5146 {
5147         struct vcpu_vmx *vmx = to_vmx(vcpu);
5148         enum emulation_result err = EMULATE_DONE;
5149         int ret = 1;
5150         u32 cpu_exec_ctrl;
5151         bool intr_window_requested;
5152         unsigned count = 130;
5153
5154         /*
5155          * We should never reach the point where we are emulating L2
5156          * due to invalid guest state as that means we incorrectly
5157          * allowed a nested VMEntry with an invalid vmcs12.
5158          */
5159         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5160
5161         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5162         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5163
5164         while (vmx->emulation_required && count-- != 0) {
5165                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5166                         return handle_interrupt_window(&vmx->vcpu);
5167
5168                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5169                         return 1;
5170
5171                 err = kvm_emulate_instruction(vcpu, 0);
5172
5173                 if (err == EMULATE_USER_EXIT) {
5174                         ++vcpu->stat.mmio_exits;
5175                         ret = 0;
5176                         goto out;
5177                 }
5178
5179                 if (err != EMULATE_DONE)
5180                         goto emulation_error;
5181
5182                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5183                     vcpu->arch.exception.pending)
5184                         goto emulation_error;
5185
5186                 if (vcpu->arch.halt_request) {
5187                         vcpu->arch.halt_request = 0;
5188                         ret = kvm_vcpu_halt(vcpu);
5189                         goto out;
5190                 }
5191
5192                 if (signal_pending(current))
5193                         goto out;
5194                 if (need_resched())
5195                         schedule();
5196         }
5197
5198 out:
5199         return ret;
5200
5201 emulation_error:
5202         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5203         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5204         vcpu->run->internal.ndata = 0;
5205         return 0;
5206 }
5207
5208 static void grow_ple_window(struct kvm_vcpu *vcpu)
5209 {
5210         struct vcpu_vmx *vmx = to_vmx(vcpu);
5211         int old = vmx->ple_window;
5212
5213         vmx->ple_window = __grow_ple_window(old, ple_window,
5214                                             ple_window_grow,
5215                                             ple_window_max);
5216
5217         if (vmx->ple_window != old)
5218                 vmx->ple_window_dirty = true;
5219
5220         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5221 }
5222
5223 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5224 {
5225         struct vcpu_vmx *vmx = to_vmx(vcpu);
5226         int old = vmx->ple_window;
5227
5228         vmx->ple_window = __shrink_ple_window(old, ple_window,
5229                                               ple_window_shrink,
5230                                               ple_window);
5231
5232         if (vmx->ple_window != old)
5233                 vmx->ple_window_dirty = true;
5234
5235         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5236 }
5237
5238 /*
5239  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5240  */
5241 static void wakeup_handler(void)
5242 {
5243         struct kvm_vcpu *vcpu;
5244         int cpu = smp_processor_id();
5245
5246         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5247         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5248                         blocked_vcpu_list) {
5249                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5250
5251                 if (pi_test_on(pi_desc) == 1)
5252                         kvm_vcpu_kick(vcpu);
5253         }
5254         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5255 }
5256
5257 static void vmx_enable_tdp(void)
5258 {
5259         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5260                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5261                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5262                 0ull, VMX_EPT_EXECUTABLE_MASK,
5263                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5264                 VMX_EPT_RWX_MASK, 0ull);
5265
5266         ept_set_mmio_spte_mask();
5267         kvm_enable_tdp();
5268 }
5269
5270 /*
5271  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5272  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5273  */
5274 static int handle_pause(struct kvm_vcpu *vcpu)
5275 {
5276         if (!kvm_pause_in_guest(vcpu->kvm))
5277                 grow_ple_window(vcpu);
5278
5279         /*
5280          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5281          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5282          * never set PAUSE_EXITING and just set PLE if supported,
5283          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5284          */
5285         kvm_vcpu_on_spin(vcpu, true);
5286         return kvm_skip_emulated_instruction(vcpu);
5287 }
5288
5289 static int handle_nop(struct kvm_vcpu *vcpu)
5290 {
5291         return kvm_skip_emulated_instruction(vcpu);
5292 }
5293
5294 static int handle_mwait(struct kvm_vcpu *vcpu)
5295 {
5296         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5297         return handle_nop(vcpu);
5298 }
5299
5300 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5301 {
5302         kvm_queue_exception(vcpu, UD_VECTOR);
5303         return 1;
5304 }
5305
5306 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5307 {
5308         return 1;
5309 }
5310
5311 static int handle_monitor(struct kvm_vcpu *vcpu)
5312 {
5313         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5314         return handle_nop(vcpu);
5315 }
5316
5317 static int handle_invpcid(struct kvm_vcpu *vcpu)
5318 {
5319         u32 vmx_instruction_info;
5320         unsigned long type;
5321         bool pcid_enabled;
5322         gva_t gva;
5323         struct x86_exception e;
5324         unsigned i;
5325         unsigned long roots_to_free = 0;
5326         struct {
5327                 u64 pcid;
5328                 u64 gla;
5329         } operand;
5330
5331         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5332                 kvm_queue_exception(vcpu, UD_VECTOR);
5333                 return 1;
5334         }
5335
5336         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5337         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5338
5339         if (type > 3) {
5340                 kvm_inject_gp(vcpu, 0);
5341                 return 1;
5342         }
5343
5344         /* According to the Intel instruction reference, the memory operand
5345          * is read even if it isn't needed (e.g., for type==all)
5346          */
5347         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5348                                 vmx_instruction_info, false, &gva))
5349                 return 1;
5350
5351         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5352                 kvm_inject_page_fault(vcpu, &e);
5353                 return 1;
5354         }
5355
5356         if (operand.pcid >> 12 != 0) {
5357                 kvm_inject_gp(vcpu, 0);
5358                 return 1;
5359         }
5360
5361         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5362
5363         switch (type) {
5364         case INVPCID_TYPE_INDIV_ADDR:
5365                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5366                     is_noncanonical_address(operand.gla, vcpu)) {
5367                         kvm_inject_gp(vcpu, 0);
5368                         return 1;
5369                 }
5370                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5371                 return kvm_skip_emulated_instruction(vcpu);
5372
5373         case INVPCID_TYPE_SINGLE_CTXT:
5374                 if (!pcid_enabled && (operand.pcid != 0)) {
5375                         kvm_inject_gp(vcpu, 0);
5376                         return 1;
5377                 }
5378
5379                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5380                         kvm_mmu_sync_roots(vcpu);
5381                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5382                 }
5383
5384                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5385                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5386                             == operand.pcid)
5387                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5388
5389                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5390                 /*
5391                  * If neither the current cr3 nor any of the prev_roots use the
5392                  * given PCID, then nothing needs to be done here because a
5393                  * resync will happen anyway before switching to any other CR3.
5394                  */
5395
5396                 return kvm_skip_emulated_instruction(vcpu);
5397
5398         case INVPCID_TYPE_ALL_NON_GLOBAL:
5399                 /*
5400                  * Currently, KVM doesn't mark global entries in the shadow
5401                  * page tables, so a non-global flush just degenerates to a
5402                  * global flush. If needed, we could optimize this later by
5403                  * keeping track of global entries in shadow page tables.
5404                  */
5405
5406                 /* fall-through */
5407         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5408                 kvm_mmu_unload(vcpu);
5409                 return kvm_skip_emulated_instruction(vcpu);
5410
5411         default:
5412                 BUG(); /* We have already checked above that type <= 3 */
5413         }
5414 }
5415
5416 static int handle_pml_full(struct kvm_vcpu *vcpu)
5417 {
5418         unsigned long exit_qualification;
5419
5420         trace_kvm_pml_full(vcpu->vcpu_id);
5421
5422         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5423
5424         /*
5425          * PML buffer FULL happened while executing iret from NMI,
5426          * "blocked by NMI" bit has to be set before next VM entry.
5427          */
5428         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5429                         enable_vnmi &&
5430                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5431                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5432                                 GUEST_INTR_STATE_NMI);
5433
5434         /*
5435          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5436          * here.., and there's no userspace involvement needed for PML.
5437          */
5438         return 1;
5439 }
5440
5441 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5442 {
5443         if (!to_vmx(vcpu)->req_immediate_exit)
5444                 kvm_lapic_expired_hv_timer(vcpu);
5445         return 1;
5446 }
5447
5448 /*
5449  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5450  * are overwritten by nested_vmx_setup() when nested=1.
5451  */
5452 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5453 {
5454         kvm_queue_exception(vcpu, UD_VECTOR);
5455         return 1;
5456 }
5457
5458 static int handle_encls(struct kvm_vcpu *vcpu)
5459 {
5460         /*
5461          * SGX virtualization is not yet supported.  There is no software
5462          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5463          * to prevent the guest from executing ENCLS.
5464          */
5465         kvm_queue_exception(vcpu, UD_VECTOR);
5466         return 1;
5467 }
5468
5469 /*
5470  * The exit handlers return 1 if the exit was handled fully and guest execution
5471  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5472  * to be done to userspace and return 0.
5473  */
5474 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5475         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5476         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5477         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5478         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5479         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5480         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5481         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5482         [EXIT_REASON_CPUID]                   = handle_cpuid,
5483         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5484         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5485         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5486         [EXIT_REASON_HLT]                     = handle_halt,
5487         [EXIT_REASON_INVD]                    = handle_invd,
5488         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5489         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5490         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5491         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5492         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5493         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5494         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5495         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5496         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5497         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5498         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5499         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5500         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5501         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5502         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5503         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5504         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5505         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5506         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5507         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5508         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5509         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5510         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5511         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5512         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5513         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5514         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5515         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5516         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5517         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5518         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5519         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5520         [EXIT_REASON_XSAVES]                  = handle_xsaves,
5521         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
5522         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5523         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5524         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5525         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5526         [EXIT_REASON_ENCLS]                   = handle_encls,
5527 };
5528
5529 static const int kvm_vmx_max_exit_handlers =
5530         ARRAY_SIZE(kvm_vmx_exit_handlers);
5531
5532 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5533 {
5534         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5535         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5536 }
5537
5538 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5539 {
5540         if (vmx->pml_pg) {
5541                 __free_page(vmx->pml_pg);
5542                 vmx->pml_pg = NULL;
5543         }
5544 }
5545
5546 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5547 {
5548         struct vcpu_vmx *vmx = to_vmx(vcpu);
5549         u64 *pml_buf;
5550         u16 pml_idx;
5551
5552         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5553
5554         /* Do nothing if PML buffer is empty */
5555         if (pml_idx == (PML_ENTITY_NUM - 1))
5556                 return;
5557
5558         /* PML index always points to next available PML buffer entity */
5559         if (pml_idx >= PML_ENTITY_NUM)
5560                 pml_idx = 0;
5561         else
5562                 pml_idx++;
5563
5564         pml_buf = page_address(vmx->pml_pg);
5565         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5566                 u64 gpa;
5567
5568                 gpa = pml_buf[pml_idx];
5569                 WARN_ON(gpa & (PAGE_SIZE - 1));
5570                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5571         }
5572
5573         /* reset PML index */
5574         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5575 }
5576
5577 /*
5578  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5579  * Called before reporting dirty_bitmap to userspace.
5580  */
5581 static void kvm_flush_pml_buffers(struct kvm *kvm)
5582 {
5583         int i;
5584         struct kvm_vcpu *vcpu;
5585         /*
5586          * We only need to kick vcpu out of guest mode here, as PML buffer
5587          * is flushed at beginning of all VMEXITs, and it's obvious that only
5588          * vcpus running in guest are possible to have unflushed GPAs in PML
5589          * buffer.
5590          */
5591         kvm_for_each_vcpu(i, vcpu, kvm)
5592                 kvm_vcpu_kick(vcpu);
5593 }
5594
5595 static void vmx_dump_sel(char *name, uint32_t sel)
5596 {
5597         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5598                name, vmcs_read16(sel),
5599                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5600                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5601                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5602 }
5603
5604 static void vmx_dump_dtsel(char *name, uint32_t limit)
5605 {
5606         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5607                name, vmcs_read32(limit),
5608                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5609 }
5610
5611 void dump_vmcs(void)
5612 {
5613         u32 vmentry_ctl, vmexit_ctl;
5614         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5615         unsigned long cr4;
5616         u64 efer;
5617         int i, n;
5618
5619         if (!dump_invalid_vmcs) {
5620                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5621                 return;
5622         }
5623
5624         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5625         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5626         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5627         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5628         cr4 = vmcs_readl(GUEST_CR4);
5629         efer = vmcs_read64(GUEST_IA32_EFER);
5630         secondary_exec_control = 0;
5631         if (cpu_has_secondary_exec_ctrls())
5632                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5633
5634         pr_err("*** Guest State ***\n");
5635         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5636                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5637                vmcs_readl(CR0_GUEST_HOST_MASK));
5638         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5639                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5640         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5641         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5642             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5643         {
5644                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5645                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5646                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5647                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5648         }
5649         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5650                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5651         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5652                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5653         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5654                vmcs_readl(GUEST_SYSENTER_ESP),
5655                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5656         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5657         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5658         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5659         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5660         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5661         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5662         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5663         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5664         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5665         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5666         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5667             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5668                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5669                        efer, vmcs_read64(GUEST_IA32_PAT));
5670         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5671                vmcs_read64(GUEST_IA32_DEBUGCTL),
5672                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5673         if (cpu_has_load_perf_global_ctrl() &&
5674             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5675                 pr_err("PerfGlobCtl = 0x%016llx\n",
5676                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5677         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5678                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5679         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5680                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5681                vmcs_read32(GUEST_ACTIVITY_STATE));
5682         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5683                 pr_err("InterruptStatus = %04x\n",
5684                        vmcs_read16(GUEST_INTR_STATUS));
5685
5686         pr_err("*** Host State ***\n");
5687         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5688                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5689         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5690                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5691                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5692                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5693                vmcs_read16(HOST_TR_SELECTOR));
5694         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5695                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5696                vmcs_readl(HOST_TR_BASE));
5697         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5698                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5699         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5700                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5701                vmcs_readl(HOST_CR4));
5702         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5703                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5704                vmcs_read32(HOST_IA32_SYSENTER_CS),
5705                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5706         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5707                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5708                        vmcs_read64(HOST_IA32_EFER),
5709                        vmcs_read64(HOST_IA32_PAT));
5710         if (cpu_has_load_perf_global_ctrl() &&
5711             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5712                 pr_err("PerfGlobCtl = 0x%016llx\n",
5713                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5714
5715         pr_err("*** Control State ***\n");
5716         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5717                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5718         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5719         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5720                vmcs_read32(EXCEPTION_BITMAP),
5721                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5722                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5723         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5724                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5725                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5726                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5727         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5728                vmcs_read32(VM_EXIT_INTR_INFO),
5729                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5730                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5731         pr_err("        reason=%08x qualification=%016lx\n",
5732                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5733         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5734                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5735                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5736         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5737         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5738                 pr_err("TSC Multiplier = 0x%016llx\n",
5739                        vmcs_read64(TSC_MULTIPLIER));
5740         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5741                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5742                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5743                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5744                 }
5745                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5746                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5747                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5748                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5749         }
5750         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5751                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5752         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5753                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5754         n = vmcs_read32(CR3_TARGET_COUNT);
5755         for (i = 0; i + 1 < n; i += 4)
5756                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5757                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5758                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5759         if (i < n)
5760                 pr_err("CR3 target%u=%016lx\n",
5761                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5762         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5763                 pr_err("PLE Gap=%08x Window=%08x\n",
5764                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5765         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5766                 pr_err("Virtual processor ID = 0x%04x\n",
5767                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5768 }
5769
5770 /*
5771  * The guest has exited.  See if we can fix it or if we need userspace
5772  * assistance.
5773  */
5774 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5775 {
5776         struct vcpu_vmx *vmx = to_vmx(vcpu);
5777         u32 exit_reason = vmx->exit_reason;
5778         u32 vectoring_info = vmx->idt_vectoring_info;
5779
5780         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5781
5782         /*
5783          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5784          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5785          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5786          * mode as if vcpus is in root mode, the PML buffer must has been
5787          * flushed already.
5788          */
5789         if (enable_pml)
5790                 vmx_flush_pml_buffer(vcpu);
5791
5792         /* If guest state is invalid, start emulating */
5793         if (vmx->emulation_required)
5794                 return handle_invalid_guest_state(vcpu);
5795
5796         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5797                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5798
5799         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5800                 dump_vmcs();
5801                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5802                 vcpu->run->fail_entry.hardware_entry_failure_reason
5803                         = exit_reason;
5804                 return 0;
5805         }
5806
5807         if (unlikely(vmx->fail)) {
5808                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5809                 vcpu->run->fail_entry.hardware_entry_failure_reason
5810                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5811                 return 0;
5812         }
5813
5814         /*
5815          * Note:
5816          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5817          * delivery event since it indicates guest is accessing MMIO.
5818          * The vm-exit can be triggered again after return to guest that
5819          * will cause infinite loop.
5820          */
5821         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5822                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5823                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5824                         exit_reason != EXIT_REASON_PML_FULL &&
5825                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5826                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5827                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5828                 vcpu->run->internal.ndata = 3;
5829                 vcpu->run->internal.data[0] = vectoring_info;
5830                 vcpu->run->internal.data[1] = exit_reason;
5831                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5832                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5833                         vcpu->run->internal.ndata++;
5834                         vcpu->run->internal.data[3] =
5835                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5836                 }
5837                 return 0;
5838         }
5839
5840         if (unlikely(!enable_vnmi &&
5841                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5842                 if (vmx_interrupt_allowed(vcpu)) {
5843                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5844                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5845                            vcpu->arch.nmi_pending) {
5846                         /*
5847                          * This CPU don't support us in finding the end of an
5848                          * NMI-blocked window if the guest runs with IRQs
5849                          * disabled. So we pull the trigger after 1 s of
5850                          * futile waiting, but inform the user about this.
5851                          */
5852                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5853                                "state on VCPU %d after 1 s timeout\n",
5854                                __func__, vcpu->vcpu_id);
5855                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5856                 }
5857         }
5858
5859         if (exit_reason < kvm_vmx_max_exit_handlers
5860             && kvm_vmx_exit_handlers[exit_reason])
5861                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5862         else {
5863                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5864                                 exit_reason);
5865                 kvm_queue_exception(vcpu, UD_VECTOR);
5866                 return 1;
5867         }
5868 }
5869
5870 /*
5871  * Software based L1D cache flush which is used when microcode providing
5872  * the cache control MSR is not loaded.
5873  *
5874  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5875  * flush it is required to read in 64 KiB because the replacement algorithm
5876  * is not exactly LRU. This could be sized at runtime via topology
5877  * information but as all relevant affected CPUs have 32KiB L1D cache size
5878  * there is no point in doing so.
5879  */
5880 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5881 {
5882         int size = PAGE_SIZE << L1D_CACHE_ORDER;
5883
5884         /*
5885          * This code is only executed when the the flush mode is 'cond' or
5886          * 'always'
5887          */
5888         if (static_branch_likely(&vmx_l1d_flush_cond)) {
5889                 bool flush_l1d;
5890
5891                 /*
5892                  * Clear the per-vcpu flush bit, it gets set again
5893                  * either from vcpu_run() or from one of the unsafe
5894                  * VMEXIT handlers.
5895                  */
5896                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5897                 vcpu->arch.l1tf_flush_l1d = false;
5898
5899                 /*
5900                  * Clear the per-cpu flush bit, it gets set again from
5901                  * the interrupt handlers.
5902                  */
5903                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5904                 kvm_clear_cpu_l1tf_flush_l1d();
5905
5906                 if (!flush_l1d)
5907                         return;
5908         }
5909
5910         vcpu->stat.l1d_flush++;
5911
5912         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5913                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5914                 return;
5915         }
5916
5917         asm volatile(
5918                 /* First ensure the pages are in the TLB */
5919                 "xorl   %%eax, %%eax\n"
5920                 ".Lpopulate_tlb:\n\t"
5921                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5922                 "addl   $4096, %%eax\n\t"
5923                 "cmpl   %%eax, %[size]\n\t"
5924                 "jne    .Lpopulate_tlb\n\t"
5925                 "xorl   %%eax, %%eax\n\t"
5926                 "cpuid\n\t"
5927                 /* Now fill the cache */
5928                 "xorl   %%eax, %%eax\n"
5929                 ".Lfill_cache:\n"
5930                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5931                 "addl   $64, %%eax\n\t"
5932                 "cmpl   %%eax, %[size]\n\t"
5933                 "jne    .Lfill_cache\n\t"
5934                 "lfence\n"
5935                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
5936                     [size] "r" (size)
5937                 : "eax", "ebx", "ecx", "edx");
5938 }
5939
5940 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5941 {
5942         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5943
5944         if (is_guest_mode(vcpu) &&
5945                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
5946                 return;
5947
5948         if (irr == -1 || tpr < irr) {
5949                 vmcs_write32(TPR_THRESHOLD, 0);
5950                 return;
5951         }
5952
5953         vmcs_write32(TPR_THRESHOLD, irr);
5954 }
5955
5956 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5957 {
5958         u32 sec_exec_control;
5959
5960         if (!lapic_in_kernel(vcpu))
5961                 return;
5962
5963         if (!flexpriority_enabled &&
5964             !cpu_has_vmx_virtualize_x2apic_mode())
5965                 return;
5966
5967         /* Postpone execution until vmcs01 is the current VMCS. */
5968         if (is_guest_mode(vcpu)) {
5969                 to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
5970                 return;
5971         }
5972
5973         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5974         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
5975                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
5976
5977         switch (kvm_get_apic_mode(vcpu)) {
5978         case LAPIC_MODE_INVALID:
5979                 WARN_ONCE(true, "Invalid local APIC state");
5980         case LAPIC_MODE_DISABLED:
5981                 break;
5982         case LAPIC_MODE_XAPIC:
5983                 if (flexpriority_enabled) {
5984                         sec_exec_control |=
5985                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5986                         vmx_flush_tlb(vcpu, true);
5987                 }
5988                 break;
5989         case LAPIC_MODE_X2APIC:
5990                 if (cpu_has_vmx_virtualize_x2apic_mode())
5991                         sec_exec_control |=
5992                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5993                 break;
5994         }
5995         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
5996
5997         vmx_update_msr_bitmap(vcpu);
5998 }
5999
6000 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6001 {
6002         if (!is_guest_mode(vcpu)) {
6003                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6004                 vmx_flush_tlb(vcpu, true);
6005         }
6006 }
6007
6008 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6009 {
6010         u16 status;
6011         u8 old;
6012
6013         if (max_isr == -1)
6014                 max_isr = 0;
6015
6016         status = vmcs_read16(GUEST_INTR_STATUS);
6017         old = status >> 8;
6018         if (max_isr != old) {
6019                 status &= 0xff;
6020                 status |= max_isr << 8;
6021                 vmcs_write16(GUEST_INTR_STATUS, status);
6022         }
6023 }
6024
6025 static void vmx_set_rvi(int vector)
6026 {
6027         u16 status;
6028         u8 old;
6029
6030         if (vector == -1)
6031                 vector = 0;
6032
6033         status = vmcs_read16(GUEST_INTR_STATUS);
6034         old = (u8)status & 0xff;
6035         if ((u8)vector != old) {
6036                 status &= ~0xff;
6037                 status |= (u8)vector;
6038                 vmcs_write16(GUEST_INTR_STATUS, status);
6039         }
6040 }
6041
6042 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6043 {
6044         /*
6045          * When running L2, updating RVI is only relevant when
6046          * vmcs12 virtual-interrupt-delivery enabled.
6047          * However, it can be enabled only when L1 also
6048          * intercepts external-interrupts and in that case
6049          * we should not update vmcs02 RVI but instead intercept
6050          * interrupt. Therefore, do nothing when running L2.
6051          */
6052         if (!is_guest_mode(vcpu))
6053                 vmx_set_rvi(max_irr);
6054 }
6055
6056 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6057 {
6058         struct vcpu_vmx *vmx = to_vmx(vcpu);
6059         int max_irr;
6060         bool max_irr_updated;
6061
6062         WARN_ON(!vcpu->arch.apicv_active);
6063         if (pi_test_on(&vmx->pi_desc)) {
6064                 pi_clear_on(&vmx->pi_desc);
6065                 /*
6066                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6067                  * But on x86 this is just a compiler barrier anyway.
6068                  */
6069                 smp_mb__after_atomic();
6070                 max_irr_updated =
6071                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6072
6073                 /*
6074                  * If we are running L2 and L1 has a new pending interrupt
6075                  * which can be injected, we should re-evaluate
6076                  * what should be done with this new L1 interrupt.
6077                  * If L1 intercepts external-interrupts, we should
6078                  * exit from L2 to L1. Otherwise, interrupt should be
6079                  * delivered directly to L2.
6080                  */
6081                 if (is_guest_mode(vcpu) && max_irr_updated) {
6082                         if (nested_exit_on_intr(vcpu))
6083                                 kvm_vcpu_exiting_guest_mode(vcpu);
6084                         else
6085                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6086                 }
6087         } else {
6088                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6089         }
6090         vmx_hwapic_irr_update(vcpu, max_irr);
6091         return max_irr;
6092 }
6093
6094 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6095 {
6096         if (!kvm_vcpu_apicv_active(vcpu))
6097                 return;
6098
6099         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6100         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6101         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6102         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6103 }
6104
6105 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6106 {
6107         struct vcpu_vmx *vmx = to_vmx(vcpu);
6108
6109         pi_clear_on(&vmx->pi_desc);
6110         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6111 }
6112
6113 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6114 {
6115         u32 exit_intr_info = 0;
6116         u16 basic_exit_reason = (u16)vmx->exit_reason;
6117
6118         if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6119               || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
6120                 return;
6121
6122         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6123                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6124         vmx->exit_intr_info = exit_intr_info;
6125
6126         /* if exit due to PF check for async PF */
6127         if (is_page_fault(exit_intr_info))
6128                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6129
6130         /* Handle machine checks before interrupts are enabled */
6131         if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
6132             is_machine_check(exit_intr_info))
6133                 kvm_machine_check();
6134
6135         /* We need to handle NMIs before interrupts are enabled */
6136         if (is_nmi(exit_intr_info)) {
6137                 kvm_before_interrupt(&vmx->vcpu);
6138                 asm("int $2");
6139                 kvm_after_interrupt(&vmx->vcpu);
6140         }
6141 }
6142
6143 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6144 {
6145         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6146
6147         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6148                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6149                 unsigned int vector;
6150                 unsigned long entry;
6151                 gate_desc *desc;
6152                 struct vcpu_vmx *vmx = to_vmx(vcpu);
6153 #ifdef CONFIG_X86_64
6154                 unsigned long tmp;
6155 #endif
6156
6157                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6158                 desc = (gate_desc *)vmx->host_idt_base + vector;
6159                 entry = gate_offset(desc);
6160                 asm volatile(
6161 #ifdef CONFIG_X86_64
6162                         "mov %%" _ASM_SP ", %[sp]\n\t"
6163                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6164                         "push $%c[ss]\n\t"
6165                         "push %[sp]\n\t"
6166 #endif
6167                         "pushf\n\t"
6168                         __ASM_SIZE(push) " $%c[cs]\n\t"
6169                         CALL_NOSPEC
6170                         :
6171 #ifdef CONFIG_X86_64
6172                         [sp]"=&r"(tmp),
6173 #endif
6174                         ASM_CALL_CONSTRAINT
6175                         :
6176                         THUNK_TARGET(entry),
6177                         [ss]"i"(__KERNEL_DS),
6178                         [cs]"i"(__KERNEL_CS)
6179                         );
6180         }
6181 }
6182 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
6183
6184 static bool vmx_has_emulated_msr(int index)
6185 {
6186         switch (index) {
6187         case MSR_IA32_SMBASE:
6188                 /*
6189                  * We cannot do SMM unless we can run the guest in big
6190                  * real mode.
6191                  */
6192                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6193         case MSR_AMD64_VIRT_SPEC_CTRL:
6194                 /* This is AMD only.  */
6195                 return false;
6196         default:
6197                 return true;
6198         }
6199 }
6200
6201 static bool vmx_pt_supported(void)
6202 {
6203         return pt_mode == PT_MODE_HOST_GUEST;
6204 }
6205
6206 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6207 {
6208         u32 exit_intr_info;
6209         bool unblock_nmi;
6210         u8 vector;
6211         bool idtv_info_valid;
6212
6213         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6214
6215         if (enable_vnmi) {
6216                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6217                         return;
6218                 /*
6219                  * Can't use vmx->exit_intr_info since we're not sure what
6220                  * the exit reason is.
6221                  */
6222                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6223                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6224                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6225                 /*
6226                  * SDM 3: 27.7.1.2 (September 2008)
6227                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6228                  * a guest IRET fault.
6229                  * SDM 3: 23.2.2 (September 2008)
6230                  * Bit 12 is undefined in any of the following cases:
6231                  *  If the VM exit sets the valid bit in the IDT-vectoring
6232                  *   information field.
6233                  *  If the VM exit is due to a double fault.
6234                  */
6235                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6236                     vector != DF_VECTOR && !idtv_info_valid)
6237                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6238                                       GUEST_INTR_STATE_NMI);
6239                 else
6240                         vmx->loaded_vmcs->nmi_known_unmasked =
6241                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6242                                   & GUEST_INTR_STATE_NMI);
6243         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6244                 vmx->loaded_vmcs->vnmi_blocked_time +=
6245                         ktime_to_ns(ktime_sub(ktime_get(),
6246                                               vmx->loaded_vmcs->entry_time));
6247 }
6248
6249 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6250                                       u32 idt_vectoring_info,
6251                                       int instr_len_field,
6252                                       int error_code_field)
6253 {
6254         u8 vector;
6255         int type;
6256         bool idtv_info_valid;
6257
6258         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6259
6260         vcpu->arch.nmi_injected = false;
6261         kvm_clear_exception_queue(vcpu);
6262         kvm_clear_interrupt_queue(vcpu);
6263
6264         if (!idtv_info_valid)
6265                 return;
6266
6267         kvm_make_request(KVM_REQ_EVENT, vcpu);
6268
6269         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6270         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6271
6272         switch (type) {
6273         case INTR_TYPE_NMI_INTR:
6274                 vcpu->arch.nmi_injected = true;
6275                 /*
6276                  * SDM 3: 27.7.1.2 (September 2008)
6277                  * Clear bit "block by NMI" before VM entry if a NMI
6278                  * delivery faulted.
6279                  */
6280                 vmx_set_nmi_mask(vcpu, false);
6281                 break;
6282         case INTR_TYPE_SOFT_EXCEPTION:
6283                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6284                 /* fall through */
6285         case INTR_TYPE_HARD_EXCEPTION:
6286                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6287                         u32 err = vmcs_read32(error_code_field);
6288                         kvm_requeue_exception_e(vcpu, vector, err);
6289                 } else
6290                         kvm_requeue_exception(vcpu, vector);
6291                 break;
6292         case INTR_TYPE_SOFT_INTR:
6293                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6294                 /* fall through */
6295         case INTR_TYPE_EXT_INTR:
6296                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6297                 break;
6298         default:
6299                 break;
6300         }
6301 }
6302
6303 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6304 {
6305         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6306                                   VM_EXIT_INSTRUCTION_LEN,
6307                                   IDT_VECTORING_ERROR_CODE);
6308 }
6309
6310 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6311 {
6312         __vmx_complete_interrupts(vcpu,
6313                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6314                                   VM_ENTRY_INSTRUCTION_LEN,
6315                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6316
6317         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6318 }
6319
6320 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6321 {
6322         int i, nr_msrs;
6323         struct perf_guest_switch_msr *msrs;
6324
6325         msrs = perf_guest_get_msrs(&nr_msrs);
6326
6327         if (!msrs)
6328                 return;
6329
6330         for (i = 0; i < nr_msrs; i++)
6331                 if (msrs[i].host == msrs[i].guest)
6332                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6333                 else
6334                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6335                                         msrs[i].host, false);
6336 }
6337
6338 static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
6339 {
6340         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
6341         if (!vmx->loaded_vmcs->hv_timer_armed)
6342                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
6343                               PIN_BASED_VMX_PREEMPTION_TIMER);
6344         vmx->loaded_vmcs->hv_timer_armed = true;
6345 }
6346
6347 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6348 {
6349         struct vcpu_vmx *vmx = to_vmx(vcpu);
6350         u64 tscl;
6351         u32 delta_tsc;
6352
6353         if (vmx->req_immediate_exit) {
6354                 vmx_arm_hv_timer(vmx, 0);
6355                 return;
6356         }
6357
6358         if (vmx->hv_deadline_tsc != -1) {
6359                 tscl = rdtsc();
6360                 if (vmx->hv_deadline_tsc > tscl)
6361                         /* set_hv_timer ensures the delta fits in 32-bits */
6362                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6363                                 cpu_preemption_timer_multi);
6364                 else
6365                         delta_tsc = 0;
6366
6367                 vmx_arm_hv_timer(vmx, delta_tsc);
6368                 return;
6369         }
6370
6371         if (vmx->loaded_vmcs->hv_timer_armed)
6372                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
6373                                 PIN_BASED_VMX_PREEMPTION_TIMER);
6374         vmx->loaded_vmcs->hv_timer_armed = false;
6375 }
6376
6377 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6378 {
6379         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6380                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6381                 vmcs_writel(HOST_RSP, host_rsp);
6382         }
6383 }
6384
6385 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6386
6387 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6388 {
6389         struct vcpu_vmx *vmx = to_vmx(vcpu);
6390         unsigned long cr3, cr4;
6391
6392         /* Record the guest's net vcpu time for enforced NMI injections. */
6393         if (unlikely(!enable_vnmi &&
6394                      vmx->loaded_vmcs->soft_vnmi_blocked))
6395                 vmx->loaded_vmcs->entry_time = ktime_get();
6396
6397         /* Don't enter VMX if guest state is invalid, let the exit handler
6398            start emulation until we arrive back to a valid state */
6399         if (vmx->emulation_required)
6400                 return;
6401
6402         if (vmx->ple_window_dirty) {
6403                 vmx->ple_window_dirty = false;
6404                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6405         }
6406
6407         if (vmx->nested.need_vmcs12_sync)
6408                 nested_sync_from_vmcs12(vcpu);
6409
6410         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6411                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6412         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6413                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6414
6415         cr3 = __get_current_cr3_fast();
6416         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6417                 vmcs_writel(HOST_CR3, cr3);
6418                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6419         }
6420
6421         cr4 = cr4_read_shadow();
6422         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6423                 vmcs_writel(HOST_CR4, cr4);
6424                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6425         }
6426
6427         /* When single-stepping over STI and MOV SS, we must clear the
6428          * corresponding interruptibility bits in the guest state. Otherwise
6429          * vmentry fails as it then expects bit 14 (BS) in pending debug
6430          * exceptions being set, but that's not correct for the guest debugging
6431          * case. */
6432         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6433                 vmx_set_interrupt_shadow(vcpu, 0);
6434
6435         kvm_load_guest_xcr0(vcpu);
6436
6437         if (static_cpu_has(X86_FEATURE_PKU) &&
6438             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6439             vcpu->arch.pkru != vmx->host_pkru)
6440                 __write_pkru(vcpu->arch.pkru);
6441
6442         pt_guest_enter(vmx);
6443
6444         atomic_switch_perf_msrs(vmx);
6445
6446         vmx_update_hv_timer(vcpu);
6447
6448         /*
6449          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6450          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6451          * is no need to worry about the conditional branch over the wrmsr
6452          * being speculatively taken.
6453          */
6454         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6455
6456         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6457         if (static_branch_unlikely(&vmx_l1d_should_flush))
6458                 vmx_l1d_flush(vcpu);
6459         else if (static_branch_unlikely(&mds_user_clear))
6460                 mds_clear_cpu_buffers();
6461
6462         if (vcpu->arch.cr2 != read_cr2())
6463                 write_cr2(vcpu->arch.cr2);
6464
6465         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6466                                    vmx->loaded_vmcs->launched);
6467
6468         vcpu->arch.cr2 = read_cr2();
6469
6470         /*
6471          * We do not use IBRS in the kernel. If this vCPU has used the
6472          * SPEC_CTRL MSR it may have left it on; save the value and
6473          * turn it off. This is much more efficient than blindly adding
6474          * it to the atomic save/restore list. Especially as the former
6475          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6476          *
6477          * For non-nested case:
6478          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6479          * save it.
6480          *
6481          * For nested case:
6482          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6483          * save it.
6484          */
6485         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6486                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6487
6488         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6489
6490         /* All fields are clean at this point */
6491         if (static_branch_unlikely(&enable_evmcs))
6492                 current_evmcs->hv_clean_fields |=
6493                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6494
6495         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6496         if (vmx->host_debugctlmsr)
6497                 update_debugctlmsr(vmx->host_debugctlmsr);
6498
6499 #ifndef CONFIG_X86_64
6500         /*
6501          * The sysexit path does not restore ds/es, so we must set them to
6502          * a reasonable value ourselves.
6503          *
6504          * We can't defer this to vmx_prepare_switch_to_host() since that
6505          * function may be executed in interrupt context, which saves and
6506          * restore segments around it, nullifying its effect.
6507          */
6508         loadsegment(ds, __USER_DS);
6509         loadsegment(es, __USER_DS);
6510 #endif
6511
6512         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6513                                   | (1 << VCPU_EXREG_RFLAGS)
6514                                   | (1 << VCPU_EXREG_PDPTR)
6515                                   | (1 << VCPU_EXREG_SEGMENTS)
6516                                   | (1 << VCPU_EXREG_CR3));
6517         vcpu->arch.regs_dirty = 0;
6518
6519         pt_guest_exit(vmx);
6520
6521         /*
6522          * eager fpu is enabled if PKEY is supported and CR4 is switched
6523          * back on host, so it is safe to read guest PKRU from current
6524          * XSAVE.
6525          */
6526         if (static_cpu_has(X86_FEATURE_PKU) &&
6527             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6528                 vcpu->arch.pkru = rdpkru();
6529                 if (vcpu->arch.pkru != vmx->host_pkru)
6530                         __write_pkru(vmx->host_pkru);
6531         }
6532
6533         kvm_put_guest_xcr0(vcpu);
6534
6535         vmx->nested.nested_run_pending = 0;
6536         vmx->idt_vectoring_info = 0;
6537
6538         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6539         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6540                 return;
6541
6542         vmx->loaded_vmcs->launched = 1;
6543         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6544
6545         vmx_complete_atomic_exit(vmx);
6546         vmx_recover_nmi_blocking(vmx);
6547         vmx_complete_interrupts(vmx);
6548 }
6549
6550 static struct kvm *vmx_vm_alloc(void)
6551 {
6552         struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6553                                             GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6554                                             PAGE_KERNEL);
6555         return &kvm_vmx->kvm;
6556 }
6557
6558 static void vmx_vm_free(struct kvm *kvm)
6559 {
6560         vfree(to_kvm_vmx(kvm));
6561 }
6562
6563 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6564 {
6565         struct vcpu_vmx *vmx = to_vmx(vcpu);
6566
6567         if (enable_pml)
6568                 vmx_destroy_pml_buffer(vmx);
6569         free_vpid(vmx->vpid);
6570         nested_vmx_free_vcpu(vcpu);
6571         free_loaded_vmcs(vmx->loaded_vmcs);
6572         kfree(vmx->guest_msrs);
6573         kvm_vcpu_uninit(vcpu);
6574         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6575         kmem_cache_free(kvm_vcpu_cache, vmx);
6576 }
6577
6578 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6579 {
6580         int err;
6581         struct vcpu_vmx *vmx;
6582         unsigned long *msr_bitmap;
6583         int cpu;
6584
6585         vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6586         if (!vmx)
6587                 return ERR_PTR(-ENOMEM);
6588
6589         vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6590                         GFP_KERNEL_ACCOUNT);
6591         if (!vmx->vcpu.arch.guest_fpu) {
6592                 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6593                 err = -ENOMEM;
6594                 goto free_partial_vcpu;
6595         }
6596
6597         vmx->vpid = allocate_vpid();
6598
6599         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6600         if (err)
6601                 goto free_vcpu;
6602
6603         err = -ENOMEM;
6604
6605         /*
6606          * If PML is turned on, failure on enabling PML just results in failure
6607          * of creating the vcpu, therefore we can simplify PML logic (by
6608          * avoiding dealing with cases, such as enabling PML partially on vcpus
6609          * for the guest, etc.
6610          */
6611         if (enable_pml) {
6612                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6613                 if (!vmx->pml_pg)
6614                         goto uninit_vcpu;
6615         }
6616
6617         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6618         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6619                      > PAGE_SIZE);
6620
6621         if (!vmx->guest_msrs)
6622                 goto free_pml;
6623
6624         err = alloc_loaded_vmcs(&vmx->vmcs01);
6625         if (err < 0)
6626                 goto free_msrs;
6627
6628         msr_bitmap = vmx->vmcs01.msr_bitmap;
6629         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6630         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6631         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6632         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6633         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6634         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6635         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6636         vmx->msr_bitmap_mode = 0;
6637
6638         vmx->loaded_vmcs = &vmx->vmcs01;
6639         cpu = get_cpu();
6640         vmx_vcpu_load(&vmx->vcpu, cpu);
6641         vmx->vcpu.cpu = cpu;
6642         vmx_vcpu_setup(vmx);
6643         vmx_vcpu_put(&vmx->vcpu);
6644         put_cpu();
6645         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6646                 err = alloc_apic_access_page(kvm);
6647                 if (err)
6648                         goto free_vmcs;
6649         }
6650
6651         if (enable_ept && !enable_unrestricted_guest) {
6652                 err = init_rmode_identity_map(kvm);
6653                 if (err)
6654                         goto free_vmcs;
6655         }
6656
6657         if (nested)
6658                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6659                                            vmx_capability.ept,
6660                                            kvm_vcpu_apicv_active(&vmx->vcpu));
6661         else
6662                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6663
6664         vmx->nested.posted_intr_nv = -1;
6665         vmx->nested.current_vmptr = -1ull;
6666
6667         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6668
6669         /*
6670          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6671          * or POSTED_INTR_WAKEUP_VECTOR.
6672          */
6673         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6674         vmx->pi_desc.sn = 1;
6675
6676         vmx->ept_pointer = INVALID_PAGE;
6677
6678         return &vmx->vcpu;
6679
6680 free_vmcs:
6681         free_loaded_vmcs(vmx->loaded_vmcs);
6682 free_msrs:
6683         kfree(vmx->guest_msrs);
6684 free_pml:
6685         vmx_destroy_pml_buffer(vmx);
6686 uninit_vcpu:
6687         kvm_vcpu_uninit(&vmx->vcpu);
6688 free_vcpu:
6689         free_vpid(vmx->vpid);
6690         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6691 free_partial_vcpu:
6692         kmem_cache_free(kvm_vcpu_cache, vmx);
6693         return ERR_PTR(err);
6694 }
6695
6696 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6697 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6698
6699 static int vmx_vm_init(struct kvm *kvm)
6700 {
6701         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6702
6703         if (!ple_gap)
6704                 kvm->arch.pause_in_guest = true;
6705
6706         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6707                 switch (l1tf_mitigation) {
6708                 case L1TF_MITIGATION_OFF:
6709                 case L1TF_MITIGATION_FLUSH_NOWARN:
6710                         /* 'I explicitly don't care' is set */
6711                         break;
6712                 case L1TF_MITIGATION_FLUSH:
6713                 case L1TF_MITIGATION_FLUSH_NOSMT:
6714                 case L1TF_MITIGATION_FULL:
6715                         /*
6716                          * Warn upon starting the first VM in a potentially
6717                          * insecure environment.
6718                          */
6719                         if (sched_smt_active())
6720                                 pr_warn_once(L1TF_MSG_SMT);
6721                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6722                                 pr_warn_once(L1TF_MSG_L1D);
6723                         break;
6724                 case L1TF_MITIGATION_FULL_FORCE:
6725                         /* Flush is enforced */
6726                         break;
6727                 }
6728         }
6729         return 0;
6730 }
6731
6732 static void __init vmx_check_processor_compat(void *rtn)
6733 {
6734         struct vmcs_config vmcs_conf;
6735         struct vmx_capability vmx_cap;
6736
6737         *(int *)rtn = 0;
6738         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6739                 *(int *)rtn = -EIO;
6740         if (nested)
6741                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6742                                            enable_apicv);
6743         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6744                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6745                                 smp_processor_id());
6746                 *(int *)rtn = -EIO;
6747         }
6748 }
6749
6750 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6751 {
6752         u8 cache;
6753         u64 ipat = 0;
6754
6755         /* For VT-d and EPT combination
6756          * 1. MMIO: always map as UC
6757          * 2. EPT with VT-d:
6758          *   a. VT-d without snooping control feature: can't guarantee the
6759          *      result, try to trust guest.
6760          *   b. VT-d with snooping control feature: snooping control feature of
6761          *      VT-d engine can guarantee the cache correctness. Just set it
6762          *      to WB to keep consistent with host. So the same as item 3.
6763          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6764          *    consistent with host MTRR
6765          */
6766         if (is_mmio) {
6767                 cache = MTRR_TYPE_UNCACHABLE;
6768                 goto exit;
6769         }
6770
6771         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6772                 ipat = VMX_EPT_IPAT_BIT;
6773                 cache = MTRR_TYPE_WRBACK;
6774                 goto exit;
6775         }
6776
6777         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6778                 ipat = VMX_EPT_IPAT_BIT;
6779                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6780                         cache = MTRR_TYPE_WRBACK;
6781                 else
6782                         cache = MTRR_TYPE_UNCACHABLE;
6783                 goto exit;
6784         }
6785
6786         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6787
6788 exit:
6789         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6790 }
6791
6792 static int vmx_get_lpage_level(void)
6793 {
6794         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6795                 return PT_DIRECTORY_LEVEL;
6796         else
6797                 /* For shadow and EPT supported 1GB page */
6798                 return PT_PDPE_LEVEL;
6799 }
6800
6801 static void vmcs_set_secondary_exec_control(u32 new_ctl)
6802 {
6803         /*
6804          * These bits in the secondary execution controls field
6805          * are dynamic, the others are mostly based on the hypervisor
6806          * architecture and the guest's CPUID.  Do not touch the
6807          * dynamic bits.
6808          */
6809         u32 mask =
6810                 SECONDARY_EXEC_SHADOW_VMCS |
6811                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6812                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6813                 SECONDARY_EXEC_DESC;
6814
6815         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6816
6817         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6818                      (new_ctl & ~mask) | (cur_ctl & mask));
6819 }
6820
6821 /*
6822  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6823  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6824  */
6825 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6826 {
6827         struct vcpu_vmx *vmx = to_vmx(vcpu);
6828         struct kvm_cpuid_entry2 *entry;
6829
6830         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6831         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6832
6833 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6834         if (entry && (entry->_reg & (_cpuid_mask)))                     \
6835                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6836 } while (0)
6837
6838         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6839         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6840         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6841         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6842         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6843         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6844         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6845         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6846         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6847         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6848         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6849         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6850         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6851         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6852         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6853
6854         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6855         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6856         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6857         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6858         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6859         cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6860
6861 #undef cr4_fixed1_update
6862 }
6863
6864 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6865 {
6866         struct vcpu_vmx *vmx = to_vmx(vcpu);
6867
6868         if (kvm_mpx_supported()) {
6869                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6870
6871                 if (mpx_enabled) {
6872                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6873                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6874                 } else {
6875                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6876                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6877                 }
6878         }
6879 }
6880
6881 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6882 {
6883         struct vcpu_vmx *vmx = to_vmx(vcpu);
6884         struct kvm_cpuid_entry2 *best = NULL;
6885         int i;
6886
6887         for (i = 0; i < PT_CPUID_LEAVES; i++) {
6888                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
6889                 if (!best)
6890                         return;
6891                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
6892                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
6893                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
6894                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
6895         }
6896
6897         /* Get the number of configurable Address Ranges for filtering */
6898         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
6899                                                 PT_CAP_num_address_ranges);
6900
6901         /* Initialize and clear the no dependency bits */
6902         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
6903                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
6904
6905         /*
6906          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
6907          * will inject an #GP
6908          */
6909         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
6910                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
6911
6912         /*
6913          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
6914          * PSBFreq can be set
6915          */
6916         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
6917                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
6918                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
6919
6920         /*
6921          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
6922          * MTCFreq can be set
6923          */
6924         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
6925                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
6926                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
6927
6928         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
6929         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
6930                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
6931                                                         RTIT_CTL_PTW_EN);
6932
6933         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
6934         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
6935                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
6936
6937         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
6938         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
6939                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
6940
6941         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
6942         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
6943                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
6944
6945         /* unmask address range configure area */
6946         for (i = 0; i < vmx->pt_desc.addr_range; i++)
6947                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
6948 }
6949
6950 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6951 {
6952         struct vcpu_vmx *vmx = to_vmx(vcpu);
6953
6954         if (cpu_has_secondary_exec_ctrls()) {
6955                 vmx_compute_secondary_exec_control(vmx);
6956                 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
6957         }
6958
6959         if (nested_vmx_allowed(vcpu))
6960                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
6961                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6962         else
6963                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
6964                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6965
6966         if (nested_vmx_allowed(vcpu)) {
6967                 nested_vmx_cr_fixed1_bits_update(vcpu);
6968                 nested_vmx_entry_exit_ctls_update(vcpu);
6969         }
6970
6971         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
6972                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
6973                 update_intel_pt_cfg(vcpu);
6974 }
6975
6976 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6977 {
6978         if (func == 1 && nested)
6979                 entry->ecx |= bit(X86_FEATURE_VMX);
6980 }
6981
6982 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
6983 {
6984         to_vmx(vcpu)->req_immediate_exit = true;
6985 }
6986
6987 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
6988                                struct x86_instruction_info *info,
6989                                enum x86_intercept_stage stage)
6990 {
6991         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6992         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6993
6994         /*
6995          * RDPID causes #UD if disabled through secondary execution controls.
6996          * Because it is marked as EmulateOnUD, we need to intercept it here.
6997          */
6998         if (info->intercept == x86_intercept_rdtscp &&
6999             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7000                 ctxt->exception.vector = UD_VECTOR;
7001                 ctxt->exception.error_code_valid = false;
7002                 return X86EMUL_PROPAGATE_FAULT;
7003         }
7004
7005         /* TODO: check more intercepts... */
7006         return X86EMUL_CONTINUE;
7007 }
7008
7009 #ifdef CONFIG_X86_64
7010 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7011 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7012                                   u64 divisor, u64 *result)
7013 {
7014         u64 low = a << shift, high = a >> (64 - shift);
7015
7016         /* To avoid the overflow on divq */
7017         if (high >= divisor)
7018                 return 1;
7019
7020         /* Low hold the result, high hold rem which is discarded */
7021         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7022             "rm" (divisor), "0" (low), "1" (high));
7023         *result = low;
7024
7025         return 0;
7026 }
7027
7028 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7029                             bool *expired)
7030 {
7031         struct vcpu_vmx *vmx;
7032         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7033         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7034
7035         if (kvm_mwait_in_guest(vcpu->kvm))
7036                 return -EOPNOTSUPP;
7037
7038         vmx = to_vmx(vcpu);
7039         tscl = rdtsc();
7040         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7041         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7042         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7043                                                     ktimer->timer_advance_ns);
7044
7045         if (delta_tsc > lapic_timer_advance_cycles)
7046                 delta_tsc -= lapic_timer_advance_cycles;
7047         else
7048                 delta_tsc = 0;
7049
7050         /* Convert to host delta tsc if tsc scaling is enabled */
7051         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7052             delta_tsc && u64_shl_div_u64(delta_tsc,
7053                                 kvm_tsc_scaling_ratio_frac_bits,
7054                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7055                 return -ERANGE;
7056
7057         /*
7058          * If the delta tsc can't fit in the 32 bit after the multi shift,
7059          * we can't use the preemption timer.
7060          * It's possible that it fits on later vmentries, but checking
7061          * on every vmentry is costly so we just use an hrtimer.
7062          */
7063         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7064                 return -ERANGE;
7065
7066         vmx->hv_deadline_tsc = tscl + delta_tsc;
7067         *expired = !delta_tsc;
7068         return 0;
7069 }
7070
7071 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7072 {
7073         to_vmx(vcpu)->hv_deadline_tsc = -1;
7074 }
7075 #endif
7076
7077 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7078 {
7079         if (!kvm_pause_in_guest(vcpu->kvm))
7080                 shrink_ple_window(vcpu);
7081 }
7082
7083 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7084                                      struct kvm_memory_slot *slot)
7085 {
7086         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7087         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7088 }
7089
7090 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7091                                        struct kvm_memory_slot *slot)
7092 {
7093         kvm_mmu_slot_set_dirty(kvm, slot);
7094 }
7095
7096 static void vmx_flush_log_dirty(struct kvm *kvm)
7097 {
7098         kvm_flush_pml_buffers(kvm);
7099 }
7100
7101 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7102 {
7103         struct vmcs12 *vmcs12;
7104         struct vcpu_vmx *vmx = to_vmx(vcpu);
7105         gpa_t gpa, dst;
7106
7107         if (is_guest_mode(vcpu)) {
7108                 WARN_ON_ONCE(vmx->nested.pml_full);
7109
7110                 /*
7111                  * Check if PML is enabled for the nested guest.
7112                  * Whether eptp bit 6 is set is already checked
7113                  * as part of A/D emulation.
7114                  */
7115                 vmcs12 = get_vmcs12(vcpu);
7116                 if (!nested_cpu_has_pml(vmcs12))
7117                         return 0;
7118
7119                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7120                         vmx->nested.pml_full = true;
7121                         return 1;
7122                 }
7123
7124                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7125                 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7126
7127                 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7128                                          offset_in_page(dst), sizeof(gpa)))
7129                         return 0;
7130
7131                 vmcs12->guest_pml_index--;
7132         }
7133
7134         return 0;
7135 }
7136
7137 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7138                                            struct kvm_memory_slot *memslot,
7139                                            gfn_t offset, unsigned long mask)
7140 {
7141         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7142 }
7143
7144 static void __pi_post_block(struct kvm_vcpu *vcpu)
7145 {
7146         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7147         struct pi_desc old, new;
7148         unsigned int dest;
7149
7150         do {
7151                 old.control = new.control = pi_desc->control;
7152                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7153                      "Wakeup handler not enabled while the VCPU is blocked\n");
7154
7155                 dest = cpu_physical_id(vcpu->cpu);
7156
7157                 if (x2apic_enabled())
7158                         new.ndst = dest;
7159                 else
7160                         new.ndst = (dest << 8) & 0xFF00;
7161
7162                 /* set 'NV' to 'notification vector' */
7163                 new.nv = POSTED_INTR_VECTOR;
7164         } while (cmpxchg64(&pi_desc->control, old.control,
7165                            new.control) != old.control);
7166
7167         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7168                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7169                 list_del(&vcpu->blocked_vcpu_list);
7170                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7171                 vcpu->pre_pcpu = -1;
7172         }
7173 }
7174
7175 /*
7176  * This routine does the following things for vCPU which is going
7177  * to be blocked if VT-d PI is enabled.
7178  * - Store the vCPU to the wakeup list, so when interrupts happen
7179  *   we can find the right vCPU to wake up.
7180  * - Change the Posted-interrupt descriptor as below:
7181  *      'NDST' <-- vcpu->pre_pcpu
7182  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7183  * - If 'ON' is set during this process, which means at least one
7184  *   interrupt is posted for this vCPU, we cannot block it, in
7185  *   this case, return 1, otherwise, return 0.
7186  *
7187  */
7188 static int pi_pre_block(struct kvm_vcpu *vcpu)
7189 {
7190         unsigned int dest;
7191         struct pi_desc old, new;
7192         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7193
7194         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7195                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7196                 !kvm_vcpu_apicv_active(vcpu))
7197                 return 0;
7198
7199         WARN_ON(irqs_disabled());
7200         local_irq_disable();
7201         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7202                 vcpu->pre_pcpu = vcpu->cpu;
7203                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7204                 list_add_tail(&vcpu->blocked_vcpu_list,
7205                               &per_cpu(blocked_vcpu_on_cpu,
7206                                        vcpu->pre_pcpu));
7207                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7208         }
7209
7210         do {
7211                 old.control = new.control = pi_desc->control;
7212
7213                 WARN((pi_desc->sn == 1),
7214                      "Warning: SN field of posted-interrupts "
7215                      "is set before blocking\n");
7216
7217                 /*
7218                  * Since vCPU can be preempted during this process,
7219                  * vcpu->cpu could be different with pre_pcpu, we
7220                  * need to set pre_pcpu as the destination of wakeup
7221                  * notification event, then we can find the right vCPU
7222                  * to wakeup in wakeup handler if interrupts happen
7223                  * when the vCPU is in blocked state.
7224                  */
7225                 dest = cpu_physical_id(vcpu->pre_pcpu);
7226
7227                 if (x2apic_enabled())
7228                         new.ndst = dest;
7229                 else
7230                         new.ndst = (dest << 8) & 0xFF00;
7231
7232                 /* set 'NV' to 'wakeup vector' */
7233                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7234         } while (cmpxchg64(&pi_desc->control, old.control,
7235                            new.control) != old.control);
7236
7237         /* We should not block the vCPU if an interrupt is posted for it.  */
7238         if (pi_test_on(pi_desc) == 1)
7239                 __pi_post_block(vcpu);
7240
7241         local_irq_enable();
7242         return (vcpu->pre_pcpu == -1);
7243 }
7244
7245 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7246 {
7247         if (pi_pre_block(vcpu))
7248                 return 1;
7249
7250         if (kvm_lapic_hv_timer_in_use(vcpu))
7251                 kvm_lapic_switch_to_sw_timer(vcpu);
7252
7253         return 0;
7254 }
7255
7256 static void pi_post_block(struct kvm_vcpu *vcpu)
7257 {
7258         if (vcpu->pre_pcpu == -1)
7259                 return;
7260
7261         WARN_ON(irqs_disabled());
7262         local_irq_disable();
7263         __pi_post_block(vcpu);
7264         local_irq_enable();
7265 }
7266
7267 static void vmx_post_block(struct kvm_vcpu *vcpu)
7268 {
7269         if (kvm_x86_ops->set_hv_timer)
7270                 kvm_lapic_switch_to_hv_timer(vcpu);
7271
7272         pi_post_block(vcpu);
7273 }
7274
7275 /*
7276  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7277  *
7278  * @kvm: kvm
7279  * @host_irq: host irq of the interrupt
7280  * @guest_irq: gsi of the interrupt
7281  * @set: set or unset PI
7282  * returns 0 on success, < 0 on failure
7283  */
7284 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7285                               uint32_t guest_irq, bool set)
7286 {
7287         struct kvm_kernel_irq_routing_entry *e;
7288         struct kvm_irq_routing_table *irq_rt;
7289         struct kvm_lapic_irq irq;
7290         struct kvm_vcpu *vcpu;
7291         struct vcpu_data vcpu_info;
7292         int idx, ret = 0;
7293
7294         if (!kvm_arch_has_assigned_device(kvm) ||
7295                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7296                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7297                 return 0;
7298
7299         idx = srcu_read_lock(&kvm->irq_srcu);
7300         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7301         if (guest_irq >= irq_rt->nr_rt_entries ||
7302             hlist_empty(&irq_rt->map[guest_irq])) {
7303                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7304                              guest_irq, irq_rt->nr_rt_entries);
7305                 goto out;
7306         }
7307
7308         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7309                 if (e->type != KVM_IRQ_ROUTING_MSI)
7310                         continue;
7311                 /*
7312                  * VT-d PI cannot support posting multicast/broadcast
7313                  * interrupts to a vCPU, we still use interrupt remapping
7314                  * for these kind of interrupts.
7315                  *
7316                  * For lowest-priority interrupts, we only support
7317                  * those with single CPU as the destination, e.g. user
7318                  * configures the interrupts via /proc/irq or uses
7319                  * irqbalance to make the interrupts single-CPU.
7320                  *
7321                  * We will support full lowest-priority interrupt later.
7322                  */
7323
7324                 kvm_set_msi_irq(kvm, e, &irq);
7325                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
7326                         /*
7327                          * Make sure the IRTE is in remapped mode if
7328                          * we don't handle it in posted mode.
7329                          */
7330                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7331                         if (ret < 0) {
7332                                 printk(KERN_INFO
7333                                    "failed to back to remapped mode, irq: %u\n",
7334                                    host_irq);
7335                                 goto out;
7336                         }
7337
7338                         continue;
7339                 }
7340
7341                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7342                 vcpu_info.vector = irq.vector;
7343
7344                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7345                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7346
7347                 if (set)
7348                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7349                 else
7350                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7351
7352                 if (ret < 0) {
7353                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7354                                         __func__);
7355                         goto out;
7356                 }
7357         }
7358
7359         ret = 0;
7360 out:
7361         srcu_read_unlock(&kvm->irq_srcu, idx);
7362         return ret;
7363 }
7364
7365 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7366 {
7367         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7368                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7369                         FEATURE_CONTROL_LMCE;
7370         else
7371                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7372                         ~FEATURE_CONTROL_LMCE;
7373 }
7374
7375 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7376 {
7377         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7378         if (to_vmx(vcpu)->nested.nested_run_pending)
7379                 return 0;
7380         return 1;
7381 }
7382
7383 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7384 {
7385         struct vcpu_vmx *vmx = to_vmx(vcpu);
7386
7387         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7388         if (vmx->nested.smm.guest_mode)
7389                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7390
7391         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7392         vmx->nested.vmxon = false;
7393         vmx_clear_hlt(vcpu);
7394         return 0;
7395 }
7396
7397 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7398 {
7399         struct vcpu_vmx *vmx = to_vmx(vcpu);
7400         int ret;
7401
7402         if (vmx->nested.smm.vmxon) {
7403                 vmx->nested.vmxon = true;
7404                 vmx->nested.smm.vmxon = false;
7405         }
7406
7407         if (vmx->nested.smm.guest_mode) {
7408                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7409                 if (ret)
7410                         return ret;
7411
7412                 vmx->nested.smm.guest_mode = false;
7413         }
7414         return 0;
7415 }
7416
7417 static int enable_smi_window(struct kvm_vcpu *vcpu)
7418 {
7419         return 0;
7420 }
7421
7422 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7423 {
7424         return 0;
7425 }
7426
7427 static __init int hardware_setup(void)
7428 {
7429         unsigned long host_bndcfgs;
7430         int r, i;
7431
7432         rdmsrl_safe(MSR_EFER, &host_efer);
7433
7434         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7435                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7436
7437         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7438                 return -EIO;
7439
7440         if (boot_cpu_has(X86_FEATURE_NX))
7441                 kvm_enable_efer_bits(EFER_NX);
7442
7443         if (boot_cpu_has(X86_FEATURE_MPX)) {
7444                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7445                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7446         }
7447
7448         if (boot_cpu_has(X86_FEATURE_XSAVES))
7449                 rdmsrl(MSR_IA32_XSS, host_xss);
7450
7451         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7452             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7453                 enable_vpid = 0;
7454
7455         if (!cpu_has_vmx_ept() ||
7456             !cpu_has_vmx_ept_4levels() ||
7457             !cpu_has_vmx_ept_mt_wb() ||
7458             !cpu_has_vmx_invept_global())
7459                 enable_ept = 0;
7460
7461         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7462                 enable_ept_ad_bits = 0;
7463
7464         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7465                 enable_unrestricted_guest = 0;
7466
7467         if (!cpu_has_vmx_flexpriority())
7468                 flexpriority_enabled = 0;
7469
7470         if (!cpu_has_virtual_nmis())
7471                 enable_vnmi = 0;
7472
7473         /*
7474          * set_apic_access_page_addr() is used to reload apic access
7475          * page upon invalidation.  No need to do anything if not
7476          * using the APIC_ACCESS_ADDR VMCS field.
7477          */
7478         if (!flexpriority_enabled)
7479                 kvm_x86_ops->set_apic_access_page_addr = NULL;
7480
7481         if (!cpu_has_vmx_tpr_shadow())
7482                 kvm_x86_ops->update_cr8_intercept = NULL;
7483
7484         if (enable_ept && !cpu_has_vmx_ept_2m_page())
7485                 kvm_disable_largepages();
7486
7487 #if IS_ENABLED(CONFIG_HYPERV)
7488         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7489             && enable_ept) {
7490                 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7491                 kvm_x86_ops->tlb_remote_flush_with_range =
7492                                 hv_remote_flush_tlb_with_range;
7493         }
7494 #endif
7495
7496         if (!cpu_has_vmx_ple()) {
7497                 ple_gap = 0;
7498                 ple_window = 0;
7499                 ple_window_grow = 0;
7500                 ple_window_max = 0;
7501                 ple_window_shrink = 0;
7502         }
7503
7504         if (!cpu_has_vmx_apicv()) {
7505                 enable_apicv = 0;
7506                 kvm_x86_ops->sync_pir_to_irr = NULL;
7507         }
7508
7509         if (cpu_has_vmx_tsc_scaling()) {
7510                 kvm_has_tsc_control = true;
7511                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7512                 kvm_tsc_scaling_ratio_frac_bits = 48;
7513         }
7514
7515         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7516
7517         if (enable_ept)
7518                 vmx_enable_tdp();
7519         else
7520                 kvm_disable_tdp();
7521
7522         /*
7523          * Only enable PML when hardware supports PML feature, and both EPT
7524          * and EPT A/D bit features are enabled -- PML depends on them to work.
7525          */
7526         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7527                 enable_pml = 0;
7528
7529         if (!enable_pml) {
7530                 kvm_x86_ops->slot_enable_log_dirty = NULL;
7531                 kvm_x86_ops->slot_disable_log_dirty = NULL;
7532                 kvm_x86_ops->flush_log_dirty = NULL;
7533                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7534         }
7535
7536         if (!cpu_has_vmx_preemption_timer())
7537                 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7538
7539         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7540                 u64 vmx_msr;
7541
7542                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7543                 cpu_preemption_timer_multi =
7544                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7545         } else {
7546                 kvm_x86_ops->set_hv_timer = NULL;
7547                 kvm_x86_ops->cancel_hv_timer = NULL;
7548         }
7549
7550         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7551
7552         kvm_mce_cap_supported |= MCG_LMCE_P;
7553
7554         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7555                 return -EINVAL;
7556         if (!enable_ept || !cpu_has_vmx_intel_pt())
7557                 pt_mode = PT_MODE_SYSTEM;
7558
7559         if (nested) {
7560                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7561                                            vmx_capability.ept, enable_apicv);
7562
7563                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7564                 if (r)
7565                         return r;
7566         }
7567
7568         r = alloc_kvm_area();
7569         if (r)
7570                 nested_vmx_hardware_unsetup();
7571         return r;
7572 }
7573
7574 static __exit void hardware_unsetup(void)
7575 {
7576         if (nested)
7577                 nested_vmx_hardware_unsetup();
7578
7579         free_kvm_area();
7580 }
7581
7582 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7583         .cpu_has_kvm_support = cpu_has_kvm_support,
7584         .disabled_by_bios = vmx_disabled_by_bios,
7585         .hardware_setup = hardware_setup,
7586         .hardware_unsetup = hardware_unsetup,
7587         .check_processor_compatibility = vmx_check_processor_compat,
7588         .hardware_enable = hardware_enable,
7589         .hardware_disable = hardware_disable,
7590         .cpu_has_accelerated_tpr = report_flexpriority,
7591         .has_emulated_msr = vmx_has_emulated_msr,
7592
7593         .vm_init = vmx_vm_init,
7594         .vm_alloc = vmx_vm_alloc,
7595         .vm_free = vmx_vm_free,
7596
7597         .vcpu_create = vmx_create_vcpu,
7598         .vcpu_free = vmx_free_vcpu,
7599         .vcpu_reset = vmx_vcpu_reset,
7600
7601         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7602         .vcpu_load = vmx_vcpu_load,
7603         .vcpu_put = vmx_vcpu_put,
7604
7605         .update_bp_intercept = update_exception_bitmap,
7606         .get_msr_feature = vmx_get_msr_feature,
7607         .get_msr = vmx_get_msr,
7608         .set_msr = vmx_set_msr,
7609         .get_segment_base = vmx_get_segment_base,
7610         .get_segment = vmx_get_segment,
7611         .set_segment = vmx_set_segment,
7612         .get_cpl = vmx_get_cpl,
7613         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7614         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7615         .decache_cr3 = vmx_decache_cr3,
7616         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7617         .set_cr0 = vmx_set_cr0,
7618         .set_cr3 = vmx_set_cr3,
7619         .set_cr4 = vmx_set_cr4,
7620         .set_efer = vmx_set_efer,
7621         .get_idt = vmx_get_idt,
7622         .set_idt = vmx_set_idt,
7623         .get_gdt = vmx_get_gdt,
7624         .set_gdt = vmx_set_gdt,
7625         .get_dr6 = vmx_get_dr6,
7626         .set_dr6 = vmx_set_dr6,
7627         .set_dr7 = vmx_set_dr7,
7628         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7629         .cache_reg = vmx_cache_reg,
7630         .get_rflags = vmx_get_rflags,
7631         .set_rflags = vmx_set_rflags,
7632
7633         .tlb_flush = vmx_flush_tlb,
7634         .tlb_flush_gva = vmx_flush_tlb_gva,
7635
7636         .run = vmx_vcpu_run,
7637         .handle_exit = vmx_handle_exit,
7638         .skip_emulated_instruction = skip_emulated_instruction,
7639         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7640         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7641         .patch_hypercall = vmx_patch_hypercall,
7642         .set_irq = vmx_inject_irq,
7643         .set_nmi = vmx_inject_nmi,
7644         .queue_exception = vmx_queue_exception,
7645         .cancel_injection = vmx_cancel_injection,
7646         .interrupt_allowed = vmx_interrupt_allowed,
7647         .nmi_allowed = vmx_nmi_allowed,
7648         .get_nmi_mask = vmx_get_nmi_mask,
7649         .set_nmi_mask = vmx_set_nmi_mask,
7650         .enable_nmi_window = enable_nmi_window,
7651         .enable_irq_window = enable_irq_window,
7652         .update_cr8_intercept = update_cr8_intercept,
7653         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7654         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7655         .get_enable_apicv = vmx_get_enable_apicv,
7656         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7657         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7658         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7659         .hwapic_irr_update = vmx_hwapic_irr_update,
7660         .hwapic_isr_update = vmx_hwapic_isr_update,
7661         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7662         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7663         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7664
7665         .set_tss_addr = vmx_set_tss_addr,
7666         .set_identity_map_addr = vmx_set_identity_map_addr,
7667         .get_tdp_level = get_ept_level,
7668         .get_mt_mask = vmx_get_mt_mask,
7669
7670         .get_exit_info = vmx_get_exit_info,
7671
7672         .get_lpage_level = vmx_get_lpage_level,
7673
7674         .cpuid_update = vmx_cpuid_update,
7675
7676         .rdtscp_supported = vmx_rdtscp_supported,
7677         .invpcid_supported = vmx_invpcid_supported,
7678
7679         .set_supported_cpuid = vmx_set_supported_cpuid,
7680
7681         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7682
7683         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7684         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7685
7686         .set_tdp_cr3 = vmx_set_cr3,
7687
7688         .check_intercept = vmx_check_intercept,
7689         .handle_external_intr = vmx_handle_external_intr,
7690         .mpx_supported = vmx_mpx_supported,
7691         .xsaves_supported = vmx_xsaves_supported,
7692         .umip_emulated = vmx_umip_emulated,
7693         .pt_supported = vmx_pt_supported,
7694
7695         .request_immediate_exit = vmx_request_immediate_exit,
7696
7697         .sched_in = vmx_sched_in,
7698
7699         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7700         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7701         .flush_log_dirty = vmx_flush_log_dirty,
7702         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7703         .write_log_dirty = vmx_write_pml_buffer,
7704
7705         .pre_block = vmx_pre_block,
7706         .post_block = vmx_post_block,
7707
7708         .pmu_ops = &intel_pmu_ops,
7709
7710         .update_pi_irte = vmx_update_pi_irte,
7711
7712 #ifdef CONFIG_X86_64
7713         .set_hv_timer = vmx_set_hv_timer,
7714         .cancel_hv_timer = vmx_cancel_hv_timer,
7715 #endif
7716
7717         .setup_mce = vmx_setup_mce,
7718
7719         .smi_allowed = vmx_smi_allowed,
7720         .pre_enter_smm = vmx_pre_enter_smm,
7721         .pre_leave_smm = vmx_pre_leave_smm,
7722         .enable_smi_window = enable_smi_window,
7723
7724         .check_nested_events = NULL,
7725         .get_nested_state = NULL,
7726         .set_nested_state = NULL,
7727         .get_vmcs12_pages = NULL,
7728         .nested_enable_evmcs = NULL,
7729         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7730 };
7731
7732 static void vmx_cleanup_l1d_flush(void)
7733 {
7734         if (vmx_l1d_flush_pages) {
7735                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7736                 vmx_l1d_flush_pages = NULL;
7737         }
7738         /* Restore state so sysfs ignores VMX */
7739         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7740 }
7741
7742 static void vmx_exit(void)
7743 {
7744 #ifdef CONFIG_KEXEC_CORE
7745         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7746         synchronize_rcu();
7747 #endif
7748
7749         kvm_exit();
7750
7751 #if IS_ENABLED(CONFIG_HYPERV)
7752         if (static_branch_unlikely(&enable_evmcs)) {
7753                 int cpu;
7754                 struct hv_vp_assist_page *vp_ap;
7755                 /*
7756                  * Reset everything to support using non-enlightened VMCS
7757                  * access later (e.g. when we reload the module with
7758                  * enlightened_vmcs=0)
7759                  */
7760                 for_each_online_cpu(cpu) {
7761                         vp_ap = hv_get_vp_assist_page(cpu);
7762
7763                         if (!vp_ap)
7764                                 continue;
7765
7766                         vp_ap->current_nested_vmcs = 0;
7767                         vp_ap->enlighten_vmentry = 0;
7768                 }
7769
7770                 static_branch_disable(&enable_evmcs);
7771         }
7772 #endif
7773         vmx_cleanup_l1d_flush();
7774 }
7775 module_exit(vmx_exit);
7776
7777 static int __init vmx_init(void)
7778 {
7779         int r;
7780
7781 #if IS_ENABLED(CONFIG_HYPERV)
7782         /*
7783          * Enlightened VMCS usage should be recommended and the host needs
7784          * to support eVMCS v1 or above. We can also disable eVMCS support
7785          * with module parameter.
7786          */
7787         if (enlightened_vmcs &&
7788             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7789             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7790             KVM_EVMCS_VERSION) {
7791                 int cpu;
7792
7793                 /* Check that we have assist pages on all online CPUs */
7794                 for_each_online_cpu(cpu) {
7795                         if (!hv_get_vp_assist_page(cpu)) {
7796                                 enlightened_vmcs = false;
7797                                 break;
7798                         }
7799                 }
7800
7801                 if (enlightened_vmcs) {
7802                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7803                         static_branch_enable(&enable_evmcs);
7804                 }
7805         } else {
7806                 enlightened_vmcs = false;
7807         }
7808 #endif
7809
7810         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7811                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7812         if (r)
7813                 return r;
7814
7815         /*
7816          * Must be called after kvm_init() so enable_ept is properly set
7817          * up. Hand the parameter mitigation value in which was stored in
7818          * the pre module init parser. If no parameter was given, it will
7819          * contain 'auto' which will be turned into the default 'cond'
7820          * mitigation mode.
7821          */
7822         if (boot_cpu_has(X86_BUG_L1TF)) {
7823                 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7824                 if (r) {
7825                         vmx_exit();
7826                         return r;
7827                 }
7828         }
7829
7830 #ifdef CONFIG_KEXEC_CORE
7831         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7832                            crash_vmclear_local_loaded_vmcss);
7833 #endif
7834         vmx_check_vmcs12_offsets();
7835
7836         return 0;
7837 }
7838 module_init(vmx_init);