KVM: x86: Fix pkru save/restore when guest CR4.PKE=0, move it to x86.c
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/debugreg.h>
36 #include <asm/desc.h>
37 #include <asm/fpu/internal.h>
38 #include <asm/io.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kexec.h>
41 #include <asm/perf_event.h>
42 #include <asm/mce.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
49
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "irq.h"
54 #include "kvm_cache_regs.h"
55 #include "lapic.h"
56 #include "mmu.h"
57 #include "nested.h"
58 #include "ops.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72         {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91                         enable_unrestricted_guest, bool, S_IRUGO);
92
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104
105 /*
106  * If nested=1, nested virtualization is supported, i.e., guests may use
107  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108  * use VMX instructions.
109  */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118
119 #define MSR_BITMAP_MODE_X2APIC          1
120 #define MSR_BITMAP_MODE_X2APIC_APICV    2
121
122 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
123
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130
131 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
133 #define KVM_VM_CR0_ALWAYS_ON                            \
134         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
135          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
136 #define KVM_CR4_GUEST_OWNED_BITS                                      \
137         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
138          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
139
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149         RTIT_STATUS_BYTECNT))
150
151 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
152         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
153
154 /*
155  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
156  * ple_gap:    upper bound on the amount of time between two successive
157  *             executions of PAUSE in a loop. Also indicate if ple enabled.
158  *             According to test, this time is usually smaller than 128 cycles.
159  * ple_window: upper bound on the amount of time a guest is allowed to execute
160  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
161  *             less than 2^12 cycles
162  * Time is measured based on a counter that runs at the same rate as the TSC,
163  * refer SDM volume 3b section 21.6.13 & 22.1.3.
164  */
165 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
166 module_param(ple_gap, uint, 0444);
167
168 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
169 module_param(ple_window, uint, 0444);
170
171 /* Default doubles per-vcpu window every exit. */
172 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
173 module_param(ple_window_grow, uint, 0444);
174
175 /* Default resets per-vcpu window every exit to ple_window. */
176 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
177 module_param(ple_window_shrink, uint, 0444);
178
179 /* Default is to compute the maximum so we can never overflow. */
180 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
181 module_param(ple_window_max, uint, 0444);
182
183 /* Default is SYSTEM mode, 1 for host-guest mode */
184 int __read_mostly pt_mode = PT_MODE_SYSTEM;
185 module_param(pt_mode, int, S_IRUGO);
186
187 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
188 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
189 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
190
191 /* Storage for pre module init parameter parsing */
192 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
193
194 static const struct {
195         const char *option;
196         bool for_parse;
197 } vmentry_l1d_param[] = {
198         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
199         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
200         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
201         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
202         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
203         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
204 };
205
206 #define L1D_CACHE_ORDER 4
207 static void *vmx_l1d_flush_pages;
208
209 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
210 {
211         struct page *page;
212         unsigned int i;
213
214         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
215                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
216                 return 0;
217         }
218
219         if (!enable_ept) {
220                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
221                 return 0;
222         }
223
224         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
225                 u64 msr;
226
227                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
228                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
229                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
230                         return 0;
231                 }
232         }
233
234         /* If set to auto use the default l1tf mitigation method */
235         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
236                 switch (l1tf_mitigation) {
237                 case L1TF_MITIGATION_OFF:
238                         l1tf = VMENTER_L1D_FLUSH_NEVER;
239                         break;
240                 case L1TF_MITIGATION_FLUSH_NOWARN:
241                 case L1TF_MITIGATION_FLUSH:
242                 case L1TF_MITIGATION_FLUSH_NOSMT:
243                         l1tf = VMENTER_L1D_FLUSH_COND;
244                         break;
245                 case L1TF_MITIGATION_FULL:
246                 case L1TF_MITIGATION_FULL_FORCE:
247                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248                         break;
249                 }
250         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
251                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
252         }
253
254         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
255             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
256                 /*
257                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
258                  * lifetime and so should not be charged to a memcg.
259                  */
260                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
261                 if (!page)
262                         return -ENOMEM;
263                 vmx_l1d_flush_pages = page_address(page);
264
265                 /*
266                  * Initialize each page with a different pattern in
267                  * order to protect against KSM in the nested
268                  * virtualization case.
269                  */
270                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
271                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
272                                PAGE_SIZE);
273                 }
274         }
275
276         l1tf_vmx_mitigation = l1tf;
277
278         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
279                 static_branch_enable(&vmx_l1d_should_flush);
280         else
281                 static_branch_disable(&vmx_l1d_should_flush);
282
283         if (l1tf == VMENTER_L1D_FLUSH_COND)
284                 static_branch_enable(&vmx_l1d_flush_cond);
285         else
286                 static_branch_disable(&vmx_l1d_flush_cond);
287         return 0;
288 }
289
290 static int vmentry_l1d_flush_parse(const char *s)
291 {
292         unsigned int i;
293
294         if (s) {
295                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
296                         if (vmentry_l1d_param[i].for_parse &&
297                             sysfs_streq(s, vmentry_l1d_param[i].option))
298                                 return i;
299                 }
300         }
301         return -EINVAL;
302 }
303
304 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
305 {
306         int l1tf, ret;
307
308         l1tf = vmentry_l1d_flush_parse(s);
309         if (l1tf < 0)
310                 return l1tf;
311
312         if (!boot_cpu_has(X86_BUG_L1TF))
313                 return 0;
314
315         /*
316          * Has vmx_init() run already? If not then this is the pre init
317          * parameter parsing. In that case just store the value and let
318          * vmx_init() do the proper setup after enable_ept has been
319          * established.
320          */
321         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
322                 vmentry_l1d_flush_param = l1tf;
323                 return 0;
324         }
325
326         mutex_lock(&vmx_l1d_flush_mutex);
327         ret = vmx_setup_l1d_flush(l1tf);
328         mutex_unlock(&vmx_l1d_flush_mutex);
329         return ret;
330 }
331
332 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
333 {
334         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
335                 return sprintf(s, "???\n");
336
337         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
338 }
339
340 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
341         .set = vmentry_l1d_flush_set,
342         .get = vmentry_l1d_flush_get,
343 };
344 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
345
346 static bool guest_state_valid(struct kvm_vcpu *vcpu);
347 static u32 vmx_segment_access_rights(struct kvm_segment *var);
348 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
349                                                           u32 msr, int type);
350
351 void vmx_vmexit(void);
352
353 #define vmx_insn_failed(fmt...)         \
354 do {                                    \
355         WARN_ONCE(1, fmt);              \
356         pr_warn_ratelimited(fmt);       \
357 } while (0)
358
359 asmlinkage void vmread_error(unsigned long field, bool fault)
360 {
361         if (fault)
362                 kvm_spurious_fault();
363         else
364                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
365 }
366
367 noinline void vmwrite_error(unsigned long field, unsigned long value)
368 {
369         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
370                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
371 }
372
373 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
374 {
375         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
376 }
377
378 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
379 {
380         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
381 }
382
383 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
384 {
385         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
386                         ext, vpid, gva);
387 }
388
389 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
390 {
391         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
392                         ext, eptp, gpa);
393 }
394
395 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
396 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
397 /*
398  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
399  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
400  */
401 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
402
403 /*
404  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
405  * can find which vCPU should be waken up.
406  */
407 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
408 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
409
410 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
411 static DEFINE_SPINLOCK(vmx_vpid_lock);
412
413 struct vmcs_config vmcs_config;
414 struct vmx_capability vmx_capability;
415
416 #define VMX_SEGMENT_FIELD(seg)                                  \
417         [VCPU_SREG_##seg] = {                                   \
418                 .selector = GUEST_##seg##_SELECTOR,             \
419                 .base = GUEST_##seg##_BASE,                     \
420                 .limit = GUEST_##seg##_LIMIT,                   \
421                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
422         }
423
424 static const struct kvm_vmx_segment_field {
425         unsigned selector;
426         unsigned base;
427         unsigned limit;
428         unsigned ar_bytes;
429 } kvm_vmx_segment_fields[] = {
430         VMX_SEGMENT_FIELD(CS),
431         VMX_SEGMENT_FIELD(DS),
432         VMX_SEGMENT_FIELD(ES),
433         VMX_SEGMENT_FIELD(FS),
434         VMX_SEGMENT_FIELD(GS),
435         VMX_SEGMENT_FIELD(SS),
436         VMX_SEGMENT_FIELD(TR),
437         VMX_SEGMENT_FIELD(LDTR),
438 };
439
440 static unsigned long host_idt_base;
441
442 /*
443  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
444  * will emulate SYSCALL in legacy mode if the vendor string in guest
445  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
446  * support this emulation, IA32_STAR must always be included in
447  * vmx_msr_index[], even in i386 builds.
448  */
449 const u32 vmx_msr_index[] = {
450 #ifdef CONFIG_X86_64
451         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
452 #endif
453         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
454         MSR_IA32_TSX_CTRL,
455 };
456
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
460
461 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
462 static void check_ept_pointer_match(struct kvm *kvm)
463 {
464         struct kvm_vcpu *vcpu;
465         u64 tmp_eptp = INVALID_PAGE;
466         int i;
467
468         kvm_for_each_vcpu(i, vcpu, kvm) {
469                 if (!VALID_PAGE(tmp_eptp)) {
470                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
471                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
472                         to_kvm_vmx(kvm)->ept_pointers_match
473                                 = EPT_POINTERS_MISMATCH;
474                         return;
475                 }
476         }
477
478         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
479 }
480
481 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
482                 void *data)
483 {
484         struct kvm_tlb_range *range = data;
485
486         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
487                         range->pages);
488 }
489
490 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
491                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
492 {
493         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
494
495         /*
496          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
497          * of the base of EPT PML4 table, strip off EPT configuration
498          * information.
499          */
500         if (range)
501                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
502                                 kvm_fill_hv_flush_list_func, (void *)range);
503         else
504                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
505 }
506
507 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
508                 struct kvm_tlb_range *range)
509 {
510         struct kvm_vcpu *vcpu;
511         int ret = 0, i;
512
513         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
514
515         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
516                 check_ept_pointer_match(kvm);
517
518         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
519                 kvm_for_each_vcpu(i, vcpu, kvm) {
520                         /* If ept_pointer is invalid pointer, bypass flush request. */
521                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
522                                 ret |= __hv_remote_flush_tlb_with_range(
523                                         kvm, vcpu, range);
524                 }
525         } else {
526                 ret = __hv_remote_flush_tlb_with_range(kvm,
527                                 kvm_get_vcpu(kvm, 0), range);
528         }
529
530         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
531         return ret;
532 }
533 static int hv_remote_flush_tlb(struct kvm *kvm)
534 {
535         return hv_remote_flush_tlb_with_range(kvm, NULL);
536 }
537
538 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
539 {
540         struct hv_enlightened_vmcs *evmcs;
541         struct hv_partition_assist_pg **p_hv_pa_pg =
542                         &vcpu->kvm->arch.hyperv.hv_pa_pg;
543         /*
544          * Synthetic VM-Exit is not enabled in current code and so All
545          * evmcs in singe VM shares same assist page.
546          */
547         if (!*p_hv_pa_pg)
548                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
549
550         if (!*p_hv_pa_pg)
551                 return -ENOMEM;
552
553         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
554
555         evmcs->partition_assist_page =
556                 __pa(*p_hv_pa_pg);
557         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
558         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
559
560         return 0;
561 }
562
563 #endif /* IS_ENABLED(CONFIG_HYPERV) */
564
565 /*
566  * Comment's format: document - errata name - stepping - processor name.
567  * Refer from
568  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
569  */
570 static u32 vmx_preemption_cpu_tfms[] = {
571 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
572 0x000206E6,
573 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
574 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
575 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
576 0x00020652,
577 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
578 0x00020655,
579 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
580 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
581 /*
582  * 320767.pdf - AAP86  - B1 -
583  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
584  */
585 0x000106E5,
586 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
587 0x000106A0,
588 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
589 0x000106A1,
590 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
591 0x000106A4,
592  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
593  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
594  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
595 0x000106A5,
596  /* Xeon E3-1220 V2 */
597 0x000306A8,
598 };
599
600 static inline bool cpu_has_broken_vmx_preemption_timer(void)
601 {
602         u32 eax = cpuid_eax(0x00000001), i;
603
604         /* Clear the reserved bits */
605         eax &= ~(0x3U << 14 | 0xfU << 28);
606         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
607                 if (eax == vmx_preemption_cpu_tfms[i])
608                         return true;
609
610         return false;
611 }
612
613 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
614 {
615         return flexpriority_enabled && lapic_in_kernel(vcpu);
616 }
617
618 static inline bool report_flexpriority(void)
619 {
620         return flexpriority_enabled;
621 }
622
623 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
624 {
625         int i;
626
627         for (i = 0; i < vmx->nmsrs; ++i)
628                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
629                         return i;
630         return -1;
631 }
632
633 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
634 {
635         int i;
636
637         i = __find_msr_index(vmx, msr);
638         if (i >= 0)
639                 return &vmx->guest_msrs[i];
640         return NULL;
641 }
642
643 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
644 {
645         int ret = 0;
646
647         u64 old_msr_data = msr->data;
648         msr->data = data;
649         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
650                 preempt_disable();
651                 ret = kvm_set_shared_msr(msr->index, msr->data,
652                                          msr->mask);
653                 preempt_enable();
654                 if (ret)
655                         msr->data = old_msr_data;
656         }
657         return ret;
658 }
659
660 #ifdef CONFIG_KEXEC_CORE
661 static void crash_vmclear_local_loaded_vmcss(void)
662 {
663         int cpu = raw_smp_processor_id();
664         struct loaded_vmcs *v;
665
666         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
667                             loaded_vmcss_on_cpu_link)
668                 vmcs_clear(v->vmcs);
669 }
670 #endif /* CONFIG_KEXEC_CORE */
671
672 static void __loaded_vmcs_clear(void *arg)
673 {
674         struct loaded_vmcs *loaded_vmcs = arg;
675         int cpu = raw_smp_processor_id();
676
677         if (loaded_vmcs->cpu != cpu)
678                 return; /* vcpu migration can race with cpu offline */
679         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
680                 per_cpu(current_vmcs, cpu) = NULL;
681
682         vmcs_clear(loaded_vmcs->vmcs);
683         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
684                 vmcs_clear(loaded_vmcs->shadow_vmcs);
685
686         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
687
688         /*
689          * Ensure all writes to loaded_vmcs, including deleting it from its
690          * current percpu list, complete before setting loaded_vmcs->vcpu to
691          * -1, otherwise a different cpu can see vcpu == -1 first and add
692          * loaded_vmcs to its percpu list before it's deleted from this cpu's
693          * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
694          */
695         smp_wmb();
696
697         loaded_vmcs->cpu = -1;
698         loaded_vmcs->launched = 0;
699 }
700
701 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
702 {
703         int cpu = loaded_vmcs->cpu;
704
705         if (cpu != -1)
706                 smp_call_function_single(cpu,
707                          __loaded_vmcs_clear, loaded_vmcs, 1);
708 }
709
710 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
711                                        unsigned field)
712 {
713         bool ret;
714         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
715
716         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
717                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
718                 vmx->segment_cache.bitmask = 0;
719         }
720         ret = vmx->segment_cache.bitmask & mask;
721         vmx->segment_cache.bitmask |= mask;
722         return ret;
723 }
724
725 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
726 {
727         u16 *p = &vmx->segment_cache.seg[seg].selector;
728
729         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
730                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
731         return *p;
732 }
733
734 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
735 {
736         ulong *p = &vmx->segment_cache.seg[seg].base;
737
738         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
739                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
740         return *p;
741 }
742
743 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
744 {
745         u32 *p = &vmx->segment_cache.seg[seg].limit;
746
747         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
748                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
749         return *p;
750 }
751
752 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
753 {
754         u32 *p = &vmx->segment_cache.seg[seg].ar;
755
756         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
757                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
758         return *p;
759 }
760
761 void update_exception_bitmap(struct kvm_vcpu *vcpu)
762 {
763         u32 eb;
764
765         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
766              (1u << DB_VECTOR) | (1u << AC_VECTOR);
767         /*
768          * Guest access to VMware backdoor ports could legitimately
769          * trigger #GP because of TSS I/O permission bitmap.
770          * We intercept those #GP and allow access to them anyway
771          * as VMware does.
772          */
773         if (enable_vmware_backdoor)
774                 eb |= (1u << GP_VECTOR);
775         if ((vcpu->guest_debug &
776              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
777             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
778                 eb |= 1u << BP_VECTOR;
779         if (to_vmx(vcpu)->rmode.vm86_active)
780                 eb = ~0;
781         if (enable_ept)
782                 eb &= ~(1u << PF_VECTOR);
783
784         /* When we are running a nested L2 guest and L1 specified for it a
785          * certain exception bitmap, we must trap the same exceptions and pass
786          * them to L1. When running L2, we will only handle the exceptions
787          * specified above if L1 did not want them.
788          */
789         if (is_guest_mode(vcpu))
790                 eb |= get_vmcs12(vcpu)->exception_bitmap;
791
792         vmcs_write32(EXCEPTION_BITMAP, eb);
793 }
794
795 /*
796  * Check if MSR is intercepted for currently loaded MSR bitmap.
797  */
798 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
799 {
800         unsigned long *msr_bitmap;
801         int f = sizeof(unsigned long);
802
803         if (!cpu_has_vmx_msr_bitmap())
804                 return true;
805
806         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
807
808         if (msr <= 0x1fff) {
809                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
810         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
811                 msr &= 0x1fff;
812                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
813         }
814
815         return true;
816 }
817
818 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
819                 unsigned long entry, unsigned long exit)
820 {
821         vm_entry_controls_clearbit(vmx, entry);
822         vm_exit_controls_clearbit(vmx, exit);
823 }
824
825 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
826 {
827         unsigned int i;
828
829         for (i = 0; i < m->nr; ++i) {
830                 if (m->val[i].index == msr)
831                         return i;
832         }
833         return -ENOENT;
834 }
835
836 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
837 {
838         int i;
839         struct msr_autoload *m = &vmx->msr_autoload;
840
841         switch (msr) {
842         case MSR_EFER:
843                 if (cpu_has_load_ia32_efer()) {
844                         clear_atomic_switch_msr_special(vmx,
845                                         VM_ENTRY_LOAD_IA32_EFER,
846                                         VM_EXIT_LOAD_IA32_EFER);
847                         return;
848                 }
849                 break;
850         case MSR_CORE_PERF_GLOBAL_CTRL:
851                 if (cpu_has_load_perf_global_ctrl()) {
852                         clear_atomic_switch_msr_special(vmx,
853                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
854                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
855                         return;
856                 }
857                 break;
858         }
859         i = vmx_find_msr_index(&m->guest, msr);
860         if (i < 0)
861                 goto skip_guest;
862         --m->guest.nr;
863         m->guest.val[i] = m->guest.val[m->guest.nr];
864         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
865
866 skip_guest:
867         i = vmx_find_msr_index(&m->host, msr);
868         if (i < 0)
869                 return;
870
871         --m->host.nr;
872         m->host.val[i] = m->host.val[m->host.nr];
873         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
874 }
875
876 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
877                 unsigned long entry, unsigned long exit,
878                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
879                 u64 guest_val, u64 host_val)
880 {
881         vmcs_write64(guest_val_vmcs, guest_val);
882         if (host_val_vmcs != HOST_IA32_EFER)
883                 vmcs_write64(host_val_vmcs, host_val);
884         vm_entry_controls_setbit(vmx, entry);
885         vm_exit_controls_setbit(vmx, exit);
886 }
887
888 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
889                                   u64 guest_val, u64 host_val, bool entry_only)
890 {
891         int i, j = 0;
892         struct msr_autoload *m = &vmx->msr_autoload;
893
894         switch (msr) {
895         case MSR_EFER:
896                 if (cpu_has_load_ia32_efer()) {
897                         add_atomic_switch_msr_special(vmx,
898                                         VM_ENTRY_LOAD_IA32_EFER,
899                                         VM_EXIT_LOAD_IA32_EFER,
900                                         GUEST_IA32_EFER,
901                                         HOST_IA32_EFER,
902                                         guest_val, host_val);
903                         return;
904                 }
905                 break;
906         case MSR_CORE_PERF_GLOBAL_CTRL:
907                 if (cpu_has_load_perf_global_ctrl()) {
908                         add_atomic_switch_msr_special(vmx,
909                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
910                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
911                                         GUEST_IA32_PERF_GLOBAL_CTRL,
912                                         HOST_IA32_PERF_GLOBAL_CTRL,
913                                         guest_val, host_val);
914                         return;
915                 }
916                 break;
917         case MSR_IA32_PEBS_ENABLE:
918                 /* PEBS needs a quiescent period after being disabled (to write
919                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
920                  * provide that period, so a CPU could write host's record into
921                  * guest's memory.
922                  */
923                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
924         }
925
926         i = vmx_find_msr_index(&m->guest, msr);
927         if (!entry_only)
928                 j = vmx_find_msr_index(&m->host, msr);
929
930         if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
931                 (j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
932                 printk_once(KERN_WARNING "Not enough msr switch entries. "
933                                 "Can't add msr %x\n", msr);
934                 return;
935         }
936         if (i < 0) {
937                 i = m->guest.nr++;
938                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
939         }
940         m->guest.val[i].index = msr;
941         m->guest.val[i].value = guest_val;
942
943         if (entry_only)
944                 return;
945
946         if (j < 0) {
947                 j = m->host.nr++;
948                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
949         }
950         m->host.val[j].index = msr;
951         m->host.val[j].value = host_val;
952 }
953
954 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
955 {
956         u64 guest_efer = vmx->vcpu.arch.efer;
957         u64 ignore_bits = 0;
958
959         /* Shadow paging assumes NX to be available.  */
960         if (!enable_ept)
961                 guest_efer |= EFER_NX;
962
963         /*
964          * LMA and LME handled by hardware; SCE meaningless outside long mode.
965          */
966         ignore_bits |= EFER_SCE;
967 #ifdef CONFIG_X86_64
968         ignore_bits |= EFER_LMA | EFER_LME;
969         /* SCE is meaningful only in long mode on Intel */
970         if (guest_efer & EFER_LMA)
971                 ignore_bits &= ~(u64)EFER_SCE;
972 #endif
973
974         /*
975          * On EPT, we can't emulate NX, so we must switch EFER atomically.
976          * On CPUs that support "load IA32_EFER", always switch EFER
977          * atomically, since it's faster than switching it manually.
978          */
979         if (cpu_has_load_ia32_efer() ||
980             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
981                 if (!(guest_efer & EFER_LMA))
982                         guest_efer &= ~EFER_LME;
983                 if (guest_efer != host_efer)
984                         add_atomic_switch_msr(vmx, MSR_EFER,
985                                               guest_efer, host_efer, false);
986                 else
987                         clear_atomic_switch_msr(vmx, MSR_EFER);
988                 return false;
989         } else {
990                 clear_atomic_switch_msr(vmx, MSR_EFER);
991
992                 guest_efer &= ~ignore_bits;
993                 guest_efer |= host_efer & ignore_bits;
994
995                 vmx->guest_msrs[efer_offset].data = guest_efer;
996                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
997
998                 return true;
999         }
1000 }
1001
1002 #ifdef CONFIG_X86_32
1003 /*
1004  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1005  * VMCS rather than the segment table.  KVM uses this helper to figure
1006  * out the current bases to poke them into the VMCS before entry.
1007  */
1008 static unsigned long segment_base(u16 selector)
1009 {
1010         struct desc_struct *table;
1011         unsigned long v;
1012
1013         if (!(selector & ~SEGMENT_RPL_MASK))
1014                 return 0;
1015
1016         table = get_current_gdt_ro();
1017
1018         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1019                 u16 ldt_selector = kvm_read_ldt();
1020
1021                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1022                         return 0;
1023
1024                 table = (struct desc_struct *)segment_base(ldt_selector);
1025         }
1026         v = get_desc_base(&table[selector >> 3]);
1027         return v;
1028 }
1029 #endif
1030
1031 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1032 {
1033         return vmx_pt_mode_is_host_guest() &&
1034                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1035 }
1036
1037 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1038 {
1039         u32 i;
1040
1041         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1042         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1043         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1044         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1045         for (i = 0; i < addr_range; i++) {
1046                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1047                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1048         }
1049 }
1050
1051 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1052 {
1053         u32 i;
1054
1055         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1056         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1057         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1058         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1059         for (i = 0; i < addr_range; i++) {
1060                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1061                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1062         }
1063 }
1064
1065 static void pt_guest_enter(struct vcpu_vmx *vmx)
1066 {
1067         if (vmx_pt_mode_is_system())
1068                 return;
1069
1070         /*
1071          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1072          * Save host state before VM entry.
1073          */
1074         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1075         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1076                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1077                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1078                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1079         }
1080 }
1081
1082 static void pt_guest_exit(struct vcpu_vmx *vmx)
1083 {
1084         if (vmx_pt_mode_is_system())
1085                 return;
1086
1087         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1088                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1089                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1090         }
1091
1092         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1093         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1094 }
1095
1096 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1097                         unsigned long fs_base, unsigned long gs_base)
1098 {
1099         if (unlikely(fs_sel != host->fs_sel)) {
1100                 if (!(fs_sel & 7))
1101                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1102                 else
1103                         vmcs_write16(HOST_FS_SELECTOR, 0);
1104                 host->fs_sel = fs_sel;
1105         }
1106         if (unlikely(gs_sel != host->gs_sel)) {
1107                 if (!(gs_sel & 7))
1108                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1109                 else
1110                         vmcs_write16(HOST_GS_SELECTOR, 0);
1111                 host->gs_sel = gs_sel;
1112         }
1113         if (unlikely(fs_base != host->fs_base)) {
1114                 vmcs_writel(HOST_FS_BASE, fs_base);
1115                 host->fs_base = fs_base;
1116         }
1117         if (unlikely(gs_base != host->gs_base)) {
1118                 vmcs_writel(HOST_GS_BASE, gs_base);
1119                 host->gs_base = gs_base;
1120         }
1121 }
1122
1123 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1124 {
1125         struct vcpu_vmx *vmx = to_vmx(vcpu);
1126         struct vmcs_host_state *host_state;
1127 #ifdef CONFIG_X86_64
1128         int cpu = raw_smp_processor_id();
1129 #endif
1130         unsigned long fs_base, gs_base;
1131         u16 fs_sel, gs_sel;
1132         int i;
1133
1134         vmx->req_immediate_exit = false;
1135
1136         /*
1137          * Note that guest MSRs to be saved/restored can also be changed
1138          * when guest state is loaded. This happens when guest transitions
1139          * to/from long-mode by setting MSR_EFER.LMA.
1140          */
1141         if (!vmx->guest_msrs_ready) {
1142                 vmx->guest_msrs_ready = true;
1143                 for (i = 0; i < vmx->save_nmsrs; ++i)
1144                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1145                                            vmx->guest_msrs[i].data,
1146                                            vmx->guest_msrs[i].mask);
1147
1148         }
1149
1150         if (vmx->nested.need_vmcs12_to_shadow_sync)
1151                 nested_sync_vmcs12_to_shadow(vcpu);
1152
1153         if (vmx->guest_state_loaded)
1154                 return;
1155
1156         host_state = &vmx->loaded_vmcs->host_state;
1157
1158         /*
1159          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1160          * allow segment selectors with cpl > 0 or ti == 1.
1161          */
1162         host_state->ldt_sel = kvm_read_ldt();
1163
1164 #ifdef CONFIG_X86_64
1165         savesegment(ds, host_state->ds_sel);
1166         savesegment(es, host_state->es_sel);
1167
1168         gs_base = cpu_kernelmode_gs_base(cpu);
1169         if (likely(is_64bit_mm(current->mm))) {
1170                 save_fsgs_for_kvm();
1171                 fs_sel = current->thread.fsindex;
1172                 gs_sel = current->thread.gsindex;
1173                 fs_base = current->thread.fsbase;
1174                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1175         } else {
1176                 savesegment(fs, fs_sel);
1177                 savesegment(gs, gs_sel);
1178                 fs_base = read_msr(MSR_FS_BASE);
1179                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1180         }
1181
1182         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1183 #else
1184         savesegment(fs, fs_sel);
1185         savesegment(gs, gs_sel);
1186         fs_base = segment_base(fs_sel);
1187         gs_base = segment_base(gs_sel);
1188 #endif
1189
1190         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1191         vmx->guest_state_loaded = true;
1192 }
1193
1194 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1195 {
1196         struct vmcs_host_state *host_state;
1197
1198         if (!vmx->guest_state_loaded)
1199                 return;
1200
1201         host_state = &vmx->loaded_vmcs->host_state;
1202
1203         ++vmx->vcpu.stat.host_state_reload;
1204
1205 #ifdef CONFIG_X86_64
1206         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1207 #endif
1208         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1209                 kvm_load_ldt(host_state->ldt_sel);
1210 #ifdef CONFIG_X86_64
1211                 load_gs_index(host_state->gs_sel);
1212 #else
1213                 loadsegment(gs, host_state->gs_sel);
1214 #endif
1215         }
1216         if (host_state->fs_sel & 7)
1217                 loadsegment(fs, host_state->fs_sel);
1218 #ifdef CONFIG_X86_64
1219         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1220                 loadsegment(ds, host_state->ds_sel);
1221                 loadsegment(es, host_state->es_sel);
1222         }
1223 #endif
1224         invalidate_tss_limit();
1225 #ifdef CONFIG_X86_64
1226         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1227 #endif
1228         load_fixmap_gdt(raw_smp_processor_id());
1229         vmx->guest_state_loaded = false;
1230         vmx->guest_msrs_ready = false;
1231 }
1232
1233 #ifdef CONFIG_X86_64
1234 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1235 {
1236         preempt_disable();
1237         if (vmx->guest_state_loaded)
1238                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1239         preempt_enable();
1240         return vmx->msr_guest_kernel_gs_base;
1241 }
1242
1243 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1244 {
1245         preempt_disable();
1246         if (vmx->guest_state_loaded)
1247                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1248         preempt_enable();
1249         vmx->msr_guest_kernel_gs_base = data;
1250 }
1251 #endif
1252
1253 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1254 {
1255         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1256         struct pi_desc old, new;
1257         unsigned int dest;
1258
1259         /*
1260          * In case of hot-plug or hot-unplug, we may have to undo
1261          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1262          * always keep PI.NDST up to date for simplicity: it makes the
1263          * code easier, and CPU migration is not a fast path.
1264          */
1265         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1266                 return;
1267
1268         /*
1269          * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1270          * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1271          * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1272          * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1273          * correctly.
1274          */
1275         if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1276                 pi_clear_sn(pi_desc);
1277                 goto after_clear_sn;
1278         }
1279
1280         /* The full case.  */
1281         do {
1282                 old.control = new.control = pi_desc->control;
1283
1284                 dest = cpu_physical_id(cpu);
1285
1286                 if (x2apic_enabled())
1287                         new.ndst = dest;
1288                 else
1289                         new.ndst = (dest << 8) & 0xFF00;
1290
1291                 new.sn = 0;
1292         } while (cmpxchg64(&pi_desc->control, old.control,
1293                            new.control) != old.control);
1294
1295 after_clear_sn:
1296
1297         /*
1298          * Clear SN before reading the bitmap.  The VT-d firmware
1299          * writes the bitmap and reads SN atomically (5.2.3 in the
1300          * spec), so it doesn't really have a memory barrier that
1301          * pairs with this, but we cannot do that and we need one.
1302          */
1303         smp_mb__after_atomic();
1304
1305         if (!pi_is_pir_empty(pi_desc))
1306                 pi_set_on(pi_desc);
1307 }
1308
1309 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1310 {
1311         struct vcpu_vmx *vmx = to_vmx(vcpu);
1312         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1313
1314         if (!already_loaded) {
1315                 loaded_vmcs_clear(vmx->loaded_vmcs);
1316                 local_irq_disable();
1317
1318                 /*
1319                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1320                  * this cpu's percpu list, otherwise it may not yet be deleted
1321                  * from its previous cpu's percpu list.  Pairs with the
1322                  * smb_wmb() in __loaded_vmcs_clear().
1323                  */
1324                 smp_rmb();
1325
1326                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1327                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1328                 local_irq_enable();
1329         }
1330
1331         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1332                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1333                 vmcs_load(vmx->loaded_vmcs->vmcs);
1334                 indirect_branch_prediction_barrier();
1335         }
1336
1337         if (!already_loaded) {
1338                 void *gdt = get_current_gdt_ro();
1339                 unsigned long sysenter_esp;
1340
1341                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1342
1343                 /*
1344                  * Linux uses per-cpu TSS and GDT, so set these when switching
1345                  * processors.  See 22.2.4.
1346                  */
1347                 vmcs_writel(HOST_TR_BASE,
1348                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1349                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1350
1351                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1352                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1353
1354                 vmx->loaded_vmcs->cpu = cpu;
1355         }
1356
1357         /* Setup TSC multiplier */
1358         if (kvm_has_tsc_control &&
1359             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1360                 decache_tsc_multiplier(vmx);
1361 }
1362
1363 /*
1364  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1365  * vcpu mutex is already taken.
1366  */
1367 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1368 {
1369         struct vcpu_vmx *vmx = to_vmx(vcpu);
1370
1371         vmx_vcpu_load_vmcs(vcpu, cpu);
1372
1373         vmx_vcpu_pi_load(vcpu, cpu);
1374
1375         vmx->host_debugctlmsr = get_debugctlmsr();
1376 }
1377
1378 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1379 {
1380         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1381
1382         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1383                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1384                 !kvm_vcpu_apicv_active(vcpu))
1385                 return;
1386
1387         /* Set SN when the vCPU is preempted */
1388         if (vcpu->preempted)
1389                 pi_set_sn(pi_desc);
1390 }
1391
1392 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1393 {
1394         vmx_vcpu_pi_put(vcpu);
1395
1396         vmx_prepare_switch_to_host(to_vmx(vcpu));
1397 }
1398
1399 static bool emulation_required(struct kvm_vcpu *vcpu)
1400 {
1401         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1402 }
1403
1404 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1405 {
1406         struct vcpu_vmx *vmx = to_vmx(vcpu);
1407         unsigned long rflags, save_rflags;
1408
1409         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1410                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1411                 rflags = vmcs_readl(GUEST_RFLAGS);
1412                 if (vmx->rmode.vm86_active) {
1413                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1414                         save_rflags = vmx->rmode.save_rflags;
1415                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1416                 }
1417                 vmx->rflags = rflags;
1418         }
1419         return vmx->rflags;
1420 }
1421
1422 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1423 {
1424         struct vcpu_vmx *vmx = to_vmx(vcpu);
1425         unsigned long old_rflags;
1426
1427         if (enable_unrestricted_guest) {
1428                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1429                 vmx->rflags = rflags;
1430                 vmcs_writel(GUEST_RFLAGS, rflags);
1431                 return;
1432         }
1433
1434         old_rflags = vmx_get_rflags(vcpu);
1435         vmx->rflags = rflags;
1436         if (vmx->rmode.vm86_active) {
1437                 vmx->rmode.save_rflags = rflags;
1438                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1439         }
1440         vmcs_writel(GUEST_RFLAGS, rflags);
1441
1442         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1443                 vmx->emulation_required = emulation_required(vcpu);
1444 }
1445
1446 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1447 {
1448         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1449         int ret = 0;
1450
1451         if (interruptibility & GUEST_INTR_STATE_STI)
1452                 ret |= KVM_X86_SHADOW_INT_STI;
1453         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1454                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1455
1456         return ret;
1457 }
1458
1459 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1460 {
1461         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1462         u32 interruptibility = interruptibility_old;
1463
1464         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1465
1466         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1467                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1468         else if (mask & KVM_X86_SHADOW_INT_STI)
1469                 interruptibility |= GUEST_INTR_STATE_STI;
1470
1471         if ((interruptibility != interruptibility_old))
1472                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1473 }
1474
1475 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1476 {
1477         struct vcpu_vmx *vmx = to_vmx(vcpu);
1478         unsigned long value;
1479
1480         /*
1481          * Any MSR write that attempts to change bits marked reserved will
1482          * case a #GP fault.
1483          */
1484         if (data & vmx->pt_desc.ctl_bitmask)
1485                 return 1;
1486
1487         /*
1488          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1489          * result in a #GP unless the same write also clears TraceEn.
1490          */
1491         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1492                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1493                 return 1;
1494
1495         /*
1496          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1497          * and FabricEn would cause #GP, if
1498          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1499          */
1500         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1501                 !(data & RTIT_CTL_FABRIC_EN) &&
1502                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1503                                         PT_CAP_single_range_output))
1504                 return 1;
1505
1506         /*
1507          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1508          * utilize encodings marked reserved will casue a #GP fault.
1509          */
1510         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1511         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1512                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1513                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1514                 return 1;
1515         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1516                                                 PT_CAP_cycle_thresholds);
1517         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1518                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1519                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1520                 return 1;
1521         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1522         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1523                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1524                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1525                 return 1;
1526
1527         /*
1528          * If ADDRx_CFG is reserved or the encodings is >2 will
1529          * cause a #GP fault.
1530          */
1531         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1532         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1533                 return 1;
1534         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1535         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1536                 return 1;
1537         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1538         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1539                 return 1;
1540         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1541         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1542                 return 1;
1543
1544         return 0;
1545 }
1546
1547 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1548 {
1549         unsigned long rip;
1550
1551         /*
1552          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1553          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1554          * set when EPT misconfig occurs.  In practice, real hardware updates
1555          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1556          * (namely Hyper-V) don't set it due to it being undefined behavior,
1557          * i.e. we end up advancing IP with some random value.
1558          */
1559         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1560             to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1561                 rip = kvm_rip_read(vcpu);
1562                 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1563                 kvm_rip_write(vcpu, rip);
1564         } else {
1565                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1566                         return 0;
1567         }
1568
1569         /* skipping an emulated instruction also counts */
1570         vmx_set_interrupt_shadow(vcpu, 0);
1571
1572         return 1;
1573 }
1574
1575
1576 /*
1577  * Recognizes a pending MTF VM-exit and records the nested state for later
1578  * delivery.
1579  */
1580 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1581 {
1582         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1583         struct vcpu_vmx *vmx = to_vmx(vcpu);
1584
1585         if (!is_guest_mode(vcpu))
1586                 return;
1587
1588         /*
1589          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1590          * T-bit traps. As instruction emulation is completed (i.e. at the
1591          * instruction boundary), any #DB exception pending delivery must be a
1592          * debug-trap. Record the pending MTF state to be delivered in
1593          * vmx_check_nested_events().
1594          */
1595         if (nested_cpu_has_mtf(vmcs12) &&
1596             (!vcpu->arch.exception.pending ||
1597              vcpu->arch.exception.nr == DB_VECTOR))
1598                 vmx->nested.mtf_pending = true;
1599         else
1600                 vmx->nested.mtf_pending = false;
1601 }
1602
1603 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1604 {
1605         vmx_update_emulated_instruction(vcpu);
1606         return skip_emulated_instruction(vcpu);
1607 }
1608
1609 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1610 {
1611         /*
1612          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1613          * explicitly skip the instruction because if the HLT state is set,
1614          * then the instruction is already executing and RIP has already been
1615          * advanced.
1616          */
1617         if (kvm_hlt_in_guest(vcpu->kvm) &&
1618                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1619                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1620 }
1621
1622 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1623 {
1624         struct vcpu_vmx *vmx = to_vmx(vcpu);
1625         unsigned nr = vcpu->arch.exception.nr;
1626         bool has_error_code = vcpu->arch.exception.has_error_code;
1627         u32 error_code = vcpu->arch.exception.error_code;
1628         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1629
1630         kvm_deliver_exception_payload(vcpu);
1631
1632         if (has_error_code) {
1633                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1634                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1635         }
1636
1637         if (vmx->rmode.vm86_active) {
1638                 int inc_eip = 0;
1639                 if (kvm_exception_is_soft(nr))
1640                         inc_eip = vcpu->arch.event_exit_inst_len;
1641                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1642                 return;
1643         }
1644
1645         WARN_ON_ONCE(vmx->emulation_required);
1646
1647         if (kvm_exception_is_soft(nr)) {
1648                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1649                              vmx->vcpu.arch.event_exit_inst_len);
1650                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1651         } else
1652                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1653
1654         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1655
1656         vmx_clear_hlt(vcpu);
1657 }
1658
1659 /*
1660  * Swap MSR entry in host/guest MSR entry array.
1661  */
1662 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1663 {
1664         struct shared_msr_entry tmp;
1665
1666         tmp = vmx->guest_msrs[to];
1667         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1668         vmx->guest_msrs[from] = tmp;
1669 }
1670
1671 /*
1672  * Set up the vmcs to automatically save and restore system
1673  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1674  * mode, as fiddling with msrs is very expensive.
1675  */
1676 static void setup_msrs(struct vcpu_vmx *vmx)
1677 {
1678         int save_nmsrs, index;
1679
1680         save_nmsrs = 0;
1681 #ifdef CONFIG_X86_64
1682         /*
1683          * The SYSCALL MSRs are only needed on long mode guests, and only
1684          * when EFER.SCE is set.
1685          */
1686         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1687                 index = __find_msr_index(vmx, MSR_STAR);
1688                 if (index >= 0)
1689                         move_msr_up(vmx, index, save_nmsrs++);
1690                 index = __find_msr_index(vmx, MSR_LSTAR);
1691                 if (index >= 0)
1692                         move_msr_up(vmx, index, save_nmsrs++);
1693                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1694                 if (index >= 0)
1695                         move_msr_up(vmx, index, save_nmsrs++);
1696         }
1697 #endif
1698         index = __find_msr_index(vmx, MSR_EFER);
1699         if (index >= 0 && update_transition_efer(vmx, index))
1700                 move_msr_up(vmx, index, save_nmsrs++);
1701         index = __find_msr_index(vmx, MSR_TSC_AUX);
1702         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1703                 move_msr_up(vmx, index, save_nmsrs++);
1704         index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1705         if (index >= 0)
1706                 move_msr_up(vmx, index, save_nmsrs++);
1707
1708         vmx->save_nmsrs = save_nmsrs;
1709         vmx->guest_msrs_ready = false;
1710
1711         if (cpu_has_vmx_msr_bitmap())
1712                 vmx_update_msr_bitmap(&vmx->vcpu);
1713 }
1714
1715 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1716 {
1717         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1718
1719         if (is_guest_mode(vcpu) &&
1720             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1721                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1722
1723         return vcpu->arch.tsc_offset;
1724 }
1725
1726 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1727 {
1728         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1729         u64 g_tsc_offset = 0;
1730
1731         /*
1732          * We're here if L1 chose not to trap WRMSR to TSC. According
1733          * to the spec, this should set L1's TSC; The offset that L1
1734          * set for L2 remains unchanged, and still needs to be added
1735          * to the newly set TSC to get L2's TSC.
1736          */
1737         if (is_guest_mode(vcpu) &&
1738             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1739                 g_tsc_offset = vmcs12->tsc_offset;
1740
1741         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1742                                    vcpu->arch.tsc_offset - g_tsc_offset,
1743                                    offset);
1744         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1745         return offset + g_tsc_offset;
1746 }
1747
1748 /*
1749  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1750  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1751  * all guests if the "nested" module option is off, and can also be disabled
1752  * for a single guest by disabling its VMX cpuid bit.
1753  */
1754 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1755 {
1756         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1757 }
1758
1759 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1760                                                  uint64_t val)
1761 {
1762         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1763
1764         return !(val & ~valid_bits);
1765 }
1766
1767 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1768 {
1769         switch (msr->index) {
1770         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1771                 if (!nested)
1772                         return 1;
1773                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1774         default:
1775                 return 1;
1776         }
1777 }
1778
1779 /*
1780  * Reads an msr value (of 'msr_index') into 'pdata'.
1781  * Returns 0 on success, non-0 otherwise.
1782  * Assumes vcpu_load() was already called.
1783  */
1784 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1785 {
1786         struct vcpu_vmx *vmx = to_vmx(vcpu);
1787         struct shared_msr_entry *msr;
1788         u32 index;
1789
1790         switch (msr_info->index) {
1791 #ifdef CONFIG_X86_64
1792         case MSR_FS_BASE:
1793                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1794                 break;
1795         case MSR_GS_BASE:
1796                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1797                 break;
1798         case MSR_KERNEL_GS_BASE:
1799                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1800                 break;
1801 #endif
1802         case MSR_EFER:
1803                 return kvm_get_msr_common(vcpu, msr_info);
1804         case MSR_IA32_TSX_CTRL:
1805                 if (!msr_info->host_initiated &&
1806                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1807                         return 1;
1808                 goto find_shared_msr;
1809         case MSR_IA32_UMWAIT_CONTROL:
1810                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1811                         return 1;
1812
1813                 msr_info->data = vmx->msr_ia32_umwait_control;
1814                 break;
1815         case MSR_IA32_SPEC_CTRL:
1816                 if (!msr_info->host_initiated &&
1817                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1818                         return 1;
1819
1820                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1821                 break;
1822         case MSR_IA32_SYSENTER_CS:
1823                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1824                 break;
1825         case MSR_IA32_SYSENTER_EIP:
1826                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1827                 break;
1828         case MSR_IA32_SYSENTER_ESP:
1829                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1830                 break;
1831         case MSR_IA32_BNDCFGS:
1832                 if (!kvm_mpx_supported() ||
1833                     (!msr_info->host_initiated &&
1834                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1835                         return 1;
1836                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1837                 break;
1838         case MSR_IA32_MCG_EXT_CTL:
1839                 if (!msr_info->host_initiated &&
1840                     !(vmx->msr_ia32_feature_control &
1841                       FEAT_CTL_LMCE_ENABLED))
1842                         return 1;
1843                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1844                 break;
1845         case MSR_IA32_FEAT_CTL:
1846                 msr_info->data = vmx->msr_ia32_feature_control;
1847                 break;
1848         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1849                 if (!nested_vmx_allowed(vcpu))
1850                         return 1;
1851                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1852                                     &msr_info->data))
1853                         return 1;
1854                 /*
1855                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
1856                  * Hyper-V versions are still trying to use corresponding
1857                  * features when they are exposed. Filter out the essential
1858                  * minimum.
1859                  */
1860                 if (!msr_info->host_initiated &&
1861                     vmx->nested.enlightened_vmcs_enabled)
1862                         nested_evmcs_filter_control_msr(msr_info->index,
1863                                                         &msr_info->data);
1864                 break;
1865         case MSR_IA32_RTIT_CTL:
1866                 if (!vmx_pt_mode_is_host_guest())
1867                         return 1;
1868                 msr_info->data = vmx->pt_desc.guest.ctl;
1869                 break;
1870         case MSR_IA32_RTIT_STATUS:
1871                 if (!vmx_pt_mode_is_host_guest())
1872                         return 1;
1873                 msr_info->data = vmx->pt_desc.guest.status;
1874                 break;
1875         case MSR_IA32_RTIT_CR3_MATCH:
1876                 if (!vmx_pt_mode_is_host_guest() ||
1877                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1878                                                 PT_CAP_cr3_filtering))
1879                         return 1;
1880                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1881                 break;
1882         case MSR_IA32_RTIT_OUTPUT_BASE:
1883                 if (!vmx_pt_mode_is_host_guest() ||
1884                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1885                                         PT_CAP_topa_output) &&
1886                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1887                                         PT_CAP_single_range_output)))
1888                         return 1;
1889                 msr_info->data = vmx->pt_desc.guest.output_base;
1890                 break;
1891         case MSR_IA32_RTIT_OUTPUT_MASK:
1892                 if (!vmx_pt_mode_is_host_guest() ||
1893                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1894                                         PT_CAP_topa_output) &&
1895                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1896                                         PT_CAP_single_range_output)))
1897                         return 1;
1898                 msr_info->data = vmx->pt_desc.guest.output_mask;
1899                 break;
1900         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1901                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1902                 if (!vmx_pt_mode_is_host_guest() ||
1903                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1904                                         PT_CAP_num_address_ranges)))
1905                         return 1;
1906                 if (index % 2)
1907                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1908                 else
1909                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1910                 break;
1911         case MSR_TSC_AUX:
1912                 if (!msr_info->host_initiated &&
1913                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1914                         return 1;
1915                 goto find_shared_msr;
1916         default:
1917         find_shared_msr:
1918                 msr = find_msr_entry(vmx, msr_info->index);
1919                 if (msr) {
1920                         msr_info->data = msr->data;
1921                         break;
1922                 }
1923                 return kvm_get_msr_common(vcpu, msr_info);
1924         }
1925
1926         return 0;
1927 }
1928
1929 /*
1930  * Writes msr value into the appropriate "register".
1931  * Returns 0 on success, non-0 otherwise.
1932  * Assumes vcpu_load() was already called.
1933  */
1934 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1935 {
1936         struct vcpu_vmx *vmx = to_vmx(vcpu);
1937         struct shared_msr_entry *msr;
1938         int ret = 0;
1939         u32 msr_index = msr_info->index;
1940         u64 data = msr_info->data;
1941         u32 index;
1942
1943         switch (msr_index) {
1944         case MSR_EFER:
1945                 ret = kvm_set_msr_common(vcpu, msr_info);
1946                 break;
1947 #ifdef CONFIG_X86_64
1948         case MSR_FS_BASE:
1949                 vmx_segment_cache_clear(vmx);
1950                 vmcs_writel(GUEST_FS_BASE, data);
1951                 break;
1952         case MSR_GS_BASE:
1953                 vmx_segment_cache_clear(vmx);
1954                 vmcs_writel(GUEST_GS_BASE, data);
1955                 break;
1956         case MSR_KERNEL_GS_BASE:
1957                 vmx_write_guest_kernel_gs_base(vmx, data);
1958                 break;
1959 #endif
1960         case MSR_IA32_SYSENTER_CS:
1961                 if (is_guest_mode(vcpu))
1962                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1963                 vmcs_write32(GUEST_SYSENTER_CS, data);
1964                 break;
1965         case MSR_IA32_SYSENTER_EIP:
1966                 if (is_guest_mode(vcpu))
1967                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1968                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1969                 break;
1970         case MSR_IA32_SYSENTER_ESP:
1971                 if (is_guest_mode(vcpu))
1972                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
1973                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1974                 break;
1975         case MSR_IA32_DEBUGCTLMSR:
1976                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1977                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
1978                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1979
1980                 ret = kvm_set_msr_common(vcpu, msr_info);
1981                 break;
1982
1983         case MSR_IA32_BNDCFGS:
1984                 if (!kvm_mpx_supported() ||
1985                     (!msr_info->host_initiated &&
1986                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1987                         return 1;
1988                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1989                     (data & MSR_IA32_BNDCFGS_RSVD))
1990                         return 1;
1991                 vmcs_write64(GUEST_BNDCFGS, data);
1992                 break;
1993         case MSR_IA32_UMWAIT_CONTROL:
1994                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1995                         return 1;
1996
1997                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
1998                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1999                         return 1;
2000
2001                 vmx->msr_ia32_umwait_control = data;
2002                 break;
2003         case MSR_IA32_SPEC_CTRL:
2004                 if (!msr_info->host_initiated &&
2005                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2006                         return 1;
2007
2008                 if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2009                         return 1;
2010
2011                 vmx->spec_ctrl = data;
2012                 if (!data)
2013                         break;
2014
2015                 /*
2016                  * For non-nested:
2017                  * When it's written (to non-zero) for the first time, pass
2018                  * it through.
2019                  *
2020                  * For nested:
2021                  * The handling of the MSR bitmap for L2 guests is done in
2022                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2023                  * vmcs02.msr_bitmap here since it gets completely overwritten
2024                  * in the merging. We update the vmcs01 here for L1 as well
2025                  * since it will end up touching the MSR anyway now.
2026                  */
2027                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2028                                               MSR_IA32_SPEC_CTRL,
2029                                               MSR_TYPE_RW);
2030                 break;
2031         case MSR_IA32_TSX_CTRL:
2032                 if (!msr_info->host_initiated &&
2033                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2034                         return 1;
2035                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2036                         return 1;
2037                 goto find_shared_msr;
2038         case MSR_IA32_PRED_CMD:
2039                 if (!msr_info->host_initiated &&
2040                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2041                         return 1;
2042
2043                 if (data & ~PRED_CMD_IBPB)
2044                         return 1;
2045                 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2046                         return 1;
2047                 if (!data)
2048                         break;
2049
2050                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2051
2052                 /*
2053                  * For non-nested:
2054                  * When it's written (to non-zero) for the first time, pass
2055                  * it through.
2056                  *
2057                  * For nested:
2058                  * The handling of the MSR bitmap for L2 guests is done in
2059                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2060                  * vmcs02.msr_bitmap here since it gets completely overwritten
2061                  * in the merging.
2062                  */
2063                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2064                                               MSR_TYPE_W);
2065                 break;
2066         case MSR_IA32_CR_PAT:
2067                 if (!kvm_pat_valid(data))
2068                         return 1;
2069
2070                 if (is_guest_mode(vcpu) &&
2071                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2072                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2073
2074                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2075                         vmcs_write64(GUEST_IA32_PAT, data);
2076                         vcpu->arch.pat = data;
2077                         break;
2078                 }
2079                 ret = kvm_set_msr_common(vcpu, msr_info);
2080                 break;
2081         case MSR_IA32_TSC_ADJUST:
2082                 ret = kvm_set_msr_common(vcpu, msr_info);
2083                 break;
2084         case MSR_IA32_MCG_EXT_CTL:
2085                 if ((!msr_info->host_initiated &&
2086                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2087                        FEAT_CTL_LMCE_ENABLED)) ||
2088                     (data & ~MCG_EXT_CTL_LMCE_EN))
2089                         return 1;
2090                 vcpu->arch.mcg_ext_ctl = data;
2091                 break;
2092         case MSR_IA32_FEAT_CTL:
2093                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2094                     (to_vmx(vcpu)->msr_ia32_feature_control &
2095                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2096                         return 1;
2097                 vmx->msr_ia32_feature_control = data;
2098                 if (msr_info->host_initiated && data == 0)
2099                         vmx_leave_nested(vcpu);
2100                 break;
2101         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2102                 if (!msr_info->host_initiated)
2103                         return 1; /* they are read-only */
2104                 if (!nested_vmx_allowed(vcpu))
2105                         return 1;
2106                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2107         case MSR_IA32_RTIT_CTL:
2108                 if (!vmx_pt_mode_is_host_guest() ||
2109                         vmx_rtit_ctl_check(vcpu, data) ||
2110                         vmx->nested.vmxon)
2111                         return 1;
2112                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2113                 vmx->pt_desc.guest.ctl = data;
2114                 pt_update_intercept_for_msr(vmx);
2115                 break;
2116         case MSR_IA32_RTIT_STATUS:
2117                 if (!pt_can_write_msr(vmx))
2118                         return 1;
2119                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2120                         return 1;
2121                 vmx->pt_desc.guest.status = data;
2122                 break;
2123         case MSR_IA32_RTIT_CR3_MATCH:
2124                 if (!pt_can_write_msr(vmx))
2125                         return 1;
2126                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2127                                            PT_CAP_cr3_filtering))
2128                         return 1;
2129                 vmx->pt_desc.guest.cr3_match = data;
2130                 break;
2131         case MSR_IA32_RTIT_OUTPUT_BASE:
2132                 if (!pt_can_write_msr(vmx))
2133                         return 1;
2134                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2135                                            PT_CAP_topa_output) &&
2136                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2137                                            PT_CAP_single_range_output))
2138                         return 1;
2139                 if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2140                         return 1;
2141                 vmx->pt_desc.guest.output_base = data;
2142                 break;
2143         case MSR_IA32_RTIT_OUTPUT_MASK:
2144                 if (!pt_can_write_msr(vmx))
2145                         return 1;
2146                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2147                                            PT_CAP_topa_output) &&
2148                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2149                                            PT_CAP_single_range_output))
2150                         return 1;
2151                 vmx->pt_desc.guest.output_mask = data;
2152                 break;
2153         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2154                 if (!pt_can_write_msr(vmx))
2155                         return 1;
2156                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2157                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2158                                                        PT_CAP_num_address_ranges))
2159                         return 1;
2160                 if (is_noncanonical_address(data, vcpu))
2161                         return 1;
2162                 if (index % 2)
2163                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2164                 else
2165                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2166                 break;
2167         case MSR_TSC_AUX:
2168                 if (!msr_info->host_initiated &&
2169                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2170                         return 1;
2171                 /* Check reserved bit, higher 32 bits should be zero */
2172                 if ((data >> 32) != 0)
2173                         return 1;
2174                 goto find_shared_msr;
2175
2176         default:
2177         find_shared_msr:
2178                 msr = find_msr_entry(vmx, msr_index);
2179                 if (msr)
2180                         ret = vmx_set_guest_msr(vmx, msr, data);
2181                 else
2182                         ret = kvm_set_msr_common(vcpu, msr_info);
2183         }
2184
2185         return ret;
2186 }
2187
2188 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2189 {
2190         kvm_register_mark_available(vcpu, reg);
2191
2192         switch (reg) {
2193         case VCPU_REGS_RSP:
2194                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2195                 break;
2196         case VCPU_REGS_RIP:
2197                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2198                 break;
2199         case VCPU_EXREG_PDPTR:
2200                 if (enable_ept)
2201                         ept_save_pdptrs(vcpu);
2202                 break;
2203         case VCPU_EXREG_CR3:
2204                 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2205                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2206                 break;
2207         default:
2208                 WARN_ON_ONCE(1);
2209                 break;
2210         }
2211 }
2212
2213 static __init int cpu_has_kvm_support(void)
2214 {
2215         return cpu_has_vmx();
2216 }
2217
2218 static __init int vmx_disabled_by_bios(void)
2219 {
2220         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2221                !boot_cpu_has(X86_FEATURE_VMX);
2222 }
2223
2224 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2225 {
2226         u64 msr;
2227
2228         cr4_set_bits(X86_CR4_VMXE);
2229         intel_pt_handle_vmx(1);
2230
2231         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2232                           _ASM_EXTABLE(1b, %l[fault])
2233                           : : [vmxon_pointer] "m"(vmxon_pointer)
2234                           : : fault);
2235         return 0;
2236
2237 fault:
2238         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2239                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2240         intel_pt_handle_vmx(0);
2241         cr4_clear_bits(X86_CR4_VMXE);
2242
2243         return -EFAULT;
2244 }
2245
2246 static int hardware_enable(void)
2247 {
2248         int cpu = raw_smp_processor_id();
2249         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2250         int r;
2251
2252         if (cr4_read_shadow() & X86_CR4_VMXE)
2253                 return -EBUSY;
2254
2255         /*
2256          * This can happen if we hot-added a CPU but failed to allocate
2257          * VP assist page for it.
2258          */
2259         if (static_branch_unlikely(&enable_evmcs) &&
2260             !hv_get_vp_assist_page(cpu))
2261                 return -EFAULT;
2262
2263         r = kvm_cpu_vmxon(phys_addr);
2264         if (r)
2265                 return r;
2266
2267         if (enable_ept)
2268                 ept_sync_global();
2269
2270         return 0;
2271 }
2272
2273 static void vmclear_local_loaded_vmcss(void)
2274 {
2275         int cpu = raw_smp_processor_id();
2276         struct loaded_vmcs *v, *n;
2277
2278         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2279                                  loaded_vmcss_on_cpu_link)
2280                 __loaded_vmcs_clear(v);
2281 }
2282
2283
2284 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2285  * tricks.
2286  */
2287 static void kvm_cpu_vmxoff(void)
2288 {
2289         asm volatile (__ex("vmxoff"));
2290
2291         intel_pt_handle_vmx(0);
2292         cr4_clear_bits(X86_CR4_VMXE);
2293 }
2294
2295 static void hardware_disable(void)
2296 {
2297         vmclear_local_loaded_vmcss();
2298         kvm_cpu_vmxoff();
2299 }
2300
2301 /*
2302  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2303  * directly instead of going through cpu_has(), to ensure KVM is trapping
2304  * ENCLS whenever it's supported in hardware.  It does not matter whether
2305  * the host OS supports or has enabled SGX.
2306  */
2307 static bool cpu_has_sgx(void)
2308 {
2309         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2310 }
2311
2312 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2313                                       u32 msr, u32 *result)
2314 {
2315         u32 vmx_msr_low, vmx_msr_high;
2316         u32 ctl = ctl_min | ctl_opt;
2317
2318         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2319
2320         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2321         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2322
2323         /* Ensure minimum (required) set of control bits are supported. */
2324         if (ctl_min & ~ctl)
2325                 return -EIO;
2326
2327         *result = ctl;
2328         return 0;
2329 }
2330
2331 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2332                                     struct vmx_capability *vmx_cap)
2333 {
2334         u32 vmx_msr_low, vmx_msr_high;
2335         u32 min, opt, min2, opt2;
2336         u32 _pin_based_exec_control = 0;
2337         u32 _cpu_based_exec_control = 0;
2338         u32 _cpu_based_2nd_exec_control = 0;
2339         u32 _vmexit_control = 0;
2340         u32 _vmentry_control = 0;
2341
2342         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2343         min = CPU_BASED_HLT_EXITING |
2344 #ifdef CONFIG_X86_64
2345               CPU_BASED_CR8_LOAD_EXITING |
2346               CPU_BASED_CR8_STORE_EXITING |
2347 #endif
2348               CPU_BASED_CR3_LOAD_EXITING |
2349               CPU_BASED_CR3_STORE_EXITING |
2350               CPU_BASED_UNCOND_IO_EXITING |
2351               CPU_BASED_MOV_DR_EXITING |
2352               CPU_BASED_USE_TSC_OFFSETTING |
2353               CPU_BASED_MWAIT_EXITING |
2354               CPU_BASED_MONITOR_EXITING |
2355               CPU_BASED_INVLPG_EXITING |
2356               CPU_BASED_RDPMC_EXITING;
2357
2358         opt = CPU_BASED_TPR_SHADOW |
2359               CPU_BASED_USE_MSR_BITMAPS |
2360               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2361         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2362                                 &_cpu_based_exec_control) < 0)
2363                 return -EIO;
2364 #ifdef CONFIG_X86_64
2365         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2366                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2367                                            ~CPU_BASED_CR8_STORE_EXITING;
2368 #endif
2369         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2370                 min2 = 0;
2371                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2372                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2373                         SECONDARY_EXEC_WBINVD_EXITING |
2374                         SECONDARY_EXEC_ENABLE_VPID |
2375                         SECONDARY_EXEC_ENABLE_EPT |
2376                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2377                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2378                         SECONDARY_EXEC_DESC |
2379                         SECONDARY_EXEC_RDTSCP |
2380                         SECONDARY_EXEC_ENABLE_INVPCID |
2381                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2382                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2383                         SECONDARY_EXEC_SHADOW_VMCS |
2384                         SECONDARY_EXEC_XSAVES |
2385                         SECONDARY_EXEC_RDSEED_EXITING |
2386                         SECONDARY_EXEC_RDRAND_EXITING |
2387                         SECONDARY_EXEC_ENABLE_PML |
2388                         SECONDARY_EXEC_TSC_SCALING |
2389                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2390                         SECONDARY_EXEC_PT_USE_GPA |
2391                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2392                         SECONDARY_EXEC_ENABLE_VMFUNC;
2393                 if (cpu_has_sgx())
2394                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2395                 if (adjust_vmx_controls(min2, opt2,
2396                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2397                                         &_cpu_based_2nd_exec_control) < 0)
2398                         return -EIO;
2399         }
2400 #ifndef CONFIG_X86_64
2401         if (!(_cpu_based_2nd_exec_control &
2402                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2403                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2404 #endif
2405
2406         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2407                 _cpu_based_2nd_exec_control &= ~(
2408                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2409                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2410                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2411
2412         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2413                 &vmx_cap->ept, &vmx_cap->vpid);
2414
2415         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2416                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2417                    enabled */
2418                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2419                                              CPU_BASED_CR3_STORE_EXITING |
2420                                              CPU_BASED_INVLPG_EXITING);
2421         } else if (vmx_cap->ept) {
2422                 vmx_cap->ept = 0;
2423                 pr_warn_once("EPT CAP should not exist if not support "
2424                                 "1-setting enable EPT VM-execution control\n");
2425         }
2426         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2427                 vmx_cap->vpid) {
2428                 vmx_cap->vpid = 0;
2429                 pr_warn_once("VPID CAP should not exist if not support "
2430                                 "1-setting enable VPID VM-execution control\n");
2431         }
2432
2433         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2434 #ifdef CONFIG_X86_64
2435         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2436 #endif
2437         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2438               VM_EXIT_LOAD_IA32_PAT |
2439               VM_EXIT_LOAD_IA32_EFER |
2440               VM_EXIT_CLEAR_BNDCFGS |
2441               VM_EXIT_PT_CONCEAL_PIP |
2442               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2443         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2444                                 &_vmexit_control) < 0)
2445                 return -EIO;
2446
2447         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2448         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2449                  PIN_BASED_VMX_PREEMPTION_TIMER;
2450         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2451                                 &_pin_based_exec_control) < 0)
2452                 return -EIO;
2453
2454         if (cpu_has_broken_vmx_preemption_timer())
2455                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2456         if (!(_cpu_based_2nd_exec_control &
2457                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2458                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2459
2460         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2461         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2462               VM_ENTRY_LOAD_IA32_PAT |
2463               VM_ENTRY_LOAD_IA32_EFER |
2464               VM_ENTRY_LOAD_BNDCFGS |
2465               VM_ENTRY_PT_CONCEAL_PIP |
2466               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2467         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2468                                 &_vmentry_control) < 0)
2469                 return -EIO;
2470
2471         /*
2472          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2473          * can't be used due to an errata where VM Exit may incorrectly clear
2474          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2475          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2476          */
2477         if (boot_cpu_data.x86 == 0x6) {
2478                 switch (boot_cpu_data.x86_model) {
2479                 case 26: /* AAK155 */
2480                 case 30: /* AAP115 */
2481                 case 37: /* AAT100 */
2482                 case 44: /* BC86,AAY89,BD102 */
2483                 case 46: /* BA97 */
2484                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2485                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2486                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2487                                         "does not work properly. Using workaround\n");
2488                         break;
2489                 default:
2490                         break;
2491                 }
2492         }
2493
2494
2495         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2496
2497         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2498         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2499                 return -EIO;
2500
2501 #ifdef CONFIG_X86_64
2502         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2503         if (vmx_msr_high & (1u<<16))
2504                 return -EIO;
2505 #endif
2506
2507         /* Require Write-Back (WB) memory type for VMCS accesses. */
2508         if (((vmx_msr_high >> 18) & 15) != 6)
2509                 return -EIO;
2510
2511         vmcs_conf->size = vmx_msr_high & 0x1fff;
2512         vmcs_conf->order = get_order(vmcs_conf->size);
2513         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2514
2515         vmcs_conf->revision_id = vmx_msr_low;
2516
2517         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2518         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2519         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2520         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2521         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2522
2523         if (static_branch_unlikely(&enable_evmcs))
2524                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2525
2526         return 0;
2527 }
2528
2529 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2530 {
2531         int node = cpu_to_node(cpu);
2532         struct page *pages;
2533         struct vmcs *vmcs;
2534
2535         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2536         if (!pages)
2537                 return NULL;
2538         vmcs = page_address(pages);
2539         memset(vmcs, 0, vmcs_config.size);
2540
2541         /* KVM supports Enlightened VMCS v1 only */
2542         if (static_branch_unlikely(&enable_evmcs))
2543                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2544         else
2545                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2546
2547         if (shadow)
2548                 vmcs->hdr.shadow_vmcs = 1;
2549         return vmcs;
2550 }
2551
2552 void free_vmcs(struct vmcs *vmcs)
2553 {
2554         free_pages((unsigned long)vmcs, vmcs_config.order);
2555 }
2556
2557 /*
2558  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2559  */
2560 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2561 {
2562         if (!loaded_vmcs->vmcs)
2563                 return;
2564         loaded_vmcs_clear(loaded_vmcs);
2565         free_vmcs(loaded_vmcs->vmcs);
2566         loaded_vmcs->vmcs = NULL;
2567         if (loaded_vmcs->msr_bitmap)
2568                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2569         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2570 }
2571
2572 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2573 {
2574         loaded_vmcs->vmcs = alloc_vmcs(false);
2575         if (!loaded_vmcs->vmcs)
2576                 return -ENOMEM;
2577
2578         vmcs_clear(loaded_vmcs->vmcs);
2579
2580         loaded_vmcs->shadow_vmcs = NULL;
2581         loaded_vmcs->hv_timer_soft_disabled = false;
2582         loaded_vmcs->cpu = -1;
2583         loaded_vmcs->launched = 0;
2584
2585         if (cpu_has_vmx_msr_bitmap()) {
2586                 loaded_vmcs->msr_bitmap = (unsigned long *)
2587                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2588                 if (!loaded_vmcs->msr_bitmap)
2589                         goto out_vmcs;
2590                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2591
2592                 if (IS_ENABLED(CONFIG_HYPERV) &&
2593                     static_branch_unlikely(&enable_evmcs) &&
2594                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2595                         struct hv_enlightened_vmcs *evmcs =
2596                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2597
2598                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2599                 }
2600         }
2601
2602         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2603         memset(&loaded_vmcs->controls_shadow, 0,
2604                 sizeof(struct vmcs_controls_shadow));
2605
2606         return 0;
2607
2608 out_vmcs:
2609         free_loaded_vmcs(loaded_vmcs);
2610         return -ENOMEM;
2611 }
2612
2613 static void free_kvm_area(void)
2614 {
2615         int cpu;
2616
2617         for_each_possible_cpu(cpu) {
2618                 free_vmcs(per_cpu(vmxarea, cpu));
2619                 per_cpu(vmxarea, cpu) = NULL;
2620         }
2621 }
2622
2623 static __init int alloc_kvm_area(void)
2624 {
2625         int cpu;
2626
2627         for_each_possible_cpu(cpu) {
2628                 struct vmcs *vmcs;
2629
2630                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2631                 if (!vmcs) {
2632                         free_kvm_area();
2633                         return -ENOMEM;
2634                 }
2635
2636                 /*
2637                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2638                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2639                  * revision_id reported by MSR_IA32_VMX_BASIC.
2640                  *
2641                  * However, even though not explicitly documented by
2642                  * TLFS, VMXArea passed as VMXON argument should
2643                  * still be marked with revision_id reported by
2644                  * physical CPU.
2645                  */
2646                 if (static_branch_unlikely(&enable_evmcs))
2647                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2648
2649                 per_cpu(vmxarea, cpu) = vmcs;
2650         }
2651         return 0;
2652 }
2653
2654 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2655                 struct kvm_segment *save)
2656 {
2657         if (!emulate_invalid_guest_state) {
2658                 /*
2659                  * CS and SS RPL should be equal during guest entry according
2660                  * to VMX spec, but in reality it is not always so. Since vcpu
2661                  * is in the middle of the transition from real mode to
2662                  * protected mode it is safe to assume that RPL 0 is a good
2663                  * default value.
2664                  */
2665                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2666                         save->selector &= ~SEGMENT_RPL_MASK;
2667                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2668                 save->s = 1;
2669         }
2670         vmx_set_segment(vcpu, save, seg);
2671 }
2672
2673 static void enter_pmode(struct kvm_vcpu *vcpu)
2674 {
2675         unsigned long flags;
2676         struct vcpu_vmx *vmx = to_vmx(vcpu);
2677
2678         /*
2679          * Update real mode segment cache. It may be not up-to-date if sement
2680          * register was written while vcpu was in a guest mode.
2681          */
2682         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2683         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2684         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2685         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2686         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2687         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2688
2689         vmx->rmode.vm86_active = 0;
2690
2691         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2692
2693         flags = vmcs_readl(GUEST_RFLAGS);
2694         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2695         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2696         vmcs_writel(GUEST_RFLAGS, flags);
2697
2698         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2699                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2700
2701         update_exception_bitmap(vcpu);
2702
2703         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2704         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2705         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2706         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2707         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2708         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2709 }
2710
2711 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2712 {
2713         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2714         struct kvm_segment var = *save;
2715
2716         var.dpl = 0x3;
2717         if (seg == VCPU_SREG_CS)
2718                 var.type = 0x3;
2719
2720         if (!emulate_invalid_guest_state) {
2721                 var.selector = var.base >> 4;
2722                 var.base = var.base & 0xffff0;
2723                 var.limit = 0xffff;
2724                 var.g = 0;
2725                 var.db = 0;
2726                 var.present = 1;
2727                 var.s = 1;
2728                 var.l = 0;
2729                 var.unusable = 0;
2730                 var.type = 0x3;
2731                 var.avl = 0;
2732                 if (save->base & 0xf)
2733                         printk_once(KERN_WARNING "kvm: segment base is not "
2734                                         "paragraph aligned when entering "
2735                                         "protected mode (seg=%d)", seg);
2736         }
2737
2738         vmcs_write16(sf->selector, var.selector);
2739         vmcs_writel(sf->base, var.base);
2740         vmcs_write32(sf->limit, var.limit);
2741         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2742 }
2743
2744 static void enter_rmode(struct kvm_vcpu *vcpu)
2745 {
2746         unsigned long flags;
2747         struct vcpu_vmx *vmx = to_vmx(vcpu);
2748         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2749
2750         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2751         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2752         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2753         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2754         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2755         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2756         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2757
2758         vmx->rmode.vm86_active = 1;
2759
2760         /*
2761          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2762          * vcpu. Warn the user that an update is overdue.
2763          */
2764         if (!kvm_vmx->tss_addr)
2765                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2766                              "called before entering vcpu\n");
2767
2768         vmx_segment_cache_clear(vmx);
2769
2770         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2771         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2772         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2773
2774         flags = vmcs_readl(GUEST_RFLAGS);
2775         vmx->rmode.save_rflags = flags;
2776
2777         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2778
2779         vmcs_writel(GUEST_RFLAGS, flags);
2780         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2781         update_exception_bitmap(vcpu);
2782
2783         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2784         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2785         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2786         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2787         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2788         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2789
2790         kvm_mmu_reset_context(vcpu);
2791 }
2792
2793 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2794 {
2795         struct vcpu_vmx *vmx = to_vmx(vcpu);
2796         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2797
2798         if (!msr)
2799                 return;
2800
2801         vcpu->arch.efer = efer;
2802         if (efer & EFER_LMA) {
2803                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2804                 msr->data = efer;
2805         } else {
2806                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2807
2808                 msr->data = efer & ~EFER_LME;
2809         }
2810         setup_msrs(vmx);
2811 }
2812
2813 #ifdef CONFIG_X86_64
2814
2815 static void enter_lmode(struct kvm_vcpu *vcpu)
2816 {
2817         u32 guest_tr_ar;
2818
2819         vmx_segment_cache_clear(to_vmx(vcpu));
2820
2821         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2822         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2823                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2824                                      __func__);
2825                 vmcs_write32(GUEST_TR_AR_BYTES,
2826                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2827                              | VMX_AR_TYPE_BUSY_64_TSS);
2828         }
2829         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2830 }
2831
2832 static void exit_lmode(struct kvm_vcpu *vcpu)
2833 {
2834         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2835         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2836 }
2837
2838 #endif
2839
2840 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2841 {
2842         int vpid = to_vmx(vcpu)->vpid;
2843
2844         if (!vpid_sync_vcpu_addr(vpid, addr))
2845                 vpid_sync_context(vpid);
2846
2847         /*
2848          * If VPIDs are not supported or enabled, then the above is a no-op.
2849          * But we don't really need a TLB flush in that case anyway, because
2850          * each VM entry/exit includes an implicit flush when VPID is 0.
2851          */
2852 }
2853
2854 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2855 {
2856         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2857
2858         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2859         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2860 }
2861
2862 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2863 {
2864         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2865
2866         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2867         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2868 }
2869
2870 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2871 {
2872         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2873
2874         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2875                 return;
2876
2877         if (is_pae_paging(vcpu)) {
2878                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2879                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2880                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2881                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2882         }
2883 }
2884
2885 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2886 {
2887         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2888
2889         if (is_pae_paging(vcpu)) {
2890                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2891                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2892                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2893                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2894         }
2895
2896         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2897 }
2898
2899 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2900                                         unsigned long cr0,
2901                                         struct kvm_vcpu *vcpu)
2902 {
2903         struct vcpu_vmx *vmx = to_vmx(vcpu);
2904
2905         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2906                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2907         if (!(cr0 & X86_CR0_PG)) {
2908                 /* From paging/starting to nonpaging */
2909                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2910                                           CPU_BASED_CR3_STORE_EXITING);
2911                 vcpu->arch.cr0 = cr0;
2912                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2913         } else if (!is_paging(vcpu)) {
2914                 /* From nonpaging to paging */
2915                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2916                                             CPU_BASED_CR3_STORE_EXITING);
2917                 vcpu->arch.cr0 = cr0;
2918                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2919         }
2920
2921         if (!(cr0 & X86_CR0_WP))
2922                 *hw_cr0 &= ~X86_CR0_WP;
2923 }
2924
2925 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2926 {
2927         struct vcpu_vmx *vmx = to_vmx(vcpu);
2928         unsigned long hw_cr0;
2929
2930         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2931         if (enable_unrestricted_guest)
2932                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2933         else {
2934                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2935
2936                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2937                         enter_pmode(vcpu);
2938
2939                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2940                         enter_rmode(vcpu);
2941         }
2942
2943 #ifdef CONFIG_X86_64
2944         if (vcpu->arch.efer & EFER_LME) {
2945                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2946                         enter_lmode(vcpu);
2947                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2948                         exit_lmode(vcpu);
2949         }
2950 #endif
2951
2952         if (enable_ept && !enable_unrestricted_guest)
2953                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2954
2955         vmcs_writel(CR0_READ_SHADOW, cr0);
2956         vmcs_writel(GUEST_CR0, hw_cr0);
2957         vcpu->arch.cr0 = cr0;
2958
2959         /* depends on vcpu->arch.cr0 to be set to a new value */
2960         vmx->emulation_required = emulation_required(vcpu);
2961 }
2962
2963 static int get_ept_level(struct kvm_vcpu *vcpu)
2964 {
2965         if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
2966                 return vmx_eptp_page_walk_level(nested_ept_get_eptp(vcpu));
2967         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2968                 return 5;
2969         return 4;
2970 }
2971
2972 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2973 {
2974         u64 eptp = VMX_EPTP_MT_WB;
2975
2976         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2977
2978         if (enable_ept_ad_bits &&
2979             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2980                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2981         eptp |= (root_hpa & PAGE_MASK);
2982
2983         return eptp;
2984 }
2985
2986 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long cr3)
2987 {
2988         struct kvm *kvm = vcpu->kvm;
2989         bool update_guest_cr3 = true;
2990         unsigned long guest_cr3;
2991         u64 eptp;
2992
2993         guest_cr3 = cr3;
2994         if (enable_ept) {
2995                 eptp = construct_eptp(vcpu, cr3);
2996                 vmcs_write64(EPT_POINTER, eptp);
2997
2998                 if (kvm_x86_ops.tlb_remote_flush) {
2999                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3000                         to_vmx(vcpu)->ept_pointer = eptp;
3001                         to_kvm_vmx(kvm)->ept_pointers_match
3002                                 = EPT_POINTERS_CHECK;
3003                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3004                 }
3005
3006                 /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3007                 if (is_guest_mode(vcpu))
3008                         update_guest_cr3 = false;
3009                 else if (!enable_unrestricted_guest && !is_paging(vcpu))
3010                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3011                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3012                         guest_cr3 = vcpu->arch.cr3;
3013                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3014                         update_guest_cr3 = false;
3015                 ept_load_pdptrs(vcpu);
3016         }
3017
3018         if (update_guest_cr3)
3019                 vmcs_writel(GUEST_CR3, guest_cr3);
3020 }
3021
3022 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3023 {
3024         struct vcpu_vmx *vmx = to_vmx(vcpu);
3025         /*
3026          * Pass through host's Machine Check Enable value to hw_cr4, which
3027          * is in force while we are in guest mode.  Do not let guests control
3028          * this bit, even if host CR4.MCE == 0.
3029          */
3030         unsigned long hw_cr4;
3031
3032         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3033         if (enable_unrestricted_guest)
3034                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3035         else if (vmx->rmode.vm86_active)
3036                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3037         else
3038                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3039
3040         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3041                 if (cr4 & X86_CR4_UMIP) {
3042                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3043                         hw_cr4 &= ~X86_CR4_UMIP;
3044                 } else if (!is_guest_mode(vcpu) ||
3045                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3046                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3047                 }
3048         }
3049
3050         if (cr4 & X86_CR4_VMXE) {
3051                 /*
3052                  * To use VMXON (and later other VMX instructions), a guest
3053                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3054                  * So basically the check on whether to allow nested VMX
3055                  * is here.  We operate under the default treatment of SMM,
3056                  * so VMX cannot be enabled under SMM.
3057                  */
3058                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3059                         return 1;
3060         }
3061
3062         if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3063                 return 1;
3064
3065         vcpu->arch.cr4 = cr4;
3066
3067         if (!enable_unrestricted_guest) {
3068                 if (enable_ept) {
3069                         if (!is_paging(vcpu)) {
3070                                 hw_cr4 &= ~X86_CR4_PAE;
3071                                 hw_cr4 |= X86_CR4_PSE;
3072                         } else if (!(cr4 & X86_CR4_PAE)) {
3073                                 hw_cr4 &= ~X86_CR4_PAE;
3074                         }
3075                 }
3076
3077                 /*
3078                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3079                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3080                  * to be manually disabled when guest switches to non-paging
3081                  * mode.
3082                  *
3083                  * If !enable_unrestricted_guest, the CPU is always running
3084                  * with CR0.PG=1 and CR4 needs to be modified.
3085                  * If enable_unrestricted_guest, the CPU automatically
3086                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3087                  */
3088                 if (!is_paging(vcpu))
3089                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3090         }
3091
3092         vmcs_writel(CR4_READ_SHADOW, cr4);
3093         vmcs_writel(GUEST_CR4, hw_cr4);
3094         return 0;
3095 }
3096
3097 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3098 {
3099         struct vcpu_vmx *vmx = to_vmx(vcpu);
3100         u32 ar;
3101
3102         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3103                 *var = vmx->rmode.segs[seg];
3104                 if (seg == VCPU_SREG_TR
3105                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3106                         return;
3107                 var->base = vmx_read_guest_seg_base(vmx, seg);
3108                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3109                 return;
3110         }
3111         var->base = vmx_read_guest_seg_base(vmx, seg);
3112         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3113         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3114         ar = vmx_read_guest_seg_ar(vmx, seg);
3115         var->unusable = (ar >> 16) & 1;
3116         var->type = ar & 15;
3117         var->s = (ar >> 4) & 1;
3118         var->dpl = (ar >> 5) & 3;
3119         /*
3120          * Some userspaces do not preserve unusable property. Since usable
3121          * segment has to be present according to VMX spec we can use present
3122          * property to amend userspace bug by making unusable segment always
3123          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3124          * segment as unusable.
3125          */
3126         var->present = !var->unusable;
3127         var->avl = (ar >> 12) & 1;
3128         var->l = (ar >> 13) & 1;
3129         var->db = (ar >> 14) & 1;
3130         var->g = (ar >> 15) & 1;
3131 }
3132
3133 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3134 {
3135         struct kvm_segment s;
3136
3137         if (to_vmx(vcpu)->rmode.vm86_active) {
3138                 vmx_get_segment(vcpu, &s, seg);
3139                 return s.base;
3140         }
3141         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3142 }
3143
3144 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3145 {
3146         struct vcpu_vmx *vmx = to_vmx(vcpu);
3147
3148         if (unlikely(vmx->rmode.vm86_active))
3149                 return 0;
3150         else {
3151                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3152                 return VMX_AR_DPL(ar);
3153         }
3154 }
3155
3156 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3157 {
3158         u32 ar;
3159
3160         if (var->unusable || !var->present)
3161                 ar = 1 << 16;
3162         else {
3163                 ar = var->type & 15;
3164                 ar |= (var->s & 1) << 4;
3165                 ar |= (var->dpl & 3) << 5;
3166                 ar |= (var->present & 1) << 7;
3167                 ar |= (var->avl & 1) << 12;
3168                 ar |= (var->l & 1) << 13;
3169                 ar |= (var->db & 1) << 14;
3170                 ar |= (var->g & 1) << 15;
3171         }
3172
3173         return ar;
3174 }
3175
3176 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3177 {
3178         struct vcpu_vmx *vmx = to_vmx(vcpu);
3179         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3180
3181         vmx_segment_cache_clear(vmx);
3182
3183         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3184                 vmx->rmode.segs[seg] = *var;
3185                 if (seg == VCPU_SREG_TR)
3186                         vmcs_write16(sf->selector, var->selector);
3187                 else if (var->s)
3188                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3189                 goto out;
3190         }
3191
3192         vmcs_writel(sf->base, var->base);
3193         vmcs_write32(sf->limit, var->limit);
3194         vmcs_write16(sf->selector, var->selector);
3195
3196         /*
3197          *   Fix the "Accessed" bit in AR field of segment registers for older
3198          * qemu binaries.
3199          *   IA32 arch specifies that at the time of processor reset the
3200          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3201          * is setting it to 0 in the userland code. This causes invalid guest
3202          * state vmexit when "unrestricted guest" mode is turned on.
3203          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3204          * tree. Newer qemu binaries with that qemu fix would not need this
3205          * kvm hack.
3206          */
3207         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3208                 var->type |= 0x1; /* Accessed */
3209
3210         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3211
3212 out:
3213         vmx->emulation_required = emulation_required(vcpu);
3214 }
3215
3216 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3217 {
3218         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3219
3220         *db = (ar >> 14) & 1;
3221         *l = (ar >> 13) & 1;
3222 }
3223
3224 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3225 {
3226         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3227         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3228 }
3229
3230 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3231 {
3232         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3233         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3234 }
3235
3236 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3237 {
3238         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3239         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3240 }
3241
3242 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3243 {
3244         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3245         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3246 }
3247
3248 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3249 {
3250         struct kvm_segment var;
3251         u32 ar;
3252
3253         vmx_get_segment(vcpu, &var, seg);
3254         var.dpl = 0x3;
3255         if (seg == VCPU_SREG_CS)
3256                 var.type = 0x3;
3257         ar = vmx_segment_access_rights(&var);
3258
3259         if (var.base != (var.selector << 4))
3260                 return false;
3261         if (var.limit != 0xffff)
3262                 return false;
3263         if (ar != 0xf3)
3264                 return false;
3265
3266         return true;
3267 }
3268
3269 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3270 {
3271         struct kvm_segment cs;
3272         unsigned int cs_rpl;
3273
3274         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3275         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3276
3277         if (cs.unusable)
3278                 return false;
3279         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3280                 return false;
3281         if (!cs.s)
3282                 return false;
3283         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3284                 if (cs.dpl > cs_rpl)
3285                         return false;
3286         } else {
3287                 if (cs.dpl != cs_rpl)
3288                         return false;
3289         }
3290         if (!cs.present)
3291                 return false;
3292
3293         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3294         return true;
3295 }
3296
3297 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3298 {
3299         struct kvm_segment ss;
3300         unsigned int ss_rpl;
3301
3302         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3303         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3304
3305         if (ss.unusable)
3306                 return true;
3307         if (ss.type != 3 && ss.type != 7)
3308                 return false;
3309         if (!ss.s)
3310                 return false;
3311         if (ss.dpl != ss_rpl) /* DPL != RPL */
3312                 return false;
3313         if (!ss.present)
3314                 return false;
3315
3316         return true;
3317 }
3318
3319 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3320 {
3321         struct kvm_segment var;
3322         unsigned int rpl;
3323
3324         vmx_get_segment(vcpu, &var, seg);
3325         rpl = var.selector & SEGMENT_RPL_MASK;
3326
3327         if (var.unusable)
3328                 return true;
3329         if (!var.s)
3330                 return false;
3331         if (!var.present)
3332                 return false;
3333         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3334                 if (var.dpl < rpl) /* DPL < RPL */
3335                         return false;
3336         }
3337
3338         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3339          * rights flags
3340          */
3341         return true;
3342 }
3343
3344 static bool tr_valid(struct kvm_vcpu *vcpu)
3345 {
3346         struct kvm_segment tr;
3347
3348         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3349
3350         if (tr.unusable)
3351                 return false;
3352         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3353                 return false;
3354         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3355                 return false;
3356         if (!tr.present)
3357                 return false;
3358
3359         return true;
3360 }
3361
3362 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3363 {
3364         struct kvm_segment ldtr;
3365
3366         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3367
3368         if (ldtr.unusable)
3369                 return true;
3370         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3371                 return false;
3372         if (ldtr.type != 2)
3373                 return false;
3374         if (!ldtr.present)
3375                 return false;
3376
3377         return true;
3378 }
3379
3380 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3381 {
3382         struct kvm_segment cs, ss;
3383
3384         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3385         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3386
3387         return ((cs.selector & SEGMENT_RPL_MASK) ==
3388                  (ss.selector & SEGMENT_RPL_MASK));
3389 }
3390
3391 /*
3392  * Check if guest state is valid. Returns true if valid, false if
3393  * not.
3394  * We assume that registers are always usable
3395  */
3396 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3397 {
3398         if (enable_unrestricted_guest)
3399                 return true;
3400
3401         /* real mode guest state checks */
3402         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3403                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3404                         return false;
3405                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3406                         return false;
3407                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3408                         return false;
3409                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3410                         return false;
3411                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3412                         return false;
3413                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3414                         return false;
3415         } else {
3416         /* protected mode guest state checks */
3417                 if (!cs_ss_rpl_check(vcpu))
3418                         return false;
3419                 if (!code_segment_valid(vcpu))
3420                         return false;
3421                 if (!stack_segment_valid(vcpu))
3422                         return false;
3423                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3424                         return false;
3425                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3426                         return false;
3427                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3428                         return false;
3429                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3430                         return false;
3431                 if (!tr_valid(vcpu))
3432                         return false;
3433                 if (!ldtr_valid(vcpu))
3434                         return false;
3435         }
3436         /* TODO:
3437          * - Add checks on RIP
3438          * - Add checks on RFLAGS
3439          */
3440
3441         return true;
3442 }
3443
3444 static int init_rmode_tss(struct kvm *kvm)
3445 {
3446         gfn_t fn;
3447         u16 data = 0;
3448         int idx, r;
3449
3450         idx = srcu_read_lock(&kvm->srcu);
3451         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3452         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3453         if (r < 0)
3454                 goto out;
3455         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3456         r = kvm_write_guest_page(kvm, fn++, &data,
3457                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3458         if (r < 0)
3459                 goto out;
3460         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3461         if (r < 0)
3462                 goto out;
3463         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3464         if (r < 0)
3465                 goto out;
3466         data = ~0;
3467         r = kvm_write_guest_page(kvm, fn, &data,
3468                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3469                                  sizeof(u8));
3470 out:
3471         srcu_read_unlock(&kvm->srcu, idx);
3472         return r;
3473 }
3474
3475 static int init_rmode_identity_map(struct kvm *kvm)
3476 {
3477         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3478         int i, r = 0;
3479         kvm_pfn_t identity_map_pfn;
3480         u32 tmp;
3481
3482         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3483         mutex_lock(&kvm->slots_lock);
3484
3485         if (likely(kvm_vmx->ept_identity_pagetable_done))
3486                 goto out;
3487
3488         if (!kvm_vmx->ept_identity_map_addr)
3489                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3490         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3491
3492         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3493                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3494         if (r < 0)
3495                 goto out;
3496
3497         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3498         if (r < 0)
3499                 goto out;
3500         /* Set up identity-mapping pagetable for EPT in real mode */
3501         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3502                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3503                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3504                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3505                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3506                 if (r < 0)
3507                         goto out;
3508         }
3509         kvm_vmx->ept_identity_pagetable_done = true;
3510
3511 out:
3512         mutex_unlock(&kvm->slots_lock);
3513         return r;
3514 }
3515
3516 static void seg_setup(int seg)
3517 {
3518         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3519         unsigned int ar;
3520
3521         vmcs_write16(sf->selector, 0);
3522         vmcs_writel(sf->base, 0);
3523         vmcs_write32(sf->limit, 0xffff);
3524         ar = 0x93;
3525         if (seg == VCPU_SREG_CS)
3526                 ar |= 0x08; /* code segment */
3527
3528         vmcs_write32(sf->ar_bytes, ar);
3529 }
3530
3531 static int alloc_apic_access_page(struct kvm *kvm)
3532 {
3533         struct page *page;
3534         int r = 0;
3535
3536         mutex_lock(&kvm->slots_lock);
3537         if (kvm->arch.apic_access_page_done)
3538                 goto out;
3539         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3540                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3541         if (r)
3542                 goto out;
3543
3544         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3545         if (is_error_page(page)) {
3546                 r = -EFAULT;
3547                 goto out;
3548         }
3549
3550         /*
3551          * Do not pin the page in memory, so that memory hot-unplug
3552          * is able to migrate it.
3553          */
3554         put_page(page);
3555         kvm->arch.apic_access_page_done = true;
3556 out:
3557         mutex_unlock(&kvm->slots_lock);
3558         return r;
3559 }
3560
3561 int allocate_vpid(void)
3562 {
3563         int vpid;
3564
3565         if (!enable_vpid)
3566                 return 0;
3567         spin_lock(&vmx_vpid_lock);
3568         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3569         if (vpid < VMX_NR_VPIDS)
3570                 __set_bit(vpid, vmx_vpid_bitmap);
3571         else
3572                 vpid = 0;
3573         spin_unlock(&vmx_vpid_lock);
3574         return vpid;
3575 }
3576
3577 void free_vpid(int vpid)
3578 {
3579         if (!enable_vpid || vpid == 0)
3580                 return;
3581         spin_lock(&vmx_vpid_lock);
3582         __clear_bit(vpid, vmx_vpid_bitmap);
3583         spin_unlock(&vmx_vpid_lock);
3584 }
3585
3586 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3587                                                           u32 msr, int type)
3588 {
3589         int f = sizeof(unsigned long);
3590
3591         if (!cpu_has_vmx_msr_bitmap())
3592                 return;
3593
3594         if (static_branch_unlikely(&enable_evmcs))
3595                 evmcs_touch_msr_bitmap();
3596
3597         /*
3598          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3599          * have the write-low and read-high bitmap offsets the wrong way round.
3600          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3601          */
3602         if (msr <= 0x1fff) {
3603                 if (type & MSR_TYPE_R)
3604                         /* read-low */
3605                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3606
3607                 if (type & MSR_TYPE_W)
3608                         /* write-low */
3609                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3610
3611         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3612                 msr &= 0x1fff;
3613                 if (type & MSR_TYPE_R)
3614                         /* read-high */
3615                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3616
3617                 if (type & MSR_TYPE_W)
3618                         /* write-high */
3619                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3620
3621         }
3622 }
3623
3624 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3625                                                          u32 msr, int type)
3626 {
3627         int f = sizeof(unsigned long);
3628
3629         if (!cpu_has_vmx_msr_bitmap())
3630                 return;
3631
3632         if (static_branch_unlikely(&enable_evmcs))
3633                 evmcs_touch_msr_bitmap();
3634
3635         /*
3636          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3637          * have the write-low and read-high bitmap offsets the wrong way round.
3638          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3639          */
3640         if (msr <= 0x1fff) {
3641                 if (type & MSR_TYPE_R)
3642                         /* read-low */
3643                         __set_bit(msr, msr_bitmap + 0x000 / f);
3644
3645                 if (type & MSR_TYPE_W)
3646                         /* write-low */
3647                         __set_bit(msr, msr_bitmap + 0x800 / f);
3648
3649         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3650                 msr &= 0x1fff;
3651                 if (type & MSR_TYPE_R)
3652                         /* read-high */
3653                         __set_bit(msr, msr_bitmap + 0x400 / f);
3654
3655                 if (type & MSR_TYPE_W)
3656                         /* write-high */
3657                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3658
3659         }
3660 }
3661
3662 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3663                                                       u32 msr, int type, bool value)
3664 {
3665         if (value)
3666                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3667         else
3668                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3669 }
3670
3671 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3672 {
3673         u8 mode = 0;
3674
3675         if (cpu_has_secondary_exec_ctrls() &&
3676             (secondary_exec_controls_get(to_vmx(vcpu)) &
3677              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3678                 mode |= MSR_BITMAP_MODE_X2APIC;
3679                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3680                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3681         }
3682
3683         return mode;
3684 }
3685
3686 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3687                                          u8 mode)
3688 {
3689         int msr;
3690
3691         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3692                 unsigned word = msr / BITS_PER_LONG;
3693                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3694                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3695         }
3696
3697         if (mode & MSR_BITMAP_MODE_X2APIC) {
3698                 /*
3699                  * TPR reads and writes can be virtualized even if virtual interrupt
3700                  * delivery is not in use.
3701                  */
3702                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3703                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3704                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3705                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3706                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3707                 }
3708         }
3709 }
3710
3711 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3712 {
3713         struct vcpu_vmx *vmx = to_vmx(vcpu);
3714         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3715         u8 mode = vmx_msr_bitmap_mode(vcpu);
3716         u8 changed = mode ^ vmx->msr_bitmap_mode;
3717
3718         if (!changed)
3719                 return;
3720
3721         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3722                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3723
3724         vmx->msr_bitmap_mode = mode;
3725 }
3726
3727 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3728 {
3729         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3730         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3731         u32 i;
3732
3733         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3734                                                         MSR_TYPE_RW, flag);
3735         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3736                                                         MSR_TYPE_RW, flag);
3737         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3738                                                         MSR_TYPE_RW, flag);
3739         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3740                                                         MSR_TYPE_RW, flag);
3741         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3742                 vmx_set_intercept_for_msr(msr_bitmap,
3743                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3744                 vmx_set_intercept_for_msr(msr_bitmap,
3745                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3746         }
3747 }
3748
3749 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3750 {
3751         struct vcpu_vmx *vmx = to_vmx(vcpu);
3752         void *vapic_page;
3753         u32 vppr;
3754         int rvi;
3755
3756         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3757                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3758                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3759                 return false;
3760
3761         rvi = vmx_get_rvi();
3762
3763         vapic_page = vmx->nested.virtual_apic_map.hva;
3764         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3765
3766         return ((rvi & 0xf0) > (vppr & 0xf0));
3767 }
3768
3769 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3770                                                      bool nested)
3771 {
3772 #ifdef CONFIG_SMP
3773         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3774
3775         if (vcpu->mode == IN_GUEST_MODE) {
3776                 /*
3777                  * The vector of interrupt to be delivered to vcpu had
3778                  * been set in PIR before this function.
3779                  *
3780                  * Following cases will be reached in this block, and
3781                  * we always send a notification event in all cases as
3782                  * explained below.
3783                  *
3784                  * Case 1: vcpu keeps in non-root mode. Sending a
3785                  * notification event posts the interrupt to vcpu.
3786                  *
3787                  * Case 2: vcpu exits to root mode and is still
3788                  * runnable. PIR will be synced to vIRR before the
3789                  * next vcpu entry. Sending a notification event in
3790                  * this case has no effect, as vcpu is not in root
3791                  * mode.
3792                  *
3793                  * Case 3: vcpu exits to root mode and is blocked.
3794                  * vcpu_block() has already synced PIR to vIRR and
3795                  * never blocks vcpu if vIRR is not cleared. Therefore,
3796                  * a blocked vcpu here does not wait for any requested
3797                  * interrupts in PIR, and sending a notification event
3798                  * which has no effect is safe here.
3799                  */
3800
3801                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3802                 return true;
3803         }
3804 #endif
3805         return false;
3806 }
3807
3808 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3809                                                 int vector)
3810 {
3811         struct vcpu_vmx *vmx = to_vmx(vcpu);
3812
3813         if (is_guest_mode(vcpu) &&
3814             vector == vmx->nested.posted_intr_nv) {
3815                 /*
3816                  * If a posted intr is not recognized by hardware,
3817                  * we will accomplish it in the next vmentry.
3818                  */
3819                 vmx->nested.pi_pending = true;
3820                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3821                 /* the PIR and ON have been set by L1. */
3822                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3823                         kvm_vcpu_kick(vcpu);
3824                 return 0;
3825         }
3826         return -1;
3827 }
3828 /*
3829  * Send interrupt to vcpu via posted interrupt way.
3830  * 1. If target vcpu is running(non-root mode), send posted interrupt
3831  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3832  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3833  * interrupt from PIR in next vmentry.
3834  */
3835 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3836 {
3837         struct vcpu_vmx *vmx = to_vmx(vcpu);
3838         int r;
3839
3840         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3841         if (!r)
3842                 return 0;
3843
3844         if (!vcpu->arch.apicv_active)
3845                 return -1;
3846
3847         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3848                 return 0;
3849
3850         /* If a previous notification has sent the IPI, nothing to do.  */
3851         if (pi_test_and_set_on(&vmx->pi_desc))
3852                 return 0;
3853
3854         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3855                 kvm_vcpu_kick(vcpu);
3856
3857         return 0;
3858 }
3859
3860 /*
3861  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3862  * will not change in the lifetime of the guest.
3863  * Note that host-state that does change is set elsewhere. E.g., host-state
3864  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3865  */
3866 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3867 {
3868         u32 low32, high32;
3869         unsigned long tmpl;
3870         unsigned long cr0, cr3, cr4;
3871
3872         cr0 = read_cr0();
3873         WARN_ON(cr0 & X86_CR0_TS);
3874         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3875
3876         /*
3877          * Save the most likely value for this task's CR3 in the VMCS.
3878          * We can't use __get_current_cr3_fast() because we're not atomic.
3879          */
3880         cr3 = __read_cr3();
3881         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3882         vmx->loaded_vmcs->host_state.cr3 = cr3;
3883
3884         /* Save the most likely value for this task's CR4 in the VMCS. */
3885         cr4 = cr4_read_shadow();
3886         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3887         vmx->loaded_vmcs->host_state.cr4 = cr4;
3888
3889         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3890 #ifdef CONFIG_X86_64
3891         /*
3892          * Load null selectors, so we can avoid reloading them in
3893          * vmx_prepare_switch_to_host(), in case userspace uses
3894          * the null selectors too (the expected case).
3895          */
3896         vmcs_write16(HOST_DS_SELECTOR, 0);
3897         vmcs_write16(HOST_ES_SELECTOR, 0);
3898 #else
3899         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3900         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3901 #endif
3902         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3903         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3904
3905         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3906
3907         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3908
3909         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3910         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3911         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3912         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3913
3914         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3915                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3916                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3917         }
3918
3919         if (cpu_has_load_ia32_efer())
3920                 vmcs_write64(HOST_IA32_EFER, host_efer);
3921 }
3922
3923 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3924 {
3925         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3926         if (enable_ept)
3927                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3928         if (is_guest_mode(&vmx->vcpu))
3929                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3930                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3931         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3932 }
3933
3934 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3935 {
3936         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3937
3938         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3939                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3940
3941         if (!enable_vnmi)
3942                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3943
3944         if (!enable_preemption_timer)
3945                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3946
3947         return pin_based_exec_ctrl;
3948 }
3949
3950 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3951 {
3952         struct vcpu_vmx *vmx = to_vmx(vcpu);
3953
3954         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3955         if (cpu_has_secondary_exec_ctrls()) {
3956                 if (kvm_vcpu_apicv_active(vcpu))
3957                         secondary_exec_controls_setbit(vmx,
3958                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
3959                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3960                 else
3961                         secondary_exec_controls_clearbit(vmx,
3962                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3963                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3964         }
3965
3966         if (cpu_has_vmx_msr_bitmap())
3967                 vmx_update_msr_bitmap(vcpu);
3968 }
3969
3970 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3971 {
3972         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3973
3974         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3975                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3976
3977         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3978                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3979 #ifdef CONFIG_X86_64
3980                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3981                                 CPU_BASED_CR8_LOAD_EXITING;
3982 #endif
3983         }
3984         if (!enable_ept)
3985                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3986                                 CPU_BASED_CR3_LOAD_EXITING  |
3987                                 CPU_BASED_INVLPG_EXITING;
3988         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3989                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3990                                 CPU_BASED_MONITOR_EXITING);
3991         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3992                 exec_control &= ~CPU_BASED_HLT_EXITING;
3993         return exec_control;
3994 }
3995
3996
3997 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3998 {
3999         struct kvm_vcpu *vcpu = &vmx->vcpu;
4000
4001         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4002
4003         if (vmx_pt_mode_is_system())
4004                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4005         if (!cpu_need_virtualize_apic_accesses(vcpu))
4006                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4007         if (vmx->vpid == 0)
4008                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4009         if (!enable_ept) {
4010                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4011                 enable_unrestricted_guest = 0;
4012         }
4013         if (!enable_unrestricted_guest)
4014                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4015         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4016                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4017         if (!kvm_vcpu_apicv_active(vcpu))
4018                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4019                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4020         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4021
4022         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4023          * in vmx_set_cr4.  */
4024         exec_control &= ~SECONDARY_EXEC_DESC;
4025
4026         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4027            (handle_vmptrld).
4028            We can NOT enable shadow_vmcs here because we don't have yet
4029            a current VMCS12
4030         */
4031         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4032
4033         if (!enable_pml)
4034                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4035
4036         if (vmx_xsaves_supported()) {
4037                 /* Exposing XSAVES only when XSAVE is exposed */
4038                 bool xsaves_enabled =
4039                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4040                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4041                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4042
4043                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4044
4045                 if (!xsaves_enabled)
4046                         exec_control &= ~SECONDARY_EXEC_XSAVES;
4047
4048                 if (nested) {
4049                         if (xsaves_enabled)
4050                                 vmx->nested.msrs.secondary_ctls_high |=
4051                                         SECONDARY_EXEC_XSAVES;
4052                         else
4053                                 vmx->nested.msrs.secondary_ctls_high &=
4054                                         ~SECONDARY_EXEC_XSAVES;
4055                 }
4056         }
4057
4058         if (cpu_has_vmx_rdtscp()) {
4059                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4060                 if (!rdtscp_enabled)
4061                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
4062
4063                 if (nested) {
4064                         if (rdtscp_enabled)
4065                                 vmx->nested.msrs.secondary_ctls_high |=
4066                                         SECONDARY_EXEC_RDTSCP;
4067                         else
4068                                 vmx->nested.msrs.secondary_ctls_high &=
4069                                         ~SECONDARY_EXEC_RDTSCP;
4070                 }
4071         }
4072
4073         if (cpu_has_vmx_invpcid()) {
4074                 /* Exposing INVPCID only when PCID is exposed */
4075                 bool invpcid_enabled =
4076                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4077                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4078
4079                 if (!invpcid_enabled) {
4080                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4081                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4082                 }
4083
4084                 if (nested) {
4085                         if (invpcid_enabled)
4086                                 vmx->nested.msrs.secondary_ctls_high |=
4087                                         SECONDARY_EXEC_ENABLE_INVPCID;
4088                         else
4089                                 vmx->nested.msrs.secondary_ctls_high &=
4090                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
4091                 }
4092         }
4093
4094         if (vmx_rdrand_supported()) {
4095                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4096                 if (rdrand_enabled)
4097                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4098
4099                 if (nested) {
4100                         if (rdrand_enabled)
4101                                 vmx->nested.msrs.secondary_ctls_high |=
4102                                         SECONDARY_EXEC_RDRAND_EXITING;
4103                         else
4104                                 vmx->nested.msrs.secondary_ctls_high &=
4105                                         ~SECONDARY_EXEC_RDRAND_EXITING;
4106                 }
4107         }
4108
4109         if (vmx_rdseed_supported()) {
4110                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4111                 if (rdseed_enabled)
4112                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4113
4114                 if (nested) {
4115                         if (rdseed_enabled)
4116                                 vmx->nested.msrs.secondary_ctls_high |=
4117                                         SECONDARY_EXEC_RDSEED_EXITING;
4118                         else
4119                                 vmx->nested.msrs.secondary_ctls_high &=
4120                                         ~SECONDARY_EXEC_RDSEED_EXITING;
4121                 }
4122         }
4123
4124         if (vmx_waitpkg_supported()) {
4125                 bool waitpkg_enabled =
4126                         guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4127
4128                 if (!waitpkg_enabled)
4129                         exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4130
4131                 if (nested) {
4132                         if (waitpkg_enabled)
4133                                 vmx->nested.msrs.secondary_ctls_high |=
4134                                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4135                         else
4136                                 vmx->nested.msrs.secondary_ctls_high &=
4137                                         ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4138                 }
4139         }
4140
4141         vmx->secondary_exec_control = exec_control;
4142 }
4143
4144 static void ept_set_mmio_spte_mask(void)
4145 {
4146         /*
4147          * EPT Misconfigurations can be generated if the value of bits 2:0
4148          * of an EPT paging-structure entry is 110b (write/execute).
4149          */
4150         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4151                                    VMX_EPT_MISCONFIG_WX_VALUE, 0);
4152 }
4153
4154 #define VMX_XSS_EXIT_BITMAP 0
4155
4156 /*
4157  * Noting that the initialization of Guest-state Area of VMCS is in
4158  * vmx_vcpu_reset().
4159  */
4160 static void init_vmcs(struct vcpu_vmx *vmx)
4161 {
4162         if (nested)
4163                 nested_vmx_set_vmcs_shadowing_bitmap();
4164
4165         if (cpu_has_vmx_msr_bitmap())
4166                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4167
4168         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4169
4170         /* Control */
4171         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4172
4173         exec_controls_set(vmx, vmx_exec_control(vmx));
4174
4175         if (cpu_has_secondary_exec_ctrls()) {
4176                 vmx_compute_secondary_exec_control(vmx);
4177                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4178         }
4179
4180         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4181                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4182                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4183                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4184                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4185
4186                 vmcs_write16(GUEST_INTR_STATUS, 0);
4187
4188                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4189                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4190         }
4191
4192         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4193                 vmcs_write32(PLE_GAP, ple_gap);
4194                 vmx->ple_window = ple_window;
4195                 vmx->ple_window_dirty = true;
4196         }
4197
4198         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4199         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4200         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4201
4202         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4203         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4204         vmx_set_constant_host_state(vmx);
4205         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4206         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4207
4208         if (cpu_has_vmx_vmfunc())
4209                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4210
4211         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4212         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4213         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4214         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4215         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4216
4217         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4218                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4219
4220         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4221
4222         /* 22.2.1, 20.8.1 */
4223         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4224
4225         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4226         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4227
4228         set_cr4_guest_host_mask(vmx);
4229
4230         if (vmx->vpid != 0)
4231                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4232
4233         if (vmx_xsaves_supported())
4234                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4235
4236         if (enable_pml) {
4237                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4238                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4239         }
4240
4241         if (cpu_has_vmx_encls_vmexit())
4242                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4243
4244         if (vmx_pt_mode_is_host_guest()) {
4245                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4246                 /* Bit[6~0] are forced to 1, writes are ignored. */
4247                 vmx->pt_desc.guest.output_mask = 0x7F;
4248                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4249         }
4250 }
4251
4252 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4253 {
4254         struct vcpu_vmx *vmx = to_vmx(vcpu);
4255         struct msr_data apic_base_msr;
4256         u64 cr0;
4257
4258         vmx->rmode.vm86_active = 0;
4259         vmx->spec_ctrl = 0;
4260
4261         vmx->msr_ia32_umwait_control = 0;
4262
4263         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4264         vmx->hv_deadline_tsc = -1;
4265         kvm_set_cr8(vcpu, 0);
4266
4267         if (!init_event) {
4268                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4269                                      MSR_IA32_APICBASE_ENABLE;
4270                 if (kvm_vcpu_is_reset_bsp(vcpu))
4271                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4272                 apic_base_msr.host_initiated = true;
4273                 kvm_set_apic_base(vcpu, &apic_base_msr);
4274         }
4275
4276         vmx_segment_cache_clear(vmx);
4277
4278         seg_setup(VCPU_SREG_CS);
4279         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4280         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4281
4282         seg_setup(VCPU_SREG_DS);
4283         seg_setup(VCPU_SREG_ES);
4284         seg_setup(VCPU_SREG_FS);
4285         seg_setup(VCPU_SREG_GS);
4286         seg_setup(VCPU_SREG_SS);
4287
4288         vmcs_write16(GUEST_TR_SELECTOR, 0);
4289         vmcs_writel(GUEST_TR_BASE, 0);
4290         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4291         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4292
4293         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4294         vmcs_writel(GUEST_LDTR_BASE, 0);
4295         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4296         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4297
4298         if (!init_event) {
4299                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4300                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4301                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4302                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4303         }
4304
4305         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4306         kvm_rip_write(vcpu, 0xfff0);
4307
4308         vmcs_writel(GUEST_GDTR_BASE, 0);
4309         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4310
4311         vmcs_writel(GUEST_IDTR_BASE, 0);
4312         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4313
4314         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4315         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4316         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4317         if (kvm_mpx_supported())
4318                 vmcs_write64(GUEST_BNDCFGS, 0);
4319
4320         setup_msrs(vmx);
4321
4322         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4323
4324         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4325                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4326                 if (cpu_need_tpr_shadow(vcpu))
4327                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4328                                      __pa(vcpu->arch.apic->regs));
4329                 vmcs_write32(TPR_THRESHOLD, 0);
4330         }
4331
4332         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4333
4334         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4335         vmx->vcpu.arch.cr0 = cr0;
4336         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4337         vmx_set_cr4(vcpu, 0);
4338         vmx_set_efer(vcpu, 0);
4339
4340         update_exception_bitmap(vcpu);
4341
4342         vpid_sync_context(vmx->vpid);
4343         if (init_event)
4344                 vmx_clear_hlt(vcpu);
4345 }
4346
4347 static void enable_irq_window(struct kvm_vcpu *vcpu)
4348 {
4349         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4350 }
4351
4352 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4353 {
4354         if (!enable_vnmi ||
4355             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4356                 enable_irq_window(vcpu);
4357                 return;
4358         }
4359
4360         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4361 }
4362
4363 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4364 {
4365         struct vcpu_vmx *vmx = to_vmx(vcpu);
4366         uint32_t intr;
4367         int irq = vcpu->arch.interrupt.nr;
4368
4369         trace_kvm_inj_virq(irq);
4370
4371         ++vcpu->stat.irq_injections;
4372         if (vmx->rmode.vm86_active) {
4373                 int inc_eip = 0;
4374                 if (vcpu->arch.interrupt.soft)
4375                         inc_eip = vcpu->arch.event_exit_inst_len;
4376                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4377                 return;
4378         }
4379         intr = irq | INTR_INFO_VALID_MASK;
4380         if (vcpu->arch.interrupt.soft) {
4381                 intr |= INTR_TYPE_SOFT_INTR;
4382                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4383                              vmx->vcpu.arch.event_exit_inst_len);
4384         } else
4385                 intr |= INTR_TYPE_EXT_INTR;
4386         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4387
4388         vmx_clear_hlt(vcpu);
4389 }
4390
4391 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4392 {
4393         struct vcpu_vmx *vmx = to_vmx(vcpu);
4394
4395         if (!enable_vnmi) {
4396                 /*
4397                  * Tracking the NMI-blocked state in software is built upon
4398                  * finding the next open IRQ window. This, in turn, depends on
4399                  * well-behaving guests: They have to keep IRQs disabled at
4400                  * least as long as the NMI handler runs. Otherwise we may
4401                  * cause NMI nesting, maybe breaking the guest. But as this is
4402                  * highly unlikely, we can live with the residual risk.
4403                  */
4404                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4405                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4406         }
4407
4408         ++vcpu->stat.nmi_injections;
4409         vmx->loaded_vmcs->nmi_known_unmasked = false;
4410
4411         if (vmx->rmode.vm86_active) {
4412                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4413                 return;
4414         }
4415
4416         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4417                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4418
4419         vmx_clear_hlt(vcpu);
4420 }
4421
4422 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4423 {
4424         struct vcpu_vmx *vmx = to_vmx(vcpu);
4425         bool masked;
4426
4427         if (!enable_vnmi)
4428                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4429         if (vmx->loaded_vmcs->nmi_known_unmasked)
4430                 return false;
4431         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4432         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4433         return masked;
4434 }
4435
4436 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4437 {
4438         struct vcpu_vmx *vmx = to_vmx(vcpu);
4439
4440         if (!enable_vnmi) {
4441                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4442                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4443                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4444                 }
4445         } else {
4446                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4447                 if (masked)
4448                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4449                                       GUEST_INTR_STATE_NMI);
4450                 else
4451                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4452                                         GUEST_INTR_STATE_NMI);
4453         }
4454 }
4455
4456 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4457 {
4458         if (to_vmx(vcpu)->nested.nested_run_pending)
4459                 return 0;
4460
4461         if (!enable_vnmi &&
4462             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4463                 return 0;
4464
4465         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4466                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4467                    | GUEST_INTR_STATE_NMI));
4468 }
4469
4470 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4471 {
4472         if (to_vmx(vcpu)->nested.nested_run_pending)
4473                 return false;
4474
4475         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4476                 return true;
4477
4478         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4479                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4480                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4481 }
4482
4483 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4484 {
4485         int ret;
4486
4487         if (enable_unrestricted_guest)
4488                 return 0;
4489
4490         mutex_lock(&kvm->slots_lock);
4491         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4492                                       PAGE_SIZE * 3);
4493         mutex_unlock(&kvm->slots_lock);
4494
4495         if (ret)
4496                 return ret;
4497         to_kvm_vmx(kvm)->tss_addr = addr;
4498         return init_rmode_tss(kvm);
4499 }
4500
4501 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4502 {
4503         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4504         return 0;
4505 }
4506
4507 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4508 {
4509         switch (vec) {
4510         case BP_VECTOR:
4511                 /*
4512                  * Update instruction length as we may reinject the exception
4513                  * from user space while in guest debugging mode.
4514                  */
4515                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4516                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4517                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4518                         return false;
4519                 /* fall through */
4520         case DB_VECTOR:
4521                 if (vcpu->guest_debug &
4522                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4523                         return false;
4524                 /* fall through */
4525         case DE_VECTOR:
4526         case OF_VECTOR:
4527         case BR_VECTOR:
4528         case UD_VECTOR:
4529         case DF_VECTOR:
4530         case SS_VECTOR:
4531         case GP_VECTOR:
4532         case MF_VECTOR:
4533                 return true;
4534         }
4535         return false;
4536 }
4537
4538 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4539                                   int vec, u32 err_code)
4540 {
4541         /*
4542          * Instruction with address size override prefix opcode 0x67
4543          * Cause the #SS fault with 0 error code in VM86 mode.
4544          */
4545         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4546                 if (kvm_emulate_instruction(vcpu, 0)) {
4547                         if (vcpu->arch.halt_request) {
4548                                 vcpu->arch.halt_request = 0;
4549                                 return kvm_vcpu_halt(vcpu);
4550                         }
4551                         return 1;
4552                 }
4553                 return 0;
4554         }
4555
4556         /*
4557          * Forward all other exceptions that are valid in real mode.
4558          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4559          *        the required debugging infrastructure rework.
4560          */
4561         kvm_queue_exception(vcpu, vec);
4562         return 1;
4563 }
4564
4565 /*
4566  * Trigger machine check on the host. We assume all the MSRs are already set up
4567  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4568  * We pass a fake environment to the machine check handler because we want
4569  * the guest to be always treated like user space, no matter what context
4570  * it used internally.
4571  */
4572 static void kvm_machine_check(void)
4573 {
4574 #if defined(CONFIG_X86_MCE)
4575         struct pt_regs regs = {
4576                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4577                 .flags = X86_EFLAGS_IF,
4578         };
4579
4580         do_machine_check(&regs, 0);
4581 #endif
4582 }
4583
4584 static int handle_machine_check(struct kvm_vcpu *vcpu)
4585 {
4586         /* handled by vmx_vcpu_run() */
4587         return 1;
4588 }
4589
4590 /*
4591  * If the host has split lock detection disabled, then #AC is
4592  * unconditionally injected into the guest, which is the pre split lock
4593  * detection behaviour.
4594  *
4595  * If the host has split lock detection enabled then #AC is
4596  * only injected into the guest when:
4597  *  - Guest CPL == 3 (user mode)
4598  *  - Guest has #AC detection enabled in CR0
4599  *  - Guest EFLAGS has AC bit set
4600  */
4601 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4602 {
4603         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4604                 return true;
4605
4606         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4607                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4608 }
4609
4610 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4611 {
4612         struct vcpu_vmx *vmx = to_vmx(vcpu);
4613         struct kvm_run *kvm_run = vcpu->run;
4614         u32 intr_info, ex_no, error_code;
4615         unsigned long cr2, rip, dr6;
4616         u32 vect_info;
4617
4618         vect_info = vmx->idt_vectoring_info;
4619         intr_info = vmx->exit_intr_info;
4620
4621         if (is_machine_check(intr_info) || is_nmi(intr_info))
4622                 return 1; /* handled by handle_exception_nmi_irqoff() */
4623
4624         if (is_invalid_opcode(intr_info))
4625                 return handle_ud(vcpu);
4626
4627         error_code = 0;
4628         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4629                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4630
4631         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4632                 WARN_ON_ONCE(!enable_vmware_backdoor);
4633
4634                 /*
4635                  * VMware backdoor emulation on #GP interception only handles
4636                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4637                  * error code on #GP.
4638                  */
4639                 if (error_code) {
4640                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4641                         return 1;
4642                 }
4643                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4644         }
4645
4646         /*
4647          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4648          * MMIO, it is better to report an internal error.
4649          * See the comments in vmx_handle_exit.
4650          */
4651         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4652             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4653                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4654                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4655                 vcpu->run->internal.ndata = 3;
4656                 vcpu->run->internal.data[0] = vect_info;
4657                 vcpu->run->internal.data[1] = intr_info;
4658                 vcpu->run->internal.data[2] = error_code;
4659                 return 0;
4660         }
4661
4662         if (is_page_fault(intr_info)) {
4663                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4664                 /* EPT won't cause page fault directly */
4665                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4666                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4667         }
4668
4669         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4670
4671         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4672                 return handle_rmode_exception(vcpu, ex_no, error_code);
4673
4674         switch (ex_no) {
4675         case DB_VECTOR:
4676                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4677                 if (!(vcpu->guest_debug &
4678                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4679                         if (is_icebp(intr_info))
4680                                 WARN_ON(!skip_emulated_instruction(vcpu));
4681
4682                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4683                         return 1;
4684                 }
4685                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4686                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4687                 /* fall through */
4688         case BP_VECTOR:
4689                 /*
4690                  * Update instruction length as we may reinject #BP from
4691                  * user space while in guest debugging mode. Reading it for
4692                  * #DB as well causes no harm, it is not used in that case.
4693                  */
4694                 vmx->vcpu.arch.event_exit_inst_len =
4695                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4696                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4697                 rip = kvm_rip_read(vcpu);
4698                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4699                 kvm_run->debug.arch.exception = ex_no;
4700                 break;
4701         case AC_VECTOR:
4702                 if (guest_inject_ac(vcpu)) {
4703                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4704                         return 1;
4705                 }
4706
4707                 /*
4708                  * Handle split lock. Depending on detection mode this will
4709                  * either warn and disable split lock detection for this
4710                  * task or force SIGBUS on it.
4711                  */
4712                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4713                         return 1;
4714                 fallthrough;
4715         default:
4716                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4717                 kvm_run->ex.exception = ex_no;
4718                 kvm_run->ex.error_code = error_code;
4719                 break;
4720         }
4721         return 0;
4722 }
4723
4724 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4725 {
4726         ++vcpu->stat.irq_exits;
4727         return 1;
4728 }
4729
4730 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4731 {
4732         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4733         vcpu->mmio_needed = 0;
4734         return 0;
4735 }
4736
4737 static int handle_io(struct kvm_vcpu *vcpu)
4738 {
4739         unsigned long exit_qualification;
4740         int size, in, string;
4741         unsigned port;
4742
4743         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4744         string = (exit_qualification & 16) != 0;
4745
4746         ++vcpu->stat.io_exits;
4747
4748         if (string)
4749                 return kvm_emulate_instruction(vcpu, 0);
4750
4751         port = exit_qualification >> 16;
4752         size = (exit_qualification & 7) + 1;
4753         in = (exit_qualification & 8) != 0;
4754
4755         return kvm_fast_pio(vcpu, size, port, in);
4756 }
4757
4758 static void
4759 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4760 {
4761         /*
4762          * Patch in the VMCALL instruction:
4763          */
4764         hypercall[0] = 0x0f;
4765         hypercall[1] = 0x01;
4766         hypercall[2] = 0xc1;
4767 }
4768
4769 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4770 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4771 {
4772         if (is_guest_mode(vcpu)) {
4773                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4774                 unsigned long orig_val = val;
4775
4776                 /*
4777                  * We get here when L2 changed cr0 in a way that did not change
4778                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4779                  * but did change L0 shadowed bits. So we first calculate the
4780                  * effective cr0 value that L1 would like to write into the
4781                  * hardware. It consists of the L2-owned bits from the new
4782                  * value combined with the L1-owned bits from L1's guest_cr0.
4783                  */
4784                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4785                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4786
4787                 if (!nested_guest_cr0_valid(vcpu, val))
4788                         return 1;
4789
4790                 if (kvm_set_cr0(vcpu, val))
4791                         return 1;
4792                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4793                 return 0;
4794         } else {
4795                 if (to_vmx(vcpu)->nested.vmxon &&
4796                     !nested_host_cr0_valid(vcpu, val))
4797                         return 1;
4798
4799                 return kvm_set_cr0(vcpu, val);
4800         }
4801 }
4802
4803 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4804 {
4805         if (is_guest_mode(vcpu)) {
4806                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4807                 unsigned long orig_val = val;
4808
4809                 /* analogously to handle_set_cr0 */
4810                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4811                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4812                 if (kvm_set_cr4(vcpu, val))
4813                         return 1;
4814                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4815                 return 0;
4816         } else
4817                 return kvm_set_cr4(vcpu, val);
4818 }
4819
4820 static int handle_desc(struct kvm_vcpu *vcpu)
4821 {
4822         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4823         return kvm_emulate_instruction(vcpu, 0);
4824 }
4825
4826 static int handle_cr(struct kvm_vcpu *vcpu)
4827 {
4828         unsigned long exit_qualification, val;
4829         int cr;
4830         int reg;
4831         int err;
4832         int ret;
4833
4834         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4835         cr = exit_qualification & 15;
4836         reg = (exit_qualification >> 8) & 15;
4837         switch ((exit_qualification >> 4) & 3) {
4838         case 0: /* mov to cr */
4839                 val = kvm_register_readl(vcpu, reg);
4840                 trace_kvm_cr_write(cr, val);
4841                 switch (cr) {
4842                 case 0:
4843                         err = handle_set_cr0(vcpu, val);
4844                         return kvm_complete_insn_gp(vcpu, err);
4845                 case 3:
4846                         WARN_ON_ONCE(enable_unrestricted_guest);
4847                         err = kvm_set_cr3(vcpu, val);
4848                         return kvm_complete_insn_gp(vcpu, err);
4849                 case 4:
4850                         err = handle_set_cr4(vcpu, val);
4851                         return kvm_complete_insn_gp(vcpu, err);
4852                 case 8: {
4853                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4854                                 u8 cr8 = (u8)val;
4855                                 err = kvm_set_cr8(vcpu, cr8);
4856                                 ret = kvm_complete_insn_gp(vcpu, err);
4857                                 if (lapic_in_kernel(vcpu))
4858                                         return ret;
4859                                 if (cr8_prev <= cr8)
4860                                         return ret;
4861                                 /*
4862                                  * TODO: we might be squashing a
4863                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4864                                  * KVM_EXIT_DEBUG here.
4865                                  */
4866                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4867                                 return 0;
4868                         }
4869                 }
4870                 break;
4871         case 2: /* clts */
4872                 WARN_ONCE(1, "Guest should always own CR0.TS");
4873                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4874                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4875                 return kvm_skip_emulated_instruction(vcpu);
4876         case 1: /*mov from cr*/
4877                 switch (cr) {
4878                 case 3:
4879                         WARN_ON_ONCE(enable_unrestricted_guest);
4880                         val = kvm_read_cr3(vcpu);
4881                         kvm_register_write(vcpu, reg, val);
4882                         trace_kvm_cr_read(cr, val);
4883                         return kvm_skip_emulated_instruction(vcpu);
4884                 case 8:
4885                         val = kvm_get_cr8(vcpu);
4886                         kvm_register_write(vcpu, reg, val);
4887                         trace_kvm_cr_read(cr, val);
4888                         return kvm_skip_emulated_instruction(vcpu);
4889                 }
4890                 break;
4891         case 3: /* lmsw */
4892                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4893                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4894                 kvm_lmsw(vcpu, val);
4895
4896                 return kvm_skip_emulated_instruction(vcpu);
4897         default:
4898                 break;
4899         }
4900         vcpu->run->exit_reason = 0;
4901         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4902                (int)(exit_qualification >> 4) & 3, cr);
4903         return 0;
4904 }
4905
4906 static int handle_dr(struct kvm_vcpu *vcpu)
4907 {
4908         unsigned long exit_qualification;
4909         int dr, dr7, reg;
4910
4911         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4912         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4913
4914         /* First, if DR does not exist, trigger UD */
4915         if (!kvm_require_dr(vcpu, dr))
4916                 return 1;
4917
4918         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4919         if (!kvm_require_cpl(vcpu, 0))
4920                 return 1;
4921         dr7 = vmcs_readl(GUEST_DR7);
4922         if (dr7 & DR7_GD) {
4923                 /*
4924                  * As the vm-exit takes precedence over the debug trap, we
4925                  * need to emulate the latter, either for the host or the
4926                  * guest debugging itself.
4927                  */
4928                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4929                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
4930                         vcpu->run->debug.arch.dr7 = dr7;
4931                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4932                         vcpu->run->debug.arch.exception = DB_VECTOR;
4933                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4934                         return 0;
4935                 } else {
4936                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
4937                         return 1;
4938                 }
4939         }
4940
4941         if (vcpu->guest_debug == 0) {
4942                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4943
4944                 /*
4945                  * No more DR vmexits; force a reload of the debug registers
4946                  * and reenter on this instruction.  The next vmexit will
4947                  * retrieve the full state of the debug registers.
4948                  */
4949                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4950                 return 1;
4951         }
4952
4953         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4954         if (exit_qualification & TYPE_MOV_FROM_DR) {
4955                 unsigned long val;
4956
4957                 if (kvm_get_dr(vcpu, dr, &val))
4958                         return 1;
4959                 kvm_register_write(vcpu, reg, val);
4960         } else
4961                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4962                         return 1;
4963
4964         return kvm_skip_emulated_instruction(vcpu);
4965 }
4966
4967 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4968 {
4969         get_debugreg(vcpu->arch.db[0], 0);
4970         get_debugreg(vcpu->arch.db[1], 1);
4971         get_debugreg(vcpu->arch.db[2], 2);
4972         get_debugreg(vcpu->arch.db[3], 3);
4973         get_debugreg(vcpu->arch.dr6, 6);
4974         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4975
4976         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4977         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4978 }
4979
4980 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4981 {
4982         vmcs_writel(GUEST_DR7, val);
4983 }
4984
4985 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4986 {
4987         kvm_apic_update_ppr(vcpu);
4988         return 1;
4989 }
4990
4991 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4992 {
4993         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4994
4995         kvm_make_request(KVM_REQ_EVENT, vcpu);
4996
4997         ++vcpu->stat.irq_window_exits;
4998         return 1;
4999 }
5000
5001 static int handle_vmcall(struct kvm_vcpu *vcpu)
5002 {
5003         return kvm_emulate_hypercall(vcpu);
5004 }
5005
5006 static int handle_invd(struct kvm_vcpu *vcpu)
5007 {
5008         return kvm_emulate_instruction(vcpu, 0);
5009 }
5010
5011 static int handle_invlpg(struct kvm_vcpu *vcpu)
5012 {
5013         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5014
5015         kvm_mmu_invlpg(vcpu, exit_qualification);
5016         return kvm_skip_emulated_instruction(vcpu);
5017 }
5018
5019 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5020 {
5021         int err;
5022
5023         err = kvm_rdpmc(vcpu);
5024         return kvm_complete_insn_gp(vcpu, err);
5025 }
5026
5027 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5028 {
5029         return kvm_emulate_wbinvd(vcpu);
5030 }
5031
5032 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5033 {
5034         u64 new_bv = kvm_read_edx_eax(vcpu);
5035         u32 index = kvm_rcx_read(vcpu);
5036
5037         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5038                 return kvm_skip_emulated_instruction(vcpu);
5039         return 1;
5040 }
5041
5042 static int handle_apic_access(struct kvm_vcpu *vcpu)
5043 {
5044         if (likely(fasteoi)) {
5045                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5046                 int access_type, offset;
5047
5048                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5049                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5050                 /*
5051                  * Sane guest uses MOV to write EOI, with written value
5052                  * not cared. So make a short-circuit here by avoiding
5053                  * heavy instruction emulation.
5054                  */
5055                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5056                     (offset == APIC_EOI)) {
5057                         kvm_lapic_set_eoi(vcpu);
5058                         return kvm_skip_emulated_instruction(vcpu);
5059                 }
5060         }
5061         return kvm_emulate_instruction(vcpu, 0);
5062 }
5063
5064 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5065 {
5066         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5067         int vector = exit_qualification & 0xff;
5068
5069         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5070         kvm_apic_set_eoi_accelerated(vcpu, vector);
5071         return 1;
5072 }
5073
5074 static int handle_apic_write(struct kvm_vcpu *vcpu)
5075 {
5076         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5077         u32 offset = exit_qualification & 0xfff;
5078
5079         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5080         kvm_apic_write_nodecode(vcpu, offset);
5081         return 1;
5082 }
5083
5084 static int handle_task_switch(struct kvm_vcpu *vcpu)
5085 {
5086         struct vcpu_vmx *vmx = to_vmx(vcpu);
5087         unsigned long exit_qualification;
5088         bool has_error_code = false;
5089         u32 error_code = 0;
5090         u16 tss_selector;
5091         int reason, type, idt_v, idt_index;
5092
5093         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5094         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5095         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5096
5097         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5098
5099         reason = (u32)exit_qualification >> 30;
5100         if (reason == TASK_SWITCH_GATE && idt_v) {
5101                 switch (type) {
5102                 case INTR_TYPE_NMI_INTR:
5103                         vcpu->arch.nmi_injected = false;
5104                         vmx_set_nmi_mask(vcpu, true);
5105                         break;
5106                 case INTR_TYPE_EXT_INTR:
5107                 case INTR_TYPE_SOFT_INTR:
5108                         kvm_clear_interrupt_queue(vcpu);
5109                         break;
5110                 case INTR_TYPE_HARD_EXCEPTION:
5111                         if (vmx->idt_vectoring_info &
5112                             VECTORING_INFO_DELIVER_CODE_MASK) {
5113                                 has_error_code = true;
5114                                 error_code =
5115                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5116                         }
5117                         /* fall through */
5118                 case INTR_TYPE_SOFT_EXCEPTION:
5119                         kvm_clear_exception_queue(vcpu);
5120                         break;
5121                 default:
5122                         break;
5123                 }
5124         }
5125         tss_selector = exit_qualification;
5126
5127         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5128                        type != INTR_TYPE_EXT_INTR &&
5129                        type != INTR_TYPE_NMI_INTR))
5130                 WARN_ON(!skip_emulated_instruction(vcpu));
5131
5132         /*
5133          * TODO: What about debug traps on tss switch?
5134          *       Are we supposed to inject them and update dr6?
5135          */
5136         return kvm_task_switch(vcpu, tss_selector,
5137                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5138                                reason, has_error_code, error_code);
5139 }
5140
5141 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5142 {
5143         unsigned long exit_qualification;
5144         gpa_t gpa;
5145         u64 error_code;
5146
5147         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5148
5149         /*
5150          * EPT violation happened while executing iret from NMI,
5151          * "blocked by NMI" bit has to be set before next VM entry.
5152          * There are errata that may cause this bit to not be set:
5153          * AAK134, BY25.
5154          */
5155         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5156                         enable_vnmi &&
5157                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5158                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5159
5160         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5161         trace_kvm_page_fault(gpa, exit_qualification);
5162
5163         /* Is it a read fault? */
5164         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5165                      ? PFERR_USER_MASK : 0;
5166         /* Is it a write fault? */
5167         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5168                       ? PFERR_WRITE_MASK : 0;
5169         /* Is it a fetch fault? */
5170         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5171                       ? PFERR_FETCH_MASK : 0;
5172         /* ept page table entry is present? */
5173         error_code |= (exit_qualification &
5174                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5175                         EPT_VIOLATION_EXECUTABLE))
5176                       ? PFERR_PRESENT_MASK : 0;
5177
5178         error_code |= (exit_qualification & 0x100) != 0 ?
5179                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5180
5181         vcpu->arch.exit_qualification = exit_qualification;
5182         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5183 }
5184
5185 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5186 {
5187         gpa_t gpa;
5188
5189         /*
5190          * A nested guest cannot optimize MMIO vmexits, because we have an
5191          * nGPA here instead of the required GPA.
5192          */
5193         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5194         if (!is_guest_mode(vcpu) &&
5195             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5196                 trace_kvm_fast_mmio(gpa);
5197                 return kvm_skip_emulated_instruction(vcpu);
5198         }
5199
5200         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5201 }
5202
5203 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5204 {
5205         WARN_ON_ONCE(!enable_vnmi);
5206         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5207         ++vcpu->stat.nmi_window_exits;
5208         kvm_make_request(KVM_REQ_EVENT, vcpu);
5209
5210         return 1;
5211 }
5212
5213 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5214 {
5215         struct vcpu_vmx *vmx = to_vmx(vcpu);
5216         bool intr_window_requested;
5217         unsigned count = 130;
5218
5219         /*
5220          * We should never reach the point where we are emulating L2
5221          * due to invalid guest state as that means we incorrectly
5222          * allowed a nested VMEntry with an invalid vmcs12.
5223          */
5224         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5225
5226         intr_window_requested = exec_controls_get(vmx) &
5227                                 CPU_BASED_INTR_WINDOW_EXITING;
5228
5229         while (vmx->emulation_required && count-- != 0) {
5230                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5231                         return handle_interrupt_window(&vmx->vcpu);
5232
5233                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5234                         return 1;
5235
5236                 if (!kvm_emulate_instruction(vcpu, 0))
5237                         return 0;
5238
5239                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5240                     vcpu->arch.exception.pending) {
5241                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5242                         vcpu->run->internal.suberror =
5243                                                 KVM_INTERNAL_ERROR_EMULATION;
5244                         vcpu->run->internal.ndata = 0;
5245                         return 0;
5246                 }
5247
5248                 if (vcpu->arch.halt_request) {
5249                         vcpu->arch.halt_request = 0;
5250                         return kvm_vcpu_halt(vcpu);
5251                 }
5252
5253                 /*
5254                  * Note, return 1 and not 0, vcpu_run() is responsible for
5255                  * morphing the pending signal into the proper return code.
5256                  */
5257                 if (signal_pending(current))
5258                         return 1;
5259
5260                 if (need_resched())
5261                         schedule();
5262         }
5263
5264         return 1;
5265 }
5266
5267 static void grow_ple_window(struct kvm_vcpu *vcpu)
5268 {
5269         struct vcpu_vmx *vmx = to_vmx(vcpu);
5270         unsigned int old = vmx->ple_window;
5271
5272         vmx->ple_window = __grow_ple_window(old, ple_window,
5273                                             ple_window_grow,
5274                                             ple_window_max);
5275
5276         if (vmx->ple_window != old) {
5277                 vmx->ple_window_dirty = true;
5278                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5279                                             vmx->ple_window, old);
5280         }
5281 }
5282
5283 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5284 {
5285         struct vcpu_vmx *vmx = to_vmx(vcpu);
5286         unsigned int old = vmx->ple_window;
5287
5288         vmx->ple_window = __shrink_ple_window(old, ple_window,
5289                                               ple_window_shrink,
5290                                               ple_window);
5291
5292         if (vmx->ple_window != old) {
5293                 vmx->ple_window_dirty = true;
5294                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5295                                             vmx->ple_window, old);
5296         }
5297 }
5298
5299 /*
5300  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5301  */
5302 static void wakeup_handler(void)
5303 {
5304         struct kvm_vcpu *vcpu;
5305         int cpu = smp_processor_id();
5306
5307         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5308         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5309                         blocked_vcpu_list) {
5310                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5311
5312                 if (pi_test_on(pi_desc) == 1)
5313                         kvm_vcpu_kick(vcpu);
5314         }
5315         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5316 }
5317
5318 static void vmx_enable_tdp(void)
5319 {
5320         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5321                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5322                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5323                 0ull, VMX_EPT_EXECUTABLE_MASK,
5324                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5325                 VMX_EPT_RWX_MASK, 0ull);
5326
5327         ept_set_mmio_spte_mask();
5328 }
5329
5330 /*
5331  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5332  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5333  */
5334 static int handle_pause(struct kvm_vcpu *vcpu)
5335 {
5336         if (!kvm_pause_in_guest(vcpu->kvm))
5337                 grow_ple_window(vcpu);
5338
5339         /*
5340          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5341          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5342          * never set PAUSE_EXITING and just set PLE if supported,
5343          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5344          */
5345         kvm_vcpu_on_spin(vcpu, true);
5346         return kvm_skip_emulated_instruction(vcpu);
5347 }
5348
5349 static int handle_nop(struct kvm_vcpu *vcpu)
5350 {
5351         return kvm_skip_emulated_instruction(vcpu);
5352 }
5353
5354 static int handle_mwait(struct kvm_vcpu *vcpu)
5355 {
5356         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5357         return handle_nop(vcpu);
5358 }
5359
5360 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5361 {
5362         kvm_queue_exception(vcpu, UD_VECTOR);
5363         return 1;
5364 }
5365
5366 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5367 {
5368         return 1;
5369 }
5370
5371 static int handle_monitor(struct kvm_vcpu *vcpu)
5372 {
5373         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5374         return handle_nop(vcpu);
5375 }
5376
5377 static int handle_invpcid(struct kvm_vcpu *vcpu)
5378 {
5379         u32 vmx_instruction_info;
5380         unsigned long type;
5381         bool pcid_enabled;
5382         gva_t gva;
5383         struct x86_exception e;
5384         unsigned i;
5385         unsigned long roots_to_free = 0;
5386         struct {
5387                 u64 pcid;
5388                 u64 gla;
5389         } operand;
5390
5391         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5392                 kvm_queue_exception(vcpu, UD_VECTOR);
5393                 return 1;
5394         }
5395
5396         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5397         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5398
5399         if (type > 3) {
5400                 kvm_inject_gp(vcpu, 0);
5401                 return 1;
5402         }
5403
5404         /* According to the Intel instruction reference, the memory operand
5405          * is read even if it isn't needed (e.g., for type==all)
5406          */
5407         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5408                                 vmx_instruction_info, false,
5409                                 sizeof(operand), &gva))
5410                 return 1;
5411
5412         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5413                 kvm_inject_page_fault(vcpu, &e);
5414                 return 1;
5415         }
5416
5417         if (operand.pcid >> 12 != 0) {
5418                 kvm_inject_gp(vcpu, 0);
5419                 return 1;
5420         }
5421
5422         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5423
5424         switch (type) {
5425         case INVPCID_TYPE_INDIV_ADDR:
5426                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5427                     is_noncanonical_address(operand.gla, vcpu)) {
5428                         kvm_inject_gp(vcpu, 0);
5429                         return 1;
5430                 }
5431                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5432                 return kvm_skip_emulated_instruction(vcpu);
5433
5434         case INVPCID_TYPE_SINGLE_CTXT:
5435                 if (!pcid_enabled && (operand.pcid != 0)) {
5436                         kvm_inject_gp(vcpu, 0);
5437                         return 1;
5438                 }
5439
5440                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5441                         kvm_mmu_sync_roots(vcpu);
5442                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5443                 }
5444
5445                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5446                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5447                             == operand.pcid)
5448                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5449
5450                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5451                 /*
5452                  * If neither the current cr3 nor any of the prev_roots use the
5453                  * given PCID, then nothing needs to be done here because a
5454                  * resync will happen anyway before switching to any other CR3.
5455                  */
5456
5457                 return kvm_skip_emulated_instruction(vcpu);
5458
5459         case INVPCID_TYPE_ALL_NON_GLOBAL:
5460                 /*
5461                  * Currently, KVM doesn't mark global entries in the shadow
5462                  * page tables, so a non-global flush just degenerates to a
5463                  * global flush. If needed, we could optimize this later by
5464                  * keeping track of global entries in shadow page tables.
5465                  */
5466
5467                 /* fall-through */
5468         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5469                 kvm_mmu_unload(vcpu);
5470                 return kvm_skip_emulated_instruction(vcpu);
5471
5472         default:
5473                 BUG(); /* We have already checked above that type <= 3 */
5474         }
5475 }
5476
5477 static int handle_pml_full(struct kvm_vcpu *vcpu)
5478 {
5479         unsigned long exit_qualification;
5480
5481         trace_kvm_pml_full(vcpu->vcpu_id);
5482
5483         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5484
5485         /*
5486          * PML buffer FULL happened while executing iret from NMI,
5487          * "blocked by NMI" bit has to be set before next VM entry.
5488          */
5489         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5490                         enable_vnmi &&
5491                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5492                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5493                                 GUEST_INTR_STATE_NMI);
5494
5495         /*
5496          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5497          * here.., and there's no userspace involvement needed for PML.
5498          */
5499         return 1;
5500 }
5501
5502 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5503 {
5504         struct vcpu_vmx *vmx = to_vmx(vcpu);
5505
5506         if (!vmx->req_immediate_exit &&
5507             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5508                 kvm_lapic_expired_hv_timer(vcpu);
5509
5510         return 1;
5511 }
5512
5513 /*
5514  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5515  * are overwritten by nested_vmx_setup() when nested=1.
5516  */
5517 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5518 {
5519         kvm_queue_exception(vcpu, UD_VECTOR);
5520         return 1;
5521 }
5522
5523 static int handle_encls(struct kvm_vcpu *vcpu)
5524 {
5525         /*
5526          * SGX virtualization is not yet supported.  There is no software
5527          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5528          * to prevent the guest from executing ENCLS.
5529          */
5530         kvm_queue_exception(vcpu, UD_VECTOR);
5531         return 1;
5532 }
5533
5534 /*
5535  * The exit handlers return 1 if the exit was handled fully and guest execution
5536  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5537  * to be done to userspace and return 0.
5538  */
5539 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5540         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5541         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5542         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5543         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5544         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5545         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5546         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5547         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5548         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5549         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5550         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5551         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5552         [EXIT_REASON_INVD]                    = handle_invd,
5553         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5554         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5555         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5556         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5557         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5558         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5559         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5560         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5561         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5562         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5563         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5564         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5565         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5566         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5567         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5568         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5569         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5570         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5571         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5572         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5573         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5574         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5575         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5576         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5577         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5578         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5579         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5580         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5581         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5582         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5583         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5584         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5585         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5586         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5587         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5588         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5589         [EXIT_REASON_ENCLS]                   = handle_encls,
5590 };
5591
5592 static const int kvm_vmx_max_exit_handlers =
5593         ARRAY_SIZE(kvm_vmx_exit_handlers);
5594
5595 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5596 {
5597         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5598         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5599 }
5600
5601 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5602 {
5603         if (vmx->pml_pg) {
5604                 __free_page(vmx->pml_pg);
5605                 vmx->pml_pg = NULL;
5606         }
5607 }
5608
5609 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5610 {
5611         struct vcpu_vmx *vmx = to_vmx(vcpu);
5612         u64 *pml_buf;
5613         u16 pml_idx;
5614
5615         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5616
5617         /* Do nothing if PML buffer is empty */
5618         if (pml_idx == (PML_ENTITY_NUM - 1))
5619                 return;
5620
5621         /* PML index always points to next available PML buffer entity */
5622         if (pml_idx >= PML_ENTITY_NUM)
5623                 pml_idx = 0;
5624         else
5625                 pml_idx++;
5626
5627         pml_buf = page_address(vmx->pml_pg);
5628         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5629                 u64 gpa;
5630
5631                 gpa = pml_buf[pml_idx];
5632                 WARN_ON(gpa & (PAGE_SIZE - 1));
5633                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5634         }
5635
5636         /* reset PML index */
5637         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5638 }
5639
5640 /*
5641  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5642  * Called before reporting dirty_bitmap to userspace.
5643  */
5644 static void kvm_flush_pml_buffers(struct kvm *kvm)
5645 {
5646         int i;
5647         struct kvm_vcpu *vcpu;
5648         /*
5649          * We only need to kick vcpu out of guest mode here, as PML buffer
5650          * is flushed at beginning of all VMEXITs, and it's obvious that only
5651          * vcpus running in guest are possible to have unflushed GPAs in PML
5652          * buffer.
5653          */
5654         kvm_for_each_vcpu(i, vcpu, kvm)
5655                 kvm_vcpu_kick(vcpu);
5656 }
5657
5658 static void vmx_dump_sel(char *name, uint32_t sel)
5659 {
5660         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5661                name, vmcs_read16(sel),
5662                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5663                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5664                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5665 }
5666
5667 static void vmx_dump_dtsel(char *name, uint32_t limit)
5668 {
5669         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5670                name, vmcs_read32(limit),
5671                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5672 }
5673
5674 void dump_vmcs(void)
5675 {
5676         u32 vmentry_ctl, vmexit_ctl;
5677         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5678         unsigned long cr4;
5679         u64 efer;
5680         int i, n;
5681
5682         if (!dump_invalid_vmcs) {
5683                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5684                 return;
5685         }
5686
5687         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5688         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5689         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5690         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5691         cr4 = vmcs_readl(GUEST_CR4);
5692         efer = vmcs_read64(GUEST_IA32_EFER);
5693         secondary_exec_control = 0;
5694         if (cpu_has_secondary_exec_ctrls())
5695                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5696
5697         pr_err("*** Guest State ***\n");
5698         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5699                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5700                vmcs_readl(CR0_GUEST_HOST_MASK));
5701         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5702                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5703         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5704         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5705             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5706         {
5707                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5708                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5709                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5710                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5711         }
5712         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5713                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5714         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5715                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5716         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5717                vmcs_readl(GUEST_SYSENTER_ESP),
5718                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5719         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5720         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5721         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5722         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5723         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5724         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5725         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5726         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5727         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5728         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5729         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5730             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5731                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5732                        efer, vmcs_read64(GUEST_IA32_PAT));
5733         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5734                vmcs_read64(GUEST_IA32_DEBUGCTL),
5735                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5736         if (cpu_has_load_perf_global_ctrl() &&
5737             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5738                 pr_err("PerfGlobCtl = 0x%016llx\n",
5739                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5740         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5741                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5742         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5743                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5744                vmcs_read32(GUEST_ACTIVITY_STATE));
5745         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5746                 pr_err("InterruptStatus = %04x\n",
5747                        vmcs_read16(GUEST_INTR_STATUS));
5748
5749         pr_err("*** Host State ***\n");
5750         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5751                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5752         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5753                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5754                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5755                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5756                vmcs_read16(HOST_TR_SELECTOR));
5757         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5758                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5759                vmcs_readl(HOST_TR_BASE));
5760         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5761                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5762         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5763                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5764                vmcs_readl(HOST_CR4));
5765         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5766                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5767                vmcs_read32(HOST_IA32_SYSENTER_CS),
5768                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5769         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5770                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5771                        vmcs_read64(HOST_IA32_EFER),
5772                        vmcs_read64(HOST_IA32_PAT));
5773         if (cpu_has_load_perf_global_ctrl() &&
5774             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5775                 pr_err("PerfGlobCtl = 0x%016llx\n",
5776                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5777
5778         pr_err("*** Control State ***\n");
5779         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5780                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5781         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5782         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5783                vmcs_read32(EXCEPTION_BITMAP),
5784                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5785                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5786         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5787                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5788                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5789                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5790         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5791                vmcs_read32(VM_EXIT_INTR_INFO),
5792                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5793                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5794         pr_err("        reason=%08x qualification=%016lx\n",
5795                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5796         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5797                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5798                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5799         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5800         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5801                 pr_err("TSC Multiplier = 0x%016llx\n",
5802                        vmcs_read64(TSC_MULTIPLIER));
5803         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5804                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5805                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5806                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5807                 }
5808                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5809                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5810                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5811                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5812         }
5813         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5814                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5815         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5816                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5817         n = vmcs_read32(CR3_TARGET_COUNT);
5818         for (i = 0; i + 1 < n; i += 4)
5819                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5820                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5821                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5822         if (i < n)
5823                 pr_err("CR3 target%u=%016lx\n",
5824                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5825         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5826                 pr_err("PLE Gap=%08x Window=%08x\n",
5827                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5828         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5829                 pr_err("Virtual processor ID = 0x%04x\n",
5830                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5831 }
5832
5833 /*
5834  * The guest has exited.  See if we can fix it or if we need userspace
5835  * assistance.
5836  */
5837 static int vmx_handle_exit(struct kvm_vcpu *vcpu,
5838         enum exit_fastpath_completion exit_fastpath)
5839 {
5840         struct vcpu_vmx *vmx = to_vmx(vcpu);
5841         u32 exit_reason = vmx->exit_reason;
5842         u32 vectoring_info = vmx->idt_vectoring_info;
5843
5844         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5845
5846         /*
5847          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5848          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5849          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5850          * mode as if vcpus is in root mode, the PML buffer must has been
5851          * flushed already.
5852          */
5853         if (enable_pml)
5854                 vmx_flush_pml_buffer(vcpu);
5855
5856         /* If guest state is invalid, start emulating */
5857         if (vmx->emulation_required)
5858                 return handle_invalid_guest_state(vcpu);
5859
5860         if (is_guest_mode(vcpu)) {
5861                 /*
5862                  * The host physical addresses of some pages of guest memory
5863                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5864                  * Page). The CPU may write to these pages via their host
5865                  * physical address while L2 is running, bypassing any
5866                  * address-translation-based dirty tracking (e.g. EPT write
5867                  * protection).
5868                  *
5869                  * Mark them dirty on every exit from L2 to prevent them from
5870                  * getting out of sync with dirty tracking.
5871                  */
5872                 nested_mark_vmcs12_pages_dirty(vcpu);
5873
5874                 if (nested_vmx_exit_reflected(vcpu, exit_reason))
5875                         return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5876         }
5877
5878         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5879                 dump_vmcs();
5880                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5881                 vcpu->run->fail_entry.hardware_entry_failure_reason
5882                         = exit_reason;
5883                 return 0;
5884         }
5885
5886         if (unlikely(vmx->fail)) {
5887                 dump_vmcs();
5888                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5889                 vcpu->run->fail_entry.hardware_entry_failure_reason
5890                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5891                 return 0;
5892         }
5893
5894         /*
5895          * Note:
5896          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5897          * delivery event since it indicates guest is accessing MMIO.
5898          * The vm-exit can be triggered again after return to guest that
5899          * will cause infinite loop.
5900          */
5901         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5902                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5903                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5904                         exit_reason != EXIT_REASON_PML_FULL &&
5905                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5906                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5907                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5908                 vcpu->run->internal.ndata = 3;
5909                 vcpu->run->internal.data[0] = vectoring_info;
5910                 vcpu->run->internal.data[1] = exit_reason;
5911                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5912                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5913                         vcpu->run->internal.ndata++;
5914                         vcpu->run->internal.data[3] =
5915                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5916                 }
5917                 return 0;
5918         }
5919
5920         if (unlikely(!enable_vnmi &&
5921                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5922                 if (vmx_interrupt_allowed(vcpu)) {
5923                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5924                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5925                            vcpu->arch.nmi_pending) {
5926                         /*
5927                          * This CPU don't support us in finding the end of an
5928                          * NMI-blocked window if the guest runs with IRQs
5929                          * disabled. So we pull the trigger after 1 s of
5930                          * futile waiting, but inform the user about this.
5931                          */
5932                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5933                                "state on VCPU %d after 1 s timeout\n",
5934                                __func__, vcpu->vcpu_id);
5935                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5936                 }
5937         }
5938
5939         if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
5940                 kvm_skip_emulated_instruction(vcpu);
5941                 return 1;
5942         }
5943
5944         if (exit_reason >= kvm_vmx_max_exit_handlers)
5945                 goto unexpected_vmexit;
5946 #ifdef CONFIG_RETPOLINE
5947         if (exit_reason == EXIT_REASON_MSR_WRITE)
5948                 return kvm_emulate_wrmsr(vcpu);
5949         else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
5950                 return handle_preemption_timer(vcpu);
5951         else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
5952                 return handle_interrupt_window(vcpu);
5953         else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
5954                 return handle_external_interrupt(vcpu);
5955         else if (exit_reason == EXIT_REASON_HLT)
5956                 return kvm_emulate_halt(vcpu);
5957         else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
5958                 return handle_ept_misconfig(vcpu);
5959 #endif
5960
5961         exit_reason = array_index_nospec(exit_reason,
5962                                          kvm_vmx_max_exit_handlers);
5963         if (!kvm_vmx_exit_handlers[exit_reason])
5964                 goto unexpected_vmexit;
5965
5966         return kvm_vmx_exit_handlers[exit_reason](vcpu);
5967
5968 unexpected_vmexit:
5969         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
5970         dump_vmcs();
5971         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5972         vcpu->run->internal.suberror =
5973                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5974         vcpu->run->internal.ndata = 1;
5975         vcpu->run->internal.data[0] = exit_reason;
5976         return 0;
5977 }
5978
5979 /*
5980  * Software based L1D cache flush which is used when microcode providing
5981  * the cache control MSR is not loaded.
5982  *
5983  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5984  * flush it is required to read in 64 KiB because the replacement algorithm
5985  * is not exactly LRU. This could be sized at runtime via topology
5986  * information but as all relevant affected CPUs have 32KiB L1D cache size
5987  * there is no point in doing so.
5988  */
5989 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5990 {
5991         int size = PAGE_SIZE << L1D_CACHE_ORDER;
5992
5993         /*
5994          * This code is only executed when the the flush mode is 'cond' or
5995          * 'always'
5996          */
5997         if (static_branch_likely(&vmx_l1d_flush_cond)) {
5998                 bool flush_l1d;
5999
6000                 /*
6001                  * Clear the per-vcpu flush bit, it gets set again
6002                  * either from vcpu_run() or from one of the unsafe
6003                  * VMEXIT handlers.
6004                  */
6005                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6006                 vcpu->arch.l1tf_flush_l1d = false;
6007
6008                 /*
6009                  * Clear the per-cpu flush bit, it gets set again from
6010                  * the interrupt handlers.
6011                  */
6012                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6013                 kvm_clear_cpu_l1tf_flush_l1d();
6014
6015                 if (!flush_l1d)
6016                         return;
6017         }
6018
6019         vcpu->stat.l1d_flush++;
6020
6021         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6022                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6023                 return;
6024         }
6025
6026         asm volatile(
6027                 /* First ensure the pages are in the TLB */
6028                 "xorl   %%eax, %%eax\n"
6029                 ".Lpopulate_tlb:\n\t"
6030                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6031                 "addl   $4096, %%eax\n\t"
6032                 "cmpl   %%eax, %[size]\n\t"
6033                 "jne    .Lpopulate_tlb\n\t"
6034                 "xorl   %%eax, %%eax\n\t"
6035                 "cpuid\n\t"
6036                 /* Now fill the cache */
6037                 "xorl   %%eax, %%eax\n"
6038                 ".Lfill_cache:\n"
6039                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6040                 "addl   $64, %%eax\n\t"
6041                 "cmpl   %%eax, %[size]\n\t"
6042                 "jne    .Lfill_cache\n\t"
6043                 "lfence\n"
6044                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6045                     [size] "r" (size)
6046                 : "eax", "ebx", "ecx", "edx");
6047 }
6048
6049 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6050 {
6051         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6052         int tpr_threshold;
6053
6054         if (is_guest_mode(vcpu) &&
6055                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6056                 return;
6057
6058         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6059         if (is_guest_mode(vcpu))
6060                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6061         else
6062                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6063 }
6064
6065 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6066 {
6067         struct vcpu_vmx *vmx = to_vmx(vcpu);
6068         u32 sec_exec_control;
6069
6070         if (!lapic_in_kernel(vcpu))
6071                 return;
6072
6073         if (!flexpriority_enabled &&
6074             !cpu_has_vmx_virtualize_x2apic_mode())
6075                 return;
6076
6077         /* Postpone execution until vmcs01 is the current VMCS. */
6078         if (is_guest_mode(vcpu)) {
6079                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6080                 return;
6081         }
6082
6083         sec_exec_control = secondary_exec_controls_get(vmx);
6084         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6085                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6086
6087         switch (kvm_get_apic_mode(vcpu)) {
6088         case LAPIC_MODE_INVALID:
6089                 WARN_ONCE(true, "Invalid local APIC state");
6090         case LAPIC_MODE_DISABLED:
6091                 break;
6092         case LAPIC_MODE_XAPIC:
6093                 if (flexpriority_enabled) {
6094                         sec_exec_control |=
6095                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6096                         vmx_flush_tlb(vcpu, true);
6097                 }
6098                 break;
6099         case LAPIC_MODE_X2APIC:
6100                 if (cpu_has_vmx_virtualize_x2apic_mode())
6101                         sec_exec_control |=
6102                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6103                 break;
6104         }
6105         secondary_exec_controls_set(vmx, sec_exec_control);
6106
6107         vmx_update_msr_bitmap(vcpu);
6108 }
6109
6110 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6111 {
6112         if (!is_guest_mode(vcpu)) {
6113                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6114                 vmx_flush_tlb(vcpu, true);
6115         }
6116 }
6117
6118 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6119 {
6120         u16 status;
6121         u8 old;
6122
6123         if (max_isr == -1)
6124                 max_isr = 0;
6125
6126         status = vmcs_read16(GUEST_INTR_STATUS);
6127         old = status >> 8;
6128         if (max_isr != old) {
6129                 status &= 0xff;
6130                 status |= max_isr << 8;
6131                 vmcs_write16(GUEST_INTR_STATUS, status);
6132         }
6133 }
6134
6135 static void vmx_set_rvi(int vector)
6136 {
6137         u16 status;
6138         u8 old;
6139
6140         if (vector == -1)
6141                 vector = 0;
6142
6143         status = vmcs_read16(GUEST_INTR_STATUS);
6144         old = (u8)status & 0xff;
6145         if ((u8)vector != old) {
6146                 status &= ~0xff;
6147                 status |= (u8)vector;
6148                 vmcs_write16(GUEST_INTR_STATUS, status);
6149         }
6150 }
6151
6152 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6153 {
6154         /*
6155          * When running L2, updating RVI is only relevant when
6156          * vmcs12 virtual-interrupt-delivery enabled.
6157          * However, it can be enabled only when L1 also
6158          * intercepts external-interrupts and in that case
6159          * we should not update vmcs02 RVI but instead intercept
6160          * interrupt. Therefore, do nothing when running L2.
6161          */
6162         if (!is_guest_mode(vcpu))
6163                 vmx_set_rvi(max_irr);
6164 }
6165
6166 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6167 {
6168         struct vcpu_vmx *vmx = to_vmx(vcpu);
6169         int max_irr;
6170         bool max_irr_updated;
6171
6172         WARN_ON(!vcpu->arch.apicv_active);
6173         if (pi_test_on(&vmx->pi_desc)) {
6174                 pi_clear_on(&vmx->pi_desc);
6175                 /*
6176                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6177                  * But on x86 this is just a compiler barrier anyway.
6178                  */
6179                 smp_mb__after_atomic();
6180                 max_irr_updated =
6181                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6182
6183                 /*
6184                  * If we are running L2 and L1 has a new pending interrupt
6185                  * which can be injected, we should re-evaluate
6186                  * what should be done with this new L1 interrupt.
6187                  * If L1 intercepts external-interrupts, we should
6188                  * exit from L2 to L1. Otherwise, interrupt should be
6189                  * delivered directly to L2.
6190                  */
6191                 if (is_guest_mode(vcpu) && max_irr_updated) {
6192                         if (nested_exit_on_intr(vcpu))
6193                                 kvm_vcpu_exiting_guest_mode(vcpu);
6194                         else
6195                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6196                 }
6197         } else {
6198                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6199         }
6200         vmx_hwapic_irr_update(vcpu, max_irr);
6201         return max_irr;
6202 }
6203
6204 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6205 {
6206         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6207
6208         return pi_test_on(pi_desc) ||
6209                 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6210 }
6211
6212 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6213 {
6214         if (!kvm_vcpu_apicv_active(vcpu))
6215                 return;
6216
6217         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6218         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6219         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6220         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6221 }
6222
6223 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6224 {
6225         struct vcpu_vmx *vmx = to_vmx(vcpu);
6226
6227         pi_clear_on(&vmx->pi_desc);
6228         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6229 }
6230
6231 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6232 {
6233         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6234
6235         /* if exit due to PF check for async PF */
6236         if (is_page_fault(vmx->exit_intr_info)) {
6237                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6238         /* Handle machine checks before interrupts are enabled */
6239         } else if (is_machine_check(vmx->exit_intr_info)) {
6240                 kvm_machine_check();
6241         /* We need to handle NMIs before interrupts are enabled */
6242         } else if (is_nmi(vmx->exit_intr_info)) {
6243                 kvm_before_interrupt(&vmx->vcpu);
6244                 asm("int $2");
6245                 kvm_after_interrupt(&vmx->vcpu);
6246         }
6247 }
6248
6249 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6250 {
6251         unsigned int vector;
6252         unsigned long entry;
6253 #ifdef CONFIG_X86_64
6254         unsigned long tmp;
6255 #endif
6256         gate_desc *desc;
6257         u32 intr_info;
6258
6259         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6260         if (WARN_ONCE(!is_external_intr(intr_info),
6261             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6262                 return;
6263
6264         vector = intr_info & INTR_INFO_VECTOR_MASK;
6265         desc = (gate_desc *)host_idt_base + vector;
6266         entry = gate_offset(desc);
6267
6268         kvm_before_interrupt(vcpu);
6269
6270         asm volatile(
6271 #ifdef CONFIG_X86_64
6272                 "mov %%" _ASM_SP ", %[sp]\n\t"
6273                 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6274                 "push $%c[ss]\n\t"
6275                 "push %[sp]\n\t"
6276 #endif
6277                 "pushf\n\t"
6278                 __ASM_SIZE(push) " $%c[cs]\n\t"
6279                 CALL_NOSPEC
6280                 :
6281 #ifdef CONFIG_X86_64
6282                 [sp]"=&r"(tmp),
6283 #endif
6284                 ASM_CALL_CONSTRAINT
6285                 :
6286                 [thunk_target]"r"(entry),
6287                 [ss]"i"(__KERNEL_DS),
6288                 [cs]"i"(__KERNEL_CS)
6289         );
6290
6291         kvm_after_interrupt(vcpu);
6292 }
6293 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6294
6295 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu,
6296         enum exit_fastpath_completion *exit_fastpath)
6297 {
6298         struct vcpu_vmx *vmx = to_vmx(vcpu);
6299
6300         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6301                 handle_external_interrupt_irqoff(vcpu);
6302         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6303                 handle_exception_nmi_irqoff(vmx);
6304         else if (!is_guest_mode(vcpu) &&
6305                 vmx->exit_reason == EXIT_REASON_MSR_WRITE)
6306                 *exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
6307 }
6308
6309 static bool vmx_has_emulated_msr(int index)
6310 {
6311         switch (index) {
6312         case MSR_IA32_SMBASE:
6313                 /*
6314                  * We cannot do SMM unless we can run the guest in big
6315                  * real mode.
6316                  */
6317                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6318         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6319                 return nested;
6320         case MSR_AMD64_VIRT_SPEC_CTRL:
6321                 /* This is AMD only.  */
6322                 return false;
6323         default:
6324                 return true;
6325         }
6326 }
6327
6328 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6329 {
6330         u32 exit_intr_info;
6331         bool unblock_nmi;
6332         u8 vector;
6333         bool idtv_info_valid;
6334
6335         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6336
6337         if (enable_vnmi) {
6338                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6339                         return;
6340                 /*
6341                  * Can't use vmx->exit_intr_info since we're not sure what
6342                  * the exit reason is.
6343                  */
6344                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6345                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6346                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6347                 /*
6348                  * SDM 3: 27.7.1.2 (September 2008)
6349                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6350                  * a guest IRET fault.
6351                  * SDM 3: 23.2.2 (September 2008)
6352                  * Bit 12 is undefined in any of the following cases:
6353                  *  If the VM exit sets the valid bit in the IDT-vectoring
6354                  *   information field.
6355                  *  If the VM exit is due to a double fault.
6356                  */
6357                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6358                     vector != DF_VECTOR && !idtv_info_valid)
6359                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6360                                       GUEST_INTR_STATE_NMI);
6361                 else
6362                         vmx->loaded_vmcs->nmi_known_unmasked =
6363                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6364                                   & GUEST_INTR_STATE_NMI);
6365         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6366                 vmx->loaded_vmcs->vnmi_blocked_time +=
6367                         ktime_to_ns(ktime_sub(ktime_get(),
6368                                               vmx->loaded_vmcs->entry_time));
6369 }
6370
6371 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6372                                       u32 idt_vectoring_info,
6373                                       int instr_len_field,
6374                                       int error_code_field)
6375 {
6376         u8 vector;
6377         int type;
6378         bool idtv_info_valid;
6379
6380         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6381
6382         vcpu->arch.nmi_injected = false;
6383         kvm_clear_exception_queue(vcpu);
6384         kvm_clear_interrupt_queue(vcpu);
6385
6386         if (!idtv_info_valid)
6387                 return;
6388
6389         kvm_make_request(KVM_REQ_EVENT, vcpu);
6390
6391         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6392         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6393
6394         switch (type) {
6395         case INTR_TYPE_NMI_INTR:
6396                 vcpu->arch.nmi_injected = true;
6397                 /*
6398                  * SDM 3: 27.7.1.2 (September 2008)
6399                  * Clear bit "block by NMI" before VM entry if a NMI
6400                  * delivery faulted.
6401                  */
6402                 vmx_set_nmi_mask(vcpu, false);
6403                 break;
6404         case INTR_TYPE_SOFT_EXCEPTION:
6405                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6406                 /* fall through */
6407         case INTR_TYPE_HARD_EXCEPTION:
6408                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6409                         u32 err = vmcs_read32(error_code_field);
6410                         kvm_requeue_exception_e(vcpu, vector, err);
6411                 } else
6412                         kvm_requeue_exception(vcpu, vector);
6413                 break;
6414         case INTR_TYPE_SOFT_INTR:
6415                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6416                 /* fall through */
6417         case INTR_TYPE_EXT_INTR:
6418                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6419                 break;
6420         default:
6421                 break;
6422         }
6423 }
6424
6425 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6426 {
6427         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6428                                   VM_EXIT_INSTRUCTION_LEN,
6429                                   IDT_VECTORING_ERROR_CODE);
6430 }
6431
6432 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6433 {
6434         __vmx_complete_interrupts(vcpu,
6435                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6436                                   VM_ENTRY_INSTRUCTION_LEN,
6437                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6438
6439         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6440 }
6441
6442 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6443 {
6444         int i, nr_msrs;
6445         struct perf_guest_switch_msr *msrs;
6446
6447         msrs = perf_guest_get_msrs(&nr_msrs);
6448
6449         if (!msrs)
6450                 return;
6451
6452         for (i = 0; i < nr_msrs; i++)
6453                 if (msrs[i].host == msrs[i].guest)
6454                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6455                 else
6456                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6457                                         msrs[i].host, false);
6458 }
6459
6460 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6461 {
6462         u32 host_umwait_control;
6463
6464         if (!vmx_has_waitpkg(vmx))
6465                 return;
6466
6467         host_umwait_control = get_umwait_control_msr();
6468
6469         if (vmx->msr_ia32_umwait_control != host_umwait_control)
6470                 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6471                         vmx->msr_ia32_umwait_control,
6472                         host_umwait_control, false);
6473         else
6474                 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6475 }
6476
6477 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6478 {
6479         struct vcpu_vmx *vmx = to_vmx(vcpu);
6480         u64 tscl;
6481         u32 delta_tsc;
6482
6483         if (vmx->req_immediate_exit) {
6484                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6485                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6486         } else if (vmx->hv_deadline_tsc != -1) {
6487                 tscl = rdtsc();
6488                 if (vmx->hv_deadline_tsc > tscl)
6489                         /* set_hv_timer ensures the delta fits in 32-bits */
6490                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6491                                 cpu_preemption_timer_multi);
6492                 else
6493                         delta_tsc = 0;
6494
6495                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6496                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6497         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6498                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6499                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6500         }
6501 }
6502
6503 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6504 {
6505         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6506                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6507                 vmcs_writel(HOST_RSP, host_rsp);
6508         }
6509 }
6510
6511 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6512
6513 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6514 {
6515         struct vcpu_vmx *vmx = to_vmx(vcpu);
6516         unsigned long cr3, cr4;
6517
6518         /* Record the guest's net vcpu time for enforced NMI injections. */
6519         if (unlikely(!enable_vnmi &&
6520                      vmx->loaded_vmcs->soft_vnmi_blocked))
6521                 vmx->loaded_vmcs->entry_time = ktime_get();
6522
6523         /* Don't enter VMX if guest state is invalid, let the exit handler
6524            start emulation until we arrive back to a valid state */
6525         if (vmx->emulation_required)
6526                 return;
6527
6528         if (vmx->ple_window_dirty) {
6529                 vmx->ple_window_dirty = false;
6530                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6531         }
6532
6533         /*
6534          * We did this in prepare_switch_to_guest, because it needs to
6535          * be within srcu_read_lock.
6536          */
6537         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6538
6539         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6540                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6541         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6542                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6543
6544         cr3 = __get_current_cr3_fast();
6545         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6546                 vmcs_writel(HOST_CR3, cr3);
6547                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6548         }
6549
6550         cr4 = cr4_read_shadow();
6551         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6552                 vmcs_writel(HOST_CR4, cr4);
6553                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6554         }
6555
6556         /* When single-stepping over STI and MOV SS, we must clear the
6557          * corresponding interruptibility bits in the guest state. Otherwise
6558          * vmentry fails as it then expects bit 14 (BS) in pending debug
6559          * exceptions being set, but that's not correct for the guest debugging
6560          * case. */
6561         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6562                 vmx_set_interrupt_shadow(vcpu, 0);
6563
6564         kvm_load_guest_xsave_state(vcpu);
6565
6566         pt_guest_enter(vmx);
6567
6568         if (vcpu_to_pmu(vcpu)->version)
6569                 atomic_switch_perf_msrs(vmx);
6570         atomic_switch_umwait_control_msr(vmx);
6571
6572         if (enable_preemption_timer)
6573                 vmx_update_hv_timer(vcpu);
6574
6575         if (lapic_in_kernel(vcpu) &&
6576                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6577                 kvm_wait_lapic_expire(vcpu);
6578
6579         /*
6580          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6581          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6582          * is no need to worry about the conditional branch over the wrmsr
6583          * being speculatively taken.
6584          */
6585         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6586
6587         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6588         if (static_branch_unlikely(&vmx_l1d_should_flush))
6589                 vmx_l1d_flush(vcpu);
6590         else if (static_branch_unlikely(&mds_user_clear))
6591                 mds_clear_cpu_buffers();
6592
6593         if (vcpu->arch.cr2 != read_cr2())
6594                 write_cr2(vcpu->arch.cr2);
6595
6596         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6597                                    vmx->loaded_vmcs->launched);
6598
6599         vcpu->arch.cr2 = read_cr2();
6600
6601         /*
6602          * We do not use IBRS in the kernel. If this vCPU has used the
6603          * SPEC_CTRL MSR it may have left it on; save the value and
6604          * turn it off. This is much more efficient than blindly adding
6605          * it to the atomic save/restore list. Especially as the former
6606          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6607          *
6608          * For non-nested case:
6609          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6610          * save it.
6611          *
6612          * For nested case:
6613          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6614          * save it.
6615          */
6616         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6617                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6618
6619         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6620
6621         /* All fields are clean at this point */
6622         if (static_branch_unlikely(&enable_evmcs))
6623                 current_evmcs->hv_clean_fields |=
6624                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6625
6626         if (static_branch_unlikely(&enable_evmcs))
6627                 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6628
6629         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6630         if (vmx->host_debugctlmsr)
6631                 update_debugctlmsr(vmx->host_debugctlmsr);
6632
6633 #ifndef CONFIG_X86_64
6634         /*
6635          * The sysexit path does not restore ds/es, so we must set them to
6636          * a reasonable value ourselves.
6637          *
6638          * We can't defer this to vmx_prepare_switch_to_host() since that
6639          * function may be executed in interrupt context, which saves and
6640          * restore segments around it, nullifying its effect.
6641          */
6642         loadsegment(ds, __USER_DS);
6643         loadsegment(es, __USER_DS);
6644 #endif
6645
6646         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6647                                   | (1 << VCPU_EXREG_RFLAGS)
6648                                   | (1 << VCPU_EXREG_PDPTR)
6649                                   | (1 << VCPU_EXREG_SEGMENTS)
6650                                   | (1 << VCPU_EXREG_CR3));
6651         vcpu->arch.regs_dirty = 0;
6652
6653         pt_guest_exit(vmx);
6654
6655         kvm_load_host_xsave_state(vcpu);
6656
6657         vmx->nested.nested_run_pending = 0;
6658         vmx->idt_vectoring_info = 0;
6659
6660         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6661         if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6662                 kvm_machine_check();
6663
6664         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6665                 return;
6666
6667         vmx->loaded_vmcs->launched = 1;
6668         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6669
6670         vmx_recover_nmi_blocking(vmx);
6671         vmx_complete_interrupts(vmx);
6672 }
6673
6674 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6675 {
6676         struct vcpu_vmx *vmx = to_vmx(vcpu);
6677
6678         if (enable_pml)
6679                 vmx_destroy_pml_buffer(vmx);
6680         free_vpid(vmx->vpid);
6681         nested_vmx_free_vcpu(vcpu);
6682         free_loaded_vmcs(vmx->loaded_vmcs);
6683 }
6684
6685 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6686 {
6687         struct vcpu_vmx *vmx;
6688         unsigned long *msr_bitmap;
6689         int i, cpu, err;
6690
6691         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6692         vmx = to_vmx(vcpu);
6693
6694         err = -ENOMEM;
6695
6696         vmx->vpid = allocate_vpid();
6697
6698         /*
6699          * If PML is turned on, failure on enabling PML just results in failure
6700          * of creating the vcpu, therefore we can simplify PML logic (by
6701          * avoiding dealing with cases, such as enabling PML partially on vcpus
6702          * for the guest), etc.
6703          */
6704         if (enable_pml) {
6705                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6706                 if (!vmx->pml_pg)
6707                         goto free_vpid;
6708         }
6709
6710         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6711
6712         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6713                 u32 index = vmx_msr_index[i];
6714                 u32 data_low, data_high;
6715                 int j = vmx->nmsrs;
6716
6717                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6718                         continue;
6719                 if (wrmsr_safe(index, data_low, data_high) < 0)
6720                         continue;
6721
6722                 vmx->guest_msrs[j].index = i;
6723                 vmx->guest_msrs[j].data = 0;
6724                 switch (index) {
6725                 case MSR_IA32_TSX_CTRL:
6726                         /*
6727                          * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6728                          * let's avoid changing CPUID bits under the host
6729                          * kernel's feet.
6730                          */
6731                         vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6732                         break;
6733                 default:
6734                         vmx->guest_msrs[j].mask = -1ull;
6735                         break;
6736                 }
6737                 ++vmx->nmsrs;
6738         }
6739
6740         err = alloc_loaded_vmcs(&vmx->vmcs01);
6741         if (err < 0)
6742                 goto free_pml;
6743
6744         msr_bitmap = vmx->vmcs01.msr_bitmap;
6745         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6746         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6747         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6748         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6749         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6750         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6751         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6752         if (kvm_cstate_in_guest(vcpu->kvm)) {
6753                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6754                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6755                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6756                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6757         }
6758         vmx->msr_bitmap_mode = 0;
6759
6760         vmx->loaded_vmcs = &vmx->vmcs01;
6761         cpu = get_cpu();
6762         vmx_vcpu_load(vcpu, cpu);
6763         vcpu->cpu = cpu;
6764         init_vmcs(vmx);
6765         vmx_vcpu_put(vcpu);
6766         put_cpu();
6767         if (cpu_need_virtualize_apic_accesses(vcpu)) {
6768                 err = alloc_apic_access_page(vcpu->kvm);
6769                 if (err)
6770                         goto free_vmcs;
6771         }
6772
6773         if (enable_ept && !enable_unrestricted_guest) {
6774                 err = init_rmode_identity_map(vcpu->kvm);
6775                 if (err)
6776                         goto free_vmcs;
6777         }
6778
6779         if (nested)
6780                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6781                                            vmx_capability.ept);
6782         else
6783                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6784
6785         vmx->nested.posted_intr_nv = -1;
6786         vmx->nested.current_vmptr = -1ull;
6787
6788         vcpu->arch.microcode_version = 0x100000000ULL;
6789         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6790
6791         /*
6792          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6793          * or POSTED_INTR_WAKEUP_VECTOR.
6794          */
6795         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6796         vmx->pi_desc.sn = 1;
6797
6798         vmx->ept_pointer = INVALID_PAGE;
6799
6800         return 0;
6801
6802 free_vmcs:
6803         free_loaded_vmcs(vmx->loaded_vmcs);
6804 free_pml:
6805         vmx_destroy_pml_buffer(vmx);
6806 free_vpid:
6807         free_vpid(vmx->vpid);
6808         return err;
6809 }
6810
6811 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6812 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6813
6814 static int vmx_vm_init(struct kvm *kvm)
6815 {
6816         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6817
6818         if (!ple_gap)
6819                 kvm->arch.pause_in_guest = true;
6820
6821         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6822                 switch (l1tf_mitigation) {
6823                 case L1TF_MITIGATION_OFF:
6824                 case L1TF_MITIGATION_FLUSH_NOWARN:
6825                         /* 'I explicitly don't care' is set */
6826                         break;
6827                 case L1TF_MITIGATION_FLUSH:
6828                 case L1TF_MITIGATION_FLUSH_NOSMT:
6829                 case L1TF_MITIGATION_FULL:
6830                         /*
6831                          * Warn upon starting the first VM in a potentially
6832                          * insecure environment.
6833                          */
6834                         if (sched_smt_active())
6835                                 pr_warn_once(L1TF_MSG_SMT);
6836                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6837                                 pr_warn_once(L1TF_MSG_L1D);
6838                         break;
6839                 case L1TF_MITIGATION_FULL_FORCE:
6840                         /* Flush is enforced */
6841                         break;
6842                 }
6843         }
6844         kvm_apicv_init(kvm, enable_apicv);
6845         return 0;
6846 }
6847
6848 static int __init vmx_check_processor_compat(void)
6849 {
6850         struct vmcs_config vmcs_conf;
6851         struct vmx_capability vmx_cap;
6852
6853         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6854             !this_cpu_has(X86_FEATURE_VMX)) {
6855                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6856                 return -EIO;
6857         }
6858
6859         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6860                 return -EIO;
6861         if (nested)
6862                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6863         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6864                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6865                                 smp_processor_id());
6866                 return -EIO;
6867         }
6868         return 0;
6869 }
6870
6871 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6872 {
6873         u8 cache;
6874         u64 ipat = 0;
6875
6876         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6877          * memory aliases with conflicting memory types and sometimes MCEs.
6878          * We have to be careful as to what are honored and when.
6879          *
6880          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6881          * UC.  The effective memory type is UC or WC depending on guest PAT.
6882          * This was historically the source of MCEs and we want to be
6883          * conservative.
6884          *
6885          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6886          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
6887          * EPT memory type is set to WB.  The effective memory type is forced
6888          * WB.
6889          *
6890          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
6891          * EPT memory type is used to emulate guest CD/MTRR.
6892          */
6893
6894         if (is_mmio) {
6895                 cache = MTRR_TYPE_UNCACHABLE;
6896                 goto exit;
6897         }
6898
6899         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6900                 ipat = VMX_EPT_IPAT_BIT;
6901                 cache = MTRR_TYPE_WRBACK;
6902                 goto exit;
6903         }
6904
6905         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6906                 ipat = VMX_EPT_IPAT_BIT;
6907                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6908                         cache = MTRR_TYPE_WRBACK;
6909                 else
6910                         cache = MTRR_TYPE_UNCACHABLE;
6911                 goto exit;
6912         }
6913
6914         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6915
6916 exit:
6917         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6918 }
6919
6920 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6921 {
6922         /*
6923          * These bits in the secondary execution controls field
6924          * are dynamic, the others are mostly based on the hypervisor
6925          * architecture and the guest's CPUID.  Do not touch the
6926          * dynamic bits.
6927          */
6928         u32 mask =
6929                 SECONDARY_EXEC_SHADOW_VMCS |
6930                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6931                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6932                 SECONDARY_EXEC_DESC;
6933
6934         u32 new_ctl = vmx->secondary_exec_control;
6935         u32 cur_ctl = secondary_exec_controls_get(vmx);
6936
6937         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6938 }
6939
6940 /*
6941  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6942  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6943  */
6944 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6945 {
6946         struct vcpu_vmx *vmx = to_vmx(vcpu);
6947         struct kvm_cpuid_entry2 *entry;
6948
6949         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6950         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6951
6952 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6953         if (entry && (entry->_reg & (_cpuid_mask)))                     \
6954                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6955 } while (0)
6956
6957         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6958         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
6959         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
6960         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
6961         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
6962         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
6963         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
6964         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
6965         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
6966         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
6967         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
6968         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
6969         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
6970         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
6971         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
6972
6973         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6974         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
6975         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
6976         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
6977         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
6978         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
6979         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
6980
6981 #undef cr4_fixed1_update
6982 }
6983
6984 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6985 {
6986         struct vcpu_vmx *vmx = to_vmx(vcpu);
6987
6988         if (kvm_mpx_supported()) {
6989                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6990
6991                 if (mpx_enabled) {
6992                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6993                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6994                 } else {
6995                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6996                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6997                 }
6998         }
6999 }
7000
7001 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7002 {
7003         struct vcpu_vmx *vmx = to_vmx(vcpu);
7004         struct kvm_cpuid_entry2 *best = NULL;
7005         int i;
7006
7007         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7008                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7009                 if (!best)
7010                         return;
7011                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7012                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7013                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7014                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7015         }
7016
7017         /* Get the number of configurable Address Ranges for filtering */
7018         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7019                                                 PT_CAP_num_address_ranges);
7020
7021         /* Initialize and clear the no dependency bits */
7022         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7023                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7024
7025         /*
7026          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7027          * will inject an #GP
7028          */
7029         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7030                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7031
7032         /*
7033          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7034          * PSBFreq can be set
7035          */
7036         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7037                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7038                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7039
7040         /*
7041          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7042          * MTCFreq can be set
7043          */
7044         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7045                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7046                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7047
7048         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7049         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7050                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7051                                                         RTIT_CTL_PTW_EN);
7052
7053         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7054         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7055                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7056
7057         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7058         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7059                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7060
7061         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7062         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7063                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7064
7065         /* unmask address range configure area */
7066         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7067                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7068 }
7069
7070 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7071 {
7072         struct vcpu_vmx *vmx = to_vmx(vcpu);
7073
7074         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7075         vcpu->arch.xsaves_enabled = false;
7076
7077         if (cpu_has_secondary_exec_ctrls()) {
7078                 vmx_compute_secondary_exec_control(vmx);
7079                 vmcs_set_secondary_exec_control(vmx);
7080         }
7081
7082         if (nested_vmx_allowed(vcpu))
7083                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7084                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7085                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7086         else
7087                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7088                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7089                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7090
7091         if (nested_vmx_allowed(vcpu)) {
7092                 nested_vmx_cr_fixed1_bits_update(vcpu);
7093                 nested_vmx_entry_exit_ctls_update(vcpu);
7094         }
7095
7096         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7097                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7098                 update_intel_pt_cfg(vcpu);
7099
7100         if (boot_cpu_has(X86_FEATURE_RTM)) {
7101                 struct shared_msr_entry *msr;
7102                 msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7103                 if (msr) {
7104                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7105                         vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7106                 }
7107         }
7108 }
7109
7110 static __init void vmx_set_cpu_caps(void)
7111 {
7112         kvm_set_cpu_caps();
7113
7114         /* CPUID 0x1 */
7115         if (nested)
7116                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7117
7118         /* CPUID 0x7 */
7119         if (kvm_mpx_supported())
7120                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7121         if (cpu_has_vmx_invpcid())
7122                 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7123         if (vmx_pt_mode_is_host_guest())
7124                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7125
7126         /* PKU is not yet implemented for shadow paging. */
7127         if (enable_ept && boot_cpu_has(X86_FEATURE_OSPKE))
7128                 kvm_cpu_cap_check_and_set(X86_FEATURE_PKU);
7129
7130         if (vmx_umip_emulated())
7131                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7132
7133         /* CPUID 0xD.1 */
7134         supported_xss = 0;
7135         if (!vmx_xsaves_supported())
7136                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7137
7138         /* CPUID 0x80000001 */
7139         if (!cpu_has_vmx_rdtscp())
7140                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7141 }
7142
7143 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7144 {
7145         to_vmx(vcpu)->req_immediate_exit = true;
7146 }
7147
7148 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7149                                   struct x86_instruction_info *info)
7150 {
7151         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7152         unsigned short port;
7153         bool intercept;
7154         int size;
7155
7156         if (info->intercept == x86_intercept_in ||
7157             info->intercept == x86_intercept_ins) {
7158                 port = info->src_val;
7159                 size = info->dst_bytes;
7160         } else {
7161                 port = info->dst_val;
7162                 size = info->src_bytes;
7163         }
7164
7165         /*
7166          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7167          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7168          * control.
7169          *
7170          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7171          */
7172         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7173                 intercept = nested_cpu_has(vmcs12,
7174                                            CPU_BASED_UNCOND_IO_EXITING);
7175         else
7176                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7177
7178         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7179         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7180 }
7181
7182 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7183                                struct x86_instruction_info *info,
7184                                enum x86_intercept_stage stage,
7185                                struct x86_exception *exception)
7186 {
7187         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7188
7189         switch (info->intercept) {
7190         /*
7191          * RDPID causes #UD if disabled through secondary execution controls.
7192          * Because it is marked as EmulateOnUD, we need to intercept it here.
7193          */
7194         case x86_intercept_rdtscp:
7195                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7196                         exception->vector = UD_VECTOR;
7197                         exception->error_code_valid = false;
7198                         return X86EMUL_PROPAGATE_FAULT;
7199                 }
7200                 break;
7201
7202         case x86_intercept_in:
7203         case x86_intercept_ins:
7204         case x86_intercept_out:
7205         case x86_intercept_outs:
7206                 return vmx_check_intercept_io(vcpu, info);
7207
7208         case x86_intercept_lgdt:
7209         case x86_intercept_lidt:
7210         case x86_intercept_lldt:
7211         case x86_intercept_ltr:
7212         case x86_intercept_sgdt:
7213         case x86_intercept_sidt:
7214         case x86_intercept_sldt:
7215         case x86_intercept_str:
7216                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7217                         return X86EMUL_CONTINUE;
7218
7219                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7220                 break;
7221
7222         /* TODO: check more intercepts... */
7223         default:
7224                 break;
7225         }
7226
7227         return X86EMUL_UNHANDLEABLE;
7228 }
7229
7230 #ifdef CONFIG_X86_64
7231 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7232 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7233                                   u64 divisor, u64 *result)
7234 {
7235         u64 low = a << shift, high = a >> (64 - shift);
7236
7237         /* To avoid the overflow on divq */
7238         if (high >= divisor)
7239                 return 1;
7240
7241         /* Low hold the result, high hold rem which is discarded */
7242         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7243             "rm" (divisor), "0" (low), "1" (high));
7244         *result = low;
7245
7246         return 0;
7247 }
7248
7249 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7250                             bool *expired)
7251 {
7252         struct vcpu_vmx *vmx;
7253         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7254         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7255
7256         if (kvm_mwait_in_guest(vcpu->kvm) ||
7257                 kvm_can_post_timer_interrupt(vcpu))
7258                 return -EOPNOTSUPP;
7259
7260         vmx = to_vmx(vcpu);
7261         tscl = rdtsc();
7262         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7263         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7264         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7265                                                     ktimer->timer_advance_ns);
7266
7267         if (delta_tsc > lapic_timer_advance_cycles)
7268                 delta_tsc -= lapic_timer_advance_cycles;
7269         else
7270                 delta_tsc = 0;
7271
7272         /* Convert to host delta tsc if tsc scaling is enabled */
7273         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7274             delta_tsc && u64_shl_div_u64(delta_tsc,
7275                                 kvm_tsc_scaling_ratio_frac_bits,
7276                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7277                 return -ERANGE;
7278
7279         /*
7280          * If the delta tsc can't fit in the 32 bit after the multi shift,
7281          * we can't use the preemption timer.
7282          * It's possible that it fits on later vmentries, but checking
7283          * on every vmentry is costly so we just use an hrtimer.
7284          */
7285         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7286                 return -ERANGE;
7287
7288         vmx->hv_deadline_tsc = tscl + delta_tsc;
7289         *expired = !delta_tsc;
7290         return 0;
7291 }
7292
7293 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7294 {
7295         to_vmx(vcpu)->hv_deadline_tsc = -1;
7296 }
7297 #endif
7298
7299 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7300 {
7301         if (!kvm_pause_in_guest(vcpu->kvm))
7302                 shrink_ple_window(vcpu);
7303 }
7304
7305 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7306                                      struct kvm_memory_slot *slot)
7307 {
7308         if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7309                 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7310         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7311 }
7312
7313 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7314                                        struct kvm_memory_slot *slot)
7315 {
7316         kvm_mmu_slot_set_dirty(kvm, slot);
7317 }
7318
7319 static void vmx_flush_log_dirty(struct kvm *kvm)
7320 {
7321         kvm_flush_pml_buffers(kvm);
7322 }
7323
7324 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7325 {
7326         struct vmcs12 *vmcs12;
7327         struct vcpu_vmx *vmx = to_vmx(vcpu);
7328         gpa_t gpa, dst;
7329
7330         if (is_guest_mode(vcpu)) {
7331                 WARN_ON_ONCE(vmx->nested.pml_full);
7332
7333                 /*
7334                  * Check if PML is enabled for the nested guest.
7335                  * Whether eptp bit 6 is set is already checked
7336                  * as part of A/D emulation.
7337                  */
7338                 vmcs12 = get_vmcs12(vcpu);
7339                 if (!nested_cpu_has_pml(vmcs12))
7340                         return 0;
7341
7342                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7343                         vmx->nested.pml_full = true;
7344                         return 1;
7345                 }
7346
7347                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7348                 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7349
7350                 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7351                                          offset_in_page(dst), sizeof(gpa)))
7352                         return 0;
7353
7354                 vmcs12->guest_pml_index--;
7355         }
7356
7357         return 0;
7358 }
7359
7360 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7361                                            struct kvm_memory_slot *memslot,
7362                                            gfn_t offset, unsigned long mask)
7363 {
7364         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7365 }
7366
7367 static void __pi_post_block(struct kvm_vcpu *vcpu)
7368 {
7369         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7370         struct pi_desc old, new;
7371         unsigned int dest;
7372
7373         do {
7374                 old.control = new.control = pi_desc->control;
7375                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7376                      "Wakeup handler not enabled while the VCPU is blocked\n");
7377
7378                 dest = cpu_physical_id(vcpu->cpu);
7379
7380                 if (x2apic_enabled())
7381                         new.ndst = dest;
7382                 else
7383                         new.ndst = (dest << 8) & 0xFF00;
7384
7385                 /* set 'NV' to 'notification vector' */
7386                 new.nv = POSTED_INTR_VECTOR;
7387         } while (cmpxchg64(&pi_desc->control, old.control,
7388                            new.control) != old.control);
7389
7390         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7391                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7392                 list_del(&vcpu->blocked_vcpu_list);
7393                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7394                 vcpu->pre_pcpu = -1;
7395         }
7396 }
7397
7398 /*
7399  * This routine does the following things for vCPU which is going
7400  * to be blocked if VT-d PI is enabled.
7401  * - Store the vCPU to the wakeup list, so when interrupts happen
7402  *   we can find the right vCPU to wake up.
7403  * - Change the Posted-interrupt descriptor as below:
7404  *      'NDST' <-- vcpu->pre_pcpu
7405  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7406  * - If 'ON' is set during this process, which means at least one
7407  *   interrupt is posted for this vCPU, we cannot block it, in
7408  *   this case, return 1, otherwise, return 0.
7409  *
7410  */
7411 static int pi_pre_block(struct kvm_vcpu *vcpu)
7412 {
7413         unsigned int dest;
7414         struct pi_desc old, new;
7415         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7416
7417         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7418                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7419                 !kvm_vcpu_apicv_active(vcpu))
7420                 return 0;
7421
7422         WARN_ON(irqs_disabled());
7423         local_irq_disable();
7424         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7425                 vcpu->pre_pcpu = vcpu->cpu;
7426                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7427                 list_add_tail(&vcpu->blocked_vcpu_list,
7428                               &per_cpu(blocked_vcpu_on_cpu,
7429                                        vcpu->pre_pcpu));
7430                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7431         }
7432
7433         do {
7434                 old.control = new.control = pi_desc->control;
7435
7436                 WARN((pi_desc->sn == 1),
7437                      "Warning: SN field of posted-interrupts "
7438                      "is set before blocking\n");
7439
7440                 /*
7441                  * Since vCPU can be preempted during this process,
7442                  * vcpu->cpu could be different with pre_pcpu, we
7443                  * need to set pre_pcpu as the destination of wakeup
7444                  * notification event, then we can find the right vCPU
7445                  * to wakeup in wakeup handler if interrupts happen
7446                  * when the vCPU is in blocked state.
7447                  */
7448                 dest = cpu_physical_id(vcpu->pre_pcpu);
7449
7450                 if (x2apic_enabled())
7451                         new.ndst = dest;
7452                 else
7453                         new.ndst = (dest << 8) & 0xFF00;
7454
7455                 /* set 'NV' to 'wakeup vector' */
7456                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7457         } while (cmpxchg64(&pi_desc->control, old.control,
7458                            new.control) != old.control);
7459
7460         /* We should not block the vCPU if an interrupt is posted for it.  */
7461         if (pi_test_on(pi_desc) == 1)
7462                 __pi_post_block(vcpu);
7463
7464         local_irq_enable();
7465         return (vcpu->pre_pcpu == -1);
7466 }
7467
7468 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7469 {
7470         if (pi_pre_block(vcpu))
7471                 return 1;
7472
7473         if (kvm_lapic_hv_timer_in_use(vcpu))
7474                 kvm_lapic_switch_to_sw_timer(vcpu);
7475
7476         return 0;
7477 }
7478
7479 static void pi_post_block(struct kvm_vcpu *vcpu)
7480 {
7481         if (vcpu->pre_pcpu == -1)
7482                 return;
7483
7484         WARN_ON(irqs_disabled());
7485         local_irq_disable();
7486         __pi_post_block(vcpu);
7487         local_irq_enable();
7488 }
7489
7490 static void vmx_post_block(struct kvm_vcpu *vcpu)
7491 {
7492         if (kvm_x86_ops.set_hv_timer)
7493                 kvm_lapic_switch_to_hv_timer(vcpu);
7494
7495         pi_post_block(vcpu);
7496 }
7497
7498 /*
7499  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7500  *
7501  * @kvm: kvm
7502  * @host_irq: host irq of the interrupt
7503  * @guest_irq: gsi of the interrupt
7504  * @set: set or unset PI
7505  * returns 0 on success, < 0 on failure
7506  */
7507 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7508                               uint32_t guest_irq, bool set)
7509 {
7510         struct kvm_kernel_irq_routing_entry *e;
7511         struct kvm_irq_routing_table *irq_rt;
7512         struct kvm_lapic_irq irq;
7513         struct kvm_vcpu *vcpu;
7514         struct vcpu_data vcpu_info;
7515         int idx, ret = 0;
7516
7517         if (!kvm_arch_has_assigned_device(kvm) ||
7518                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7519                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7520                 return 0;
7521
7522         idx = srcu_read_lock(&kvm->irq_srcu);
7523         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7524         if (guest_irq >= irq_rt->nr_rt_entries ||
7525             hlist_empty(&irq_rt->map[guest_irq])) {
7526                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7527                              guest_irq, irq_rt->nr_rt_entries);
7528                 goto out;
7529         }
7530
7531         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7532                 if (e->type != KVM_IRQ_ROUTING_MSI)
7533                         continue;
7534                 /*
7535                  * VT-d PI cannot support posting multicast/broadcast
7536                  * interrupts to a vCPU, we still use interrupt remapping
7537                  * for these kind of interrupts.
7538                  *
7539                  * For lowest-priority interrupts, we only support
7540                  * those with single CPU as the destination, e.g. user
7541                  * configures the interrupts via /proc/irq or uses
7542                  * irqbalance to make the interrupts single-CPU.
7543                  *
7544                  * We will support full lowest-priority interrupt later.
7545                  *
7546                  * In addition, we can only inject generic interrupts using
7547                  * the PI mechanism, refuse to route others through it.
7548                  */
7549
7550                 kvm_set_msi_irq(kvm, e, &irq);
7551                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7552                     !kvm_irq_is_postable(&irq)) {
7553                         /*
7554                          * Make sure the IRTE is in remapped mode if
7555                          * we don't handle it in posted mode.
7556                          */
7557                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7558                         if (ret < 0) {
7559                                 printk(KERN_INFO
7560                                    "failed to back to remapped mode, irq: %u\n",
7561                                    host_irq);
7562                                 goto out;
7563                         }
7564
7565                         continue;
7566                 }
7567
7568                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7569                 vcpu_info.vector = irq.vector;
7570
7571                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7572                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7573
7574                 if (set)
7575                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7576                 else
7577                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7578
7579                 if (ret < 0) {
7580                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7581                                         __func__);
7582                         goto out;
7583                 }
7584         }
7585
7586         ret = 0;
7587 out:
7588         srcu_read_unlock(&kvm->irq_srcu, idx);
7589         return ret;
7590 }
7591
7592 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7593 {
7594         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7595                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7596                         FEAT_CTL_LMCE_ENABLED;
7597         else
7598                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7599                         ~FEAT_CTL_LMCE_ENABLED;
7600 }
7601
7602 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7603 {
7604         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7605         if (to_vmx(vcpu)->nested.nested_run_pending)
7606                 return 0;
7607         return 1;
7608 }
7609
7610 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7611 {
7612         struct vcpu_vmx *vmx = to_vmx(vcpu);
7613
7614         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7615         if (vmx->nested.smm.guest_mode)
7616                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7617
7618         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7619         vmx->nested.vmxon = false;
7620         vmx_clear_hlt(vcpu);
7621         return 0;
7622 }
7623
7624 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7625 {
7626         struct vcpu_vmx *vmx = to_vmx(vcpu);
7627         int ret;
7628
7629         if (vmx->nested.smm.vmxon) {
7630                 vmx->nested.vmxon = true;
7631                 vmx->nested.smm.vmxon = false;
7632         }
7633
7634         if (vmx->nested.smm.guest_mode) {
7635                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7636                 if (ret)
7637                         return ret;
7638
7639                 vmx->nested.smm.guest_mode = false;
7640         }
7641         return 0;
7642 }
7643
7644 static int enable_smi_window(struct kvm_vcpu *vcpu)
7645 {
7646         return 0;
7647 }
7648
7649 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7650 {
7651         return false;
7652 }
7653
7654 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7655 {
7656         return to_vmx(vcpu)->nested.vmxon;
7657 }
7658
7659 static void hardware_unsetup(void)
7660 {
7661         if (nested)
7662                 nested_vmx_hardware_unsetup();
7663
7664         free_kvm_area();
7665 }
7666
7667 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7668 {
7669         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7670                           BIT(APICV_INHIBIT_REASON_HYPERV);
7671
7672         return supported & BIT(bit);
7673 }
7674
7675 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7676         .hardware_unsetup = hardware_unsetup,
7677
7678         .hardware_enable = hardware_enable,
7679         .hardware_disable = hardware_disable,
7680         .cpu_has_accelerated_tpr = report_flexpriority,
7681         .has_emulated_msr = vmx_has_emulated_msr,
7682
7683         .vm_size = sizeof(struct kvm_vmx),
7684         .vm_init = vmx_vm_init,
7685
7686         .vcpu_create = vmx_create_vcpu,
7687         .vcpu_free = vmx_free_vcpu,
7688         .vcpu_reset = vmx_vcpu_reset,
7689
7690         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7691         .vcpu_load = vmx_vcpu_load,
7692         .vcpu_put = vmx_vcpu_put,
7693
7694         .update_bp_intercept = update_exception_bitmap,
7695         .get_msr_feature = vmx_get_msr_feature,
7696         .get_msr = vmx_get_msr,
7697         .set_msr = vmx_set_msr,
7698         .get_segment_base = vmx_get_segment_base,
7699         .get_segment = vmx_get_segment,
7700         .set_segment = vmx_set_segment,
7701         .get_cpl = vmx_get_cpl,
7702         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7703         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7704         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7705         .set_cr0 = vmx_set_cr0,
7706         .set_cr4 = vmx_set_cr4,
7707         .set_efer = vmx_set_efer,
7708         .get_idt = vmx_get_idt,
7709         .set_idt = vmx_set_idt,
7710         .get_gdt = vmx_get_gdt,
7711         .set_gdt = vmx_set_gdt,
7712         .set_dr7 = vmx_set_dr7,
7713         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7714         .cache_reg = vmx_cache_reg,
7715         .get_rflags = vmx_get_rflags,
7716         .set_rflags = vmx_set_rflags,
7717
7718         .tlb_flush = vmx_flush_tlb,
7719         .tlb_flush_gva = vmx_flush_tlb_gva,
7720
7721         .run = vmx_vcpu_run,
7722         .handle_exit = vmx_handle_exit,
7723         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7724         .update_emulated_instruction = vmx_update_emulated_instruction,
7725         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7726         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7727         .patch_hypercall = vmx_patch_hypercall,
7728         .set_irq = vmx_inject_irq,
7729         .set_nmi = vmx_inject_nmi,
7730         .queue_exception = vmx_queue_exception,
7731         .cancel_injection = vmx_cancel_injection,
7732         .interrupt_allowed = vmx_interrupt_allowed,
7733         .nmi_allowed = vmx_nmi_allowed,
7734         .get_nmi_mask = vmx_get_nmi_mask,
7735         .set_nmi_mask = vmx_set_nmi_mask,
7736         .enable_nmi_window = enable_nmi_window,
7737         .enable_irq_window = enable_irq_window,
7738         .update_cr8_intercept = update_cr8_intercept,
7739         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7740         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7741         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7742         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7743         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7744         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7745         .hwapic_irr_update = vmx_hwapic_irr_update,
7746         .hwapic_isr_update = vmx_hwapic_isr_update,
7747         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7748         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7749         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7750         .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7751
7752         .set_tss_addr = vmx_set_tss_addr,
7753         .set_identity_map_addr = vmx_set_identity_map_addr,
7754         .get_tdp_level = get_ept_level,
7755         .get_mt_mask = vmx_get_mt_mask,
7756
7757         .get_exit_info = vmx_get_exit_info,
7758
7759         .cpuid_update = vmx_cpuid_update,
7760
7761         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7762
7763         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7764         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7765
7766         .load_mmu_pgd = vmx_load_mmu_pgd,
7767
7768         .check_intercept = vmx_check_intercept,
7769         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7770
7771         .request_immediate_exit = vmx_request_immediate_exit,
7772
7773         .sched_in = vmx_sched_in,
7774
7775         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7776         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7777         .flush_log_dirty = vmx_flush_log_dirty,
7778         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7779         .write_log_dirty = vmx_write_pml_buffer,
7780
7781         .pre_block = vmx_pre_block,
7782         .post_block = vmx_post_block,
7783
7784         .pmu_ops = &intel_pmu_ops,
7785
7786         .update_pi_irte = vmx_update_pi_irte,
7787
7788 #ifdef CONFIG_X86_64
7789         .set_hv_timer = vmx_set_hv_timer,
7790         .cancel_hv_timer = vmx_cancel_hv_timer,
7791 #endif
7792
7793         .setup_mce = vmx_setup_mce,
7794
7795         .smi_allowed = vmx_smi_allowed,
7796         .pre_enter_smm = vmx_pre_enter_smm,
7797         .pre_leave_smm = vmx_pre_leave_smm,
7798         .enable_smi_window = enable_smi_window,
7799
7800         .check_nested_events = NULL,
7801         .get_nested_state = NULL,
7802         .set_nested_state = NULL,
7803         .get_vmcs12_pages = NULL,
7804         .nested_enable_evmcs = NULL,
7805         .nested_get_evmcs_version = NULL,
7806         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7807         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7808 };
7809
7810 static __init int hardware_setup(void)
7811 {
7812         unsigned long host_bndcfgs;
7813         struct desc_ptr dt;
7814         int r, i, ept_lpage_level;
7815
7816         store_idt(&dt);
7817         host_idt_base = dt.address;
7818
7819         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7820                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7821
7822         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7823                 return -EIO;
7824
7825         if (boot_cpu_has(X86_FEATURE_NX))
7826                 kvm_enable_efer_bits(EFER_NX);
7827
7828         if (boot_cpu_has(X86_FEATURE_MPX)) {
7829                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7830                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7831         }
7832
7833         if (!cpu_has_vmx_mpx())
7834                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7835                                     XFEATURE_MASK_BNDCSR);
7836
7837         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7838             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7839                 enable_vpid = 0;
7840
7841         if (!cpu_has_vmx_ept() ||
7842             !cpu_has_vmx_ept_4levels() ||
7843             !cpu_has_vmx_ept_mt_wb() ||
7844             !cpu_has_vmx_invept_global())
7845                 enable_ept = 0;
7846
7847         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7848                 enable_ept_ad_bits = 0;
7849
7850         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7851                 enable_unrestricted_guest = 0;
7852
7853         if (!cpu_has_vmx_flexpriority())
7854                 flexpriority_enabled = 0;
7855
7856         if (!cpu_has_virtual_nmis())
7857                 enable_vnmi = 0;
7858
7859         /*
7860          * set_apic_access_page_addr() is used to reload apic access
7861          * page upon invalidation.  No need to do anything if not
7862          * using the APIC_ACCESS_ADDR VMCS field.
7863          */
7864         if (!flexpriority_enabled)
7865                 vmx_x86_ops.set_apic_access_page_addr = NULL;
7866
7867         if (!cpu_has_vmx_tpr_shadow())
7868                 vmx_x86_ops.update_cr8_intercept = NULL;
7869
7870 #if IS_ENABLED(CONFIG_HYPERV)
7871         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7872             && enable_ept) {
7873                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7874                 vmx_x86_ops.tlb_remote_flush_with_range =
7875                                 hv_remote_flush_tlb_with_range;
7876         }
7877 #endif
7878
7879         if (!cpu_has_vmx_ple()) {
7880                 ple_gap = 0;
7881                 ple_window = 0;
7882                 ple_window_grow = 0;
7883                 ple_window_max = 0;
7884                 ple_window_shrink = 0;
7885         }
7886
7887         if (!cpu_has_vmx_apicv()) {
7888                 enable_apicv = 0;
7889                 vmx_x86_ops.sync_pir_to_irr = NULL;
7890         }
7891
7892         if (cpu_has_vmx_tsc_scaling()) {
7893                 kvm_has_tsc_control = true;
7894                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7895                 kvm_tsc_scaling_ratio_frac_bits = 48;
7896         }
7897
7898         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7899
7900         if (enable_ept)
7901                 vmx_enable_tdp();
7902
7903         if (!enable_ept)
7904                 ept_lpage_level = 0;
7905         else if (cpu_has_vmx_ept_1g_page())
7906                 ept_lpage_level = PT_PDPE_LEVEL;
7907         else if (cpu_has_vmx_ept_2m_page())
7908                 ept_lpage_level = PT_DIRECTORY_LEVEL;
7909         else
7910                 ept_lpage_level = PT_PAGE_TABLE_LEVEL;
7911         kvm_configure_mmu(enable_ept, ept_lpage_level);
7912
7913         /*
7914          * Only enable PML when hardware supports PML feature, and both EPT
7915          * and EPT A/D bit features are enabled -- PML depends on them to work.
7916          */
7917         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7918                 enable_pml = 0;
7919
7920         if (!enable_pml) {
7921                 vmx_x86_ops.slot_enable_log_dirty = NULL;
7922                 vmx_x86_ops.slot_disable_log_dirty = NULL;
7923                 vmx_x86_ops.flush_log_dirty = NULL;
7924                 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7925         }
7926
7927         if (!cpu_has_vmx_preemption_timer())
7928                 enable_preemption_timer = false;
7929
7930         if (enable_preemption_timer) {
7931                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7932                 u64 vmx_msr;
7933
7934                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7935                 cpu_preemption_timer_multi =
7936                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7937
7938                 if (tsc_khz)
7939                         use_timer_freq = (u64)tsc_khz * 1000;
7940                 use_timer_freq >>= cpu_preemption_timer_multi;
7941
7942                 /*
7943                  * KVM "disables" the preemption timer by setting it to its max
7944                  * value.  Don't use the timer if it might cause spurious exits
7945                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7946                  */
7947                 if (use_timer_freq > 0xffffffffu / 10)
7948                         enable_preemption_timer = false;
7949         }
7950
7951         if (!enable_preemption_timer) {
7952                 vmx_x86_ops.set_hv_timer = NULL;
7953                 vmx_x86_ops.cancel_hv_timer = NULL;
7954                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7955         }
7956
7957         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7958
7959         kvm_mce_cap_supported |= MCG_LMCE_P;
7960
7961         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7962                 return -EINVAL;
7963         if (!enable_ept || !cpu_has_vmx_intel_pt())
7964                 pt_mode = PT_MODE_SYSTEM;
7965
7966         if (nested) {
7967                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7968                                            vmx_capability.ept);
7969
7970                 r = nested_vmx_hardware_setup(&vmx_x86_ops,
7971                                               kvm_vmx_exit_handlers);
7972                 if (r)
7973                         return r;
7974         }
7975
7976         vmx_set_cpu_caps();
7977
7978         r = alloc_kvm_area();
7979         if (r)
7980                 nested_vmx_hardware_unsetup();
7981         return r;
7982 }
7983
7984 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7985         .cpu_has_kvm_support = cpu_has_kvm_support,
7986         .disabled_by_bios = vmx_disabled_by_bios,
7987         .check_processor_compatibility = vmx_check_processor_compat,
7988         .hardware_setup = hardware_setup,
7989
7990         .runtime_ops = &vmx_x86_ops,
7991 };
7992
7993 static void vmx_cleanup_l1d_flush(void)
7994 {
7995         if (vmx_l1d_flush_pages) {
7996                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7997                 vmx_l1d_flush_pages = NULL;
7998         }
7999         /* Restore state so sysfs ignores VMX */
8000         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8001 }
8002
8003 static void vmx_exit(void)
8004 {
8005 #ifdef CONFIG_KEXEC_CORE
8006         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8007         synchronize_rcu();
8008 #endif
8009
8010         kvm_exit();
8011
8012 #if IS_ENABLED(CONFIG_HYPERV)
8013         if (static_branch_unlikely(&enable_evmcs)) {
8014                 int cpu;
8015                 struct hv_vp_assist_page *vp_ap;
8016                 /*
8017                  * Reset everything to support using non-enlightened VMCS
8018                  * access later (e.g. when we reload the module with
8019                  * enlightened_vmcs=0)
8020                  */
8021                 for_each_online_cpu(cpu) {
8022                         vp_ap = hv_get_vp_assist_page(cpu);
8023
8024                         if (!vp_ap)
8025                                 continue;
8026
8027                         vp_ap->nested_control.features.directhypercall = 0;
8028                         vp_ap->current_nested_vmcs = 0;
8029                         vp_ap->enlighten_vmentry = 0;
8030                 }
8031
8032                 static_branch_disable(&enable_evmcs);
8033         }
8034 #endif
8035         vmx_cleanup_l1d_flush();
8036 }
8037 module_exit(vmx_exit);
8038
8039 static int __init vmx_init(void)
8040 {
8041         int r, cpu;
8042
8043 #if IS_ENABLED(CONFIG_HYPERV)
8044         /*
8045          * Enlightened VMCS usage should be recommended and the host needs
8046          * to support eVMCS v1 or above. We can also disable eVMCS support
8047          * with module parameter.
8048          */
8049         if (enlightened_vmcs &&
8050             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8051             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8052             KVM_EVMCS_VERSION) {
8053                 int cpu;
8054
8055                 /* Check that we have assist pages on all online CPUs */
8056                 for_each_online_cpu(cpu) {
8057                         if (!hv_get_vp_assist_page(cpu)) {
8058                                 enlightened_vmcs = false;
8059                                 break;
8060                         }
8061                 }
8062
8063                 if (enlightened_vmcs) {
8064                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8065                         static_branch_enable(&enable_evmcs);
8066                 }
8067
8068                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8069                         vmx_x86_ops.enable_direct_tlbflush
8070                                 = hv_enable_direct_tlbflush;
8071
8072         } else {
8073                 enlightened_vmcs = false;
8074         }
8075 #endif
8076
8077         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8078                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8079         if (r)
8080                 return r;
8081
8082         /*
8083          * Must be called after kvm_init() so enable_ept is properly set
8084          * up. Hand the parameter mitigation value in which was stored in
8085          * the pre module init parser. If no parameter was given, it will
8086          * contain 'auto' which will be turned into the default 'cond'
8087          * mitigation mode.
8088          */
8089         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8090         if (r) {
8091                 vmx_exit();
8092                 return r;
8093         }
8094
8095         for_each_possible_cpu(cpu) {
8096                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8097                 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
8098                 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8099         }
8100
8101 #ifdef CONFIG_KEXEC_CORE
8102         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8103                            crash_vmclear_local_loaded_vmcss);
8104 #endif
8105         vmx_check_vmcs12_offsets();
8106
8107         return 0;
8108 }
8109 module_init(vmx_init);