KVM: VMX: Use vmx_get_rflags() to query RFLAGS in vmx_interrupt_blocked()
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/debugreg.h>
36 #include <asm/desc.h>
37 #include <asm/fpu/internal.h>
38 #include <asm/io.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kexec.h>
41 #include <asm/perf_event.h>
42 #include <asm/mce.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
49
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "irq.h"
54 #include "kvm_cache_regs.h"
55 #include "lapic.h"
56 #include "mmu.h"
57 #include "nested.h"
58 #include "ops.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72         {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91                         enable_unrestricted_guest, bool, S_IRUGO);
92
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104
105 /*
106  * If nested=1, nested virtualization is supported, i.e., guests may use
107  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108  * use VMX instructions.
109  */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118
119 #define MSR_BITMAP_MODE_X2APIC          1
120 #define MSR_BITMAP_MODE_X2APIC_APICV    2
121
122 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
123
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130
131 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
133 #define KVM_VM_CR0_ALWAYS_ON                            \
134         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
135          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
136 #define KVM_CR4_GUEST_OWNED_BITS                                      \
137         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
138          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
139
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149         RTIT_STATUS_BYTECNT))
150
151 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
152         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
153
154 /*
155  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
156  * ple_gap:    upper bound on the amount of time between two successive
157  *             executions of PAUSE in a loop. Also indicate if ple enabled.
158  *             According to test, this time is usually smaller than 128 cycles.
159  * ple_window: upper bound on the amount of time a guest is allowed to execute
160  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
161  *             less than 2^12 cycles
162  * Time is measured based on a counter that runs at the same rate as the TSC,
163  * refer SDM volume 3b section 21.6.13 & 22.1.3.
164  */
165 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
166 module_param(ple_gap, uint, 0444);
167
168 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
169 module_param(ple_window, uint, 0444);
170
171 /* Default doubles per-vcpu window every exit. */
172 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
173 module_param(ple_window_grow, uint, 0444);
174
175 /* Default resets per-vcpu window every exit to ple_window. */
176 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
177 module_param(ple_window_shrink, uint, 0444);
178
179 /* Default is to compute the maximum so we can never overflow. */
180 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
181 module_param(ple_window_max, uint, 0444);
182
183 /* Default is SYSTEM mode, 1 for host-guest mode */
184 int __read_mostly pt_mode = PT_MODE_SYSTEM;
185 module_param(pt_mode, int, S_IRUGO);
186
187 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
188 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
189 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
190
191 /* Storage for pre module init parameter parsing */
192 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
193
194 static const struct {
195         const char *option;
196         bool for_parse;
197 } vmentry_l1d_param[] = {
198         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
199         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
200         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
201         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
202         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
203         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
204 };
205
206 #define L1D_CACHE_ORDER 4
207 static void *vmx_l1d_flush_pages;
208
209 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
210 {
211         struct page *page;
212         unsigned int i;
213
214         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
215                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
216                 return 0;
217         }
218
219         if (!enable_ept) {
220                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
221                 return 0;
222         }
223
224         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
225                 u64 msr;
226
227                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
228                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
229                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
230                         return 0;
231                 }
232         }
233
234         /* If set to auto use the default l1tf mitigation method */
235         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
236                 switch (l1tf_mitigation) {
237                 case L1TF_MITIGATION_OFF:
238                         l1tf = VMENTER_L1D_FLUSH_NEVER;
239                         break;
240                 case L1TF_MITIGATION_FLUSH_NOWARN:
241                 case L1TF_MITIGATION_FLUSH:
242                 case L1TF_MITIGATION_FLUSH_NOSMT:
243                         l1tf = VMENTER_L1D_FLUSH_COND;
244                         break;
245                 case L1TF_MITIGATION_FULL:
246                 case L1TF_MITIGATION_FULL_FORCE:
247                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248                         break;
249                 }
250         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
251                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
252         }
253
254         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
255             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
256                 /*
257                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
258                  * lifetime and so should not be charged to a memcg.
259                  */
260                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
261                 if (!page)
262                         return -ENOMEM;
263                 vmx_l1d_flush_pages = page_address(page);
264
265                 /*
266                  * Initialize each page with a different pattern in
267                  * order to protect against KSM in the nested
268                  * virtualization case.
269                  */
270                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
271                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
272                                PAGE_SIZE);
273                 }
274         }
275
276         l1tf_vmx_mitigation = l1tf;
277
278         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
279                 static_branch_enable(&vmx_l1d_should_flush);
280         else
281                 static_branch_disable(&vmx_l1d_should_flush);
282
283         if (l1tf == VMENTER_L1D_FLUSH_COND)
284                 static_branch_enable(&vmx_l1d_flush_cond);
285         else
286                 static_branch_disable(&vmx_l1d_flush_cond);
287         return 0;
288 }
289
290 static int vmentry_l1d_flush_parse(const char *s)
291 {
292         unsigned int i;
293
294         if (s) {
295                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
296                         if (vmentry_l1d_param[i].for_parse &&
297                             sysfs_streq(s, vmentry_l1d_param[i].option))
298                                 return i;
299                 }
300         }
301         return -EINVAL;
302 }
303
304 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
305 {
306         int l1tf, ret;
307
308         l1tf = vmentry_l1d_flush_parse(s);
309         if (l1tf < 0)
310                 return l1tf;
311
312         if (!boot_cpu_has(X86_BUG_L1TF))
313                 return 0;
314
315         /*
316          * Has vmx_init() run already? If not then this is the pre init
317          * parameter parsing. In that case just store the value and let
318          * vmx_init() do the proper setup after enable_ept has been
319          * established.
320          */
321         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
322                 vmentry_l1d_flush_param = l1tf;
323                 return 0;
324         }
325
326         mutex_lock(&vmx_l1d_flush_mutex);
327         ret = vmx_setup_l1d_flush(l1tf);
328         mutex_unlock(&vmx_l1d_flush_mutex);
329         return ret;
330 }
331
332 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
333 {
334         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
335                 return sprintf(s, "???\n");
336
337         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
338 }
339
340 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
341         .set = vmentry_l1d_flush_set,
342         .get = vmentry_l1d_flush_get,
343 };
344 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
345
346 static bool guest_state_valid(struct kvm_vcpu *vcpu);
347 static u32 vmx_segment_access_rights(struct kvm_segment *var);
348 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
349                                                           u32 msr, int type);
350
351 void vmx_vmexit(void);
352
353 #define vmx_insn_failed(fmt...)         \
354 do {                                    \
355         WARN_ONCE(1, fmt);              \
356         pr_warn_ratelimited(fmt);       \
357 } while (0)
358
359 asmlinkage void vmread_error(unsigned long field, bool fault)
360 {
361         if (fault)
362                 kvm_spurious_fault();
363         else
364                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
365 }
366
367 noinline void vmwrite_error(unsigned long field, unsigned long value)
368 {
369         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
370                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
371 }
372
373 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
374 {
375         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
376 }
377
378 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
379 {
380         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
381 }
382
383 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
384 {
385         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
386                         ext, vpid, gva);
387 }
388
389 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
390 {
391         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
392                         ext, eptp, gpa);
393 }
394
395 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
396 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
397 /*
398  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
399  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
400  */
401 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
402
403 /*
404  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
405  * can find which vCPU should be waken up.
406  */
407 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
408 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
409
410 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
411 static DEFINE_SPINLOCK(vmx_vpid_lock);
412
413 struct vmcs_config vmcs_config;
414 struct vmx_capability vmx_capability;
415
416 #define VMX_SEGMENT_FIELD(seg)                                  \
417         [VCPU_SREG_##seg] = {                                   \
418                 .selector = GUEST_##seg##_SELECTOR,             \
419                 .base = GUEST_##seg##_BASE,                     \
420                 .limit = GUEST_##seg##_LIMIT,                   \
421                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
422         }
423
424 static const struct kvm_vmx_segment_field {
425         unsigned selector;
426         unsigned base;
427         unsigned limit;
428         unsigned ar_bytes;
429 } kvm_vmx_segment_fields[] = {
430         VMX_SEGMENT_FIELD(CS),
431         VMX_SEGMENT_FIELD(DS),
432         VMX_SEGMENT_FIELD(ES),
433         VMX_SEGMENT_FIELD(FS),
434         VMX_SEGMENT_FIELD(GS),
435         VMX_SEGMENT_FIELD(SS),
436         VMX_SEGMENT_FIELD(TR),
437         VMX_SEGMENT_FIELD(LDTR),
438 };
439
440 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
441 {
442         vmx->segment_cache.bitmask = 0;
443 }
444
445 static unsigned long host_idt_base;
446
447 /*
448  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
449  * will emulate SYSCALL in legacy mode if the vendor string in guest
450  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
451  * support this emulation, IA32_STAR must always be included in
452  * vmx_msr_index[], even in i386 builds.
453  */
454 const u32 vmx_msr_index[] = {
455 #ifdef CONFIG_X86_64
456         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
457 #endif
458         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
459         MSR_IA32_TSX_CTRL,
460 };
461
462 #if IS_ENABLED(CONFIG_HYPERV)
463 static bool __read_mostly enlightened_vmcs = true;
464 module_param(enlightened_vmcs, bool, 0444);
465
466 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
467 static void check_ept_pointer_match(struct kvm *kvm)
468 {
469         struct kvm_vcpu *vcpu;
470         u64 tmp_eptp = INVALID_PAGE;
471         int i;
472
473         kvm_for_each_vcpu(i, vcpu, kvm) {
474                 if (!VALID_PAGE(tmp_eptp)) {
475                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
476                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
477                         to_kvm_vmx(kvm)->ept_pointers_match
478                                 = EPT_POINTERS_MISMATCH;
479                         return;
480                 }
481         }
482
483         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
484 }
485
486 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
487                 void *data)
488 {
489         struct kvm_tlb_range *range = data;
490
491         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
492                         range->pages);
493 }
494
495 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
496                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
497 {
498         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
499
500         /*
501          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
502          * of the base of EPT PML4 table, strip off EPT configuration
503          * information.
504          */
505         if (range)
506                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
507                                 kvm_fill_hv_flush_list_func, (void *)range);
508         else
509                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
510 }
511
512 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
513                 struct kvm_tlb_range *range)
514 {
515         struct kvm_vcpu *vcpu;
516         int ret = 0, i;
517
518         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
519
520         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
521                 check_ept_pointer_match(kvm);
522
523         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
524                 kvm_for_each_vcpu(i, vcpu, kvm) {
525                         /* If ept_pointer is invalid pointer, bypass flush request. */
526                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
527                                 ret |= __hv_remote_flush_tlb_with_range(
528                                         kvm, vcpu, range);
529                 }
530         } else {
531                 ret = __hv_remote_flush_tlb_with_range(kvm,
532                                 kvm_get_vcpu(kvm, 0), range);
533         }
534
535         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
536         return ret;
537 }
538 static int hv_remote_flush_tlb(struct kvm *kvm)
539 {
540         return hv_remote_flush_tlb_with_range(kvm, NULL);
541 }
542
543 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
544 {
545         struct hv_enlightened_vmcs *evmcs;
546         struct hv_partition_assist_pg **p_hv_pa_pg =
547                         &vcpu->kvm->arch.hyperv.hv_pa_pg;
548         /*
549          * Synthetic VM-Exit is not enabled in current code and so All
550          * evmcs in singe VM shares same assist page.
551          */
552         if (!*p_hv_pa_pg)
553                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
554
555         if (!*p_hv_pa_pg)
556                 return -ENOMEM;
557
558         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
559
560         evmcs->partition_assist_page =
561                 __pa(*p_hv_pa_pg);
562         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
563         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
564
565         return 0;
566 }
567
568 #endif /* IS_ENABLED(CONFIG_HYPERV) */
569
570 /*
571  * Comment's format: document - errata name - stepping - processor name.
572  * Refer from
573  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
574  */
575 static u32 vmx_preemption_cpu_tfms[] = {
576 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
577 0x000206E6,
578 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
579 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
580 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
581 0x00020652,
582 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
583 0x00020655,
584 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
585 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
586 /*
587  * 320767.pdf - AAP86  - B1 -
588  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
589  */
590 0x000106E5,
591 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
592 0x000106A0,
593 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
594 0x000106A1,
595 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
596 0x000106A4,
597  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
598  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
599  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
600 0x000106A5,
601  /* Xeon E3-1220 V2 */
602 0x000306A8,
603 };
604
605 static inline bool cpu_has_broken_vmx_preemption_timer(void)
606 {
607         u32 eax = cpuid_eax(0x00000001), i;
608
609         /* Clear the reserved bits */
610         eax &= ~(0x3U << 14 | 0xfU << 28);
611         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
612                 if (eax == vmx_preemption_cpu_tfms[i])
613                         return true;
614
615         return false;
616 }
617
618 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
619 {
620         return flexpriority_enabled && lapic_in_kernel(vcpu);
621 }
622
623 static inline bool report_flexpriority(void)
624 {
625         return flexpriority_enabled;
626 }
627
628 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
629 {
630         int i;
631
632         for (i = 0; i < vmx->nmsrs; ++i)
633                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
634                         return i;
635         return -1;
636 }
637
638 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
639 {
640         int i;
641
642         i = __find_msr_index(vmx, msr);
643         if (i >= 0)
644                 return &vmx->guest_msrs[i];
645         return NULL;
646 }
647
648 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
649 {
650         int ret = 0;
651
652         u64 old_msr_data = msr->data;
653         msr->data = data;
654         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
655                 preempt_disable();
656                 ret = kvm_set_shared_msr(msr->index, msr->data,
657                                          msr->mask);
658                 preempt_enable();
659                 if (ret)
660                         msr->data = old_msr_data;
661         }
662         return ret;
663 }
664
665 #ifdef CONFIG_KEXEC_CORE
666 static void crash_vmclear_local_loaded_vmcss(void)
667 {
668         int cpu = raw_smp_processor_id();
669         struct loaded_vmcs *v;
670
671         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
672                             loaded_vmcss_on_cpu_link)
673                 vmcs_clear(v->vmcs);
674 }
675 #endif /* CONFIG_KEXEC_CORE */
676
677 static void __loaded_vmcs_clear(void *arg)
678 {
679         struct loaded_vmcs *loaded_vmcs = arg;
680         int cpu = raw_smp_processor_id();
681
682         if (loaded_vmcs->cpu != cpu)
683                 return; /* vcpu migration can race with cpu offline */
684         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
685                 per_cpu(current_vmcs, cpu) = NULL;
686
687         vmcs_clear(loaded_vmcs->vmcs);
688         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
689                 vmcs_clear(loaded_vmcs->shadow_vmcs);
690
691         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
692
693         /*
694          * Ensure all writes to loaded_vmcs, including deleting it from its
695          * current percpu list, complete before setting loaded_vmcs->vcpu to
696          * -1, otherwise a different cpu can see vcpu == -1 first and add
697          * loaded_vmcs to its percpu list before it's deleted from this cpu's
698          * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
699          */
700         smp_wmb();
701
702         loaded_vmcs->cpu = -1;
703         loaded_vmcs->launched = 0;
704 }
705
706 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
707 {
708         int cpu = loaded_vmcs->cpu;
709
710         if (cpu != -1)
711                 smp_call_function_single(cpu,
712                          __loaded_vmcs_clear, loaded_vmcs, 1);
713 }
714
715 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
716                                        unsigned field)
717 {
718         bool ret;
719         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
720
721         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
722                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
723                 vmx->segment_cache.bitmask = 0;
724         }
725         ret = vmx->segment_cache.bitmask & mask;
726         vmx->segment_cache.bitmask |= mask;
727         return ret;
728 }
729
730 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
731 {
732         u16 *p = &vmx->segment_cache.seg[seg].selector;
733
734         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
735                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
736         return *p;
737 }
738
739 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
740 {
741         ulong *p = &vmx->segment_cache.seg[seg].base;
742
743         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
744                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
745         return *p;
746 }
747
748 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
749 {
750         u32 *p = &vmx->segment_cache.seg[seg].limit;
751
752         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
753                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
754         return *p;
755 }
756
757 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
758 {
759         u32 *p = &vmx->segment_cache.seg[seg].ar;
760
761         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
762                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
763         return *p;
764 }
765
766 void update_exception_bitmap(struct kvm_vcpu *vcpu)
767 {
768         u32 eb;
769
770         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
771              (1u << DB_VECTOR) | (1u << AC_VECTOR);
772         /*
773          * Guest access to VMware backdoor ports could legitimately
774          * trigger #GP because of TSS I/O permission bitmap.
775          * We intercept those #GP and allow access to them anyway
776          * as VMware does.
777          */
778         if (enable_vmware_backdoor)
779                 eb |= (1u << GP_VECTOR);
780         if ((vcpu->guest_debug &
781              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
782             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
783                 eb |= 1u << BP_VECTOR;
784         if (to_vmx(vcpu)->rmode.vm86_active)
785                 eb = ~0;
786         if (enable_ept)
787                 eb &= ~(1u << PF_VECTOR);
788
789         /* When we are running a nested L2 guest and L1 specified for it a
790          * certain exception bitmap, we must trap the same exceptions and pass
791          * them to L1. When running L2, we will only handle the exceptions
792          * specified above if L1 did not want them.
793          */
794         if (is_guest_mode(vcpu))
795                 eb |= get_vmcs12(vcpu)->exception_bitmap;
796
797         vmcs_write32(EXCEPTION_BITMAP, eb);
798 }
799
800 /*
801  * Check if MSR is intercepted for currently loaded MSR bitmap.
802  */
803 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
804 {
805         unsigned long *msr_bitmap;
806         int f = sizeof(unsigned long);
807
808         if (!cpu_has_vmx_msr_bitmap())
809                 return true;
810
811         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
812
813         if (msr <= 0x1fff) {
814                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
815         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
816                 msr &= 0x1fff;
817                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
818         }
819
820         return true;
821 }
822
823 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
824                 unsigned long entry, unsigned long exit)
825 {
826         vm_entry_controls_clearbit(vmx, entry);
827         vm_exit_controls_clearbit(vmx, exit);
828 }
829
830 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
831 {
832         unsigned int i;
833
834         for (i = 0; i < m->nr; ++i) {
835                 if (m->val[i].index == msr)
836                         return i;
837         }
838         return -ENOENT;
839 }
840
841 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
842 {
843         int i;
844         struct msr_autoload *m = &vmx->msr_autoload;
845
846         switch (msr) {
847         case MSR_EFER:
848                 if (cpu_has_load_ia32_efer()) {
849                         clear_atomic_switch_msr_special(vmx,
850                                         VM_ENTRY_LOAD_IA32_EFER,
851                                         VM_EXIT_LOAD_IA32_EFER);
852                         return;
853                 }
854                 break;
855         case MSR_CORE_PERF_GLOBAL_CTRL:
856                 if (cpu_has_load_perf_global_ctrl()) {
857                         clear_atomic_switch_msr_special(vmx,
858                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
859                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
860                         return;
861                 }
862                 break;
863         }
864         i = vmx_find_msr_index(&m->guest, msr);
865         if (i < 0)
866                 goto skip_guest;
867         --m->guest.nr;
868         m->guest.val[i] = m->guest.val[m->guest.nr];
869         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
870
871 skip_guest:
872         i = vmx_find_msr_index(&m->host, msr);
873         if (i < 0)
874                 return;
875
876         --m->host.nr;
877         m->host.val[i] = m->host.val[m->host.nr];
878         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
879 }
880
881 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
882                 unsigned long entry, unsigned long exit,
883                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
884                 u64 guest_val, u64 host_val)
885 {
886         vmcs_write64(guest_val_vmcs, guest_val);
887         if (host_val_vmcs != HOST_IA32_EFER)
888                 vmcs_write64(host_val_vmcs, host_val);
889         vm_entry_controls_setbit(vmx, entry);
890         vm_exit_controls_setbit(vmx, exit);
891 }
892
893 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
894                                   u64 guest_val, u64 host_val, bool entry_only)
895 {
896         int i, j = 0;
897         struct msr_autoload *m = &vmx->msr_autoload;
898
899         switch (msr) {
900         case MSR_EFER:
901                 if (cpu_has_load_ia32_efer()) {
902                         add_atomic_switch_msr_special(vmx,
903                                         VM_ENTRY_LOAD_IA32_EFER,
904                                         VM_EXIT_LOAD_IA32_EFER,
905                                         GUEST_IA32_EFER,
906                                         HOST_IA32_EFER,
907                                         guest_val, host_val);
908                         return;
909                 }
910                 break;
911         case MSR_CORE_PERF_GLOBAL_CTRL:
912                 if (cpu_has_load_perf_global_ctrl()) {
913                         add_atomic_switch_msr_special(vmx,
914                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
915                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
916                                         GUEST_IA32_PERF_GLOBAL_CTRL,
917                                         HOST_IA32_PERF_GLOBAL_CTRL,
918                                         guest_val, host_val);
919                         return;
920                 }
921                 break;
922         case MSR_IA32_PEBS_ENABLE:
923                 /* PEBS needs a quiescent period after being disabled (to write
924                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
925                  * provide that period, so a CPU could write host's record into
926                  * guest's memory.
927                  */
928                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
929         }
930
931         i = vmx_find_msr_index(&m->guest, msr);
932         if (!entry_only)
933                 j = vmx_find_msr_index(&m->host, msr);
934
935         if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
936                 (j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
937                 printk_once(KERN_WARNING "Not enough msr switch entries. "
938                                 "Can't add msr %x\n", msr);
939                 return;
940         }
941         if (i < 0) {
942                 i = m->guest.nr++;
943                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
944         }
945         m->guest.val[i].index = msr;
946         m->guest.val[i].value = guest_val;
947
948         if (entry_only)
949                 return;
950
951         if (j < 0) {
952                 j = m->host.nr++;
953                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
954         }
955         m->host.val[j].index = msr;
956         m->host.val[j].value = host_val;
957 }
958
959 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
960 {
961         u64 guest_efer = vmx->vcpu.arch.efer;
962         u64 ignore_bits = 0;
963
964         /* Shadow paging assumes NX to be available.  */
965         if (!enable_ept)
966                 guest_efer |= EFER_NX;
967
968         /*
969          * LMA and LME handled by hardware; SCE meaningless outside long mode.
970          */
971         ignore_bits |= EFER_SCE;
972 #ifdef CONFIG_X86_64
973         ignore_bits |= EFER_LMA | EFER_LME;
974         /* SCE is meaningful only in long mode on Intel */
975         if (guest_efer & EFER_LMA)
976                 ignore_bits &= ~(u64)EFER_SCE;
977 #endif
978
979         /*
980          * On EPT, we can't emulate NX, so we must switch EFER atomically.
981          * On CPUs that support "load IA32_EFER", always switch EFER
982          * atomically, since it's faster than switching it manually.
983          */
984         if (cpu_has_load_ia32_efer() ||
985             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
986                 if (!(guest_efer & EFER_LMA))
987                         guest_efer &= ~EFER_LME;
988                 if (guest_efer != host_efer)
989                         add_atomic_switch_msr(vmx, MSR_EFER,
990                                               guest_efer, host_efer, false);
991                 else
992                         clear_atomic_switch_msr(vmx, MSR_EFER);
993                 return false;
994         } else {
995                 clear_atomic_switch_msr(vmx, MSR_EFER);
996
997                 guest_efer &= ~ignore_bits;
998                 guest_efer |= host_efer & ignore_bits;
999
1000                 vmx->guest_msrs[efer_offset].data = guest_efer;
1001                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1002
1003                 return true;
1004         }
1005 }
1006
1007 #ifdef CONFIG_X86_32
1008 /*
1009  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1010  * VMCS rather than the segment table.  KVM uses this helper to figure
1011  * out the current bases to poke them into the VMCS before entry.
1012  */
1013 static unsigned long segment_base(u16 selector)
1014 {
1015         struct desc_struct *table;
1016         unsigned long v;
1017
1018         if (!(selector & ~SEGMENT_RPL_MASK))
1019                 return 0;
1020
1021         table = get_current_gdt_ro();
1022
1023         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1024                 u16 ldt_selector = kvm_read_ldt();
1025
1026                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1027                         return 0;
1028
1029                 table = (struct desc_struct *)segment_base(ldt_selector);
1030         }
1031         v = get_desc_base(&table[selector >> 3]);
1032         return v;
1033 }
1034 #endif
1035
1036 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1037 {
1038         return vmx_pt_mode_is_host_guest() &&
1039                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1040 }
1041
1042 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1043 {
1044         u32 i;
1045
1046         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1047         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1048         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1049         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1050         for (i = 0; i < addr_range; i++) {
1051                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1052                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1053         }
1054 }
1055
1056 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1057 {
1058         u32 i;
1059
1060         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1061         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1062         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1063         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1064         for (i = 0; i < addr_range; i++) {
1065                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1066                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1067         }
1068 }
1069
1070 static void pt_guest_enter(struct vcpu_vmx *vmx)
1071 {
1072         if (vmx_pt_mode_is_system())
1073                 return;
1074
1075         /*
1076          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1077          * Save host state before VM entry.
1078          */
1079         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1080         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1081                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1082                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1083                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1084         }
1085 }
1086
1087 static void pt_guest_exit(struct vcpu_vmx *vmx)
1088 {
1089         if (vmx_pt_mode_is_system())
1090                 return;
1091
1092         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1093                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1094                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1095         }
1096
1097         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1098         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1099 }
1100
1101 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1102                         unsigned long fs_base, unsigned long gs_base)
1103 {
1104         if (unlikely(fs_sel != host->fs_sel)) {
1105                 if (!(fs_sel & 7))
1106                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1107                 else
1108                         vmcs_write16(HOST_FS_SELECTOR, 0);
1109                 host->fs_sel = fs_sel;
1110         }
1111         if (unlikely(gs_sel != host->gs_sel)) {
1112                 if (!(gs_sel & 7))
1113                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1114                 else
1115                         vmcs_write16(HOST_GS_SELECTOR, 0);
1116                 host->gs_sel = gs_sel;
1117         }
1118         if (unlikely(fs_base != host->fs_base)) {
1119                 vmcs_writel(HOST_FS_BASE, fs_base);
1120                 host->fs_base = fs_base;
1121         }
1122         if (unlikely(gs_base != host->gs_base)) {
1123                 vmcs_writel(HOST_GS_BASE, gs_base);
1124                 host->gs_base = gs_base;
1125         }
1126 }
1127
1128 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1129 {
1130         struct vcpu_vmx *vmx = to_vmx(vcpu);
1131         struct vmcs_host_state *host_state;
1132 #ifdef CONFIG_X86_64
1133         int cpu = raw_smp_processor_id();
1134 #endif
1135         unsigned long fs_base, gs_base;
1136         u16 fs_sel, gs_sel;
1137         int i;
1138
1139         vmx->req_immediate_exit = false;
1140
1141         /*
1142          * Note that guest MSRs to be saved/restored can also be changed
1143          * when guest state is loaded. This happens when guest transitions
1144          * to/from long-mode by setting MSR_EFER.LMA.
1145          */
1146         if (!vmx->guest_msrs_ready) {
1147                 vmx->guest_msrs_ready = true;
1148                 for (i = 0; i < vmx->save_nmsrs; ++i)
1149                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1150                                            vmx->guest_msrs[i].data,
1151                                            vmx->guest_msrs[i].mask);
1152
1153         }
1154
1155         if (vmx->nested.need_vmcs12_to_shadow_sync)
1156                 nested_sync_vmcs12_to_shadow(vcpu);
1157
1158         if (vmx->guest_state_loaded)
1159                 return;
1160
1161         host_state = &vmx->loaded_vmcs->host_state;
1162
1163         /*
1164          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1165          * allow segment selectors with cpl > 0 or ti == 1.
1166          */
1167         host_state->ldt_sel = kvm_read_ldt();
1168
1169 #ifdef CONFIG_X86_64
1170         savesegment(ds, host_state->ds_sel);
1171         savesegment(es, host_state->es_sel);
1172
1173         gs_base = cpu_kernelmode_gs_base(cpu);
1174         if (likely(is_64bit_mm(current->mm))) {
1175                 save_fsgs_for_kvm();
1176                 fs_sel = current->thread.fsindex;
1177                 gs_sel = current->thread.gsindex;
1178                 fs_base = current->thread.fsbase;
1179                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1180         } else {
1181                 savesegment(fs, fs_sel);
1182                 savesegment(gs, gs_sel);
1183                 fs_base = read_msr(MSR_FS_BASE);
1184                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1185         }
1186
1187         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1188 #else
1189         savesegment(fs, fs_sel);
1190         savesegment(gs, gs_sel);
1191         fs_base = segment_base(fs_sel);
1192         gs_base = segment_base(gs_sel);
1193 #endif
1194
1195         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1196         vmx->guest_state_loaded = true;
1197 }
1198
1199 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1200 {
1201         struct vmcs_host_state *host_state;
1202
1203         if (!vmx->guest_state_loaded)
1204                 return;
1205
1206         host_state = &vmx->loaded_vmcs->host_state;
1207
1208         ++vmx->vcpu.stat.host_state_reload;
1209
1210 #ifdef CONFIG_X86_64
1211         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1212 #endif
1213         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1214                 kvm_load_ldt(host_state->ldt_sel);
1215 #ifdef CONFIG_X86_64
1216                 load_gs_index(host_state->gs_sel);
1217 #else
1218                 loadsegment(gs, host_state->gs_sel);
1219 #endif
1220         }
1221         if (host_state->fs_sel & 7)
1222                 loadsegment(fs, host_state->fs_sel);
1223 #ifdef CONFIG_X86_64
1224         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1225                 loadsegment(ds, host_state->ds_sel);
1226                 loadsegment(es, host_state->es_sel);
1227         }
1228 #endif
1229         invalidate_tss_limit();
1230 #ifdef CONFIG_X86_64
1231         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1232 #endif
1233         load_fixmap_gdt(raw_smp_processor_id());
1234         vmx->guest_state_loaded = false;
1235         vmx->guest_msrs_ready = false;
1236 }
1237
1238 #ifdef CONFIG_X86_64
1239 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1240 {
1241         preempt_disable();
1242         if (vmx->guest_state_loaded)
1243                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1244         preempt_enable();
1245         return vmx->msr_guest_kernel_gs_base;
1246 }
1247
1248 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1249 {
1250         preempt_disable();
1251         if (vmx->guest_state_loaded)
1252                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1253         preempt_enable();
1254         vmx->msr_guest_kernel_gs_base = data;
1255 }
1256 #endif
1257
1258 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1259 {
1260         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1261         struct pi_desc old, new;
1262         unsigned int dest;
1263
1264         /*
1265          * In case of hot-plug or hot-unplug, we may have to undo
1266          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1267          * always keep PI.NDST up to date for simplicity: it makes the
1268          * code easier, and CPU migration is not a fast path.
1269          */
1270         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1271                 return;
1272
1273         /*
1274          * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1275          * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1276          * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1277          * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1278          * correctly.
1279          */
1280         if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1281                 pi_clear_sn(pi_desc);
1282                 goto after_clear_sn;
1283         }
1284
1285         /* The full case.  */
1286         do {
1287                 old.control = new.control = pi_desc->control;
1288
1289                 dest = cpu_physical_id(cpu);
1290
1291                 if (x2apic_enabled())
1292                         new.ndst = dest;
1293                 else
1294                         new.ndst = (dest << 8) & 0xFF00;
1295
1296                 new.sn = 0;
1297         } while (cmpxchg64(&pi_desc->control, old.control,
1298                            new.control) != old.control);
1299
1300 after_clear_sn:
1301
1302         /*
1303          * Clear SN before reading the bitmap.  The VT-d firmware
1304          * writes the bitmap and reads SN atomically (5.2.3 in the
1305          * spec), so it doesn't really have a memory barrier that
1306          * pairs with this, but we cannot do that and we need one.
1307          */
1308         smp_mb__after_atomic();
1309
1310         if (!pi_is_pir_empty(pi_desc))
1311                 pi_set_on(pi_desc);
1312 }
1313
1314 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1315 {
1316         struct vcpu_vmx *vmx = to_vmx(vcpu);
1317         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1318
1319         if (!already_loaded) {
1320                 loaded_vmcs_clear(vmx->loaded_vmcs);
1321                 local_irq_disable();
1322
1323                 /*
1324                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1325                  * this cpu's percpu list, otherwise it may not yet be deleted
1326                  * from its previous cpu's percpu list.  Pairs with the
1327                  * smb_wmb() in __loaded_vmcs_clear().
1328                  */
1329                 smp_rmb();
1330
1331                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1332                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1333                 local_irq_enable();
1334         }
1335
1336         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1337                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1338                 vmcs_load(vmx->loaded_vmcs->vmcs);
1339                 indirect_branch_prediction_barrier();
1340         }
1341
1342         if (!already_loaded) {
1343                 void *gdt = get_current_gdt_ro();
1344                 unsigned long sysenter_esp;
1345
1346                 /*
1347                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1348                  * TLB entries from its previous association with the vCPU.
1349                  */
1350                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1351
1352                 /*
1353                  * Linux uses per-cpu TSS and GDT, so set these when switching
1354                  * processors.  See 22.2.4.
1355                  */
1356                 vmcs_writel(HOST_TR_BASE,
1357                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1358                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1359
1360                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1361                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1362
1363                 vmx->loaded_vmcs->cpu = cpu;
1364         }
1365
1366         /* Setup TSC multiplier */
1367         if (kvm_has_tsc_control &&
1368             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1369                 decache_tsc_multiplier(vmx);
1370 }
1371
1372 /*
1373  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1374  * vcpu mutex is already taken.
1375  */
1376 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1377 {
1378         struct vcpu_vmx *vmx = to_vmx(vcpu);
1379
1380         vmx_vcpu_load_vmcs(vcpu, cpu);
1381
1382         vmx_vcpu_pi_load(vcpu, cpu);
1383
1384         vmx->host_debugctlmsr = get_debugctlmsr();
1385 }
1386
1387 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1388 {
1389         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1390
1391         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1392                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1393                 !kvm_vcpu_apicv_active(vcpu))
1394                 return;
1395
1396         /* Set SN when the vCPU is preempted */
1397         if (vcpu->preempted)
1398                 pi_set_sn(pi_desc);
1399 }
1400
1401 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1402 {
1403         vmx_vcpu_pi_put(vcpu);
1404
1405         vmx_prepare_switch_to_host(to_vmx(vcpu));
1406 }
1407
1408 static bool emulation_required(struct kvm_vcpu *vcpu)
1409 {
1410         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1411 }
1412
1413 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1414 {
1415         struct vcpu_vmx *vmx = to_vmx(vcpu);
1416         unsigned long rflags, save_rflags;
1417
1418         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1419                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1420                 rflags = vmcs_readl(GUEST_RFLAGS);
1421                 if (vmx->rmode.vm86_active) {
1422                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1423                         save_rflags = vmx->rmode.save_rflags;
1424                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1425                 }
1426                 vmx->rflags = rflags;
1427         }
1428         return vmx->rflags;
1429 }
1430
1431 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1432 {
1433         struct vcpu_vmx *vmx = to_vmx(vcpu);
1434         unsigned long old_rflags;
1435
1436         if (enable_unrestricted_guest) {
1437                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1438                 vmx->rflags = rflags;
1439                 vmcs_writel(GUEST_RFLAGS, rflags);
1440                 return;
1441         }
1442
1443         old_rflags = vmx_get_rflags(vcpu);
1444         vmx->rflags = rflags;
1445         if (vmx->rmode.vm86_active) {
1446                 vmx->rmode.save_rflags = rflags;
1447                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1448         }
1449         vmcs_writel(GUEST_RFLAGS, rflags);
1450
1451         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1452                 vmx->emulation_required = emulation_required(vcpu);
1453 }
1454
1455 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1456 {
1457         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1458         int ret = 0;
1459
1460         if (interruptibility & GUEST_INTR_STATE_STI)
1461                 ret |= KVM_X86_SHADOW_INT_STI;
1462         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1463                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1464
1465         return ret;
1466 }
1467
1468 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1469 {
1470         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1471         u32 interruptibility = interruptibility_old;
1472
1473         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1474
1475         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1476                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1477         else if (mask & KVM_X86_SHADOW_INT_STI)
1478                 interruptibility |= GUEST_INTR_STATE_STI;
1479
1480         if ((interruptibility != interruptibility_old))
1481                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1482 }
1483
1484 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1485 {
1486         struct vcpu_vmx *vmx = to_vmx(vcpu);
1487         unsigned long value;
1488
1489         /*
1490          * Any MSR write that attempts to change bits marked reserved will
1491          * case a #GP fault.
1492          */
1493         if (data & vmx->pt_desc.ctl_bitmask)
1494                 return 1;
1495
1496         /*
1497          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1498          * result in a #GP unless the same write also clears TraceEn.
1499          */
1500         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1501                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1502                 return 1;
1503
1504         /*
1505          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1506          * and FabricEn would cause #GP, if
1507          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1508          */
1509         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1510                 !(data & RTIT_CTL_FABRIC_EN) &&
1511                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1512                                         PT_CAP_single_range_output))
1513                 return 1;
1514
1515         /*
1516          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1517          * utilize encodings marked reserved will casue a #GP fault.
1518          */
1519         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1520         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1521                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1522                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1523                 return 1;
1524         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1525                                                 PT_CAP_cycle_thresholds);
1526         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1527                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1528                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1529                 return 1;
1530         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1531         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1532                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1533                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1534                 return 1;
1535
1536         /*
1537          * If ADDRx_CFG is reserved or the encodings is >2 will
1538          * cause a #GP fault.
1539          */
1540         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1541         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1542                 return 1;
1543         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1544         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1545                 return 1;
1546         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1547         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1548                 return 1;
1549         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1550         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1551                 return 1;
1552
1553         return 0;
1554 }
1555
1556 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1557 {
1558         unsigned long rip;
1559
1560         /*
1561          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1562          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1563          * set when EPT misconfig occurs.  In practice, real hardware updates
1564          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1565          * (namely Hyper-V) don't set it due to it being undefined behavior,
1566          * i.e. we end up advancing IP with some random value.
1567          */
1568         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1569             to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1570                 rip = kvm_rip_read(vcpu);
1571                 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1572                 kvm_rip_write(vcpu, rip);
1573         } else {
1574                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1575                         return 0;
1576         }
1577
1578         /* skipping an emulated instruction also counts */
1579         vmx_set_interrupt_shadow(vcpu, 0);
1580
1581         return 1;
1582 }
1583
1584
1585 /*
1586  * Recognizes a pending MTF VM-exit and records the nested state for later
1587  * delivery.
1588  */
1589 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1590 {
1591         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1592         struct vcpu_vmx *vmx = to_vmx(vcpu);
1593
1594         if (!is_guest_mode(vcpu))
1595                 return;
1596
1597         /*
1598          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1599          * T-bit traps. As instruction emulation is completed (i.e. at the
1600          * instruction boundary), any #DB exception pending delivery must be a
1601          * debug-trap. Record the pending MTF state to be delivered in
1602          * vmx_check_nested_events().
1603          */
1604         if (nested_cpu_has_mtf(vmcs12) &&
1605             (!vcpu->arch.exception.pending ||
1606              vcpu->arch.exception.nr == DB_VECTOR))
1607                 vmx->nested.mtf_pending = true;
1608         else
1609                 vmx->nested.mtf_pending = false;
1610 }
1611
1612 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1613 {
1614         vmx_update_emulated_instruction(vcpu);
1615         return skip_emulated_instruction(vcpu);
1616 }
1617
1618 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1619 {
1620         /*
1621          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1622          * explicitly skip the instruction because if the HLT state is set,
1623          * then the instruction is already executing and RIP has already been
1624          * advanced.
1625          */
1626         if (kvm_hlt_in_guest(vcpu->kvm) &&
1627                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1628                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1629 }
1630
1631 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1632 {
1633         struct vcpu_vmx *vmx = to_vmx(vcpu);
1634         unsigned nr = vcpu->arch.exception.nr;
1635         bool has_error_code = vcpu->arch.exception.has_error_code;
1636         u32 error_code = vcpu->arch.exception.error_code;
1637         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1638
1639         kvm_deliver_exception_payload(vcpu);
1640
1641         if (has_error_code) {
1642                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1643                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1644         }
1645
1646         if (vmx->rmode.vm86_active) {
1647                 int inc_eip = 0;
1648                 if (kvm_exception_is_soft(nr))
1649                         inc_eip = vcpu->arch.event_exit_inst_len;
1650                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1651                 return;
1652         }
1653
1654         WARN_ON_ONCE(vmx->emulation_required);
1655
1656         if (kvm_exception_is_soft(nr)) {
1657                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1658                              vmx->vcpu.arch.event_exit_inst_len);
1659                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1660         } else
1661                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1662
1663         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1664
1665         vmx_clear_hlt(vcpu);
1666 }
1667
1668 /*
1669  * Swap MSR entry in host/guest MSR entry array.
1670  */
1671 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1672 {
1673         struct shared_msr_entry tmp;
1674
1675         tmp = vmx->guest_msrs[to];
1676         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1677         vmx->guest_msrs[from] = tmp;
1678 }
1679
1680 /*
1681  * Set up the vmcs to automatically save and restore system
1682  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1683  * mode, as fiddling with msrs is very expensive.
1684  */
1685 static void setup_msrs(struct vcpu_vmx *vmx)
1686 {
1687         int save_nmsrs, index;
1688
1689         save_nmsrs = 0;
1690 #ifdef CONFIG_X86_64
1691         /*
1692          * The SYSCALL MSRs are only needed on long mode guests, and only
1693          * when EFER.SCE is set.
1694          */
1695         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1696                 index = __find_msr_index(vmx, MSR_STAR);
1697                 if (index >= 0)
1698                         move_msr_up(vmx, index, save_nmsrs++);
1699                 index = __find_msr_index(vmx, MSR_LSTAR);
1700                 if (index >= 0)
1701                         move_msr_up(vmx, index, save_nmsrs++);
1702                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1703                 if (index >= 0)
1704                         move_msr_up(vmx, index, save_nmsrs++);
1705         }
1706 #endif
1707         index = __find_msr_index(vmx, MSR_EFER);
1708         if (index >= 0 && update_transition_efer(vmx, index))
1709                 move_msr_up(vmx, index, save_nmsrs++);
1710         index = __find_msr_index(vmx, MSR_TSC_AUX);
1711         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1712                 move_msr_up(vmx, index, save_nmsrs++);
1713         index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1714         if (index >= 0)
1715                 move_msr_up(vmx, index, save_nmsrs++);
1716
1717         vmx->save_nmsrs = save_nmsrs;
1718         vmx->guest_msrs_ready = false;
1719
1720         if (cpu_has_vmx_msr_bitmap())
1721                 vmx_update_msr_bitmap(&vmx->vcpu);
1722 }
1723
1724 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1725 {
1726         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1727
1728         if (is_guest_mode(vcpu) &&
1729             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1730                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1731
1732         return vcpu->arch.tsc_offset;
1733 }
1734
1735 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1736 {
1737         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1738         u64 g_tsc_offset = 0;
1739
1740         /*
1741          * We're here if L1 chose not to trap WRMSR to TSC. According
1742          * to the spec, this should set L1's TSC; The offset that L1
1743          * set for L2 remains unchanged, and still needs to be added
1744          * to the newly set TSC to get L2's TSC.
1745          */
1746         if (is_guest_mode(vcpu) &&
1747             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1748                 g_tsc_offset = vmcs12->tsc_offset;
1749
1750         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1751                                    vcpu->arch.tsc_offset - g_tsc_offset,
1752                                    offset);
1753         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1754         return offset + g_tsc_offset;
1755 }
1756
1757 /*
1758  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1759  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1760  * all guests if the "nested" module option is off, and can also be disabled
1761  * for a single guest by disabling its VMX cpuid bit.
1762  */
1763 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1764 {
1765         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1766 }
1767
1768 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1769                                                  uint64_t val)
1770 {
1771         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1772
1773         return !(val & ~valid_bits);
1774 }
1775
1776 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1777 {
1778         switch (msr->index) {
1779         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1780                 if (!nested)
1781                         return 1;
1782                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1783         default:
1784                 return 1;
1785         }
1786 }
1787
1788 /*
1789  * Reads an msr value (of 'msr_index') into 'pdata'.
1790  * Returns 0 on success, non-0 otherwise.
1791  * Assumes vcpu_load() was already called.
1792  */
1793 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1794 {
1795         struct vcpu_vmx *vmx = to_vmx(vcpu);
1796         struct shared_msr_entry *msr;
1797         u32 index;
1798
1799         switch (msr_info->index) {
1800 #ifdef CONFIG_X86_64
1801         case MSR_FS_BASE:
1802                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1803                 break;
1804         case MSR_GS_BASE:
1805                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1806                 break;
1807         case MSR_KERNEL_GS_BASE:
1808                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1809                 break;
1810 #endif
1811         case MSR_EFER:
1812                 return kvm_get_msr_common(vcpu, msr_info);
1813         case MSR_IA32_TSX_CTRL:
1814                 if (!msr_info->host_initiated &&
1815                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1816                         return 1;
1817                 goto find_shared_msr;
1818         case MSR_IA32_UMWAIT_CONTROL:
1819                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1820                         return 1;
1821
1822                 msr_info->data = vmx->msr_ia32_umwait_control;
1823                 break;
1824         case MSR_IA32_SPEC_CTRL:
1825                 if (!msr_info->host_initiated &&
1826                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1827                         return 1;
1828
1829                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1830                 break;
1831         case MSR_IA32_SYSENTER_CS:
1832                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1833                 break;
1834         case MSR_IA32_SYSENTER_EIP:
1835                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1836                 break;
1837         case MSR_IA32_SYSENTER_ESP:
1838                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1839                 break;
1840         case MSR_IA32_BNDCFGS:
1841                 if (!kvm_mpx_supported() ||
1842                     (!msr_info->host_initiated &&
1843                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1844                         return 1;
1845                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1846                 break;
1847         case MSR_IA32_MCG_EXT_CTL:
1848                 if (!msr_info->host_initiated &&
1849                     !(vmx->msr_ia32_feature_control &
1850                       FEAT_CTL_LMCE_ENABLED))
1851                         return 1;
1852                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1853                 break;
1854         case MSR_IA32_FEAT_CTL:
1855                 msr_info->data = vmx->msr_ia32_feature_control;
1856                 break;
1857         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1858                 if (!nested_vmx_allowed(vcpu))
1859                         return 1;
1860                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1861                                     &msr_info->data))
1862                         return 1;
1863                 /*
1864                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
1865                  * Hyper-V versions are still trying to use corresponding
1866                  * features when they are exposed. Filter out the essential
1867                  * minimum.
1868                  */
1869                 if (!msr_info->host_initiated &&
1870                     vmx->nested.enlightened_vmcs_enabled)
1871                         nested_evmcs_filter_control_msr(msr_info->index,
1872                                                         &msr_info->data);
1873                 break;
1874         case MSR_IA32_RTIT_CTL:
1875                 if (!vmx_pt_mode_is_host_guest())
1876                         return 1;
1877                 msr_info->data = vmx->pt_desc.guest.ctl;
1878                 break;
1879         case MSR_IA32_RTIT_STATUS:
1880                 if (!vmx_pt_mode_is_host_guest())
1881                         return 1;
1882                 msr_info->data = vmx->pt_desc.guest.status;
1883                 break;
1884         case MSR_IA32_RTIT_CR3_MATCH:
1885                 if (!vmx_pt_mode_is_host_guest() ||
1886                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1887                                                 PT_CAP_cr3_filtering))
1888                         return 1;
1889                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1890                 break;
1891         case MSR_IA32_RTIT_OUTPUT_BASE:
1892                 if (!vmx_pt_mode_is_host_guest() ||
1893                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1894                                         PT_CAP_topa_output) &&
1895                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1896                                         PT_CAP_single_range_output)))
1897                         return 1;
1898                 msr_info->data = vmx->pt_desc.guest.output_base;
1899                 break;
1900         case MSR_IA32_RTIT_OUTPUT_MASK:
1901                 if (!vmx_pt_mode_is_host_guest() ||
1902                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1903                                         PT_CAP_topa_output) &&
1904                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1905                                         PT_CAP_single_range_output)))
1906                         return 1;
1907                 msr_info->data = vmx->pt_desc.guest.output_mask;
1908                 break;
1909         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1910                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1911                 if (!vmx_pt_mode_is_host_guest() ||
1912                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1913                                         PT_CAP_num_address_ranges)))
1914                         return 1;
1915                 if (index % 2)
1916                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1917                 else
1918                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1919                 break;
1920         case MSR_TSC_AUX:
1921                 if (!msr_info->host_initiated &&
1922                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1923                         return 1;
1924                 goto find_shared_msr;
1925         default:
1926         find_shared_msr:
1927                 msr = find_msr_entry(vmx, msr_info->index);
1928                 if (msr) {
1929                         msr_info->data = msr->data;
1930                         break;
1931                 }
1932                 return kvm_get_msr_common(vcpu, msr_info);
1933         }
1934
1935         return 0;
1936 }
1937
1938 /*
1939  * Writes msr value into the appropriate "register".
1940  * Returns 0 on success, non-0 otherwise.
1941  * Assumes vcpu_load() was already called.
1942  */
1943 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1944 {
1945         struct vcpu_vmx *vmx = to_vmx(vcpu);
1946         struct shared_msr_entry *msr;
1947         int ret = 0;
1948         u32 msr_index = msr_info->index;
1949         u64 data = msr_info->data;
1950         u32 index;
1951
1952         switch (msr_index) {
1953         case MSR_EFER:
1954                 ret = kvm_set_msr_common(vcpu, msr_info);
1955                 break;
1956 #ifdef CONFIG_X86_64
1957         case MSR_FS_BASE:
1958                 vmx_segment_cache_clear(vmx);
1959                 vmcs_writel(GUEST_FS_BASE, data);
1960                 break;
1961         case MSR_GS_BASE:
1962                 vmx_segment_cache_clear(vmx);
1963                 vmcs_writel(GUEST_GS_BASE, data);
1964                 break;
1965         case MSR_KERNEL_GS_BASE:
1966                 vmx_write_guest_kernel_gs_base(vmx, data);
1967                 break;
1968 #endif
1969         case MSR_IA32_SYSENTER_CS:
1970                 if (is_guest_mode(vcpu))
1971                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1972                 vmcs_write32(GUEST_SYSENTER_CS, data);
1973                 break;
1974         case MSR_IA32_SYSENTER_EIP:
1975                 if (is_guest_mode(vcpu))
1976                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1977                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1978                 break;
1979         case MSR_IA32_SYSENTER_ESP:
1980                 if (is_guest_mode(vcpu))
1981                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
1982                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1983                 break;
1984         case MSR_IA32_DEBUGCTLMSR:
1985                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1986                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
1987                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1988
1989                 ret = kvm_set_msr_common(vcpu, msr_info);
1990                 break;
1991
1992         case MSR_IA32_BNDCFGS:
1993                 if (!kvm_mpx_supported() ||
1994                     (!msr_info->host_initiated &&
1995                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1996                         return 1;
1997                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1998                     (data & MSR_IA32_BNDCFGS_RSVD))
1999                         return 1;
2000                 vmcs_write64(GUEST_BNDCFGS, data);
2001                 break;
2002         case MSR_IA32_UMWAIT_CONTROL:
2003                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2004                         return 1;
2005
2006                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2007                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2008                         return 1;
2009
2010                 vmx->msr_ia32_umwait_control = data;
2011                 break;
2012         case MSR_IA32_SPEC_CTRL:
2013                 if (!msr_info->host_initiated &&
2014                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2015                         return 1;
2016
2017                 if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2018                         return 1;
2019
2020                 vmx->spec_ctrl = data;
2021                 if (!data)
2022                         break;
2023
2024                 /*
2025                  * For non-nested:
2026                  * When it's written (to non-zero) for the first time, pass
2027                  * it through.
2028                  *
2029                  * For nested:
2030                  * The handling of the MSR bitmap for L2 guests is done in
2031                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2032                  * vmcs02.msr_bitmap here since it gets completely overwritten
2033                  * in the merging. We update the vmcs01 here for L1 as well
2034                  * since it will end up touching the MSR anyway now.
2035                  */
2036                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2037                                               MSR_IA32_SPEC_CTRL,
2038                                               MSR_TYPE_RW);
2039                 break;
2040         case MSR_IA32_TSX_CTRL:
2041                 if (!msr_info->host_initiated &&
2042                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2043                         return 1;
2044                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2045                         return 1;
2046                 goto find_shared_msr;
2047         case MSR_IA32_PRED_CMD:
2048                 if (!msr_info->host_initiated &&
2049                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2050                         return 1;
2051
2052                 if (data & ~PRED_CMD_IBPB)
2053                         return 1;
2054                 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2055                         return 1;
2056                 if (!data)
2057                         break;
2058
2059                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2060
2061                 /*
2062                  * For non-nested:
2063                  * When it's written (to non-zero) for the first time, pass
2064                  * it through.
2065                  *
2066                  * For nested:
2067                  * The handling of the MSR bitmap for L2 guests is done in
2068                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2069                  * vmcs02.msr_bitmap here since it gets completely overwritten
2070                  * in the merging.
2071                  */
2072                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2073                                               MSR_TYPE_W);
2074                 break;
2075         case MSR_IA32_CR_PAT:
2076                 if (!kvm_pat_valid(data))
2077                         return 1;
2078
2079                 if (is_guest_mode(vcpu) &&
2080                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2081                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2082
2083                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2084                         vmcs_write64(GUEST_IA32_PAT, data);
2085                         vcpu->arch.pat = data;
2086                         break;
2087                 }
2088                 ret = kvm_set_msr_common(vcpu, msr_info);
2089                 break;
2090         case MSR_IA32_TSC_ADJUST:
2091                 ret = kvm_set_msr_common(vcpu, msr_info);
2092                 break;
2093         case MSR_IA32_MCG_EXT_CTL:
2094                 if ((!msr_info->host_initiated &&
2095                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2096                        FEAT_CTL_LMCE_ENABLED)) ||
2097                     (data & ~MCG_EXT_CTL_LMCE_EN))
2098                         return 1;
2099                 vcpu->arch.mcg_ext_ctl = data;
2100                 break;
2101         case MSR_IA32_FEAT_CTL:
2102                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2103                     (to_vmx(vcpu)->msr_ia32_feature_control &
2104                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2105                         return 1;
2106                 vmx->msr_ia32_feature_control = data;
2107                 if (msr_info->host_initiated && data == 0)
2108                         vmx_leave_nested(vcpu);
2109                 break;
2110         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2111                 if (!msr_info->host_initiated)
2112                         return 1; /* they are read-only */
2113                 if (!nested_vmx_allowed(vcpu))
2114                         return 1;
2115                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2116         case MSR_IA32_RTIT_CTL:
2117                 if (!vmx_pt_mode_is_host_guest() ||
2118                         vmx_rtit_ctl_check(vcpu, data) ||
2119                         vmx->nested.vmxon)
2120                         return 1;
2121                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2122                 vmx->pt_desc.guest.ctl = data;
2123                 pt_update_intercept_for_msr(vmx);
2124                 break;
2125         case MSR_IA32_RTIT_STATUS:
2126                 if (!pt_can_write_msr(vmx))
2127                         return 1;
2128                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2129                         return 1;
2130                 vmx->pt_desc.guest.status = data;
2131                 break;
2132         case MSR_IA32_RTIT_CR3_MATCH:
2133                 if (!pt_can_write_msr(vmx))
2134                         return 1;
2135                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2136                                            PT_CAP_cr3_filtering))
2137                         return 1;
2138                 vmx->pt_desc.guest.cr3_match = data;
2139                 break;
2140         case MSR_IA32_RTIT_OUTPUT_BASE:
2141                 if (!pt_can_write_msr(vmx))
2142                         return 1;
2143                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2144                                            PT_CAP_topa_output) &&
2145                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2146                                            PT_CAP_single_range_output))
2147                         return 1;
2148                 if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2149                         return 1;
2150                 vmx->pt_desc.guest.output_base = data;
2151                 break;
2152         case MSR_IA32_RTIT_OUTPUT_MASK:
2153                 if (!pt_can_write_msr(vmx))
2154                         return 1;
2155                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2156                                            PT_CAP_topa_output) &&
2157                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2158                                            PT_CAP_single_range_output))
2159                         return 1;
2160                 vmx->pt_desc.guest.output_mask = data;
2161                 break;
2162         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2163                 if (!pt_can_write_msr(vmx))
2164                         return 1;
2165                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2166                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2167                                                        PT_CAP_num_address_ranges))
2168                         return 1;
2169                 if (is_noncanonical_address(data, vcpu))
2170                         return 1;
2171                 if (index % 2)
2172                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2173                 else
2174                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2175                 break;
2176         case MSR_TSC_AUX:
2177                 if (!msr_info->host_initiated &&
2178                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2179                         return 1;
2180                 /* Check reserved bit, higher 32 bits should be zero */
2181                 if ((data >> 32) != 0)
2182                         return 1;
2183                 goto find_shared_msr;
2184
2185         default:
2186         find_shared_msr:
2187                 msr = find_msr_entry(vmx, msr_index);
2188                 if (msr)
2189                         ret = vmx_set_guest_msr(vmx, msr, data);
2190                 else
2191                         ret = kvm_set_msr_common(vcpu, msr_info);
2192         }
2193
2194         return ret;
2195 }
2196
2197 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2198 {
2199         kvm_register_mark_available(vcpu, reg);
2200
2201         switch (reg) {
2202         case VCPU_REGS_RSP:
2203                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2204                 break;
2205         case VCPU_REGS_RIP:
2206                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2207                 break;
2208         case VCPU_EXREG_PDPTR:
2209                 if (enable_ept)
2210                         ept_save_pdptrs(vcpu);
2211                 break;
2212         case VCPU_EXREG_CR3:
2213                 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2214                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2215                 break;
2216         default:
2217                 WARN_ON_ONCE(1);
2218                 break;
2219         }
2220 }
2221
2222 static __init int cpu_has_kvm_support(void)
2223 {
2224         return cpu_has_vmx();
2225 }
2226
2227 static __init int vmx_disabled_by_bios(void)
2228 {
2229         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2230                !boot_cpu_has(X86_FEATURE_VMX);
2231 }
2232
2233 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2234 {
2235         u64 msr;
2236
2237         cr4_set_bits(X86_CR4_VMXE);
2238         intel_pt_handle_vmx(1);
2239
2240         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2241                           _ASM_EXTABLE(1b, %l[fault])
2242                           : : [vmxon_pointer] "m"(vmxon_pointer)
2243                           : : fault);
2244         return 0;
2245
2246 fault:
2247         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2248                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2249         intel_pt_handle_vmx(0);
2250         cr4_clear_bits(X86_CR4_VMXE);
2251
2252         return -EFAULT;
2253 }
2254
2255 static int hardware_enable(void)
2256 {
2257         int cpu = raw_smp_processor_id();
2258         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2259         int r;
2260
2261         if (cr4_read_shadow() & X86_CR4_VMXE)
2262                 return -EBUSY;
2263
2264         /*
2265          * This can happen if we hot-added a CPU but failed to allocate
2266          * VP assist page for it.
2267          */
2268         if (static_branch_unlikely(&enable_evmcs) &&
2269             !hv_get_vp_assist_page(cpu))
2270                 return -EFAULT;
2271
2272         r = kvm_cpu_vmxon(phys_addr);
2273         if (r)
2274                 return r;
2275
2276         if (enable_ept)
2277                 ept_sync_global();
2278
2279         return 0;
2280 }
2281
2282 static void vmclear_local_loaded_vmcss(void)
2283 {
2284         int cpu = raw_smp_processor_id();
2285         struct loaded_vmcs *v, *n;
2286
2287         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2288                                  loaded_vmcss_on_cpu_link)
2289                 __loaded_vmcs_clear(v);
2290 }
2291
2292
2293 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2294  * tricks.
2295  */
2296 static void kvm_cpu_vmxoff(void)
2297 {
2298         asm volatile (__ex("vmxoff"));
2299
2300         intel_pt_handle_vmx(0);
2301         cr4_clear_bits(X86_CR4_VMXE);
2302 }
2303
2304 static void hardware_disable(void)
2305 {
2306         vmclear_local_loaded_vmcss();
2307         kvm_cpu_vmxoff();
2308 }
2309
2310 /*
2311  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2312  * directly instead of going through cpu_has(), to ensure KVM is trapping
2313  * ENCLS whenever it's supported in hardware.  It does not matter whether
2314  * the host OS supports or has enabled SGX.
2315  */
2316 static bool cpu_has_sgx(void)
2317 {
2318         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2319 }
2320
2321 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2322                                       u32 msr, u32 *result)
2323 {
2324         u32 vmx_msr_low, vmx_msr_high;
2325         u32 ctl = ctl_min | ctl_opt;
2326
2327         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2328
2329         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2330         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2331
2332         /* Ensure minimum (required) set of control bits are supported. */
2333         if (ctl_min & ~ctl)
2334                 return -EIO;
2335
2336         *result = ctl;
2337         return 0;
2338 }
2339
2340 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2341                                     struct vmx_capability *vmx_cap)
2342 {
2343         u32 vmx_msr_low, vmx_msr_high;
2344         u32 min, opt, min2, opt2;
2345         u32 _pin_based_exec_control = 0;
2346         u32 _cpu_based_exec_control = 0;
2347         u32 _cpu_based_2nd_exec_control = 0;
2348         u32 _vmexit_control = 0;
2349         u32 _vmentry_control = 0;
2350
2351         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2352         min = CPU_BASED_HLT_EXITING |
2353 #ifdef CONFIG_X86_64
2354               CPU_BASED_CR8_LOAD_EXITING |
2355               CPU_BASED_CR8_STORE_EXITING |
2356 #endif
2357               CPU_BASED_CR3_LOAD_EXITING |
2358               CPU_BASED_CR3_STORE_EXITING |
2359               CPU_BASED_UNCOND_IO_EXITING |
2360               CPU_BASED_MOV_DR_EXITING |
2361               CPU_BASED_USE_TSC_OFFSETTING |
2362               CPU_BASED_MWAIT_EXITING |
2363               CPU_BASED_MONITOR_EXITING |
2364               CPU_BASED_INVLPG_EXITING |
2365               CPU_BASED_RDPMC_EXITING;
2366
2367         opt = CPU_BASED_TPR_SHADOW |
2368               CPU_BASED_USE_MSR_BITMAPS |
2369               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2370         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2371                                 &_cpu_based_exec_control) < 0)
2372                 return -EIO;
2373 #ifdef CONFIG_X86_64
2374         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2375                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2376                                            ~CPU_BASED_CR8_STORE_EXITING;
2377 #endif
2378         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2379                 min2 = 0;
2380                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2381                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2382                         SECONDARY_EXEC_WBINVD_EXITING |
2383                         SECONDARY_EXEC_ENABLE_VPID |
2384                         SECONDARY_EXEC_ENABLE_EPT |
2385                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2386                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2387                         SECONDARY_EXEC_DESC |
2388                         SECONDARY_EXEC_RDTSCP |
2389                         SECONDARY_EXEC_ENABLE_INVPCID |
2390                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2391                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2392                         SECONDARY_EXEC_SHADOW_VMCS |
2393                         SECONDARY_EXEC_XSAVES |
2394                         SECONDARY_EXEC_RDSEED_EXITING |
2395                         SECONDARY_EXEC_RDRAND_EXITING |
2396                         SECONDARY_EXEC_ENABLE_PML |
2397                         SECONDARY_EXEC_TSC_SCALING |
2398                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2399                         SECONDARY_EXEC_PT_USE_GPA |
2400                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2401                         SECONDARY_EXEC_ENABLE_VMFUNC;
2402                 if (cpu_has_sgx())
2403                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2404                 if (adjust_vmx_controls(min2, opt2,
2405                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2406                                         &_cpu_based_2nd_exec_control) < 0)
2407                         return -EIO;
2408         }
2409 #ifndef CONFIG_X86_64
2410         if (!(_cpu_based_2nd_exec_control &
2411                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2412                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2413 #endif
2414
2415         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2416                 _cpu_based_2nd_exec_control &= ~(
2417                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2418                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2419                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2420
2421         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2422                 &vmx_cap->ept, &vmx_cap->vpid);
2423
2424         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2425                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2426                    enabled */
2427                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2428                                              CPU_BASED_CR3_STORE_EXITING |
2429                                              CPU_BASED_INVLPG_EXITING);
2430         } else if (vmx_cap->ept) {
2431                 vmx_cap->ept = 0;
2432                 pr_warn_once("EPT CAP should not exist if not support "
2433                                 "1-setting enable EPT VM-execution control\n");
2434         }
2435         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2436                 vmx_cap->vpid) {
2437                 vmx_cap->vpid = 0;
2438                 pr_warn_once("VPID CAP should not exist if not support "
2439                                 "1-setting enable VPID VM-execution control\n");
2440         }
2441
2442         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2443 #ifdef CONFIG_X86_64
2444         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2445 #endif
2446         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2447               VM_EXIT_LOAD_IA32_PAT |
2448               VM_EXIT_LOAD_IA32_EFER |
2449               VM_EXIT_CLEAR_BNDCFGS |
2450               VM_EXIT_PT_CONCEAL_PIP |
2451               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2452         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2453                                 &_vmexit_control) < 0)
2454                 return -EIO;
2455
2456         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2457         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2458                  PIN_BASED_VMX_PREEMPTION_TIMER;
2459         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2460                                 &_pin_based_exec_control) < 0)
2461                 return -EIO;
2462
2463         if (cpu_has_broken_vmx_preemption_timer())
2464                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2465         if (!(_cpu_based_2nd_exec_control &
2466                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2467                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2468
2469         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2470         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2471               VM_ENTRY_LOAD_IA32_PAT |
2472               VM_ENTRY_LOAD_IA32_EFER |
2473               VM_ENTRY_LOAD_BNDCFGS |
2474               VM_ENTRY_PT_CONCEAL_PIP |
2475               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2476         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2477                                 &_vmentry_control) < 0)
2478                 return -EIO;
2479
2480         /*
2481          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2482          * can't be used due to an errata where VM Exit may incorrectly clear
2483          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2484          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2485          */
2486         if (boot_cpu_data.x86 == 0x6) {
2487                 switch (boot_cpu_data.x86_model) {
2488                 case 26: /* AAK155 */
2489                 case 30: /* AAP115 */
2490                 case 37: /* AAT100 */
2491                 case 44: /* BC86,AAY89,BD102 */
2492                 case 46: /* BA97 */
2493                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2494                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2495                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2496                                         "does not work properly. Using workaround\n");
2497                         break;
2498                 default:
2499                         break;
2500                 }
2501         }
2502
2503
2504         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2505
2506         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2507         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2508                 return -EIO;
2509
2510 #ifdef CONFIG_X86_64
2511         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2512         if (vmx_msr_high & (1u<<16))
2513                 return -EIO;
2514 #endif
2515
2516         /* Require Write-Back (WB) memory type for VMCS accesses. */
2517         if (((vmx_msr_high >> 18) & 15) != 6)
2518                 return -EIO;
2519
2520         vmcs_conf->size = vmx_msr_high & 0x1fff;
2521         vmcs_conf->order = get_order(vmcs_conf->size);
2522         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2523
2524         vmcs_conf->revision_id = vmx_msr_low;
2525
2526         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2527         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2528         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2529         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2530         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2531
2532         if (static_branch_unlikely(&enable_evmcs))
2533                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2534
2535         return 0;
2536 }
2537
2538 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2539 {
2540         int node = cpu_to_node(cpu);
2541         struct page *pages;
2542         struct vmcs *vmcs;
2543
2544         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2545         if (!pages)
2546                 return NULL;
2547         vmcs = page_address(pages);
2548         memset(vmcs, 0, vmcs_config.size);
2549
2550         /* KVM supports Enlightened VMCS v1 only */
2551         if (static_branch_unlikely(&enable_evmcs))
2552                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2553         else
2554                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2555
2556         if (shadow)
2557                 vmcs->hdr.shadow_vmcs = 1;
2558         return vmcs;
2559 }
2560
2561 void free_vmcs(struct vmcs *vmcs)
2562 {
2563         free_pages((unsigned long)vmcs, vmcs_config.order);
2564 }
2565
2566 /*
2567  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2568  */
2569 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2570 {
2571         if (!loaded_vmcs->vmcs)
2572                 return;
2573         loaded_vmcs_clear(loaded_vmcs);
2574         free_vmcs(loaded_vmcs->vmcs);
2575         loaded_vmcs->vmcs = NULL;
2576         if (loaded_vmcs->msr_bitmap)
2577                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2578         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2579 }
2580
2581 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2582 {
2583         loaded_vmcs->vmcs = alloc_vmcs(false);
2584         if (!loaded_vmcs->vmcs)
2585                 return -ENOMEM;
2586
2587         vmcs_clear(loaded_vmcs->vmcs);
2588
2589         loaded_vmcs->shadow_vmcs = NULL;
2590         loaded_vmcs->hv_timer_soft_disabled = false;
2591         loaded_vmcs->cpu = -1;
2592         loaded_vmcs->launched = 0;
2593
2594         if (cpu_has_vmx_msr_bitmap()) {
2595                 loaded_vmcs->msr_bitmap = (unsigned long *)
2596                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2597                 if (!loaded_vmcs->msr_bitmap)
2598                         goto out_vmcs;
2599                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2600
2601                 if (IS_ENABLED(CONFIG_HYPERV) &&
2602                     static_branch_unlikely(&enable_evmcs) &&
2603                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2604                         struct hv_enlightened_vmcs *evmcs =
2605                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2606
2607                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2608                 }
2609         }
2610
2611         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2612         memset(&loaded_vmcs->controls_shadow, 0,
2613                 sizeof(struct vmcs_controls_shadow));
2614
2615         return 0;
2616
2617 out_vmcs:
2618         free_loaded_vmcs(loaded_vmcs);
2619         return -ENOMEM;
2620 }
2621
2622 static void free_kvm_area(void)
2623 {
2624         int cpu;
2625
2626         for_each_possible_cpu(cpu) {
2627                 free_vmcs(per_cpu(vmxarea, cpu));
2628                 per_cpu(vmxarea, cpu) = NULL;
2629         }
2630 }
2631
2632 static __init int alloc_kvm_area(void)
2633 {
2634         int cpu;
2635
2636         for_each_possible_cpu(cpu) {
2637                 struct vmcs *vmcs;
2638
2639                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2640                 if (!vmcs) {
2641                         free_kvm_area();
2642                         return -ENOMEM;
2643                 }
2644
2645                 /*
2646                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2647                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2648                  * revision_id reported by MSR_IA32_VMX_BASIC.
2649                  *
2650                  * However, even though not explicitly documented by
2651                  * TLFS, VMXArea passed as VMXON argument should
2652                  * still be marked with revision_id reported by
2653                  * physical CPU.
2654                  */
2655                 if (static_branch_unlikely(&enable_evmcs))
2656                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2657
2658                 per_cpu(vmxarea, cpu) = vmcs;
2659         }
2660         return 0;
2661 }
2662
2663 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2664                 struct kvm_segment *save)
2665 {
2666         if (!emulate_invalid_guest_state) {
2667                 /*
2668                  * CS and SS RPL should be equal during guest entry according
2669                  * to VMX spec, but in reality it is not always so. Since vcpu
2670                  * is in the middle of the transition from real mode to
2671                  * protected mode it is safe to assume that RPL 0 is a good
2672                  * default value.
2673                  */
2674                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2675                         save->selector &= ~SEGMENT_RPL_MASK;
2676                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2677                 save->s = 1;
2678         }
2679         vmx_set_segment(vcpu, save, seg);
2680 }
2681
2682 static void enter_pmode(struct kvm_vcpu *vcpu)
2683 {
2684         unsigned long flags;
2685         struct vcpu_vmx *vmx = to_vmx(vcpu);
2686
2687         /*
2688          * Update real mode segment cache. It may be not up-to-date if sement
2689          * register was written while vcpu was in a guest mode.
2690          */
2691         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2692         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2693         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2694         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2695         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2696         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2697
2698         vmx->rmode.vm86_active = 0;
2699
2700         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2701
2702         flags = vmcs_readl(GUEST_RFLAGS);
2703         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2704         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2705         vmcs_writel(GUEST_RFLAGS, flags);
2706
2707         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2708                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2709
2710         update_exception_bitmap(vcpu);
2711
2712         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2713         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2714         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2715         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2716         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2717         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2718 }
2719
2720 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2721 {
2722         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2723         struct kvm_segment var = *save;
2724
2725         var.dpl = 0x3;
2726         if (seg == VCPU_SREG_CS)
2727                 var.type = 0x3;
2728
2729         if (!emulate_invalid_guest_state) {
2730                 var.selector = var.base >> 4;
2731                 var.base = var.base & 0xffff0;
2732                 var.limit = 0xffff;
2733                 var.g = 0;
2734                 var.db = 0;
2735                 var.present = 1;
2736                 var.s = 1;
2737                 var.l = 0;
2738                 var.unusable = 0;
2739                 var.type = 0x3;
2740                 var.avl = 0;
2741                 if (save->base & 0xf)
2742                         printk_once(KERN_WARNING "kvm: segment base is not "
2743                                         "paragraph aligned when entering "
2744                                         "protected mode (seg=%d)", seg);
2745         }
2746
2747         vmcs_write16(sf->selector, var.selector);
2748         vmcs_writel(sf->base, var.base);
2749         vmcs_write32(sf->limit, var.limit);
2750         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2751 }
2752
2753 static void enter_rmode(struct kvm_vcpu *vcpu)
2754 {
2755         unsigned long flags;
2756         struct vcpu_vmx *vmx = to_vmx(vcpu);
2757         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2758
2759         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2760         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2761         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2762         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2763         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2764         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2765         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2766
2767         vmx->rmode.vm86_active = 1;
2768
2769         /*
2770          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2771          * vcpu. Warn the user that an update is overdue.
2772          */
2773         if (!kvm_vmx->tss_addr)
2774                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2775                              "called before entering vcpu\n");
2776
2777         vmx_segment_cache_clear(vmx);
2778
2779         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2780         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2781         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2782
2783         flags = vmcs_readl(GUEST_RFLAGS);
2784         vmx->rmode.save_rflags = flags;
2785
2786         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2787
2788         vmcs_writel(GUEST_RFLAGS, flags);
2789         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2790         update_exception_bitmap(vcpu);
2791
2792         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2793         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2794         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2795         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2796         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2797         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2798
2799         kvm_mmu_reset_context(vcpu);
2800 }
2801
2802 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2803 {
2804         struct vcpu_vmx *vmx = to_vmx(vcpu);
2805         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2806
2807         if (!msr)
2808                 return;
2809
2810         vcpu->arch.efer = efer;
2811         if (efer & EFER_LMA) {
2812                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2813                 msr->data = efer;
2814         } else {
2815                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2816
2817                 msr->data = efer & ~EFER_LME;
2818         }
2819         setup_msrs(vmx);
2820 }
2821
2822 #ifdef CONFIG_X86_64
2823
2824 static void enter_lmode(struct kvm_vcpu *vcpu)
2825 {
2826         u32 guest_tr_ar;
2827
2828         vmx_segment_cache_clear(to_vmx(vcpu));
2829
2830         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2831         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2832                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2833                                      __func__);
2834                 vmcs_write32(GUEST_TR_AR_BYTES,
2835                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2836                              | VMX_AR_TYPE_BUSY_64_TSS);
2837         }
2838         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2839 }
2840
2841 static void exit_lmode(struct kvm_vcpu *vcpu)
2842 {
2843         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2844         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2845 }
2846
2847 #endif
2848
2849 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2850 {
2851         struct vcpu_vmx *vmx = to_vmx(vcpu);
2852
2853         /*
2854          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2855          * the CPU is not required to invalidate guest-physical mappings on
2856          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2857          * associated with the root EPT structure and not any particular VPID
2858          * (INVVPID also isn't required to invalidate guest-physical mappings).
2859          */
2860         if (enable_ept) {
2861                 ept_sync_global();
2862         } else if (enable_vpid) {
2863                 if (cpu_has_vmx_invvpid_global()) {
2864                         vpid_sync_vcpu_global();
2865                 } else {
2866                         vpid_sync_vcpu_single(vmx->vpid);
2867                         vpid_sync_vcpu_single(vmx->nested.vpid02);
2868                 }
2869         }
2870 }
2871
2872 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2873 {
2874         u64 root_hpa = vcpu->arch.mmu->root_hpa;
2875
2876         /* No flush required if the current context is invalid. */
2877         if (!VALID_PAGE(root_hpa))
2878                 return;
2879
2880         if (enable_ept)
2881                 ept_sync_context(construct_eptp(vcpu, root_hpa));
2882         else if (!is_guest_mode(vcpu))
2883                 vpid_sync_context(to_vmx(vcpu)->vpid);
2884         else
2885                 vpid_sync_context(nested_get_vpid02(vcpu));
2886 }
2887
2888 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2889 {
2890         /*
2891          * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2892          * vmx_flush_tlb_guest() for an explanation of why this is ok.
2893          */
2894         vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2895 }
2896
2897 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2898 {
2899         /*
2900          * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2901          * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2902          * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2903          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2904          * i.e. no explicit INVVPID is necessary.
2905          */
2906         vpid_sync_context(to_vmx(vcpu)->vpid);
2907 }
2908
2909 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2910 {
2911         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2912
2913         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2914         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2915 }
2916
2917 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2918 {
2919         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2920
2921         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2922         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2923 }
2924
2925 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2926 {
2927         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2928
2929         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2930                 return;
2931
2932         if (is_pae_paging(vcpu)) {
2933                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2934                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2935                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2936                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2937         }
2938 }
2939
2940 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2941 {
2942         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2943
2944         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2945                 return;
2946
2947         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2948         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2949         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2950         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2951
2952         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2953 }
2954
2955 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2956                                         unsigned long cr0,
2957                                         struct kvm_vcpu *vcpu)
2958 {
2959         struct vcpu_vmx *vmx = to_vmx(vcpu);
2960
2961         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2962                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2963         if (!(cr0 & X86_CR0_PG)) {
2964                 /* From paging/starting to nonpaging */
2965                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2966                                           CPU_BASED_CR3_STORE_EXITING);
2967                 vcpu->arch.cr0 = cr0;
2968                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2969         } else if (!is_paging(vcpu)) {
2970                 /* From nonpaging to paging */
2971                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2972                                             CPU_BASED_CR3_STORE_EXITING);
2973                 vcpu->arch.cr0 = cr0;
2974                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2975         }
2976
2977         if (!(cr0 & X86_CR0_WP))
2978                 *hw_cr0 &= ~X86_CR0_WP;
2979 }
2980
2981 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2982 {
2983         struct vcpu_vmx *vmx = to_vmx(vcpu);
2984         unsigned long hw_cr0;
2985
2986         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2987         if (enable_unrestricted_guest)
2988                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2989         else {
2990                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2991
2992                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2993                         enter_pmode(vcpu);
2994
2995                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2996                         enter_rmode(vcpu);
2997         }
2998
2999 #ifdef CONFIG_X86_64
3000         if (vcpu->arch.efer & EFER_LME) {
3001                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3002                         enter_lmode(vcpu);
3003                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3004                         exit_lmode(vcpu);
3005         }
3006 #endif
3007
3008         if (enable_ept && !enable_unrestricted_guest)
3009                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3010
3011         vmcs_writel(CR0_READ_SHADOW, cr0);
3012         vmcs_writel(GUEST_CR0, hw_cr0);
3013         vcpu->arch.cr0 = cr0;
3014
3015         /* depends on vcpu->arch.cr0 to be set to a new value */
3016         vmx->emulation_required = emulation_required(vcpu);
3017 }
3018
3019 static int get_ept_level(struct kvm_vcpu *vcpu)
3020 {
3021         if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
3022                 return vmx_eptp_page_walk_level(nested_ept_get_eptp(vcpu));
3023         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
3024                 return 5;
3025         return 4;
3026 }
3027
3028 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
3029 {
3030         u64 eptp = VMX_EPTP_MT_WB;
3031
3032         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3033
3034         if (enable_ept_ad_bits &&
3035             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3036                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3037         eptp |= (root_hpa & PAGE_MASK);
3038
3039         return eptp;
3040 }
3041
3042 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd)
3043 {
3044         struct kvm *kvm = vcpu->kvm;
3045         bool update_guest_cr3 = true;
3046         unsigned long guest_cr3;
3047         u64 eptp;
3048
3049         if (enable_ept) {
3050                 eptp = construct_eptp(vcpu, pgd);
3051                 vmcs_write64(EPT_POINTER, eptp);
3052
3053                 if (kvm_x86_ops.tlb_remote_flush) {
3054                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3055                         to_vmx(vcpu)->ept_pointer = eptp;
3056                         to_kvm_vmx(kvm)->ept_pointers_match
3057                                 = EPT_POINTERS_CHECK;
3058                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3059                 }
3060
3061                 /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3062                 if (is_guest_mode(vcpu))
3063                         update_guest_cr3 = false;
3064                 else if (!enable_unrestricted_guest && !is_paging(vcpu))
3065                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3066                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3067                         guest_cr3 = vcpu->arch.cr3;
3068                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3069                         update_guest_cr3 = false;
3070                 ept_load_pdptrs(vcpu);
3071         } else {
3072                 guest_cr3 = pgd;
3073         }
3074
3075         if (update_guest_cr3)
3076                 vmcs_writel(GUEST_CR3, guest_cr3);
3077 }
3078
3079 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3080 {
3081         struct vcpu_vmx *vmx = to_vmx(vcpu);
3082         /*
3083          * Pass through host's Machine Check Enable value to hw_cr4, which
3084          * is in force while we are in guest mode.  Do not let guests control
3085          * this bit, even if host CR4.MCE == 0.
3086          */
3087         unsigned long hw_cr4;
3088
3089         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3090         if (enable_unrestricted_guest)
3091                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3092         else if (vmx->rmode.vm86_active)
3093                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3094         else
3095                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3096
3097         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3098                 if (cr4 & X86_CR4_UMIP) {
3099                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3100                         hw_cr4 &= ~X86_CR4_UMIP;
3101                 } else if (!is_guest_mode(vcpu) ||
3102                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3103                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3104                 }
3105         }
3106
3107         if (cr4 & X86_CR4_VMXE) {
3108                 /*
3109                  * To use VMXON (and later other VMX instructions), a guest
3110                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3111                  * So basically the check on whether to allow nested VMX
3112                  * is here.  We operate under the default treatment of SMM,
3113                  * so VMX cannot be enabled under SMM.
3114                  */
3115                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3116                         return 1;
3117         }
3118
3119         if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3120                 return 1;
3121
3122         vcpu->arch.cr4 = cr4;
3123
3124         if (!enable_unrestricted_guest) {
3125                 if (enable_ept) {
3126                         if (!is_paging(vcpu)) {
3127                                 hw_cr4 &= ~X86_CR4_PAE;
3128                                 hw_cr4 |= X86_CR4_PSE;
3129                         } else if (!(cr4 & X86_CR4_PAE)) {
3130                                 hw_cr4 &= ~X86_CR4_PAE;
3131                         }
3132                 }
3133
3134                 /*
3135                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3136                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3137                  * to be manually disabled when guest switches to non-paging
3138                  * mode.
3139                  *
3140                  * If !enable_unrestricted_guest, the CPU is always running
3141                  * with CR0.PG=1 and CR4 needs to be modified.
3142                  * If enable_unrestricted_guest, the CPU automatically
3143                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3144                  */
3145                 if (!is_paging(vcpu))
3146                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3147         }
3148
3149         vmcs_writel(CR4_READ_SHADOW, cr4);
3150         vmcs_writel(GUEST_CR4, hw_cr4);
3151         return 0;
3152 }
3153
3154 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3155 {
3156         struct vcpu_vmx *vmx = to_vmx(vcpu);
3157         u32 ar;
3158
3159         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3160                 *var = vmx->rmode.segs[seg];
3161                 if (seg == VCPU_SREG_TR
3162                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3163                         return;
3164                 var->base = vmx_read_guest_seg_base(vmx, seg);
3165                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3166                 return;
3167         }
3168         var->base = vmx_read_guest_seg_base(vmx, seg);
3169         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3170         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3171         ar = vmx_read_guest_seg_ar(vmx, seg);
3172         var->unusable = (ar >> 16) & 1;
3173         var->type = ar & 15;
3174         var->s = (ar >> 4) & 1;
3175         var->dpl = (ar >> 5) & 3;
3176         /*
3177          * Some userspaces do not preserve unusable property. Since usable
3178          * segment has to be present according to VMX spec we can use present
3179          * property to amend userspace bug by making unusable segment always
3180          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3181          * segment as unusable.
3182          */
3183         var->present = !var->unusable;
3184         var->avl = (ar >> 12) & 1;
3185         var->l = (ar >> 13) & 1;
3186         var->db = (ar >> 14) & 1;
3187         var->g = (ar >> 15) & 1;
3188 }
3189
3190 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3191 {
3192         struct kvm_segment s;
3193
3194         if (to_vmx(vcpu)->rmode.vm86_active) {
3195                 vmx_get_segment(vcpu, &s, seg);
3196                 return s.base;
3197         }
3198         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3199 }
3200
3201 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3202 {
3203         struct vcpu_vmx *vmx = to_vmx(vcpu);
3204
3205         if (unlikely(vmx->rmode.vm86_active))
3206                 return 0;
3207         else {
3208                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3209                 return VMX_AR_DPL(ar);
3210         }
3211 }
3212
3213 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3214 {
3215         u32 ar;
3216
3217         if (var->unusable || !var->present)
3218                 ar = 1 << 16;
3219         else {
3220                 ar = var->type & 15;
3221                 ar |= (var->s & 1) << 4;
3222                 ar |= (var->dpl & 3) << 5;
3223                 ar |= (var->present & 1) << 7;
3224                 ar |= (var->avl & 1) << 12;
3225                 ar |= (var->l & 1) << 13;
3226                 ar |= (var->db & 1) << 14;
3227                 ar |= (var->g & 1) << 15;
3228         }
3229
3230         return ar;
3231 }
3232
3233 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3234 {
3235         struct vcpu_vmx *vmx = to_vmx(vcpu);
3236         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3237
3238         vmx_segment_cache_clear(vmx);
3239
3240         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3241                 vmx->rmode.segs[seg] = *var;
3242                 if (seg == VCPU_SREG_TR)
3243                         vmcs_write16(sf->selector, var->selector);
3244                 else if (var->s)
3245                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3246                 goto out;
3247         }
3248
3249         vmcs_writel(sf->base, var->base);
3250         vmcs_write32(sf->limit, var->limit);
3251         vmcs_write16(sf->selector, var->selector);
3252
3253         /*
3254          *   Fix the "Accessed" bit in AR field of segment registers for older
3255          * qemu binaries.
3256          *   IA32 arch specifies that at the time of processor reset the
3257          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3258          * is setting it to 0 in the userland code. This causes invalid guest
3259          * state vmexit when "unrestricted guest" mode is turned on.
3260          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3261          * tree. Newer qemu binaries with that qemu fix would not need this
3262          * kvm hack.
3263          */
3264         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3265                 var->type |= 0x1; /* Accessed */
3266
3267         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3268
3269 out:
3270         vmx->emulation_required = emulation_required(vcpu);
3271 }
3272
3273 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3274 {
3275         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3276
3277         *db = (ar >> 14) & 1;
3278         *l = (ar >> 13) & 1;
3279 }
3280
3281 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3282 {
3283         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3284         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3285 }
3286
3287 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3288 {
3289         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3290         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3291 }
3292
3293 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3294 {
3295         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3296         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3297 }
3298
3299 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3300 {
3301         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3302         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3303 }
3304
3305 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3306 {
3307         struct kvm_segment var;
3308         u32 ar;
3309
3310         vmx_get_segment(vcpu, &var, seg);
3311         var.dpl = 0x3;
3312         if (seg == VCPU_SREG_CS)
3313                 var.type = 0x3;
3314         ar = vmx_segment_access_rights(&var);
3315
3316         if (var.base != (var.selector << 4))
3317                 return false;
3318         if (var.limit != 0xffff)
3319                 return false;
3320         if (ar != 0xf3)
3321                 return false;
3322
3323         return true;
3324 }
3325
3326 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3327 {
3328         struct kvm_segment cs;
3329         unsigned int cs_rpl;
3330
3331         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3332         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3333
3334         if (cs.unusable)
3335                 return false;
3336         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3337                 return false;
3338         if (!cs.s)
3339                 return false;
3340         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3341                 if (cs.dpl > cs_rpl)
3342                         return false;
3343         } else {
3344                 if (cs.dpl != cs_rpl)
3345                         return false;
3346         }
3347         if (!cs.present)
3348                 return false;
3349
3350         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3351         return true;
3352 }
3353
3354 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3355 {
3356         struct kvm_segment ss;
3357         unsigned int ss_rpl;
3358
3359         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3360         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3361
3362         if (ss.unusable)
3363                 return true;
3364         if (ss.type != 3 && ss.type != 7)
3365                 return false;
3366         if (!ss.s)
3367                 return false;
3368         if (ss.dpl != ss_rpl) /* DPL != RPL */
3369                 return false;
3370         if (!ss.present)
3371                 return false;
3372
3373         return true;
3374 }
3375
3376 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3377 {
3378         struct kvm_segment var;
3379         unsigned int rpl;
3380
3381         vmx_get_segment(vcpu, &var, seg);
3382         rpl = var.selector & SEGMENT_RPL_MASK;
3383
3384         if (var.unusable)
3385                 return true;
3386         if (!var.s)
3387                 return false;
3388         if (!var.present)
3389                 return false;
3390         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3391                 if (var.dpl < rpl) /* DPL < RPL */
3392                         return false;
3393         }
3394
3395         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3396          * rights flags
3397          */
3398         return true;
3399 }
3400
3401 static bool tr_valid(struct kvm_vcpu *vcpu)
3402 {
3403         struct kvm_segment tr;
3404
3405         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3406
3407         if (tr.unusable)
3408                 return false;
3409         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3410                 return false;
3411         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3412                 return false;
3413         if (!tr.present)
3414                 return false;
3415
3416         return true;
3417 }
3418
3419 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3420 {
3421         struct kvm_segment ldtr;
3422
3423         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3424
3425         if (ldtr.unusable)
3426                 return true;
3427         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3428                 return false;
3429         if (ldtr.type != 2)
3430                 return false;
3431         if (!ldtr.present)
3432                 return false;
3433
3434         return true;
3435 }
3436
3437 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3438 {
3439         struct kvm_segment cs, ss;
3440
3441         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3442         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3443
3444         return ((cs.selector & SEGMENT_RPL_MASK) ==
3445                  (ss.selector & SEGMENT_RPL_MASK));
3446 }
3447
3448 /*
3449  * Check if guest state is valid. Returns true if valid, false if
3450  * not.
3451  * We assume that registers are always usable
3452  */
3453 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3454 {
3455         if (enable_unrestricted_guest)
3456                 return true;
3457
3458         /* real mode guest state checks */
3459         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3460                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3461                         return false;
3462                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3463                         return false;
3464                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3465                         return false;
3466                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3467                         return false;
3468                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3469                         return false;
3470                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3471                         return false;
3472         } else {
3473         /* protected mode guest state checks */
3474                 if (!cs_ss_rpl_check(vcpu))
3475                         return false;
3476                 if (!code_segment_valid(vcpu))
3477                         return false;
3478                 if (!stack_segment_valid(vcpu))
3479                         return false;
3480                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3481                         return false;
3482                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3483                         return false;
3484                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3485                         return false;
3486                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3487                         return false;
3488                 if (!tr_valid(vcpu))
3489                         return false;
3490                 if (!ldtr_valid(vcpu))
3491                         return false;
3492         }
3493         /* TODO:
3494          * - Add checks on RIP
3495          * - Add checks on RFLAGS
3496          */
3497
3498         return true;
3499 }
3500
3501 static int init_rmode_tss(struct kvm *kvm)
3502 {
3503         gfn_t fn;
3504         u16 data = 0;
3505         int idx, r;
3506
3507         idx = srcu_read_lock(&kvm->srcu);
3508         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3509         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3510         if (r < 0)
3511                 goto out;
3512         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3513         r = kvm_write_guest_page(kvm, fn++, &data,
3514                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3515         if (r < 0)
3516                 goto out;
3517         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3518         if (r < 0)
3519                 goto out;
3520         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3521         if (r < 0)
3522                 goto out;
3523         data = ~0;
3524         r = kvm_write_guest_page(kvm, fn, &data,
3525                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3526                                  sizeof(u8));
3527 out:
3528         srcu_read_unlock(&kvm->srcu, idx);
3529         return r;
3530 }
3531
3532 static int init_rmode_identity_map(struct kvm *kvm)
3533 {
3534         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3535         int i, r = 0;
3536         kvm_pfn_t identity_map_pfn;
3537         u32 tmp;
3538
3539         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3540         mutex_lock(&kvm->slots_lock);
3541
3542         if (likely(kvm_vmx->ept_identity_pagetable_done))
3543                 goto out;
3544
3545         if (!kvm_vmx->ept_identity_map_addr)
3546                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3547         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3548
3549         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3550                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3551         if (r < 0)
3552                 goto out;
3553
3554         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3555         if (r < 0)
3556                 goto out;
3557         /* Set up identity-mapping pagetable for EPT in real mode */
3558         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3559                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3560                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3561                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3562                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3563                 if (r < 0)
3564                         goto out;
3565         }
3566         kvm_vmx->ept_identity_pagetable_done = true;
3567
3568 out:
3569         mutex_unlock(&kvm->slots_lock);
3570         return r;
3571 }
3572
3573 static void seg_setup(int seg)
3574 {
3575         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3576         unsigned int ar;
3577
3578         vmcs_write16(sf->selector, 0);
3579         vmcs_writel(sf->base, 0);
3580         vmcs_write32(sf->limit, 0xffff);
3581         ar = 0x93;
3582         if (seg == VCPU_SREG_CS)
3583                 ar |= 0x08; /* code segment */
3584
3585         vmcs_write32(sf->ar_bytes, ar);
3586 }
3587
3588 static int alloc_apic_access_page(struct kvm *kvm)
3589 {
3590         struct page *page;
3591         int r = 0;
3592
3593         mutex_lock(&kvm->slots_lock);
3594         if (kvm->arch.apic_access_page_done)
3595                 goto out;
3596         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3597                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3598         if (r)
3599                 goto out;
3600
3601         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3602         if (is_error_page(page)) {
3603                 r = -EFAULT;
3604                 goto out;
3605         }
3606
3607         /*
3608          * Do not pin the page in memory, so that memory hot-unplug
3609          * is able to migrate it.
3610          */
3611         put_page(page);
3612         kvm->arch.apic_access_page_done = true;
3613 out:
3614         mutex_unlock(&kvm->slots_lock);
3615         return r;
3616 }
3617
3618 int allocate_vpid(void)
3619 {
3620         int vpid;
3621
3622         if (!enable_vpid)
3623                 return 0;
3624         spin_lock(&vmx_vpid_lock);
3625         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3626         if (vpid < VMX_NR_VPIDS)
3627                 __set_bit(vpid, vmx_vpid_bitmap);
3628         else
3629                 vpid = 0;
3630         spin_unlock(&vmx_vpid_lock);
3631         return vpid;
3632 }
3633
3634 void free_vpid(int vpid)
3635 {
3636         if (!enable_vpid || vpid == 0)
3637                 return;
3638         spin_lock(&vmx_vpid_lock);
3639         __clear_bit(vpid, vmx_vpid_bitmap);
3640         spin_unlock(&vmx_vpid_lock);
3641 }
3642
3643 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3644                                                           u32 msr, int type)
3645 {
3646         int f = sizeof(unsigned long);
3647
3648         if (!cpu_has_vmx_msr_bitmap())
3649                 return;
3650
3651         if (static_branch_unlikely(&enable_evmcs))
3652                 evmcs_touch_msr_bitmap();
3653
3654         /*
3655          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3656          * have the write-low and read-high bitmap offsets the wrong way round.
3657          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3658          */
3659         if (msr <= 0x1fff) {
3660                 if (type & MSR_TYPE_R)
3661                         /* read-low */
3662                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3663
3664                 if (type & MSR_TYPE_W)
3665                         /* write-low */
3666                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3667
3668         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3669                 msr &= 0x1fff;
3670                 if (type & MSR_TYPE_R)
3671                         /* read-high */
3672                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3673
3674                 if (type & MSR_TYPE_W)
3675                         /* write-high */
3676                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3677
3678         }
3679 }
3680
3681 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3682                                                          u32 msr, int type)
3683 {
3684         int f = sizeof(unsigned long);
3685
3686         if (!cpu_has_vmx_msr_bitmap())
3687                 return;
3688
3689         if (static_branch_unlikely(&enable_evmcs))
3690                 evmcs_touch_msr_bitmap();
3691
3692         /*
3693          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3694          * have the write-low and read-high bitmap offsets the wrong way round.
3695          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3696          */
3697         if (msr <= 0x1fff) {
3698                 if (type & MSR_TYPE_R)
3699                         /* read-low */
3700                         __set_bit(msr, msr_bitmap + 0x000 / f);
3701
3702                 if (type & MSR_TYPE_W)
3703                         /* write-low */
3704                         __set_bit(msr, msr_bitmap + 0x800 / f);
3705
3706         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3707                 msr &= 0x1fff;
3708                 if (type & MSR_TYPE_R)
3709                         /* read-high */
3710                         __set_bit(msr, msr_bitmap + 0x400 / f);
3711
3712                 if (type & MSR_TYPE_W)
3713                         /* write-high */
3714                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3715
3716         }
3717 }
3718
3719 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3720                                                       u32 msr, int type, bool value)
3721 {
3722         if (value)
3723                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3724         else
3725                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3726 }
3727
3728 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3729 {
3730         u8 mode = 0;
3731
3732         if (cpu_has_secondary_exec_ctrls() &&
3733             (secondary_exec_controls_get(to_vmx(vcpu)) &
3734              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3735                 mode |= MSR_BITMAP_MODE_X2APIC;
3736                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3737                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3738         }
3739
3740         return mode;
3741 }
3742
3743 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3744                                          u8 mode)
3745 {
3746         int msr;
3747
3748         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3749                 unsigned word = msr / BITS_PER_LONG;
3750                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3751                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3752         }
3753
3754         if (mode & MSR_BITMAP_MODE_X2APIC) {
3755                 /*
3756                  * TPR reads and writes can be virtualized even if virtual interrupt
3757                  * delivery is not in use.
3758                  */
3759                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3760                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3761                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3762                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3763                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3764                 }
3765         }
3766 }
3767
3768 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3769 {
3770         struct vcpu_vmx *vmx = to_vmx(vcpu);
3771         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3772         u8 mode = vmx_msr_bitmap_mode(vcpu);
3773         u8 changed = mode ^ vmx->msr_bitmap_mode;
3774
3775         if (!changed)
3776                 return;
3777
3778         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3779                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3780
3781         vmx->msr_bitmap_mode = mode;
3782 }
3783
3784 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3785 {
3786         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3787         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3788         u32 i;
3789
3790         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3791                                                         MSR_TYPE_RW, flag);
3792         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3793                                                         MSR_TYPE_RW, flag);
3794         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3795                                                         MSR_TYPE_RW, flag);
3796         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3797                                                         MSR_TYPE_RW, flag);
3798         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3799                 vmx_set_intercept_for_msr(msr_bitmap,
3800                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3801                 vmx_set_intercept_for_msr(msr_bitmap,
3802                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3803         }
3804 }
3805
3806 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3807 {
3808         struct vcpu_vmx *vmx = to_vmx(vcpu);
3809         void *vapic_page;
3810         u32 vppr;
3811         int rvi;
3812
3813         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3814                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3815                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3816                 return false;
3817
3818         rvi = vmx_get_rvi();
3819
3820         vapic_page = vmx->nested.virtual_apic_map.hva;
3821         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3822
3823         return ((rvi & 0xf0) > (vppr & 0xf0));
3824 }
3825
3826 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3827                                                      bool nested)
3828 {
3829 #ifdef CONFIG_SMP
3830         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3831
3832         if (vcpu->mode == IN_GUEST_MODE) {
3833                 /*
3834                  * The vector of interrupt to be delivered to vcpu had
3835                  * been set in PIR before this function.
3836                  *
3837                  * Following cases will be reached in this block, and
3838                  * we always send a notification event in all cases as
3839                  * explained below.
3840                  *
3841                  * Case 1: vcpu keeps in non-root mode. Sending a
3842                  * notification event posts the interrupt to vcpu.
3843                  *
3844                  * Case 2: vcpu exits to root mode and is still
3845                  * runnable. PIR will be synced to vIRR before the
3846                  * next vcpu entry. Sending a notification event in
3847                  * this case has no effect, as vcpu is not in root
3848                  * mode.
3849                  *
3850                  * Case 3: vcpu exits to root mode and is blocked.
3851                  * vcpu_block() has already synced PIR to vIRR and
3852                  * never blocks vcpu if vIRR is not cleared. Therefore,
3853                  * a blocked vcpu here does not wait for any requested
3854                  * interrupts in PIR, and sending a notification event
3855                  * which has no effect is safe here.
3856                  */
3857
3858                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3859                 return true;
3860         }
3861 #endif
3862         return false;
3863 }
3864
3865 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3866                                                 int vector)
3867 {
3868         struct vcpu_vmx *vmx = to_vmx(vcpu);
3869
3870         if (is_guest_mode(vcpu) &&
3871             vector == vmx->nested.posted_intr_nv) {
3872                 /*
3873                  * If a posted intr is not recognized by hardware,
3874                  * we will accomplish it in the next vmentry.
3875                  */
3876                 vmx->nested.pi_pending = true;
3877                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3878                 /* the PIR and ON have been set by L1. */
3879                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3880                         kvm_vcpu_kick(vcpu);
3881                 return 0;
3882         }
3883         return -1;
3884 }
3885 /*
3886  * Send interrupt to vcpu via posted interrupt way.
3887  * 1. If target vcpu is running(non-root mode), send posted interrupt
3888  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3889  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3890  * interrupt from PIR in next vmentry.
3891  */
3892 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3893 {
3894         struct vcpu_vmx *vmx = to_vmx(vcpu);
3895         int r;
3896
3897         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3898         if (!r)
3899                 return 0;
3900
3901         if (!vcpu->arch.apicv_active)
3902                 return -1;
3903
3904         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3905                 return 0;
3906
3907         /* If a previous notification has sent the IPI, nothing to do.  */
3908         if (pi_test_and_set_on(&vmx->pi_desc))
3909                 return 0;
3910
3911         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3912                 kvm_vcpu_kick(vcpu);
3913
3914         return 0;
3915 }
3916
3917 /*
3918  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3919  * will not change in the lifetime of the guest.
3920  * Note that host-state that does change is set elsewhere. E.g., host-state
3921  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3922  */
3923 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3924 {
3925         u32 low32, high32;
3926         unsigned long tmpl;
3927         unsigned long cr0, cr3, cr4;
3928
3929         cr0 = read_cr0();
3930         WARN_ON(cr0 & X86_CR0_TS);
3931         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3932
3933         /*
3934          * Save the most likely value for this task's CR3 in the VMCS.
3935          * We can't use __get_current_cr3_fast() because we're not atomic.
3936          */
3937         cr3 = __read_cr3();
3938         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3939         vmx->loaded_vmcs->host_state.cr3 = cr3;
3940
3941         /* Save the most likely value for this task's CR4 in the VMCS. */
3942         cr4 = cr4_read_shadow();
3943         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3944         vmx->loaded_vmcs->host_state.cr4 = cr4;
3945
3946         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3947 #ifdef CONFIG_X86_64
3948         /*
3949          * Load null selectors, so we can avoid reloading them in
3950          * vmx_prepare_switch_to_host(), in case userspace uses
3951          * the null selectors too (the expected case).
3952          */
3953         vmcs_write16(HOST_DS_SELECTOR, 0);
3954         vmcs_write16(HOST_ES_SELECTOR, 0);
3955 #else
3956         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3957         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3958 #endif
3959         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3960         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3961
3962         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3963
3964         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3965
3966         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3967         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3968         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3969         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3970
3971         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3972                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3973                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3974         }
3975
3976         if (cpu_has_load_ia32_efer())
3977                 vmcs_write64(HOST_IA32_EFER, host_efer);
3978 }
3979
3980 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3981 {
3982         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3983         if (enable_ept)
3984                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3985         if (is_guest_mode(&vmx->vcpu))
3986                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3987                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3988         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3989 }
3990
3991 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3992 {
3993         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3994
3995         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3996                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3997
3998         if (!enable_vnmi)
3999                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4000
4001         if (!enable_preemption_timer)
4002                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4003
4004         return pin_based_exec_ctrl;
4005 }
4006
4007 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4008 {
4009         struct vcpu_vmx *vmx = to_vmx(vcpu);
4010
4011         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4012         if (cpu_has_secondary_exec_ctrls()) {
4013                 if (kvm_vcpu_apicv_active(vcpu))
4014                         secondary_exec_controls_setbit(vmx,
4015                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4016                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4017                 else
4018                         secondary_exec_controls_clearbit(vmx,
4019                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4020                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4021         }
4022
4023         if (cpu_has_vmx_msr_bitmap())
4024                 vmx_update_msr_bitmap(vcpu);
4025 }
4026
4027 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4028 {
4029         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4030
4031         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4032                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4033
4034         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4035                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4036 #ifdef CONFIG_X86_64
4037                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4038                                 CPU_BASED_CR8_LOAD_EXITING;
4039 #endif
4040         }
4041         if (!enable_ept)
4042                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4043                                 CPU_BASED_CR3_LOAD_EXITING  |
4044                                 CPU_BASED_INVLPG_EXITING;
4045         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4046                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4047                                 CPU_BASED_MONITOR_EXITING);
4048         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4049                 exec_control &= ~CPU_BASED_HLT_EXITING;
4050         return exec_control;
4051 }
4052
4053
4054 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4055 {
4056         struct kvm_vcpu *vcpu = &vmx->vcpu;
4057
4058         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4059
4060         if (vmx_pt_mode_is_system())
4061                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4062         if (!cpu_need_virtualize_apic_accesses(vcpu))
4063                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4064         if (vmx->vpid == 0)
4065                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4066         if (!enable_ept) {
4067                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4068                 enable_unrestricted_guest = 0;
4069         }
4070         if (!enable_unrestricted_guest)
4071                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4072         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4073                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4074         if (!kvm_vcpu_apicv_active(vcpu))
4075                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4076                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4077         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4078
4079         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4080          * in vmx_set_cr4.  */
4081         exec_control &= ~SECONDARY_EXEC_DESC;
4082
4083         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4084            (handle_vmptrld).
4085            We can NOT enable shadow_vmcs here because we don't have yet
4086            a current VMCS12
4087         */
4088         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4089
4090         if (!enable_pml)
4091                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4092
4093         if (vmx_xsaves_supported()) {
4094                 /* Exposing XSAVES only when XSAVE is exposed */
4095                 bool xsaves_enabled =
4096                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4097                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4098                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4099
4100                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4101
4102                 if (!xsaves_enabled)
4103                         exec_control &= ~SECONDARY_EXEC_XSAVES;
4104
4105                 if (nested) {
4106                         if (xsaves_enabled)
4107                                 vmx->nested.msrs.secondary_ctls_high |=
4108                                         SECONDARY_EXEC_XSAVES;
4109                         else
4110                                 vmx->nested.msrs.secondary_ctls_high &=
4111                                         ~SECONDARY_EXEC_XSAVES;
4112                 }
4113         }
4114
4115         if (cpu_has_vmx_rdtscp()) {
4116                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4117                 if (!rdtscp_enabled)
4118                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
4119
4120                 if (nested) {
4121                         if (rdtscp_enabled)
4122                                 vmx->nested.msrs.secondary_ctls_high |=
4123                                         SECONDARY_EXEC_RDTSCP;
4124                         else
4125                                 vmx->nested.msrs.secondary_ctls_high &=
4126                                         ~SECONDARY_EXEC_RDTSCP;
4127                 }
4128         }
4129
4130         if (cpu_has_vmx_invpcid()) {
4131                 /* Exposing INVPCID only when PCID is exposed */
4132                 bool invpcid_enabled =
4133                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4134                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4135
4136                 if (!invpcid_enabled) {
4137                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4138                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4139                 }
4140
4141                 if (nested) {
4142                         if (invpcid_enabled)
4143                                 vmx->nested.msrs.secondary_ctls_high |=
4144                                         SECONDARY_EXEC_ENABLE_INVPCID;
4145                         else
4146                                 vmx->nested.msrs.secondary_ctls_high &=
4147                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
4148                 }
4149         }
4150
4151         if (vmx_rdrand_supported()) {
4152                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4153                 if (rdrand_enabled)
4154                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4155
4156                 if (nested) {
4157                         if (rdrand_enabled)
4158                                 vmx->nested.msrs.secondary_ctls_high |=
4159                                         SECONDARY_EXEC_RDRAND_EXITING;
4160                         else
4161                                 vmx->nested.msrs.secondary_ctls_high &=
4162                                         ~SECONDARY_EXEC_RDRAND_EXITING;
4163                 }
4164         }
4165
4166         if (vmx_rdseed_supported()) {
4167                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4168                 if (rdseed_enabled)
4169                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4170
4171                 if (nested) {
4172                         if (rdseed_enabled)
4173                                 vmx->nested.msrs.secondary_ctls_high |=
4174                                         SECONDARY_EXEC_RDSEED_EXITING;
4175                         else
4176                                 vmx->nested.msrs.secondary_ctls_high &=
4177                                         ~SECONDARY_EXEC_RDSEED_EXITING;
4178                 }
4179         }
4180
4181         if (vmx_waitpkg_supported()) {
4182                 bool waitpkg_enabled =
4183                         guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4184
4185                 if (!waitpkg_enabled)
4186                         exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4187
4188                 if (nested) {
4189                         if (waitpkg_enabled)
4190                                 vmx->nested.msrs.secondary_ctls_high |=
4191                                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4192                         else
4193                                 vmx->nested.msrs.secondary_ctls_high &=
4194                                         ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4195                 }
4196         }
4197
4198         vmx->secondary_exec_control = exec_control;
4199 }
4200
4201 static void ept_set_mmio_spte_mask(void)
4202 {
4203         /*
4204          * EPT Misconfigurations can be generated if the value of bits 2:0
4205          * of an EPT paging-structure entry is 110b (write/execute).
4206          */
4207         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4208                                    VMX_EPT_MISCONFIG_WX_VALUE, 0);
4209 }
4210
4211 #define VMX_XSS_EXIT_BITMAP 0
4212
4213 /*
4214  * Noting that the initialization of Guest-state Area of VMCS is in
4215  * vmx_vcpu_reset().
4216  */
4217 static void init_vmcs(struct vcpu_vmx *vmx)
4218 {
4219         if (nested)
4220                 nested_vmx_set_vmcs_shadowing_bitmap();
4221
4222         if (cpu_has_vmx_msr_bitmap())
4223                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4224
4225         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4226
4227         /* Control */
4228         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4229
4230         exec_controls_set(vmx, vmx_exec_control(vmx));
4231
4232         if (cpu_has_secondary_exec_ctrls()) {
4233                 vmx_compute_secondary_exec_control(vmx);
4234                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4235         }
4236
4237         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4238                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4239                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4240                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4241                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4242
4243                 vmcs_write16(GUEST_INTR_STATUS, 0);
4244
4245                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4246                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4247         }
4248
4249         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4250                 vmcs_write32(PLE_GAP, ple_gap);
4251                 vmx->ple_window = ple_window;
4252                 vmx->ple_window_dirty = true;
4253         }
4254
4255         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4256         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4257         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4258
4259         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4260         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4261         vmx_set_constant_host_state(vmx);
4262         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4263         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4264
4265         if (cpu_has_vmx_vmfunc())
4266                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4267
4268         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4269         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4270         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4271         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4272         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4273
4274         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4275                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4276
4277         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4278
4279         /* 22.2.1, 20.8.1 */
4280         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4281
4282         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4283         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4284
4285         set_cr4_guest_host_mask(vmx);
4286
4287         if (vmx->vpid != 0)
4288                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4289
4290         if (vmx_xsaves_supported())
4291                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4292
4293         if (enable_pml) {
4294                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4295                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4296         }
4297
4298         if (cpu_has_vmx_encls_vmexit())
4299                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4300
4301         if (vmx_pt_mode_is_host_guest()) {
4302                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4303                 /* Bit[6~0] are forced to 1, writes are ignored. */
4304                 vmx->pt_desc.guest.output_mask = 0x7F;
4305                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4306         }
4307 }
4308
4309 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4310 {
4311         struct vcpu_vmx *vmx = to_vmx(vcpu);
4312         struct msr_data apic_base_msr;
4313         u64 cr0;
4314
4315         vmx->rmode.vm86_active = 0;
4316         vmx->spec_ctrl = 0;
4317
4318         vmx->msr_ia32_umwait_control = 0;
4319
4320         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4321         vmx->hv_deadline_tsc = -1;
4322         kvm_set_cr8(vcpu, 0);
4323
4324         if (!init_event) {
4325                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4326                                      MSR_IA32_APICBASE_ENABLE;
4327                 if (kvm_vcpu_is_reset_bsp(vcpu))
4328                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4329                 apic_base_msr.host_initiated = true;
4330                 kvm_set_apic_base(vcpu, &apic_base_msr);
4331         }
4332
4333         vmx_segment_cache_clear(vmx);
4334
4335         seg_setup(VCPU_SREG_CS);
4336         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4337         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4338
4339         seg_setup(VCPU_SREG_DS);
4340         seg_setup(VCPU_SREG_ES);
4341         seg_setup(VCPU_SREG_FS);
4342         seg_setup(VCPU_SREG_GS);
4343         seg_setup(VCPU_SREG_SS);
4344
4345         vmcs_write16(GUEST_TR_SELECTOR, 0);
4346         vmcs_writel(GUEST_TR_BASE, 0);
4347         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4348         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4349
4350         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4351         vmcs_writel(GUEST_LDTR_BASE, 0);
4352         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4353         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4354
4355         if (!init_event) {
4356                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4357                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4358                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4359                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4360         }
4361
4362         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4363         kvm_rip_write(vcpu, 0xfff0);
4364
4365         vmcs_writel(GUEST_GDTR_BASE, 0);
4366         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4367
4368         vmcs_writel(GUEST_IDTR_BASE, 0);
4369         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4370
4371         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4372         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4373         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4374         if (kvm_mpx_supported())
4375                 vmcs_write64(GUEST_BNDCFGS, 0);
4376
4377         setup_msrs(vmx);
4378
4379         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4380
4381         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4382                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4383                 if (cpu_need_tpr_shadow(vcpu))
4384                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4385                                      __pa(vcpu->arch.apic->regs));
4386                 vmcs_write32(TPR_THRESHOLD, 0);
4387         }
4388
4389         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4390
4391         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4392         vmx->vcpu.arch.cr0 = cr0;
4393         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4394         vmx_set_cr4(vcpu, 0);
4395         vmx_set_efer(vcpu, 0);
4396
4397         update_exception_bitmap(vcpu);
4398
4399         vpid_sync_context(vmx->vpid);
4400         if (init_event)
4401                 vmx_clear_hlt(vcpu);
4402 }
4403
4404 static void enable_irq_window(struct kvm_vcpu *vcpu)
4405 {
4406         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4407 }
4408
4409 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4410 {
4411         if (!enable_vnmi ||
4412             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4413                 enable_irq_window(vcpu);
4414                 return;
4415         }
4416
4417         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4418 }
4419
4420 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4421 {
4422         struct vcpu_vmx *vmx = to_vmx(vcpu);
4423         uint32_t intr;
4424         int irq = vcpu->arch.interrupt.nr;
4425
4426         trace_kvm_inj_virq(irq);
4427
4428         ++vcpu->stat.irq_injections;
4429         if (vmx->rmode.vm86_active) {
4430                 int inc_eip = 0;
4431                 if (vcpu->arch.interrupt.soft)
4432                         inc_eip = vcpu->arch.event_exit_inst_len;
4433                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4434                 return;
4435         }
4436         intr = irq | INTR_INFO_VALID_MASK;
4437         if (vcpu->arch.interrupt.soft) {
4438                 intr |= INTR_TYPE_SOFT_INTR;
4439                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4440                              vmx->vcpu.arch.event_exit_inst_len);
4441         } else
4442                 intr |= INTR_TYPE_EXT_INTR;
4443         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4444
4445         vmx_clear_hlt(vcpu);
4446 }
4447
4448 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4449 {
4450         struct vcpu_vmx *vmx = to_vmx(vcpu);
4451
4452         if (!enable_vnmi) {
4453                 /*
4454                  * Tracking the NMI-blocked state in software is built upon
4455                  * finding the next open IRQ window. This, in turn, depends on
4456                  * well-behaving guests: They have to keep IRQs disabled at
4457                  * least as long as the NMI handler runs. Otherwise we may
4458                  * cause NMI nesting, maybe breaking the guest. But as this is
4459                  * highly unlikely, we can live with the residual risk.
4460                  */
4461                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4462                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4463         }
4464
4465         ++vcpu->stat.nmi_injections;
4466         vmx->loaded_vmcs->nmi_known_unmasked = false;
4467
4468         if (vmx->rmode.vm86_active) {
4469                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4470                 return;
4471         }
4472
4473         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4474                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4475
4476         vmx_clear_hlt(vcpu);
4477 }
4478
4479 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4480 {
4481         struct vcpu_vmx *vmx = to_vmx(vcpu);
4482         bool masked;
4483
4484         if (!enable_vnmi)
4485                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4486         if (vmx->loaded_vmcs->nmi_known_unmasked)
4487                 return false;
4488         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4489         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4490         return masked;
4491 }
4492
4493 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4494 {
4495         struct vcpu_vmx *vmx = to_vmx(vcpu);
4496
4497         if (!enable_vnmi) {
4498                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4499                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4500                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4501                 }
4502         } else {
4503                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4504                 if (masked)
4505                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4506                                       GUEST_INTR_STATE_NMI);
4507                 else
4508                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4509                                         GUEST_INTR_STATE_NMI);
4510         }
4511 }
4512
4513 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4514 {
4515         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4516                 return false;
4517
4518         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4519                 return true;
4520
4521         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4522                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4523                  GUEST_INTR_STATE_NMI));
4524 }
4525
4526 static bool vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4527 {
4528         if (to_vmx(vcpu)->nested.nested_run_pending)
4529                 return false;
4530
4531         return !vmx_nmi_blocked(vcpu);
4532 }
4533
4534 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4535 {
4536         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4537                 return false;
4538
4539         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4540                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4541                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4542 }
4543
4544 static bool vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4545 {
4546         if (to_vmx(vcpu)->nested.nested_run_pending)
4547                 return false;
4548
4549         return !vmx_interrupt_blocked(vcpu);
4550 }
4551
4552 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4553 {
4554         int ret;
4555
4556         if (enable_unrestricted_guest)
4557                 return 0;
4558
4559         mutex_lock(&kvm->slots_lock);
4560         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4561                                       PAGE_SIZE * 3);
4562         mutex_unlock(&kvm->slots_lock);
4563
4564         if (ret)
4565                 return ret;
4566         to_kvm_vmx(kvm)->tss_addr = addr;
4567         return init_rmode_tss(kvm);
4568 }
4569
4570 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4571 {
4572         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4573         return 0;
4574 }
4575
4576 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4577 {
4578         switch (vec) {
4579         case BP_VECTOR:
4580                 /*
4581                  * Update instruction length as we may reinject the exception
4582                  * from user space while in guest debugging mode.
4583                  */
4584                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4585                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4586                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4587                         return false;
4588                 /* fall through */
4589         case DB_VECTOR:
4590                 if (vcpu->guest_debug &
4591                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4592                         return false;
4593                 /* fall through */
4594         case DE_VECTOR:
4595         case OF_VECTOR:
4596         case BR_VECTOR:
4597         case UD_VECTOR:
4598         case DF_VECTOR:
4599         case SS_VECTOR:
4600         case GP_VECTOR:
4601         case MF_VECTOR:
4602                 return true;
4603         }
4604         return false;
4605 }
4606
4607 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4608                                   int vec, u32 err_code)
4609 {
4610         /*
4611          * Instruction with address size override prefix opcode 0x67
4612          * Cause the #SS fault with 0 error code in VM86 mode.
4613          */
4614         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4615                 if (kvm_emulate_instruction(vcpu, 0)) {
4616                         if (vcpu->arch.halt_request) {
4617                                 vcpu->arch.halt_request = 0;
4618                                 return kvm_vcpu_halt(vcpu);
4619                         }
4620                         return 1;
4621                 }
4622                 return 0;
4623         }
4624
4625         /*
4626          * Forward all other exceptions that are valid in real mode.
4627          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4628          *        the required debugging infrastructure rework.
4629          */
4630         kvm_queue_exception(vcpu, vec);
4631         return 1;
4632 }
4633
4634 /*
4635  * Trigger machine check on the host. We assume all the MSRs are already set up
4636  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4637  * We pass a fake environment to the machine check handler because we want
4638  * the guest to be always treated like user space, no matter what context
4639  * it used internally.
4640  */
4641 static void kvm_machine_check(void)
4642 {
4643 #if defined(CONFIG_X86_MCE)
4644         struct pt_regs regs = {
4645                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4646                 .flags = X86_EFLAGS_IF,
4647         };
4648
4649         do_machine_check(&regs, 0);
4650 #endif
4651 }
4652
4653 static int handle_machine_check(struct kvm_vcpu *vcpu)
4654 {
4655         /* handled by vmx_vcpu_run() */
4656         return 1;
4657 }
4658
4659 /*
4660  * If the host has split lock detection disabled, then #AC is
4661  * unconditionally injected into the guest, which is the pre split lock
4662  * detection behaviour.
4663  *
4664  * If the host has split lock detection enabled then #AC is
4665  * only injected into the guest when:
4666  *  - Guest CPL == 3 (user mode)
4667  *  - Guest has #AC detection enabled in CR0
4668  *  - Guest EFLAGS has AC bit set
4669  */
4670 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4671 {
4672         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4673                 return true;
4674
4675         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4676                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4677 }
4678
4679 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4680 {
4681         struct vcpu_vmx *vmx = to_vmx(vcpu);
4682         struct kvm_run *kvm_run = vcpu->run;
4683         u32 intr_info, ex_no, error_code;
4684         unsigned long cr2, rip, dr6;
4685         u32 vect_info;
4686
4687         vect_info = vmx->idt_vectoring_info;
4688         intr_info = vmx->exit_intr_info;
4689
4690         if (is_machine_check(intr_info) || is_nmi(intr_info))
4691                 return 1; /* handled by handle_exception_nmi_irqoff() */
4692
4693         if (is_invalid_opcode(intr_info))
4694                 return handle_ud(vcpu);
4695
4696         error_code = 0;
4697         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4698                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4699
4700         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4701                 WARN_ON_ONCE(!enable_vmware_backdoor);
4702
4703                 /*
4704                  * VMware backdoor emulation on #GP interception only handles
4705                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4706                  * error code on #GP.
4707                  */
4708                 if (error_code) {
4709                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4710                         return 1;
4711                 }
4712                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4713         }
4714
4715         /*
4716          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4717          * MMIO, it is better to report an internal error.
4718          * See the comments in vmx_handle_exit.
4719          */
4720         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4721             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4722                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4723                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4724                 vcpu->run->internal.ndata = 3;
4725                 vcpu->run->internal.data[0] = vect_info;
4726                 vcpu->run->internal.data[1] = intr_info;
4727                 vcpu->run->internal.data[2] = error_code;
4728                 return 0;
4729         }
4730
4731         if (is_page_fault(intr_info)) {
4732                 cr2 = vmx_get_exit_qual(vcpu);
4733                 /* EPT won't cause page fault directly */
4734                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4735                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4736         }
4737
4738         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4739
4740         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4741                 return handle_rmode_exception(vcpu, ex_no, error_code);
4742
4743         switch (ex_no) {
4744         case DB_VECTOR:
4745                 dr6 = vmx_get_exit_qual(vcpu);
4746                 if (!(vcpu->guest_debug &
4747                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4748                         if (is_icebp(intr_info))
4749                                 WARN_ON(!skip_emulated_instruction(vcpu));
4750
4751                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4752                         return 1;
4753                 }
4754                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4755                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4756                 /* fall through */
4757         case BP_VECTOR:
4758                 /*
4759                  * Update instruction length as we may reinject #BP from
4760                  * user space while in guest debugging mode. Reading it for
4761                  * #DB as well causes no harm, it is not used in that case.
4762                  */
4763                 vmx->vcpu.arch.event_exit_inst_len =
4764                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4765                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4766                 rip = kvm_rip_read(vcpu);
4767                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4768                 kvm_run->debug.arch.exception = ex_no;
4769                 break;
4770         case AC_VECTOR:
4771                 if (guest_inject_ac(vcpu)) {
4772                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4773                         return 1;
4774                 }
4775
4776                 /*
4777                  * Handle split lock. Depending on detection mode this will
4778                  * either warn and disable split lock detection for this
4779                  * task or force SIGBUS on it.
4780                  */
4781                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4782                         return 1;
4783                 fallthrough;
4784         default:
4785                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4786                 kvm_run->ex.exception = ex_no;
4787                 kvm_run->ex.error_code = error_code;
4788                 break;
4789         }
4790         return 0;
4791 }
4792
4793 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4794 {
4795         ++vcpu->stat.irq_exits;
4796         return 1;
4797 }
4798
4799 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4800 {
4801         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4802         vcpu->mmio_needed = 0;
4803         return 0;
4804 }
4805
4806 static int handle_io(struct kvm_vcpu *vcpu)
4807 {
4808         unsigned long exit_qualification;
4809         int size, in, string;
4810         unsigned port;
4811
4812         exit_qualification = vmx_get_exit_qual(vcpu);
4813         string = (exit_qualification & 16) != 0;
4814
4815         ++vcpu->stat.io_exits;
4816
4817         if (string)
4818                 return kvm_emulate_instruction(vcpu, 0);
4819
4820         port = exit_qualification >> 16;
4821         size = (exit_qualification & 7) + 1;
4822         in = (exit_qualification & 8) != 0;
4823
4824         return kvm_fast_pio(vcpu, size, port, in);
4825 }
4826
4827 static void
4828 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4829 {
4830         /*
4831          * Patch in the VMCALL instruction:
4832          */
4833         hypercall[0] = 0x0f;
4834         hypercall[1] = 0x01;
4835         hypercall[2] = 0xc1;
4836 }
4837
4838 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4839 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4840 {
4841         if (is_guest_mode(vcpu)) {
4842                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4843                 unsigned long orig_val = val;
4844
4845                 /*
4846                  * We get here when L2 changed cr0 in a way that did not change
4847                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4848                  * but did change L0 shadowed bits. So we first calculate the
4849                  * effective cr0 value that L1 would like to write into the
4850                  * hardware. It consists of the L2-owned bits from the new
4851                  * value combined with the L1-owned bits from L1's guest_cr0.
4852                  */
4853                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4854                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4855
4856                 if (!nested_guest_cr0_valid(vcpu, val))
4857                         return 1;
4858
4859                 if (kvm_set_cr0(vcpu, val))
4860                         return 1;
4861                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4862                 return 0;
4863         } else {
4864                 if (to_vmx(vcpu)->nested.vmxon &&
4865                     !nested_host_cr0_valid(vcpu, val))
4866                         return 1;
4867
4868                 return kvm_set_cr0(vcpu, val);
4869         }
4870 }
4871
4872 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4873 {
4874         if (is_guest_mode(vcpu)) {
4875                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4876                 unsigned long orig_val = val;
4877
4878                 /* analogously to handle_set_cr0 */
4879                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4880                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4881                 if (kvm_set_cr4(vcpu, val))
4882                         return 1;
4883                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4884                 return 0;
4885         } else
4886                 return kvm_set_cr4(vcpu, val);
4887 }
4888
4889 static int handle_desc(struct kvm_vcpu *vcpu)
4890 {
4891         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4892         return kvm_emulate_instruction(vcpu, 0);
4893 }
4894
4895 static int handle_cr(struct kvm_vcpu *vcpu)
4896 {
4897         unsigned long exit_qualification, val;
4898         int cr;
4899         int reg;
4900         int err;
4901         int ret;
4902
4903         exit_qualification = vmx_get_exit_qual(vcpu);
4904         cr = exit_qualification & 15;
4905         reg = (exit_qualification >> 8) & 15;
4906         switch ((exit_qualification >> 4) & 3) {
4907         case 0: /* mov to cr */
4908                 val = kvm_register_readl(vcpu, reg);
4909                 trace_kvm_cr_write(cr, val);
4910                 switch (cr) {
4911                 case 0:
4912                         err = handle_set_cr0(vcpu, val);
4913                         return kvm_complete_insn_gp(vcpu, err);
4914                 case 3:
4915                         WARN_ON_ONCE(enable_unrestricted_guest);
4916                         err = kvm_set_cr3(vcpu, val);
4917                         return kvm_complete_insn_gp(vcpu, err);
4918                 case 4:
4919                         err = handle_set_cr4(vcpu, val);
4920                         return kvm_complete_insn_gp(vcpu, err);
4921                 case 8: {
4922                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4923                                 u8 cr8 = (u8)val;
4924                                 err = kvm_set_cr8(vcpu, cr8);
4925                                 ret = kvm_complete_insn_gp(vcpu, err);
4926                                 if (lapic_in_kernel(vcpu))
4927                                         return ret;
4928                                 if (cr8_prev <= cr8)
4929                                         return ret;
4930                                 /*
4931                                  * TODO: we might be squashing a
4932                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4933                                  * KVM_EXIT_DEBUG here.
4934                                  */
4935                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4936                                 return 0;
4937                         }
4938                 }
4939                 break;
4940         case 2: /* clts */
4941                 WARN_ONCE(1, "Guest should always own CR0.TS");
4942                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4943                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4944                 return kvm_skip_emulated_instruction(vcpu);
4945         case 1: /*mov from cr*/
4946                 switch (cr) {
4947                 case 3:
4948                         WARN_ON_ONCE(enable_unrestricted_guest);
4949                         val = kvm_read_cr3(vcpu);
4950                         kvm_register_write(vcpu, reg, val);
4951                         trace_kvm_cr_read(cr, val);
4952                         return kvm_skip_emulated_instruction(vcpu);
4953                 case 8:
4954                         val = kvm_get_cr8(vcpu);
4955                         kvm_register_write(vcpu, reg, val);
4956                         trace_kvm_cr_read(cr, val);
4957                         return kvm_skip_emulated_instruction(vcpu);
4958                 }
4959                 break;
4960         case 3: /* lmsw */
4961                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4962                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4963                 kvm_lmsw(vcpu, val);
4964
4965                 return kvm_skip_emulated_instruction(vcpu);
4966         default:
4967                 break;
4968         }
4969         vcpu->run->exit_reason = 0;
4970         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4971                (int)(exit_qualification >> 4) & 3, cr);
4972         return 0;
4973 }
4974
4975 static int handle_dr(struct kvm_vcpu *vcpu)
4976 {
4977         unsigned long exit_qualification;
4978         int dr, dr7, reg;
4979
4980         exit_qualification = vmx_get_exit_qual(vcpu);
4981         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4982
4983         /* First, if DR does not exist, trigger UD */
4984         if (!kvm_require_dr(vcpu, dr))
4985                 return 1;
4986
4987         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4988         if (!kvm_require_cpl(vcpu, 0))
4989                 return 1;
4990         dr7 = vmcs_readl(GUEST_DR7);
4991         if (dr7 & DR7_GD) {
4992                 /*
4993                  * As the vm-exit takes precedence over the debug trap, we
4994                  * need to emulate the latter, either for the host or the
4995                  * guest debugging itself.
4996                  */
4997                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4998                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
4999                         vcpu->run->debug.arch.dr7 = dr7;
5000                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5001                         vcpu->run->debug.arch.exception = DB_VECTOR;
5002                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5003                         return 0;
5004                 } else {
5005                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5006                         return 1;
5007                 }
5008         }
5009
5010         if (vcpu->guest_debug == 0) {
5011                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5012
5013                 /*
5014                  * No more DR vmexits; force a reload of the debug registers
5015                  * and reenter on this instruction.  The next vmexit will
5016                  * retrieve the full state of the debug registers.
5017                  */
5018                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5019                 return 1;
5020         }
5021
5022         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5023         if (exit_qualification & TYPE_MOV_FROM_DR) {
5024                 unsigned long val;
5025
5026                 if (kvm_get_dr(vcpu, dr, &val))
5027                         return 1;
5028                 kvm_register_write(vcpu, reg, val);
5029         } else
5030                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5031                         return 1;
5032
5033         return kvm_skip_emulated_instruction(vcpu);
5034 }
5035
5036 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5037 {
5038         get_debugreg(vcpu->arch.db[0], 0);
5039         get_debugreg(vcpu->arch.db[1], 1);
5040         get_debugreg(vcpu->arch.db[2], 2);
5041         get_debugreg(vcpu->arch.db[3], 3);
5042         get_debugreg(vcpu->arch.dr6, 6);
5043         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5044
5045         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5046         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5047 }
5048
5049 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5050 {
5051         vmcs_writel(GUEST_DR7, val);
5052 }
5053
5054 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5055 {
5056         kvm_apic_update_ppr(vcpu);
5057         return 1;
5058 }
5059
5060 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5061 {
5062         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5063
5064         kvm_make_request(KVM_REQ_EVENT, vcpu);
5065
5066         ++vcpu->stat.irq_window_exits;
5067         return 1;
5068 }
5069
5070 static int handle_vmcall(struct kvm_vcpu *vcpu)
5071 {
5072         return kvm_emulate_hypercall(vcpu);
5073 }
5074
5075 static int handle_invd(struct kvm_vcpu *vcpu)
5076 {
5077         return kvm_emulate_instruction(vcpu, 0);
5078 }
5079
5080 static int handle_invlpg(struct kvm_vcpu *vcpu)
5081 {
5082         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5083
5084         kvm_mmu_invlpg(vcpu, exit_qualification);
5085         return kvm_skip_emulated_instruction(vcpu);
5086 }
5087
5088 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5089 {
5090         int err;
5091
5092         err = kvm_rdpmc(vcpu);
5093         return kvm_complete_insn_gp(vcpu, err);
5094 }
5095
5096 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5097 {
5098         return kvm_emulate_wbinvd(vcpu);
5099 }
5100
5101 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5102 {
5103         u64 new_bv = kvm_read_edx_eax(vcpu);
5104         u32 index = kvm_rcx_read(vcpu);
5105
5106         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5107                 return kvm_skip_emulated_instruction(vcpu);
5108         return 1;
5109 }
5110
5111 static int handle_apic_access(struct kvm_vcpu *vcpu)
5112 {
5113         if (likely(fasteoi)) {
5114                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5115                 int access_type, offset;
5116
5117                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5118                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5119                 /*
5120                  * Sane guest uses MOV to write EOI, with written value
5121                  * not cared. So make a short-circuit here by avoiding
5122                  * heavy instruction emulation.
5123                  */
5124                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5125                     (offset == APIC_EOI)) {
5126                         kvm_lapic_set_eoi(vcpu);
5127                         return kvm_skip_emulated_instruction(vcpu);
5128                 }
5129         }
5130         return kvm_emulate_instruction(vcpu, 0);
5131 }
5132
5133 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5134 {
5135         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5136         int vector = exit_qualification & 0xff;
5137
5138         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5139         kvm_apic_set_eoi_accelerated(vcpu, vector);
5140         return 1;
5141 }
5142
5143 static int handle_apic_write(struct kvm_vcpu *vcpu)
5144 {
5145         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5146         u32 offset = exit_qualification & 0xfff;
5147
5148         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5149         kvm_apic_write_nodecode(vcpu, offset);
5150         return 1;
5151 }
5152
5153 static int handle_task_switch(struct kvm_vcpu *vcpu)
5154 {
5155         struct vcpu_vmx *vmx = to_vmx(vcpu);
5156         unsigned long exit_qualification;
5157         bool has_error_code = false;
5158         u32 error_code = 0;
5159         u16 tss_selector;
5160         int reason, type, idt_v, idt_index;
5161
5162         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5163         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5164         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5165
5166         exit_qualification = vmx_get_exit_qual(vcpu);
5167
5168         reason = (u32)exit_qualification >> 30;
5169         if (reason == TASK_SWITCH_GATE && idt_v) {
5170                 switch (type) {
5171                 case INTR_TYPE_NMI_INTR:
5172                         vcpu->arch.nmi_injected = false;
5173                         vmx_set_nmi_mask(vcpu, true);
5174                         break;
5175                 case INTR_TYPE_EXT_INTR:
5176                 case INTR_TYPE_SOFT_INTR:
5177                         kvm_clear_interrupt_queue(vcpu);
5178                         break;
5179                 case INTR_TYPE_HARD_EXCEPTION:
5180                         if (vmx->idt_vectoring_info &
5181                             VECTORING_INFO_DELIVER_CODE_MASK) {
5182                                 has_error_code = true;
5183                                 error_code =
5184                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5185                         }
5186                         /* fall through */
5187                 case INTR_TYPE_SOFT_EXCEPTION:
5188                         kvm_clear_exception_queue(vcpu);
5189                         break;
5190                 default:
5191                         break;
5192                 }
5193         }
5194         tss_selector = exit_qualification;
5195
5196         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5197                        type != INTR_TYPE_EXT_INTR &&
5198                        type != INTR_TYPE_NMI_INTR))
5199                 WARN_ON(!skip_emulated_instruction(vcpu));
5200
5201         /*
5202          * TODO: What about debug traps on tss switch?
5203          *       Are we supposed to inject them and update dr6?
5204          */
5205         return kvm_task_switch(vcpu, tss_selector,
5206                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5207                                reason, has_error_code, error_code);
5208 }
5209
5210 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5211 {
5212         unsigned long exit_qualification;
5213         gpa_t gpa;
5214         u64 error_code;
5215
5216         exit_qualification = vmx_get_exit_qual(vcpu);
5217
5218         /*
5219          * EPT violation happened while executing iret from NMI,
5220          * "blocked by NMI" bit has to be set before next VM entry.
5221          * There are errata that may cause this bit to not be set:
5222          * AAK134, BY25.
5223          */
5224         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5225                         enable_vnmi &&
5226                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5227                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5228
5229         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5230         trace_kvm_page_fault(gpa, exit_qualification);
5231
5232         /* Is it a read fault? */
5233         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5234                      ? PFERR_USER_MASK : 0;
5235         /* Is it a write fault? */
5236         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5237                       ? PFERR_WRITE_MASK : 0;
5238         /* Is it a fetch fault? */
5239         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5240                       ? PFERR_FETCH_MASK : 0;
5241         /* ept page table entry is present? */
5242         error_code |= (exit_qualification &
5243                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5244                         EPT_VIOLATION_EXECUTABLE))
5245                       ? PFERR_PRESENT_MASK : 0;
5246
5247         error_code |= (exit_qualification & 0x100) != 0 ?
5248                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5249
5250         vcpu->arch.exit_qualification = exit_qualification;
5251         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5252 }
5253
5254 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5255 {
5256         gpa_t gpa;
5257
5258         /*
5259          * A nested guest cannot optimize MMIO vmexits, because we have an
5260          * nGPA here instead of the required GPA.
5261          */
5262         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5263         if (!is_guest_mode(vcpu) &&
5264             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5265                 trace_kvm_fast_mmio(gpa);
5266                 return kvm_skip_emulated_instruction(vcpu);
5267         }
5268
5269         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5270 }
5271
5272 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5273 {
5274         WARN_ON_ONCE(!enable_vnmi);
5275         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5276         ++vcpu->stat.nmi_window_exits;
5277         kvm_make_request(KVM_REQ_EVENT, vcpu);
5278
5279         return 1;
5280 }
5281
5282 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5283 {
5284         struct vcpu_vmx *vmx = to_vmx(vcpu);
5285         bool intr_window_requested;
5286         unsigned count = 130;
5287
5288         intr_window_requested = exec_controls_get(vmx) &
5289                                 CPU_BASED_INTR_WINDOW_EXITING;
5290
5291         while (vmx->emulation_required && count-- != 0) {
5292                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5293                         return handle_interrupt_window(&vmx->vcpu);
5294
5295                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5296                         return 1;
5297
5298                 if (!kvm_emulate_instruction(vcpu, 0))
5299                         return 0;
5300
5301                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5302                     vcpu->arch.exception.pending) {
5303                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5304                         vcpu->run->internal.suberror =
5305                                                 KVM_INTERNAL_ERROR_EMULATION;
5306                         vcpu->run->internal.ndata = 0;
5307                         return 0;
5308                 }
5309
5310                 if (vcpu->arch.halt_request) {
5311                         vcpu->arch.halt_request = 0;
5312                         return kvm_vcpu_halt(vcpu);
5313                 }
5314
5315                 /*
5316                  * Note, return 1 and not 0, vcpu_run() is responsible for
5317                  * morphing the pending signal into the proper return code.
5318                  */
5319                 if (signal_pending(current))
5320                         return 1;
5321
5322                 if (need_resched())
5323                         schedule();
5324         }
5325
5326         return 1;
5327 }
5328
5329 static void grow_ple_window(struct kvm_vcpu *vcpu)
5330 {
5331         struct vcpu_vmx *vmx = to_vmx(vcpu);
5332         unsigned int old = vmx->ple_window;
5333
5334         vmx->ple_window = __grow_ple_window(old, ple_window,
5335                                             ple_window_grow,
5336                                             ple_window_max);
5337
5338         if (vmx->ple_window != old) {
5339                 vmx->ple_window_dirty = true;
5340                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5341                                             vmx->ple_window, old);
5342         }
5343 }
5344
5345 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5346 {
5347         struct vcpu_vmx *vmx = to_vmx(vcpu);
5348         unsigned int old = vmx->ple_window;
5349
5350         vmx->ple_window = __shrink_ple_window(old, ple_window,
5351                                               ple_window_shrink,
5352                                               ple_window);
5353
5354         if (vmx->ple_window != old) {
5355                 vmx->ple_window_dirty = true;
5356                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5357                                             vmx->ple_window, old);
5358         }
5359 }
5360
5361 /*
5362  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5363  */
5364 static void wakeup_handler(void)
5365 {
5366         struct kvm_vcpu *vcpu;
5367         int cpu = smp_processor_id();
5368
5369         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5370         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5371                         blocked_vcpu_list) {
5372                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5373
5374                 if (pi_test_on(pi_desc) == 1)
5375                         kvm_vcpu_kick(vcpu);
5376         }
5377         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5378 }
5379
5380 static void vmx_enable_tdp(void)
5381 {
5382         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5383                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5384                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5385                 0ull, VMX_EPT_EXECUTABLE_MASK,
5386                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5387                 VMX_EPT_RWX_MASK, 0ull);
5388
5389         ept_set_mmio_spte_mask();
5390 }
5391
5392 /*
5393  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5394  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5395  */
5396 static int handle_pause(struct kvm_vcpu *vcpu)
5397 {
5398         if (!kvm_pause_in_guest(vcpu->kvm))
5399                 grow_ple_window(vcpu);
5400
5401         /*
5402          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5403          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5404          * never set PAUSE_EXITING and just set PLE if supported,
5405          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5406          */
5407         kvm_vcpu_on_spin(vcpu, true);
5408         return kvm_skip_emulated_instruction(vcpu);
5409 }
5410
5411 static int handle_nop(struct kvm_vcpu *vcpu)
5412 {
5413         return kvm_skip_emulated_instruction(vcpu);
5414 }
5415
5416 static int handle_mwait(struct kvm_vcpu *vcpu)
5417 {
5418         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5419         return handle_nop(vcpu);
5420 }
5421
5422 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5423 {
5424         kvm_queue_exception(vcpu, UD_VECTOR);
5425         return 1;
5426 }
5427
5428 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5429 {
5430         return 1;
5431 }
5432
5433 static int handle_monitor(struct kvm_vcpu *vcpu)
5434 {
5435         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5436         return handle_nop(vcpu);
5437 }
5438
5439 static int handle_invpcid(struct kvm_vcpu *vcpu)
5440 {
5441         u32 vmx_instruction_info;
5442         unsigned long type;
5443         bool pcid_enabled;
5444         gva_t gva;
5445         struct x86_exception e;
5446         unsigned i;
5447         unsigned long roots_to_free = 0;
5448         struct {
5449                 u64 pcid;
5450                 u64 gla;
5451         } operand;
5452
5453         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5454                 kvm_queue_exception(vcpu, UD_VECTOR);
5455                 return 1;
5456         }
5457
5458         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5459         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5460
5461         if (type > 3) {
5462                 kvm_inject_gp(vcpu, 0);
5463                 return 1;
5464         }
5465
5466         /* According to the Intel instruction reference, the memory operand
5467          * is read even if it isn't needed (e.g., for type==all)
5468          */
5469         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5470                                 vmx_instruction_info, false,
5471                                 sizeof(operand), &gva))
5472                 return 1;
5473
5474         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5475                 kvm_inject_emulated_page_fault(vcpu, &e);
5476                 return 1;
5477         }
5478
5479         if (operand.pcid >> 12 != 0) {
5480                 kvm_inject_gp(vcpu, 0);
5481                 return 1;
5482         }
5483
5484         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5485
5486         switch (type) {
5487         case INVPCID_TYPE_INDIV_ADDR:
5488                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5489                     is_noncanonical_address(operand.gla, vcpu)) {
5490                         kvm_inject_gp(vcpu, 0);
5491                         return 1;
5492                 }
5493                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5494                 return kvm_skip_emulated_instruction(vcpu);
5495
5496         case INVPCID_TYPE_SINGLE_CTXT:
5497                 if (!pcid_enabled && (operand.pcid != 0)) {
5498                         kvm_inject_gp(vcpu, 0);
5499                         return 1;
5500                 }
5501
5502                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5503                         kvm_mmu_sync_roots(vcpu);
5504                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
5505                 }
5506
5507                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5508                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
5509                             == operand.pcid)
5510                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5511
5512                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5513                 /*
5514                  * If neither the current cr3 nor any of the prev_roots use the
5515                  * given PCID, then nothing needs to be done here because a
5516                  * resync will happen anyway before switching to any other CR3.
5517                  */
5518
5519                 return kvm_skip_emulated_instruction(vcpu);
5520
5521         case INVPCID_TYPE_ALL_NON_GLOBAL:
5522                 /*
5523                  * Currently, KVM doesn't mark global entries in the shadow
5524                  * page tables, so a non-global flush just degenerates to a
5525                  * global flush. If needed, we could optimize this later by
5526                  * keeping track of global entries in shadow page tables.
5527                  */
5528
5529                 /* fall-through */
5530         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5531                 kvm_mmu_unload(vcpu);
5532                 return kvm_skip_emulated_instruction(vcpu);
5533
5534         default:
5535                 BUG(); /* We have already checked above that type <= 3 */
5536         }
5537 }
5538
5539 static int handle_pml_full(struct kvm_vcpu *vcpu)
5540 {
5541         unsigned long exit_qualification;
5542
5543         trace_kvm_pml_full(vcpu->vcpu_id);
5544
5545         exit_qualification = vmx_get_exit_qual(vcpu);
5546
5547         /*
5548          * PML buffer FULL happened while executing iret from NMI,
5549          * "blocked by NMI" bit has to be set before next VM entry.
5550          */
5551         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5552                         enable_vnmi &&
5553                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5554                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5555                                 GUEST_INTR_STATE_NMI);
5556
5557         /*
5558          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5559          * here.., and there's no userspace involvement needed for PML.
5560          */
5561         return 1;
5562 }
5563
5564 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5565 {
5566         struct vcpu_vmx *vmx = to_vmx(vcpu);
5567
5568         if (!vmx->req_immediate_exit &&
5569             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5570                 kvm_lapic_expired_hv_timer(vcpu);
5571
5572         return 1;
5573 }
5574
5575 /*
5576  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5577  * are overwritten by nested_vmx_setup() when nested=1.
5578  */
5579 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5580 {
5581         kvm_queue_exception(vcpu, UD_VECTOR);
5582         return 1;
5583 }
5584
5585 static int handle_encls(struct kvm_vcpu *vcpu)
5586 {
5587         /*
5588          * SGX virtualization is not yet supported.  There is no software
5589          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5590          * to prevent the guest from executing ENCLS.
5591          */
5592         kvm_queue_exception(vcpu, UD_VECTOR);
5593         return 1;
5594 }
5595
5596 /*
5597  * The exit handlers return 1 if the exit was handled fully and guest execution
5598  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5599  * to be done to userspace and return 0.
5600  */
5601 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5602         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5603         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5604         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5605         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5606         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5607         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5608         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5609         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5610         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5611         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5612         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5613         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5614         [EXIT_REASON_INVD]                    = handle_invd,
5615         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5616         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5617         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5618         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5619         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5620         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5621         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5622         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5623         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5624         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5625         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5626         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5627         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5628         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5629         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5630         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5631         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5632         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5633         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5634         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5635         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5636         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5637         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5638         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5639         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5640         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5641         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5642         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5643         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5644         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5645         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5646         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5647         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5648         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5649         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5650         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5651         [EXIT_REASON_ENCLS]                   = handle_encls,
5652 };
5653
5654 static const int kvm_vmx_max_exit_handlers =
5655         ARRAY_SIZE(kvm_vmx_exit_handlers);
5656
5657 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5658 {
5659         *info1 = vmx_get_exit_qual(vcpu);
5660         *info2 = vmx_get_intr_info(vcpu);
5661 }
5662
5663 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5664 {
5665         if (vmx->pml_pg) {
5666                 __free_page(vmx->pml_pg);
5667                 vmx->pml_pg = NULL;
5668         }
5669 }
5670
5671 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5672 {
5673         struct vcpu_vmx *vmx = to_vmx(vcpu);
5674         u64 *pml_buf;
5675         u16 pml_idx;
5676
5677         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5678
5679         /* Do nothing if PML buffer is empty */
5680         if (pml_idx == (PML_ENTITY_NUM - 1))
5681                 return;
5682
5683         /* PML index always points to next available PML buffer entity */
5684         if (pml_idx >= PML_ENTITY_NUM)
5685                 pml_idx = 0;
5686         else
5687                 pml_idx++;
5688
5689         pml_buf = page_address(vmx->pml_pg);
5690         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5691                 u64 gpa;
5692
5693                 gpa = pml_buf[pml_idx];
5694                 WARN_ON(gpa & (PAGE_SIZE - 1));
5695                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5696         }
5697
5698         /* reset PML index */
5699         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5700 }
5701
5702 /*
5703  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5704  * Called before reporting dirty_bitmap to userspace.
5705  */
5706 static void kvm_flush_pml_buffers(struct kvm *kvm)
5707 {
5708         int i;
5709         struct kvm_vcpu *vcpu;
5710         /*
5711          * We only need to kick vcpu out of guest mode here, as PML buffer
5712          * is flushed at beginning of all VMEXITs, and it's obvious that only
5713          * vcpus running in guest are possible to have unflushed GPAs in PML
5714          * buffer.
5715          */
5716         kvm_for_each_vcpu(i, vcpu, kvm)
5717                 kvm_vcpu_kick(vcpu);
5718 }
5719
5720 static void vmx_dump_sel(char *name, uint32_t sel)
5721 {
5722         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5723                name, vmcs_read16(sel),
5724                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5725                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5726                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5727 }
5728
5729 static void vmx_dump_dtsel(char *name, uint32_t limit)
5730 {
5731         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5732                name, vmcs_read32(limit),
5733                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5734 }
5735
5736 void dump_vmcs(void)
5737 {
5738         u32 vmentry_ctl, vmexit_ctl;
5739         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5740         unsigned long cr4;
5741         u64 efer;
5742
5743         if (!dump_invalid_vmcs) {
5744                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5745                 return;
5746         }
5747
5748         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5749         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5750         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5751         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5752         cr4 = vmcs_readl(GUEST_CR4);
5753         efer = vmcs_read64(GUEST_IA32_EFER);
5754         secondary_exec_control = 0;
5755         if (cpu_has_secondary_exec_ctrls())
5756                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5757
5758         pr_err("*** Guest State ***\n");
5759         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5760                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5761                vmcs_readl(CR0_GUEST_HOST_MASK));
5762         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5763                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5764         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5765         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5766             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5767         {
5768                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5769                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5770                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5771                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5772         }
5773         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5774                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5775         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5776                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5777         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5778                vmcs_readl(GUEST_SYSENTER_ESP),
5779                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5780         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5781         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5782         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5783         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5784         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5785         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5786         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5787         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5788         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5789         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5790         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5791             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5792                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5793                        efer, vmcs_read64(GUEST_IA32_PAT));
5794         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5795                vmcs_read64(GUEST_IA32_DEBUGCTL),
5796                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5797         if (cpu_has_load_perf_global_ctrl() &&
5798             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5799                 pr_err("PerfGlobCtl = 0x%016llx\n",
5800                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5801         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5802                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5803         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5804                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5805                vmcs_read32(GUEST_ACTIVITY_STATE));
5806         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5807                 pr_err("InterruptStatus = %04x\n",
5808                        vmcs_read16(GUEST_INTR_STATUS));
5809
5810         pr_err("*** Host State ***\n");
5811         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5812                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5813         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5814                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5815                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5816                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5817                vmcs_read16(HOST_TR_SELECTOR));
5818         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5819                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5820                vmcs_readl(HOST_TR_BASE));
5821         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5822                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5823         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5824                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5825                vmcs_readl(HOST_CR4));
5826         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5827                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5828                vmcs_read32(HOST_IA32_SYSENTER_CS),
5829                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5830         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5831                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5832                        vmcs_read64(HOST_IA32_EFER),
5833                        vmcs_read64(HOST_IA32_PAT));
5834         if (cpu_has_load_perf_global_ctrl() &&
5835             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5836                 pr_err("PerfGlobCtl = 0x%016llx\n",
5837                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5838
5839         pr_err("*** Control State ***\n");
5840         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5841                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5842         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5843         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5844                vmcs_read32(EXCEPTION_BITMAP),
5845                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5846                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5847         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5848                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5849                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5850                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5851         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5852                vmcs_read32(VM_EXIT_INTR_INFO),
5853                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5854                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5855         pr_err("        reason=%08x qualification=%016lx\n",
5856                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5857         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5858                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5859                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5860         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5861         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5862                 pr_err("TSC Multiplier = 0x%016llx\n",
5863                        vmcs_read64(TSC_MULTIPLIER));
5864         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5865                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5866                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5867                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5868                 }
5869                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5870                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5871                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5872                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5873         }
5874         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5875                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5876         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5877                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5878         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5879                 pr_err("PLE Gap=%08x Window=%08x\n",
5880                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5881         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5882                 pr_err("Virtual processor ID = 0x%04x\n",
5883                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5884 }
5885
5886 /*
5887  * The guest has exited.  See if we can fix it or if we need userspace
5888  * assistance.
5889  */
5890 static int vmx_handle_exit(struct kvm_vcpu *vcpu,
5891         enum exit_fastpath_completion exit_fastpath)
5892 {
5893         struct vcpu_vmx *vmx = to_vmx(vcpu);
5894         u32 exit_reason = vmx->exit_reason;
5895         u32 vectoring_info = vmx->idt_vectoring_info;
5896
5897         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5898
5899         /*
5900          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5901          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5902          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5903          * mode as if vcpus is in root mode, the PML buffer must has been
5904          * flushed already.
5905          */
5906         if (enable_pml)
5907                 vmx_flush_pml_buffer(vcpu);
5908
5909         /*
5910          * We should never reach this point with a pending nested VM-Enter, and
5911          * more specifically emulation of L2 due to invalid guest state (see
5912          * below) should never happen as that means we incorrectly allowed a
5913          * nested VM-Enter with an invalid vmcs12.
5914          */
5915         WARN_ON_ONCE(vmx->nested.nested_run_pending);
5916
5917         /* If guest state is invalid, start emulating */
5918         if (vmx->emulation_required)
5919                 return handle_invalid_guest_state(vcpu);
5920
5921         if (is_guest_mode(vcpu)) {
5922                 /*
5923                  * The host physical addresses of some pages of guest memory
5924                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5925                  * Page). The CPU may write to these pages via their host
5926                  * physical address while L2 is running, bypassing any
5927                  * address-translation-based dirty tracking (e.g. EPT write
5928                  * protection).
5929                  *
5930                  * Mark them dirty on every exit from L2 to prevent them from
5931                  * getting out of sync with dirty tracking.
5932                  */
5933                 nested_mark_vmcs12_pages_dirty(vcpu);
5934
5935                 if (nested_vmx_reflect_vmexit(vcpu))
5936                         return 1;
5937         }
5938
5939         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5940                 dump_vmcs();
5941                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5942                 vcpu->run->fail_entry.hardware_entry_failure_reason
5943                         = exit_reason;
5944                 return 0;
5945         }
5946
5947         if (unlikely(vmx->fail)) {
5948                 dump_vmcs();
5949                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5950                 vcpu->run->fail_entry.hardware_entry_failure_reason
5951                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5952                 return 0;
5953         }
5954
5955         /*
5956          * Note:
5957          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5958          * delivery event since it indicates guest is accessing MMIO.
5959          * The vm-exit can be triggered again after return to guest that
5960          * will cause infinite loop.
5961          */
5962         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5963                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5964                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5965                         exit_reason != EXIT_REASON_PML_FULL &&
5966                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5967                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5968                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5969                 vcpu->run->internal.ndata = 3;
5970                 vcpu->run->internal.data[0] = vectoring_info;
5971                 vcpu->run->internal.data[1] = exit_reason;
5972                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5973                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5974                         vcpu->run->internal.ndata++;
5975                         vcpu->run->internal.data[3] =
5976                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5977                 }
5978                 return 0;
5979         }
5980
5981         if (unlikely(!enable_vnmi &&
5982                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5983                 if (!vmx_interrupt_blocked(vcpu)) {
5984                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5985                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5986                            vcpu->arch.nmi_pending) {
5987                         /*
5988                          * This CPU don't support us in finding the end of an
5989                          * NMI-blocked window if the guest runs with IRQs
5990                          * disabled. So we pull the trigger after 1 s of
5991                          * futile waiting, but inform the user about this.
5992                          */
5993                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5994                                "state on VCPU %d after 1 s timeout\n",
5995                                __func__, vcpu->vcpu_id);
5996                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5997                 }
5998         }
5999
6000         if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
6001                 kvm_skip_emulated_instruction(vcpu);
6002                 return 1;
6003         }
6004
6005         if (exit_reason >= kvm_vmx_max_exit_handlers)
6006                 goto unexpected_vmexit;
6007 #ifdef CONFIG_RETPOLINE
6008         if (exit_reason == EXIT_REASON_MSR_WRITE)
6009                 return kvm_emulate_wrmsr(vcpu);
6010         else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
6011                 return handle_preemption_timer(vcpu);
6012         else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
6013                 return handle_interrupt_window(vcpu);
6014         else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6015                 return handle_external_interrupt(vcpu);
6016         else if (exit_reason == EXIT_REASON_HLT)
6017                 return kvm_emulate_halt(vcpu);
6018         else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
6019                 return handle_ept_misconfig(vcpu);
6020 #endif
6021
6022         exit_reason = array_index_nospec(exit_reason,
6023                                          kvm_vmx_max_exit_handlers);
6024         if (!kvm_vmx_exit_handlers[exit_reason])
6025                 goto unexpected_vmexit;
6026
6027         return kvm_vmx_exit_handlers[exit_reason](vcpu);
6028
6029 unexpected_vmexit:
6030         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
6031         dump_vmcs();
6032         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6033         vcpu->run->internal.suberror =
6034                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6035         vcpu->run->internal.ndata = 1;
6036         vcpu->run->internal.data[0] = exit_reason;
6037         return 0;
6038 }
6039
6040 /*
6041  * Software based L1D cache flush which is used when microcode providing
6042  * the cache control MSR is not loaded.
6043  *
6044  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6045  * flush it is required to read in 64 KiB because the replacement algorithm
6046  * is not exactly LRU. This could be sized at runtime via topology
6047  * information but as all relevant affected CPUs have 32KiB L1D cache size
6048  * there is no point in doing so.
6049  */
6050 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6051 {
6052         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6053
6054         /*
6055          * This code is only executed when the the flush mode is 'cond' or
6056          * 'always'
6057          */
6058         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6059                 bool flush_l1d;
6060
6061                 /*
6062                  * Clear the per-vcpu flush bit, it gets set again
6063                  * either from vcpu_run() or from one of the unsafe
6064                  * VMEXIT handlers.
6065                  */
6066                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6067                 vcpu->arch.l1tf_flush_l1d = false;
6068
6069                 /*
6070                  * Clear the per-cpu flush bit, it gets set again from
6071                  * the interrupt handlers.
6072                  */
6073                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6074                 kvm_clear_cpu_l1tf_flush_l1d();
6075
6076                 if (!flush_l1d)
6077                         return;
6078         }
6079
6080         vcpu->stat.l1d_flush++;
6081
6082         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6083                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6084                 return;
6085         }
6086
6087         asm volatile(
6088                 /* First ensure the pages are in the TLB */
6089                 "xorl   %%eax, %%eax\n"
6090                 ".Lpopulate_tlb:\n\t"
6091                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6092                 "addl   $4096, %%eax\n\t"
6093                 "cmpl   %%eax, %[size]\n\t"
6094                 "jne    .Lpopulate_tlb\n\t"
6095                 "xorl   %%eax, %%eax\n\t"
6096                 "cpuid\n\t"
6097                 /* Now fill the cache */
6098                 "xorl   %%eax, %%eax\n"
6099                 ".Lfill_cache:\n"
6100                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6101                 "addl   $64, %%eax\n\t"
6102                 "cmpl   %%eax, %[size]\n\t"
6103                 "jne    .Lfill_cache\n\t"
6104                 "lfence\n"
6105                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6106                     [size] "r" (size)
6107                 : "eax", "ebx", "ecx", "edx");
6108 }
6109
6110 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6111 {
6112         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6113         int tpr_threshold;
6114
6115         if (is_guest_mode(vcpu) &&
6116                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6117                 return;
6118
6119         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6120         if (is_guest_mode(vcpu))
6121                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6122         else
6123                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6124 }
6125
6126 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6127 {
6128         struct vcpu_vmx *vmx = to_vmx(vcpu);
6129         u32 sec_exec_control;
6130
6131         if (!lapic_in_kernel(vcpu))
6132                 return;
6133
6134         if (!flexpriority_enabled &&
6135             !cpu_has_vmx_virtualize_x2apic_mode())
6136                 return;
6137
6138         /* Postpone execution until vmcs01 is the current VMCS. */
6139         if (is_guest_mode(vcpu)) {
6140                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6141                 return;
6142         }
6143
6144         sec_exec_control = secondary_exec_controls_get(vmx);
6145         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6146                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6147
6148         switch (kvm_get_apic_mode(vcpu)) {
6149         case LAPIC_MODE_INVALID:
6150                 WARN_ONCE(true, "Invalid local APIC state");
6151         case LAPIC_MODE_DISABLED:
6152                 break;
6153         case LAPIC_MODE_XAPIC:
6154                 if (flexpriority_enabled) {
6155                         sec_exec_control |=
6156                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6157                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6158
6159                         /*
6160                          * Flush the TLB, reloading the APIC access page will
6161                          * only do so if its physical address has changed, but
6162                          * the guest may have inserted a non-APIC mapping into
6163                          * the TLB while the APIC access page was disabled.
6164                          */
6165                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6166                 }
6167                 break;
6168         case LAPIC_MODE_X2APIC:
6169                 if (cpu_has_vmx_virtualize_x2apic_mode())
6170                         sec_exec_control |=
6171                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6172                 break;
6173         }
6174         secondary_exec_controls_set(vmx, sec_exec_control);
6175
6176         vmx_update_msr_bitmap(vcpu);
6177 }
6178
6179 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6180 {
6181         struct page *page;
6182
6183         /* Defer reload until vmcs01 is the current VMCS. */
6184         if (is_guest_mode(vcpu)) {
6185                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6186                 return;
6187         }
6188
6189         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6190             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6191                 return;
6192
6193         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6194         if (is_error_page(page))
6195                 return;
6196
6197         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6198         vmx_flush_tlb_current(vcpu);
6199
6200         /*
6201          * Do not pin apic access page in memory, the MMU notifier
6202          * will call us again if it is migrated or swapped out.
6203          */
6204         put_page(page);
6205 }
6206
6207 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6208 {
6209         u16 status;
6210         u8 old;
6211
6212         if (max_isr == -1)
6213                 max_isr = 0;
6214
6215         status = vmcs_read16(GUEST_INTR_STATUS);
6216         old = status >> 8;
6217         if (max_isr != old) {
6218                 status &= 0xff;
6219                 status |= max_isr << 8;
6220                 vmcs_write16(GUEST_INTR_STATUS, status);
6221         }
6222 }
6223
6224 static void vmx_set_rvi(int vector)
6225 {
6226         u16 status;
6227         u8 old;
6228
6229         if (vector == -1)
6230                 vector = 0;
6231
6232         status = vmcs_read16(GUEST_INTR_STATUS);
6233         old = (u8)status & 0xff;
6234         if ((u8)vector != old) {
6235                 status &= ~0xff;
6236                 status |= (u8)vector;
6237                 vmcs_write16(GUEST_INTR_STATUS, status);
6238         }
6239 }
6240
6241 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6242 {
6243         /*
6244          * When running L2, updating RVI is only relevant when
6245          * vmcs12 virtual-interrupt-delivery enabled.
6246          * However, it can be enabled only when L1 also
6247          * intercepts external-interrupts and in that case
6248          * we should not update vmcs02 RVI but instead intercept
6249          * interrupt. Therefore, do nothing when running L2.
6250          */
6251         if (!is_guest_mode(vcpu))
6252                 vmx_set_rvi(max_irr);
6253 }
6254
6255 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6256 {
6257         struct vcpu_vmx *vmx = to_vmx(vcpu);
6258         int max_irr;
6259         bool max_irr_updated;
6260
6261         WARN_ON(!vcpu->arch.apicv_active);
6262         if (pi_test_on(&vmx->pi_desc)) {
6263                 pi_clear_on(&vmx->pi_desc);
6264                 /*
6265                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6266                  * But on x86 this is just a compiler barrier anyway.
6267                  */
6268                 smp_mb__after_atomic();
6269                 max_irr_updated =
6270                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6271
6272                 /*
6273                  * If we are running L2 and L1 has a new pending interrupt
6274                  * which can be injected, we should re-evaluate
6275                  * what should be done with this new L1 interrupt.
6276                  * If L1 intercepts external-interrupts, we should
6277                  * exit from L2 to L1. Otherwise, interrupt should be
6278                  * delivered directly to L2.
6279                  */
6280                 if (is_guest_mode(vcpu) && max_irr_updated) {
6281                         if (nested_exit_on_intr(vcpu))
6282                                 kvm_vcpu_exiting_guest_mode(vcpu);
6283                         else
6284                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6285                 }
6286         } else {
6287                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6288         }
6289         vmx_hwapic_irr_update(vcpu, max_irr);
6290         return max_irr;
6291 }
6292
6293 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6294 {
6295         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6296
6297         return pi_test_on(pi_desc) ||
6298                 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6299 }
6300
6301 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6302 {
6303         if (!kvm_vcpu_apicv_active(vcpu))
6304                 return;
6305
6306         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6307         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6308         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6309         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6310 }
6311
6312 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6313 {
6314         struct vcpu_vmx *vmx = to_vmx(vcpu);
6315
6316         pi_clear_on(&vmx->pi_desc);
6317         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6318 }
6319
6320 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6321 {
6322         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6323
6324         /* if exit due to PF check for async PF */
6325         if (is_page_fault(intr_info)) {
6326                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6327         /* Handle machine checks before interrupts are enabled */
6328         } else if (is_machine_check(intr_info)) {
6329                 kvm_machine_check();
6330         /* We need to handle NMIs before interrupts are enabled */
6331         } else if (is_nmi(intr_info)) {
6332                 kvm_before_interrupt(&vmx->vcpu);
6333                 asm("int $2");
6334                 kvm_after_interrupt(&vmx->vcpu);
6335         }
6336 }
6337
6338 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6339 {
6340         unsigned int vector;
6341         unsigned long entry;
6342 #ifdef CONFIG_X86_64
6343         unsigned long tmp;
6344 #endif
6345         gate_desc *desc;
6346         u32 intr_info = vmx_get_intr_info(vcpu);
6347
6348         if (WARN_ONCE(!is_external_intr(intr_info),
6349             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6350                 return;
6351
6352         vector = intr_info & INTR_INFO_VECTOR_MASK;
6353         desc = (gate_desc *)host_idt_base + vector;
6354         entry = gate_offset(desc);
6355
6356         kvm_before_interrupt(vcpu);
6357
6358         asm volatile(
6359 #ifdef CONFIG_X86_64
6360                 "mov %%" _ASM_SP ", %[sp]\n\t"
6361                 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6362                 "push $%c[ss]\n\t"
6363                 "push %[sp]\n\t"
6364 #endif
6365                 "pushf\n\t"
6366                 __ASM_SIZE(push) " $%c[cs]\n\t"
6367                 CALL_NOSPEC
6368                 :
6369 #ifdef CONFIG_X86_64
6370                 [sp]"=&r"(tmp),
6371 #endif
6372                 ASM_CALL_CONSTRAINT
6373                 :
6374                 [thunk_target]"r"(entry),
6375                 [ss]"i"(__KERNEL_DS),
6376                 [cs]"i"(__KERNEL_CS)
6377         );
6378
6379         kvm_after_interrupt(vcpu);
6380 }
6381 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6382
6383 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6384 {
6385         struct vcpu_vmx *vmx = to_vmx(vcpu);
6386
6387         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6388                 handle_external_interrupt_irqoff(vcpu);
6389         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6390                 handle_exception_nmi_irqoff(vmx);
6391 }
6392
6393 static bool vmx_has_emulated_msr(int index)
6394 {
6395         switch (index) {
6396         case MSR_IA32_SMBASE:
6397                 /*
6398                  * We cannot do SMM unless we can run the guest in big
6399                  * real mode.
6400                  */
6401                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6402         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6403                 return nested;
6404         case MSR_AMD64_VIRT_SPEC_CTRL:
6405                 /* This is AMD only.  */
6406                 return false;
6407         default:
6408                 return true;
6409         }
6410 }
6411
6412 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6413 {
6414         u32 exit_intr_info;
6415         bool unblock_nmi;
6416         u8 vector;
6417         bool idtv_info_valid;
6418
6419         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6420
6421         if (enable_vnmi) {
6422                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6423                         return;
6424
6425                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6426                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6427                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6428                 /*
6429                  * SDM 3: 27.7.1.2 (September 2008)
6430                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6431                  * a guest IRET fault.
6432                  * SDM 3: 23.2.2 (September 2008)
6433                  * Bit 12 is undefined in any of the following cases:
6434                  *  If the VM exit sets the valid bit in the IDT-vectoring
6435                  *   information field.
6436                  *  If the VM exit is due to a double fault.
6437                  */
6438                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6439                     vector != DF_VECTOR && !idtv_info_valid)
6440                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6441                                       GUEST_INTR_STATE_NMI);
6442                 else
6443                         vmx->loaded_vmcs->nmi_known_unmasked =
6444                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6445                                   & GUEST_INTR_STATE_NMI);
6446         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6447                 vmx->loaded_vmcs->vnmi_blocked_time +=
6448                         ktime_to_ns(ktime_sub(ktime_get(),
6449                                               vmx->loaded_vmcs->entry_time));
6450 }
6451
6452 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6453                                       u32 idt_vectoring_info,
6454                                       int instr_len_field,
6455                                       int error_code_field)
6456 {
6457         u8 vector;
6458         int type;
6459         bool idtv_info_valid;
6460
6461         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6462
6463         vcpu->arch.nmi_injected = false;
6464         kvm_clear_exception_queue(vcpu);
6465         kvm_clear_interrupt_queue(vcpu);
6466
6467         if (!idtv_info_valid)
6468                 return;
6469
6470         kvm_make_request(KVM_REQ_EVENT, vcpu);
6471
6472         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6473         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6474
6475         switch (type) {
6476         case INTR_TYPE_NMI_INTR:
6477                 vcpu->arch.nmi_injected = true;
6478                 /*
6479                  * SDM 3: 27.7.1.2 (September 2008)
6480                  * Clear bit "block by NMI" before VM entry if a NMI
6481                  * delivery faulted.
6482                  */
6483                 vmx_set_nmi_mask(vcpu, false);
6484                 break;
6485         case INTR_TYPE_SOFT_EXCEPTION:
6486                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6487                 /* fall through */
6488         case INTR_TYPE_HARD_EXCEPTION:
6489                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6490                         u32 err = vmcs_read32(error_code_field);
6491                         kvm_requeue_exception_e(vcpu, vector, err);
6492                 } else
6493                         kvm_requeue_exception(vcpu, vector);
6494                 break;
6495         case INTR_TYPE_SOFT_INTR:
6496                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6497                 /* fall through */
6498         case INTR_TYPE_EXT_INTR:
6499                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6500                 break;
6501         default:
6502                 break;
6503         }
6504 }
6505
6506 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6507 {
6508         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6509                                   VM_EXIT_INSTRUCTION_LEN,
6510                                   IDT_VECTORING_ERROR_CODE);
6511 }
6512
6513 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6514 {
6515         __vmx_complete_interrupts(vcpu,
6516                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6517                                   VM_ENTRY_INSTRUCTION_LEN,
6518                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6519
6520         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6521 }
6522
6523 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6524 {
6525         int i, nr_msrs;
6526         struct perf_guest_switch_msr *msrs;
6527
6528         msrs = perf_guest_get_msrs(&nr_msrs);
6529
6530         if (!msrs)
6531                 return;
6532
6533         for (i = 0; i < nr_msrs; i++)
6534                 if (msrs[i].host == msrs[i].guest)
6535                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6536                 else
6537                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6538                                         msrs[i].host, false);
6539 }
6540
6541 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6542 {
6543         u32 host_umwait_control;
6544
6545         if (!vmx_has_waitpkg(vmx))
6546                 return;
6547
6548         host_umwait_control = get_umwait_control_msr();
6549
6550         if (vmx->msr_ia32_umwait_control != host_umwait_control)
6551                 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6552                         vmx->msr_ia32_umwait_control,
6553                         host_umwait_control, false);
6554         else
6555                 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6556 }
6557
6558 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6559 {
6560         struct vcpu_vmx *vmx = to_vmx(vcpu);
6561         u64 tscl;
6562         u32 delta_tsc;
6563
6564         if (vmx->req_immediate_exit) {
6565                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6566                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6567         } else if (vmx->hv_deadline_tsc != -1) {
6568                 tscl = rdtsc();
6569                 if (vmx->hv_deadline_tsc > tscl)
6570                         /* set_hv_timer ensures the delta fits in 32-bits */
6571                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6572                                 cpu_preemption_timer_multi);
6573                 else
6574                         delta_tsc = 0;
6575
6576                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6577                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6578         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6579                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6580                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6581         }
6582 }
6583
6584 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6585 {
6586         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6587                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6588                 vmcs_writel(HOST_RSP, host_rsp);
6589         }
6590 }
6591
6592 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6593
6594 static enum exit_fastpath_completion vmx_vcpu_run(struct kvm_vcpu *vcpu)
6595 {
6596         enum exit_fastpath_completion exit_fastpath;
6597         struct vcpu_vmx *vmx = to_vmx(vcpu);
6598         unsigned long cr3, cr4;
6599
6600         /* Record the guest's net vcpu time for enforced NMI injections. */
6601         if (unlikely(!enable_vnmi &&
6602                      vmx->loaded_vmcs->soft_vnmi_blocked))
6603                 vmx->loaded_vmcs->entry_time = ktime_get();
6604
6605         /* Don't enter VMX if guest state is invalid, let the exit handler
6606            start emulation until we arrive back to a valid state */
6607         if (vmx->emulation_required)
6608                 return EXIT_FASTPATH_NONE;
6609
6610         if (vmx->ple_window_dirty) {
6611                 vmx->ple_window_dirty = false;
6612                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6613         }
6614
6615         /*
6616          * We did this in prepare_switch_to_guest, because it needs to
6617          * be within srcu_read_lock.
6618          */
6619         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6620
6621         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6622                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6623         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6624                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6625
6626         cr3 = __get_current_cr3_fast();
6627         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6628                 vmcs_writel(HOST_CR3, cr3);
6629                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6630         }
6631
6632         cr4 = cr4_read_shadow();
6633         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6634                 vmcs_writel(HOST_CR4, cr4);
6635                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6636         }
6637
6638         /* When single-stepping over STI and MOV SS, we must clear the
6639          * corresponding interruptibility bits in the guest state. Otherwise
6640          * vmentry fails as it then expects bit 14 (BS) in pending debug
6641          * exceptions being set, but that's not correct for the guest debugging
6642          * case. */
6643         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6644                 vmx_set_interrupt_shadow(vcpu, 0);
6645
6646         kvm_load_guest_xsave_state(vcpu);
6647
6648         pt_guest_enter(vmx);
6649
6650         if (vcpu_to_pmu(vcpu)->version)
6651                 atomic_switch_perf_msrs(vmx);
6652         atomic_switch_umwait_control_msr(vmx);
6653
6654         if (enable_preemption_timer)
6655                 vmx_update_hv_timer(vcpu);
6656
6657         if (lapic_in_kernel(vcpu) &&
6658                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6659                 kvm_wait_lapic_expire(vcpu);
6660
6661         /*
6662          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6663          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6664          * is no need to worry about the conditional branch over the wrmsr
6665          * being speculatively taken.
6666          */
6667         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6668
6669         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6670         if (static_branch_unlikely(&vmx_l1d_should_flush))
6671                 vmx_l1d_flush(vcpu);
6672         else if (static_branch_unlikely(&mds_user_clear))
6673                 mds_clear_cpu_buffers();
6674
6675         if (vcpu->arch.cr2 != read_cr2())
6676                 write_cr2(vcpu->arch.cr2);
6677
6678         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6679                                    vmx->loaded_vmcs->launched);
6680
6681         vcpu->arch.cr2 = read_cr2();
6682
6683         /*
6684          * We do not use IBRS in the kernel. If this vCPU has used the
6685          * SPEC_CTRL MSR it may have left it on; save the value and
6686          * turn it off. This is much more efficient than blindly adding
6687          * it to the atomic save/restore list. Especially as the former
6688          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6689          *
6690          * For non-nested case:
6691          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6692          * save it.
6693          *
6694          * For nested case:
6695          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6696          * save it.
6697          */
6698         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6699                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6700
6701         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6702
6703         /* All fields are clean at this point */
6704         if (static_branch_unlikely(&enable_evmcs))
6705                 current_evmcs->hv_clean_fields |=
6706                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6707
6708         if (static_branch_unlikely(&enable_evmcs))
6709                 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6710
6711         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6712         if (vmx->host_debugctlmsr)
6713                 update_debugctlmsr(vmx->host_debugctlmsr);
6714
6715 #ifndef CONFIG_X86_64
6716         /*
6717          * The sysexit path does not restore ds/es, so we must set them to
6718          * a reasonable value ourselves.
6719          *
6720          * We can't defer this to vmx_prepare_switch_to_host() since that
6721          * function may be executed in interrupt context, which saves and
6722          * restore segments around it, nullifying its effect.
6723          */
6724         loadsegment(ds, __USER_DS);
6725         loadsegment(es, __USER_DS);
6726 #endif
6727
6728         vmx_register_cache_reset(vcpu);
6729
6730         pt_guest_exit(vmx);
6731
6732         kvm_load_host_xsave_state(vcpu);
6733
6734         vmx->nested.nested_run_pending = 0;
6735         vmx->idt_vectoring_info = 0;
6736
6737         if (unlikely(vmx->fail)) {
6738                 vmx->exit_reason = 0xdead;
6739                 return EXIT_FASTPATH_NONE;
6740         }
6741
6742         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6743         if (unlikely((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY))
6744                 kvm_machine_check();
6745
6746         if (unlikely(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6747                 return EXIT_FASTPATH_NONE;
6748
6749         if (!is_guest_mode(vcpu) && vmx->exit_reason == EXIT_REASON_MSR_WRITE)
6750                 exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
6751         else
6752                 exit_fastpath = EXIT_FASTPATH_NONE;
6753
6754         vmx->loaded_vmcs->launched = 1;
6755         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6756
6757         vmx_recover_nmi_blocking(vmx);
6758         vmx_complete_interrupts(vmx);
6759
6760         return exit_fastpath;
6761 }
6762
6763 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6764 {
6765         struct vcpu_vmx *vmx = to_vmx(vcpu);
6766
6767         if (enable_pml)
6768                 vmx_destroy_pml_buffer(vmx);
6769         free_vpid(vmx->vpid);
6770         nested_vmx_free_vcpu(vcpu);
6771         free_loaded_vmcs(vmx->loaded_vmcs);
6772 }
6773
6774 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6775 {
6776         struct vcpu_vmx *vmx;
6777         unsigned long *msr_bitmap;
6778         int i, cpu, err;
6779
6780         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6781         vmx = to_vmx(vcpu);
6782
6783         err = -ENOMEM;
6784
6785         vmx->vpid = allocate_vpid();
6786
6787         /*
6788          * If PML is turned on, failure on enabling PML just results in failure
6789          * of creating the vcpu, therefore we can simplify PML logic (by
6790          * avoiding dealing with cases, such as enabling PML partially on vcpus
6791          * for the guest), etc.
6792          */
6793         if (enable_pml) {
6794                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6795                 if (!vmx->pml_pg)
6796                         goto free_vpid;
6797         }
6798
6799         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6800
6801         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6802                 u32 index = vmx_msr_index[i];
6803                 u32 data_low, data_high;
6804                 int j = vmx->nmsrs;
6805
6806                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6807                         continue;
6808                 if (wrmsr_safe(index, data_low, data_high) < 0)
6809                         continue;
6810
6811                 vmx->guest_msrs[j].index = i;
6812                 vmx->guest_msrs[j].data = 0;
6813                 switch (index) {
6814                 case MSR_IA32_TSX_CTRL:
6815                         /*
6816                          * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6817                          * let's avoid changing CPUID bits under the host
6818                          * kernel's feet.
6819                          */
6820                         vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6821                         break;
6822                 default:
6823                         vmx->guest_msrs[j].mask = -1ull;
6824                         break;
6825                 }
6826                 ++vmx->nmsrs;
6827         }
6828
6829         err = alloc_loaded_vmcs(&vmx->vmcs01);
6830         if (err < 0)
6831                 goto free_pml;
6832
6833         msr_bitmap = vmx->vmcs01.msr_bitmap;
6834         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6835         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6836         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6837         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6838         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6839         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6840         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6841         if (kvm_cstate_in_guest(vcpu->kvm)) {
6842                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6843                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6844                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6845                 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6846         }
6847         vmx->msr_bitmap_mode = 0;
6848
6849         vmx->loaded_vmcs = &vmx->vmcs01;
6850         cpu = get_cpu();
6851         vmx_vcpu_load(vcpu, cpu);
6852         vcpu->cpu = cpu;
6853         init_vmcs(vmx);
6854         vmx_vcpu_put(vcpu);
6855         put_cpu();
6856         if (cpu_need_virtualize_apic_accesses(vcpu)) {
6857                 err = alloc_apic_access_page(vcpu->kvm);
6858                 if (err)
6859                         goto free_vmcs;
6860         }
6861
6862         if (enable_ept && !enable_unrestricted_guest) {
6863                 err = init_rmode_identity_map(vcpu->kvm);
6864                 if (err)
6865                         goto free_vmcs;
6866         }
6867
6868         if (nested)
6869                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6870                                            vmx_capability.ept);
6871         else
6872                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6873
6874         vmx->nested.posted_intr_nv = -1;
6875         vmx->nested.current_vmptr = -1ull;
6876
6877         vcpu->arch.microcode_version = 0x100000000ULL;
6878         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6879
6880         /*
6881          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6882          * or POSTED_INTR_WAKEUP_VECTOR.
6883          */
6884         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6885         vmx->pi_desc.sn = 1;
6886
6887         vmx->ept_pointer = INVALID_PAGE;
6888
6889         return 0;
6890
6891 free_vmcs:
6892         free_loaded_vmcs(vmx->loaded_vmcs);
6893 free_pml:
6894         vmx_destroy_pml_buffer(vmx);
6895 free_vpid:
6896         free_vpid(vmx->vpid);
6897         return err;
6898 }
6899
6900 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6901 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6902
6903 static int vmx_vm_init(struct kvm *kvm)
6904 {
6905         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6906
6907         if (!ple_gap)
6908                 kvm->arch.pause_in_guest = true;
6909
6910         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6911                 switch (l1tf_mitigation) {
6912                 case L1TF_MITIGATION_OFF:
6913                 case L1TF_MITIGATION_FLUSH_NOWARN:
6914                         /* 'I explicitly don't care' is set */
6915                         break;
6916                 case L1TF_MITIGATION_FLUSH:
6917                 case L1TF_MITIGATION_FLUSH_NOSMT:
6918                 case L1TF_MITIGATION_FULL:
6919                         /*
6920                          * Warn upon starting the first VM in a potentially
6921                          * insecure environment.
6922                          */
6923                         if (sched_smt_active())
6924                                 pr_warn_once(L1TF_MSG_SMT);
6925                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6926                                 pr_warn_once(L1TF_MSG_L1D);
6927                         break;
6928                 case L1TF_MITIGATION_FULL_FORCE:
6929                         /* Flush is enforced */
6930                         break;
6931                 }
6932         }
6933         kvm_apicv_init(kvm, enable_apicv);
6934         return 0;
6935 }
6936
6937 static int __init vmx_check_processor_compat(void)
6938 {
6939         struct vmcs_config vmcs_conf;
6940         struct vmx_capability vmx_cap;
6941
6942         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6943             !this_cpu_has(X86_FEATURE_VMX)) {
6944                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6945                 return -EIO;
6946         }
6947
6948         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6949                 return -EIO;
6950         if (nested)
6951                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6952         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6953                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6954                                 smp_processor_id());
6955                 return -EIO;
6956         }
6957         return 0;
6958 }
6959
6960 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6961 {
6962         u8 cache;
6963         u64 ipat = 0;
6964
6965         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6966          * memory aliases with conflicting memory types and sometimes MCEs.
6967          * We have to be careful as to what are honored and when.
6968          *
6969          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6970          * UC.  The effective memory type is UC or WC depending on guest PAT.
6971          * This was historically the source of MCEs and we want to be
6972          * conservative.
6973          *
6974          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6975          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
6976          * EPT memory type is set to WB.  The effective memory type is forced
6977          * WB.
6978          *
6979          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
6980          * EPT memory type is used to emulate guest CD/MTRR.
6981          */
6982
6983         if (is_mmio) {
6984                 cache = MTRR_TYPE_UNCACHABLE;
6985                 goto exit;
6986         }
6987
6988         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6989                 ipat = VMX_EPT_IPAT_BIT;
6990                 cache = MTRR_TYPE_WRBACK;
6991                 goto exit;
6992         }
6993
6994         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6995                 ipat = VMX_EPT_IPAT_BIT;
6996                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6997                         cache = MTRR_TYPE_WRBACK;
6998                 else
6999                         cache = MTRR_TYPE_UNCACHABLE;
7000                 goto exit;
7001         }
7002
7003         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7004
7005 exit:
7006         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7007 }
7008
7009 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7010 {
7011         /*
7012          * These bits in the secondary execution controls field
7013          * are dynamic, the others are mostly based on the hypervisor
7014          * architecture and the guest's CPUID.  Do not touch the
7015          * dynamic bits.
7016          */
7017         u32 mask =
7018                 SECONDARY_EXEC_SHADOW_VMCS |
7019                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7020                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7021                 SECONDARY_EXEC_DESC;
7022
7023         u32 new_ctl = vmx->secondary_exec_control;
7024         u32 cur_ctl = secondary_exec_controls_get(vmx);
7025
7026         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7027 }
7028
7029 /*
7030  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7031  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7032  */
7033 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7034 {
7035         struct vcpu_vmx *vmx = to_vmx(vcpu);
7036         struct kvm_cpuid_entry2 *entry;
7037
7038         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7039         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7040
7041 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7042         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7043                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7044 } while (0)
7045
7046         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7047         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7048         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7049         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7050         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7051         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7052         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7053         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7054         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7055         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7056         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7057         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7058         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7059         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7060         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7061
7062         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7063         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7064         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7065         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7066         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7067         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7068         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7069
7070 #undef cr4_fixed1_update
7071 }
7072
7073 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7074 {
7075         struct vcpu_vmx *vmx = to_vmx(vcpu);
7076
7077         if (kvm_mpx_supported()) {
7078                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7079
7080                 if (mpx_enabled) {
7081                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7082                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7083                 } else {
7084                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7085                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7086                 }
7087         }
7088 }
7089
7090 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7091 {
7092         struct vcpu_vmx *vmx = to_vmx(vcpu);
7093         struct kvm_cpuid_entry2 *best = NULL;
7094         int i;
7095
7096         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7097                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7098                 if (!best)
7099                         return;
7100                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7101                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7102                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7103                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7104         }
7105
7106         /* Get the number of configurable Address Ranges for filtering */
7107         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7108                                                 PT_CAP_num_address_ranges);
7109
7110         /* Initialize and clear the no dependency bits */
7111         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7112                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7113
7114         /*
7115          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7116          * will inject an #GP
7117          */
7118         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7119                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7120
7121         /*
7122          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7123          * PSBFreq can be set
7124          */
7125         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7126                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7127                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7128
7129         /*
7130          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7131          * MTCFreq can be set
7132          */
7133         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7134                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7135                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7136
7137         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7138         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7139                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7140                                                         RTIT_CTL_PTW_EN);
7141
7142         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7143         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7144                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7145
7146         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7147         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7148                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7149
7150         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7151         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7152                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7153
7154         /* unmask address range configure area */
7155         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7156                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7157 }
7158
7159 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7160 {
7161         struct vcpu_vmx *vmx = to_vmx(vcpu);
7162
7163         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7164         vcpu->arch.xsaves_enabled = false;
7165
7166         if (cpu_has_secondary_exec_ctrls()) {
7167                 vmx_compute_secondary_exec_control(vmx);
7168                 vmcs_set_secondary_exec_control(vmx);
7169         }
7170
7171         if (nested_vmx_allowed(vcpu))
7172                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7173                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7174                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7175         else
7176                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7177                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7178                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7179
7180         if (nested_vmx_allowed(vcpu)) {
7181                 nested_vmx_cr_fixed1_bits_update(vcpu);
7182                 nested_vmx_entry_exit_ctls_update(vcpu);
7183         }
7184
7185         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7186                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7187                 update_intel_pt_cfg(vcpu);
7188
7189         if (boot_cpu_has(X86_FEATURE_RTM)) {
7190                 struct shared_msr_entry *msr;
7191                 msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7192                 if (msr) {
7193                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7194                         vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7195                 }
7196         }
7197 }
7198
7199 static __init void vmx_set_cpu_caps(void)
7200 {
7201         kvm_set_cpu_caps();
7202
7203         /* CPUID 0x1 */
7204         if (nested)
7205                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7206
7207         /* CPUID 0x7 */
7208         if (kvm_mpx_supported())
7209                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7210         if (cpu_has_vmx_invpcid())
7211                 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7212         if (vmx_pt_mode_is_host_guest())
7213                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7214
7215         /* PKU is not yet implemented for shadow paging. */
7216         if (enable_ept && boot_cpu_has(X86_FEATURE_OSPKE))
7217                 kvm_cpu_cap_check_and_set(X86_FEATURE_PKU);
7218
7219         if (vmx_umip_emulated())
7220                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7221
7222         /* CPUID 0xD.1 */
7223         supported_xss = 0;
7224         if (!vmx_xsaves_supported())
7225                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7226
7227         /* CPUID 0x80000001 */
7228         if (!cpu_has_vmx_rdtscp())
7229                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7230 }
7231
7232 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7233 {
7234         to_vmx(vcpu)->req_immediate_exit = true;
7235 }
7236
7237 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7238                                   struct x86_instruction_info *info)
7239 {
7240         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7241         unsigned short port;
7242         bool intercept;
7243         int size;
7244
7245         if (info->intercept == x86_intercept_in ||
7246             info->intercept == x86_intercept_ins) {
7247                 port = info->src_val;
7248                 size = info->dst_bytes;
7249         } else {
7250                 port = info->dst_val;
7251                 size = info->src_bytes;
7252         }
7253
7254         /*
7255          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7256          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7257          * control.
7258          *
7259          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7260          */
7261         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7262                 intercept = nested_cpu_has(vmcs12,
7263                                            CPU_BASED_UNCOND_IO_EXITING);
7264         else
7265                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7266
7267         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7268         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7269 }
7270
7271 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7272                                struct x86_instruction_info *info,
7273                                enum x86_intercept_stage stage,
7274                                struct x86_exception *exception)
7275 {
7276         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7277
7278         switch (info->intercept) {
7279         /*
7280          * RDPID causes #UD if disabled through secondary execution controls.
7281          * Because it is marked as EmulateOnUD, we need to intercept it here.
7282          */
7283         case x86_intercept_rdtscp:
7284                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7285                         exception->vector = UD_VECTOR;
7286                         exception->error_code_valid = false;
7287                         return X86EMUL_PROPAGATE_FAULT;
7288                 }
7289                 break;
7290
7291         case x86_intercept_in:
7292         case x86_intercept_ins:
7293         case x86_intercept_out:
7294         case x86_intercept_outs:
7295                 return vmx_check_intercept_io(vcpu, info);
7296
7297         case x86_intercept_lgdt:
7298         case x86_intercept_lidt:
7299         case x86_intercept_lldt:
7300         case x86_intercept_ltr:
7301         case x86_intercept_sgdt:
7302         case x86_intercept_sidt:
7303         case x86_intercept_sldt:
7304         case x86_intercept_str:
7305                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7306                         return X86EMUL_CONTINUE;
7307
7308                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7309                 break;
7310
7311         /* TODO: check more intercepts... */
7312         default:
7313                 break;
7314         }
7315
7316         return X86EMUL_UNHANDLEABLE;
7317 }
7318
7319 #ifdef CONFIG_X86_64
7320 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7321 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7322                                   u64 divisor, u64 *result)
7323 {
7324         u64 low = a << shift, high = a >> (64 - shift);
7325
7326         /* To avoid the overflow on divq */
7327         if (high >= divisor)
7328                 return 1;
7329
7330         /* Low hold the result, high hold rem which is discarded */
7331         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7332             "rm" (divisor), "0" (low), "1" (high));
7333         *result = low;
7334
7335         return 0;
7336 }
7337
7338 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7339                             bool *expired)
7340 {
7341         struct vcpu_vmx *vmx;
7342         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7343         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7344
7345         if (kvm_mwait_in_guest(vcpu->kvm) ||
7346                 kvm_can_post_timer_interrupt(vcpu))
7347                 return -EOPNOTSUPP;
7348
7349         vmx = to_vmx(vcpu);
7350         tscl = rdtsc();
7351         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7352         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7353         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7354                                                     ktimer->timer_advance_ns);
7355
7356         if (delta_tsc > lapic_timer_advance_cycles)
7357                 delta_tsc -= lapic_timer_advance_cycles;
7358         else
7359                 delta_tsc = 0;
7360
7361         /* Convert to host delta tsc if tsc scaling is enabled */
7362         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7363             delta_tsc && u64_shl_div_u64(delta_tsc,
7364                                 kvm_tsc_scaling_ratio_frac_bits,
7365                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7366                 return -ERANGE;
7367
7368         /*
7369          * If the delta tsc can't fit in the 32 bit after the multi shift,
7370          * we can't use the preemption timer.
7371          * It's possible that it fits on later vmentries, but checking
7372          * on every vmentry is costly so we just use an hrtimer.
7373          */
7374         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7375                 return -ERANGE;
7376
7377         vmx->hv_deadline_tsc = tscl + delta_tsc;
7378         *expired = !delta_tsc;
7379         return 0;
7380 }
7381
7382 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7383 {
7384         to_vmx(vcpu)->hv_deadline_tsc = -1;
7385 }
7386 #endif
7387
7388 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7389 {
7390         if (!kvm_pause_in_guest(vcpu->kvm))
7391                 shrink_ple_window(vcpu);
7392 }
7393
7394 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7395                                      struct kvm_memory_slot *slot)
7396 {
7397         if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7398                 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7399         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7400 }
7401
7402 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7403                                        struct kvm_memory_slot *slot)
7404 {
7405         kvm_mmu_slot_set_dirty(kvm, slot);
7406 }
7407
7408 static void vmx_flush_log_dirty(struct kvm *kvm)
7409 {
7410         kvm_flush_pml_buffers(kvm);
7411 }
7412
7413 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7414 {
7415         struct vmcs12 *vmcs12;
7416         struct vcpu_vmx *vmx = to_vmx(vcpu);
7417         gpa_t gpa, dst;
7418
7419         if (is_guest_mode(vcpu)) {
7420                 WARN_ON_ONCE(vmx->nested.pml_full);
7421
7422                 /*
7423                  * Check if PML is enabled for the nested guest.
7424                  * Whether eptp bit 6 is set is already checked
7425                  * as part of A/D emulation.
7426                  */
7427                 vmcs12 = get_vmcs12(vcpu);
7428                 if (!nested_cpu_has_pml(vmcs12))
7429                         return 0;
7430
7431                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7432                         vmx->nested.pml_full = true;
7433                         return 1;
7434                 }
7435
7436                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7437                 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7438
7439                 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7440                                          offset_in_page(dst), sizeof(gpa)))
7441                         return 0;
7442
7443                 vmcs12->guest_pml_index--;
7444         }
7445
7446         return 0;
7447 }
7448
7449 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7450                                            struct kvm_memory_slot *memslot,
7451                                            gfn_t offset, unsigned long mask)
7452 {
7453         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7454 }
7455
7456 static void __pi_post_block(struct kvm_vcpu *vcpu)
7457 {
7458         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7459         struct pi_desc old, new;
7460         unsigned int dest;
7461
7462         do {
7463                 old.control = new.control = pi_desc->control;
7464                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7465                      "Wakeup handler not enabled while the VCPU is blocked\n");
7466
7467                 dest = cpu_physical_id(vcpu->cpu);
7468
7469                 if (x2apic_enabled())
7470                         new.ndst = dest;
7471                 else
7472                         new.ndst = (dest << 8) & 0xFF00;
7473
7474                 /* set 'NV' to 'notification vector' */
7475                 new.nv = POSTED_INTR_VECTOR;
7476         } while (cmpxchg64(&pi_desc->control, old.control,
7477                            new.control) != old.control);
7478
7479         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7480                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7481                 list_del(&vcpu->blocked_vcpu_list);
7482                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7483                 vcpu->pre_pcpu = -1;
7484         }
7485 }
7486
7487 /*
7488  * This routine does the following things for vCPU which is going
7489  * to be blocked if VT-d PI is enabled.
7490  * - Store the vCPU to the wakeup list, so when interrupts happen
7491  *   we can find the right vCPU to wake up.
7492  * - Change the Posted-interrupt descriptor as below:
7493  *      'NDST' <-- vcpu->pre_pcpu
7494  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7495  * - If 'ON' is set during this process, which means at least one
7496  *   interrupt is posted for this vCPU, we cannot block it, in
7497  *   this case, return 1, otherwise, return 0.
7498  *
7499  */
7500 static int pi_pre_block(struct kvm_vcpu *vcpu)
7501 {
7502         unsigned int dest;
7503         struct pi_desc old, new;
7504         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7505
7506         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7507                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7508                 !kvm_vcpu_apicv_active(vcpu))
7509                 return 0;
7510
7511         WARN_ON(irqs_disabled());
7512         local_irq_disable();
7513         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7514                 vcpu->pre_pcpu = vcpu->cpu;
7515                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7516                 list_add_tail(&vcpu->blocked_vcpu_list,
7517                               &per_cpu(blocked_vcpu_on_cpu,
7518                                        vcpu->pre_pcpu));
7519                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7520         }
7521
7522         do {
7523                 old.control = new.control = pi_desc->control;
7524
7525                 WARN((pi_desc->sn == 1),
7526                      "Warning: SN field of posted-interrupts "
7527                      "is set before blocking\n");
7528
7529                 /*
7530                  * Since vCPU can be preempted during this process,
7531                  * vcpu->cpu could be different with pre_pcpu, we
7532                  * need to set pre_pcpu as the destination of wakeup
7533                  * notification event, then we can find the right vCPU
7534                  * to wakeup in wakeup handler if interrupts happen
7535                  * when the vCPU is in blocked state.
7536                  */
7537                 dest = cpu_physical_id(vcpu->pre_pcpu);
7538
7539                 if (x2apic_enabled())
7540                         new.ndst = dest;
7541                 else
7542                         new.ndst = (dest << 8) & 0xFF00;
7543
7544                 /* set 'NV' to 'wakeup vector' */
7545                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7546         } while (cmpxchg64(&pi_desc->control, old.control,
7547                            new.control) != old.control);
7548
7549         /* We should not block the vCPU if an interrupt is posted for it.  */
7550         if (pi_test_on(pi_desc) == 1)
7551                 __pi_post_block(vcpu);
7552
7553         local_irq_enable();
7554         return (vcpu->pre_pcpu == -1);
7555 }
7556
7557 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7558 {
7559         if (pi_pre_block(vcpu))
7560                 return 1;
7561
7562         if (kvm_lapic_hv_timer_in_use(vcpu))
7563                 kvm_lapic_switch_to_sw_timer(vcpu);
7564
7565         return 0;
7566 }
7567
7568 static void pi_post_block(struct kvm_vcpu *vcpu)
7569 {
7570         if (vcpu->pre_pcpu == -1)
7571                 return;
7572
7573         WARN_ON(irqs_disabled());
7574         local_irq_disable();
7575         __pi_post_block(vcpu);
7576         local_irq_enable();
7577 }
7578
7579 static void vmx_post_block(struct kvm_vcpu *vcpu)
7580 {
7581         if (kvm_x86_ops.set_hv_timer)
7582                 kvm_lapic_switch_to_hv_timer(vcpu);
7583
7584         pi_post_block(vcpu);
7585 }
7586
7587 /*
7588  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7589  *
7590  * @kvm: kvm
7591  * @host_irq: host irq of the interrupt
7592  * @guest_irq: gsi of the interrupt
7593  * @set: set or unset PI
7594  * returns 0 on success, < 0 on failure
7595  */
7596 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7597                               uint32_t guest_irq, bool set)
7598 {
7599         struct kvm_kernel_irq_routing_entry *e;
7600         struct kvm_irq_routing_table *irq_rt;
7601         struct kvm_lapic_irq irq;
7602         struct kvm_vcpu *vcpu;
7603         struct vcpu_data vcpu_info;
7604         int idx, ret = 0;
7605
7606         if (!kvm_arch_has_assigned_device(kvm) ||
7607                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7608                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7609                 return 0;
7610
7611         idx = srcu_read_lock(&kvm->irq_srcu);
7612         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7613         if (guest_irq >= irq_rt->nr_rt_entries ||
7614             hlist_empty(&irq_rt->map[guest_irq])) {
7615                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7616                              guest_irq, irq_rt->nr_rt_entries);
7617                 goto out;
7618         }
7619
7620         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7621                 if (e->type != KVM_IRQ_ROUTING_MSI)
7622                         continue;
7623                 /*
7624                  * VT-d PI cannot support posting multicast/broadcast
7625                  * interrupts to a vCPU, we still use interrupt remapping
7626                  * for these kind of interrupts.
7627                  *
7628                  * For lowest-priority interrupts, we only support
7629                  * those with single CPU as the destination, e.g. user
7630                  * configures the interrupts via /proc/irq or uses
7631                  * irqbalance to make the interrupts single-CPU.
7632                  *
7633                  * We will support full lowest-priority interrupt later.
7634                  *
7635                  * In addition, we can only inject generic interrupts using
7636                  * the PI mechanism, refuse to route others through it.
7637                  */
7638
7639                 kvm_set_msi_irq(kvm, e, &irq);
7640                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7641                     !kvm_irq_is_postable(&irq)) {
7642                         /*
7643                          * Make sure the IRTE is in remapped mode if
7644                          * we don't handle it in posted mode.
7645                          */
7646                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7647                         if (ret < 0) {
7648                                 printk(KERN_INFO
7649                                    "failed to back to remapped mode, irq: %u\n",
7650                                    host_irq);
7651                                 goto out;
7652                         }
7653
7654                         continue;
7655                 }
7656
7657                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7658                 vcpu_info.vector = irq.vector;
7659
7660                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7661                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7662
7663                 if (set)
7664                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7665                 else
7666                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7667
7668                 if (ret < 0) {
7669                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7670                                         __func__);
7671                         goto out;
7672                 }
7673         }
7674
7675         ret = 0;
7676 out:
7677         srcu_read_unlock(&kvm->irq_srcu, idx);
7678         return ret;
7679 }
7680
7681 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7682 {
7683         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7684                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7685                         FEAT_CTL_LMCE_ENABLED;
7686         else
7687                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7688                         ~FEAT_CTL_LMCE_ENABLED;
7689 }
7690
7691 static bool vmx_smi_allowed(struct kvm_vcpu *vcpu)
7692 {
7693         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7694         if (to_vmx(vcpu)->nested.nested_run_pending)
7695                 return false;
7696         return !is_smm(vcpu);
7697 }
7698
7699 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7700 {
7701         struct vcpu_vmx *vmx = to_vmx(vcpu);
7702
7703         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7704         if (vmx->nested.smm.guest_mode)
7705                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7706
7707         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7708         vmx->nested.vmxon = false;
7709         vmx_clear_hlt(vcpu);
7710         return 0;
7711 }
7712
7713 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7714 {
7715         struct vcpu_vmx *vmx = to_vmx(vcpu);
7716         int ret;
7717
7718         if (vmx->nested.smm.vmxon) {
7719                 vmx->nested.vmxon = true;
7720                 vmx->nested.smm.vmxon = false;
7721         }
7722
7723         if (vmx->nested.smm.guest_mode) {
7724                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7725                 if (ret)
7726                         return ret;
7727
7728                 vmx->nested.smm.guest_mode = false;
7729         }
7730         return 0;
7731 }
7732
7733 static int enable_smi_window(struct kvm_vcpu *vcpu)
7734 {
7735         return 0;
7736 }
7737
7738 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7739 {
7740         return false;
7741 }
7742
7743 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7744 {
7745         return to_vmx(vcpu)->nested.vmxon;
7746 }
7747
7748 static void hardware_unsetup(void)
7749 {
7750         if (nested)
7751                 nested_vmx_hardware_unsetup();
7752
7753         free_kvm_area();
7754 }
7755
7756 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7757 {
7758         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7759                           BIT(APICV_INHIBIT_REASON_HYPERV);
7760
7761         return supported & BIT(bit);
7762 }
7763
7764 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7765         .hardware_unsetup = hardware_unsetup,
7766
7767         .hardware_enable = hardware_enable,
7768         .hardware_disable = hardware_disable,
7769         .cpu_has_accelerated_tpr = report_flexpriority,
7770         .has_emulated_msr = vmx_has_emulated_msr,
7771
7772         .vm_size = sizeof(struct kvm_vmx),
7773         .vm_init = vmx_vm_init,
7774
7775         .vcpu_create = vmx_create_vcpu,
7776         .vcpu_free = vmx_free_vcpu,
7777         .vcpu_reset = vmx_vcpu_reset,
7778
7779         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7780         .vcpu_load = vmx_vcpu_load,
7781         .vcpu_put = vmx_vcpu_put,
7782
7783         .update_bp_intercept = update_exception_bitmap,
7784         .get_msr_feature = vmx_get_msr_feature,
7785         .get_msr = vmx_get_msr,
7786         .set_msr = vmx_set_msr,
7787         .get_segment_base = vmx_get_segment_base,
7788         .get_segment = vmx_get_segment,
7789         .set_segment = vmx_set_segment,
7790         .get_cpl = vmx_get_cpl,
7791         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7792         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7793         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7794         .set_cr0 = vmx_set_cr0,
7795         .set_cr4 = vmx_set_cr4,
7796         .set_efer = vmx_set_efer,
7797         .get_idt = vmx_get_idt,
7798         .set_idt = vmx_set_idt,
7799         .get_gdt = vmx_get_gdt,
7800         .set_gdt = vmx_set_gdt,
7801         .set_dr7 = vmx_set_dr7,
7802         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7803         .cache_reg = vmx_cache_reg,
7804         .get_rflags = vmx_get_rflags,
7805         .set_rflags = vmx_set_rflags,
7806
7807         .tlb_flush_all = vmx_flush_tlb_all,
7808         .tlb_flush_current = vmx_flush_tlb_current,
7809         .tlb_flush_gva = vmx_flush_tlb_gva,
7810         .tlb_flush_guest = vmx_flush_tlb_guest,
7811
7812         .run = vmx_vcpu_run,
7813         .handle_exit = vmx_handle_exit,
7814         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7815         .update_emulated_instruction = vmx_update_emulated_instruction,
7816         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7817         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7818         .patch_hypercall = vmx_patch_hypercall,
7819         .set_irq = vmx_inject_irq,
7820         .set_nmi = vmx_inject_nmi,
7821         .queue_exception = vmx_queue_exception,
7822         .cancel_injection = vmx_cancel_injection,
7823         .interrupt_allowed = vmx_interrupt_allowed,
7824         .nmi_allowed = vmx_nmi_allowed,
7825         .get_nmi_mask = vmx_get_nmi_mask,
7826         .set_nmi_mask = vmx_set_nmi_mask,
7827         .enable_nmi_window = enable_nmi_window,
7828         .enable_irq_window = enable_irq_window,
7829         .update_cr8_intercept = update_cr8_intercept,
7830         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7831         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7832         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7833         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7834         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7835         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7836         .hwapic_irr_update = vmx_hwapic_irr_update,
7837         .hwapic_isr_update = vmx_hwapic_isr_update,
7838         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7839         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7840         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7841         .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7842
7843         .set_tss_addr = vmx_set_tss_addr,
7844         .set_identity_map_addr = vmx_set_identity_map_addr,
7845         .get_tdp_level = get_ept_level,
7846         .get_mt_mask = vmx_get_mt_mask,
7847
7848         .get_exit_info = vmx_get_exit_info,
7849
7850         .cpuid_update = vmx_cpuid_update,
7851
7852         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7853
7854         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7855         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7856
7857         .load_mmu_pgd = vmx_load_mmu_pgd,
7858
7859         .check_intercept = vmx_check_intercept,
7860         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7861
7862         .request_immediate_exit = vmx_request_immediate_exit,
7863
7864         .sched_in = vmx_sched_in,
7865
7866         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7867         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7868         .flush_log_dirty = vmx_flush_log_dirty,
7869         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7870         .write_log_dirty = vmx_write_pml_buffer,
7871
7872         .pre_block = vmx_pre_block,
7873         .post_block = vmx_post_block,
7874
7875         .pmu_ops = &intel_pmu_ops,
7876         .nested_ops = &vmx_nested_ops,
7877
7878         .update_pi_irte = vmx_update_pi_irte,
7879
7880 #ifdef CONFIG_X86_64
7881         .set_hv_timer = vmx_set_hv_timer,
7882         .cancel_hv_timer = vmx_cancel_hv_timer,
7883 #endif
7884
7885         .setup_mce = vmx_setup_mce,
7886
7887         .smi_allowed = vmx_smi_allowed,
7888         .pre_enter_smm = vmx_pre_enter_smm,
7889         .pre_leave_smm = vmx_pre_leave_smm,
7890         .enable_smi_window = enable_smi_window,
7891
7892         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7893         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7894 };
7895
7896 static __init int hardware_setup(void)
7897 {
7898         unsigned long host_bndcfgs;
7899         struct desc_ptr dt;
7900         int r, i, ept_lpage_level;
7901
7902         store_idt(&dt);
7903         host_idt_base = dt.address;
7904
7905         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7906                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7907
7908         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7909                 return -EIO;
7910
7911         if (boot_cpu_has(X86_FEATURE_NX))
7912                 kvm_enable_efer_bits(EFER_NX);
7913
7914         if (boot_cpu_has(X86_FEATURE_MPX)) {
7915                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7916                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7917         }
7918
7919         if (!cpu_has_vmx_mpx())
7920                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7921                                     XFEATURE_MASK_BNDCSR);
7922
7923         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7924             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7925                 enable_vpid = 0;
7926
7927         if (!cpu_has_vmx_ept() ||
7928             !cpu_has_vmx_ept_4levels() ||
7929             !cpu_has_vmx_ept_mt_wb() ||
7930             !cpu_has_vmx_invept_global())
7931                 enable_ept = 0;
7932
7933         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7934                 enable_ept_ad_bits = 0;
7935
7936         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7937                 enable_unrestricted_guest = 0;
7938
7939         if (!cpu_has_vmx_flexpriority())
7940                 flexpriority_enabled = 0;
7941
7942         if (!cpu_has_virtual_nmis())
7943                 enable_vnmi = 0;
7944
7945         /*
7946          * set_apic_access_page_addr() is used to reload apic access
7947          * page upon invalidation.  No need to do anything if not
7948          * using the APIC_ACCESS_ADDR VMCS field.
7949          */
7950         if (!flexpriority_enabled)
7951                 vmx_x86_ops.set_apic_access_page_addr = NULL;
7952
7953         if (!cpu_has_vmx_tpr_shadow())
7954                 vmx_x86_ops.update_cr8_intercept = NULL;
7955
7956 #if IS_ENABLED(CONFIG_HYPERV)
7957         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7958             && enable_ept) {
7959                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7960                 vmx_x86_ops.tlb_remote_flush_with_range =
7961                                 hv_remote_flush_tlb_with_range;
7962         }
7963 #endif
7964
7965         if (!cpu_has_vmx_ple()) {
7966                 ple_gap = 0;
7967                 ple_window = 0;
7968                 ple_window_grow = 0;
7969                 ple_window_max = 0;
7970                 ple_window_shrink = 0;
7971         }
7972
7973         if (!cpu_has_vmx_apicv()) {
7974                 enable_apicv = 0;
7975                 vmx_x86_ops.sync_pir_to_irr = NULL;
7976         }
7977
7978         if (cpu_has_vmx_tsc_scaling()) {
7979                 kvm_has_tsc_control = true;
7980                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7981                 kvm_tsc_scaling_ratio_frac_bits = 48;
7982         }
7983
7984         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7985
7986         if (enable_ept)
7987                 vmx_enable_tdp();
7988
7989         if (!enable_ept)
7990                 ept_lpage_level = 0;
7991         else if (cpu_has_vmx_ept_1g_page())
7992                 ept_lpage_level = PT_PDPE_LEVEL;
7993         else if (cpu_has_vmx_ept_2m_page())
7994                 ept_lpage_level = PT_DIRECTORY_LEVEL;
7995         else
7996                 ept_lpage_level = PT_PAGE_TABLE_LEVEL;
7997         kvm_configure_mmu(enable_ept, ept_lpage_level);
7998
7999         /*
8000          * Only enable PML when hardware supports PML feature, and both EPT
8001          * and EPT A/D bit features are enabled -- PML depends on them to work.
8002          */
8003         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8004                 enable_pml = 0;
8005
8006         if (!enable_pml) {
8007                 vmx_x86_ops.slot_enable_log_dirty = NULL;
8008                 vmx_x86_ops.slot_disable_log_dirty = NULL;
8009                 vmx_x86_ops.flush_log_dirty = NULL;
8010                 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
8011         }
8012
8013         if (!cpu_has_vmx_preemption_timer())
8014                 enable_preemption_timer = false;
8015
8016         if (enable_preemption_timer) {
8017                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8018                 u64 vmx_msr;
8019
8020                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8021                 cpu_preemption_timer_multi =
8022                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8023
8024                 if (tsc_khz)
8025                         use_timer_freq = (u64)tsc_khz * 1000;
8026                 use_timer_freq >>= cpu_preemption_timer_multi;
8027
8028                 /*
8029                  * KVM "disables" the preemption timer by setting it to its max
8030                  * value.  Don't use the timer if it might cause spurious exits
8031                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8032                  */
8033                 if (use_timer_freq > 0xffffffffu / 10)
8034                         enable_preemption_timer = false;
8035         }
8036
8037         if (!enable_preemption_timer) {
8038                 vmx_x86_ops.set_hv_timer = NULL;
8039                 vmx_x86_ops.cancel_hv_timer = NULL;
8040                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8041         }
8042
8043         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
8044
8045         kvm_mce_cap_supported |= MCG_LMCE_P;
8046
8047         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8048                 return -EINVAL;
8049         if (!enable_ept || !cpu_has_vmx_intel_pt())
8050                 pt_mode = PT_MODE_SYSTEM;
8051
8052         if (nested) {
8053                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8054                                            vmx_capability.ept);
8055
8056                 r = nested_vmx_hardware_setup(&vmx_x86_ops,
8057                                               kvm_vmx_exit_handlers);
8058                 if (r)
8059                         return r;
8060         }
8061
8062         vmx_set_cpu_caps();
8063
8064         r = alloc_kvm_area();
8065         if (r)
8066                 nested_vmx_hardware_unsetup();
8067         return r;
8068 }
8069
8070 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8071         .cpu_has_kvm_support = cpu_has_kvm_support,
8072         .disabled_by_bios = vmx_disabled_by_bios,
8073         .check_processor_compatibility = vmx_check_processor_compat,
8074         .hardware_setup = hardware_setup,
8075
8076         .runtime_ops = &vmx_x86_ops,
8077 };
8078
8079 static void vmx_cleanup_l1d_flush(void)
8080 {
8081         if (vmx_l1d_flush_pages) {
8082                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8083                 vmx_l1d_flush_pages = NULL;
8084         }
8085         /* Restore state so sysfs ignores VMX */
8086         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8087 }
8088
8089 static void vmx_exit(void)
8090 {
8091 #ifdef CONFIG_KEXEC_CORE
8092         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8093         synchronize_rcu();
8094 #endif
8095
8096         kvm_exit();
8097
8098 #if IS_ENABLED(CONFIG_HYPERV)
8099         if (static_branch_unlikely(&enable_evmcs)) {
8100                 int cpu;
8101                 struct hv_vp_assist_page *vp_ap;
8102                 /*
8103                  * Reset everything to support using non-enlightened VMCS
8104                  * access later (e.g. when we reload the module with
8105                  * enlightened_vmcs=0)
8106                  */
8107                 for_each_online_cpu(cpu) {
8108                         vp_ap = hv_get_vp_assist_page(cpu);
8109
8110                         if (!vp_ap)
8111                                 continue;
8112
8113                         vp_ap->nested_control.features.directhypercall = 0;
8114                         vp_ap->current_nested_vmcs = 0;
8115                         vp_ap->enlighten_vmentry = 0;
8116                 }
8117
8118                 static_branch_disable(&enable_evmcs);
8119         }
8120 #endif
8121         vmx_cleanup_l1d_flush();
8122 }
8123 module_exit(vmx_exit);
8124
8125 static int __init vmx_init(void)
8126 {
8127         int r, cpu;
8128
8129 #if IS_ENABLED(CONFIG_HYPERV)
8130         /*
8131          * Enlightened VMCS usage should be recommended and the host needs
8132          * to support eVMCS v1 or above. We can also disable eVMCS support
8133          * with module parameter.
8134          */
8135         if (enlightened_vmcs &&
8136             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8137             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8138             KVM_EVMCS_VERSION) {
8139                 int cpu;
8140
8141                 /* Check that we have assist pages on all online CPUs */
8142                 for_each_online_cpu(cpu) {
8143                         if (!hv_get_vp_assist_page(cpu)) {
8144                                 enlightened_vmcs = false;
8145                                 break;
8146                         }
8147                 }
8148
8149                 if (enlightened_vmcs) {
8150                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8151                         static_branch_enable(&enable_evmcs);
8152                 }
8153
8154                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8155                         vmx_x86_ops.enable_direct_tlbflush
8156                                 = hv_enable_direct_tlbflush;
8157
8158         } else {
8159                 enlightened_vmcs = false;
8160         }
8161 #endif
8162
8163         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8164                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8165         if (r)
8166                 return r;
8167
8168         /*
8169          * Must be called after kvm_init() so enable_ept is properly set
8170          * up. Hand the parameter mitigation value in which was stored in
8171          * the pre module init parser. If no parameter was given, it will
8172          * contain 'auto' which will be turned into the default 'cond'
8173          * mitigation mode.
8174          */
8175         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8176         if (r) {
8177                 vmx_exit();
8178                 return r;
8179         }
8180
8181         for_each_possible_cpu(cpu) {
8182                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8183                 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
8184                 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8185         }
8186
8187 #ifdef CONFIG_KEXEC_CORE
8188         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8189                            crash_vmclear_local_loaded_vmcss);
8190 #endif
8191         vmx_check_vmcs12_offsets();
8192
8193         return 0;
8194 }
8195 module_init(vmx_init);