Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <linux/frame.h>
20 #include <linux/highmem.h>
21 #include <linux/hrtimer.h>
22 #include <linux/kernel.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/mm.h>
28 #include <linux/sched.h>
29 #include <linux/sched/smt.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include <linux/trace_events.h>
33
34 #include <asm/apic.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/internal.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "ops.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71         X86_FEATURE_MATCH(X86_FEATURE_VMX),
72         {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75
76 bool __read_mostly enable_vpid = 1;
77 module_param_named(vpid, enable_vpid, bool, 0444);
78
79 static bool __read_mostly enable_vnmi = 1;
80 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
81
82 bool __read_mostly flexpriority_enabled = 1;
83 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
84
85 bool __read_mostly enable_ept = 1;
86 module_param_named(ept, enable_ept, bool, S_IRUGO);
87
88 bool __read_mostly enable_unrestricted_guest = 1;
89 module_param_named(unrestricted_guest,
90                         enable_unrestricted_guest, bool, S_IRUGO);
91
92 bool __read_mostly enable_ept_ad_bits = 1;
93 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
94
95 static bool __read_mostly emulate_invalid_guest_state = true;
96 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
97
98 static bool __read_mostly fasteoi = 1;
99 module_param(fasteoi, bool, S_IRUGO);
100
101 static bool __read_mostly enable_apicv = 1;
102 module_param(enable_apicv, bool, S_IRUGO);
103
104 /*
105  * If nested=1, nested virtualization is supported, i.e., guests may use
106  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
107  * use VMX instructions.
108  */
109 static bool __read_mostly nested = 1;
110 module_param(nested, bool, S_IRUGO);
111
112 static u64 __read_mostly host_xss;
113
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116
117 #define MSR_BITMAP_MODE_X2APIC          1
118 #define MSR_BITMAP_MODE_X2APIC_APICV    2
119
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON                            \
132         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
133          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS                                      \
135         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147         RTIT_STATUS_BYTECNT))
148
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191
192 static const struct {
193         const char *option;
194         bool for_parse;
195 } vmentry_l1d_param[] = {
196         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
197         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
198         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
199         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
200         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209         struct page *page;
210         unsigned int i;
211
212         if (!enable_ept) {
213                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
214                 return 0;
215         }
216
217         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
218                 u64 msr;
219
220                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
221                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
222                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
223                         return 0;
224                 }
225         }
226
227         /* If set to auto use the default l1tf mitigation method */
228         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
229                 switch (l1tf_mitigation) {
230                 case L1TF_MITIGATION_OFF:
231                         l1tf = VMENTER_L1D_FLUSH_NEVER;
232                         break;
233                 case L1TF_MITIGATION_FLUSH_NOWARN:
234                 case L1TF_MITIGATION_FLUSH:
235                 case L1TF_MITIGATION_FLUSH_NOSMT:
236                         l1tf = VMENTER_L1D_FLUSH_COND;
237                         break;
238                 case L1TF_MITIGATION_FULL:
239                 case L1TF_MITIGATION_FULL_FORCE:
240                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
241                         break;
242                 }
243         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
244                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
245         }
246
247         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
248             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
249                 /*
250                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
251                  * lifetime and so should not be charged to a memcg.
252                  */
253                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
254                 if (!page)
255                         return -ENOMEM;
256                 vmx_l1d_flush_pages = page_address(page);
257
258                 /*
259                  * Initialize each page with a different pattern in
260                  * order to protect against KSM in the nested
261                  * virtualization case.
262                  */
263                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
264                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
265                                PAGE_SIZE);
266                 }
267         }
268
269         l1tf_vmx_mitigation = l1tf;
270
271         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
272                 static_branch_enable(&vmx_l1d_should_flush);
273         else
274                 static_branch_disable(&vmx_l1d_should_flush);
275
276         if (l1tf == VMENTER_L1D_FLUSH_COND)
277                 static_branch_enable(&vmx_l1d_flush_cond);
278         else
279                 static_branch_disable(&vmx_l1d_flush_cond);
280         return 0;
281 }
282
283 static int vmentry_l1d_flush_parse(const char *s)
284 {
285         unsigned int i;
286
287         if (s) {
288                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
289                         if (vmentry_l1d_param[i].for_parse &&
290                             sysfs_streq(s, vmentry_l1d_param[i].option))
291                                 return i;
292                 }
293         }
294         return -EINVAL;
295 }
296
297 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
298 {
299         int l1tf, ret;
300
301         l1tf = vmentry_l1d_flush_parse(s);
302         if (l1tf < 0)
303                 return l1tf;
304
305         if (!boot_cpu_has(X86_BUG_L1TF))
306                 return 0;
307
308         /*
309          * Has vmx_init() run already? If not then this is the pre init
310          * parameter parsing. In that case just store the value and let
311          * vmx_init() do the proper setup after enable_ept has been
312          * established.
313          */
314         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
315                 vmentry_l1d_flush_param = l1tf;
316                 return 0;
317         }
318
319         mutex_lock(&vmx_l1d_flush_mutex);
320         ret = vmx_setup_l1d_flush(l1tf);
321         mutex_unlock(&vmx_l1d_flush_mutex);
322         return ret;
323 }
324
325 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
326 {
327         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
328                 return sprintf(s, "???\n");
329
330         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
331 }
332
333 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
334         .set = vmentry_l1d_flush_set,
335         .get = vmentry_l1d_flush_get,
336 };
337 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
338
339 static bool guest_state_valid(struct kvm_vcpu *vcpu);
340 static u32 vmx_segment_access_rights(struct kvm_segment *var);
341 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
342                                                           u32 msr, int type);
343
344 void vmx_vmexit(void);
345
346 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
347 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
348 /*
349  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
350  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
351  */
352 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
353
354 /*
355  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
356  * can find which vCPU should be waken up.
357  */
358 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
359 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
360
361 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
362 static DEFINE_SPINLOCK(vmx_vpid_lock);
363
364 struct vmcs_config vmcs_config;
365 struct vmx_capability vmx_capability;
366
367 #define VMX_SEGMENT_FIELD(seg)                                  \
368         [VCPU_SREG_##seg] = {                                   \
369                 .selector = GUEST_##seg##_SELECTOR,             \
370                 .base = GUEST_##seg##_BASE,                     \
371                 .limit = GUEST_##seg##_LIMIT,                   \
372                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
373         }
374
375 static const struct kvm_vmx_segment_field {
376         unsigned selector;
377         unsigned base;
378         unsigned limit;
379         unsigned ar_bytes;
380 } kvm_vmx_segment_fields[] = {
381         VMX_SEGMENT_FIELD(CS),
382         VMX_SEGMENT_FIELD(DS),
383         VMX_SEGMENT_FIELD(ES),
384         VMX_SEGMENT_FIELD(FS),
385         VMX_SEGMENT_FIELD(GS),
386         VMX_SEGMENT_FIELD(SS),
387         VMX_SEGMENT_FIELD(TR),
388         VMX_SEGMENT_FIELD(LDTR),
389 };
390
391 u64 host_efer;
392
393 /*
394  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
395  * will emulate SYSCALL in legacy mode if the vendor string in guest
396  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
397  * support this emulation, IA32_STAR must always be included in
398  * vmx_msr_index[], even in i386 builds.
399  */
400 const u32 vmx_msr_index[] = {
401 #ifdef CONFIG_X86_64
402         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
403 #endif
404         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
405 };
406
407 #if IS_ENABLED(CONFIG_HYPERV)
408 static bool __read_mostly enlightened_vmcs = true;
409 module_param(enlightened_vmcs, bool, 0444);
410
411 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
412 static void check_ept_pointer_match(struct kvm *kvm)
413 {
414         struct kvm_vcpu *vcpu;
415         u64 tmp_eptp = INVALID_PAGE;
416         int i;
417
418         kvm_for_each_vcpu(i, vcpu, kvm) {
419                 if (!VALID_PAGE(tmp_eptp)) {
420                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
421                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
422                         to_kvm_vmx(kvm)->ept_pointers_match
423                                 = EPT_POINTERS_MISMATCH;
424                         return;
425                 }
426         }
427
428         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
429 }
430
431 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
432                 void *data)
433 {
434         struct kvm_tlb_range *range = data;
435
436         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
437                         range->pages);
438 }
439
440 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
441                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
442 {
443         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
444
445         /*
446          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
447          * of the base of EPT PML4 table, strip off EPT configuration
448          * information.
449          */
450         if (range)
451                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
452                                 kvm_fill_hv_flush_list_func, (void *)range);
453         else
454                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
455 }
456
457 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
458                 struct kvm_tlb_range *range)
459 {
460         struct kvm_vcpu *vcpu;
461         int ret = 0, i;
462
463         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
464
465         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
466                 check_ept_pointer_match(kvm);
467
468         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
469                 kvm_for_each_vcpu(i, vcpu, kvm) {
470                         /* If ept_pointer is invalid pointer, bypass flush request. */
471                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
472                                 ret |= __hv_remote_flush_tlb_with_range(
473                                         kvm, vcpu, range);
474                 }
475         } else {
476                 ret = __hv_remote_flush_tlb_with_range(kvm,
477                                 kvm_get_vcpu(kvm, 0), range);
478         }
479
480         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
481         return ret;
482 }
483 static int hv_remote_flush_tlb(struct kvm *kvm)
484 {
485         return hv_remote_flush_tlb_with_range(kvm, NULL);
486 }
487
488 #endif /* IS_ENABLED(CONFIG_HYPERV) */
489
490 /*
491  * Comment's format: document - errata name - stepping - processor name.
492  * Refer from
493  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
494  */
495 static u32 vmx_preemption_cpu_tfms[] = {
496 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
497 0x000206E6,
498 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
499 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
500 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
501 0x00020652,
502 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
503 0x00020655,
504 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
505 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
506 /*
507  * 320767.pdf - AAP86  - B1 -
508  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
509  */
510 0x000106E5,
511 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
512 0x000106A0,
513 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
514 0x000106A1,
515 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
516 0x000106A4,
517  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
518  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
519  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
520 0x000106A5,
521  /* Xeon E3-1220 V2 */
522 0x000306A8,
523 };
524
525 static inline bool cpu_has_broken_vmx_preemption_timer(void)
526 {
527         u32 eax = cpuid_eax(0x00000001), i;
528
529         /* Clear the reserved bits */
530         eax &= ~(0x3U << 14 | 0xfU << 28);
531         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
532                 if (eax == vmx_preemption_cpu_tfms[i])
533                         return true;
534
535         return false;
536 }
537
538 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
539 {
540         return flexpriority_enabled && lapic_in_kernel(vcpu);
541 }
542
543 static inline bool report_flexpriority(void)
544 {
545         return flexpriority_enabled;
546 }
547
548 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
549 {
550         int i;
551
552         for (i = 0; i < vmx->nmsrs; ++i)
553                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
554                         return i;
555         return -1;
556 }
557
558 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
559 {
560         int i;
561
562         i = __find_msr_index(vmx, msr);
563         if (i >= 0)
564                 return &vmx->guest_msrs[i];
565         return NULL;
566 }
567
568 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
569 {
570         vmcs_clear(loaded_vmcs->vmcs);
571         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
572                 vmcs_clear(loaded_vmcs->shadow_vmcs);
573         loaded_vmcs->cpu = -1;
574         loaded_vmcs->launched = 0;
575 }
576
577 #ifdef CONFIG_KEXEC_CORE
578 /*
579  * This bitmap is used to indicate whether the vmclear
580  * operation is enabled on all cpus. All disabled by
581  * default.
582  */
583 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
584
585 static inline void crash_enable_local_vmclear(int cpu)
586 {
587         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
588 }
589
590 static inline void crash_disable_local_vmclear(int cpu)
591 {
592         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
593 }
594
595 static inline int crash_local_vmclear_enabled(int cpu)
596 {
597         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
598 }
599
600 static void crash_vmclear_local_loaded_vmcss(void)
601 {
602         int cpu = raw_smp_processor_id();
603         struct loaded_vmcs *v;
604
605         if (!crash_local_vmclear_enabled(cpu))
606                 return;
607
608         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
609                             loaded_vmcss_on_cpu_link)
610                 vmcs_clear(v->vmcs);
611 }
612 #else
613 static inline void crash_enable_local_vmclear(int cpu) { }
614 static inline void crash_disable_local_vmclear(int cpu) { }
615 #endif /* CONFIG_KEXEC_CORE */
616
617 static void __loaded_vmcs_clear(void *arg)
618 {
619         struct loaded_vmcs *loaded_vmcs = arg;
620         int cpu = raw_smp_processor_id();
621
622         if (loaded_vmcs->cpu != cpu)
623                 return; /* vcpu migration can race with cpu offline */
624         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
625                 per_cpu(current_vmcs, cpu) = NULL;
626         crash_disable_local_vmclear(cpu);
627         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
628
629         /*
630          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
631          * is before setting loaded_vmcs->vcpu to -1 which is done in
632          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
633          * then adds the vmcs into percpu list before it is deleted.
634          */
635         smp_wmb();
636
637         loaded_vmcs_init(loaded_vmcs);
638         crash_enable_local_vmclear(cpu);
639 }
640
641 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
642 {
643         int cpu = loaded_vmcs->cpu;
644
645         if (cpu != -1)
646                 smp_call_function_single(cpu,
647                          __loaded_vmcs_clear, loaded_vmcs, 1);
648 }
649
650 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
651                                        unsigned field)
652 {
653         bool ret;
654         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
655
656         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
657                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
658                 vmx->segment_cache.bitmask = 0;
659         }
660         ret = vmx->segment_cache.bitmask & mask;
661         vmx->segment_cache.bitmask |= mask;
662         return ret;
663 }
664
665 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
666 {
667         u16 *p = &vmx->segment_cache.seg[seg].selector;
668
669         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
670                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
671         return *p;
672 }
673
674 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
675 {
676         ulong *p = &vmx->segment_cache.seg[seg].base;
677
678         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
679                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
680         return *p;
681 }
682
683 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
684 {
685         u32 *p = &vmx->segment_cache.seg[seg].limit;
686
687         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
688                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
689         return *p;
690 }
691
692 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
693 {
694         u32 *p = &vmx->segment_cache.seg[seg].ar;
695
696         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
697                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
698         return *p;
699 }
700
701 void update_exception_bitmap(struct kvm_vcpu *vcpu)
702 {
703         u32 eb;
704
705         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
706              (1u << DB_VECTOR) | (1u << AC_VECTOR);
707         /*
708          * Guest access to VMware backdoor ports could legitimately
709          * trigger #GP because of TSS I/O permission bitmap.
710          * We intercept those #GP and allow access to them anyway
711          * as VMware does.
712          */
713         if (enable_vmware_backdoor)
714                 eb |= (1u << GP_VECTOR);
715         if ((vcpu->guest_debug &
716              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
717             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
718                 eb |= 1u << BP_VECTOR;
719         if (to_vmx(vcpu)->rmode.vm86_active)
720                 eb = ~0;
721         if (enable_ept)
722                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
723
724         /* When we are running a nested L2 guest and L1 specified for it a
725          * certain exception bitmap, we must trap the same exceptions and pass
726          * them to L1. When running L2, we will only handle the exceptions
727          * specified above if L1 did not want them.
728          */
729         if (is_guest_mode(vcpu))
730                 eb |= get_vmcs12(vcpu)->exception_bitmap;
731
732         vmcs_write32(EXCEPTION_BITMAP, eb);
733 }
734
735 /*
736  * Check if MSR is intercepted for currently loaded MSR bitmap.
737  */
738 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
739 {
740         unsigned long *msr_bitmap;
741         int f = sizeof(unsigned long);
742
743         if (!cpu_has_vmx_msr_bitmap())
744                 return true;
745
746         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
747
748         if (msr <= 0x1fff) {
749                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
750         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
751                 msr &= 0x1fff;
752                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
753         }
754
755         return true;
756 }
757
758 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
759                 unsigned long entry, unsigned long exit)
760 {
761         vm_entry_controls_clearbit(vmx, entry);
762         vm_exit_controls_clearbit(vmx, exit);
763 }
764
765 static int find_msr(struct vmx_msrs *m, unsigned int msr)
766 {
767         unsigned int i;
768
769         for (i = 0; i < m->nr; ++i) {
770                 if (m->val[i].index == msr)
771                         return i;
772         }
773         return -ENOENT;
774 }
775
776 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
777 {
778         int i;
779         struct msr_autoload *m = &vmx->msr_autoload;
780
781         switch (msr) {
782         case MSR_EFER:
783                 if (cpu_has_load_ia32_efer()) {
784                         clear_atomic_switch_msr_special(vmx,
785                                         VM_ENTRY_LOAD_IA32_EFER,
786                                         VM_EXIT_LOAD_IA32_EFER);
787                         return;
788                 }
789                 break;
790         case MSR_CORE_PERF_GLOBAL_CTRL:
791                 if (cpu_has_load_perf_global_ctrl()) {
792                         clear_atomic_switch_msr_special(vmx,
793                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
794                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
795                         return;
796                 }
797                 break;
798         }
799         i = find_msr(&m->guest, msr);
800         if (i < 0)
801                 goto skip_guest;
802         --m->guest.nr;
803         m->guest.val[i] = m->guest.val[m->guest.nr];
804         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
805
806 skip_guest:
807         i = find_msr(&m->host, msr);
808         if (i < 0)
809                 return;
810
811         --m->host.nr;
812         m->host.val[i] = m->host.val[m->host.nr];
813         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
814 }
815
816 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
817                 unsigned long entry, unsigned long exit,
818                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
819                 u64 guest_val, u64 host_val)
820 {
821         vmcs_write64(guest_val_vmcs, guest_val);
822         if (host_val_vmcs != HOST_IA32_EFER)
823                 vmcs_write64(host_val_vmcs, host_val);
824         vm_entry_controls_setbit(vmx, entry);
825         vm_exit_controls_setbit(vmx, exit);
826 }
827
828 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
829                                   u64 guest_val, u64 host_val, bool entry_only)
830 {
831         int i, j = 0;
832         struct msr_autoload *m = &vmx->msr_autoload;
833
834         switch (msr) {
835         case MSR_EFER:
836                 if (cpu_has_load_ia32_efer()) {
837                         add_atomic_switch_msr_special(vmx,
838                                         VM_ENTRY_LOAD_IA32_EFER,
839                                         VM_EXIT_LOAD_IA32_EFER,
840                                         GUEST_IA32_EFER,
841                                         HOST_IA32_EFER,
842                                         guest_val, host_val);
843                         return;
844                 }
845                 break;
846         case MSR_CORE_PERF_GLOBAL_CTRL:
847                 if (cpu_has_load_perf_global_ctrl()) {
848                         add_atomic_switch_msr_special(vmx,
849                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
850                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
851                                         GUEST_IA32_PERF_GLOBAL_CTRL,
852                                         HOST_IA32_PERF_GLOBAL_CTRL,
853                                         guest_val, host_val);
854                         return;
855                 }
856                 break;
857         case MSR_IA32_PEBS_ENABLE:
858                 /* PEBS needs a quiescent period after being disabled (to write
859                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
860                  * provide that period, so a CPU could write host's record into
861                  * guest's memory.
862                  */
863                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
864         }
865
866         i = find_msr(&m->guest, msr);
867         if (!entry_only)
868                 j = find_msr(&m->host, msr);
869
870         if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
871                 (j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
872                 printk_once(KERN_WARNING "Not enough msr switch entries. "
873                                 "Can't add msr %x\n", msr);
874                 return;
875         }
876         if (i < 0) {
877                 i = m->guest.nr++;
878                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
879         }
880         m->guest.val[i].index = msr;
881         m->guest.val[i].value = guest_val;
882
883         if (entry_only)
884                 return;
885
886         if (j < 0) {
887                 j = m->host.nr++;
888                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
889         }
890         m->host.val[j].index = msr;
891         m->host.val[j].value = host_val;
892 }
893
894 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
895 {
896         u64 guest_efer = vmx->vcpu.arch.efer;
897         u64 ignore_bits = 0;
898
899         if (!enable_ept) {
900                 /*
901                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
902                  * host CPUID is more efficient than testing guest CPUID
903                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
904                  */
905                 if (boot_cpu_has(X86_FEATURE_SMEP))
906                         guest_efer |= EFER_NX;
907                 else if (!(guest_efer & EFER_NX))
908                         ignore_bits |= EFER_NX;
909         }
910
911         /*
912          * LMA and LME handled by hardware; SCE meaningless outside long mode.
913          */
914         ignore_bits |= EFER_SCE;
915 #ifdef CONFIG_X86_64
916         ignore_bits |= EFER_LMA | EFER_LME;
917         /* SCE is meaningful only in long mode on Intel */
918         if (guest_efer & EFER_LMA)
919                 ignore_bits &= ~(u64)EFER_SCE;
920 #endif
921
922         /*
923          * On EPT, we can't emulate NX, so we must switch EFER atomically.
924          * On CPUs that support "load IA32_EFER", always switch EFER
925          * atomically, since it's faster than switching it manually.
926          */
927         if (cpu_has_load_ia32_efer() ||
928             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
929                 if (!(guest_efer & EFER_LMA))
930                         guest_efer &= ~EFER_LME;
931                 if (guest_efer != host_efer)
932                         add_atomic_switch_msr(vmx, MSR_EFER,
933                                               guest_efer, host_efer, false);
934                 else
935                         clear_atomic_switch_msr(vmx, MSR_EFER);
936                 return false;
937         } else {
938                 clear_atomic_switch_msr(vmx, MSR_EFER);
939
940                 guest_efer &= ~ignore_bits;
941                 guest_efer |= host_efer & ignore_bits;
942
943                 vmx->guest_msrs[efer_offset].data = guest_efer;
944                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
945
946                 return true;
947         }
948 }
949
950 #ifdef CONFIG_X86_32
951 /*
952  * On 32-bit kernels, VM exits still load the FS and GS bases from the
953  * VMCS rather than the segment table.  KVM uses this helper to figure
954  * out the current bases to poke them into the VMCS before entry.
955  */
956 static unsigned long segment_base(u16 selector)
957 {
958         struct desc_struct *table;
959         unsigned long v;
960
961         if (!(selector & ~SEGMENT_RPL_MASK))
962                 return 0;
963
964         table = get_current_gdt_ro();
965
966         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
967                 u16 ldt_selector = kvm_read_ldt();
968
969                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
970                         return 0;
971
972                 table = (struct desc_struct *)segment_base(ldt_selector);
973         }
974         v = get_desc_base(&table[selector >> 3]);
975         return v;
976 }
977 #endif
978
979 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
980 {
981         u32 i;
982
983         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
984         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
985         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
986         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
987         for (i = 0; i < addr_range; i++) {
988                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
989                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
990         }
991 }
992
993 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
994 {
995         u32 i;
996
997         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
998         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
999         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1000         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1001         for (i = 0; i < addr_range; i++) {
1002                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1003                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1004         }
1005 }
1006
1007 static void pt_guest_enter(struct vcpu_vmx *vmx)
1008 {
1009         if (pt_mode == PT_MODE_SYSTEM)
1010                 return;
1011
1012         /*
1013          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1014          * Save host state before VM entry.
1015          */
1016         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1017         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1018                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1019                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1020                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1021         }
1022 }
1023
1024 static void pt_guest_exit(struct vcpu_vmx *vmx)
1025 {
1026         if (pt_mode == PT_MODE_SYSTEM)
1027                 return;
1028
1029         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1030                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1031                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1032         }
1033
1034         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1035         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1036 }
1037
1038 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1039 {
1040         struct vcpu_vmx *vmx = to_vmx(vcpu);
1041         struct vmcs_host_state *host_state;
1042 #ifdef CONFIG_X86_64
1043         int cpu = raw_smp_processor_id();
1044 #endif
1045         unsigned long fs_base, gs_base;
1046         u16 fs_sel, gs_sel;
1047         int i;
1048
1049         vmx->req_immediate_exit = false;
1050
1051         /*
1052          * Note that guest MSRs to be saved/restored can also be changed
1053          * when guest state is loaded. This happens when guest transitions
1054          * to/from long-mode by setting MSR_EFER.LMA.
1055          */
1056         if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
1057                 vmx->guest_msrs_dirty = false;
1058                 for (i = 0; i < vmx->save_nmsrs; ++i)
1059                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1060                                            vmx->guest_msrs[i].data,
1061                                            vmx->guest_msrs[i].mask);
1062
1063         }
1064
1065         if (vmx->loaded_cpu_state)
1066                 return;
1067
1068         vmx->loaded_cpu_state = vmx->loaded_vmcs;
1069         host_state = &vmx->loaded_cpu_state->host_state;
1070
1071         /*
1072          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1073          * allow segment selectors with cpl > 0 or ti == 1.
1074          */
1075         host_state->ldt_sel = kvm_read_ldt();
1076
1077 #ifdef CONFIG_X86_64
1078         savesegment(ds, host_state->ds_sel);
1079         savesegment(es, host_state->es_sel);
1080
1081         gs_base = cpu_kernelmode_gs_base(cpu);
1082         if (likely(is_64bit_mm(current->mm))) {
1083                 save_fsgs_for_kvm();
1084                 fs_sel = current->thread.fsindex;
1085                 gs_sel = current->thread.gsindex;
1086                 fs_base = current->thread.fsbase;
1087                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1088         } else {
1089                 savesegment(fs, fs_sel);
1090                 savesegment(gs, gs_sel);
1091                 fs_base = read_msr(MSR_FS_BASE);
1092                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1093         }
1094
1095         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1096 #else
1097         savesegment(fs, fs_sel);
1098         savesegment(gs, gs_sel);
1099         fs_base = segment_base(fs_sel);
1100         gs_base = segment_base(gs_sel);
1101 #endif
1102
1103         if (unlikely(fs_sel != host_state->fs_sel)) {
1104                 if (!(fs_sel & 7))
1105                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1106                 else
1107                         vmcs_write16(HOST_FS_SELECTOR, 0);
1108                 host_state->fs_sel = fs_sel;
1109         }
1110         if (unlikely(gs_sel != host_state->gs_sel)) {
1111                 if (!(gs_sel & 7))
1112                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1113                 else
1114                         vmcs_write16(HOST_GS_SELECTOR, 0);
1115                 host_state->gs_sel = gs_sel;
1116         }
1117         if (unlikely(fs_base != host_state->fs_base)) {
1118                 vmcs_writel(HOST_FS_BASE, fs_base);
1119                 host_state->fs_base = fs_base;
1120         }
1121         if (unlikely(gs_base != host_state->gs_base)) {
1122                 vmcs_writel(HOST_GS_BASE, gs_base);
1123                 host_state->gs_base = gs_base;
1124         }
1125 }
1126
1127 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1128 {
1129         struct vmcs_host_state *host_state;
1130
1131         if (!vmx->loaded_cpu_state)
1132                 return;
1133
1134         WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
1135         host_state = &vmx->loaded_cpu_state->host_state;
1136
1137         ++vmx->vcpu.stat.host_state_reload;
1138         vmx->loaded_cpu_state = NULL;
1139
1140 #ifdef CONFIG_X86_64
1141         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1142 #endif
1143         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1144                 kvm_load_ldt(host_state->ldt_sel);
1145 #ifdef CONFIG_X86_64
1146                 load_gs_index(host_state->gs_sel);
1147 #else
1148                 loadsegment(gs, host_state->gs_sel);
1149 #endif
1150         }
1151         if (host_state->fs_sel & 7)
1152                 loadsegment(fs, host_state->fs_sel);
1153 #ifdef CONFIG_X86_64
1154         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1155                 loadsegment(ds, host_state->ds_sel);
1156                 loadsegment(es, host_state->es_sel);
1157         }
1158 #endif
1159         invalidate_tss_limit();
1160 #ifdef CONFIG_X86_64
1161         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1162 #endif
1163         load_fixmap_gdt(raw_smp_processor_id());
1164 }
1165
1166 #ifdef CONFIG_X86_64
1167 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1168 {
1169         preempt_disable();
1170         if (vmx->loaded_cpu_state)
1171                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1172         preempt_enable();
1173         return vmx->msr_guest_kernel_gs_base;
1174 }
1175
1176 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1177 {
1178         preempt_disable();
1179         if (vmx->loaded_cpu_state)
1180                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1181         preempt_enable();
1182         vmx->msr_guest_kernel_gs_base = data;
1183 }
1184 #endif
1185
1186 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1187 {
1188         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1189         struct pi_desc old, new;
1190         unsigned int dest;
1191
1192         /*
1193          * In case of hot-plug or hot-unplug, we may have to undo
1194          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1195          * always keep PI.NDST up to date for simplicity: it makes the
1196          * code easier, and CPU migration is not a fast path.
1197          */
1198         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1199                 return;
1200
1201         /* The full case.  */
1202         do {
1203                 old.control = new.control = pi_desc->control;
1204
1205                 dest = cpu_physical_id(cpu);
1206
1207                 if (x2apic_enabled())
1208                         new.ndst = dest;
1209                 else
1210                         new.ndst = (dest << 8) & 0xFF00;
1211
1212                 new.sn = 0;
1213         } while (cmpxchg64(&pi_desc->control, old.control,
1214                            new.control) != old.control);
1215
1216         /*
1217          * Clear SN before reading the bitmap.  The VT-d firmware
1218          * writes the bitmap and reads SN atomically (5.2.3 in the
1219          * spec), so it doesn't really have a memory barrier that
1220          * pairs with this, but we cannot do that and we need one.
1221          */
1222         smp_mb__after_atomic();
1223
1224         if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1225                 pi_set_on(pi_desc);
1226 }
1227
1228 /*
1229  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1230  * vcpu mutex is already taken.
1231  */
1232 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1233 {
1234         struct vcpu_vmx *vmx = to_vmx(vcpu);
1235         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1236
1237         if (!already_loaded) {
1238                 loaded_vmcs_clear(vmx->loaded_vmcs);
1239                 local_irq_disable();
1240                 crash_disable_local_vmclear(cpu);
1241
1242                 /*
1243                  * Read loaded_vmcs->cpu should be before fetching
1244                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1245                  * See the comments in __loaded_vmcs_clear().
1246                  */
1247                 smp_rmb();
1248
1249                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1250                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1251                 crash_enable_local_vmclear(cpu);
1252                 local_irq_enable();
1253         }
1254
1255         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1256                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1257                 vmcs_load(vmx->loaded_vmcs->vmcs);
1258                 indirect_branch_prediction_barrier();
1259         }
1260
1261         if (!already_loaded) {
1262                 void *gdt = get_current_gdt_ro();
1263                 unsigned long sysenter_esp;
1264
1265                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1266
1267                 /*
1268                  * Linux uses per-cpu TSS and GDT, so set these when switching
1269                  * processors.  See 22.2.4.
1270                  */
1271                 vmcs_writel(HOST_TR_BASE,
1272                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1273                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1274
1275                 /*
1276                  * VM exits change the host TR limit to 0x67 after a VM
1277                  * exit.  This is okay, since 0x67 covers everything except
1278                  * the IO bitmap and have have code to handle the IO bitmap
1279                  * being lost after a VM exit.
1280                  */
1281                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1282
1283                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1284                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1285
1286                 vmx->loaded_vmcs->cpu = cpu;
1287         }
1288
1289         /* Setup TSC multiplier */
1290         if (kvm_has_tsc_control &&
1291             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1292                 decache_tsc_multiplier(vmx);
1293
1294         vmx_vcpu_pi_load(vcpu, cpu);
1295         vmx->host_pkru = read_pkru();
1296         vmx->host_debugctlmsr = get_debugctlmsr();
1297 }
1298
1299 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1300 {
1301         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1302
1303         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1304                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1305                 !kvm_vcpu_apicv_active(vcpu))
1306                 return;
1307
1308         /* Set SN when the vCPU is preempted */
1309         if (vcpu->preempted)
1310                 pi_set_sn(pi_desc);
1311 }
1312
1313 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1314 {
1315         vmx_vcpu_pi_put(vcpu);
1316
1317         vmx_prepare_switch_to_host(to_vmx(vcpu));
1318 }
1319
1320 static bool emulation_required(struct kvm_vcpu *vcpu)
1321 {
1322         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1323 }
1324
1325 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1326
1327 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1328 {
1329         unsigned long rflags, save_rflags;
1330
1331         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1332                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1333                 rflags = vmcs_readl(GUEST_RFLAGS);
1334                 if (to_vmx(vcpu)->rmode.vm86_active) {
1335                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1336                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1337                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1338                 }
1339                 to_vmx(vcpu)->rflags = rflags;
1340         }
1341         return to_vmx(vcpu)->rflags;
1342 }
1343
1344 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1345 {
1346         unsigned long old_rflags = vmx_get_rflags(vcpu);
1347
1348         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1349         to_vmx(vcpu)->rflags = rflags;
1350         if (to_vmx(vcpu)->rmode.vm86_active) {
1351                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1352                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1353         }
1354         vmcs_writel(GUEST_RFLAGS, rflags);
1355
1356         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1357                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1358 }
1359
1360 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1361 {
1362         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1363         int ret = 0;
1364
1365         if (interruptibility & GUEST_INTR_STATE_STI)
1366                 ret |= KVM_X86_SHADOW_INT_STI;
1367         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1368                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1369
1370         return ret;
1371 }
1372
1373 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1374 {
1375         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1376         u32 interruptibility = interruptibility_old;
1377
1378         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1379
1380         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1381                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1382         else if (mask & KVM_X86_SHADOW_INT_STI)
1383                 interruptibility |= GUEST_INTR_STATE_STI;
1384
1385         if ((interruptibility != interruptibility_old))
1386                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1387 }
1388
1389 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1390 {
1391         struct vcpu_vmx *vmx = to_vmx(vcpu);
1392         unsigned long value;
1393
1394         /*
1395          * Any MSR write that attempts to change bits marked reserved will
1396          * case a #GP fault.
1397          */
1398         if (data & vmx->pt_desc.ctl_bitmask)
1399                 return 1;
1400
1401         /*
1402          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1403          * result in a #GP unless the same write also clears TraceEn.
1404          */
1405         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1406                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1407                 return 1;
1408
1409         /*
1410          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1411          * and FabricEn would cause #GP, if
1412          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1413          */
1414         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1415                 !(data & RTIT_CTL_FABRIC_EN) &&
1416                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1417                                         PT_CAP_single_range_output))
1418                 return 1;
1419
1420         /*
1421          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1422          * utilize encodings marked reserved will casue a #GP fault.
1423          */
1424         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1425         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1426                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1427                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1428                 return 1;
1429         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1430                                                 PT_CAP_cycle_thresholds);
1431         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1432                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1433                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1434                 return 1;
1435         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1436         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1437                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1438                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1439                 return 1;
1440
1441         /*
1442          * If ADDRx_CFG is reserved or the encodings is >2 will
1443          * cause a #GP fault.
1444          */
1445         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1446         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1447                 return 1;
1448         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1449         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1450                 return 1;
1451         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1452         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1453                 return 1;
1454         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1455         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1456                 return 1;
1457
1458         return 0;
1459 }
1460
1461
1462 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1463 {
1464         unsigned long rip;
1465
1466         rip = kvm_rip_read(vcpu);
1467         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1468         kvm_rip_write(vcpu, rip);
1469
1470         /* skipping an emulated instruction also counts */
1471         vmx_set_interrupt_shadow(vcpu, 0);
1472 }
1473
1474 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1475 {
1476         /*
1477          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1478          * explicitly skip the instruction because if the HLT state is set,
1479          * then the instruction is already executing and RIP has already been
1480          * advanced.
1481          */
1482         if (kvm_hlt_in_guest(vcpu->kvm) &&
1483                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1484                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1485 }
1486
1487 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1488 {
1489         struct vcpu_vmx *vmx = to_vmx(vcpu);
1490         unsigned nr = vcpu->arch.exception.nr;
1491         bool has_error_code = vcpu->arch.exception.has_error_code;
1492         u32 error_code = vcpu->arch.exception.error_code;
1493         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1494
1495         kvm_deliver_exception_payload(vcpu);
1496
1497         if (has_error_code) {
1498                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1499                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1500         }
1501
1502         if (vmx->rmode.vm86_active) {
1503                 int inc_eip = 0;
1504                 if (kvm_exception_is_soft(nr))
1505                         inc_eip = vcpu->arch.event_exit_inst_len;
1506                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1507                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1508                 return;
1509         }
1510
1511         WARN_ON_ONCE(vmx->emulation_required);
1512
1513         if (kvm_exception_is_soft(nr)) {
1514                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1515                              vmx->vcpu.arch.event_exit_inst_len);
1516                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1517         } else
1518                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1519
1520         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1521
1522         vmx_clear_hlt(vcpu);
1523 }
1524
1525 static bool vmx_rdtscp_supported(void)
1526 {
1527         return cpu_has_vmx_rdtscp();
1528 }
1529
1530 static bool vmx_invpcid_supported(void)
1531 {
1532         return cpu_has_vmx_invpcid();
1533 }
1534
1535 /*
1536  * Swap MSR entry in host/guest MSR entry array.
1537  */
1538 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1539 {
1540         struct shared_msr_entry tmp;
1541
1542         tmp = vmx->guest_msrs[to];
1543         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1544         vmx->guest_msrs[from] = tmp;
1545 }
1546
1547 /*
1548  * Set up the vmcs to automatically save and restore system
1549  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1550  * mode, as fiddling with msrs is very expensive.
1551  */
1552 static void setup_msrs(struct vcpu_vmx *vmx)
1553 {
1554         int save_nmsrs, index;
1555
1556         save_nmsrs = 0;
1557 #ifdef CONFIG_X86_64
1558         /*
1559          * The SYSCALL MSRs are only needed on long mode guests, and only
1560          * when EFER.SCE is set.
1561          */
1562         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1563                 index = __find_msr_index(vmx, MSR_STAR);
1564                 if (index >= 0)
1565                         move_msr_up(vmx, index, save_nmsrs++);
1566                 index = __find_msr_index(vmx, MSR_LSTAR);
1567                 if (index >= 0)
1568                         move_msr_up(vmx, index, save_nmsrs++);
1569                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1570                 if (index >= 0)
1571                         move_msr_up(vmx, index, save_nmsrs++);
1572         }
1573 #endif
1574         index = __find_msr_index(vmx, MSR_EFER);
1575         if (index >= 0 && update_transition_efer(vmx, index))
1576                 move_msr_up(vmx, index, save_nmsrs++);
1577         index = __find_msr_index(vmx, MSR_TSC_AUX);
1578         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1579                 move_msr_up(vmx, index, save_nmsrs++);
1580
1581         vmx->save_nmsrs = save_nmsrs;
1582         vmx->guest_msrs_dirty = true;
1583
1584         if (cpu_has_vmx_msr_bitmap())
1585                 vmx_update_msr_bitmap(&vmx->vcpu);
1586 }
1587
1588 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1589 {
1590         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1591
1592         if (is_guest_mode(vcpu) &&
1593             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1594                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1595
1596         return vcpu->arch.tsc_offset;
1597 }
1598
1599 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1600 {
1601         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1602         u64 g_tsc_offset = 0;
1603
1604         /*
1605          * We're here if L1 chose not to trap WRMSR to TSC. According
1606          * to the spec, this should set L1's TSC; The offset that L1
1607          * set for L2 remains unchanged, and still needs to be added
1608          * to the newly set TSC to get L2's TSC.
1609          */
1610         if (is_guest_mode(vcpu) &&
1611             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1612                 g_tsc_offset = vmcs12->tsc_offset;
1613
1614         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1615                                    vcpu->arch.tsc_offset - g_tsc_offset,
1616                                    offset);
1617         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1618         return offset + g_tsc_offset;
1619 }
1620
1621 /*
1622  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1623  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1624  * all guests if the "nested" module option is off, and can also be disabled
1625  * for a single guest by disabling its VMX cpuid bit.
1626  */
1627 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1628 {
1629         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1630 }
1631
1632 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1633                                                  uint64_t val)
1634 {
1635         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1636
1637         return !(val & ~valid_bits);
1638 }
1639
1640 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1641 {
1642         switch (msr->index) {
1643         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1644                 if (!nested)
1645                         return 1;
1646                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1647         default:
1648                 return 1;
1649         }
1650
1651         return 0;
1652 }
1653
1654 /*
1655  * Reads an msr value (of 'msr_index') into 'pdata'.
1656  * Returns 0 on success, non-0 otherwise.
1657  * Assumes vcpu_load() was already called.
1658  */
1659 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1660 {
1661         struct vcpu_vmx *vmx = to_vmx(vcpu);
1662         struct shared_msr_entry *msr;
1663         u32 index;
1664
1665         switch (msr_info->index) {
1666 #ifdef CONFIG_X86_64
1667         case MSR_FS_BASE:
1668                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1669                 break;
1670         case MSR_GS_BASE:
1671                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1672                 break;
1673         case MSR_KERNEL_GS_BASE:
1674                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1675                 break;
1676 #endif
1677         case MSR_EFER:
1678                 return kvm_get_msr_common(vcpu, msr_info);
1679         case MSR_IA32_SPEC_CTRL:
1680                 if (!msr_info->host_initiated &&
1681                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1682                         return 1;
1683
1684                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1685                 break;
1686         case MSR_IA32_SYSENTER_CS:
1687                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1688                 break;
1689         case MSR_IA32_SYSENTER_EIP:
1690                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1691                 break;
1692         case MSR_IA32_SYSENTER_ESP:
1693                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1694                 break;
1695         case MSR_IA32_POWER_CTL:
1696                 msr_info->data = vmx->msr_ia32_power_ctl;
1697                 break;
1698         case MSR_IA32_BNDCFGS:
1699                 if (!kvm_mpx_supported() ||
1700                     (!msr_info->host_initiated &&
1701                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1702                         return 1;
1703                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1704                 break;
1705         case MSR_IA32_MCG_EXT_CTL:
1706                 if (!msr_info->host_initiated &&
1707                     !(vmx->msr_ia32_feature_control &
1708                       FEATURE_CONTROL_LMCE))
1709                         return 1;
1710                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1711                 break;
1712         case MSR_IA32_FEATURE_CONTROL:
1713                 msr_info->data = vmx->msr_ia32_feature_control;
1714                 break;
1715         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1716                 if (!nested_vmx_allowed(vcpu))
1717                         return 1;
1718                 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1719                                        &msr_info->data);
1720         case MSR_IA32_XSS:
1721                 if (!vmx_xsaves_supported())
1722                         return 1;
1723                 msr_info->data = vcpu->arch.ia32_xss;
1724                 break;
1725         case MSR_IA32_RTIT_CTL:
1726                 if (pt_mode != PT_MODE_HOST_GUEST)
1727                         return 1;
1728                 msr_info->data = vmx->pt_desc.guest.ctl;
1729                 break;
1730         case MSR_IA32_RTIT_STATUS:
1731                 if (pt_mode != PT_MODE_HOST_GUEST)
1732                         return 1;
1733                 msr_info->data = vmx->pt_desc.guest.status;
1734                 break;
1735         case MSR_IA32_RTIT_CR3_MATCH:
1736                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1737                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1738                                                 PT_CAP_cr3_filtering))
1739                         return 1;
1740                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1741                 break;
1742         case MSR_IA32_RTIT_OUTPUT_BASE:
1743                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1744                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1745                                         PT_CAP_topa_output) &&
1746                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1747                                         PT_CAP_single_range_output)))
1748                         return 1;
1749                 msr_info->data = vmx->pt_desc.guest.output_base;
1750                 break;
1751         case MSR_IA32_RTIT_OUTPUT_MASK:
1752                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1753                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1754                                         PT_CAP_topa_output) &&
1755                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1756                                         PT_CAP_single_range_output)))
1757                         return 1;
1758                 msr_info->data = vmx->pt_desc.guest.output_mask;
1759                 break;
1760         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1761                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1762                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1763                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1764                                         PT_CAP_num_address_ranges)))
1765                         return 1;
1766                 if (index % 2)
1767                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1768                 else
1769                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1770                 break;
1771         case MSR_TSC_AUX:
1772                 if (!msr_info->host_initiated &&
1773                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1774                         return 1;
1775                 /* Else, falls through */
1776         default:
1777                 msr = find_msr_entry(vmx, msr_info->index);
1778                 if (msr) {
1779                         msr_info->data = msr->data;
1780                         break;
1781                 }
1782                 return kvm_get_msr_common(vcpu, msr_info);
1783         }
1784
1785         return 0;
1786 }
1787
1788 /*
1789  * Writes msr value into into the appropriate "register".
1790  * Returns 0 on success, non-0 otherwise.
1791  * Assumes vcpu_load() was already called.
1792  */
1793 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1794 {
1795         struct vcpu_vmx *vmx = to_vmx(vcpu);
1796         struct shared_msr_entry *msr;
1797         int ret = 0;
1798         u32 msr_index = msr_info->index;
1799         u64 data = msr_info->data;
1800         u32 index;
1801
1802         switch (msr_index) {
1803         case MSR_EFER:
1804                 ret = kvm_set_msr_common(vcpu, msr_info);
1805                 break;
1806 #ifdef CONFIG_X86_64
1807         case MSR_FS_BASE:
1808                 vmx_segment_cache_clear(vmx);
1809                 vmcs_writel(GUEST_FS_BASE, data);
1810                 break;
1811         case MSR_GS_BASE:
1812                 vmx_segment_cache_clear(vmx);
1813                 vmcs_writel(GUEST_GS_BASE, data);
1814                 break;
1815         case MSR_KERNEL_GS_BASE:
1816                 vmx_write_guest_kernel_gs_base(vmx, data);
1817                 break;
1818 #endif
1819         case MSR_IA32_SYSENTER_CS:
1820                 vmcs_write32(GUEST_SYSENTER_CS, data);
1821                 break;
1822         case MSR_IA32_SYSENTER_EIP:
1823                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1824                 break;
1825         case MSR_IA32_SYSENTER_ESP:
1826                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1827                 break;
1828         case MSR_IA32_POWER_CTL:
1829                 vmx->msr_ia32_power_ctl = data;
1830                 break;
1831         case MSR_IA32_BNDCFGS:
1832                 if (!kvm_mpx_supported() ||
1833                     (!msr_info->host_initiated &&
1834                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1835                         return 1;
1836                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1837                     (data & MSR_IA32_BNDCFGS_RSVD))
1838                         return 1;
1839                 vmcs_write64(GUEST_BNDCFGS, data);
1840                 break;
1841         case MSR_IA32_SPEC_CTRL:
1842                 if (!msr_info->host_initiated &&
1843                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1844                         return 1;
1845
1846                 /* The STIBP bit doesn't fault even if it's not advertised */
1847                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1848                         return 1;
1849
1850                 vmx->spec_ctrl = data;
1851
1852                 if (!data)
1853                         break;
1854
1855                 /*
1856                  * For non-nested:
1857                  * When it's written (to non-zero) for the first time, pass
1858                  * it through.
1859                  *
1860                  * For nested:
1861                  * The handling of the MSR bitmap for L2 guests is done in
1862                  * nested_vmx_merge_msr_bitmap. We should not touch the
1863                  * vmcs02.msr_bitmap here since it gets completely overwritten
1864                  * in the merging. We update the vmcs01 here for L1 as well
1865                  * since it will end up touching the MSR anyway now.
1866                  */
1867                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1868                                               MSR_IA32_SPEC_CTRL,
1869                                               MSR_TYPE_RW);
1870                 break;
1871         case MSR_IA32_PRED_CMD:
1872                 if (!msr_info->host_initiated &&
1873                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1874                         return 1;
1875
1876                 if (data & ~PRED_CMD_IBPB)
1877                         return 1;
1878
1879                 if (!data)
1880                         break;
1881
1882                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1883
1884                 /*
1885                  * For non-nested:
1886                  * When it's written (to non-zero) for the first time, pass
1887                  * it through.
1888                  *
1889                  * For nested:
1890                  * The handling of the MSR bitmap for L2 guests is done in
1891                  * nested_vmx_merge_msr_bitmap. We should not touch the
1892                  * vmcs02.msr_bitmap here since it gets completely overwritten
1893                  * in the merging.
1894                  */
1895                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1896                                               MSR_TYPE_W);
1897                 break;
1898         case MSR_IA32_CR_PAT:
1899                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1900                         if (!kvm_pat_valid(data))
1901                                 return 1;
1902                         vmcs_write64(GUEST_IA32_PAT, data);
1903                         vcpu->arch.pat = data;
1904                         break;
1905                 }
1906                 ret = kvm_set_msr_common(vcpu, msr_info);
1907                 break;
1908         case MSR_IA32_TSC_ADJUST:
1909                 ret = kvm_set_msr_common(vcpu, msr_info);
1910                 break;
1911         case MSR_IA32_MCG_EXT_CTL:
1912                 if ((!msr_info->host_initiated &&
1913                      !(to_vmx(vcpu)->msr_ia32_feature_control &
1914                        FEATURE_CONTROL_LMCE)) ||
1915                     (data & ~MCG_EXT_CTL_LMCE_EN))
1916                         return 1;
1917                 vcpu->arch.mcg_ext_ctl = data;
1918                 break;
1919         case MSR_IA32_FEATURE_CONTROL:
1920                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
1921                     (to_vmx(vcpu)->msr_ia32_feature_control &
1922                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
1923                         return 1;
1924                 vmx->msr_ia32_feature_control = data;
1925                 if (msr_info->host_initiated && data == 0)
1926                         vmx_leave_nested(vcpu);
1927                 break;
1928         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1929                 if (!msr_info->host_initiated)
1930                         return 1; /* they are read-only */
1931                 if (!nested_vmx_allowed(vcpu))
1932                         return 1;
1933                 return vmx_set_vmx_msr(vcpu, msr_index, data);
1934         case MSR_IA32_XSS:
1935                 if (!vmx_xsaves_supported())
1936                         return 1;
1937                 /*
1938                  * The only supported bit as of Skylake is bit 8, but
1939                  * it is not supported on KVM.
1940                  */
1941                 if (data != 0)
1942                         return 1;
1943                 vcpu->arch.ia32_xss = data;
1944                 if (vcpu->arch.ia32_xss != host_xss)
1945                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
1946                                 vcpu->arch.ia32_xss, host_xss, false);
1947                 else
1948                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
1949                 break;
1950         case MSR_IA32_RTIT_CTL:
1951                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1952                         vmx_rtit_ctl_check(vcpu, data) ||
1953                         vmx->nested.vmxon)
1954                         return 1;
1955                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
1956                 vmx->pt_desc.guest.ctl = data;
1957                 pt_update_intercept_for_msr(vmx);
1958                 break;
1959         case MSR_IA32_RTIT_STATUS:
1960                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1961                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1962                         (data & MSR_IA32_RTIT_STATUS_MASK))
1963                         return 1;
1964                 vmx->pt_desc.guest.status = data;
1965                 break;
1966         case MSR_IA32_RTIT_CR3_MATCH:
1967                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1968                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1969                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1970                                                 PT_CAP_cr3_filtering))
1971                         return 1;
1972                 vmx->pt_desc.guest.cr3_match = data;
1973                 break;
1974         case MSR_IA32_RTIT_OUTPUT_BASE:
1975                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1976                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1977                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1978                                         PT_CAP_topa_output) &&
1979                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1980                                         PT_CAP_single_range_output)) ||
1981                         (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
1982                         return 1;
1983                 vmx->pt_desc.guest.output_base = data;
1984                 break;
1985         case MSR_IA32_RTIT_OUTPUT_MASK:
1986                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1987                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1988                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1989                                         PT_CAP_topa_output) &&
1990                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1991                                         PT_CAP_single_range_output)))
1992                         return 1;
1993                 vmx->pt_desc.guest.output_mask = data;
1994                 break;
1995         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1996                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1997                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1998                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1999                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2000                                         PT_CAP_num_address_ranges)))
2001                         return 1;
2002                 if (index % 2)
2003                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2004                 else
2005                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2006                 break;
2007         case MSR_TSC_AUX:
2008                 if (!msr_info->host_initiated &&
2009                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2010                         return 1;
2011                 /* Check reserved bit, higher 32 bits should be zero */
2012                 if ((data >> 32) != 0)
2013                         return 1;
2014                 /* Else, falls through */
2015         default:
2016                 msr = find_msr_entry(vmx, msr_index);
2017                 if (msr) {
2018                         u64 old_msr_data = msr->data;
2019                         msr->data = data;
2020                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2021                                 preempt_disable();
2022                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2023                                                          msr->mask);
2024                                 preempt_enable();
2025                                 if (ret)
2026                                         msr->data = old_msr_data;
2027                         }
2028                         break;
2029                 }
2030                 ret = kvm_set_msr_common(vcpu, msr_info);
2031         }
2032
2033         return ret;
2034 }
2035
2036 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2037 {
2038         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2039         switch (reg) {
2040         case VCPU_REGS_RSP:
2041                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2042                 break;
2043         case VCPU_REGS_RIP:
2044                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2045                 break;
2046         case VCPU_EXREG_PDPTR:
2047                 if (enable_ept)
2048                         ept_save_pdptrs(vcpu);
2049                 break;
2050         default:
2051                 break;
2052         }
2053 }
2054
2055 static __init int cpu_has_kvm_support(void)
2056 {
2057         return cpu_has_vmx();
2058 }
2059
2060 static __init int vmx_disabled_by_bios(void)
2061 {
2062         u64 msr;
2063
2064         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2065         if (msr & FEATURE_CONTROL_LOCKED) {
2066                 /* launched w/ TXT and VMX disabled */
2067                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2068                         && tboot_enabled())
2069                         return 1;
2070                 /* launched w/o TXT and VMX only enabled w/ TXT */
2071                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2072                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2073                         && !tboot_enabled()) {
2074                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2075                                 "activate TXT before enabling KVM\n");
2076                         return 1;
2077                 }
2078                 /* launched w/o TXT and VMX disabled */
2079                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2080                         && !tboot_enabled())
2081                         return 1;
2082         }
2083
2084         return 0;
2085 }
2086
2087 static void kvm_cpu_vmxon(u64 addr)
2088 {
2089         cr4_set_bits(X86_CR4_VMXE);
2090         intel_pt_handle_vmx(1);
2091
2092         asm volatile ("vmxon %0" : : "m"(addr));
2093 }
2094
2095 static int hardware_enable(void)
2096 {
2097         int cpu = raw_smp_processor_id();
2098         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2099         u64 old, test_bits;
2100
2101         if (cr4_read_shadow() & X86_CR4_VMXE)
2102                 return -EBUSY;
2103
2104         /*
2105          * This can happen if we hot-added a CPU but failed to allocate
2106          * VP assist page for it.
2107          */
2108         if (static_branch_unlikely(&enable_evmcs) &&
2109             !hv_get_vp_assist_page(cpu))
2110                 return -EFAULT;
2111
2112         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2113         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2114         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2115
2116         /*
2117          * Now we can enable the vmclear operation in kdump
2118          * since the loaded_vmcss_on_cpu list on this cpu
2119          * has been initialized.
2120          *
2121          * Though the cpu is not in VMX operation now, there
2122          * is no problem to enable the vmclear operation
2123          * for the loaded_vmcss_on_cpu list is empty!
2124          */
2125         crash_enable_local_vmclear(cpu);
2126
2127         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2128
2129         test_bits = FEATURE_CONTROL_LOCKED;
2130         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2131         if (tboot_enabled())
2132                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2133
2134         if ((old & test_bits) != test_bits) {
2135                 /* enable and lock */
2136                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2137         }
2138         kvm_cpu_vmxon(phys_addr);
2139         if (enable_ept)
2140                 ept_sync_global();
2141
2142         return 0;
2143 }
2144
2145 static void vmclear_local_loaded_vmcss(void)
2146 {
2147         int cpu = raw_smp_processor_id();
2148         struct loaded_vmcs *v, *n;
2149
2150         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2151                                  loaded_vmcss_on_cpu_link)
2152                 __loaded_vmcs_clear(v);
2153 }
2154
2155
2156 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2157  * tricks.
2158  */
2159 static void kvm_cpu_vmxoff(void)
2160 {
2161         asm volatile (__ex("vmxoff"));
2162
2163         intel_pt_handle_vmx(0);
2164         cr4_clear_bits(X86_CR4_VMXE);
2165 }
2166
2167 static void hardware_disable(void)
2168 {
2169         vmclear_local_loaded_vmcss();
2170         kvm_cpu_vmxoff();
2171 }
2172
2173 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2174                                       u32 msr, u32 *result)
2175 {
2176         u32 vmx_msr_low, vmx_msr_high;
2177         u32 ctl = ctl_min | ctl_opt;
2178
2179         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2180
2181         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2182         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2183
2184         /* Ensure minimum (required) set of control bits are supported. */
2185         if (ctl_min & ~ctl)
2186                 return -EIO;
2187
2188         *result = ctl;
2189         return 0;
2190 }
2191
2192 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2193                                     struct vmx_capability *vmx_cap)
2194 {
2195         u32 vmx_msr_low, vmx_msr_high;
2196         u32 min, opt, min2, opt2;
2197         u32 _pin_based_exec_control = 0;
2198         u32 _cpu_based_exec_control = 0;
2199         u32 _cpu_based_2nd_exec_control = 0;
2200         u32 _vmexit_control = 0;
2201         u32 _vmentry_control = 0;
2202
2203         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2204         min = CPU_BASED_HLT_EXITING |
2205 #ifdef CONFIG_X86_64
2206               CPU_BASED_CR8_LOAD_EXITING |
2207               CPU_BASED_CR8_STORE_EXITING |
2208 #endif
2209               CPU_BASED_CR3_LOAD_EXITING |
2210               CPU_BASED_CR3_STORE_EXITING |
2211               CPU_BASED_UNCOND_IO_EXITING |
2212               CPU_BASED_MOV_DR_EXITING |
2213               CPU_BASED_USE_TSC_OFFSETING |
2214               CPU_BASED_MWAIT_EXITING |
2215               CPU_BASED_MONITOR_EXITING |
2216               CPU_BASED_INVLPG_EXITING |
2217               CPU_BASED_RDPMC_EXITING;
2218
2219         opt = CPU_BASED_TPR_SHADOW |
2220               CPU_BASED_USE_MSR_BITMAPS |
2221               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2222         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2223                                 &_cpu_based_exec_control) < 0)
2224                 return -EIO;
2225 #ifdef CONFIG_X86_64
2226         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2227                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2228                                            ~CPU_BASED_CR8_STORE_EXITING;
2229 #endif
2230         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2231                 min2 = 0;
2232                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2233                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2234                         SECONDARY_EXEC_WBINVD_EXITING |
2235                         SECONDARY_EXEC_ENABLE_VPID |
2236                         SECONDARY_EXEC_ENABLE_EPT |
2237                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2238                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2239                         SECONDARY_EXEC_DESC |
2240                         SECONDARY_EXEC_RDTSCP |
2241                         SECONDARY_EXEC_ENABLE_INVPCID |
2242                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2243                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2244                         SECONDARY_EXEC_SHADOW_VMCS |
2245                         SECONDARY_EXEC_XSAVES |
2246                         SECONDARY_EXEC_RDSEED_EXITING |
2247                         SECONDARY_EXEC_RDRAND_EXITING |
2248                         SECONDARY_EXEC_ENABLE_PML |
2249                         SECONDARY_EXEC_TSC_SCALING |
2250                         SECONDARY_EXEC_PT_USE_GPA |
2251                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2252                         SECONDARY_EXEC_ENABLE_VMFUNC |
2253                         SECONDARY_EXEC_ENCLS_EXITING;
2254                 if (adjust_vmx_controls(min2, opt2,
2255                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2256                                         &_cpu_based_2nd_exec_control) < 0)
2257                         return -EIO;
2258         }
2259 #ifndef CONFIG_X86_64
2260         if (!(_cpu_based_2nd_exec_control &
2261                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2262                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2263 #endif
2264
2265         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2266                 _cpu_based_2nd_exec_control &= ~(
2267                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2268                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2269                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2270
2271         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2272                 &vmx_cap->ept, &vmx_cap->vpid);
2273
2274         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2275                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2276                    enabled */
2277                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2278                                              CPU_BASED_CR3_STORE_EXITING |
2279                                              CPU_BASED_INVLPG_EXITING);
2280         } else if (vmx_cap->ept) {
2281                 vmx_cap->ept = 0;
2282                 pr_warn_once("EPT CAP should not exist if not support "
2283                                 "1-setting enable EPT VM-execution control\n");
2284         }
2285         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2286                 vmx_cap->vpid) {
2287                 vmx_cap->vpid = 0;
2288                 pr_warn_once("VPID CAP should not exist if not support "
2289                                 "1-setting enable VPID VM-execution control\n");
2290         }
2291
2292         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2293 #ifdef CONFIG_X86_64
2294         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2295 #endif
2296         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2297               VM_EXIT_LOAD_IA32_PAT |
2298               VM_EXIT_LOAD_IA32_EFER |
2299               VM_EXIT_CLEAR_BNDCFGS |
2300               VM_EXIT_PT_CONCEAL_PIP |
2301               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2302         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2303                                 &_vmexit_control) < 0)
2304                 return -EIO;
2305
2306         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2307         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2308                  PIN_BASED_VMX_PREEMPTION_TIMER;
2309         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2310                                 &_pin_based_exec_control) < 0)
2311                 return -EIO;
2312
2313         if (cpu_has_broken_vmx_preemption_timer())
2314                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2315         if (!(_cpu_based_2nd_exec_control &
2316                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2317                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2318
2319         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2320         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2321               VM_ENTRY_LOAD_IA32_PAT |
2322               VM_ENTRY_LOAD_IA32_EFER |
2323               VM_ENTRY_LOAD_BNDCFGS |
2324               VM_ENTRY_PT_CONCEAL_PIP |
2325               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2326         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2327                                 &_vmentry_control) < 0)
2328                 return -EIO;
2329
2330         /*
2331          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2332          * can't be used due to an errata where VM Exit may incorrectly clear
2333          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2334          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2335          */
2336         if (boot_cpu_data.x86 == 0x6) {
2337                 switch (boot_cpu_data.x86_model) {
2338                 case 26: /* AAK155 */
2339                 case 30: /* AAP115 */
2340                 case 37: /* AAT100 */
2341                 case 44: /* BC86,AAY89,BD102 */
2342                 case 46: /* BA97 */
2343                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2344                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2345                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2346                                         "does not work properly. Using workaround\n");
2347                         break;
2348                 default:
2349                         break;
2350                 }
2351         }
2352
2353
2354         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2355
2356         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2357         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2358                 return -EIO;
2359
2360 #ifdef CONFIG_X86_64
2361         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2362         if (vmx_msr_high & (1u<<16))
2363                 return -EIO;
2364 #endif
2365
2366         /* Require Write-Back (WB) memory type for VMCS accesses. */
2367         if (((vmx_msr_high >> 18) & 15) != 6)
2368                 return -EIO;
2369
2370         vmcs_conf->size = vmx_msr_high & 0x1fff;
2371         vmcs_conf->order = get_order(vmcs_conf->size);
2372         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2373
2374         vmcs_conf->revision_id = vmx_msr_low;
2375
2376         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2377         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2378         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2379         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2380         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2381
2382         if (static_branch_unlikely(&enable_evmcs))
2383                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2384
2385         return 0;
2386 }
2387
2388 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2389 {
2390         int node = cpu_to_node(cpu);
2391         struct page *pages;
2392         struct vmcs *vmcs;
2393
2394         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2395         if (!pages)
2396                 return NULL;
2397         vmcs = page_address(pages);
2398         memset(vmcs, 0, vmcs_config.size);
2399
2400         /* KVM supports Enlightened VMCS v1 only */
2401         if (static_branch_unlikely(&enable_evmcs))
2402                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2403         else
2404                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2405
2406         if (shadow)
2407                 vmcs->hdr.shadow_vmcs = 1;
2408         return vmcs;
2409 }
2410
2411 void free_vmcs(struct vmcs *vmcs)
2412 {
2413         free_pages((unsigned long)vmcs, vmcs_config.order);
2414 }
2415
2416 /*
2417  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2418  */
2419 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2420 {
2421         if (!loaded_vmcs->vmcs)
2422                 return;
2423         loaded_vmcs_clear(loaded_vmcs);
2424         free_vmcs(loaded_vmcs->vmcs);
2425         loaded_vmcs->vmcs = NULL;
2426         if (loaded_vmcs->msr_bitmap)
2427                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2428         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2429 }
2430
2431 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2432 {
2433         loaded_vmcs->vmcs = alloc_vmcs(false);
2434         if (!loaded_vmcs->vmcs)
2435                 return -ENOMEM;
2436
2437         loaded_vmcs->shadow_vmcs = NULL;
2438         loaded_vmcs_init(loaded_vmcs);
2439
2440         if (cpu_has_vmx_msr_bitmap()) {
2441                 loaded_vmcs->msr_bitmap = (unsigned long *)
2442                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2443                 if (!loaded_vmcs->msr_bitmap)
2444                         goto out_vmcs;
2445                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2446
2447                 if (IS_ENABLED(CONFIG_HYPERV) &&
2448                     static_branch_unlikely(&enable_evmcs) &&
2449                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2450                         struct hv_enlightened_vmcs *evmcs =
2451                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2452
2453                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2454                 }
2455         }
2456
2457         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2458
2459         return 0;
2460
2461 out_vmcs:
2462         free_loaded_vmcs(loaded_vmcs);
2463         return -ENOMEM;
2464 }
2465
2466 static void free_kvm_area(void)
2467 {
2468         int cpu;
2469
2470         for_each_possible_cpu(cpu) {
2471                 free_vmcs(per_cpu(vmxarea, cpu));
2472                 per_cpu(vmxarea, cpu) = NULL;
2473         }
2474 }
2475
2476 static __init int alloc_kvm_area(void)
2477 {
2478         int cpu;
2479
2480         for_each_possible_cpu(cpu) {
2481                 struct vmcs *vmcs;
2482
2483                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2484                 if (!vmcs) {
2485                         free_kvm_area();
2486                         return -ENOMEM;
2487                 }
2488
2489                 /*
2490                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2491                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2492                  * revision_id reported by MSR_IA32_VMX_BASIC.
2493                  *
2494                  * However, even though not explicitly documented by
2495                  * TLFS, VMXArea passed as VMXON argument should
2496                  * still be marked with revision_id reported by
2497                  * physical CPU.
2498                  */
2499                 if (static_branch_unlikely(&enable_evmcs))
2500                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2501
2502                 per_cpu(vmxarea, cpu) = vmcs;
2503         }
2504         return 0;
2505 }
2506
2507 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2508                 struct kvm_segment *save)
2509 {
2510         if (!emulate_invalid_guest_state) {
2511                 /*
2512                  * CS and SS RPL should be equal during guest entry according
2513                  * to VMX spec, but in reality it is not always so. Since vcpu
2514                  * is in the middle of the transition from real mode to
2515                  * protected mode it is safe to assume that RPL 0 is a good
2516                  * default value.
2517                  */
2518                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2519                         save->selector &= ~SEGMENT_RPL_MASK;
2520                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2521                 save->s = 1;
2522         }
2523         vmx_set_segment(vcpu, save, seg);
2524 }
2525
2526 static void enter_pmode(struct kvm_vcpu *vcpu)
2527 {
2528         unsigned long flags;
2529         struct vcpu_vmx *vmx = to_vmx(vcpu);
2530
2531         /*
2532          * Update real mode segment cache. It may be not up-to-date if sement
2533          * register was written while vcpu was in a guest mode.
2534          */
2535         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2536         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2537         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2538         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2539         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2540         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2541
2542         vmx->rmode.vm86_active = 0;
2543
2544         vmx_segment_cache_clear(vmx);
2545
2546         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2547
2548         flags = vmcs_readl(GUEST_RFLAGS);
2549         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2550         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2551         vmcs_writel(GUEST_RFLAGS, flags);
2552
2553         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2554                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2555
2556         update_exception_bitmap(vcpu);
2557
2558         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2559         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2560         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2561         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2562         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2563         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2564 }
2565
2566 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2567 {
2568         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2569         struct kvm_segment var = *save;
2570
2571         var.dpl = 0x3;
2572         if (seg == VCPU_SREG_CS)
2573                 var.type = 0x3;
2574
2575         if (!emulate_invalid_guest_state) {
2576                 var.selector = var.base >> 4;
2577                 var.base = var.base & 0xffff0;
2578                 var.limit = 0xffff;
2579                 var.g = 0;
2580                 var.db = 0;
2581                 var.present = 1;
2582                 var.s = 1;
2583                 var.l = 0;
2584                 var.unusable = 0;
2585                 var.type = 0x3;
2586                 var.avl = 0;
2587                 if (save->base & 0xf)
2588                         printk_once(KERN_WARNING "kvm: segment base is not "
2589                                         "paragraph aligned when entering "
2590                                         "protected mode (seg=%d)", seg);
2591         }
2592
2593         vmcs_write16(sf->selector, var.selector);
2594         vmcs_writel(sf->base, var.base);
2595         vmcs_write32(sf->limit, var.limit);
2596         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2597 }
2598
2599 static void enter_rmode(struct kvm_vcpu *vcpu)
2600 {
2601         unsigned long flags;
2602         struct vcpu_vmx *vmx = to_vmx(vcpu);
2603         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2604
2605         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2606         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2607         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2608         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2609         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2610         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2611         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2612
2613         vmx->rmode.vm86_active = 1;
2614
2615         /*
2616          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2617          * vcpu. Warn the user that an update is overdue.
2618          */
2619         if (!kvm_vmx->tss_addr)
2620                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2621                              "called before entering vcpu\n");
2622
2623         vmx_segment_cache_clear(vmx);
2624
2625         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2626         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2627         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2628
2629         flags = vmcs_readl(GUEST_RFLAGS);
2630         vmx->rmode.save_rflags = flags;
2631
2632         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2633
2634         vmcs_writel(GUEST_RFLAGS, flags);
2635         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2636         update_exception_bitmap(vcpu);
2637
2638         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2639         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2640         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2641         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2642         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2643         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2644
2645         kvm_mmu_reset_context(vcpu);
2646 }
2647
2648 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2649 {
2650         struct vcpu_vmx *vmx = to_vmx(vcpu);
2651         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2652
2653         if (!msr)
2654                 return;
2655
2656         vcpu->arch.efer = efer;
2657         if (efer & EFER_LMA) {
2658                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2659                 msr->data = efer;
2660         } else {
2661                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2662
2663                 msr->data = efer & ~EFER_LME;
2664         }
2665         setup_msrs(vmx);
2666 }
2667
2668 #ifdef CONFIG_X86_64
2669
2670 static void enter_lmode(struct kvm_vcpu *vcpu)
2671 {
2672         u32 guest_tr_ar;
2673
2674         vmx_segment_cache_clear(to_vmx(vcpu));
2675
2676         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2677         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2678                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2679                                      __func__);
2680                 vmcs_write32(GUEST_TR_AR_BYTES,
2681                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2682                              | VMX_AR_TYPE_BUSY_64_TSS);
2683         }
2684         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2685 }
2686
2687 static void exit_lmode(struct kvm_vcpu *vcpu)
2688 {
2689         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2690         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2691 }
2692
2693 #endif
2694
2695 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2696 {
2697         int vpid = to_vmx(vcpu)->vpid;
2698
2699         if (!vpid_sync_vcpu_addr(vpid, addr))
2700                 vpid_sync_context(vpid);
2701
2702         /*
2703          * If VPIDs are not supported or enabled, then the above is a no-op.
2704          * But we don't really need a TLB flush in that case anyway, because
2705          * each VM entry/exit includes an implicit flush when VPID is 0.
2706          */
2707 }
2708
2709 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2710 {
2711         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2712
2713         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2714         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2715 }
2716
2717 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2718 {
2719         if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2720                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2721         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2722 }
2723
2724 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2725 {
2726         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2727
2728         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2729         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2730 }
2731
2732 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2733 {
2734         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2735
2736         if (!test_bit(VCPU_EXREG_PDPTR,
2737                       (unsigned long *)&vcpu->arch.regs_dirty))
2738                 return;
2739
2740         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2741                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2742                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2743                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2744                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2745         }
2746 }
2747
2748 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2749 {
2750         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2751
2752         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2753                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2754                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2755                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2756                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2757         }
2758
2759         __set_bit(VCPU_EXREG_PDPTR,
2760                   (unsigned long *)&vcpu->arch.regs_avail);
2761         __set_bit(VCPU_EXREG_PDPTR,
2762                   (unsigned long *)&vcpu->arch.regs_dirty);
2763 }
2764
2765 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2766                                         unsigned long cr0,
2767                                         struct kvm_vcpu *vcpu)
2768 {
2769         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2770                 vmx_decache_cr3(vcpu);
2771         if (!(cr0 & X86_CR0_PG)) {
2772                 /* From paging/starting to nonpaging */
2773                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2774                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2775                              (CPU_BASED_CR3_LOAD_EXITING |
2776                               CPU_BASED_CR3_STORE_EXITING));
2777                 vcpu->arch.cr0 = cr0;
2778                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2779         } else if (!is_paging(vcpu)) {
2780                 /* From nonpaging to paging */
2781                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2782                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2783                              ~(CPU_BASED_CR3_LOAD_EXITING |
2784                                CPU_BASED_CR3_STORE_EXITING));
2785                 vcpu->arch.cr0 = cr0;
2786                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2787         }
2788
2789         if (!(cr0 & X86_CR0_WP))
2790                 *hw_cr0 &= ~X86_CR0_WP;
2791 }
2792
2793 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2794 {
2795         struct vcpu_vmx *vmx = to_vmx(vcpu);
2796         unsigned long hw_cr0;
2797
2798         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2799         if (enable_unrestricted_guest)
2800                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2801         else {
2802                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2803
2804                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2805                         enter_pmode(vcpu);
2806
2807                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2808                         enter_rmode(vcpu);
2809         }
2810
2811 #ifdef CONFIG_X86_64
2812         if (vcpu->arch.efer & EFER_LME) {
2813                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2814                         enter_lmode(vcpu);
2815                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2816                         exit_lmode(vcpu);
2817         }
2818 #endif
2819
2820         if (enable_ept && !enable_unrestricted_guest)
2821                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2822
2823         vmcs_writel(CR0_READ_SHADOW, cr0);
2824         vmcs_writel(GUEST_CR0, hw_cr0);
2825         vcpu->arch.cr0 = cr0;
2826
2827         /* depends on vcpu->arch.cr0 to be set to a new value */
2828         vmx->emulation_required = emulation_required(vcpu);
2829 }
2830
2831 static int get_ept_level(struct kvm_vcpu *vcpu)
2832 {
2833         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2834                 return 5;
2835         return 4;
2836 }
2837
2838 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2839 {
2840         u64 eptp = VMX_EPTP_MT_WB;
2841
2842         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2843
2844         if (enable_ept_ad_bits &&
2845             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2846                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2847         eptp |= (root_hpa & PAGE_MASK);
2848
2849         return eptp;
2850 }
2851
2852 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2853 {
2854         struct kvm *kvm = vcpu->kvm;
2855         unsigned long guest_cr3;
2856         u64 eptp;
2857
2858         guest_cr3 = cr3;
2859         if (enable_ept) {
2860                 eptp = construct_eptp(vcpu, cr3);
2861                 vmcs_write64(EPT_POINTER, eptp);
2862
2863                 if (kvm_x86_ops->tlb_remote_flush) {
2864                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2865                         to_vmx(vcpu)->ept_pointer = eptp;
2866                         to_kvm_vmx(kvm)->ept_pointers_match
2867                                 = EPT_POINTERS_CHECK;
2868                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2869                 }
2870
2871                 if (enable_unrestricted_guest || is_paging(vcpu) ||
2872                     is_guest_mode(vcpu))
2873                         guest_cr3 = kvm_read_cr3(vcpu);
2874                 else
2875                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2876                 ept_load_pdptrs(vcpu);
2877         }
2878
2879         vmcs_writel(GUEST_CR3, guest_cr3);
2880 }
2881
2882 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2883 {
2884         /*
2885          * Pass through host's Machine Check Enable value to hw_cr4, which
2886          * is in force while we are in guest mode.  Do not let guests control
2887          * this bit, even if host CR4.MCE == 0.
2888          */
2889         unsigned long hw_cr4;
2890
2891         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2892         if (enable_unrestricted_guest)
2893                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2894         else if (to_vmx(vcpu)->rmode.vm86_active)
2895                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2896         else
2897                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2898
2899         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2900                 if (cr4 & X86_CR4_UMIP) {
2901                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
2902                                 SECONDARY_EXEC_DESC);
2903                         hw_cr4 &= ~X86_CR4_UMIP;
2904                 } else if (!is_guest_mode(vcpu) ||
2905                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
2906                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2907                                         SECONDARY_EXEC_DESC);
2908         }
2909
2910         if (cr4 & X86_CR4_VMXE) {
2911                 /*
2912                  * To use VMXON (and later other VMX instructions), a guest
2913                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
2914                  * So basically the check on whether to allow nested VMX
2915                  * is here.  We operate under the default treatment of SMM,
2916                  * so VMX cannot be enabled under SMM.
2917                  */
2918                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
2919                         return 1;
2920         }
2921
2922         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
2923                 return 1;
2924
2925         vcpu->arch.cr4 = cr4;
2926
2927         if (!enable_unrestricted_guest) {
2928                 if (enable_ept) {
2929                         if (!is_paging(vcpu)) {
2930                                 hw_cr4 &= ~X86_CR4_PAE;
2931                                 hw_cr4 |= X86_CR4_PSE;
2932                         } else if (!(cr4 & X86_CR4_PAE)) {
2933                                 hw_cr4 &= ~X86_CR4_PAE;
2934                         }
2935                 }
2936
2937                 /*
2938                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
2939                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
2940                  * to be manually disabled when guest switches to non-paging
2941                  * mode.
2942                  *
2943                  * If !enable_unrestricted_guest, the CPU is always running
2944                  * with CR0.PG=1 and CR4 needs to be modified.
2945                  * If enable_unrestricted_guest, the CPU automatically
2946                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
2947                  */
2948                 if (!is_paging(vcpu))
2949                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
2950         }
2951
2952         vmcs_writel(CR4_READ_SHADOW, cr4);
2953         vmcs_writel(GUEST_CR4, hw_cr4);
2954         return 0;
2955 }
2956
2957 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
2958 {
2959         struct vcpu_vmx *vmx = to_vmx(vcpu);
2960         u32 ar;
2961
2962         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
2963                 *var = vmx->rmode.segs[seg];
2964                 if (seg == VCPU_SREG_TR
2965                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2966                         return;
2967                 var->base = vmx_read_guest_seg_base(vmx, seg);
2968                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2969                 return;
2970         }
2971         var->base = vmx_read_guest_seg_base(vmx, seg);
2972         var->limit = vmx_read_guest_seg_limit(vmx, seg);
2973         var->selector = vmx_read_guest_seg_selector(vmx, seg);
2974         ar = vmx_read_guest_seg_ar(vmx, seg);
2975         var->unusable = (ar >> 16) & 1;
2976         var->type = ar & 15;
2977         var->s = (ar >> 4) & 1;
2978         var->dpl = (ar >> 5) & 3;
2979         /*
2980          * Some userspaces do not preserve unusable property. Since usable
2981          * segment has to be present according to VMX spec we can use present
2982          * property to amend userspace bug by making unusable segment always
2983          * nonpresent. vmx_segment_access_rights() already marks nonpresent
2984          * segment as unusable.
2985          */
2986         var->present = !var->unusable;
2987         var->avl = (ar >> 12) & 1;
2988         var->l = (ar >> 13) & 1;
2989         var->db = (ar >> 14) & 1;
2990         var->g = (ar >> 15) & 1;
2991 }
2992
2993 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2994 {
2995         struct kvm_segment s;
2996
2997         if (to_vmx(vcpu)->rmode.vm86_active) {
2998                 vmx_get_segment(vcpu, &s, seg);
2999                 return s.base;
3000         }
3001         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3002 }
3003
3004 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3005 {
3006         struct vcpu_vmx *vmx = to_vmx(vcpu);
3007
3008         if (unlikely(vmx->rmode.vm86_active))
3009                 return 0;
3010         else {
3011                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3012                 return VMX_AR_DPL(ar);
3013         }
3014 }
3015
3016 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3017 {
3018         u32 ar;
3019
3020         if (var->unusable || !var->present)
3021                 ar = 1 << 16;
3022         else {
3023                 ar = var->type & 15;
3024                 ar |= (var->s & 1) << 4;
3025                 ar |= (var->dpl & 3) << 5;
3026                 ar |= (var->present & 1) << 7;
3027                 ar |= (var->avl & 1) << 12;
3028                 ar |= (var->l & 1) << 13;
3029                 ar |= (var->db & 1) << 14;
3030                 ar |= (var->g & 1) << 15;
3031         }
3032
3033         return ar;
3034 }
3035
3036 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3037 {
3038         struct vcpu_vmx *vmx = to_vmx(vcpu);
3039         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3040
3041         vmx_segment_cache_clear(vmx);
3042
3043         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3044                 vmx->rmode.segs[seg] = *var;
3045                 if (seg == VCPU_SREG_TR)
3046                         vmcs_write16(sf->selector, var->selector);
3047                 else if (var->s)
3048                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3049                 goto out;
3050         }
3051
3052         vmcs_writel(sf->base, var->base);
3053         vmcs_write32(sf->limit, var->limit);
3054         vmcs_write16(sf->selector, var->selector);
3055
3056         /*
3057          *   Fix the "Accessed" bit in AR field of segment registers for older
3058          * qemu binaries.
3059          *   IA32 arch specifies that at the time of processor reset the
3060          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3061          * is setting it to 0 in the userland code. This causes invalid guest
3062          * state vmexit when "unrestricted guest" mode is turned on.
3063          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3064          * tree. Newer qemu binaries with that qemu fix would not need this
3065          * kvm hack.
3066          */
3067         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3068                 var->type |= 0x1; /* Accessed */
3069
3070         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3071
3072 out:
3073         vmx->emulation_required = emulation_required(vcpu);
3074 }
3075
3076 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3077 {
3078         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3079
3080         *db = (ar >> 14) & 1;
3081         *l = (ar >> 13) & 1;
3082 }
3083
3084 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3085 {
3086         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3087         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3088 }
3089
3090 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3091 {
3092         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3093         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3094 }
3095
3096 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3097 {
3098         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3099         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3100 }
3101
3102 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3103 {
3104         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3105         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3106 }
3107
3108 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3109 {
3110         struct kvm_segment var;
3111         u32 ar;
3112
3113         vmx_get_segment(vcpu, &var, seg);
3114         var.dpl = 0x3;
3115         if (seg == VCPU_SREG_CS)
3116                 var.type = 0x3;
3117         ar = vmx_segment_access_rights(&var);
3118
3119         if (var.base != (var.selector << 4))
3120                 return false;
3121         if (var.limit != 0xffff)
3122                 return false;
3123         if (ar != 0xf3)
3124                 return false;
3125
3126         return true;
3127 }
3128
3129 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3130 {
3131         struct kvm_segment cs;
3132         unsigned int cs_rpl;
3133
3134         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3135         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3136
3137         if (cs.unusable)
3138                 return false;
3139         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3140                 return false;
3141         if (!cs.s)
3142                 return false;
3143         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3144                 if (cs.dpl > cs_rpl)
3145                         return false;
3146         } else {
3147                 if (cs.dpl != cs_rpl)
3148                         return false;
3149         }
3150         if (!cs.present)
3151                 return false;
3152
3153         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3154         return true;
3155 }
3156
3157 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3158 {
3159         struct kvm_segment ss;
3160         unsigned int ss_rpl;
3161
3162         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3163         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3164
3165         if (ss.unusable)
3166                 return true;
3167         if (ss.type != 3 && ss.type != 7)
3168                 return false;
3169         if (!ss.s)
3170                 return false;
3171         if (ss.dpl != ss_rpl) /* DPL != RPL */
3172                 return false;
3173         if (!ss.present)
3174                 return false;
3175
3176         return true;
3177 }
3178
3179 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3180 {
3181         struct kvm_segment var;
3182         unsigned int rpl;
3183
3184         vmx_get_segment(vcpu, &var, seg);
3185         rpl = var.selector & SEGMENT_RPL_MASK;
3186
3187         if (var.unusable)
3188                 return true;
3189         if (!var.s)
3190                 return false;
3191         if (!var.present)
3192                 return false;
3193         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3194                 if (var.dpl < rpl) /* DPL < RPL */
3195                         return false;
3196         }
3197
3198         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3199          * rights flags
3200          */
3201         return true;
3202 }
3203
3204 static bool tr_valid(struct kvm_vcpu *vcpu)
3205 {
3206         struct kvm_segment tr;
3207
3208         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3209
3210         if (tr.unusable)
3211                 return false;
3212         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3213                 return false;
3214         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3215                 return false;
3216         if (!tr.present)
3217                 return false;
3218
3219         return true;
3220 }
3221
3222 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3223 {
3224         struct kvm_segment ldtr;
3225
3226         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3227
3228         if (ldtr.unusable)
3229                 return true;
3230         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3231                 return false;
3232         if (ldtr.type != 2)
3233                 return false;
3234         if (!ldtr.present)
3235                 return false;
3236
3237         return true;
3238 }
3239
3240 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3241 {
3242         struct kvm_segment cs, ss;
3243
3244         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3245         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3246
3247         return ((cs.selector & SEGMENT_RPL_MASK) ==
3248                  (ss.selector & SEGMENT_RPL_MASK));
3249 }
3250
3251 /*
3252  * Check if guest state is valid. Returns true if valid, false if
3253  * not.
3254  * We assume that registers are always usable
3255  */
3256 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3257 {
3258         if (enable_unrestricted_guest)
3259                 return true;
3260
3261         /* real mode guest state checks */
3262         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3263                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3264                         return false;
3265                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3266                         return false;
3267                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3268                         return false;
3269                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3270                         return false;
3271                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3272                         return false;
3273                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3274                         return false;
3275         } else {
3276         /* protected mode guest state checks */
3277                 if (!cs_ss_rpl_check(vcpu))
3278                         return false;
3279                 if (!code_segment_valid(vcpu))
3280                         return false;
3281                 if (!stack_segment_valid(vcpu))
3282                         return false;
3283                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3284                         return false;
3285                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3286                         return false;
3287                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3288                         return false;
3289                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3290                         return false;
3291                 if (!tr_valid(vcpu))
3292                         return false;
3293                 if (!ldtr_valid(vcpu))
3294                         return false;
3295         }
3296         /* TODO:
3297          * - Add checks on RIP
3298          * - Add checks on RFLAGS
3299          */
3300
3301         return true;
3302 }
3303
3304 static int init_rmode_tss(struct kvm *kvm)
3305 {
3306         gfn_t fn;
3307         u16 data = 0;
3308         int idx, r;
3309
3310         idx = srcu_read_lock(&kvm->srcu);
3311         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3312         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3313         if (r < 0)
3314                 goto out;
3315         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3316         r = kvm_write_guest_page(kvm, fn++, &data,
3317                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3318         if (r < 0)
3319                 goto out;
3320         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3321         if (r < 0)
3322                 goto out;
3323         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3324         if (r < 0)
3325                 goto out;
3326         data = ~0;
3327         r = kvm_write_guest_page(kvm, fn, &data,
3328                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3329                                  sizeof(u8));
3330 out:
3331         srcu_read_unlock(&kvm->srcu, idx);
3332         return r;
3333 }
3334
3335 static int init_rmode_identity_map(struct kvm *kvm)
3336 {
3337         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3338         int i, idx, r = 0;
3339         kvm_pfn_t identity_map_pfn;
3340         u32 tmp;
3341
3342         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3343         mutex_lock(&kvm->slots_lock);
3344
3345         if (likely(kvm_vmx->ept_identity_pagetable_done))
3346                 goto out2;
3347
3348         if (!kvm_vmx->ept_identity_map_addr)
3349                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3350         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3351
3352         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3353                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3354         if (r < 0)
3355                 goto out2;
3356
3357         idx = srcu_read_lock(&kvm->srcu);
3358         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3359         if (r < 0)
3360                 goto out;
3361         /* Set up identity-mapping pagetable for EPT in real mode */
3362         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3363                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3364                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3365                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3366                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3367                 if (r < 0)
3368                         goto out;
3369         }
3370         kvm_vmx->ept_identity_pagetable_done = true;
3371
3372 out:
3373         srcu_read_unlock(&kvm->srcu, idx);
3374
3375 out2:
3376         mutex_unlock(&kvm->slots_lock);
3377         return r;
3378 }
3379
3380 static void seg_setup(int seg)
3381 {
3382         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3383         unsigned int ar;
3384
3385         vmcs_write16(sf->selector, 0);
3386         vmcs_writel(sf->base, 0);
3387         vmcs_write32(sf->limit, 0xffff);
3388         ar = 0x93;
3389         if (seg == VCPU_SREG_CS)
3390                 ar |= 0x08; /* code segment */
3391
3392         vmcs_write32(sf->ar_bytes, ar);
3393 }
3394
3395 static int alloc_apic_access_page(struct kvm *kvm)
3396 {
3397         struct page *page;
3398         int r = 0;
3399
3400         mutex_lock(&kvm->slots_lock);
3401         if (kvm->arch.apic_access_page_done)
3402                 goto out;
3403         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3404                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3405         if (r)
3406                 goto out;
3407
3408         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3409         if (is_error_page(page)) {
3410                 r = -EFAULT;
3411                 goto out;
3412         }
3413
3414         /*
3415          * Do not pin the page in memory, so that memory hot-unplug
3416          * is able to migrate it.
3417          */
3418         put_page(page);
3419         kvm->arch.apic_access_page_done = true;
3420 out:
3421         mutex_unlock(&kvm->slots_lock);
3422         return r;
3423 }
3424
3425 int allocate_vpid(void)
3426 {
3427         int vpid;
3428
3429         if (!enable_vpid)
3430                 return 0;
3431         spin_lock(&vmx_vpid_lock);
3432         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3433         if (vpid < VMX_NR_VPIDS)
3434                 __set_bit(vpid, vmx_vpid_bitmap);
3435         else
3436                 vpid = 0;
3437         spin_unlock(&vmx_vpid_lock);
3438         return vpid;
3439 }
3440
3441 void free_vpid(int vpid)
3442 {
3443         if (!enable_vpid || vpid == 0)
3444                 return;
3445         spin_lock(&vmx_vpid_lock);
3446         __clear_bit(vpid, vmx_vpid_bitmap);
3447         spin_unlock(&vmx_vpid_lock);
3448 }
3449
3450 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3451                                                           u32 msr, int type)
3452 {
3453         int f = sizeof(unsigned long);
3454
3455         if (!cpu_has_vmx_msr_bitmap())
3456                 return;
3457
3458         if (static_branch_unlikely(&enable_evmcs))
3459                 evmcs_touch_msr_bitmap();
3460
3461         /*
3462          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3463          * have the write-low and read-high bitmap offsets the wrong way round.
3464          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3465          */
3466         if (msr <= 0x1fff) {
3467                 if (type & MSR_TYPE_R)
3468                         /* read-low */
3469                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3470
3471                 if (type & MSR_TYPE_W)
3472                         /* write-low */
3473                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3474
3475         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3476                 msr &= 0x1fff;
3477                 if (type & MSR_TYPE_R)
3478                         /* read-high */
3479                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3480
3481                 if (type & MSR_TYPE_W)
3482                         /* write-high */
3483                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3484
3485         }
3486 }
3487
3488 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3489                                                          u32 msr, int type)
3490 {
3491         int f = sizeof(unsigned long);
3492
3493         if (!cpu_has_vmx_msr_bitmap())
3494                 return;
3495
3496         if (static_branch_unlikely(&enable_evmcs))
3497                 evmcs_touch_msr_bitmap();
3498
3499         /*
3500          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3501          * have the write-low and read-high bitmap offsets the wrong way round.
3502          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3503          */
3504         if (msr <= 0x1fff) {
3505                 if (type & MSR_TYPE_R)
3506                         /* read-low */
3507                         __set_bit(msr, msr_bitmap + 0x000 / f);
3508
3509                 if (type & MSR_TYPE_W)
3510                         /* write-low */
3511                         __set_bit(msr, msr_bitmap + 0x800 / f);
3512
3513         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3514                 msr &= 0x1fff;
3515                 if (type & MSR_TYPE_R)
3516                         /* read-high */
3517                         __set_bit(msr, msr_bitmap + 0x400 / f);
3518
3519                 if (type & MSR_TYPE_W)
3520                         /* write-high */
3521                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3522
3523         }
3524 }
3525
3526 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3527                                                       u32 msr, int type, bool value)
3528 {
3529         if (value)
3530                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3531         else
3532                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3533 }
3534
3535 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3536 {
3537         u8 mode = 0;
3538
3539         if (cpu_has_secondary_exec_ctrls() &&
3540             (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
3541              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3542                 mode |= MSR_BITMAP_MODE_X2APIC;
3543                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3544                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3545         }
3546
3547         return mode;
3548 }
3549
3550 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3551                                          u8 mode)
3552 {
3553         int msr;
3554
3555         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3556                 unsigned word = msr / BITS_PER_LONG;
3557                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3558                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3559         }
3560
3561         if (mode & MSR_BITMAP_MODE_X2APIC) {
3562                 /*
3563                  * TPR reads and writes can be virtualized even if virtual interrupt
3564                  * delivery is not in use.
3565                  */
3566                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3567                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3568                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3569                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3570                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3571                 }
3572         }
3573 }
3574
3575 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3576 {
3577         struct vcpu_vmx *vmx = to_vmx(vcpu);
3578         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3579         u8 mode = vmx_msr_bitmap_mode(vcpu);
3580         u8 changed = mode ^ vmx->msr_bitmap_mode;
3581
3582         if (!changed)
3583                 return;
3584
3585         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3586                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3587
3588         vmx->msr_bitmap_mode = mode;
3589 }
3590
3591 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3592 {
3593         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3594         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3595         u32 i;
3596
3597         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3598                                                         MSR_TYPE_RW, flag);
3599         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3600                                                         MSR_TYPE_RW, flag);
3601         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3602                                                         MSR_TYPE_RW, flag);
3603         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3604                                                         MSR_TYPE_RW, flag);
3605         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3606                 vmx_set_intercept_for_msr(msr_bitmap,
3607                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3608                 vmx_set_intercept_for_msr(msr_bitmap,
3609                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3610         }
3611 }
3612
3613 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3614 {
3615         return enable_apicv;
3616 }
3617
3618 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3619 {
3620         struct vcpu_vmx *vmx = to_vmx(vcpu);
3621         void *vapic_page;
3622         u32 vppr;
3623         int rvi;
3624
3625         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3626                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3627                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3628                 return false;
3629
3630         rvi = vmx_get_rvi();
3631
3632         vapic_page = vmx->nested.virtual_apic_map.hva;
3633         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3634
3635         return ((rvi & 0xf0) > (vppr & 0xf0));
3636 }
3637
3638 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3639                                                      bool nested)
3640 {
3641 #ifdef CONFIG_SMP
3642         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3643
3644         if (vcpu->mode == IN_GUEST_MODE) {
3645                 /*
3646                  * The vector of interrupt to be delivered to vcpu had
3647                  * been set in PIR before this function.
3648                  *
3649                  * Following cases will be reached in this block, and
3650                  * we always send a notification event in all cases as
3651                  * explained below.
3652                  *
3653                  * Case 1: vcpu keeps in non-root mode. Sending a
3654                  * notification event posts the interrupt to vcpu.
3655                  *
3656                  * Case 2: vcpu exits to root mode and is still
3657                  * runnable. PIR will be synced to vIRR before the
3658                  * next vcpu entry. Sending a notification event in
3659                  * this case has no effect, as vcpu is not in root
3660                  * mode.
3661                  *
3662                  * Case 3: vcpu exits to root mode and is blocked.
3663                  * vcpu_block() has already synced PIR to vIRR and
3664                  * never blocks vcpu if vIRR is not cleared. Therefore,
3665                  * a blocked vcpu here does not wait for any requested
3666                  * interrupts in PIR, and sending a notification event
3667                  * which has no effect is safe here.
3668                  */
3669
3670                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3671                 return true;
3672         }
3673 #endif
3674         return false;
3675 }
3676
3677 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3678                                                 int vector)
3679 {
3680         struct vcpu_vmx *vmx = to_vmx(vcpu);
3681
3682         if (is_guest_mode(vcpu) &&
3683             vector == vmx->nested.posted_intr_nv) {
3684                 /*
3685                  * If a posted intr is not recognized by hardware,
3686                  * we will accomplish it in the next vmentry.
3687                  */
3688                 vmx->nested.pi_pending = true;
3689                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3690                 /* the PIR and ON have been set by L1. */
3691                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3692                         kvm_vcpu_kick(vcpu);
3693                 return 0;
3694         }
3695         return -1;
3696 }
3697 /*
3698  * Send interrupt to vcpu via posted interrupt way.
3699  * 1. If target vcpu is running(non-root mode), send posted interrupt
3700  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3701  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3702  * interrupt from PIR in next vmentry.
3703  */
3704 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3705 {
3706         struct vcpu_vmx *vmx = to_vmx(vcpu);
3707         int r;
3708
3709         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3710         if (!r)
3711                 return;
3712
3713         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3714                 return;
3715
3716         /* If a previous notification has sent the IPI, nothing to do.  */
3717         if (pi_test_and_set_on(&vmx->pi_desc))
3718                 return;
3719
3720         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3721                 kvm_vcpu_kick(vcpu);
3722 }
3723
3724 /*
3725  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3726  * will not change in the lifetime of the guest.
3727  * Note that host-state that does change is set elsewhere. E.g., host-state
3728  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3729  */
3730 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3731 {
3732         u32 low32, high32;
3733         unsigned long tmpl;
3734         struct desc_ptr dt;
3735         unsigned long cr0, cr3, cr4;
3736
3737         cr0 = read_cr0();
3738         WARN_ON(cr0 & X86_CR0_TS);
3739         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3740
3741         /*
3742          * Save the most likely value for this task's CR3 in the VMCS.
3743          * We can't use __get_current_cr3_fast() because we're not atomic.
3744          */
3745         cr3 = __read_cr3();
3746         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3747         vmx->loaded_vmcs->host_state.cr3 = cr3;
3748
3749         /* Save the most likely value for this task's CR4 in the VMCS. */
3750         cr4 = cr4_read_shadow();
3751         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3752         vmx->loaded_vmcs->host_state.cr4 = cr4;
3753
3754         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3755 #ifdef CONFIG_X86_64
3756         /*
3757          * Load null selectors, so we can avoid reloading them in
3758          * vmx_prepare_switch_to_host(), in case userspace uses
3759          * the null selectors too (the expected case).
3760          */
3761         vmcs_write16(HOST_DS_SELECTOR, 0);
3762         vmcs_write16(HOST_ES_SELECTOR, 0);
3763 #else
3764         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3765         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3766 #endif
3767         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3768         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3769
3770         store_idt(&dt);
3771         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3772         vmx->host_idt_base = dt.address;
3773
3774         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3775
3776         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3777         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3778         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3779         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3780
3781         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3782                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3783                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3784         }
3785
3786         if (cpu_has_load_ia32_efer())
3787                 vmcs_write64(HOST_IA32_EFER, host_efer);
3788 }
3789
3790 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3791 {
3792         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3793         if (enable_ept)
3794                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3795         if (is_guest_mode(&vmx->vcpu))
3796                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3797                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3798         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3799 }
3800
3801 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3802 {
3803         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3804
3805         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3806                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3807
3808         if (!enable_vnmi)
3809                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3810
3811         /* Enable the preemption timer dynamically */
3812         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3813         return pin_based_exec_ctrl;
3814 }
3815
3816 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3817 {
3818         struct vcpu_vmx *vmx = to_vmx(vcpu);
3819
3820         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3821         if (cpu_has_secondary_exec_ctrls()) {
3822                 if (kvm_vcpu_apicv_active(vcpu))
3823                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
3824                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
3825                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3826                 else
3827                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
3828                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3829                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3830         }
3831
3832         if (cpu_has_vmx_msr_bitmap())
3833                 vmx_update_msr_bitmap(vcpu);
3834 }
3835
3836 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3837 {
3838         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3839
3840         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3841                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3842
3843         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3844                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3845 #ifdef CONFIG_X86_64
3846                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3847                                 CPU_BASED_CR8_LOAD_EXITING;
3848 #endif
3849         }
3850         if (!enable_ept)
3851                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3852                                 CPU_BASED_CR3_LOAD_EXITING  |
3853                                 CPU_BASED_INVLPG_EXITING;
3854         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3855                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3856                                 CPU_BASED_MONITOR_EXITING);
3857         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3858                 exec_control &= ~CPU_BASED_HLT_EXITING;
3859         return exec_control;
3860 }
3861
3862
3863 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3864 {
3865         struct kvm_vcpu *vcpu = &vmx->vcpu;
3866
3867         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3868
3869         if (pt_mode == PT_MODE_SYSTEM)
3870                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3871         if (!cpu_need_virtualize_apic_accesses(vcpu))
3872                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3873         if (vmx->vpid == 0)
3874                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3875         if (!enable_ept) {
3876                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3877                 enable_unrestricted_guest = 0;
3878         }
3879         if (!enable_unrestricted_guest)
3880                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3881         if (kvm_pause_in_guest(vmx->vcpu.kvm))
3882                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3883         if (!kvm_vcpu_apicv_active(vcpu))
3884                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3885                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3886         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3887
3888         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3889          * in vmx_set_cr4.  */
3890         exec_control &= ~SECONDARY_EXEC_DESC;
3891
3892         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3893            (handle_vmptrld).
3894            We can NOT enable shadow_vmcs here because we don't have yet
3895            a current VMCS12
3896         */
3897         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3898
3899         if (!enable_pml)
3900                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3901
3902         if (vmx_xsaves_supported()) {
3903                 /* Exposing XSAVES only when XSAVE is exposed */
3904                 bool xsaves_enabled =
3905                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3906                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3907
3908                 if (!xsaves_enabled)
3909                         exec_control &= ~SECONDARY_EXEC_XSAVES;
3910
3911                 if (nested) {
3912                         if (xsaves_enabled)
3913                                 vmx->nested.msrs.secondary_ctls_high |=
3914                                         SECONDARY_EXEC_XSAVES;
3915                         else
3916                                 vmx->nested.msrs.secondary_ctls_high &=
3917                                         ~SECONDARY_EXEC_XSAVES;
3918                 }
3919         }
3920
3921         if (vmx_rdtscp_supported()) {
3922                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
3923                 if (!rdtscp_enabled)
3924                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
3925
3926                 if (nested) {
3927                         if (rdtscp_enabled)
3928                                 vmx->nested.msrs.secondary_ctls_high |=
3929                                         SECONDARY_EXEC_RDTSCP;
3930                         else
3931                                 vmx->nested.msrs.secondary_ctls_high &=
3932                                         ~SECONDARY_EXEC_RDTSCP;
3933                 }
3934         }
3935
3936         if (vmx_invpcid_supported()) {
3937                 /* Exposing INVPCID only when PCID is exposed */
3938                 bool invpcid_enabled =
3939                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
3940                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
3941
3942                 if (!invpcid_enabled) {
3943                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3944                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
3945                 }
3946
3947                 if (nested) {
3948                         if (invpcid_enabled)
3949                                 vmx->nested.msrs.secondary_ctls_high |=
3950                                         SECONDARY_EXEC_ENABLE_INVPCID;
3951                         else
3952                                 vmx->nested.msrs.secondary_ctls_high &=
3953                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
3954                 }
3955         }
3956
3957         if (vmx_rdrand_supported()) {
3958                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
3959                 if (rdrand_enabled)
3960                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
3961
3962                 if (nested) {
3963                         if (rdrand_enabled)
3964                                 vmx->nested.msrs.secondary_ctls_high |=
3965                                         SECONDARY_EXEC_RDRAND_EXITING;
3966                         else
3967                                 vmx->nested.msrs.secondary_ctls_high &=
3968                                         ~SECONDARY_EXEC_RDRAND_EXITING;
3969                 }
3970         }
3971
3972         if (vmx_rdseed_supported()) {
3973                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
3974                 if (rdseed_enabled)
3975                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
3976
3977                 if (nested) {
3978                         if (rdseed_enabled)
3979                                 vmx->nested.msrs.secondary_ctls_high |=
3980                                         SECONDARY_EXEC_RDSEED_EXITING;
3981                         else
3982                                 vmx->nested.msrs.secondary_ctls_high &=
3983                                         ~SECONDARY_EXEC_RDSEED_EXITING;
3984                 }
3985         }
3986
3987         vmx->secondary_exec_control = exec_control;
3988 }
3989
3990 static void ept_set_mmio_spte_mask(void)
3991 {
3992         /*
3993          * EPT Misconfigurations can be generated if the value of bits 2:0
3994          * of an EPT paging-structure entry is 110b (write/execute).
3995          */
3996         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
3997                                    VMX_EPT_MISCONFIG_WX_VALUE);
3998 }
3999
4000 #define VMX_XSS_EXIT_BITMAP 0
4001
4002 /*
4003  * Sets up the vmcs for emulated real mode.
4004  */
4005 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4006 {
4007         int i;
4008
4009         if (nested)
4010                 nested_vmx_vcpu_setup();
4011
4012         if (cpu_has_vmx_msr_bitmap())
4013                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4014
4015         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4016
4017         /* Control */
4018         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4019         vmx->hv_deadline_tsc = -1;
4020
4021         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4022
4023         if (cpu_has_secondary_exec_ctrls()) {
4024                 vmx_compute_secondary_exec_control(vmx);
4025                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4026                              vmx->secondary_exec_control);
4027         }
4028
4029         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4030                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4031                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4032                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4033                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4034
4035                 vmcs_write16(GUEST_INTR_STATUS, 0);
4036
4037                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4038                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4039         }
4040
4041         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4042                 vmcs_write32(PLE_GAP, ple_gap);
4043                 vmx->ple_window = ple_window;
4044                 vmx->ple_window_dirty = true;
4045         }
4046
4047         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4048         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4049         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4050
4051         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4052         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4053         vmx_set_constant_host_state(vmx);
4054         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4055         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4056
4057         if (cpu_has_vmx_vmfunc())
4058                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4059
4060         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4061         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4062         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4063         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4064         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4065
4066         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4067                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4068
4069         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4070                 u32 index = vmx_msr_index[i];
4071                 u32 data_low, data_high;
4072                 int j = vmx->nmsrs;
4073
4074                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4075                         continue;
4076                 if (wrmsr_safe(index, data_low, data_high) < 0)
4077                         continue;
4078                 vmx->guest_msrs[j].index = i;
4079                 vmx->guest_msrs[j].data = 0;
4080                 vmx->guest_msrs[j].mask = -1ull;
4081                 ++vmx->nmsrs;
4082         }
4083
4084         vm_exit_controls_init(vmx, vmx_vmexit_ctrl());
4085
4086         /* 22.2.1, 20.8.1 */
4087         vm_entry_controls_init(vmx, vmx_vmentry_ctrl());
4088
4089         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4090         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4091
4092         set_cr4_guest_host_mask(vmx);
4093
4094         if (vmx_xsaves_supported())
4095                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4096
4097         if (enable_pml) {
4098                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4099                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4100         }
4101
4102         if (cpu_has_vmx_encls_vmexit())
4103                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4104
4105         if (pt_mode == PT_MODE_HOST_GUEST) {
4106                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4107                 /* Bit[6~0] are forced to 1, writes are ignored. */
4108                 vmx->pt_desc.guest.output_mask = 0x7F;
4109                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4110         }
4111 }
4112
4113 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4114 {
4115         struct vcpu_vmx *vmx = to_vmx(vcpu);
4116         struct msr_data apic_base_msr;
4117         u64 cr0;
4118
4119         vmx->rmode.vm86_active = 0;
4120         vmx->spec_ctrl = 0;
4121
4122         vcpu->arch.microcode_version = 0x100000000ULL;
4123         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4124         kvm_set_cr8(vcpu, 0);
4125
4126         if (!init_event) {
4127                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4128                                      MSR_IA32_APICBASE_ENABLE;
4129                 if (kvm_vcpu_is_reset_bsp(vcpu))
4130                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4131                 apic_base_msr.host_initiated = true;
4132                 kvm_set_apic_base(vcpu, &apic_base_msr);
4133         }
4134
4135         vmx_segment_cache_clear(vmx);
4136
4137         seg_setup(VCPU_SREG_CS);
4138         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4139         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4140
4141         seg_setup(VCPU_SREG_DS);
4142         seg_setup(VCPU_SREG_ES);
4143         seg_setup(VCPU_SREG_FS);
4144         seg_setup(VCPU_SREG_GS);
4145         seg_setup(VCPU_SREG_SS);
4146
4147         vmcs_write16(GUEST_TR_SELECTOR, 0);
4148         vmcs_writel(GUEST_TR_BASE, 0);
4149         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4150         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4151
4152         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4153         vmcs_writel(GUEST_LDTR_BASE, 0);
4154         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4155         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4156
4157         if (!init_event) {
4158                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4159                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4160                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4161                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4162         }
4163
4164         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4165         kvm_rip_write(vcpu, 0xfff0);
4166
4167         vmcs_writel(GUEST_GDTR_BASE, 0);
4168         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4169
4170         vmcs_writel(GUEST_IDTR_BASE, 0);
4171         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4172
4173         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4174         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4175         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4176         if (kvm_mpx_supported())
4177                 vmcs_write64(GUEST_BNDCFGS, 0);
4178
4179         setup_msrs(vmx);
4180
4181         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4182
4183         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4184                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4185                 if (cpu_need_tpr_shadow(vcpu))
4186                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4187                                      __pa(vcpu->arch.apic->regs));
4188                 vmcs_write32(TPR_THRESHOLD, 0);
4189         }
4190
4191         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4192
4193         if (vmx->vpid != 0)
4194                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4195
4196         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4197         vmx->vcpu.arch.cr0 = cr0;
4198         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4199         vmx_set_cr4(vcpu, 0);
4200         vmx_set_efer(vcpu, 0);
4201
4202         update_exception_bitmap(vcpu);
4203
4204         vpid_sync_context(vmx->vpid);
4205         if (init_event)
4206                 vmx_clear_hlt(vcpu);
4207 }
4208
4209 static void enable_irq_window(struct kvm_vcpu *vcpu)
4210 {
4211         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4212                       CPU_BASED_VIRTUAL_INTR_PENDING);
4213 }
4214
4215 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4216 {
4217         if (!enable_vnmi ||
4218             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4219                 enable_irq_window(vcpu);
4220                 return;
4221         }
4222
4223         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4224                       CPU_BASED_VIRTUAL_NMI_PENDING);
4225 }
4226
4227 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4228 {
4229         struct vcpu_vmx *vmx = to_vmx(vcpu);
4230         uint32_t intr;
4231         int irq = vcpu->arch.interrupt.nr;
4232
4233         trace_kvm_inj_virq(irq);
4234
4235         ++vcpu->stat.irq_injections;
4236         if (vmx->rmode.vm86_active) {
4237                 int inc_eip = 0;
4238                 if (vcpu->arch.interrupt.soft)
4239                         inc_eip = vcpu->arch.event_exit_inst_len;
4240                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4241                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4242                 return;
4243         }
4244         intr = irq | INTR_INFO_VALID_MASK;
4245         if (vcpu->arch.interrupt.soft) {
4246                 intr |= INTR_TYPE_SOFT_INTR;
4247                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4248                              vmx->vcpu.arch.event_exit_inst_len);
4249         } else
4250                 intr |= INTR_TYPE_EXT_INTR;
4251         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4252
4253         vmx_clear_hlt(vcpu);
4254 }
4255
4256 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4257 {
4258         struct vcpu_vmx *vmx = to_vmx(vcpu);
4259
4260         if (!enable_vnmi) {
4261                 /*
4262                  * Tracking the NMI-blocked state in software is built upon
4263                  * finding the next open IRQ window. This, in turn, depends on
4264                  * well-behaving guests: They have to keep IRQs disabled at
4265                  * least as long as the NMI handler runs. Otherwise we may
4266                  * cause NMI nesting, maybe breaking the guest. But as this is
4267                  * highly unlikely, we can live with the residual risk.
4268                  */
4269                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4270                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4271         }
4272
4273         ++vcpu->stat.nmi_injections;
4274         vmx->loaded_vmcs->nmi_known_unmasked = false;
4275
4276         if (vmx->rmode.vm86_active) {
4277                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4278                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4279                 return;
4280         }
4281
4282         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4283                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4284
4285         vmx_clear_hlt(vcpu);
4286 }
4287
4288 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4289 {
4290         struct vcpu_vmx *vmx = to_vmx(vcpu);
4291         bool masked;
4292
4293         if (!enable_vnmi)
4294                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4295         if (vmx->loaded_vmcs->nmi_known_unmasked)
4296                 return false;
4297         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4298         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4299         return masked;
4300 }
4301
4302 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4303 {
4304         struct vcpu_vmx *vmx = to_vmx(vcpu);
4305
4306         if (!enable_vnmi) {
4307                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4308                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4309                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4310                 }
4311         } else {
4312                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4313                 if (masked)
4314                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4315                                       GUEST_INTR_STATE_NMI);
4316                 else
4317                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4318                                         GUEST_INTR_STATE_NMI);
4319         }
4320 }
4321
4322 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4323 {
4324         if (to_vmx(vcpu)->nested.nested_run_pending)
4325                 return 0;
4326
4327         if (!enable_vnmi &&
4328             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4329                 return 0;
4330
4331         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4332                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4333                    | GUEST_INTR_STATE_NMI));
4334 }
4335
4336 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4337 {
4338         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4339                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4340                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4341                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4342 }
4343
4344 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4345 {
4346         int ret;
4347
4348         if (enable_unrestricted_guest)
4349                 return 0;
4350
4351         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4352                                     PAGE_SIZE * 3);
4353         if (ret)
4354                 return ret;
4355         to_kvm_vmx(kvm)->tss_addr = addr;
4356         return init_rmode_tss(kvm);
4357 }
4358
4359 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4360 {
4361         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4362         return 0;
4363 }
4364
4365 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4366 {
4367         switch (vec) {
4368         case BP_VECTOR:
4369                 /*
4370                  * Update instruction length as we may reinject the exception
4371                  * from user space while in guest debugging mode.
4372                  */
4373                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4374                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4375                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4376                         return false;
4377                 /* fall through */
4378         case DB_VECTOR:
4379                 if (vcpu->guest_debug &
4380                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4381                         return false;
4382                 /* fall through */
4383         case DE_VECTOR:
4384         case OF_VECTOR:
4385         case BR_VECTOR:
4386         case UD_VECTOR:
4387         case DF_VECTOR:
4388         case SS_VECTOR:
4389         case GP_VECTOR:
4390         case MF_VECTOR:
4391                 return true;
4392         break;
4393         }
4394         return false;
4395 }
4396
4397 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4398                                   int vec, u32 err_code)
4399 {
4400         /*
4401          * Instruction with address size override prefix opcode 0x67
4402          * Cause the #SS fault with 0 error code in VM86 mode.
4403          */
4404         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4405                 if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4406                         if (vcpu->arch.halt_request) {
4407                                 vcpu->arch.halt_request = 0;
4408                                 return kvm_vcpu_halt(vcpu);
4409                         }
4410                         return 1;
4411                 }
4412                 return 0;
4413         }
4414
4415         /*
4416          * Forward all other exceptions that are valid in real mode.
4417          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4418          *        the required debugging infrastructure rework.
4419          */
4420         kvm_queue_exception(vcpu, vec);
4421         return 1;
4422 }
4423
4424 /*
4425  * Trigger machine check on the host. We assume all the MSRs are already set up
4426  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4427  * We pass a fake environment to the machine check handler because we want
4428  * the guest to be always treated like user space, no matter what context
4429  * it used internally.
4430  */
4431 static void kvm_machine_check(void)
4432 {
4433 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4434         struct pt_regs regs = {
4435                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4436                 .flags = X86_EFLAGS_IF,
4437         };
4438
4439         do_machine_check(&regs, 0);
4440 #endif
4441 }
4442
4443 static int handle_machine_check(struct kvm_vcpu *vcpu)
4444 {
4445         /* already handled by vcpu_run */
4446         return 1;
4447 }
4448
4449 static int handle_exception(struct kvm_vcpu *vcpu)
4450 {
4451         struct vcpu_vmx *vmx = to_vmx(vcpu);
4452         struct kvm_run *kvm_run = vcpu->run;
4453         u32 intr_info, ex_no, error_code;
4454         unsigned long cr2, rip, dr6;
4455         u32 vect_info;
4456         enum emulation_result er;
4457
4458         vect_info = vmx->idt_vectoring_info;
4459         intr_info = vmx->exit_intr_info;
4460
4461         if (is_machine_check(intr_info))
4462                 return handle_machine_check(vcpu);
4463
4464         if (is_nmi(intr_info))
4465                 return 1;  /* already handled by vmx_vcpu_run() */
4466
4467         if (is_invalid_opcode(intr_info))
4468                 return handle_ud(vcpu);
4469
4470         error_code = 0;
4471         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4472                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4473
4474         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4475                 WARN_ON_ONCE(!enable_vmware_backdoor);
4476                 er = kvm_emulate_instruction(vcpu,
4477                         EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
4478                 if (er == EMULATE_USER_EXIT)
4479                         return 0;
4480                 else if (er != EMULATE_DONE)
4481                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4482                 return 1;
4483         }
4484
4485         /*
4486          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4487          * MMIO, it is better to report an internal error.
4488          * See the comments in vmx_handle_exit.
4489          */
4490         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4491             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4492                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4493                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4494                 vcpu->run->internal.ndata = 3;
4495                 vcpu->run->internal.data[0] = vect_info;
4496                 vcpu->run->internal.data[1] = intr_info;
4497                 vcpu->run->internal.data[2] = error_code;
4498                 return 0;
4499         }
4500
4501         if (is_page_fault(intr_info)) {
4502                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4503                 /* EPT won't cause page fault directly */
4504                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4505                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4506         }
4507
4508         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4509
4510         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4511                 return handle_rmode_exception(vcpu, ex_no, error_code);
4512
4513         switch (ex_no) {
4514         case AC_VECTOR:
4515                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4516                 return 1;
4517         case DB_VECTOR:
4518                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4519                 if (!(vcpu->guest_debug &
4520                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4521                         vcpu->arch.dr6 &= ~15;
4522                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4523                         if (is_icebp(intr_info))
4524                                 skip_emulated_instruction(vcpu);
4525
4526                         kvm_queue_exception(vcpu, DB_VECTOR);
4527                         return 1;
4528                 }
4529                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4530                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4531                 /* fall through */
4532         case BP_VECTOR:
4533                 /*
4534                  * Update instruction length as we may reinject #BP from
4535                  * user space while in guest debugging mode. Reading it for
4536                  * #DB as well causes no harm, it is not used in that case.
4537                  */
4538                 vmx->vcpu.arch.event_exit_inst_len =
4539                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4540                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4541                 rip = kvm_rip_read(vcpu);
4542                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4543                 kvm_run->debug.arch.exception = ex_no;
4544                 break;
4545         default:
4546                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4547                 kvm_run->ex.exception = ex_no;
4548                 kvm_run->ex.error_code = error_code;
4549                 break;
4550         }
4551         return 0;
4552 }
4553
4554 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4555 {
4556         ++vcpu->stat.irq_exits;
4557         return 1;
4558 }
4559
4560 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4561 {
4562         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4563         vcpu->mmio_needed = 0;
4564         return 0;
4565 }
4566
4567 static int handle_io(struct kvm_vcpu *vcpu)
4568 {
4569         unsigned long exit_qualification;
4570         int size, in, string;
4571         unsigned port;
4572
4573         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4574         string = (exit_qualification & 16) != 0;
4575
4576         ++vcpu->stat.io_exits;
4577
4578         if (string)
4579                 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4580
4581         port = exit_qualification >> 16;
4582         size = (exit_qualification & 7) + 1;
4583         in = (exit_qualification & 8) != 0;
4584
4585         return kvm_fast_pio(vcpu, size, port, in);
4586 }
4587
4588 static void
4589 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4590 {
4591         /*
4592          * Patch in the VMCALL instruction:
4593          */
4594         hypercall[0] = 0x0f;
4595         hypercall[1] = 0x01;
4596         hypercall[2] = 0xc1;
4597 }
4598
4599 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4600 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4601 {
4602         if (is_guest_mode(vcpu)) {
4603                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4604                 unsigned long orig_val = val;
4605
4606                 /*
4607                  * We get here when L2 changed cr0 in a way that did not change
4608                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4609                  * but did change L0 shadowed bits. So we first calculate the
4610                  * effective cr0 value that L1 would like to write into the
4611                  * hardware. It consists of the L2-owned bits from the new
4612                  * value combined with the L1-owned bits from L1's guest_cr0.
4613                  */
4614                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4615                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4616
4617                 if (!nested_guest_cr0_valid(vcpu, val))
4618                         return 1;
4619
4620                 if (kvm_set_cr0(vcpu, val))
4621                         return 1;
4622                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4623                 return 0;
4624         } else {
4625                 if (to_vmx(vcpu)->nested.vmxon &&
4626                     !nested_host_cr0_valid(vcpu, val))
4627                         return 1;
4628
4629                 return kvm_set_cr0(vcpu, val);
4630         }
4631 }
4632
4633 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4634 {
4635         if (is_guest_mode(vcpu)) {
4636                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4637                 unsigned long orig_val = val;
4638
4639                 /* analogously to handle_set_cr0 */
4640                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4641                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4642                 if (kvm_set_cr4(vcpu, val))
4643                         return 1;
4644                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4645                 return 0;
4646         } else
4647                 return kvm_set_cr4(vcpu, val);
4648 }
4649
4650 static int handle_desc(struct kvm_vcpu *vcpu)
4651 {
4652         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4653         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4654 }
4655
4656 static int handle_cr(struct kvm_vcpu *vcpu)
4657 {
4658         unsigned long exit_qualification, val;
4659         int cr;
4660         int reg;
4661         int err;
4662         int ret;
4663
4664         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4665         cr = exit_qualification & 15;
4666         reg = (exit_qualification >> 8) & 15;
4667         switch ((exit_qualification >> 4) & 3) {
4668         case 0: /* mov to cr */
4669                 val = kvm_register_readl(vcpu, reg);
4670                 trace_kvm_cr_write(cr, val);
4671                 switch (cr) {
4672                 case 0:
4673                         err = handle_set_cr0(vcpu, val);
4674                         return kvm_complete_insn_gp(vcpu, err);
4675                 case 3:
4676                         WARN_ON_ONCE(enable_unrestricted_guest);
4677                         err = kvm_set_cr3(vcpu, val);
4678                         return kvm_complete_insn_gp(vcpu, err);
4679                 case 4:
4680                         err = handle_set_cr4(vcpu, val);
4681                         return kvm_complete_insn_gp(vcpu, err);
4682                 case 8: {
4683                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4684                                 u8 cr8 = (u8)val;
4685                                 err = kvm_set_cr8(vcpu, cr8);
4686                                 ret = kvm_complete_insn_gp(vcpu, err);
4687                                 if (lapic_in_kernel(vcpu))
4688                                         return ret;
4689                                 if (cr8_prev <= cr8)
4690                                         return ret;
4691                                 /*
4692                                  * TODO: we might be squashing a
4693                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4694                                  * KVM_EXIT_DEBUG here.
4695                                  */
4696                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4697                                 return 0;
4698                         }
4699                 }
4700                 break;
4701         case 2: /* clts */
4702                 WARN_ONCE(1, "Guest should always own CR0.TS");
4703                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4704                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4705                 return kvm_skip_emulated_instruction(vcpu);
4706         case 1: /*mov from cr*/
4707                 switch (cr) {
4708                 case 3:
4709                         WARN_ON_ONCE(enable_unrestricted_guest);
4710                         val = kvm_read_cr3(vcpu);
4711                         kvm_register_write(vcpu, reg, val);
4712                         trace_kvm_cr_read(cr, val);
4713                         return kvm_skip_emulated_instruction(vcpu);
4714                 case 8:
4715                         val = kvm_get_cr8(vcpu);
4716                         kvm_register_write(vcpu, reg, val);
4717                         trace_kvm_cr_read(cr, val);
4718                         return kvm_skip_emulated_instruction(vcpu);
4719                 }
4720                 break;
4721         case 3: /* lmsw */
4722                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4723                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4724                 kvm_lmsw(vcpu, val);
4725
4726                 return kvm_skip_emulated_instruction(vcpu);
4727         default:
4728                 break;
4729         }
4730         vcpu->run->exit_reason = 0;
4731         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4732                (int)(exit_qualification >> 4) & 3, cr);
4733         return 0;
4734 }
4735
4736 static int handle_dr(struct kvm_vcpu *vcpu)
4737 {
4738         unsigned long exit_qualification;
4739         int dr, dr7, reg;
4740
4741         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4742         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4743
4744         /* First, if DR does not exist, trigger UD */
4745         if (!kvm_require_dr(vcpu, dr))
4746                 return 1;
4747
4748         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4749         if (!kvm_require_cpl(vcpu, 0))
4750                 return 1;
4751         dr7 = vmcs_readl(GUEST_DR7);
4752         if (dr7 & DR7_GD) {
4753                 /*
4754                  * As the vm-exit takes precedence over the debug trap, we
4755                  * need to emulate the latter, either for the host or the
4756                  * guest debugging itself.
4757                  */
4758                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4759                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4760                         vcpu->run->debug.arch.dr7 = dr7;
4761                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4762                         vcpu->run->debug.arch.exception = DB_VECTOR;
4763                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4764                         return 0;
4765                 } else {
4766                         vcpu->arch.dr6 &= ~15;
4767                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4768                         kvm_queue_exception(vcpu, DB_VECTOR);
4769                         return 1;
4770                 }
4771         }
4772
4773         if (vcpu->guest_debug == 0) {
4774                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4775                                 CPU_BASED_MOV_DR_EXITING);
4776
4777                 /*
4778                  * No more DR vmexits; force a reload of the debug registers
4779                  * and reenter on this instruction.  The next vmexit will
4780                  * retrieve the full state of the debug registers.
4781                  */
4782                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4783                 return 1;
4784         }
4785
4786         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4787         if (exit_qualification & TYPE_MOV_FROM_DR) {
4788                 unsigned long val;
4789
4790                 if (kvm_get_dr(vcpu, dr, &val))
4791                         return 1;
4792                 kvm_register_write(vcpu, reg, val);
4793         } else
4794                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4795                         return 1;
4796
4797         return kvm_skip_emulated_instruction(vcpu);
4798 }
4799
4800 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4801 {
4802         return vcpu->arch.dr6;
4803 }
4804
4805 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4806 {
4807 }
4808
4809 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4810 {
4811         get_debugreg(vcpu->arch.db[0], 0);
4812         get_debugreg(vcpu->arch.db[1], 1);
4813         get_debugreg(vcpu->arch.db[2], 2);
4814         get_debugreg(vcpu->arch.db[3], 3);
4815         get_debugreg(vcpu->arch.dr6, 6);
4816         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4817
4818         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4819         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
4820 }
4821
4822 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4823 {
4824         vmcs_writel(GUEST_DR7, val);
4825 }
4826
4827 static int handle_cpuid(struct kvm_vcpu *vcpu)
4828 {
4829         return kvm_emulate_cpuid(vcpu);
4830 }
4831
4832 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4833 {
4834         u32 ecx = kvm_rcx_read(vcpu);
4835         struct msr_data msr_info;
4836
4837         msr_info.index = ecx;
4838         msr_info.host_initiated = false;
4839         if (vmx_get_msr(vcpu, &msr_info)) {
4840                 trace_kvm_msr_read_ex(ecx);
4841                 kvm_inject_gp(vcpu, 0);
4842                 return 1;
4843         }
4844
4845         trace_kvm_msr_read(ecx, msr_info.data);
4846
4847         kvm_rax_write(vcpu, msr_info.data & -1u);
4848         kvm_rdx_write(vcpu, (msr_info.data >> 32) & -1u);
4849         return kvm_skip_emulated_instruction(vcpu);
4850 }
4851
4852 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4853 {
4854         struct msr_data msr;
4855         u32 ecx = kvm_rcx_read(vcpu);
4856         u64 data = kvm_read_edx_eax(vcpu);
4857
4858         msr.data = data;
4859         msr.index = ecx;
4860         msr.host_initiated = false;
4861         if (kvm_set_msr(vcpu, &msr) != 0) {
4862                 trace_kvm_msr_write_ex(ecx, data);
4863                 kvm_inject_gp(vcpu, 0);
4864                 return 1;
4865         }
4866
4867         trace_kvm_msr_write(ecx, data);
4868         return kvm_skip_emulated_instruction(vcpu);
4869 }
4870
4871 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4872 {
4873         kvm_apic_update_ppr(vcpu);
4874         return 1;
4875 }
4876
4877 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4878 {
4879         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4880                         CPU_BASED_VIRTUAL_INTR_PENDING);
4881
4882         kvm_make_request(KVM_REQ_EVENT, vcpu);
4883
4884         ++vcpu->stat.irq_window_exits;
4885         return 1;
4886 }
4887
4888 static int handle_halt(struct kvm_vcpu *vcpu)
4889 {
4890         return kvm_emulate_halt(vcpu);
4891 }
4892
4893 static int handle_vmcall(struct kvm_vcpu *vcpu)
4894 {
4895         return kvm_emulate_hypercall(vcpu);
4896 }
4897
4898 static int handle_invd(struct kvm_vcpu *vcpu)
4899 {
4900         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4901 }
4902
4903 static int handle_invlpg(struct kvm_vcpu *vcpu)
4904 {
4905         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4906
4907         kvm_mmu_invlpg(vcpu, exit_qualification);
4908         return kvm_skip_emulated_instruction(vcpu);
4909 }
4910
4911 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4912 {
4913         int err;
4914
4915         err = kvm_rdpmc(vcpu);
4916         return kvm_complete_insn_gp(vcpu, err);
4917 }
4918
4919 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4920 {
4921         return kvm_emulate_wbinvd(vcpu);
4922 }
4923
4924 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4925 {
4926         u64 new_bv = kvm_read_edx_eax(vcpu);
4927         u32 index = kvm_rcx_read(vcpu);
4928
4929         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4930                 return kvm_skip_emulated_instruction(vcpu);
4931         return 1;
4932 }
4933
4934 static int handle_xsaves(struct kvm_vcpu *vcpu)
4935 {
4936         kvm_skip_emulated_instruction(vcpu);
4937         WARN(1, "this should never happen\n");
4938         return 1;
4939 }
4940
4941 static int handle_xrstors(struct kvm_vcpu *vcpu)
4942 {
4943         kvm_skip_emulated_instruction(vcpu);
4944         WARN(1, "this should never happen\n");
4945         return 1;
4946 }
4947
4948 static int handle_apic_access(struct kvm_vcpu *vcpu)
4949 {
4950         if (likely(fasteoi)) {
4951                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4952                 int access_type, offset;
4953
4954                 access_type = exit_qualification & APIC_ACCESS_TYPE;
4955                 offset = exit_qualification & APIC_ACCESS_OFFSET;
4956                 /*
4957                  * Sane guest uses MOV to write EOI, with written value
4958                  * not cared. So make a short-circuit here by avoiding
4959                  * heavy instruction emulation.
4960                  */
4961                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4962                     (offset == APIC_EOI)) {
4963                         kvm_lapic_set_eoi(vcpu);
4964                         return kvm_skip_emulated_instruction(vcpu);
4965                 }
4966         }
4967         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4968 }
4969
4970 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4971 {
4972         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4973         int vector = exit_qualification & 0xff;
4974
4975         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
4976         kvm_apic_set_eoi_accelerated(vcpu, vector);
4977         return 1;
4978 }
4979
4980 static int handle_apic_write(struct kvm_vcpu *vcpu)
4981 {
4982         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4983         u32 offset = exit_qualification & 0xfff;
4984
4985         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
4986         kvm_apic_write_nodecode(vcpu, offset);
4987         return 1;
4988 }
4989
4990 static int handle_task_switch(struct kvm_vcpu *vcpu)
4991 {
4992         struct vcpu_vmx *vmx = to_vmx(vcpu);
4993         unsigned long exit_qualification;
4994         bool has_error_code = false;
4995         u32 error_code = 0;
4996         u16 tss_selector;
4997         int reason, type, idt_v, idt_index;
4998
4999         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5000         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5001         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5002
5003         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5004
5005         reason = (u32)exit_qualification >> 30;
5006         if (reason == TASK_SWITCH_GATE && idt_v) {
5007                 switch (type) {
5008                 case INTR_TYPE_NMI_INTR:
5009                         vcpu->arch.nmi_injected = false;
5010                         vmx_set_nmi_mask(vcpu, true);
5011                         break;
5012                 case INTR_TYPE_EXT_INTR:
5013                 case INTR_TYPE_SOFT_INTR:
5014                         kvm_clear_interrupt_queue(vcpu);
5015                         break;
5016                 case INTR_TYPE_HARD_EXCEPTION:
5017                         if (vmx->idt_vectoring_info &
5018                             VECTORING_INFO_DELIVER_CODE_MASK) {
5019                                 has_error_code = true;
5020                                 error_code =
5021                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5022                         }
5023                         /* fall through */
5024                 case INTR_TYPE_SOFT_EXCEPTION:
5025                         kvm_clear_exception_queue(vcpu);
5026                         break;
5027                 default:
5028                         break;
5029                 }
5030         }
5031         tss_selector = exit_qualification;
5032
5033         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5034                        type != INTR_TYPE_EXT_INTR &&
5035                        type != INTR_TYPE_NMI_INTR))
5036                 skip_emulated_instruction(vcpu);
5037
5038         if (kvm_task_switch(vcpu, tss_selector,
5039                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5040                             has_error_code, error_code) == EMULATE_FAIL) {
5041                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5042                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5043                 vcpu->run->internal.ndata = 0;
5044                 return 0;
5045         }
5046
5047         /*
5048          * TODO: What about debug traps on tss switch?
5049          *       Are we supposed to inject them and update dr6?
5050          */
5051
5052         return 1;
5053 }
5054
5055 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5056 {
5057         unsigned long exit_qualification;
5058         gpa_t gpa;
5059         u64 error_code;
5060
5061         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5062
5063         /*
5064          * EPT violation happened while executing iret from NMI,
5065          * "blocked by NMI" bit has to be set before next VM entry.
5066          * There are errata that may cause this bit to not be set:
5067          * AAK134, BY25.
5068          */
5069         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5070                         enable_vnmi &&
5071                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5072                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5073
5074         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5075         trace_kvm_page_fault(gpa, exit_qualification);
5076
5077         /* Is it a read fault? */
5078         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5079                      ? PFERR_USER_MASK : 0;
5080         /* Is it a write fault? */
5081         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5082                       ? PFERR_WRITE_MASK : 0;
5083         /* Is it a fetch fault? */
5084         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5085                       ? PFERR_FETCH_MASK : 0;
5086         /* ept page table entry is present? */
5087         error_code |= (exit_qualification &
5088                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5089                         EPT_VIOLATION_EXECUTABLE))
5090                       ? PFERR_PRESENT_MASK : 0;
5091
5092         error_code |= (exit_qualification & 0x100) != 0 ?
5093                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5094
5095         vcpu->arch.exit_qualification = exit_qualification;
5096         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5097 }
5098
5099 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5100 {
5101         gpa_t gpa;
5102
5103         /*
5104          * A nested guest cannot optimize MMIO vmexits, because we have an
5105          * nGPA here instead of the required GPA.
5106          */
5107         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5108         if (!is_guest_mode(vcpu) &&
5109             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5110                 trace_kvm_fast_mmio(gpa);
5111                 /*
5112                  * Doing kvm_skip_emulated_instruction() depends on undefined
5113                  * behavior: Intel's manual doesn't mandate
5114                  * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
5115                  * occurs and while on real hardware it was observed to be set,
5116                  * other hypervisors (namely Hyper-V) don't set it, we end up
5117                  * advancing IP with some random value. Disable fast mmio when
5118                  * running nested and keep it for real hardware in hope that
5119                  * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
5120                  */
5121                 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
5122                         return kvm_skip_emulated_instruction(vcpu);
5123                 else
5124                         return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
5125                                                                 EMULATE_DONE;
5126         }
5127
5128         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5129 }
5130
5131 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5132 {
5133         WARN_ON_ONCE(!enable_vnmi);
5134         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5135                         CPU_BASED_VIRTUAL_NMI_PENDING);
5136         ++vcpu->stat.nmi_window_exits;
5137         kvm_make_request(KVM_REQ_EVENT, vcpu);
5138
5139         return 1;
5140 }
5141
5142 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5143 {
5144         struct vcpu_vmx *vmx = to_vmx(vcpu);
5145         enum emulation_result err = EMULATE_DONE;
5146         int ret = 1;
5147         u32 cpu_exec_ctrl;
5148         bool intr_window_requested;
5149         unsigned count = 130;
5150
5151         /*
5152          * We should never reach the point where we are emulating L2
5153          * due to invalid guest state as that means we incorrectly
5154          * allowed a nested VMEntry with an invalid vmcs12.
5155          */
5156         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5157
5158         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5159         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5160
5161         while (vmx->emulation_required && count-- != 0) {
5162                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5163                         return handle_interrupt_window(&vmx->vcpu);
5164
5165                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5166                         return 1;
5167
5168                 err = kvm_emulate_instruction(vcpu, 0);
5169
5170                 if (err == EMULATE_USER_EXIT) {
5171                         ++vcpu->stat.mmio_exits;
5172                         ret = 0;
5173                         goto out;
5174                 }
5175
5176                 if (err != EMULATE_DONE)
5177                         goto emulation_error;
5178
5179                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5180                     vcpu->arch.exception.pending)
5181                         goto emulation_error;
5182
5183                 if (vcpu->arch.halt_request) {
5184                         vcpu->arch.halt_request = 0;
5185                         ret = kvm_vcpu_halt(vcpu);
5186                         goto out;
5187                 }
5188
5189                 if (signal_pending(current))
5190                         goto out;
5191                 if (need_resched())
5192                         schedule();
5193         }
5194
5195 out:
5196         return ret;
5197
5198 emulation_error:
5199         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5200         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5201         vcpu->run->internal.ndata = 0;
5202         return 0;
5203 }
5204
5205 static void grow_ple_window(struct kvm_vcpu *vcpu)
5206 {
5207         struct vcpu_vmx *vmx = to_vmx(vcpu);
5208         int old = vmx->ple_window;
5209
5210         vmx->ple_window = __grow_ple_window(old, ple_window,
5211                                             ple_window_grow,
5212                                             ple_window_max);
5213
5214         if (vmx->ple_window != old)
5215                 vmx->ple_window_dirty = true;
5216
5217         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5218 }
5219
5220 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5221 {
5222         struct vcpu_vmx *vmx = to_vmx(vcpu);
5223         int old = vmx->ple_window;
5224
5225         vmx->ple_window = __shrink_ple_window(old, ple_window,
5226                                               ple_window_shrink,
5227                                               ple_window);
5228
5229         if (vmx->ple_window != old)
5230                 vmx->ple_window_dirty = true;
5231
5232         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5233 }
5234
5235 /*
5236  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5237  */
5238 static void wakeup_handler(void)
5239 {
5240         struct kvm_vcpu *vcpu;
5241         int cpu = smp_processor_id();
5242
5243         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5244         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5245                         blocked_vcpu_list) {
5246                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5247
5248                 if (pi_test_on(pi_desc) == 1)
5249                         kvm_vcpu_kick(vcpu);
5250         }
5251         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5252 }
5253
5254 static void vmx_enable_tdp(void)
5255 {
5256         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5257                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5258                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5259                 0ull, VMX_EPT_EXECUTABLE_MASK,
5260                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5261                 VMX_EPT_RWX_MASK, 0ull);
5262
5263         ept_set_mmio_spte_mask();
5264         kvm_enable_tdp();
5265 }
5266
5267 /*
5268  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5269  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5270  */
5271 static int handle_pause(struct kvm_vcpu *vcpu)
5272 {
5273         if (!kvm_pause_in_guest(vcpu->kvm))
5274                 grow_ple_window(vcpu);
5275
5276         /*
5277          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5278          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5279          * never set PAUSE_EXITING and just set PLE if supported,
5280          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5281          */
5282         kvm_vcpu_on_spin(vcpu, true);
5283         return kvm_skip_emulated_instruction(vcpu);
5284 }
5285
5286 static int handle_nop(struct kvm_vcpu *vcpu)
5287 {
5288         return kvm_skip_emulated_instruction(vcpu);
5289 }
5290
5291 static int handle_mwait(struct kvm_vcpu *vcpu)
5292 {
5293         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5294         return handle_nop(vcpu);
5295 }
5296
5297 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5298 {
5299         kvm_queue_exception(vcpu, UD_VECTOR);
5300         return 1;
5301 }
5302
5303 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5304 {
5305         return 1;
5306 }
5307
5308 static int handle_monitor(struct kvm_vcpu *vcpu)
5309 {
5310         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5311         return handle_nop(vcpu);
5312 }
5313
5314 static int handle_invpcid(struct kvm_vcpu *vcpu)
5315 {
5316         u32 vmx_instruction_info;
5317         unsigned long type;
5318         bool pcid_enabled;
5319         gva_t gva;
5320         struct x86_exception e;
5321         unsigned i;
5322         unsigned long roots_to_free = 0;
5323         struct {
5324                 u64 pcid;
5325                 u64 gla;
5326         } operand;
5327
5328         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5329                 kvm_queue_exception(vcpu, UD_VECTOR);
5330                 return 1;
5331         }
5332
5333         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5334         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5335
5336         if (type > 3) {
5337                 kvm_inject_gp(vcpu, 0);
5338                 return 1;
5339         }
5340
5341         /* According to the Intel instruction reference, the memory operand
5342          * is read even if it isn't needed (e.g., for type==all)
5343          */
5344         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5345                                 vmx_instruction_info, false, &gva))
5346                 return 1;
5347
5348         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5349                 kvm_inject_page_fault(vcpu, &e);
5350                 return 1;
5351         }
5352
5353         if (operand.pcid >> 12 != 0) {
5354                 kvm_inject_gp(vcpu, 0);
5355                 return 1;
5356         }
5357
5358         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5359
5360         switch (type) {
5361         case INVPCID_TYPE_INDIV_ADDR:
5362                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5363                     is_noncanonical_address(operand.gla, vcpu)) {
5364                         kvm_inject_gp(vcpu, 0);
5365                         return 1;
5366                 }
5367                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5368                 return kvm_skip_emulated_instruction(vcpu);
5369
5370         case INVPCID_TYPE_SINGLE_CTXT:
5371                 if (!pcid_enabled && (operand.pcid != 0)) {
5372                         kvm_inject_gp(vcpu, 0);
5373                         return 1;
5374                 }
5375
5376                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5377                         kvm_mmu_sync_roots(vcpu);
5378                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5379                 }
5380
5381                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5382                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5383                             == operand.pcid)
5384                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5385
5386                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5387                 /*
5388                  * If neither the current cr3 nor any of the prev_roots use the
5389                  * given PCID, then nothing needs to be done here because a
5390                  * resync will happen anyway before switching to any other CR3.
5391                  */
5392
5393                 return kvm_skip_emulated_instruction(vcpu);
5394
5395         case INVPCID_TYPE_ALL_NON_GLOBAL:
5396                 /*
5397                  * Currently, KVM doesn't mark global entries in the shadow
5398                  * page tables, so a non-global flush just degenerates to a
5399                  * global flush. If needed, we could optimize this later by
5400                  * keeping track of global entries in shadow page tables.
5401                  */
5402
5403                 /* fall-through */
5404         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5405                 kvm_mmu_unload(vcpu);
5406                 return kvm_skip_emulated_instruction(vcpu);
5407
5408         default:
5409                 BUG(); /* We have already checked above that type <= 3 */
5410         }
5411 }
5412
5413 static int handle_pml_full(struct kvm_vcpu *vcpu)
5414 {
5415         unsigned long exit_qualification;
5416
5417         trace_kvm_pml_full(vcpu->vcpu_id);
5418
5419         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5420
5421         /*
5422          * PML buffer FULL happened while executing iret from NMI,
5423          * "blocked by NMI" bit has to be set before next VM entry.
5424          */
5425         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5426                         enable_vnmi &&
5427                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5428                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5429                                 GUEST_INTR_STATE_NMI);
5430
5431         /*
5432          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5433          * here.., and there's no userspace involvement needed for PML.
5434          */
5435         return 1;
5436 }
5437
5438 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5439 {
5440         if (!to_vmx(vcpu)->req_immediate_exit)
5441                 kvm_lapic_expired_hv_timer(vcpu);
5442         return 1;
5443 }
5444
5445 /*
5446  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5447  * are overwritten by nested_vmx_setup() when nested=1.
5448  */
5449 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5450 {
5451         kvm_queue_exception(vcpu, UD_VECTOR);
5452         return 1;
5453 }
5454
5455 static int handle_encls(struct kvm_vcpu *vcpu)
5456 {
5457         /*
5458          * SGX virtualization is not yet supported.  There is no software
5459          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5460          * to prevent the guest from executing ENCLS.
5461          */
5462         kvm_queue_exception(vcpu, UD_VECTOR);
5463         return 1;
5464 }
5465
5466 /*
5467  * The exit handlers return 1 if the exit was handled fully and guest execution
5468  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5469  * to be done to userspace and return 0.
5470  */
5471 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5472         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5473         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5474         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5475         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5476         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5477         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5478         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5479         [EXIT_REASON_CPUID]                   = handle_cpuid,
5480         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5481         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5482         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5483         [EXIT_REASON_HLT]                     = handle_halt,
5484         [EXIT_REASON_INVD]                    = handle_invd,
5485         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5486         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5487         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5488         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5489         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5490         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5491         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5492         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5493         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5494         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5495         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5496         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5497         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5498         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5499         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5500         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5501         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5502         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5503         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5504         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5505         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5506         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5507         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5508         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5509         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5510         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5511         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5512         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5513         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5514         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5515         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5516         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5517         [EXIT_REASON_XSAVES]                  = handle_xsaves,
5518         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
5519         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5520         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5521         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5522         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5523         [EXIT_REASON_ENCLS]                   = handle_encls,
5524 };
5525
5526 static const int kvm_vmx_max_exit_handlers =
5527         ARRAY_SIZE(kvm_vmx_exit_handlers);
5528
5529 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5530 {
5531         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5532         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5533 }
5534
5535 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5536 {
5537         if (vmx->pml_pg) {
5538                 __free_page(vmx->pml_pg);
5539                 vmx->pml_pg = NULL;
5540         }
5541 }
5542
5543 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5544 {
5545         struct vcpu_vmx *vmx = to_vmx(vcpu);
5546         u64 *pml_buf;
5547         u16 pml_idx;
5548
5549         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5550
5551         /* Do nothing if PML buffer is empty */
5552         if (pml_idx == (PML_ENTITY_NUM - 1))
5553                 return;
5554
5555         /* PML index always points to next available PML buffer entity */
5556         if (pml_idx >= PML_ENTITY_NUM)
5557                 pml_idx = 0;
5558         else
5559                 pml_idx++;
5560
5561         pml_buf = page_address(vmx->pml_pg);
5562         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5563                 u64 gpa;
5564
5565                 gpa = pml_buf[pml_idx];
5566                 WARN_ON(gpa & (PAGE_SIZE - 1));
5567                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5568         }
5569
5570         /* reset PML index */
5571         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5572 }
5573
5574 /*
5575  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5576  * Called before reporting dirty_bitmap to userspace.
5577  */
5578 static void kvm_flush_pml_buffers(struct kvm *kvm)
5579 {
5580         int i;
5581         struct kvm_vcpu *vcpu;
5582         /*
5583          * We only need to kick vcpu out of guest mode here, as PML buffer
5584          * is flushed at beginning of all VMEXITs, and it's obvious that only
5585          * vcpus running in guest are possible to have unflushed GPAs in PML
5586          * buffer.
5587          */
5588         kvm_for_each_vcpu(i, vcpu, kvm)
5589                 kvm_vcpu_kick(vcpu);
5590 }
5591
5592 static void vmx_dump_sel(char *name, uint32_t sel)
5593 {
5594         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5595                name, vmcs_read16(sel),
5596                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5597                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5598                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5599 }
5600
5601 static void vmx_dump_dtsel(char *name, uint32_t limit)
5602 {
5603         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5604                name, vmcs_read32(limit),
5605                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5606 }
5607
5608 void dump_vmcs(void)
5609 {
5610         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5611         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5612         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5613         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5614         u32 secondary_exec_control = 0;
5615         unsigned long cr4 = vmcs_readl(GUEST_CR4);
5616         u64 efer = vmcs_read64(GUEST_IA32_EFER);
5617         int i, n;
5618
5619         if (cpu_has_secondary_exec_ctrls())
5620                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5621
5622         pr_err("*** Guest State ***\n");
5623         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5624                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5625                vmcs_readl(CR0_GUEST_HOST_MASK));
5626         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5627                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5628         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5629         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5630             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5631         {
5632                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5633                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5634                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5635                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5636         }
5637         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5638                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5639         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5640                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5641         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5642                vmcs_readl(GUEST_SYSENTER_ESP),
5643                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5644         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5645         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5646         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5647         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5648         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5649         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5650         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5651         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5652         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5653         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5654         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5655             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5656                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5657                        efer, vmcs_read64(GUEST_IA32_PAT));
5658         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5659                vmcs_read64(GUEST_IA32_DEBUGCTL),
5660                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5661         if (cpu_has_load_perf_global_ctrl() &&
5662             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5663                 pr_err("PerfGlobCtl = 0x%016llx\n",
5664                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5665         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5666                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5667         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5668                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5669                vmcs_read32(GUEST_ACTIVITY_STATE));
5670         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5671                 pr_err("InterruptStatus = %04x\n",
5672                        vmcs_read16(GUEST_INTR_STATUS));
5673
5674         pr_err("*** Host State ***\n");
5675         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5676                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5677         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5678                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5679                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5680                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5681                vmcs_read16(HOST_TR_SELECTOR));
5682         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5683                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5684                vmcs_readl(HOST_TR_BASE));
5685         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5686                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5687         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5688                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5689                vmcs_readl(HOST_CR4));
5690         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5691                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5692                vmcs_read32(HOST_IA32_SYSENTER_CS),
5693                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5694         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5695                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5696                        vmcs_read64(HOST_IA32_EFER),
5697                        vmcs_read64(HOST_IA32_PAT));
5698         if (cpu_has_load_perf_global_ctrl() &&
5699             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5700                 pr_err("PerfGlobCtl = 0x%016llx\n",
5701                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5702
5703         pr_err("*** Control State ***\n");
5704         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5705                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5706         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5707         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5708                vmcs_read32(EXCEPTION_BITMAP),
5709                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5710                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5711         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5712                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5713                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5714                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5715         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5716                vmcs_read32(VM_EXIT_INTR_INFO),
5717                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5718                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5719         pr_err("        reason=%08x qualification=%016lx\n",
5720                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5721         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5722                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5723                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5724         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5725         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5726                 pr_err("TSC Multiplier = 0x%016llx\n",
5727                        vmcs_read64(TSC_MULTIPLIER));
5728         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5729                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5730                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5731                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5732                 }
5733                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5734                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5735                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5736                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5737         }
5738         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5739                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5740         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5741                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5742         n = vmcs_read32(CR3_TARGET_COUNT);
5743         for (i = 0; i + 1 < n; i += 4)
5744                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5745                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5746                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5747         if (i < n)
5748                 pr_err("CR3 target%u=%016lx\n",
5749                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5750         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5751                 pr_err("PLE Gap=%08x Window=%08x\n",
5752                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5753         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5754                 pr_err("Virtual processor ID = 0x%04x\n",
5755                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5756 }
5757
5758 /*
5759  * The guest has exited.  See if we can fix it or if we need userspace
5760  * assistance.
5761  */
5762 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5763 {
5764         struct vcpu_vmx *vmx = to_vmx(vcpu);
5765         u32 exit_reason = vmx->exit_reason;
5766         u32 vectoring_info = vmx->idt_vectoring_info;
5767
5768         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5769
5770         /*
5771          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5772          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5773          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5774          * mode as if vcpus is in root mode, the PML buffer must has been
5775          * flushed already.
5776          */
5777         if (enable_pml)
5778                 vmx_flush_pml_buffer(vcpu);
5779
5780         /* If guest state is invalid, start emulating */
5781         if (vmx->emulation_required)
5782                 return handle_invalid_guest_state(vcpu);
5783
5784         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5785                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5786
5787         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5788                 dump_vmcs();
5789                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5790                 vcpu->run->fail_entry.hardware_entry_failure_reason
5791                         = exit_reason;
5792                 return 0;
5793         }
5794
5795         if (unlikely(vmx->fail)) {
5796                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5797                 vcpu->run->fail_entry.hardware_entry_failure_reason
5798                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5799                 return 0;
5800         }
5801
5802         /*
5803          * Note:
5804          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5805          * delivery event since it indicates guest is accessing MMIO.
5806          * The vm-exit can be triggered again after return to guest that
5807          * will cause infinite loop.
5808          */
5809         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5810                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5811                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5812                         exit_reason != EXIT_REASON_PML_FULL &&
5813                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5814                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5815                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5816                 vcpu->run->internal.ndata = 3;
5817                 vcpu->run->internal.data[0] = vectoring_info;
5818                 vcpu->run->internal.data[1] = exit_reason;
5819                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5820                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5821                         vcpu->run->internal.ndata++;
5822                         vcpu->run->internal.data[3] =
5823                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5824                 }
5825                 return 0;
5826         }
5827
5828         if (unlikely(!enable_vnmi &&
5829                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5830                 if (vmx_interrupt_allowed(vcpu)) {
5831                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5832                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5833                            vcpu->arch.nmi_pending) {
5834                         /*
5835                          * This CPU don't support us in finding the end of an
5836                          * NMI-blocked window if the guest runs with IRQs
5837                          * disabled. So we pull the trigger after 1 s of
5838                          * futile waiting, but inform the user about this.
5839                          */
5840                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5841                                "state on VCPU %d after 1 s timeout\n",
5842                                __func__, vcpu->vcpu_id);
5843                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5844                 }
5845         }
5846
5847         if (exit_reason < kvm_vmx_max_exit_handlers
5848             && kvm_vmx_exit_handlers[exit_reason])
5849                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5850         else {
5851                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5852                                 exit_reason);
5853                 kvm_queue_exception(vcpu, UD_VECTOR);
5854                 return 1;
5855         }
5856 }
5857
5858 /*
5859  * Software based L1D cache flush which is used when microcode providing
5860  * the cache control MSR is not loaded.
5861  *
5862  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5863  * flush it is required to read in 64 KiB because the replacement algorithm
5864  * is not exactly LRU. This could be sized at runtime via topology
5865  * information but as all relevant affected CPUs have 32KiB L1D cache size
5866  * there is no point in doing so.
5867  */
5868 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5869 {
5870         int size = PAGE_SIZE << L1D_CACHE_ORDER;
5871
5872         /*
5873          * This code is only executed when the the flush mode is 'cond' or
5874          * 'always'
5875          */
5876         if (static_branch_likely(&vmx_l1d_flush_cond)) {
5877                 bool flush_l1d;
5878
5879                 /*
5880                  * Clear the per-vcpu flush bit, it gets set again
5881                  * either from vcpu_run() or from one of the unsafe
5882                  * VMEXIT handlers.
5883                  */
5884                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5885                 vcpu->arch.l1tf_flush_l1d = false;
5886
5887                 /*
5888                  * Clear the per-cpu flush bit, it gets set again from
5889                  * the interrupt handlers.
5890                  */
5891                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5892                 kvm_clear_cpu_l1tf_flush_l1d();
5893
5894                 if (!flush_l1d)
5895                         return;
5896         }
5897
5898         vcpu->stat.l1d_flush++;
5899
5900         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5901                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5902                 return;
5903         }
5904
5905         asm volatile(
5906                 /* First ensure the pages are in the TLB */
5907                 "xorl   %%eax, %%eax\n"
5908                 ".Lpopulate_tlb:\n\t"
5909                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5910                 "addl   $4096, %%eax\n\t"
5911                 "cmpl   %%eax, %[size]\n\t"
5912                 "jne    .Lpopulate_tlb\n\t"
5913                 "xorl   %%eax, %%eax\n\t"
5914                 "cpuid\n\t"
5915                 /* Now fill the cache */
5916                 "xorl   %%eax, %%eax\n"
5917                 ".Lfill_cache:\n"
5918                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5919                 "addl   $64, %%eax\n\t"
5920                 "cmpl   %%eax, %[size]\n\t"
5921                 "jne    .Lfill_cache\n\t"
5922                 "lfence\n"
5923                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
5924                     [size] "r" (size)
5925                 : "eax", "ebx", "ecx", "edx");
5926 }
5927
5928 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5929 {
5930         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5931
5932         if (is_guest_mode(vcpu) &&
5933                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
5934                 return;
5935
5936         if (irr == -1 || tpr < irr) {
5937                 vmcs_write32(TPR_THRESHOLD, 0);
5938                 return;
5939         }
5940
5941         vmcs_write32(TPR_THRESHOLD, irr);
5942 }
5943
5944 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5945 {
5946         u32 sec_exec_control;
5947
5948         if (!lapic_in_kernel(vcpu))
5949                 return;
5950
5951         if (!flexpriority_enabled &&
5952             !cpu_has_vmx_virtualize_x2apic_mode())
5953                 return;
5954
5955         /* Postpone execution until vmcs01 is the current VMCS. */
5956         if (is_guest_mode(vcpu)) {
5957                 to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
5958                 return;
5959         }
5960
5961         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5962         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
5963                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
5964
5965         switch (kvm_get_apic_mode(vcpu)) {
5966         case LAPIC_MODE_INVALID:
5967                 WARN_ONCE(true, "Invalid local APIC state");
5968         case LAPIC_MODE_DISABLED:
5969                 break;
5970         case LAPIC_MODE_XAPIC:
5971                 if (flexpriority_enabled) {
5972                         sec_exec_control |=
5973                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5974                         vmx_flush_tlb(vcpu, true);
5975                 }
5976                 break;
5977         case LAPIC_MODE_X2APIC:
5978                 if (cpu_has_vmx_virtualize_x2apic_mode())
5979                         sec_exec_control |=
5980                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5981                 break;
5982         }
5983         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
5984
5985         vmx_update_msr_bitmap(vcpu);
5986 }
5987
5988 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
5989 {
5990         if (!is_guest_mode(vcpu)) {
5991                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
5992                 vmx_flush_tlb(vcpu, true);
5993         }
5994 }
5995
5996 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5997 {
5998         u16 status;
5999         u8 old;
6000
6001         if (max_isr == -1)
6002                 max_isr = 0;
6003
6004         status = vmcs_read16(GUEST_INTR_STATUS);
6005         old = status >> 8;
6006         if (max_isr != old) {
6007                 status &= 0xff;
6008                 status |= max_isr << 8;
6009                 vmcs_write16(GUEST_INTR_STATUS, status);
6010         }
6011 }
6012
6013 static void vmx_set_rvi(int vector)
6014 {
6015         u16 status;
6016         u8 old;
6017
6018         if (vector == -1)
6019                 vector = 0;
6020
6021         status = vmcs_read16(GUEST_INTR_STATUS);
6022         old = (u8)status & 0xff;
6023         if ((u8)vector != old) {
6024                 status &= ~0xff;
6025                 status |= (u8)vector;
6026                 vmcs_write16(GUEST_INTR_STATUS, status);
6027         }
6028 }
6029
6030 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6031 {
6032         /*
6033          * When running L2, updating RVI is only relevant when
6034          * vmcs12 virtual-interrupt-delivery enabled.
6035          * However, it can be enabled only when L1 also
6036          * intercepts external-interrupts and in that case
6037          * we should not update vmcs02 RVI but instead intercept
6038          * interrupt. Therefore, do nothing when running L2.
6039          */
6040         if (!is_guest_mode(vcpu))
6041                 vmx_set_rvi(max_irr);
6042 }
6043
6044 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6045 {
6046         struct vcpu_vmx *vmx = to_vmx(vcpu);
6047         int max_irr;
6048         bool max_irr_updated;
6049
6050         WARN_ON(!vcpu->arch.apicv_active);
6051         if (pi_test_on(&vmx->pi_desc)) {
6052                 pi_clear_on(&vmx->pi_desc);
6053                 /*
6054                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6055                  * But on x86 this is just a compiler barrier anyway.
6056                  */
6057                 smp_mb__after_atomic();
6058                 max_irr_updated =
6059                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6060
6061                 /*
6062                  * If we are running L2 and L1 has a new pending interrupt
6063                  * which can be injected, we should re-evaluate
6064                  * what should be done with this new L1 interrupt.
6065                  * If L1 intercepts external-interrupts, we should
6066                  * exit from L2 to L1. Otherwise, interrupt should be
6067                  * delivered directly to L2.
6068                  */
6069                 if (is_guest_mode(vcpu) && max_irr_updated) {
6070                         if (nested_exit_on_intr(vcpu))
6071                                 kvm_vcpu_exiting_guest_mode(vcpu);
6072                         else
6073                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6074                 }
6075         } else {
6076                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6077         }
6078         vmx_hwapic_irr_update(vcpu, max_irr);
6079         return max_irr;
6080 }
6081
6082 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6083 {
6084         if (!kvm_vcpu_apicv_active(vcpu))
6085                 return;
6086
6087         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6088         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6089         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6090         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6091 }
6092
6093 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6094 {
6095         struct vcpu_vmx *vmx = to_vmx(vcpu);
6096
6097         pi_clear_on(&vmx->pi_desc);
6098         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6099 }
6100
6101 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6102 {
6103         u32 exit_intr_info = 0;
6104         u16 basic_exit_reason = (u16)vmx->exit_reason;
6105
6106         if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6107               || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
6108                 return;
6109
6110         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6111                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6112         vmx->exit_intr_info = exit_intr_info;
6113
6114         /* if exit due to PF check for async PF */
6115         if (is_page_fault(exit_intr_info))
6116                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6117
6118         /* Handle machine checks before interrupts are enabled */
6119         if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
6120             is_machine_check(exit_intr_info))
6121                 kvm_machine_check();
6122
6123         /* We need to handle NMIs before interrupts are enabled */
6124         if (is_nmi(exit_intr_info)) {
6125                 kvm_before_interrupt(&vmx->vcpu);
6126                 asm("int $2");
6127                 kvm_after_interrupt(&vmx->vcpu);
6128         }
6129 }
6130
6131 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6132 {
6133         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6134
6135         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6136                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6137                 unsigned int vector;
6138                 unsigned long entry;
6139                 gate_desc *desc;
6140                 struct vcpu_vmx *vmx = to_vmx(vcpu);
6141 #ifdef CONFIG_X86_64
6142                 unsigned long tmp;
6143 #endif
6144
6145                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6146                 desc = (gate_desc *)vmx->host_idt_base + vector;
6147                 entry = gate_offset(desc);
6148                 asm volatile(
6149 #ifdef CONFIG_X86_64
6150                         "mov %%" _ASM_SP ", %[sp]\n\t"
6151                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6152                         "push $%c[ss]\n\t"
6153                         "push %[sp]\n\t"
6154 #endif
6155                         "pushf\n\t"
6156                         __ASM_SIZE(push) " $%c[cs]\n\t"
6157                         CALL_NOSPEC
6158                         :
6159 #ifdef CONFIG_X86_64
6160                         [sp]"=&r"(tmp),
6161 #endif
6162                         ASM_CALL_CONSTRAINT
6163                         :
6164                         THUNK_TARGET(entry),
6165                         [ss]"i"(__KERNEL_DS),
6166                         [cs]"i"(__KERNEL_CS)
6167                         );
6168         }
6169 }
6170 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
6171
6172 static bool vmx_has_emulated_msr(int index)
6173 {
6174         switch (index) {
6175         case MSR_IA32_SMBASE:
6176                 /*
6177                  * We cannot do SMM unless we can run the guest in big
6178                  * real mode.
6179                  */
6180                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6181         case MSR_AMD64_VIRT_SPEC_CTRL:
6182                 /* This is AMD only.  */
6183                 return false;
6184         default:
6185                 return true;
6186         }
6187 }
6188
6189 static bool vmx_pt_supported(void)
6190 {
6191         return pt_mode == PT_MODE_HOST_GUEST;
6192 }
6193
6194 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6195 {
6196         u32 exit_intr_info;
6197         bool unblock_nmi;
6198         u8 vector;
6199         bool idtv_info_valid;
6200
6201         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6202
6203         if (enable_vnmi) {
6204                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6205                         return;
6206                 /*
6207                  * Can't use vmx->exit_intr_info since we're not sure what
6208                  * the exit reason is.
6209                  */
6210                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6211                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6212                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6213                 /*
6214                  * SDM 3: 27.7.1.2 (September 2008)
6215                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6216                  * a guest IRET fault.
6217                  * SDM 3: 23.2.2 (September 2008)
6218                  * Bit 12 is undefined in any of the following cases:
6219                  *  If the VM exit sets the valid bit in the IDT-vectoring
6220                  *   information field.
6221                  *  If the VM exit is due to a double fault.
6222                  */
6223                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6224                     vector != DF_VECTOR && !idtv_info_valid)
6225                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6226                                       GUEST_INTR_STATE_NMI);
6227                 else
6228                         vmx->loaded_vmcs->nmi_known_unmasked =
6229                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6230                                   & GUEST_INTR_STATE_NMI);
6231         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6232                 vmx->loaded_vmcs->vnmi_blocked_time +=
6233                         ktime_to_ns(ktime_sub(ktime_get(),
6234                                               vmx->loaded_vmcs->entry_time));
6235 }
6236
6237 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6238                                       u32 idt_vectoring_info,
6239                                       int instr_len_field,
6240                                       int error_code_field)
6241 {
6242         u8 vector;
6243         int type;
6244         bool idtv_info_valid;
6245
6246         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6247
6248         vcpu->arch.nmi_injected = false;
6249         kvm_clear_exception_queue(vcpu);
6250         kvm_clear_interrupt_queue(vcpu);
6251
6252         if (!idtv_info_valid)
6253                 return;
6254
6255         kvm_make_request(KVM_REQ_EVENT, vcpu);
6256
6257         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6258         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6259
6260         switch (type) {
6261         case INTR_TYPE_NMI_INTR:
6262                 vcpu->arch.nmi_injected = true;
6263                 /*
6264                  * SDM 3: 27.7.1.2 (September 2008)
6265                  * Clear bit "block by NMI" before VM entry if a NMI
6266                  * delivery faulted.
6267                  */
6268                 vmx_set_nmi_mask(vcpu, false);
6269                 break;
6270         case INTR_TYPE_SOFT_EXCEPTION:
6271                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6272                 /* fall through */
6273         case INTR_TYPE_HARD_EXCEPTION:
6274                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6275                         u32 err = vmcs_read32(error_code_field);
6276                         kvm_requeue_exception_e(vcpu, vector, err);
6277                 } else
6278                         kvm_requeue_exception(vcpu, vector);
6279                 break;
6280         case INTR_TYPE_SOFT_INTR:
6281                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6282                 /* fall through */
6283         case INTR_TYPE_EXT_INTR:
6284                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6285                 break;
6286         default:
6287                 break;
6288         }
6289 }
6290
6291 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6292 {
6293         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6294                                   VM_EXIT_INSTRUCTION_LEN,
6295                                   IDT_VECTORING_ERROR_CODE);
6296 }
6297
6298 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6299 {
6300         __vmx_complete_interrupts(vcpu,
6301                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6302                                   VM_ENTRY_INSTRUCTION_LEN,
6303                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6304
6305         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6306 }
6307
6308 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6309 {
6310         int i, nr_msrs;
6311         struct perf_guest_switch_msr *msrs;
6312
6313         msrs = perf_guest_get_msrs(&nr_msrs);
6314
6315         if (!msrs)
6316                 return;
6317
6318         for (i = 0; i < nr_msrs; i++)
6319                 if (msrs[i].host == msrs[i].guest)
6320                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6321                 else
6322                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6323                                         msrs[i].host, false);
6324 }
6325
6326 static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
6327 {
6328         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
6329         if (!vmx->loaded_vmcs->hv_timer_armed)
6330                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
6331                               PIN_BASED_VMX_PREEMPTION_TIMER);
6332         vmx->loaded_vmcs->hv_timer_armed = true;
6333 }
6334
6335 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6336 {
6337         struct vcpu_vmx *vmx = to_vmx(vcpu);
6338         u64 tscl;
6339         u32 delta_tsc;
6340
6341         if (vmx->req_immediate_exit) {
6342                 vmx_arm_hv_timer(vmx, 0);
6343                 return;
6344         }
6345
6346         if (vmx->hv_deadline_tsc != -1) {
6347                 tscl = rdtsc();
6348                 if (vmx->hv_deadline_tsc > tscl)
6349                         /* set_hv_timer ensures the delta fits in 32-bits */
6350                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6351                                 cpu_preemption_timer_multi);
6352                 else
6353                         delta_tsc = 0;
6354
6355                 vmx_arm_hv_timer(vmx, delta_tsc);
6356                 return;
6357         }
6358
6359         if (vmx->loaded_vmcs->hv_timer_armed)
6360                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
6361                                 PIN_BASED_VMX_PREEMPTION_TIMER);
6362         vmx->loaded_vmcs->hv_timer_armed = false;
6363 }
6364
6365 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6366 {
6367         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6368                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6369                 vmcs_writel(HOST_RSP, host_rsp);
6370         }
6371 }
6372
6373 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6374
6375 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6376 {
6377         struct vcpu_vmx *vmx = to_vmx(vcpu);
6378         unsigned long cr3, cr4;
6379
6380         /* Record the guest's net vcpu time for enforced NMI injections. */
6381         if (unlikely(!enable_vnmi &&
6382                      vmx->loaded_vmcs->soft_vnmi_blocked))
6383                 vmx->loaded_vmcs->entry_time = ktime_get();
6384
6385         /* Don't enter VMX if guest state is invalid, let the exit handler
6386            start emulation until we arrive back to a valid state */
6387         if (vmx->emulation_required)
6388                 return;
6389
6390         if (vmx->ple_window_dirty) {
6391                 vmx->ple_window_dirty = false;
6392                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6393         }
6394
6395         if (vmx->nested.need_vmcs12_sync)
6396                 nested_sync_from_vmcs12(vcpu);
6397
6398         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6399                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6400         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6401                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6402
6403         cr3 = __get_current_cr3_fast();
6404         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6405                 vmcs_writel(HOST_CR3, cr3);
6406                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6407         }
6408
6409         cr4 = cr4_read_shadow();
6410         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6411                 vmcs_writel(HOST_CR4, cr4);
6412                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6413         }
6414
6415         /* When single-stepping over STI and MOV SS, we must clear the
6416          * corresponding interruptibility bits in the guest state. Otherwise
6417          * vmentry fails as it then expects bit 14 (BS) in pending debug
6418          * exceptions being set, but that's not correct for the guest debugging
6419          * case. */
6420         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6421                 vmx_set_interrupt_shadow(vcpu, 0);
6422
6423         kvm_load_guest_xcr0(vcpu);
6424
6425         if (static_cpu_has(X86_FEATURE_PKU) &&
6426             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6427             vcpu->arch.pkru != vmx->host_pkru)
6428                 __write_pkru(vcpu->arch.pkru);
6429
6430         pt_guest_enter(vmx);
6431
6432         atomic_switch_perf_msrs(vmx);
6433
6434         vmx_update_hv_timer(vcpu);
6435
6436         /*
6437          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6438          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6439          * is no need to worry about the conditional branch over the wrmsr
6440          * being speculatively taken.
6441          */
6442         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6443
6444         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6445         if (static_branch_unlikely(&vmx_l1d_should_flush))
6446                 vmx_l1d_flush(vcpu);
6447         else if (static_branch_unlikely(&mds_user_clear))
6448                 mds_clear_cpu_buffers();
6449
6450         if (vcpu->arch.cr2 != read_cr2())
6451                 write_cr2(vcpu->arch.cr2);
6452
6453         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6454                                    vmx->loaded_vmcs->launched);
6455
6456         vcpu->arch.cr2 = read_cr2();
6457
6458         /*
6459          * We do not use IBRS in the kernel. If this vCPU has used the
6460          * SPEC_CTRL MSR it may have left it on; save the value and
6461          * turn it off. This is much more efficient than blindly adding
6462          * it to the atomic save/restore list. Especially as the former
6463          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6464          *
6465          * For non-nested case:
6466          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6467          * save it.
6468          *
6469          * For nested case:
6470          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6471          * save it.
6472          */
6473         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6474                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6475
6476         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6477
6478         /* All fields are clean at this point */
6479         if (static_branch_unlikely(&enable_evmcs))
6480                 current_evmcs->hv_clean_fields |=
6481                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6482
6483         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6484         if (vmx->host_debugctlmsr)
6485                 update_debugctlmsr(vmx->host_debugctlmsr);
6486
6487 #ifndef CONFIG_X86_64
6488         /*
6489          * The sysexit path does not restore ds/es, so we must set them to
6490          * a reasonable value ourselves.
6491          *
6492          * We can't defer this to vmx_prepare_switch_to_host() since that
6493          * function may be executed in interrupt context, which saves and
6494          * restore segments around it, nullifying its effect.
6495          */
6496         loadsegment(ds, __USER_DS);
6497         loadsegment(es, __USER_DS);
6498 #endif
6499
6500         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6501                                   | (1 << VCPU_EXREG_RFLAGS)
6502                                   | (1 << VCPU_EXREG_PDPTR)
6503                                   | (1 << VCPU_EXREG_SEGMENTS)
6504                                   | (1 << VCPU_EXREG_CR3));
6505         vcpu->arch.regs_dirty = 0;
6506
6507         pt_guest_exit(vmx);
6508
6509         /*
6510          * eager fpu is enabled if PKEY is supported and CR4 is switched
6511          * back on host, so it is safe to read guest PKRU from current
6512          * XSAVE.
6513          */
6514         if (static_cpu_has(X86_FEATURE_PKU) &&
6515             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6516                 vcpu->arch.pkru = rdpkru();
6517                 if (vcpu->arch.pkru != vmx->host_pkru)
6518                         __write_pkru(vmx->host_pkru);
6519         }
6520
6521         kvm_put_guest_xcr0(vcpu);
6522
6523         vmx->nested.nested_run_pending = 0;
6524         vmx->idt_vectoring_info = 0;
6525
6526         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6527         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6528                 return;
6529
6530         vmx->loaded_vmcs->launched = 1;
6531         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6532
6533         vmx_complete_atomic_exit(vmx);
6534         vmx_recover_nmi_blocking(vmx);
6535         vmx_complete_interrupts(vmx);
6536 }
6537
6538 static struct kvm *vmx_vm_alloc(void)
6539 {
6540         struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6541                                             GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6542                                             PAGE_KERNEL);
6543         return &kvm_vmx->kvm;
6544 }
6545
6546 static void vmx_vm_free(struct kvm *kvm)
6547 {
6548         vfree(to_kvm_vmx(kvm));
6549 }
6550
6551 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6552 {
6553         struct vcpu_vmx *vmx = to_vmx(vcpu);
6554
6555         if (enable_pml)
6556                 vmx_destroy_pml_buffer(vmx);
6557         free_vpid(vmx->vpid);
6558         nested_vmx_free_vcpu(vcpu);
6559         free_loaded_vmcs(vmx->loaded_vmcs);
6560         kfree(vmx->guest_msrs);
6561         kvm_vcpu_uninit(vcpu);
6562         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6563         kmem_cache_free(kvm_vcpu_cache, vmx);
6564 }
6565
6566 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6567 {
6568         int err;
6569         struct vcpu_vmx *vmx;
6570         unsigned long *msr_bitmap;
6571         int cpu;
6572
6573         vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6574         if (!vmx)
6575                 return ERR_PTR(-ENOMEM);
6576
6577         vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6578                         GFP_KERNEL_ACCOUNT);
6579         if (!vmx->vcpu.arch.guest_fpu) {
6580                 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6581                 err = -ENOMEM;
6582                 goto free_partial_vcpu;
6583         }
6584
6585         vmx->vpid = allocate_vpid();
6586
6587         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6588         if (err)
6589                 goto free_vcpu;
6590
6591         err = -ENOMEM;
6592
6593         /*
6594          * If PML is turned on, failure on enabling PML just results in failure
6595          * of creating the vcpu, therefore we can simplify PML logic (by
6596          * avoiding dealing with cases, such as enabling PML partially on vcpus
6597          * for the guest, etc.
6598          */
6599         if (enable_pml) {
6600                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6601                 if (!vmx->pml_pg)
6602                         goto uninit_vcpu;
6603         }
6604
6605         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6606         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6607                      > PAGE_SIZE);
6608
6609         if (!vmx->guest_msrs)
6610                 goto free_pml;
6611
6612         err = alloc_loaded_vmcs(&vmx->vmcs01);
6613         if (err < 0)
6614                 goto free_msrs;
6615
6616         msr_bitmap = vmx->vmcs01.msr_bitmap;
6617         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6618         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6619         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6620         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6621         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6622         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6623         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6624         vmx->msr_bitmap_mode = 0;
6625
6626         vmx->loaded_vmcs = &vmx->vmcs01;
6627         cpu = get_cpu();
6628         vmx_vcpu_load(&vmx->vcpu, cpu);
6629         vmx->vcpu.cpu = cpu;
6630         vmx_vcpu_setup(vmx);
6631         vmx_vcpu_put(&vmx->vcpu);
6632         put_cpu();
6633         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6634                 err = alloc_apic_access_page(kvm);
6635                 if (err)
6636                         goto free_vmcs;
6637         }
6638
6639         if (enable_ept && !enable_unrestricted_guest) {
6640                 err = init_rmode_identity_map(kvm);
6641                 if (err)
6642                         goto free_vmcs;
6643         }
6644
6645         if (nested)
6646                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6647                                            vmx_capability.ept,
6648                                            kvm_vcpu_apicv_active(&vmx->vcpu));
6649         else
6650                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6651
6652         vmx->nested.posted_intr_nv = -1;
6653         vmx->nested.current_vmptr = -1ull;
6654
6655         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6656
6657         /*
6658          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6659          * or POSTED_INTR_WAKEUP_VECTOR.
6660          */
6661         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6662         vmx->pi_desc.sn = 1;
6663
6664         vmx->ept_pointer = INVALID_PAGE;
6665
6666         return &vmx->vcpu;
6667
6668 free_vmcs:
6669         free_loaded_vmcs(vmx->loaded_vmcs);
6670 free_msrs:
6671         kfree(vmx->guest_msrs);
6672 free_pml:
6673         vmx_destroy_pml_buffer(vmx);
6674 uninit_vcpu:
6675         kvm_vcpu_uninit(&vmx->vcpu);
6676 free_vcpu:
6677         free_vpid(vmx->vpid);
6678         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6679 free_partial_vcpu:
6680         kmem_cache_free(kvm_vcpu_cache, vmx);
6681         return ERR_PTR(err);
6682 }
6683
6684 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6685 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6686
6687 static int vmx_vm_init(struct kvm *kvm)
6688 {
6689         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6690
6691         if (!ple_gap)
6692                 kvm->arch.pause_in_guest = true;
6693
6694         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6695                 switch (l1tf_mitigation) {
6696                 case L1TF_MITIGATION_OFF:
6697                 case L1TF_MITIGATION_FLUSH_NOWARN:
6698                         /* 'I explicitly don't care' is set */
6699                         break;
6700                 case L1TF_MITIGATION_FLUSH:
6701                 case L1TF_MITIGATION_FLUSH_NOSMT:
6702                 case L1TF_MITIGATION_FULL:
6703                         /*
6704                          * Warn upon starting the first VM in a potentially
6705                          * insecure environment.
6706                          */
6707                         if (sched_smt_active())
6708                                 pr_warn_once(L1TF_MSG_SMT);
6709                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6710                                 pr_warn_once(L1TF_MSG_L1D);
6711                         break;
6712                 case L1TF_MITIGATION_FULL_FORCE:
6713                         /* Flush is enforced */
6714                         break;
6715                 }
6716         }
6717         return 0;
6718 }
6719
6720 static void __init vmx_check_processor_compat(void *rtn)
6721 {
6722         struct vmcs_config vmcs_conf;
6723         struct vmx_capability vmx_cap;
6724
6725         *(int *)rtn = 0;
6726         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6727                 *(int *)rtn = -EIO;
6728         if (nested)
6729                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6730                                            enable_apicv);
6731         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6732                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6733                                 smp_processor_id());
6734                 *(int *)rtn = -EIO;
6735         }
6736 }
6737
6738 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6739 {
6740         u8 cache;
6741         u64 ipat = 0;
6742
6743         /* For VT-d and EPT combination
6744          * 1. MMIO: always map as UC
6745          * 2. EPT with VT-d:
6746          *   a. VT-d without snooping control feature: can't guarantee the
6747          *      result, try to trust guest.
6748          *   b. VT-d with snooping control feature: snooping control feature of
6749          *      VT-d engine can guarantee the cache correctness. Just set it
6750          *      to WB to keep consistent with host. So the same as item 3.
6751          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6752          *    consistent with host MTRR
6753          */
6754         if (is_mmio) {
6755                 cache = MTRR_TYPE_UNCACHABLE;
6756                 goto exit;
6757         }
6758
6759         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6760                 ipat = VMX_EPT_IPAT_BIT;
6761                 cache = MTRR_TYPE_WRBACK;
6762                 goto exit;
6763         }
6764
6765         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6766                 ipat = VMX_EPT_IPAT_BIT;
6767                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6768                         cache = MTRR_TYPE_WRBACK;
6769                 else
6770                         cache = MTRR_TYPE_UNCACHABLE;
6771                 goto exit;
6772         }
6773
6774         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6775
6776 exit:
6777         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6778 }
6779
6780 static int vmx_get_lpage_level(void)
6781 {
6782         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6783                 return PT_DIRECTORY_LEVEL;
6784         else
6785                 /* For shadow and EPT supported 1GB page */
6786                 return PT_PDPE_LEVEL;
6787 }
6788
6789 static void vmcs_set_secondary_exec_control(u32 new_ctl)
6790 {
6791         /*
6792          * These bits in the secondary execution controls field
6793          * are dynamic, the others are mostly based on the hypervisor
6794          * architecture and the guest's CPUID.  Do not touch the
6795          * dynamic bits.
6796          */
6797         u32 mask =
6798                 SECONDARY_EXEC_SHADOW_VMCS |
6799                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6800                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6801                 SECONDARY_EXEC_DESC;
6802
6803         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6804
6805         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6806                      (new_ctl & ~mask) | (cur_ctl & mask));
6807 }
6808
6809 /*
6810  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6811  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6812  */
6813 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6814 {
6815         struct vcpu_vmx *vmx = to_vmx(vcpu);
6816         struct kvm_cpuid_entry2 *entry;
6817
6818         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6819         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6820
6821 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6822         if (entry && (entry->_reg & (_cpuid_mask)))                     \
6823                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6824 } while (0)
6825
6826         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6827         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6828         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6829         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6830         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6831         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6832         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6833         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6834         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6835         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6836         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6837         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6838         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6839         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6840         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6841
6842         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6843         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6844         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6845         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6846         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6847         cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6848
6849 #undef cr4_fixed1_update
6850 }
6851
6852 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6853 {
6854         struct vcpu_vmx *vmx = to_vmx(vcpu);
6855
6856         if (kvm_mpx_supported()) {
6857                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6858
6859                 if (mpx_enabled) {
6860                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6861                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6862                 } else {
6863                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6864                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6865                 }
6866         }
6867 }
6868
6869 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6870 {
6871         struct vcpu_vmx *vmx = to_vmx(vcpu);
6872         struct kvm_cpuid_entry2 *best = NULL;
6873         int i;
6874
6875         for (i = 0; i < PT_CPUID_LEAVES; i++) {
6876                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
6877                 if (!best)
6878                         return;
6879                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
6880                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
6881                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
6882                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
6883         }
6884
6885         /* Get the number of configurable Address Ranges for filtering */
6886         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
6887                                                 PT_CAP_num_address_ranges);
6888
6889         /* Initialize and clear the no dependency bits */
6890         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
6891                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
6892
6893         /*
6894          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
6895          * will inject an #GP
6896          */
6897         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
6898                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
6899
6900         /*
6901          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
6902          * PSBFreq can be set
6903          */
6904         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
6905                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
6906                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
6907
6908         /*
6909          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
6910          * MTCFreq can be set
6911          */
6912         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
6913                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
6914                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
6915
6916         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
6917         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
6918                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
6919                                                         RTIT_CTL_PTW_EN);
6920
6921         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
6922         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
6923                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
6924
6925         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
6926         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
6927                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
6928
6929         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
6930         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
6931                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
6932
6933         /* unmask address range configure area */
6934         for (i = 0; i < vmx->pt_desc.addr_range; i++)
6935                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
6936 }
6937
6938 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6939 {
6940         struct vcpu_vmx *vmx = to_vmx(vcpu);
6941
6942         if (cpu_has_secondary_exec_ctrls()) {
6943                 vmx_compute_secondary_exec_control(vmx);
6944                 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
6945         }
6946
6947         if (nested_vmx_allowed(vcpu))
6948                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
6949                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6950         else
6951                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
6952                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6953
6954         if (nested_vmx_allowed(vcpu)) {
6955                 nested_vmx_cr_fixed1_bits_update(vcpu);
6956                 nested_vmx_entry_exit_ctls_update(vcpu);
6957         }
6958
6959         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
6960                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
6961                 update_intel_pt_cfg(vcpu);
6962 }
6963
6964 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6965 {
6966         if (func == 1 && nested)
6967                 entry->ecx |= bit(X86_FEATURE_VMX);
6968 }
6969
6970 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
6971 {
6972         to_vmx(vcpu)->req_immediate_exit = true;
6973 }
6974
6975 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
6976                                struct x86_instruction_info *info,
6977                                enum x86_intercept_stage stage)
6978 {
6979         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6980         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6981
6982         /*
6983          * RDPID causes #UD if disabled through secondary execution controls.
6984          * Because it is marked as EmulateOnUD, we need to intercept it here.
6985          */
6986         if (info->intercept == x86_intercept_rdtscp &&
6987             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
6988                 ctxt->exception.vector = UD_VECTOR;
6989                 ctxt->exception.error_code_valid = false;
6990                 return X86EMUL_PROPAGATE_FAULT;
6991         }
6992
6993         /* TODO: check more intercepts... */
6994         return X86EMUL_CONTINUE;
6995 }
6996
6997 #ifdef CONFIG_X86_64
6998 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
6999 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7000                                   u64 divisor, u64 *result)
7001 {
7002         u64 low = a << shift, high = a >> (64 - shift);
7003
7004         /* To avoid the overflow on divq */
7005         if (high >= divisor)
7006                 return 1;
7007
7008         /* Low hold the result, high hold rem which is discarded */
7009         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7010             "rm" (divisor), "0" (low), "1" (high));
7011         *result = low;
7012
7013         return 0;
7014 }
7015
7016 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7017                             bool *expired)
7018 {
7019         struct vcpu_vmx *vmx;
7020         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7021         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7022
7023         if (kvm_mwait_in_guest(vcpu->kvm))
7024                 return -EOPNOTSUPP;
7025
7026         vmx = to_vmx(vcpu);
7027         tscl = rdtsc();
7028         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7029         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7030         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7031                                                     ktimer->timer_advance_ns);
7032
7033         if (delta_tsc > lapic_timer_advance_cycles)
7034                 delta_tsc -= lapic_timer_advance_cycles;
7035         else
7036                 delta_tsc = 0;
7037
7038         /* Convert to host delta tsc if tsc scaling is enabled */
7039         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7040             delta_tsc && u64_shl_div_u64(delta_tsc,
7041                                 kvm_tsc_scaling_ratio_frac_bits,
7042                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7043                 return -ERANGE;
7044
7045         /*
7046          * If the delta tsc can't fit in the 32 bit after the multi shift,
7047          * we can't use the preemption timer.
7048          * It's possible that it fits on later vmentries, but checking
7049          * on every vmentry is costly so we just use an hrtimer.
7050          */
7051         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7052                 return -ERANGE;
7053
7054         vmx->hv_deadline_tsc = tscl + delta_tsc;
7055         *expired = !delta_tsc;
7056         return 0;
7057 }
7058
7059 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7060 {
7061         to_vmx(vcpu)->hv_deadline_tsc = -1;
7062 }
7063 #endif
7064
7065 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7066 {
7067         if (!kvm_pause_in_guest(vcpu->kvm))
7068                 shrink_ple_window(vcpu);
7069 }
7070
7071 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7072                                      struct kvm_memory_slot *slot)
7073 {
7074         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7075         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7076 }
7077
7078 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7079                                        struct kvm_memory_slot *slot)
7080 {
7081         kvm_mmu_slot_set_dirty(kvm, slot);
7082 }
7083
7084 static void vmx_flush_log_dirty(struct kvm *kvm)
7085 {
7086         kvm_flush_pml_buffers(kvm);
7087 }
7088
7089 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7090 {
7091         struct vmcs12 *vmcs12;
7092         struct vcpu_vmx *vmx = to_vmx(vcpu);
7093         gpa_t gpa, dst;
7094
7095         if (is_guest_mode(vcpu)) {
7096                 WARN_ON_ONCE(vmx->nested.pml_full);
7097
7098                 /*
7099                  * Check if PML is enabled for the nested guest.
7100                  * Whether eptp bit 6 is set is already checked
7101                  * as part of A/D emulation.
7102                  */
7103                 vmcs12 = get_vmcs12(vcpu);
7104                 if (!nested_cpu_has_pml(vmcs12))
7105                         return 0;
7106
7107                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7108                         vmx->nested.pml_full = true;
7109                         return 1;
7110                 }
7111
7112                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7113                 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7114
7115                 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7116                                          offset_in_page(dst), sizeof(gpa)))
7117                         return 0;
7118
7119                 vmcs12->guest_pml_index--;
7120         }
7121
7122         return 0;
7123 }
7124
7125 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7126                                            struct kvm_memory_slot *memslot,
7127                                            gfn_t offset, unsigned long mask)
7128 {
7129         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7130 }
7131
7132 static void __pi_post_block(struct kvm_vcpu *vcpu)
7133 {
7134         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7135         struct pi_desc old, new;
7136         unsigned int dest;
7137
7138         do {
7139                 old.control = new.control = pi_desc->control;
7140                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7141                      "Wakeup handler not enabled while the VCPU is blocked\n");
7142
7143                 dest = cpu_physical_id(vcpu->cpu);
7144
7145                 if (x2apic_enabled())
7146                         new.ndst = dest;
7147                 else
7148                         new.ndst = (dest << 8) & 0xFF00;
7149
7150                 /* set 'NV' to 'notification vector' */
7151                 new.nv = POSTED_INTR_VECTOR;
7152         } while (cmpxchg64(&pi_desc->control, old.control,
7153                            new.control) != old.control);
7154
7155         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7156                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7157                 list_del(&vcpu->blocked_vcpu_list);
7158                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7159                 vcpu->pre_pcpu = -1;
7160         }
7161 }
7162
7163 /*
7164  * This routine does the following things for vCPU which is going
7165  * to be blocked if VT-d PI is enabled.
7166  * - Store the vCPU to the wakeup list, so when interrupts happen
7167  *   we can find the right vCPU to wake up.
7168  * - Change the Posted-interrupt descriptor as below:
7169  *      'NDST' <-- vcpu->pre_pcpu
7170  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7171  * - If 'ON' is set during this process, which means at least one
7172  *   interrupt is posted for this vCPU, we cannot block it, in
7173  *   this case, return 1, otherwise, return 0.
7174  *
7175  */
7176 static int pi_pre_block(struct kvm_vcpu *vcpu)
7177 {
7178         unsigned int dest;
7179         struct pi_desc old, new;
7180         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7181
7182         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7183                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7184                 !kvm_vcpu_apicv_active(vcpu))
7185                 return 0;
7186
7187         WARN_ON(irqs_disabled());
7188         local_irq_disable();
7189         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7190                 vcpu->pre_pcpu = vcpu->cpu;
7191                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7192                 list_add_tail(&vcpu->blocked_vcpu_list,
7193                               &per_cpu(blocked_vcpu_on_cpu,
7194                                        vcpu->pre_pcpu));
7195                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7196         }
7197
7198         do {
7199                 old.control = new.control = pi_desc->control;
7200
7201                 WARN((pi_desc->sn == 1),
7202                      "Warning: SN field of posted-interrupts "
7203                      "is set before blocking\n");
7204
7205                 /*
7206                  * Since vCPU can be preempted during this process,
7207                  * vcpu->cpu could be different with pre_pcpu, we
7208                  * need to set pre_pcpu as the destination of wakeup
7209                  * notification event, then we can find the right vCPU
7210                  * to wakeup in wakeup handler if interrupts happen
7211                  * when the vCPU is in blocked state.
7212                  */
7213                 dest = cpu_physical_id(vcpu->pre_pcpu);
7214
7215                 if (x2apic_enabled())
7216                         new.ndst = dest;
7217                 else
7218                         new.ndst = (dest << 8) & 0xFF00;
7219
7220                 /* set 'NV' to 'wakeup vector' */
7221                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7222         } while (cmpxchg64(&pi_desc->control, old.control,
7223                            new.control) != old.control);
7224
7225         /* We should not block the vCPU if an interrupt is posted for it.  */
7226         if (pi_test_on(pi_desc) == 1)
7227                 __pi_post_block(vcpu);
7228
7229         local_irq_enable();
7230         return (vcpu->pre_pcpu == -1);
7231 }
7232
7233 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7234 {
7235         if (pi_pre_block(vcpu))
7236                 return 1;
7237
7238         if (kvm_lapic_hv_timer_in_use(vcpu))
7239                 kvm_lapic_switch_to_sw_timer(vcpu);
7240
7241         return 0;
7242 }
7243
7244 static void pi_post_block(struct kvm_vcpu *vcpu)
7245 {
7246         if (vcpu->pre_pcpu == -1)
7247                 return;
7248
7249         WARN_ON(irqs_disabled());
7250         local_irq_disable();
7251         __pi_post_block(vcpu);
7252         local_irq_enable();
7253 }
7254
7255 static void vmx_post_block(struct kvm_vcpu *vcpu)
7256 {
7257         if (kvm_x86_ops->set_hv_timer)
7258                 kvm_lapic_switch_to_hv_timer(vcpu);
7259
7260         pi_post_block(vcpu);
7261 }
7262
7263 /*
7264  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7265  *
7266  * @kvm: kvm
7267  * @host_irq: host irq of the interrupt
7268  * @guest_irq: gsi of the interrupt
7269  * @set: set or unset PI
7270  * returns 0 on success, < 0 on failure
7271  */
7272 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7273                               uint32_t guest_irq, bool set)
7274 {
7275         struct kvm_kernel_irq_routing_entry *e;
7276         struct kvm_irq_routing_table *irq_rt;
7277         struct kvm_lapic_irq irq;
7278         struct kvm_vcpu *vcpu;
7279         struct vcpu_data vcpu_info;
7280         int idx, ret = 0;
7281
7282         if (!kvm_arch_has_assigned_device(kvm) ||
7283                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7284                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7285                 return 0;
7286
7287         idx = srcu_read_lock(&kvm->irq_srcu);
7288         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7289         if (guest_irq >= irq_rt->nr_rt_entries ||
7290             hlist_empty(&irq_rt->map[guest_irq])) {
7291                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7292                              guest_irq, irq_rt->nr_rt_entries);
7293                 goto out;
7294         }
7295
7296         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7297                 if (e->type != KVM_IRQ_ROUTING_MSI)
7298                         continue;
7299                 /*
7300                  * VT-d PI cannot support posting multicast/broadcast
7301                  * interrupts to a vCPU, we still use interrupt remapping
7302                  * for these kind of interrupts.
7303                  *
7304                  * For lowest-priority interrupts, we only support
7305                  * those with single CPU as the destination, e.g. user
7306                  * configures the interrupts via /proc/irq or uses
7307                  * irqbalance to make the interrupts single-CPU.
7308                  *
7309                  * We will support full lowest-priority interrupt later.
7310                  */
7311
7312                 kvm_set_msi_irq(kvm, e, &irq);
7313                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
7314                         /*
7315                          * Make sure the IRTE is in remapped mode if
7316                          * we don't handle it in posted mode.
7317                          */
7318                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7319                         if (ret < 0) {
7320                                 printk(KERN_INFO
7321                                    "failed to back to remapped mode, irq: %u\n",
7322                                    host_irq);
7323                                 goto out;
7324                         }
7325
7326                         continue;
7327                 }
7328
7329                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7330                 vcpu_info.vector = irq.vector;
7331
7332                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7333                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7334
7335                 if (set)
7336                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7337                 else
7338                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7339
7340                 if (ret < 0) {
7341                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7342                                         __func__);
7343                         goto out;
7344                 }
7345         }
7346
7347         ret = 0;
7348 out:
7349         srcu_read_unlock(&kvm->irq_srcu, idx);
7350         return ret;
7351 }
7352
7353 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7354 {
7355         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7356                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7357                         FEATURE_CONTROL_LMCE;
7358         else
7359                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7360                         ~FEATURE_CONTROL_LMCE;
7361 }
7362
7363 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7364 {
7365         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7366         if (to_vmx(vcpu)->nested.nested_run_pending)
7367                 return 0;
7368         return 1;
7369 }
7370
7371 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7372 {
7373         struct vcpu_vmx *vmx = to_vmx(vcpu);
7374
7375         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7376         if (vmx->nested.smm.guest_mode)
7377                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7378
7379         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7380         vmx->nested.vmxon = false;
7381         vmx_clear_hlt(vcpu);
7382         return 0;
7383 }
7384
7385 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7386 {
7387         struct vcpu_vmx *vmx = to_vmx(vcpu);
7388         int ret;
7389
7390         if (vmx->nested.smm.vmxon) {
7391                 vmx->nested.vmxon = true;
7392                 vmx->nested.smm.vmxon = false;
7393         }
7394
7395         if (vmx->nested.smm.guest_mode) {
7396                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7397                 if (ret)
7398                         return ret;
7399
7400                 vmx->nested.smm.guest_mode = false;
7401         }
7402         return 0;
7403 }
7404
7405 static int enable_smi_window(struct kvm_vcpu *vcpu)
7406 {
7407         return 0;
7408 }
7409
7410 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7411 {
7412         return 0;
7413 }
7414
7415 static __init int hardware_setup(void)
7416 {
7417         unsigned long host_bndcfgs;
7418         int r, i;
7419
7420         rdmsrl_safe(MSR_EFER, &host_efer);
7421
7422         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7423                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7424
7425         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7426                 return -EIO;
7427
7428         if (boot_cpu_has(X86_FEATURE_NX))
7429                 kvm_enable_efer_bits(EFER_NX);
7430
7431         if (boot_cpu_has(X86_FEATURE_MPX)) {
7432                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7433                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7434         }
7435
7436         if (boot_cpu_has(X86_FEATURE_XSAVES))
7437                 rdmsrl(MSR_IA32_XSS, host_xss);
7438
7439         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7440             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7441                 enable_vpid = 0;
7442
7443         if (!cpu_has_vmx_ept() ||
7444             !cpu_has_vmx_ept_4levels() ||
7445             !cpu_has_vmx_ept_mt_wb() ||
7446             !cpu_has_vmx_invept_global())
7447                 enable_ept = 0;
7448
7449         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7450                 enable_ept_ad_bits = 0;
7451
7452         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7453                 enable_unrestricted_guest = 0;
7454
7455         if (!cpu_has_vmx_flexpriority())
7456                 flexpriority_enabled = 0;
7457
7458         if (!cpu_has_virtual_nmis())
7459                 enable_vnmi = 0;
7460
7461         /*
7462          * set_apic_access_page_addr() is used to reload apic access
7463          * page upon invalidation.  No need to do anything if not
7464          * using the APIC_ACCESS_ADDR VMCS field.
7465          */
7466         if (!flexpriority_enabled)
7467                 kvm_x86_ops->set_apic_access_page_addr = NULL;
7468
7469         if (!cpu_has_vmx_tpr_shadow())
7470                 kvm_x86_ops->update_cr8_intercept = NULL;
7471
7472         if (enable_ept && !cpu_has_vmx_ept_2m_page())
7473                 kvm_disable_largepages();
7474
7475 #if IS_ENABLED(CONFIG_HYPERV)
7476         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7477             && enable_ept) {
7478                 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7479                 kvm_x86_ops->tlb_remote_flush_with_range =
7480                                 hv_remote_flush_tlb_with_range;
7481         }
7482 #endif
7483
7484         if (!cpu_has_vmx_ple()) {
7485                 ple_gap = 0;
7486                 ple_window = 0;
7487                 ple_window_grow = 0;
7488                 ple_window_max = 0;
7489                 ple_window_shrink = 0;
7490         }
7491
7492         if (!cpu_has_vmx_apicv()) {
7493                 enable_apicv = 0;
7494                 kvm_x86_ops->sync_pir_to_irr = NULL;
7495         }
7496
7497         if (cpu_has_vmx_tsc_scaling()) {
7498                 kvm_has_tsc_control = true;
7499                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7500                 kvm_tsc_scaling_ratio_frac_bits = 48;
7501         }
7502
7503         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7504
7505         if (enable_ept)
7506                 vmx_enable_tdp();
7507         else
7508                 kvm_disable_tdp();
7509
7510         /*
7511          * Only enable PML when hardware supports PML feature, and both EPT
7512          * and EPT A/D bit features are enabled -- PML depends on them to work.
7513          */
7514         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7515                 enable_pml = 0;
7516
7517         if (!enable_pml) {
7518                 kvm_x86_ops->slot_enable_log_dirty = NULL;
7519                 kvm_x86_ops->slot_disable_log_dirty = NULL;
7520                 kvm_x86_ops->flush_log_dirty = NULL;
7521                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7522         }
7523
7524         if (!cpu_has_vmx_preemption_timer())
7525                 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7526
7527         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7528                 u64 vmx_msr;
7529
7530                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7531                 cpu_preemption_timer_multi =
7532                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7533         } else {
7534                 kvm_x86_ops->set_hv_timer = NULL;
7535                 kvm_x86_ops->cancel_hv_timer = NULL;
7536         }
7537
7538         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7539
7540         kvm_mce_cap_supported |= MCG_LMCE_P;
7541
7542         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7543                 return -EINVAL;
7544         if (!enable_ept || !cpu_has_vmx_intel_pt())
7545                 pt_mode = PT_MODE_SYSTEM;
7546
7547         if (nested) {
7548                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7549                                            vmx_capability.ept, enable_apicv);
7550
7551                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7552                 if (r)
7553                         return r;
7554         }
7555
7556         r = alloc_kvm_area();
7557         if (r)
7558                 nested_vmx_hardware_unsetup();
7559         return r;
7560 }
7561
7562 static __exit void hardware_unsetup(void)
7563 {
7564         if (nested)
7565                 nested_vmx_hardware_unsetup();
7566
7567         free_kvm_area();
7568 }
7569
7570 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7571         .cpu_has_kvm_support = cpu_has_kvm_support,
7572         .disabled_by_bios = vmx_disabled_by_bios,
7573         .hardware_setup = hardware_setup,
7574         .hardware_unsetup = hardware_unsetup,
7575         .check_processor_compatibility = vmx_check_processor_compat,
7576         .hardware_enable = hardware_enable,
7577         .hardware_disable = hardware_disable,
7578         .cpu_has_accelerated_tpr = report_flexpriority,
7579         .has_emulated_msr = vmx_has_emulated_msr,
7580
7581         .vm_init = vmx_vm_init,
7582         .vm_alloc = vmx_vm_alloc,
7583         .vm_free = vmx_vm_free,
7584
7585         .vcpu_create = vmx_create_vcpu,
7586         .vcpu_free = vmx_free_vcpu,
7587         .vcpu_reset = vmx_vcpu_reset,
7588
7589         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7590         .vcpu_load = vmx_vcpu_load,
7591         .vcpu_put = vmx_vcpu_put,
7592
7593         .update_bp_intercept = update_exception_bitmap,
7594         .get_msr_feature = vmx_get_msr_feature,
7595         .get_msr = vmx_get_msr,
7596         .set_msr = vmx_set_msr,
7597         .get_segment_base = vmx_get_segment_base,
7598         .get_segment = vmx_get_segment,
7599         .set_segment = vmx_set_segment,
7600         .get_cpl = vmx_get_cpl,
7601         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7602         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7603         .decache_cr3 = vmx_decache_cr3,
7604         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7605         .set_cr0 = vmx_set_cr0,
7606         .set_cr3 = vmx_set_cr3,
7607         .set_cr4 = vmx_set_cr4,
7608         .set_efer = vmx_set_efer,
7609         .get_idt = vmx_get_idt,
7610         .set_idt = vmx_set_idt,
7611         .get_gdt = vmx_get_gdt,
7612         .set_gdt = vmx_set_gdt,
7613         .get_dr6 = vmx_get_dr6,
7614         .set_dr6 = vmx_set_dr6,
7615         .set_dr7 = vmx_set_dr7,
7616         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7617         .cache_reg = vmx_cache_reg,
7618         .get_rflags = vmx_get_rflags,
7619         .set_rflags = vmx_set_rflags,
7620
7621         .tlb_flush = vmx_flush_tlb,
7622         .tlb_flush_gva = vmx_flush_tlb_gva,
7623
7624         .run = vmx_vcpu_run,
7625         .handle_exit = vmx_handle_exit,
7626         .skip_emulated_instruction = skip_emulated_instruction,
7627         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7628         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7629         .patch_hypercall = vmx_patch_hypercall,
7630         .set_irq = vmx_inject_irq,
7631         .set_nmi = vmx_inject_nmi,
7632         .queue_exception = vmx_queue_exception,
7633         .cancel_injection = vmx_cancel_injection,
7634         .interrupt_allowed = vmx_interrupt_allowed,
7635         .nmi_allowed = vmx_nmi_allowed,
7636         .get_nmi_mask = vmx_get_nmi_mask,
7637         .set_nmi_mask = vmx_set_nmi_mask,
7638         .enable_nmi_window = enable_nmi_window,
7639         .enable_irq_window = enable_irq_window,
7640         .update_cr8_intercept = update_cr8_intercept,
7641         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7642         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7643         .get_enable_apicv = vmx_get_enable_apicv,
7644         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7645         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7646         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7647         .hwapic_irr_update = vmx_hwapic_irr_update,
7648         .hwapic_isr_update = vmx_hwapic_isr_update,
7649         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7650         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7651         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7652
7653         .set_tss_addr = vmx_set_tss_addr,
7654         .set_identity_map_addr = vmx_set_identity_map_addr,
7655         .get_tdp_level = get_ept_level,
7656         .get_mt_mask = vmx_get_mt_mask,
7657
7658         .get_exit_info = vmx_get_exit_info,
7659
7660         .get_lpage_level = vmx_get_lpage_level,
7661
7662         .cpuid_update = vmx_cpuid_update,
7663
7664         .rdtscp_supported = vmx_rdtscp_supported,
7665         .invpcid_supported = vmx_invpcid_supported,
7666
7667         .set_supported_cpuid = vmx_set_supported_cpuid,
7668
7669         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7670
7671         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7672         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7673
7674         .set_tdp_cr3 = vmx_set_cr3,
7675
7676         .check_intercept = vmx_check_intercept,
7677         .handle_external_intr = vmx_handle_external_intr,
7678         .mpx_supported = vmx_mpx_supported,
7679         .xsaves_supported = vmx_xsaves_supported,
7680         .umip_emulated = vmx_umip_emulated,
7681         .pt_supported = vmx_pt_supported,
7682
7683         .request_immediate_exit = vmx_request_immediate_exit,
7684
7685         .sched_in = vmx_sched_in,
7686
7687         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7688         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7689         .flush_log_dirty = vmx_flush_log_dirty,
7690         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7691         .write_log_dirty = vmx_write_pml_buffer,
7692
7693         .pre_block = vmx_pre_block,
7694         .post_block = vmx_post_block,
7695
7696         .pmu_ops = &intel_pmu_ops,
7697
7698         .update_pi_irte = vmx_update_pi_irte,
7699
7700 #ifdef CONFIG_X86_64
7701         .set_hv_timer = vmx_set_hv_timer,
7702         .cancel_hv_timer = vmx_cancel_hv_timer,
7703 #endif
7704
7705         .setup_mce = vmx_setup_mce,
7706
7707         .smi_allowed = vmx_smi_allowed,
7708         .pre_enter_smm = vmx_pre_enter_smm,
7709         .pre_leave_smm = vmx_pre_leave_smm,
7710         .enable_smi_window = enable_smi_window,
7711
7712         .check_nested_events = NULL,
7713         .get_nested_state = NULL,
7714         .set_nested_state = NULL,
7715         .get_vmcs12_pages = NULL,
7716         .nested_enable_evmcs = NULL,
7717         .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7718 };
7719
7720 static void vmx_cleanup_l1d_flush(void)
7721 {
7722         if (vmx_l1d_flush_pages) {
7723                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7724                 vmx_l1d_flush_pages = NULL;
7725         }
7726         /* Restore state so sysfs ignores VMX */
7727         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7728 }
7729
7730 static void vmx_exit(void)
7731 {
7732 #ifdef CONFIG_KEXEC_CORE
7733         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7734         synchronize_rcu();
7735 #endif
7736
7737         kvm_exit();
7738
7739 #if IS_ENABLED(CONFIG_HYPERV)
7740         if (static_branch_unlikely(&enable_evmcs)) {
7741                 int cpu;
7742                 struct hv_vp_assist_page *vp_ap;
7743                 /*
7744                  * Reset everything to support using non-enlightened VMCS
7745                  * access later (e.g. when we reload the module with
7746                  * enlightened_vmcs=0)
7747                  */
7748                 for_each_online_cpu(cpu) {
7749                         vp_ap = hv_get_vp_assist_page(cpu);
7750
7751                         if (!vp_ap)
7752                                 continue;
7753
7754                         vp_ap->current_nested_vmcs = 0;
7755                         vp_ap->enlighten_vmentry = 0;
7756                 }
7757
7758                 static_branch_disable(&enable_evmcs);
7759         }
7760 #endif
7761         vmx_cleanup_l1d_flush();
7762 }
7763 module_exit(vmx_exit);
7764
7765 static int __init vmx_init(void)
7766 {
7767         int r;
7768
7769 #if IS_ENABLED(CONFIG_HYPERV)
7770         /*
7771          * Enlightened VMCS usage should be recommended and the host needs
7772          * to support eVMCS v1 or above. We can also disable eVMCS support
7773          * with module parameter.
7774          */
7775         if (enlightened_vmcs &&
7776             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7777             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7778             KVM_EVMCS_VERSION) {
7779                 int cpu;
7780
7781                 /* Check that we have assist pages on all online CPUs */
7782                 for_each_online_cpu(cpu) {
7783                         if (!hv_get_vp_assist_page(cpu)) {
7784                                 enlightened_vmcs = false;
7785                                 break;
7786                         }
7787                 }
7788
7789                 if (enlightened_vmcs) {
7790                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7791                         static_branch_enable(&enable_evmcs);
7792                 }
7793         } else {
7794                 enlightened_vmcs = false;
7795         }
7796 #endif
7797
7798         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7799                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7800         if (r)
7801                 return r;
7802
7803         /*
7804          * Must be called after kvm_init() so enable_ept is properly set
7805          * up. Hand the parameter mitigation value in which was stored in
7806          * the pre module init parser. If no parameter was given, it will
7807          * contain 'auto' which will be turned into the default 'cond'
7808          * mitigation mode.
7809          */
7810         if (boot_cpu_has(X86_BUG_L1TF)) {
7811                 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7812                 if (r) {
7813                         vmx_exit();
7814                         return r;
7815                 }
7816         }
7817
7818 #ifdef CONFIG_KEXEC_CORE
7819         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7820                            crash_vmclear_local_loaded_vmcss);
7821 #endif
7822         vmx_check_vmcs12_offsets();
7823
7824         return 0;
7825 }
7826 module_init(vmx_init);