ACPI: sysfs: Fix BERT error region memory mapping
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/idtentry.h>
41 #include <asm/io.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/kexec.h>
44 #include <asm/perf_event.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76         {}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95                         enable_unrestricted_guest, bool, S_IRUGO);
96
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105
106 module_param(enable_apicv, bool, S_IRUGO);
107
108 /*
109  * If nested=1, nested virtualization is supported, i.e., guests may use
110  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
111  * use VMX instructions.
112  */
113 static bool __read_mostly nested = 1;
114 module_param(nested, bool, S_IRUGO);
115
116 bool __read_mostly enable_pml = 1;
117 module_param_named(pml, enable_pml, bool, S_IRUGO);
118
119 static bool __read_mostly dump_invalid_vmcs = 0;
120 module_param(dump_invalid_vmcs, bool, 0644);
121
122 #define MSR_BITMAP_MODE_X2APIC          1
123 #define MSR_BITMAP_MODE_X2APIC_APICV    2
124
125 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
126
127 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
128 static int __read_mostly cpu_preemption_timer_multi;
129 static bool __read_mostly enable_preemption_timer = 1;
130 #ifdef CONFIG_X86_64
131 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
132 #endif
133
134 extern bool __read_mostly allow_smaller_maxphyaddr;
135 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
136
137 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
138 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
139 #define KVM_VM_CR0_ALWAYS_ON                            \
140         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
141
142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
145
146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
147
148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
149         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
150         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
151         RTIT_STATUS_BYTECNT))
152
153 /*
154  * List of MSRs that can be directly passed to the guest.
155  * In addition to these x2apic and PT MSRs are handled specially.
156  */
157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
158         MSR_IA32_SPEC_CTRL,
159         MSR_IA32_PRED_CMD,
160         MSR_IA32_TSC,
161 #ifdef CONFIG_X86_64
162         MSR_FS_BASE,
163         MSR_GS_BASE,
164         MSR_KERNEL_GS_BASE,
165         MSR_IA32_XFD,
166         MSR_IA32_XFD_ERR,
167 #endif
168         MSR_IA32_SYSENTER_CS,
169         MSR_IA32_SYSENTER_ESP,
170         MSR_IA32_SYSENTER_EIP,
171         MSR_CORE_C1_RES,
172         MSR_CORE_C3_RESIDENCY,
173         MSR_CORE_C6_RESIDENCY,
174         MSR_CORE_C7_RESIDENCY,
175 };
176
177 /*
178  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
179  * ple_gap:    upper bound on the amount of time between two successive
180  *             executions of PAUSE in a loop. Also indicate if ple enabled.
181  *             According to test, this time is usually smaller than 128 cycles.
182  * ple_window: upper bound on the amount of time a guest is allowed to execute
183  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
184  *             less than 2^12 cycles
185  * Time is measured based on a counter that runs at the same rate as the TSC,
186  * refer SDM volume 3b section 21.6.13 & 22.1.3.
187  */
188 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
189 module_param(ple_gap, uint, 0444);
190
191 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
192 module_param(ple_window, uint, 0444);
193
194 /* Default doubles per-vcpu window every exit. */
195 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
196 module_param(ple_window_grow, uint, 0444);
197
198 /* Default resets per-vcpu window every exit to ple_window. */
199 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
200 module_param(ple_window_shrink, uint, 0444);
201
202 /* Default is to compute the maximum so we can never overflow. */
203 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
204 module_param(ple_window_max, uint, 0444);
205
206 /* Default is SYSTEM mode, 1 for host-guest mode */
207 int __read_mostly pt_mode = PT_MODE_SYSTEM;
208 module_param(pt_mode, int, S_IRUGO);
209
210 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
211 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
212 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
213
214 /* Storage for pre module init parameter parsing */
215 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
216
217 static const struct {
218         const char *option;
219         bool for_parse;
220 } vmentry_l1d_param[] = {
221         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
222         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
223         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
224         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
225         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
226         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
227 };
228
229 #define L1D_CACHE_ORDER 4
230 static void *vmx_l1d_flush_pages;
231
232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
233 {
234         struct page *page;
235         unsigned int i;
236
237         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
238                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
239                 return 0;
240         }
241
242         if (!enable_ept) {
243                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
244                 return 0;
245         }
246
247         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
248                 u64 msr;
249
250                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
251                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
252                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
253                         return 0;
254                 }
255         }
256
257         /* If set to auto use the default l1tf mitigation method */
258         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
259                 switch (l1tf_mitigation) {
260                 case L1TF_MITIGATION_OFF:
261                         l1tf = VMENTER_L1D_FLUSH_NEVER;
262                         break;
263                 case L1TF_MITIGATION_FLUSH_NOWARN:
264                 case L1TF_MITIGATION_FLUSH:
265                 case L1TF_MITIGATION_FLUSH_NOSMT:
266                         l1tf = VMENTER_L1D_FLUSH_COND;
267                         break;
268                 case L1TF_MITIGATION_FULL:
269                 case L1TF_MITIGATION_FULL_FORCE:
270                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
271                         break;
272                 }
273         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
274                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
275         }
276
277         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
278             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
279                 /*
280                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
281                  * lifetime and so should not be charged to a memcg.
282                  */
283                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
284                 if (!page)
285                         return -ENOMEM;
286                 vmx_l1d_flush_pages = page_address(page);
287
288                 /*
289                  * Initialize each page with a different pattern in
290                  * order to protect against KSM in the nested
291                  * virtualization case.
292                  */
293                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
294                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
295                                PAGE_SIZE);
296                 }
297         }
298
299         l1tf_vmx_mitigation = l1tf;
300
301         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
302                 static_branch_enable(&vmx_l1d_should_flush);
303         else
304                 static_branch_disable(&vmx_l1d_should_flush);
305
306         if (l1tf == VMENTER_L1D_FLUSH_COND)
307                 static_branch_enable(&vmx_l1d_flush_cond);
308         else
309                 static_branch_disable(&vmx_l1d_flush_cond);
310         return 0;
311 }
312
313 static int vmentry_l1d_flush_parse(const char *s)
314 {
315         unsigned int i;
316
317         if (s) {
318                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
319                         if (vmentry_l1d_param[i].for_parse &&
320                             sysfs_streq(s, vmentry_l1d_param[i].option))
321                                 return i;
322                 }
323         }
324         return -EINVAL;
325 }
326
327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
328 {
329         int l1tf, ret;
330
331         l1tf = vmentry_l1d_flush_parse(s);
332         if (l1tf < 0)
333                 return l1tf;
334
335         if (!boot_cpu_has(X86_BUG_L1TF))
336                 return 0;
337
338         /*
339          * Has vmx_init() run already? If not then this is the pre init
340          * parameter parsing. In that case just store the value and let
341          * vmx_init() do the proper setup after enable_ept has been
342          * established.
343          */
344         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
345                 vmentry_l1d_flush_param = l1tf;
346                 return 0;
347         }
348
349         mutex_lock(&vmx_l1d_flush_mutex);
350         ret = vmx_setup_l1d_flush(l1tf);
351         mutex_unlock(&vmx_l1d_flush_mutex);
352         return ret;
353 }
354
355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
356 {
357         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
358                 return sprintf(s, "???\n");
359
360         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
361 }
362
363 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
364         .set = vmentry_l1d_flush_set,
365         .get = vmentry_l1d_flush_get,
366 };
367 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
368
369 static u32 vmx_segment_access_rights(struct kvm_segment *var);
370
371 void vmx_vmexit(void);
372
373 #define vmx_insn_failed(fmt...)         \
374 do {                                    \
375         WARN_ONCE(1, fmt);              \
376         pr_warn_ratelimited(fmt);       \
377 } while (0)
378
379 asmlinkage void vmread_error(unsigned long field, bool fault)
380 {
381         if (fault)
382                 kvm_spurious_fault();
383         else
384                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
385 }
386
387 noinline void vmwrite_error(unsigned long field, unsigned long value)
388 {
389         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
390                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
391 }
392
393 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
394 {
395         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
396 }
397
398 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
399 {
400         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
401 }
402
403 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
404 {
405         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
406                         ext, vpid, gva);
407 }
408
409 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
410 {
411         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
412                         ext, eptp, gpa);
413 }
414
415 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
416 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
417 /*
418  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
419  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
420  */
421 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
422
423 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
424 static DEFINE_SPINLOCK(vmx_vpid_lock);
425
426 struct vmcs_config vmcs_config;
427 struct vmx_capability vmx_capability;
428
429 #define VMX_SEGMENT_FIELD(seg)                                  \
430         [VCPU_SREG_##seg] = {                                   \
431                 .selector = GUEST_##seg##_SELECTOR,             \
432                 .base = GUEST_##seg##_BASE,                     \
433                 .limit = GUEST_##seg##_LIMIT,                   \
434                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
435         }
436
437 static const struct kvm_vmx_segment_field {
438         unsigned selector;
439         unsigned base;
440         unsigned limit;
441         unsigned ar_bytes;
442 } kvm_vmx_segment_fields[] = {
443         VMX_SEGMENT_FIELD(CS),
444         VMX_SEGMENT_FIELD(DS),
445         VMX_SEGMENT_FIELD(ES),
446         VMX_SEGMENT_FIELD(FS),
447         VMX_SEGMENT_FIELD(GS),
448         VMX_SEGMENT_FIELD(SS),
449         VMX_SEGMENT_FIELD(TR),
450         VMX_SEGMENT_FIELD(LDTR),
451 };
452
453 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
454 {
455         vmx->segment_cache.bitmask = 0;
456 }
457
458 static unsigned long host_idt_base;
459
460 #if IS_ENABLED(CONFIG_HYPERV)
461 static bool __read_mostly enlightened_vmcs = true;
462 module_param(enlightened_vmcs, bool, 0444);
463
464 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
465 {
466         struct hv_enlightened_vmcs *evmcs;
467         struct hv_partition_assist_pg **p_hv_pa_pg =
468                         &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
469         /*
470          * Synthetic VM-Exit is not enabled in current code and so All
471          * evmcs in singe VM shares same assist page.
472          */
473         if (!*p_hv_pa_pg)
474                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
475
476         if (!*p_hv_pa_pg)
477                 return -ENOMEM;
478
479         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
480
481         evmcs->partition_assist_page =
482                 __pa(*p_hv_pa_pg);
483         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
484         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
485
486         return 0;
487 }
488
489 #endif /* IS_ENABLED(CONFIG_HYPERV) */
490
491 /*
492  * Comment's format: document - errata name - stepping - processor name.
493  * Refer from
494  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
495  */
496 static u32 vmx_preemption_cpu_tfms[] = {
497 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
498 0x000206E6,
499 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
500 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
501 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
502 0x00020652,
503 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
504 0x00020655,
505 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
506 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
507 /*
508  * 320767.pdf - AAP86  - B1 -
509  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
510  */
511 0x000106E5,
512 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
513 0x000106A0,
514 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
515 0x000106A1,
516 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
517 0x000106A4,
518  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
519  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
520  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
521 0x000106A5,
522  /* Xeon E3-1220 V2 */
523 0x000306A8,
524 };
525
526 static inline bool cpu_has_broken_vmx_preemption_timer(void)
527 {
528         u32 eax = cpuid_eax(0x00000001), i;
529
530         /* Clear the reserved bits */
531         eax &= ~(0x3U << 14 | 0xfU << 28);
532         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
533                 if (eax == vmx_preemption_cpu_tfms[i])
534                         return true;
535
536         return false;
537 }
538
539 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
540 {
541         return flexpriority_enabled && lapic_in_kernel(vcpu);
542 }
543
544 static int possible_passthrough_msr_slot(u32 msr)
545 {
546         u32 i;
547
548         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
549                 if (vmx_possible_passthrough_msrs[i] == msr)
550                         return i;
551
552         return -ENOENT;
553 }
554
555 static bool is_valid_passthrough_msr(u32 msr)
556 {
557         bool r;
558
559         switch (msr) {
560         case 0x800 ... 0x8ff:
561                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
562                 return true;
563         case MSR_IA32_RTIT_STATUS:
564         case MSR_IA32_RTIT_OUTPUT_BASE:
565         case MSR_IA32_RTIT_OUTPUT_MASK:
566         case MSR_IA32_RTIT_CR3_MATCH:
567         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
568                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
569         case MSR_LBR_SELECT:
570         case MSR_LBR_TOS:
571         case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
572         case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
573         case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
574         case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
575         case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
576                 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
577                 return true;
578         }
579
580         r = possible_passthrough_msr_slot(msr) != -ENOENT;
581
582         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
583
584         return r;
585 }
586
587 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
588 {
589         int i;
590
591         i = kvm_find_user_return_msr(msr);
592         if (i >= 0)
593                 return &vmx->guest_uret_msrs[i];
594         return NULL;
595 }
596
597 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
598                                   struct vmx_uret_msr *msr, u64 data)
599 {
600         unsigned int slot = msr - vmx->guest_uret_msrs;
601         int ret = 0;
602
603         if (msr->load_into_hardware) {
604                 preempt_disable();
605                 ret = kvm_set_user_return_msr(slot, data, msr->mask);
606                 preempt_enable();
607         }
608         if (!ret)
609                 msr->data = data;
610         return ret;
611 }
612
613 #ifdef CONFIG_KEXEC_CORE
614 static void crash_vmclear_local_loaded_vmcss(void)
615 {
616         int cpu = raw_smp_processor_id();
617         struct loaded_vmcs *v;
618
619         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
620                             loaded_vmcss_on_cpu_link)
621                 vmcs_clear(v->vmcs);
622 }
623 #endif /* CONFIG_KEXEC_CORE */
624
625 static void __loaded_vmcs_clear(void *arg)
626 {
627         struct loaded_vmcs *loaded_vmcs = arg;
628         int cpu = raw_smp_processor_id();
629
630         if (loaded_vmcs->cpu != cpu)
631                 return; /* vcpu migration can race with cpu offline */
632         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
633                 per_cpu(current_vmcs, cpu) = NULL;
634
635         vmcs_clear(loaded_vmcs->vmcs);
636         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
637                 vmcs_clear(loaded_vmcs->shadow_vmcs);
638
639         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
640
641         /*
642          * Ensure all writes to loaded_vmcs, including deleting it from its
643          * current percpu list, complete before setting loaded_vmcs->cpu to
644          * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
645          * and add loaded_vmcs to its percpu list before it's deleted from this
646          * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
647          */
648         smp_wmb();
649
650         loaded_vmcs->cpu = -1;
651         loaded_vmcs->launched = 0;
652 }
653
654 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
655 {
656         int cpu = loaded_vmcs->cpu;
657
658         if (cpu != -1)
659                 smp_call_function_single(cpu,
660                          __loaded_vmcs_clear, loaded_vmcs, 1);
661 }
662
663 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
664                                        unsigned field)
665 {
666         bool ret;
667         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
668
669         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
670                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
671                 vmx->segment_cache.bitmask = 0;
672         }
673         ret = vmx->segment_cache.bitmask & mask;
674         vmx->segment_cache.bitmask |= mask;
675         return ret;
676 }
677
678 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
679 {
680         u16 *p = &vmx->segment_cache.seg[seg].selector;
681
682         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
683                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
684         return *p;
685 }
686
687 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
688 {
689         ulong *p = &vmx->segment_cache.seg[seg].base;
690
691         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
692                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
693         return *p;
694 }
695
696 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
697 {
698         u32 *p = &vmx->segment_cache.seg[seg].limit;
699
700         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
701                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
702         return *p;
703 }
704
705 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
706 {
707         u32 *p = &vmx->segment_cache.seg[seg].ar;
708
709         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
710                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
711         return *p;
712 }
713
714 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
715 {
716         u32 eb;
717
718         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
719              (1u << DB_VECTOR) | (1u << AC_VECTOR);
720         /*
721          * Guest access to VMware backdoor ports could legitimately
722          * trigger #GP because of TSS I/O permission bitmap.
723          * We intercept those #GP and allow access to them anyway
724          * as VMware does.
725          */
726         if (enable_vmware_backdoor)
727                 eb |= (1u << GP_VECTOR);
728         if ((vcpu->guest_debug &
729              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
730             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
731                 eb |= 1u << BP_VECTOR;
732         if (to_vmx(vcpu)->rmode.vm86_active)
733                 eb = ~0;
734         if (!vmx_need_pf_intercept(vcpu))
735                 eb &= ~(1u << PF_VECTOR);
736
737         /* When we are running a nested L2 guest and L1 specified for it a
738          * certain exception bitmap, we must trap the same exceptions and pass
739          * them to L1. When running L2, we will only handle the exceptions
740          * specified above if L1 did not want them.
741          */
742         if (is_guest_mode(vcpu))
743                 eb |= get_vmcs12(vcpu)->exception_bitmap;
744         else {
745                 int mask = 0, match = 0;
746
747                 if (enable_ept && (eb & (1u << PF_VECTOR))) {
748                         /*
749                          * If EPT is enabled, #PF is currently only intercepted
750                          * if MAXPHYADDR is smaller on the guest than on the
751                          * host.  In that case we only care about present,
752                          * non-reserved faults.  For vmcs02, however, PFEC_MASK
753                          * and PFEC_MATCH are set in prepare_vmcs02_rare.
754                          */
755                         mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
756                         match = PFERR_PRESENT_MASK;
757                 }
758                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
759                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
760         }
761
762         /*
763          * Disabling xfd interception indicates that dynamic xfeatures
764          * might be used in the guest. Always trap #NM in this case
765          * to save guest xfd_err timely.
766          */
767         if (vcpu->arch.xfd_no_write_intercept)
768                 eb |= (1u << NM_VECTOR);
769
770         vmcs_write32(EXCEPTION_BITMAP, eb);
771 }
772
773 /*
774  * Check if MSR is intercepted for currently loaded MSR bitmap.
775  */
776 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
777 {
778         if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
779                 return true;
780
781         return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap,
782                                          MSR_IA32_SPEC_CTRL);
783 }
784
785 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
786                 unsigned long entry, unsigned long exit)
787 {
788         vm_entry_controls_clearbit(vmx, entry);
789         vm_exit_controls_clearbit(vmx, exit);
790 }
791
792 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
793 {
794         unsigned int i;
795
796         for (i = 0; i < m->nr; ++i) {
797                 if (m->val[i].index == msr)
798                         return i;
799         }
800         return -ENOENT;
801 }
802
803 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
804 {
805         int i;
806         struct msr_autoload *m = &vmx->msr_autoload;
807
808         switch (msr) {
809         case MSR_EFER:
810                 if (cpu_has_load_ia32_efer()) {
811                         clear_atomic_switch_msr_special(vmx,
812                                         VM_ENTRY_LOAD_IA32_EFER,
813                                         VM_EXIT_LOAD_IA32_EFER);
814                         return;
815                 }
816                 break;
817         case MSR_CORE_PERF_GLOBAL_CTRL:
818                 if (cpu_has_load_perf_global_ctrl()) {
819                         clear_atomic_switch_msr_special(vmx,
820                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
821                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
822                         return;
823                 }
824                 break;
825         }
826         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
827         if (i < 0)
828                 goto skip_guest;
829         --m->guest.nr;
830         m->guest.val[i] = m->guest.val[m->guest.nr];
831         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
832
833 skip_guest:
834         i = vmx_find_loadstore_msr_slot(&m->host, msr);
835         if (i < 0)
836                 return;
837
838         --m->host.nr;
839         m->host.val[i] = m->host.val[m->host.nr];
840         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
841 }
842
843 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
844                 unsigned long entry, unsigned long exit,
845                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
846                 u64 guest_val, u64 host_val)
847 {
848         vmcs_write64(guest_val_vmcs, guest_val);
849         if (host_val_vmcs != HOST_IA32_EFER)
850                 vmcs_write64(host_val_vmcs, host_val);
851         vm_entry_controls_setbit(vmx, entry);
852         vm_exit_controls_setbit(vmx, exit);
853 }
854
855 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
856                                   u64 guest_val, u64 host_val, bool entry_only)
857 {
858         int i, j = 0;
859         struct msr_autoload *m = &vmx->msr_autoload;
860
861         switch (msr) {
862         case MSR_EFER:
863                 if (cpu_has_load_ia32_efer()) {
864                         add_atomic_switch_msr_special(vmx,
865                                         VM_ENTRY_LOAD_IA32_EFER,
866                                         VM_EXIT_LOAD_IA32_EFER,
867                                         GUEST_IA32_EFER,
868                                         HOST_IA32_EFER,
869                                         guest_val, host_val);
870                         return;
871                 }
872                 break;
873         case MSR_CORE_PERF_GLOBAL_CTRL:
874                 if (cpu_has_load_perf_global_ctrl()) {
875                         add_atomic_switch_msr_special(vmx,
876                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
877                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
878                                         GUEST_IA32_PERF_GLOBAL_CTRL,
879                                         HOST_IA32_PERF_GLOBAL_CTRL,
880                                         guest_val, host_val);
881                         return;
882                 }
883                 break;
884         case MSR_IA32_PEBS_ENABLE:
885                 /* PEBS needs a quiescent period after being disabled (to write
886                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
887                  * provide that period, so a CPU could write host's record into
888                  * guest's memory.
889                  */
890                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
891         }
892
893         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
894         if (!entry_only)
895                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
896
897         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
898             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
899                 printk_once(KERN_WARNING "Not enough msr switch entries. "
900                                 "Can't add msr %x\n", msr);
901                 return;
902         }
903         if (i < 0) {
904                 i = m->guest.nr++;
905                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
906         }
907         m->guest.val[i].index = msr;
908         m->guest.val[i].value = guest_val;
909
910         if (entry_only)
911                 return;
912
913         if (j < 0) {
914                 j = m->host.nr++;
915                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
916         }
917         m->host.val[j].index = msr;
918         m->host.val[j].value = host_val;
919 }
920
921 static bool update_transition_efer(struct vcpu_vmx *vmx)
922 {
923         u64 guest_efer = vmx->vcpu.arch.efer;
924         u64 ignore_bits = 0;
925         int i;
926
927         /* Shadow paging assumes NX to be available.  */
928         if (!enable_ept)
929                 guest_efer |= EFER_NX;
930
931         /*
932          * LMA and LME handled by hardware; SCE meaningless outside long mode.
933          */
934         ignore_bits |= EFER_SCE;
935 #ifdef CONFIG_X86_64
936         ignore_bits |= EFER_LMA | EFER_LME;
937         /* SCE is meaningful only in long mode on Intel */
938         if (guest_efer & EFER_LMA)
939                 ignore_bits &= ~(u64)EFER_SCE;
940 #endif
941
942         /*
943          * On EPT, we can't emulate NX, so we must switch EFER atomically.
944          * On CPUs that support "load IA32_EFER", always switch EFER
945          * atomically, since it's faster than switching it manually.
946          */
947         if (cpu_has_load_ia32_efer() ||
948             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
949                 if (!(guest_efer & EFER_LMA))
950                         guest_efer &= ~EFER_LME;
951                 if (guest_efer != host_efer)
952                         add_atomic_switch_msr(vmx, MSR_EFER,
953                                               guest_efer, host_efer, false);
954                 else
955                         clear_atomic_switch_msr(vmx, MSR_EFER);
956                 return false;
957         }
958
959         i = kvm_find_user_return_msr(MSR_EFER);
960         if (i < 0)
961                 return false;
962
963         clear_atomic_switch_msr(vmx, MSR_EFER);
964
965         guest_efer &= ~ignore_bits;
966         guest_efer |= host_efer & ignore_bits;
967
968         vmx->guest_uret_msrs[i].data = guest_efer;
969         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
970
971         return true;
972 }
973
974 #ifdef CONFIG_X86_32
975 /*
976  * On 32-bit kernels, VM exits still load the FS and GS bases from the
977  * VMCS rather than the segment table.  KVM uses this helper to figure
978  * out the current bases to poke them into the VMCS before entry.
979  */
980 static unsigned long segment_base(u16 selector)
981 {
982         struct desc_struct *table;
983         unsigned long v;
984
985         if (!(selector & ~SEGMENT_RPL_MASK))
986                 return 0;
987
988         table = get_current_gdt_ro();
989
990         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
991                 u16 ldt_selector = kvm_read_ldt();
992
993                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
994                         return 0;
995
996                 table = (struct desc_struct *)segment_base(ldt_selector);
997         }
998         v = get_desc_base(&table[selector >> 3]);
999         return v;
1000 }
1001 #endif
1002
1003 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1004 {
1005         return vmx_pt_mode_is_host_guest() &&
1006                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1007 }
1008
1009 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1010 {
1011         /* The base must be 128-byte aligned and a legal physical address. */
1012         return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1013 }
1014
1015 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1016 {
1017         u32 i;
1018
1019         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1020         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1021         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1022         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1023         for (i = 0; i < addr_range; i++) {
1024                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1025                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1026         }
1027 }
1028
1029 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1030 {
1031         u32 i;
1032
1033         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1034         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1035         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1036         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1037         for (i = 0; i < addr_range; i++) {
1038                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1039                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1040         }
1041 }
1042
1043 static void pt_guest_enter(struct vcpu_vmx *vmx)
1044 {
1045         if (vmx_pt_mode_is_system())
1046                 return;
1047
1048         /*
1049          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1050          * Save host state before VM entry.
1051          */
1052         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1053         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1054                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1055                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1056                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1057         }
1058 }
1059
1060 static void pt_guest_exit(struct vcpu_vmx *vmx)
1061 {
1062         if (vmx_pt_mode_is_system())
1063                 return;
1064
1065         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1066                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1067                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1068         }
1069
1070         /*
1071          * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1072          * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1073          */
1074         if (vmx->pt_desc.host.ctl)
1075                 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1076 }
1077
1078 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1079                         unsigned long fs_base, unsigned long gs_base)
1080 {
1081         if (unlikely(fs_sel != host->fs_sel)) {
1082                 if (!(fs_sel & 7))
1083                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1084                 else
1085                         vmcs_write16(HOST_FS_SELECTOR, 0);
1086                 host->fs_sel = fs_sel;
1087         }
1088         if (unlikely(gs_sel != host->gs_sel)) {
1089                 if (!(gs_sel & 7))
1090                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1091                 else
1092                         vmcs_write16(HOST_GS_SELECTOR, 0);
1093                 host->gs_sel = gs_sel;
1094         }
1095         if (unlikely(fs_base != host->fs_base)) {
1096                 vmcs_writel(HOST_FS_BASE, fs_base);
1097                 host->fs_base = fs_base;
1098         }
1099         if (unlikely(gs_base != host->gs_base)) {
1100                 vmcs_writel(HOST_GS_BASE, gs_base);
1101                 host->gs_base = gs_base;
1102         }
1103 }
1104
1105 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1106 {
1107         struct vcpu_vmx *vmx = to_vmx(vcpu);
1108         struct vmcs_host_state *host_state;
1109 #ifdef CONFIG_X86_64
1110         int cpu = raw_smp_processor_id();
1111 #endif
1112         unsigned long fs_base, gs_base;
1113         u16 fs_sel, gs_sel;
1114         int i;
1115
1116         vmx->req_immediate_exit = false;
1117
1118         /*
1119          * Note that guest MSRs to be saved/restored can also be changed
1120          * when guest state is loaded. This happens when guest transitions
1121          * to/from long-mode by setting MSR_EFER.LMA.
1122          */
1123         if (!vmx->guest_uret_msrs_loaded) {
1124                 vmx->guest_uret_msrs_loaded = true;
1125                 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1126                         if (!vmx->guest_uret_msrs[i].load_into_hardware)
1127                                 continue;
1128
1129                         kvm_set_user_return_msr(i,
1130                                                 vmx->guest_uret_msrs[i].data,
1131                                                 vmx->guest_uret_msrs[i].mask);
1132                 }
1133         }
1134
1135         if (vmx->nested.need_vmcs12_to_shadow_sync)
1136                 nested_sync_vmcs12_to_shadow(vcpu);
1137
1138         if (vmx->guest_state_loaded)
1139                 return;
1140
1141         host_state = &vmx->loaded_vmcs->host_state;
1142
1143         /*
1144          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1145          * allow segment selectors with cpl > 0 or ti == 1.
1146          */
1147         host_state->ldt_sel = kvm_read_ldt();
1148
1149 #ifdef CONFIG_X86_64
1150         savesegment(ds, host_state->ds_sel);
1151         savesegment(es, host_state->es_sel);
1152
1153         gs_base = cpu_kernelmode_gs_base(cpu);
1154         if (likely(is_64bit_mm(current->mm))) {
1155                 current_save_fsgs();
1156                 fs_sel = current->thread.fsindex;
1157                 gs_sel = current->thread.gsindex;
1158                 fs_base = current->thread.fsbase;
1159                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1160         } else {
1161                 savesegment(fs, fs_sel);
1162                 savesegment(gs, gs_sel);
1163                 fs_base = read_msr(MSR_FS_BASE);
1164                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1165         }
1166
1167         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1168 #else
1169         savesegment(fs, fs_sel);
1170         savesegment(gs, gs_sel);
1171         fs_base = segment_base(fs_sel);
1172         gs_base = segment_base(gs_sel);
1173 #endif
1174
1175         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1176         vmx->guest_state_loaded = true;
1177 }
1178
1179 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1180 {
1181         struct vmcs_host_state *host_state;
1182
1183         if (!vmx->guest_state_loaded)
1184                 return;
1185
1186         host_state = &vmx->loaded_vmcs->host_state;
1187
1188         ++vmx->vcpu.stat.host_state_reload;
1189
1190 #ifdef CONFIG_X86_64
1191         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1192 #endif
1193         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1194                 kvm_load_ldt(host_state->ldt_sel);
1195 #ifdef CONFIG_X86_64
1196                 load_gs_index(host_state->gs_sel);
1197 #else
1198                 loadsegment(gs, host_state->gs_sel);
1199 #endif
1200         }
1201         if (host_state->fs_sel & 7)
1202                 loadsegment(fs, host_state->fs_sel);
1203 #ifdef CONFIG_X86_64
1204         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1205                 loadsegment(ds, host_state->ds_sel);
1206                 loadsegment(es, host_state->es_sel);
1207         }
1208 #endif
1209         invalidate_tss_limit();
1210 #ifdef CONFIG_X86_64
1211         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1212 #endif
1213         load_fixmap_gdt(raw_smp_processor_id());
1214         vmx->guest_state_loaded = false;
1215         vmx->guest_uret_msrs_loaded = false;
1216 }
1217
1218 #ifdef CONFIG_X86_64
1219 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1220 {
1221         preempt_disable();
1222         if (vmx->guest_state_loaded)
1223                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1224         preempt_enable();
1225         return vmx->msr_guest_kernel_gs_base;
1226 }
1227
1228 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1229 {
1230         preempt_disable();
1231         if (vmx->guest_state_loaded)
1232                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1233         preempt_enable();
1234         vmx->msr_guest_kernel_gs_base = data;
1235 }
1236 #endif
1237
1238 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1239                         struct loaded_vmcs *buddy)
1240 {
1241         struct vcpu_vmx *vmx = to_vmx(vcpu);
1242         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1243         struct vmcs *prev;
1244
1245         if (!already_loaded) {
1246                 loaded_vmcs_clear(vmx->loaded_vmcs);
1247                 local_irq_disable();
1248
1249                 /*
1250                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1251                  * this cpu's percpu list, otherwise it may not yet be deleted
1252                  * from its previous cpu's percpu list.  Pairs with the
1253                  * smb_wmb() in __loaded_vmcs_clear().
1254                  */
1255                 smp_rmb();
1256
1257                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1258                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1259                 local_irq_enable();
1260         }
1261
1262         prev = per_cpu(current_vmcs, cpu);
1263         if (prev != vmx->loaded_vmcs->vmcs) {
1264                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1265                 vmcs_load(vmx->loaded_vmcs->vmcs);
1266
1267                 /*
1268                  * No indirect branch prediction barrier needed when switching
1269                  * the active VMCS within a guest, e.g. on nested VM-Enter.
1270                  * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1271                  */
1272                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1273                         indirect_branch_prediction_barrier();
1274         }
1275
1276         if (!already_loaded) {
1277                 void *gdt = get_current_gdt_ro();
1278
1279                 /*
1280                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1281                  * TLB entries from its previous association with the vCPU.
1282                  */
1283                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1284
1285                 /*
1286                  * Linux uses per-cpu TSS and GDT, so set these when switching
1287                  * processors.  See 22.2.4.
1288                  */
1289                 vmcs_writel(HOST_TR_BASE,
1290                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1291                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1292
1293                 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1294                         /* 22.2.3 */
1295                         vmcs_writel(HOST_IA32_SYSENTER_ESP,
1296                                     (unsigned long)(cpu_entry_stack(cpu) + 1));
1297                 }
1298
1299                 vmx->loaded_vmcs->cpu = cpu;
1300         }
1301 }
1302
1303 /*
1304  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1305  * vcpu mutex is already taken.
1306  */
1307 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1308 {
1309         struct vcpu_vmx *vmx = to_vmx(vcpu);
1310
1311         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1312
1313         vmx_vcpu_pi_load(vcpu, cpu);
1314
1315         vmx->host_debugctlmsr = get_debugctlmsr();
1316 }
1317
1318 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1319 {
1320         vmx_vcpu_pi_put(vcpu);
1321
1322         vmx_prepare_switch_to_host(to_vmx(vcpu));
1323 }
1324
1325 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1326 {
1327         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1328 }
1329
1330 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1331 {
1332         struct vcpu_vmx *vmx = to_vmx(vcpu);
1333         unsigned long rflags, save_rflags;
1334
1335         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1336                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1337                 rflags = vmcs_readl(GUEST_RFLAGS);
1338                 if (vmx->rmode.vm86_active) {
1339                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1340                         save_rflags = vmx->rmode.save_rflags;
1341                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1342                 }
1343                 vmx->rflags = rflags;
1344         }
1345         return vmx->rflags;
1346 }
1347
1348 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1349 {
1350         struct vcpu_vmx *vmx = to_vmx(vcpu);
1351         unsigned long old_rflags;
1352
1353         if (is_unrestricted_guest(vcpu)) {
1354                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1355                 vmx->rflags = rflags;
1356                 vmcs_writel(GUEST_RFLAGS, rflags);
1357                 return;
1358         }
1359
1360         old_rflags = vmx_get_rflags(vcpu);
1361         vmx->rflags = rflags;
1362         if (vmx->rmode.vm86_active) {
1363                 vmx->rmode.save_rflags = rflags;
1364                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1365         }
1366         vmcs_writel(GUEST_RFLAGS, rflags);
1367
1368         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1369                 vmx->emulation_required = vmx_emulation_required(vcpu);
1370 }
1371
1372 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1373 {
1374         return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1375 }
1376
1377 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1378 {
1379         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1380         int ret = 0;
1381
1382         if (interruptibility & GUEST_INTR_STATE_STI)
1383                 ret |= KVM_X86_SHADOW_INT_STI;
1384         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1385                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1386
1387         return ret;
1388 }
1389
1390 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1391 {
1392         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1393         u32 interruptibility = interruptibility_old;
1394
1395         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1396
1397         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1398                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1399         else if (mask & KVM_X86_SHADOW_INT_STI)
1400                 interruptibility |= GUEST_INTR_STATE_STI;
1401
1402         if ((interruptibility != interruptibility_old))
1403                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1404 }
1405
1406 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1407 {
1408         struct vcpu_vmx *vmx = to_vmx(vcpu);
1409         unsigned long value;
1410
1411         /*
1412          * Any MSR write that attempts to change bits marked reserved will
1413          * case a #GP fault.
1414          */
1415         if (data & vmx->pt_desc.ctl_bitmask)
1416                 return 1;
1417
1418         /*
1419          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1420          * result in a #GP unless the same write also clears TraceEn.
1421          */
1422         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1423                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1424                 return 1;
1425
1426         /*
1427          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1428          * and FabricEn would cause #GP, if
1429          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1430          */
1431         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1432                 !(data & RTIT_CTL_FABRIC_EN) &&
1433                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1434                                         PT_CAP_single_range_output))
1435                 return 1;
1436
1437         /*
1438          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1439          * utilize encodings marked reserved will cause a #GP fault.
1440          */
1441         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1442         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1443                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1444                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1445                 return 1;
1446         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1447                                                 PT_CAP_cycle_thresholds);
1448         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1449                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1450                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1451                 return 1;
1452         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1453         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1454                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1455                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1456                 return 1;
1457
1458         /*
1459          * If ADDRx_CFG is reserved or the encodings is >2 will
1460          * cause a #GP fault.
1461          */
1462         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1463         if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1464                 return 1;
1465         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1466         if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1467                 return 1;
1468         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1469         if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1470                 return 1;
1471         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1472         if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1473                 return 1;
1474
1475         return 0;
1476 }
1477
1478 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1479                                         void *insn, int insn_len)
1480 {
1481         /*
1482          * Emulation of instructions in SGX enclaves is impossible as RIP does
1483          * not point at the failing instruction, and even if it did, the code
1484          * stream is inaccessible.  Inject #UD instead of exiting to userspace
1485          * so that guest userspace can't DoS the guest simply by triggering
1486          * emulation (enclaves are CPL3 only).
1487          */
1488         if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1489                 kvm_queue_exception(vcpu, UD_VECTOR);
1490                 return false;
1491         }
1492         return true;
1493 }
1494
1495 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1496 {
1497         union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1498         unsigned long rip, orig_rip;
1499         u32 instr_len;
1500
1501         /*
1502          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1503          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1504          * set when EPT misconfig occurs.  In practice, real hardware updates
1505          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1506          * (namely Hyper-V) don't set it due to it being undefined behavior,
1507          * i.e. we end up advancing IP with some random value.
1508          */
1509         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1510             exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1511                 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1512
1513                 /*
1514                  * Emulating an enclave's instructions isn't supported as KVM
1515                  * cannot access the enclave's memory or its true RIP, e.g. the
1516                  * vmcs.GUEST_RIP points at the exit point of the enclave, not
1517                  * the RIP that actually triggered the VM-Exit.  But, because
1518                  * most instructions that cause VM-Exit will #UD in an enclave,
1519                  * most instruction-based VM-Exits simply do not occur.
1520                  *
1521                  * There are a few exceptions, notably the debug instructions
1522                  * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1523                  * and generate #DB/#BP as expected, which KVM might intercept.
1524                  * But again, the CPU does the dirty work and saves an instr
1525                  * length of zero so VMMs don't shoot themselves in the foot.
1526                  * WARN if KVM tries to skip a non-zero length instruction on
1527                  * a VM-Exit from an enclave.
1528                  */
1529                 if (!instr_len)
1530                         goto rip_updated;
1531
1532                 WARN(exit_reason.enclave_mode,
1533                      "KVM: skipping instruction after SGX enclave VM-Exit");
1534
1535                 orig_rip = kvm_rip_read(vcpu);
1536                 rip = orig_rip + instr_len;
1537 #ifdef CONFIG_X86_64
1538                 /*
1539                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1540                  * mode, but just finding out that we are in 64-bit mode is
1541                  * quite expensive.  Only do it if there was a carry.
1542                  */
1543                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1544                         rip = (u32)rip;
1545 #endif
1546                 kvm_rip_write(vcpu, rip);
1547         } else {
1548                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1549                         return 0;
1550         }
1551
1552 rip_updated:
1553         /* skipping an emulated instruction also counts */
1554         vmx_set_interrupt_shadow(vcpu, 0);
1555
1556         return 1;
1557 }
1558
1559 /*
1560  * Recognizes a pending MTF VM-exit and records the nested state for later
1561  * delivery.
1562  */
1563 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1564 {
1565         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1566         struct vcpu_vmx *vmx = to_vmx(vcpu);
1567
1568         if (!is_guest_mode(vcpu))
1569                 return;
1570
1571         /*
1572          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1573          * T-bit traps. As instruction emulation is completed (i.e. at the
1574          * instruction boundary), any #DB exception pending delivery must be a
1575          * debug-trap. Record the pending MTF state to be delivered in
1576          * vmx_check_nested_events().
1577          */
1578         if (nested_cpu_has_mtf(vmcs12) &&
1579             (!vcpu->arch.exception.pending ||
1580              vcpu->arch.exception.nr == DB_VECTOR))
1581                 vmx->nested.mtf_pending = true;
1582         else
1583                 vmx->nested.mtf_pending = false;
1584 }
1585
1586 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1587 {
1588         vmx_update_emulated_instruction(vcpu);
1589         return skip_emulated_instruction(vcpu);
1590 }
1591
1592 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1593 {
1594         /*
1595          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1596          * explicitly skip the instruction because if the HLT state is set,
1597          * then the instruction is already executing and RIP has already been
1598          * advanced.
1599          */
1600         if (kvm_hlt_in_guest(vcpu->kvm) &&
1601                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1602                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1603 }
1604
1605 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1606 {
1607         struct vcpu_vmx *vmx = to_vmx(vcpu);
1608         unsigned nr = vcpu->arch.exception.nr;
1609         bool has_error_code = vcpu->arch.exception.has_error_code;
1610         u32 error_code = vcpu->arch.exception.error_code;
1611         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1612
1613         kvm_deliver_exception_payload(vcpu);
1614
1615         if (has_error_code) {
1616                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1617                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1618         }
1619
1620         if (vmx->rmode.vm86_active) {
1621                 int inc_eip = 0;
1622                 if (kvm_exception_is_soft(nr))
1623                         inc_eip = vcpu->arch.event_exit_inst_len;
1624                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1625                 return;
1626         }
1627
1628         WARN_ON_ONCE(vmx->emulation_required);
1629
1630         if (kvm_exception_is_soft(nr)) {
1631                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1632                              vmx->vcpu.arch.event_exit_inst_len);
1633                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1634         } else
1635                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1636
1637         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1638
1639         vmx_clear_hlt(vcpu);
1640 }
1641
1642 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1643                                bool load_into_hardware)
1644 {
1645         struct vmx_uret_msr *uret_msr;
1646
1647         uret_msr = vmx_find_uret_msr(vmx, msr);
1648         if (!uret_msr)
1649                 return;
1650
1651         uret_msr->load_into_hardware = load_into_hardware;
1652 }
1653
1654 /*
1655  * Configuring user return MSRs to automatically save, load, and restore MSRs
1656  * that need to be shoved into hardware when running the guest.  Note, omitting
1657  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1658  * loaded into hardware when running the guest.
1659  */
1660 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1661 {
1662 #ifdef CONFIG_X86_64
1663         bool load_syscall_msrs;
1664
1665         /*
1666          * The SYSCALL MSRs are only needed on long mode guests, and only
1667          * when EFER.SCE is set.
1668          */
1669         load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1670                             (vmx->vcpu.arch.efer & EFER_SCE);
1671
1672         vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1673         vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1674         vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1675 #endif
1676         vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1677
1678         vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1679                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1680                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1681
1682         /*
1683          * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1684          * kernel and old userspace.  If those guests run on a tsx=off host, do
1685          * allow guests to use TSX_CTRL, but don't change the value in hardware
1686          * so that TSX remains always disabled.
1687          */
1688         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1689
1690         /*
1691          * The set of MSRs to load may have changed, reload MSRs before the
1692          * next VM-Enter.
1693          */
1694         vmx->guest_uret_msrs_loaded = false;
1695 }
1696
1697 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1698 {
1699         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1700
1701         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1702                 return vmcs12->tsc_offset;
1703
1704         return 0;
1705 }
1706
1707 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1708 {
1709         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1710
1711         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1712             nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1713                 return vmcs12->tsc_multiplier;
1714
1715         return kvm_default_tsc_scaling_ratio;
1716 }
1717
1718 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1719 {
1720         vmcs_write64(TSC_OFFSET, offset);
1721 }
1722
1723 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1724 {
1725         vmcs_write64(TSC_MULTIPLIER, multiplier);
1726 }
1727
1728 /*
1729  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1730  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1731  * all guests if the "nested" module option is off, and can also be disabled
1732  * for a single guest by disabling its VMX cpuid bit.
1733  */
1734 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1735 {
1736         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1737 }
1738
1739 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1740                                                  uint64_t val)
1741 {
1742         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1743
1744         return !(val & ~valid_bits);
1745 }
1746
1747 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1748 {
1749         switch (msr->index) {
1750         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1751                 if (!nested)
1752                         return 1;
1753                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1754         case MSR_IA32_PERF_CAPABILITIES:
1755                 msr->data = vmx_get_perf_capabilities();
1756                 return 0;
1757         default:
1758                 return KVM_MSR_RET_INVALID;
1759         }
1760 }
1761
1762 /*
1763  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1764  * Returns 0 on success, non-0 otherwise.
1765  * Assumes vcpu_load() was already called.
1766  */
1767 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1768 {
1769         struct vcpu_vmx *vmx = to_vmx(vcpu);
1770         struct vmx_uret_msr *msr;
1771         u32 index;
1772
1773         switch (msr_info->index) {
1774 #ifdef CONFIG_X86_64
1775         case MSR_FS_BASE:
1776                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1777                 break;
1778         case MSR_GS_BASE:
1779                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1780                 break;
1781         case MSR_KERNEL_GS_BASE:
1782                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1783                 break;
1784 #endif
1785         case MSR_EFER:
1786                 return kvm_get_msr_common(vcpu, msr_info);
1787         case MSR_IA32_TSX_CTRL:
1788                 if (!msr_info->host_initiated &&
1789                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1790                         return 1;
1791                 goto find_uret_msr;
1792         case MSR_IA32_UMWAIT_CONTROL:
1793                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1794                         return 1;
1795
1796                 msr_info->data = vmx->msr_ia32_umwait_control;
1797                 break;
1798         case MSR_IA32_SPEC_CTRL:
1799                 if (!msr_info->host_initiated &&
1800                     !guest_has_spec_ctrl_msr(vcpu))
1801                         return 1;
1802
1803                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1804                 break;
1805         case MSR_IA32_SYSENTER_CS:
1806                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1807                 break;
1808         case MSR_IA32_SYSENTER_EIP:
1809                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1810                 break;
1811         case MSR_IA32_SYSENTER_ESP:
1812                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1813                 break;
1814         case MSR_IA32_BNDCFGS:
1815                 if (!kvm_mpx_supported() ||
1816                     (!msr_info->host_initiated &&
1817                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1818                         return 1;
1819                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1820                 break;
1821         case MSR_IA32_MCG_EXT_CTL:
1822                 if (!msr_info->host_initiated &&
1823                     !(vmx->msr_ia32_feature_control &
1824                       FEAT_CTL_LMCE_ENABLED))
1825                         return 1;
1826                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1827                 break;
1828         case MSR_IA32_FEAT_CTL:
1829                 msr_info->data = vmx->msr_ia32_feature_control;
1830                 break;
1831         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1832                 if (!msr_info->host_initiated &&
1833                     !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1834                         return 1;
1835                 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1836                         [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1837                 break;
1838         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1839                 if (!nested_vmx_allowed(vcpu))
1840                         return 1;
1841                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1842                                     &msr_info->data))
1843                         return 1;
1844                 /*
1845                  * Enlightened VMCS v1 doesn't have certain VMCS fields but
1846                  * instead of just ignoring the features, different Hyper-V
1847                  * versions are either trying to use them and fail or do some
1848                  * sanity checking and refuse to boot. Filter all unsupported
1849                  * features out.
1850                  */
1851                 if (!msr_info->host_initiated &&
1852                     vmx->nested.enlightened_vmcs_enabled)
1853                         nested_evmcs_filter_control_msr(msr_info->index,
1854                                                         &msr_info->data);
1855                 break;
1856         case MSR_IA32_RTIT_CTL:
1857                 if (!vmx_pt_mode_is_host_guest())
1858                         return 1;
1859                 msr_info->data = vmx->pt_desc.guest.ctl;
1860                 break;
1861         case MSR_IA32_RTIT_STATUS:
1862                 if (!vmx_pt_mode_is_host_guest())
1863                         return 1;
1864                 msr_info->data = vmx->pt_desc.guest.status;
1865                 break;
1866         case MSR_IA32_RTIT_CR3_MATCH:
1867                 if (!vmx_pt_mode_is_host_guest() ||
1868                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1869                                                 PT_CAP_cr3_filtering))
1870                         return 1;
1871                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1872                 break;
1873         case MSR_IA32_RTIT_OUTPUT_BASE:
1874                 if (!vmx_pt_mode_is_host_guest() ||
1875                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1876                                         PT_CAP_topa_output) &&
1877                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1878                                         PT_CAP_single_range_output)))
1879                         return 1;
1880                 msr_info->data = vmx->pt_desc.guest.output_base;
1881                 break;
1882         case MSR_IA32_RTIT_OUTPUT_MASK:
1883                 if (!vmx_pt_mode_is_host_guest() ||
1884                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1885                                         PT_CAP_topa_output) &&
1886                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1887                                         PT_CAP_single_range_output)))
1888                         return 1;
1889                 msr_info->data = vmx->pt_desc.guest.output_mask;
1890                 break;
1891         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1892                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1893                 if (!vmx_pt_mode_is_host_guest() ||
1894                     (index >= 2 * vmx->pt_desc.num_address_ranges))
1895                         return 1;
1896                 if (index % 2)
1897                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1898                 else
1899                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1900                 break;
1901         case MSR_IA32_DEBUGCTLMSR:
1902                 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1903                 break;
1904         default:
1905         find_uret_msr:
1906                 msr = vmx_find_uret_msr(vmx, msr_info->index);
1907                 if (msr) {
1908                         msr_info->data = msr->data;
1909                         break;
1910                 }
1911                 return kvm_get_msr_common(vcpu, msr_info);
1912         }
1913
1914         return 0;
1915 }
1916
1917 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1918                                                     u64 data)
1919 {
1920 #ifdef CONFIG_X86_64
1921         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1922                 return (u32)data;
1923 #endif
1924         return (unsigned long)data;
1925 }
1926
1927 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1928 {
1929         u64 debugctl = vmx_supported_debugctl();
1930
1931         if (!intel_pmu_lbr_is_enabled(vcpu))
1932                 debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1933
1934         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1935                 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1936
1937         return debugctl;
1938 }
1939
1940 /*
1941  * Writes msr value into the appropriate "register".
1942  * Returns 0 on success, non-0 otherwise.
1943  * Assumes vcpu_load() was already called.
1944  */
1945 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1946 {
1947         struct vcpu_vmx *vmx = to_vmx(vcpu);
1948         struct vmx_uret_msr *msr;
1949         int ret = 0;
1950         u32 msr_index = msr_info->index;
1951         u64 data = msr_info->data;
1952         u32 index;
1953
1954         switch (msr_index) {
1955         case MSR_EFER:
1956                 ret = kvm_set_msr_common(vcpu, msr_info);
1957                 break;
1958 #ifdef CONFIG_X86_64
1959         case MSR_FS_BASE:
1960                 vmx_segment_cache_clear(vmx);
1961                 vmcs_writel(GUEST_FS_BASE, data);
1962                 break;
1963         case MSR_GS_BASE:
1964                 vmx_segment_cache_clear(vmx);
1965                 vmcs_writel(GUEST_GS_BASE, data);
1966                 break;
1967         case MSR_KERNEL_GS_BASE:
1968                 vmx_write_guest_kernel_gs_base(vmx, data);
1969                 break;
1970         case MSR_IA32_XFD:
1971                 ret = kvm_set_msr_common(vcpu, msr_info);
1972                 /*
1973                  * Always intercepting WRMSR could incur non-negligible
1974                  * overhead given xfd might be changed frequently in
1975                  * guest context switch. Disable write interception
1976                  * upon the first write with a non-zero value (indicating
1977                  * potential usage on dynamic xfeatures). Also update
1978                  * exception bitmap to trap #NM for proper virtualization
1979                  * of guest xfd_err.
1980                  */
1981                 if (!ret && data) {
1982                         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
1983                                                       MSR_TYPE_RW);
1984                         vcpu->arch.xfd_no_write_intercept = true;
1985                         vmx_update_exception_bitmap(vcpu);
1986                 }
1987                 break;
1988 #endif
1989         case MSR_IA32_SYSENTER_CS:
1990                 if (is_guest_mode(vcpu))
1991                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1992                 vmcs_write32(GUEST_SYSENTER_CS, data);
1993                 break;
1994         case MSR_IA32_SYSENTER_EIP:
1995                 if (is_guest_mode(vcpu)) {
1996                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1997                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1998                 }
1999                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2000                 break;
2001         case MSR_IA32_SYSENTER_ESP:
2002                 if (is_guest_mode(vcpu)) {
2003                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2004                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
2005                 }
2006                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2007                 break;
2008         case MSR_IA32_DEBUGCTLMSR: {
2009                 u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
2010                 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2011                         if (report_ignored_msrs)
2012                                 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2013                                             __func__, data);
2014                         data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2015                         invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2016                 }
2017
2018                 if (invalid)
2019                         return 1;
2020
2021                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2022                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2023                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2024
2025                 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2026                 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2027                     (data & DEBUGCTLMSR_LBR))
2028                         intel_pmu_create_guest_lbr_event(vcpu);
2029                 return 0;
2030         }
2031         case MSR_IA32_BNDCFGS:
2032                 if (!kvm_mpx_supported() ||
2033                     (!msr_info->host_initiated &&
2034                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2035                         return 1;
2036                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2037                     (data & MSR_IA32_BNDCFGS_RSVD))
2038                         return 1;
2039                 vmcs_write64(GUEST_BNDCFGS, data);
2040                 break;
2041         case MSR_IA32_UMWAIT_CONTROL:
2042                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2043                         return 1;
2044
2045                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2046                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2047                         return 1;
2048
2049                 vmx->msr_ia32_umwait_control = data;
2050                 break;
2051         case MSR_IA32_SPEC_CTRL:
2052                 if (!msr_info->host_initiated &&
2053                     !guest_has_spec_ctrl_msr(vcpu))
2054                         return 1;
2055
2056                 if (kvm_spec_ctrl_test_value(data))
2057                         return 1;
2058
2059                 vmx->spec_ctrl = data;
2060                 if (!data)
2061                         break;
2062
2063                 /*
2064                  * For non-nested:
2065                  * When it's written (to non-zero) for the first time, pass
2066                  * it through.
2067                  *
2068                  * For nested:
2069                  * The handling of the MSR bitmap for L2 guests is done in
2070                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2071                  * vmcs02.msr_bitmap here since it gets completely overwritten
2072                  * in the merging. We update the vmcs01 here for L1 as well
2073                  * since it will end up touching the MSR anyway now.
2074                  */
2075                 vmx_disable_intercept_for_msr(vcpu,
2076                                               MSR_IA32_SPEC_CTRL,
2077                                               MSR_TYPE_RW);
2078                 break;
2079         case MSR_IA32_TSX_CTRL:
2080                 if (!msr_info->host_initiated &&
2081                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2082                         return 1;
2083                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2084                         return 1;
2085                 goto find_uret_msr;
2086         case MSR_IA32_PRED_CMD:
2087                 if (!msr_info->host_initiated &&
2088                     !guest_has_pred_cmd_msr(vcpu))
2089                         return 1;
2090
2091                 if (data & ~PRED_CMD_IBPB)
2092                         return 1;
2093                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2094                         return 1;
2095                 if (!data)
2096                         break;
2097
2098                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2099
2100                 /*
2101                  * For non-nested:
2102                  * When it's written (to non-zero) for the first time, pass
2103                  * it through.
2104                  *
2105                  * For nested:
2106                  * The handling of the MSR bitmap for L2 guests is done in
2107                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2108                  * vmcs02.msr_bitmap here since it gets completely overwritten
2109                  * in the merging.
2110                  */
2111                 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2112                 break;
2113         case MSR_IA32_CR_PAT:
2114                 if (!kvm_pat_valid(data))
2115                         return 1;
2116
2117                 if (is_guest_mode(vcpu) &&
2118                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2119                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2120
2121                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2122                         vmcs_write64(GUEST_IA32_PAT, data);
2123                         vcpu->arch.pat = data;
2124                         break;
2125                 }
2126                 ret = kvm_set_msr_common(vcpu, msr_info);
2127                 break;
2128         case MSR_IA32_MCG_EXT_CTL:
2129                 if ((!msr_info->host_initiated &&
2130                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2131                        FEAT_CTL_LMCE_ENABLED)) ||
2132                     (data & ~MCG_EXT_CTL_LMCE_EN))
2133                         return 1;
2134                 vcpu->arch.mcg_ext_ctl = data;
2135                 break;
2136         case MSR_IA32_FEAT_CTL:
2137                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2138                     (to_vmx(vcpu)->msr_ia32_feature_control &
2139                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2140                         return 1;
2141                 vmx->msr_ia32_feature_control = data;
2142                 if (msr_info->host_initiated && data == 0)
2143                         vmx_leave_nested(vcpu);
2144
2145                 /* SGX may be enabled/disabled by guest's firmware */
2146                 vmx_write_encls_bitmap(vcpu, NULL);
2147                 break;
2148         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2149                 /*
2150                  * On real hardware, the LE hash MSRs are writable before
2151                  * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2152                  * at which point SGX related bits in IA32_FEATURE_CONTROL
2153                  * become writable.
2154                  *
2155                  * KVM does not emulate SGX activation for simplicity, so
2156                  * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2157                  * is unlocked.  This is technically not architectural
2158                  * behavior, but it's close enough.
2159                  */
2160                 if (!msr_info->host_initiated &&
2161                     (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2162                     ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2163                     !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2164                         return 1;
2165                 vmx->msr_ia32_sgxlepubkeyhash
2166                         [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2167                 break;
2168         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2169                 if (!msr_info->host_initiated)
2170                         return 1; /* they are read-only */
2171                 if (!nested_vmx_allowed(vcpu))
2172                         return 1;
2173                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2174         case MSR_IA32_RTIT_CTL:
2175                 if (!vmx_pt_mode_is_host_guest() ||
2176                         vmx_rtit_ctl_check(vcpu, data) ||
2177                         vmx->nested.vmxon)
2178                         return 1;
2179                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2180                 vmx->pt_desc.guest.ctl = data;
2181                 pt_update_intercept_for_msr(vcpu);
2182                 break;
2183         case MSR_IA32_RTIT_STATUS:
2184                 if (!pt_can_write_msr(vmx))
2185                         return 1;
2186                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2187                         return 1;
2188                 vmx->pt_desc.guest.status = data;
2189                 break;
2190         case MSR_IA32_RTIT_CR3_MATCH:
2191                 if (!pt_can_write_msr(vmx))
2192                         return 1;
2193                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2194                                            PT_CAP_cr3_filtering))
2195                         return 1;
2196                 vmx->pt_desc.guest.cr3_match = data;
2197                 break;
2198         case MSR_IA32_RTIT_OUTPUT_BASE:
2199                 if (!pt_can_write_msr(vmx))
2200                         return 1;
2201                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2202                                            PT_CAP_topa_output) &&
2203                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2204                                            PT_CAP_single_range_output))
2205                         return 1;
2206                 if (!pt_output_base_valid(vcpu, data))
2207                         return 1;
2208                 vmx->pt_desc.guest.output_base = data;
2209                 break;
2210         case MSR_IA32_RTIT_OUTPUT_MASK:
2211                 if (!pt_can_write_msr(vmx))
2212                         return 1;
2213                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2214                                            PT_CAP_topa_output) &&
2215                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2216                                            PT_CAP_single_range_output))
2217                         return 1;
2218                 vmx->pt_desc.guest.output_mask = data;
2219                 break;
2220         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2221                 if (!pt_can_write_msr(vmx))
2222                         return 1;
2223                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2224                 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2225                         return 1;
2226                 if (is_noncanonical_address(data, vcpu))
2227                         return 1;
2228                 if (index % 2)
2229                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2230                 else
2231                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2232                 break;
2233         case MSR_IA32_PERF_CAPABILITIES:
2234                 if (data && !vcpu_to_pmu(vcpu)->version)
2235                         return 1;
2236                 if (data & PMU_CAP_LBR_FMT) {
2237                         if ((data & PMU_CAP_LBR_FMT) !=
2238                             (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2239                                 return 1;
2240                         if (!intel_pmu_lbr_is_compatible(vcpu))
2241                                 return 1;
2242                 }
2243                 ret = kvm_set_msr_common(vcpu, msr_info);
2244                 break;
2245
2246         default:
2247         find_uret_msr:
2248                 msr = vmx_find_uret_msr(vmx, msr_index);
2249                 if (msr)
2250                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2251                 else
2252                         ret = kvm_set_msr_common(vcpu, msr_info);
2253         }
2254
2255         return ret;
2256 }
2257
2258 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2259 {
2260         unsigned long guest_owned_bits;
2261
2262         kvm_register_mark_available(vcpu, reg);
2263
2264         switch (reg) {
2265         case VCPU_REGS_RSP:
2266                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2267                 break;
2268         case VCPU_REGS_RIP:
2269                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2270                 break;
2271         case VCPU_EXREG_PDPTR:
2272                 if (enable_ept)
2273                         ept_save_pdptrs(vcpu);
2274                 break;
2275         case VCPU_EXREG_CR0:
2276                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2277
2278                 vcpu->arch.cr0 &= ~guest_owned_bits;
2279                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2280                 break;
2281         case VCPU_EXREG_CR3:
2282                 /*
2283                  * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2284                  * CR3 is loaded into hardware, not the guest's CR3.
2285                  */
2286                 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2287                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2288                 break;
2289         case VCPU_EXREG_CR4:
2290                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2291
2292                 vcpu->arch.cr4 &= ~guest_owned_bits;
2293                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2294                 break;
2295         default:
2296                 KVM_BUG_ON(1, vcpu->kvm);
2297                 break;
2298         }
2299 }
2300
2301 static __init int cpu_has_kvm_support(void)
2302 {
2303         return cpu_has_vmx();
2304 }
2305
2306 static __init int vmx_disabled_by_bios(void)
2307 {
2308         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2309                !boot_cpu_has(X86_FEATURE_VMX);
2310 }
2311
2312 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2313 {
2314         u64 msr;
2315
2316         cr4_set_bits(X86_CR4_VMXE);
2317
2318         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2319                           _ASM_EXTABLE(1b, %l[fault])
2320                           : : [vmxon_pointer] "m"(vmxon_pointer)
2321                           : : fault);
2322         return 0;
2323
2324 fault:
2325         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2326                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2327         cr4_clear_bits(X86_CR4_VMXE);
2328
2329         return -EFAULT;
2330 }
2331
2332 static int vmx_hardware_enable(void)
2333 {
2334         int cpu = raw_smp_processor_id();
2335         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2336         int r;
2337
2338         if (cr4_read_shadow() & X86_CR4_VMXE)
2339                 return -EBUSY;
2340
2341         /*
2342          * This can happen if we hot-added a CPU but failed to allocate
2343          * VP assist page for it.
2344          */
2345         if (static_branch_unlikely(&enable_evmcs) &&
2346             !hv_get_vp_assist_page(cpu))
2347                 return -EFAULT;
2348
2349         intel_pt_handle_vmx(1);
2350
2351         r = kvm_cpu_vmxon(phys_addr);
2352         if (r) {
2353                 intel_pt_handle_vmx(0);
2354                 return r;
2355         }
2356
2357         if (enable_ept)
2358                 ept_sync_global();
2359
2360         return 0;
2361 }
2362
2363 static void vmclear_local_loaded_vmcss(void)
2364 {
2365         int cpu = raw_smp_processor_id();
2366         struct loaded_vmcs *v, *n;
2367
2368         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2369                                  loaded_vmcss_on_cpu_link)
2370                 __loaded_vmcs_clear(v);
2371 }
2372
2373 static void vmx_hardware_disable(void)
2374 {
2375         vmclear_local_loaded_vmcss();
2376
2377         if (cpu_vmxoff())
2378                 kvm_spurious_fault();
2379
2380         intel_pt_handle_vmx(0);
2381 }
2382
2383 /*
2384  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2385  * directly instead of going through cpu_has(), to ensure KVM is trapping
2386  * ENCLS whenever it's supported in hardware.  It does not matter whether
2387  * the host OS supports or has enabled SGX.
2388  */
2389 static bool cpu_has_sgx(void)
2390 {
2391         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2392 }
2393
2394 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2395                                       u32 msr, u32 *result)
2396 {
2397         u32 vmx_msr_low, vmx_msr_high;
2398         u32 ctl = ctl_min | ctl_opt;
2399
2400         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2401
2402         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2403         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2404
2405         /* Ensure minimum (required) set of control bits are supported. */
2406         if (ctl_min & ~ctl)
2407                 return -EIO;
2408
2409         *result = ctl;
2410         return 0;
2411 }
2412
2413 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2414                                     struct vmx_capability *vmx_cap)
2415 {
2416         u32 vmx_msr_low, vmx_msr_high;
2417         u32 min, opt, min2, opt2;
2418         u32 _pin_based_exec_control = 0;
2419         u32 _cpu_based_exec_control = 0;
2420         u32 _cpu_based_2nd_exec_control = 0;
2421         u32 _vmexit_control = 0;
2422         u32 _vmentry_control = 0;
2423
2424         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2425         min = CPU_BASED_HLT_EXITING |
2426 #ifdef CONFIG_X86_64
2427               CPU_BASED_CR8_LOAD_EXITING |
2428               CPU_BASED_CR8_STORE_EXITING |
2429 #endif
2430               CPU_BASED_CR3_LOAD_EXITING |
2431               CPU_BASED_CR3_STORE_EXITING |
2432               CPU_BASED_UNCOND_IO_EXITING |
2433               CPU_BASED_MOV_DR_EXITING |
2434               CPU_BASED_USE_TSC_OFFSETTING |
2435               CPU_BASED_MWAIT_EXITING |
2436               CPU_BASED_MONITOR_EXITING |
2437               CPU_BASED_INVLPG_EXITING |
2438               CPU_BASED_RDPMC_EXITING;
2439
2440         opt = CPU_BASED_TPR_SHADOW |
2441               CPU_BASED_USE_MSR_BITMAPS |
2442               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2443         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2444                                 &_cpu_based_exec_control) < 0)
2445                 return -EIO;
2446 #ifdef CONFIG_X86_64
2447         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2448                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2449                                            ~CPU_BASED_CR8_STORE_EXITING;
2450 #endif
2451         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2452                 min2 = 0;
2453                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2454                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2455                         SECONDARY_EXEC_WBINVD_EXITING |
2456                         SECONDARY_EXEC_ENABLE_VPID |
2457                         SECONDARY_EXEC_ENABLE_EPT |
2458                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2459                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2460                         SECONDARY_EXEC_DESC |
2461                         SECONDARY_EXEC_ENABLE_RDTSCP |
2462                         SECONDARY_EXEC_ENABLE_INVPCID |
2463                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2464                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2465                         SECONDARY_EXEC_SHADOW_VMCS |
2466                         SECONDARY_EXEC_XSAVES |
2467                         SECONDARY_EXEC_RDSEED_EXITING |
2468                         SECONDARY_EXEC_RDRAND_EXITING |
2469                         SECONDARY_EXEC_ENABLE_PML |
2470                         SECONDARY_EXEC_TSC_SCALING |
2471                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2472                         SECONDARY_EXEC_PT_USE_GPA |
2473                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2474                         SECONDARY_EXEC_ENABLE_VMFUNC |
2475                         SECONDARY_EXEC_BUS_LOCK_DETECTION;
2476                 if (cpu_has_sgx())
2477                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2478                 if (adjust_vmx_controls(min2, opt2,
2479                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2480                                         &_cpu_based_2nd_exec_control) < 0)
2481                         return -EIO;
2482         }
2483 #ifndef CONFIG_X86_64
2484         if (!(_cpu_based_2nd_exec_control &
2485                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2486                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2487 #endif
2488
2489         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2490                 _cpu_based_2nd_exec_control &= ~(
2491                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2492                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2493                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2494
2495         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2496                 &vmx_cap->ept, &vmx_cap->vpid);
2497
2498         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2499                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2500                    enabled */
2501                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2502                                              CPU_BASED_CR3_STORE_EXITING |
2503                                              CPU_BASED_INVLPG_EXITING);
2504         } else if (vmx_cap->ept) {
2505                 vmx_cap->ept = 0;
2506                 pr_warn_once("EPT CAP should not exist if not support "
2507                                 "1-setting enable EPT VM-execution control\n");
2508         }
2509         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2510                 vmx_cap->vpid) {
2511                 vmx_cap->vpid = 0;
2512                 pr_warn_once("VPID CAP should not exist if not support "
2513                                 "1-setting enable VPID VM-execution control\n");
2514         }
2515
2516         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2517 #ifdef CONFIG_X86_64
2518         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2519 #endif
2520         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2521               VM_EXIT_LOAD_IA32_PAT |
2522               VM_EXIT_LOAD_IA32_EFER |
2523               VM_EXIT_CLEAR_BNDCFGS |
2524               VM_EXIT_PT_CONCEAL_PIP |
2525               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2526         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2527                                 &_vmexit_control) < 0)
2528                 return -EIO;
2529
2530         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2531         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2532                  PIN_BASED_VMX_PREEMPTION_TIMER;
2533         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2534                                 &_pin_based_exec_control) < 0)
2535                 return -EIO;
2536
2537         if (cpu_has_broken_vmx_preemption_timer())
2538                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2539         if (!(_cpu_based_2nd_exec_control &
2540                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2541                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2542
2543         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2544         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2545               VM_ENTRY_LOAD_IA32_PAT |
2546               VM_ENTRY_LOAD_IA32_EFER |
2547               VM_ENTRY_LOAD_BNDCFGS |
2548               VM_ENTRY_PT_CONCEAL_PIP |
2549               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2550         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2551                                 &_vmentry_control) < 0)
2552                 return -EIO;
2553
2554         /*
2555          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2556          * can't be used due to an errata where VM Exit may incorrectly clear
2557          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2558          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2559          */
2560         if (boot_cpu_data.x86 == 0x6) {
2561                 switch (boot_cpu_data.x86_model) {
2562                 case 26: /* AAK155 */
2563                 case 30: /* AAP115 */
2564                 case 37: /* AAT100 */
2565                 case 44: /* BC86,AAY89,BD102 */
2566                 case 46: /* BA97 */
2567                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2568                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2569                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2570                                         "does not work properly. Using workaround\n");
2571                         break;
2572                 default:
2573                         break;
2574                 }
2575         }
2576
2577
2578         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2579
2580         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2581         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2582                 return -EIO;
2583
2584 #ifdef CONFIG_X86_64
2585         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2586         if (vmx_msr_high & (1u<<16))
2587                 return -EIO;
2588 #endif
2589
2590         /* Require Write-Back (WB) memory type for VMCS accesses. */
2591         if (((vmx_msr_high >> 18) & 15) != 6)
2592                 return -EIO;
2593
2594         vmcs_conf->size = vmx_msr_high & 0x1fff;
2595         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2596
2597         vmcs_conf->revision_id = vmx_msr_low;
2598
2599         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2600         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2601         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2602         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2603         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2604
2605 #if IS_ENABLED(CONFIG_HYPERV)
2606         if (enlightened_vmcs)
2607                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2608 #endif
2609
2610         return 0;
2611 }
2612
2613 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2614 {
2615         int node = cpu_to_node(cpu);
2616         struct page *pages;
2617         struct vmcs *vmcs;
2618
2619         pages = __alloc_pages_node(node, flags, 0);
2620         if (!pages)
2621                 return NULL;
2622         vmcs = page_address(pages);
2623         memset(vmcs, 0, vmcs_config.size);
2624
2625         /* KVM supports Enlightened VMCS v1 only */
2626         if (static_branch_unlikely(&enable_evmcs))
2627                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2628         else
2629                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2630
2631         if (shadow)
2632                 vmcs->hdr.shadow_vmcs = 1;
2633         return vmcs;
2634 }
2635
2636 void free_vmcs(struct vmcs *vmcs)
2637 {
2638         free_page((unsigned long)vmcs);
2639 }
2640
2641 /*
2642  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2643  */
2644 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2645 {
2646         if (!loaded_vmcs->vmcs)
2647                 return;
2648         loaded_vmcs_clear(loaded_vmcs);
2649         free_vmcs(loaded_vmcs->vmcs);
2650         loaded_vmcs->vmcs = NULL;
2651         if (loaded_vmcs->msr_bitmap)
2652                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2653         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2654 }
2655
2656 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2657 {
2658         loaded_vmcs->vmcs = alloc_vmcs(false);
2659         if (!loaded_vmcs->vmcs)
2660                 return -ENOMEM;
2661
2662         vmcs_clear(loaded_vmcs->vmcs);
2663
2664         loaded_vmcs->shadow_vmcs = NULL;
2665         loaded_vmcs->hv_timer_soft_disabled = false;
2666         loaded_vmcs->cpu = -1;
2667         loaded_vmcs->launched = 0;
2668
2669         if (cpu_has_vmx_msr_bitmap()) {
2670                 loaded_vmcs->msr_bitmap = (unsigned long *)
2671                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2672                 if (!loaded_vmcs->msr_bitmap)
2673                         goto out_vmcs;
2674                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2675         }
2676
2677         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2678         memset(&loaded_vmcs->controls_shadow, 0,
2679                 sizeof(struct vmcs_controls_shadow));
2680
2681         return 0;
2682
2683 out_vmcs:
2684         free_loaded_vmcs(loaded_vmcs);
2685         return -ENOMEM;
2686 }
2687
2688 static void free_kvm_area(void)
2689 {
2690         int cpu;
2691
2692         for_each_possible_cpu(cpu) {
2693                 free_vmcs(per_cpu(vmxarea, cpu));
2694                 per_cpu(vmxarea, cpu) = NULL;
2695         }
2696 }
2697
2698 static __init int alloc_kvm_area(void)
2699 {
2700         int cpu;
2701
2702         for_each_possible_cpu(cpu) {
2703                 struct vmcs *vmcs;
2704
2705                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2706                 if (!vmcs) {
2707                         free_kvm_area();
2708                         return -ENOMEM;
2709                 }
2710
2711                 /*
2712                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2713                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2714                  * revision_id reported by MSR_IA32_VMX_BASIC.
2715                  *
2716                  * However, even though not explicitly documented by
2717                  * TLFS, VMXArea passed as VMXON argument should
2718                  * still be marked with revision_id reported by
2719                  * physical CPU.
2720                  */
2721                 if (static_branch_unlikely(&enable_evmcs))
2722                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2723
2724                 per_cpu(vmxarea, cpu) = vmcs;
2725         }
2726         return 0;
2727 }
2728
2729 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2730                 struct kvm_segment *save)
2731 {
2732         if (!emulate_invalid_guest_state) {
2733                 /*
2734                  * CS and SS RPL should be equal during guest entry according
2735                  * to VMX spec, but in reality it is not always so. Since vcpu
2736                  * is in the middle of the transition from real mode to
2737                  * protected mode it is safe to assume that RPL 0 is a good
2738                  * default value.
2739                  */
2740                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2741                         save->selector &= ~SEGMENT_RPL_MASK;
2742                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2743                 save->s = 1;
2744         }
2745         __vmx_set_segment(vcpu, save, seg);
2746 }
2747
2748 static void enter_pmode(struct kvm_vcpu *vcpu)
2749 {
2750         unsigned long flags;
2751         struct vcpu_vmx *vmx = to_vmx(vcpu);
2752
2753         /*
2754          * Update real mode segment cache. It may be not up-to-date if segment
2755          * register was written while vcpu was in a guest mode.
2756          */
2757         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2758         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2759         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2760         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2761         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2762         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2763
2764         vmx->rmode.vm86_active = 0;
2765
2766         __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2767
2768         flags = vmcs_readl(GUEST_RFLAGS);
2769         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2770         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2771         vmcs_writel(GUEST_RFLAGS, flags);
2772
2773         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2774                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2775
2776         vmx_update_exception_bitmap(vcpu);
2777
2778         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2779         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2780         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2781         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2782         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2783         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2784 }
2785
2786 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2787 {
2788         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2789         struct kvm_segment var = *save;
2790
2791         var.dpl = 0x3;
2792         if (seg == VCPU_SREG_CS)
2793                 var.type = 0x3;
2794
2795         if (!emulate_invalid_guest_state) {
2796                 var.selector = var.base >> 4;
2797                 var.base = var.base & 0xffff0;
2798                 var.limit = 0xffff;
2799                 var.g = 0;
2800                 var.db = 0;
2801                 var.present = 1;
2802                 var.s = 1;
2803                 var.l = 0;
2804                 var.unusable = 0;
2805                 var.type = 0x3;
2806                 var.avl = 0;
2807                 if (save->base & 0xf)
2808                         printk_once(KERN_WARNING "kvm: segment base is not "
2809                                         "paragraph aligned when entering "
2810                                         "protected mode (seg=%d)", seg);
2811         }
2812
2813         vmcs_write16(sf->selector, var.selector);
2814         vmcs_writel(sf->base, var.base);
2815         vmcs_write32(sf->limit, var.limit);
2816         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2817 }
2818
2819 static void enter_rmode(struct kvm_vcpu *vcpu)
2820 {
2821         unsigned long flags;
2822         struct vcpu_vmx *vmx = to_vmx(vcpu);
2823         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2824
2825         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2826         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2827         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2828         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2829         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2830         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2831         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2832
2833         vmx->rmode.vm86_active = 1;
2834
2835         /*
2836          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2837          * vcpu. Warn the user that an update is overdue.
2838          */
2839         if (!kvm_vmx->tss_addr)
2840                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2841                              "called before entering vcpu\n");
2842
2843         vmx_segment_cache_clear(vmx);
2844
2845         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2846         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2847         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2848
2849         flags = vmcs_readl(GUEST_RFLAGS);
2850         vmx->rmode.save_rflags = flags;
2851
2852         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2853
2854         vmcs_writel(GUEST_RFLAGS, flags);
2855         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2856         vmx_update_exception_bitmap(vcpu);
2857
2858         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2859         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2860         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2861         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2862         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2863         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2864 }
2865
2866 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2867 {
2868         struct vcpu_vmx *vmx = to_vmx(vcpu);
2869
2870         /* Nothing to do if hardware doesn't support EFER. */
2871         if (!vmx_find_uret_msr(vmx, MSR_EFER))
2872                 return 0;
2873
2874         vcpu->arch.efer = efer;
2875         if (efer & EFER_LMA)
2876                 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
2877         else
2878                 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
2879
2880         vmx_setup_uret_msrs(vmx);
2881         return 0;
2882 }
2883
2884 #ifdef CONFIG_X86_64
2885
2886 static void enter_lmode(struct kvm_vcpu *vcpu)
2887 {
2888         u32 guest_tr_ar;
2889
2890         vmx_segment_cache_clear(to_vmx(vcpu));
2891
2892         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2893         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2894                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2895                                      __func__);
2896                 vmcs_write32(GUEST_TR_AR_BYTES,
2897                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2898                              | VMX_AR_TYPE_BUSY_64_TSS);
2899         }
2900         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2901 }
2902
2903 static void exit_lmode(struct kvm_vcpu *vcpu)
2904 {
2905         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2906 }
2907
2908 #endif
2909
2910 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2911 {
2912         struct vcpu_vmx *vmx = to_vmx(vcpu);
2913
2914         /*
2915          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2916          * the CPU is not required to invalidate guest-physical mappings on
2917          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2918          * associated with the root EPT structure and not any particular VPID
2919          * (INVVPID also isn't required to invalidate guest-physical mappings).
2920          */
2921         if (enable_ept) {
2922                 ept_sync_global();
2923         } else if (enable_vpid) {
2924                 if (cpu_has_vmx_invvpid_global()) {
2925                         vpid_sync_vcpu_global();
2926                 } else {
2927                         vpid_sync_vcpu_single(vmx->vpid);
2928                         vpid_sync_vcpu_single(vmx->nested.vpid02);
2929                 }
2930         }
2931 }
2932
2933 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
2934 {
2935         if (is_guest_mode(vcpu))
2936                 return nested_get_vpid02(vcpu);
2937         return to_vmx(vcpu)->vpid;
2938 }
2939
2940 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2941 {
2942         struct kvm_mmu *mmu = vcpu->arch.mmu;
2943         u64 root_hpa = mmu->root.hpa;
2944
2945         /* No flush required if the current context is invalid. */
2946         if (!VALID_PAGE(root_hpa))
2947                 return;
2948
2949         if (enable_ept)
2950                 ept_sync_context(construct_eptp(vcpu, root_hpa,
2951                                                 mmu->shadow_root_level));
2952         else
2953                 vpid_sync_context(vmx_get_current_vpid(vcpu));
2954 }
2955
2956 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2957 {
2958         /*
2959          * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
2960          * vmx_flush_tlb_guest() for an explanation of why this is ok.
2961          */
2962         vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
2963 }
2964
2965 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2966 {
2967         /*
2968          * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
2969          * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
2970          * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2971          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2972          * i.e. no explicit INVVPID is necessary.
2973          */
2974         vpid_sync_context(vmx_get_current_vpid(vcpu));
2975 }
2976
2977 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2978 {
2979         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2980
2981         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2982                 return;
2983
2984         if (is_pae_paging(vcpu)) {
2985                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2986                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2987                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2988                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2989         }
2990 }
2991
2992 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2993 {
2994         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2995
2996         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2997                 return;
2998
2999         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3000         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3001         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3002         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3003
3004         kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3005 }
3006
3007 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3008                           CPU_BASED_CR3_STORE_EXITING)
3009
3010 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3011 {
3012         struct vcpu_vmx *vmx = to_vmx(vcpu);
3013         unsigned long hw_cr0, old_cr0_pg;
3014         u32 tmp;
3015
3016         old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3017
3018         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3019         if (is_unrestricted_guest(vcpu))
3020                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3021         else {
3022                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3023                 if (!enable_ept)
3024                         hw_cr0 |= X86_CR0_WP;
3025
3026                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3027                         enter_pmode(vcpu);
3028
3029                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3030                         enter_rmode(vcpu);
3031         }
3032
3033         vmcs_writel(CR0_READ_SHADOW, cr0);
3034         vmcs_writel(GUEST_CR0, hw_cr0);
3035         vcpu->arch.cr0 = cr0;
3036         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3037
3038 #ifdef CONFIG_X86_64
3039         if (vcpu->arch.efer & EFER_LME) {
3040                 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3041                         enter_lmode(vcpu);
3042                 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3043                         exit_lmode(vcpu);
3044         }
3045 #endif
3046
3047         if (enable_ept && !is_unrestricted_guest(vcpu)) {
3048                 /*
3049                  * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3050                  * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3051                  * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3052                  * KVM's CR3 is installed.
3053                  */
3054                 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3055                         vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3056
3057                 /*
3058                  * When running with EPT but not unrestricted guest, KVM must
3059                  * intercept CR3 accesses when paging is _disabled_.  This is
3060                  * necessary because restricted guests can't actually run with
3061                  * paging disabled, and so KVM stuffs its own CR3 in order to
3062                  * run the guest when identity mapped page tables.
3063                  *
3064                  * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3065                  * update, it may be stale with respect to CR3 interception,
3066                  * e.g. after nested VM-Enter.
3067                  *
3068                  * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3069                  * stores to forward them to L1, even if KVM does not need to
3070                  * intercept them to preserve its identity mapped page tables.
3071                  */
3072                 if (!(cr0 & X86_CR0_PG)) {
3073                         exec_controls_setbit(vmx, CR3_EXITING_BITS);
3074                 } else if (!is_guest_mode(vcpu)) {
3075                         exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3076                 } else {
3077                         tmp = exec_controls_get(vmx);
3078                         tmp &= ~CR3_EXITING_BITS;
3079                         tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3080                         exec_controls_set(vmx, tmp);
3081                 }
3082
3083                 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3084                 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3085                         vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3086
3087                 /*
3088                  * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3089                  * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3090                  */
3091                 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3092                         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3093         }
3094
3095         /* depends on vcpu->arch.cr0 to be set to a new value */
3096         vmx->emulation_required = vmx_emulation_required(vcpu);
3097 }
3098
3099 static int vmx_get_max_tdp_level(void)
3100 {
3101         if (cpu_has_vmx_ept_5levels())
3102                 return 5;
3103         return 4;
3104 }
3105
3106 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3107 {
3108         u64 eptp = VMX_EPTP_MT_WB;
3109
3110         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3111
3112         if (enable_ept_ad_bits &&
3113             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3114                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3115         eptp |= root_hpa;
3116
3117         return eptp;
3118 }
3119
3120 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3121                              int root_level)
3122 {
3123         struct kvm *kvm = vcpu->kvm;
3124         bool update_guest_cr3 = true;
3125         unsigned long guest_cr3;
3126         u64 eptp;
3127
3128         if (enable_ept) {
3129                 eptp = construct_eptp(vcpu, root_hpa, root_level);
3130                 vmcs_write64(EPT_POINTER, eptp);
3131
3132                 hv_track_root_tdp(vcpu, root_hpa);
3133
3134                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3135                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3136                 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3137                         guest_cr3 = vcpu->arch.cr3;
3138                 else /* vmcs.GUEST_CR3 is already up-to-date. */
3139                         update_guest_cr3 = false;
3140                 vmx_ept_load_pdptrs(vcpu);
3141         } else {
3142                 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3143         }
3144
3145         if (update_guest_cr3)
3146                 vmcs_writel(GUEST_CR3, guest_cr3);
3147 }
3148
3149
3150 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3151 {
3152         /*
3153          * We operate under the default treatment of SMM, so VMX cannot be
3154          * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3155          * handled by kvm_is_valid_cr4().
3156          */
3157         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3158                 return false;
3159
3160         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3161                 return false;
3162
3163         return true;
3164 }
3165
3166 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3167 {
3168         unsigned long old_cr4 = vcpu->arch.cr4;
3169         struct vcpu_vmx *vmx = to_vmx(vcpu);
3170         /*
3171          * Pass through host's Machine Check Enable value to hw_cr4, which
3172          * is in force while we are in guest mode.  Do not let guests control
3173          * this bit, even if host CR4.MCE == 0.
3174          */
3175         unsigned long hw_cr4;
3176
3177         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3178         if (is_unrestricted_guest(vcpu))
3179                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3180         else if (vmx->rmode.vm86_active)
3181                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3182         else
3183                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3184
3185         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3186                 if (cr4 & X86_CR4_UMIP) {
3187                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3188                         hw_cr4 &= ~X86_CR4_UMIP;
3189                 } else if (!is_guest_mode(vcpu) ||
3190                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3191                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3192                 }
3193         }
3194
3195         vcpu->arch.cr4 = cr4;
3196         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3197
3198         if (!is_unrestricted_guest(vcpu)) {
3199                 if (enable_ept) {
3200                         if (!is_paging(vcpu)) {
3201                                 hw_cr4 &= ~X86_CR4_PAE;
3202                                 hw_cr4 |= X86_CR4_PSE;
3203                         } else if (!(cr4 & X86_CR4_PAE)) {
3204                                 hw_cr4 &= ~X86_CR4_PAE;
3205                         }
3206                 }
3207
3208                 /*
3209                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3210                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3211                  * to be manually disabled when guest switches to non-paging
3212                  * mode.
3213                  *
3214                  * If !enable_unrestricted_guest, the CPU is always running
3215                  * with CR0.PG=1 and CR4 needs to be modified.
3216                  * If enable_unrestricted_guest, the CPU automatically
3217                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3218                  */
3219                 if (!is_paging(vcpu))
3220                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3221         }
3222
3223         vmcs_writel(CR4_READ_SHADOW, cr4);
3224         vmcs_writel(GUEST_CR4, hw_cr4);
3225
3226         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3227                 kvm_update_cpuid_runtime(vcpu);
3228 }
3229
3230 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3231 {
3232         struct vcpu_vmx *vmx = to_vmx(vcpu);
3233         u32 ar;
3234
3235         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3236                 *var = vmx->rmode.segs[seg];
3237                 if (seg == VCPU_SREG_TR
3238                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3239                         return;
3240                 var->base = vmx_read_guest_seg_base(vmx, seg);
3241                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3242                 return;
3243         }
3244         var->base = vmx_read_guest_seg_base(vmx, seg);
3245         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3246         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3247         ar = vmx_read_guest_seg_ar(vmx, seg);
3248         var->unusable = (ar >> 16) & 1;
3249         var->type = ar & 15;
3250         var->s = (ar >> 4) & 1;
3251         var->dpl = (ar >> 5) & 3;
3252         /*
3253          * Some userspaces do not preserve unusable property. Since usable
3254          * segment has to be present according to VMX spec we can use present
3255          * property to amend userspace bug by making unusable segment always
3256          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3257          * segment as unusable.
3258          */
3259         var->present = !var->unusable;
3260         var->avl = (ar >> 12) & 1;
3261         var->l = (ar >> 13) & 1;
3262         var->db = (ar >> 14) & 1;
3263         var->g = (ar >> 15) & 1;
3264 }
3265
3266 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3267 {
3268         struct kvm_segment s;
3269
3270         if (to_vmx(vcpu)->rmode.vm86_active) {
3271                 vmx_get_segment(vcpu, &s, seg);
3272                 return s.base;
3273         }
3274         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3275 }
3276
3277 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3278 {
3279         struct vcpu_vmx *vmx = to_vmx(vcpu);
3280
3281         if (unlikely(vmx->rmode.vm86_active))
3282                 return 0;
3283         else {
3284                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3285                 return VMX_AR_DPL(ar);
3286         }
3287 }
3288
3289 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3290 {
3291         u32 ar;
3292
3293         if (var->unusable || !var->present)
3294                 ar = 1 << 16;
3295         else {
3296                 ar = var->type & 15;
3297                 ar |= (var->s & 1) << 4;
3298                 ar |= (var->dpl & 3) << 5;
3299                 ar |= (var->present & 1) << 7;
3300                 ar |= (var->avl & 1) << 12;
3301                 ar |= (var->l & 1) << 13;
3302                 ar |= (var->db & 1) << 14;
3303                 ar |= (var->g & 1) << 15;
3304         }
3305
3306         return ar;
3307 }
3308
3309 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3310 {
3311         struct vcpu_vmx *vmx = to_vmx(vcpu);
3312         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3313
3314         vmx_segment_cache_clear(vmx);
3315
3316         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3317                 vmx->rmode.segs[seg] = *var;
3318                 if (seg == VCPU_SREG_TR)
3319                         vmcs_write16(sf->selector, var->selector);
3320                 else if (var->s)
3321                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3322                 return;
3323         }
3324
3325         vmcs_writel(sf->base, var->base);
3326         vmcs_write32(sf->limit, var->limit);
3327         vmcs_write16(sf->selector, var->selector);
3328
3329         /*
3330          *   Fix the "Accessed" bit in AR field of segment registers for older
3331          * qemu binaries.
3332          *   IA32 arch specifies that at the time of processor reset the
3333          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3334          * is setting it to 0 in the userland code. This causes invalid guest
3335          * state vmexit when "unrestricted guest" mode is turned on.
3336          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3337          * tree. Newer qemu binaries with that qemu fix would not need this
3338          * kvm hack.
3339          */
3340         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3341                 var->type |= 0x1; /* Accessed */
3342
3343         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3344 }
3345
3346 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3347 {
3348         __vmx_set_segment(vcpu, var, seg);
3349
3350         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3351 }
3352
3353 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3354 {
3355         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3356
3357         *db = (ar >> 14) & 1;
3358         *l = (ar >> 13) & 1;
3359 }
3360
3361 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3362 {
3363         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3364         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3365 }
3366
3367 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3368 {
3369         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3370         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3371 }
3372
3373 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3374 {
3375         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3376         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3377 }
3378
3379 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3380 {
3381         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3382         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3383 }
3384
3385 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3386 {
3387         struct kvm_segment var;
3388         u32 ar;
3389
3390         vmx_get_segment(vcpu, &var, seg);
3391         var.dpl = 0x3;
3392         if (seg == VCPU_SREG_CS)
3393                 var.type = 0x3;
3394         ar = vmx_segment_access_rights(&var);
3395
3396         if (var.base != (var.selector << 4))
3397                 return false;
3398         if (var.limit != 0xffff)
3399                 return false;
3400         if (ar != 0xf3)
3401                 return false;
3402
3403         return true;
3404 }
3405
3406 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3407 {
3408         struct kvm_segment cs;
3409         unsigned int cs_rpl;
3410
3411         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3412         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3413
3414         if (cs.unusable)
3415                 return false;
3416         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3417                 return false;
3418         if (!cs.s)
3419                 return false;
3420         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3421                 if (cs.dpl > cs_rpl)
3422                         return false;
3423         } else {
3424                 if (cs.dpl != cs_rpl)
3425                         return false;
3426         }
3427         if (!cs.present)
3428                 return false;
3429
3430         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3431         return true;
3432 }
3433
3434 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3435 {
3436         struct kvm_segment ss;
3437         unsigned int ss_rpl;
3438
3439         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3440         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3441
3442         if (ss.unusable)
3443                 return true;
3444         if (ss.type != 3 && ss.type != 7)
3445                 return false;
3446         if (!ss.s)
3447                 return false;
3448         if (ss.dpl != ss_rpl) /* DPL != RPL */
3449                 return false;
3450         if (!ss.present)
3451                 return false;
3452
3453         return true;
3454 }
3455
3456 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3457 {
3458         struct kvm_segment var;
3459         unsigned int rpl;
3460
3461         vmx_get_segment(vcpu, &var, seg);
3462         rpl = var.selector & SEGMENT_RPL_MASK;
3463
3464         if (var.unusable)
3465                 return true;
3466         if (!var.s)
3467                 return false;
3468         if (!var.present)
3469                 return false;
3470         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3471                 if (var.dpl < rpl) /* DPL < RPL */
3472                         return false;
3473         }
3474
3475         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3476          * rights flags
3477          */
3478         return true;
3479 }
3480
3481 static bool tr_valid(struct kvm_vcpu *vcpu)
3482 {
3483         struct kvm_segment tr;
3484
3485         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3486
3487         if (tr.unusable)
3488                 return false;
3489         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3490                 return false;
3491         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3492                 return false;
3493         if (!tr.present)
3494                 return false;
3495
3496         return true;
3497 }
3498
3499 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3500 {
3501         struct kvm_segment ldtr;
3502
3503         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3504
3505         if (ldtr.unusable)
3506                 return true;
3507         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3508                 return false;
3509         if (ldtr.type != 2)
3510                 return false;
3511         if (!ldtr.present)
3512                 return false;
3513
3514         return true;
3515 }
3516
3517 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3518 {
3519         struct kvm_segment cs, ss;
3520
3521         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3522         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3523
3524         return ((cs.selector & SEGMENT_RPL_MASK) ==
3525                  (ss.selector & SEGMENT_RPL_MASK));
3526 }
3527
3528 /*
3529  * Check if guest state is valid. Returns true if valid, false if
3530  * not.
3531  * We assume that registers are always usable
3532  */
3533 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3534 {
3535         /* real mode guest state checks */
3536         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3537                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3538                         return false;
3539                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3540                         return false;
3541                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3542                         return false;
3543                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3544                         return false;
3545                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3546                         return false;
3547                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3548                         return false;
3549         } else {
3550         /* protected mode guest state checks */
3551                 if (!cs_ss_rpl_check(vcpu))
3552                         return false;
3553                 if (!code_segment_valid(vcpu))
3554                         return false;
3555                 if (!stack_segment_valid(vcpu))
3556                         return false;
3557                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3558                         return false;
3559                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3560                         return false;
3561                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3562                         return false;
3563                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3564                         return false;
3565                 if (!tr_valid(vcpu))
3566                         return false;
3567                 if (!ldtr_valid(vcpu))
3568                         return false;
3569         }
3570         /* TODO:
3571          * - Add checks on RIP
3572          * - Add checks on RFLAGS
3573          */
3574
3575         return true;
3576 }
3577
3578 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3579 {
3580         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3581         u16 data;
3582         int i;
3583
3584         for (i = 0; i < 3; i++) {
3585                 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3586                         return -EFAULT;
3587         }
3588
3589         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3590         if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3591                 return -EFAULT;
3592
3593         data = ~0;
3594         if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3595                 return -EFAULT;
3596
3597         return 0;
3598 }
3599
3600 static int init_rmode_identity_map(struct kvm *kvm)
3601 {
3602         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3603         int i, r = 0;
3604         void __user *uaddr;
3605         u32 tmp;
3606
3607         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3608         mutex_lock(&kvm->slots_lock);
3609
3610         if (likely(kvm_vmx->ept_identity_pagetable_done))
3611                 goto out;
3612
3613         if (!kvm_vmx->ept_identity_map_addr)
3614                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3615
3616         uaddr = __x86_set_memory_region(kvm,
3617                                         IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3618                                         kvm_vmx->ept_identity_map_addr,
3619                                         PAGE_SIZE);
3620         if (IS_ERR(uaddr)) {
3621                 r = PTR_ERR(uaddr);
3622                 goto out;
3623         }
3624
3625         /* Set up identity-mapping pagetable for EPT in real mode */
3626         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3627                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3628                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3629                 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3630                         r = -EFAULT;
3631                         goto out;
3632                 }
3633         }
3634         kvm_vmx->ept_identity_pagetable_done = true;
3635
3636 out:
3637         mutex_unlock(&kvm->slots_lock);
3638         return r;
3639 }
3640
3641 static void seg_setup(int seg)
3642 {
3643         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3644         unsigned int ar;
3645
3646         vmcs_write16(sf->selector, 0);
3647         vmcs_writel(sf->base, 0);
3648         vmcs_write32(sf->limit, 0xffff);
3649         ar = 0x93;
3650         if (seg == VCPU_SREG_CS)
3651                 ar |= 0x08; /* code segment */
3652
3653         vmcs_write32(sf->ar_bytes, ar);
3654 }
3655
3656 static int alloc_apic_access_page(struct kvm *kvm)
3657 {
3658         struct page *page;
3659         void __user *hva;
3660         int ret = 0;
3661
3662         mutex_lock(&kvm->slots_lock);
3663         if (kvm->arch.apic_access_memslot_enabled)
3664                 goto out;
3665         hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3666                                       APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3667         if (IS_ERR(hva)) {
3668                 ret = PTR_ERR(hva);
3669                 goto out;
3670         }
3671
3672         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3673         if (is_error_page(page)) {
3674                 ret = -EFAULT;
3675                 goto out;
3676         }
3677
3678         /*
3679          * Do not pin the page in memory, so that memory hot-unplug
3680          * is able to migrate it.
3681          */
3682         put_page(page);
3683         kvm->arch.apic_access_memslot_enabled = true;
3684 out:
3685         mutex_unlock(&kvm->slots_lock);
3686         return ret;
3687 }
3688
3689 int allocate_vpid(void)
3690 {
3691         int vpid;
3692
3693         if (!enable_vpid)
3694                 return 0;
3695         spin_lock(&vmx_vpid_lock);
3696         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3697         if (vpid < VMX_NR_VPIDS)
3698                 __set_bit(vpid, vmx_vpid_bitmap);
3699         else
3700                 vpid = 0;
3701         spin_unlock(&vmx_vpid_lock);
3702         return vpid;
3703 }
3704
3705 void free_vpid(int vpid)
3706 {
3707         if (!enable_vpid || vpid == 0)
3708                 return;
3709         spin_lock(&vmx_vpid_lock);
3710         __clear_bit(vpid, vmx_vpid_bitmap);
3711         spin_unlock(&vmx_vpid_lock);
3712 }
3713
3714 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3715 {
3716         /*
3717          * When KVM is a nested hypervisor on top of Hyper-V and uses
3718          * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3719          * bitmap has changed.
3720          */
3721         if (static_branch_unlikely(&enable_evmcs))
3722                 evmcs_touch_msr_bitmap();
3723
3724         vmx->nested.force_msr_bitmap_recalc = true;
3725 }
3726
3727 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3728 {
3729         struct vcpu_vmx *vmx = to_vmx(vcpu);
3730         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3731
3732         if (!cpu_has_vmx_msr_bitmap())
3733                 return;
3734
3735         vmx_msr_bitmap_l01_changed(vmx);
3736
3737         /*
3738          * Mark the desired intercept state in shadow bitmap, this is needed
3739          * for resync when the MSR filters change.
3740         */
3741         if (is_valid_passthrough_msr(msr)) {
3742                 int idx = possible_passthrough_msr_slot(msr);
3743
3744                 if (idx != -ENOENT) {
3745                         if (type & MSR_TYPE_R)
3746                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
3747                         if (type & MSR_TYPE_W)
3748                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
3749                 }
3750         }
3751
3752         if ((type & MSR_TYPE_R) &&
3753             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3754                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3755                 type &= ~MSR_TYPE_R;
3756         }
3757
3758         if ((type & MSR_TYPE_W) &&
3759             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3760                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3761                 type &= ~MSR_TYPE_W;
3762         }
3763
3764         if (type & MSR_TYPE_R)
3765                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3766
3767         if (type & MSR_TYPE_W)
3768                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3769 }
3770
3771 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3772 {
3773         struct vcpu_vmx *vmx = to_vmx(vcpu);
3774         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3775
3776         if (!cpu_has_vmx_msr_bitmap())
3777                 return;
3778
3779         vmx_msr_bitmap_l01_changed(vmx);
3780
3781         /*
3782          * Mark the desired intercept state in shadow bitmap, this is needed
3783          * for resync when the MSR filter changes.
3784         */
3785         if (is_valid_passthrough_msr(msr)) {
3786                 int idx = possible_passthrough_msr_slot(msr);
3787
3788                 if (idx != -ENOENT) {
3789                         if (type & MSR_TYPE_R)
3790                                 set_bit(idx, vmx->shadow_msr_intercept.read);
3791                         if (type & MSR_TYPE_W)
3792                                 set_bit(idx, vmx->shadow_msr_intercept.write);
3793                 }
3794         }
3795
3796         if (type & MSR_TYPE_R)
3797                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3798
3799         if (type & MSR_TYPE_W)
3800                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3801 }
3802
3803 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3804 {
3805         unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3806         unsigned long read_intercept;
3807         int msr;
3808
3809         read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3810
3811         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3812                 unsigned int read_idx = msr / BITS_PER_LONG;
3813                 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3814
3815                 msr_bitmap[read_idx] = read_intercept;
3816                 msr_bitmap[write_idx] = ~0ul;
3817         }
3818 }
3819
3820 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3821 {
3822         struct vcpu_vmx *vmx = to_vmx(vcpu);
3823         u8 mode;
3824
3825         if (!cpu_has_vmx_msr_bitmap())
3826                 return;
3827
3828         if (cpu_has_secondary_exec_ctrls() &&
3829             (secondary_exec_controls_get(vmx) &
3830              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3831                 mode = MSR_BITMAP_MODE_X2APIC;
3832                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3833                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3834         } else {
3835                 mode = 0;
3836         }
3837
3838         if (mode == vmx->x2apic_msr_bitmap_mode)
3839                 return;
3840
3841         vmx->x2apic_msr_bitmap_mode = mode;
3842
3843         vmx_reset_x2apic_msrs(vcpu, mode);
3844
3845         /*
3846          * TPR reads and writes can be virtualized even if virtual interrupt
3847          * delivery is not in use.
3848          */
3849         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3850                                   !(mode & MSR_BITMAP_MODE_X2APIC));
3851
3852         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3853                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3854                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3855                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3856         }
3857 }
3858
3859 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3860 {
3861         struct vcpu_vmx *vmx = to_vmx(vcpu);
3862         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3863         u32 i;
3864
3865         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3866         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3867         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3868         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3869         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3870                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3871                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3872         }
3873 }
3874
3875 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3876 {
3877         struct vcpu_vmx *vmx = to_vmx(vcpu);
3878         void *vapic_page;
3879         u32 vppr;
3880         int rvi;
3881
3882         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3883                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3884                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3885                 return false;
3886
3887         rvi = vmx_get_rvi();
3888
3889         vapic_page = vmx->nested.virtual_apic_map.hva;
3890         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3891
3892         return ((rvi & 0xf0) > (vppr & 0xf0));
3893 }
3894
3895 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3896 {
3897         struct vcpu_vmx *vmx = to_vmx(vcpu);
3898         u32 i;
3899
3900         /*
3901          * Set intercept permissions for all potentially passed through MSRs
3902          * again. They will automatically get filtered through the MSR filter,
3903          * so we are back in sync after this.
3904          */
3905         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3906                 u32 msr = vmx_possible_passthrough_msrs[i];
3907                 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3908                 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3909
3910                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3911                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3912         }
3913
3914         pt_update_intercept_for_msr(vcpu);
3915 }
3916
3917 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3918                                                      int pi_vec)
3919 {
3920 #ifdef CONFIG_SMP
3921         if (vcpu->mode == IN_GUEST_MODE) {
3922                 /*
3923                  * The vector of the virtual has already been set in the PIR.
3924                  * Send a notification event to deliver the virtual interrupt
3925                  * unless the vCPU is the currently running vCPU, i.e. the
3926                  * event is being sent from a fastpath VM-Exit handler, in
3927                  * which case the PIR will be synced to the vIRR before
3928                  * re-entering the guest.
3929                  *
3930                  * When the target is not the running vCPU, the following
3931                  * possibilities emerge:
3932                  *
3933                  * Case 1: vCPU stays in non-root mode. Sending a notification
3934                  * event posts the interrupt to the vCPU.
3935                  *
3936                  * Case 2: vCPU exits to root mode and is still runnable. The
3937                  * PIR will be synced to the vIRR before re-entering the guest.
3938                  * Sending a notification event is ok as the host IRQ handler
3939                  * will ignore the spurious event.
3940                  *
3941                  * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
3942                  * has already synced PIR to vIRR and never blocks the vCPU if
3943                  * the vIRR is not empty. Therefore, a blocked vCPU here does
3944                  * not wait for any requested interrupts in PIR, and sending a
3945                  * notification event also results in a benign, spurious event.
3946                  */
3947
3948                 if (vcpu != kvm_get_running_vcpu())
3949                         apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3950                 return;
3951         }
3952 #endif
3953         /*
3954          * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
3955          * otherwise do nothing as KVM will grab the highest priority pending
3956          * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
3957          */
3958         kvm_vcpu_wake_up(vcpu);
3959 }
3960
3961 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3962                                                 int vector)
3963 {
3964         struct vcpu_vmx *vmx = to_vmx(vcpu);
3965
3966         if (is_guest_mode(vcpu) &&
3967             vector == vmx->nested.posted_intr_nv) {
3968                 /*
3969                  * If a posted intr is not recognized by hardware,
3970                  * we will accomplish it in the next vmentry.
3971                  */
3972                 vmx->nested.pi_pending = true;
3973                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3974
3975                 /*
3976                  * This pairs with the smp_mb_*() after setting vcpu->mode in
3977                  * vcpu_enter_guest() to guarantee the vCPU sees the event
3978                  * request if triggering a posted interrupt "fails" because
3979                  * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
3980                  * the smb_wmb() in kvm_make_request() only ensures everything
3981                  * done before making the request is visible when the request
3982                  * is visible, it doesn't ensure ordering between the store to
3983                  * vcpu->requests and the load from vcpu->mode.
3984                  */
3985                 smp_mb__after_atomic();
3986
3987                 /* the PIR and ON have been set by L1. */
3988                 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
3989                 return 0;
3990         }
3991         return -1;
3992 }
3993 /*
3994  * Send interrupt to vcpu via posted interrupt way.
3995  * 1. If target vcpu is running(non-root mode), send posted interrupt
3996  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3997  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3998  * interrupt from PIR in next vmentry.
3999  */
4000 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4001 {
4002         struct vcpu_vmx *vmx = to_vmx(vcpu);
4003         int r;
4004
4005         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4006         if (!r)
4007                 return 0;
4008
4009         if (!vcpu->arch.apicv_active)
4010                 return -1;
4011
4012         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4013                 return 0;
4014
4015         /* If a previous notification has sent the IPI, nothing to do.  */
4016         if (pi_test_and_set_on(&vmx->pi_desc))
4017                 return 0;
4018
4019         /*
4020          * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4021          * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4022          * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4023          * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4024          */
4025         kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4026         return 0;
4027 }
4028
4029 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4030                                   int trig_mode, int vector)
4031 {
4032         struct kvm_vcpu *vcpu = apic->vcpu;
4033
4034         if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4035                 kvm_lapic_set_irr(vector, apic);
4036                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4037                 kvm_vcpu_kick(vcpu);
4038         } else {
4039                 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4040                                            trig_mode, vector);
4041         }
4042 }
4043
4044 /*
4045  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4046  * will not change in the lifetime of the guest.
4047  * Note that host-state that does change is set elsewhere. E.g., host-state
4048  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4049  */
4050 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4051 {
4052         u32 low32, high32;
4053         unsigned long tmpl;
4054         unsigned long cr0, cr3, cr4;
4055
4056         cr0 = read_cr0();
4057         WARN_ON(cr0 & X86_CR0_TS);
4058         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4059
4060         /*
4061          * Save the most likely value for this task's CR3 in the VMCS.
4062          * We can't use __get_current_cr3_fast() because we're not atomic.
4063          */
4064         cr3 = __read_cr3();
4065         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
4066         vmx->loaded_vmcs->host_state.cr3 = cr3;
4067
4068         /* Save the most likely value for this task's CR4 in the VMCS. */
4069         cr4 = cr4_read_shadow();
4070         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4071         vmx->loaded_vmcs->host_state.cr4 = cr4;
4072
4073         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4074 #ifdef CONFIG_X86_64
4075         /*
4076          * Load null selectors, so we can avoid reloading them in
4077          * vmx_prepare_switch_to_host(), in case userspace uses
4078          * the null selectors too (the expected case).
4079          */
4080         vmcs_write16(HOST_DS_SELECTOR, 0);
4081         vmcs_write16(HOST_ES_SELECTOR, 0);
4082 #else
4083         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4084         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4085 #endif
4086         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4087         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4088
4089         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4090
4091         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4092
4093         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4094         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4095
4096         /*
4097          * SYSENTER is used for 32-bit system calls on either 32-bit or
4098          * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4099          * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4100          * have already done so!).
4101          */
4102         if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4103                 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4104
4105         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4106         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4107
4108         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4109                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4110                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4111         }
4112
4113         if (cpu_has_load_ia32_efer())
4114                 vmcs_write64(HOST_IA32_EFER, host_efer);
4115 }
4116
4117 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4118 {
4119         struct kvm_vcpu *vcpu = &vmx->vcpu;
4120
4121         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4122                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4123         if (!enable_ept) {
4124                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4125                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4126         }
4127         if (is_guest_mode(&vmx->vcpu))
4128                 vcpu->arch.cr4_guest_owned_bits &=
4129                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4130         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4131 }
4132
4133 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4134 {
4135         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4136
4137         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4138                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4139
4140         if (!enable_vnmi)
4141                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4142
4143         if (!enable_preemption_timer)
4144                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4145
4146         return pin_based_exec_ctrl;
4147 }
4148
4149 static u32 vmx_vmentry_ctrl(void)
4150 {
4151         u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4152
4153         if (vmx_pt_mode_is_system())
4154                 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4155                                   VM_ENTRY_LOAD_IA32_RTIT_CTL);
4156         /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4157         return vmentry_ctrl &
4158                 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4159 }
4160
4161 static u32 vmx_vmexit_ctrl(void)
4162 {
4163         u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4164
4165         if (vmx_pt_mode_is_system())
4166                 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4167                                  VM_EXIT_CLEAR_IA32_RTIT_CTL);
4168         /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4169         return vmexit_ctrl &
4170                 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4171 }
4172
4173 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4174 {
4175         struct vcpu_vmx *vmx = to_vmx(vcpu);
4176
4177         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4178         if (cpu_has_secondary_exec_ctrls()) {
4179                 if (kvm_vcpu_apicv_active(vcpu))
4180                         secondary_exec_controls_setbit(vmx,
4181                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4182                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4183                 else
4184                         secondary_exec_controls_clearbit(vmx,
4185                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4186                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4187         }
4188
4189         vmx_update_msr_bitmap_x2apic(vcpu);
4190 }
4191
4192 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4193 {
4194         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4195
4196         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4197                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4198
4199         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4200                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4201 #ifdef CONFIG_X86_64
4202                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4203                                 CPU_BASED_CR8_LOAD_EXITING;
4204 #endif
4205         }
4206         if (!enable_ept)
4207                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4208                                 CPU_BASED_CR3_LOAD_EXITING  |
4209                                 CPU_BASED_INVLPG_EXITING;
4210         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4211                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4212                                 CPU_BASED_MONITOR_EXITING);
4213         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4214                 exec_control &= ~CPU_BASED_HLT_EXITING;
4215         return exec_control;
4216 }
4217
4218 /*
4219  * Adjust a single secondary execution control bit to intercept/allow an
4220  * instruction in the guest.  This is usually done based on whether or not a
4221  * feature has been exposed to the guest in order to correctly emulate faults.
4222  */
4223 static inline void
4224 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4225                                   u32 control, bool enabled, bool exiting)
4226 {
4227         /*
4228          * If the control is for an opt-in feature, clear the control if the
4229          * feature is not exposed to the guest, i.e. not enabled.  If the
4230          * control is opt-out, i.e. an exiting control, clear the control if
4231          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4232          * disabled for the associated instruction.  Note, the caller is
4233          * responsible presetting exec_control to set all supported bits.
4234          */
4235         if (enabled == exiting)
4236                 *exec_control &= ~control;
4237
4238         /*
4239          * Update the nested MSR settings so that a nested VMM can/can't set
4240          * controls for features that are/aren't exposed to the guest.
4241          */
4242         if (nested) {
4243                 if (enabled)
4244                         vmx->nested.msrs.secondary_ctls_high |= control;
4245                 else
4246                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4247         }
4248 }
4249
4250 /*
4251  * Wrapper macro for the common case of adjusting a secondary execution control
4252  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4253  * verifies that the control is actually supported by KVM and hardware.
4254  */
4255 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4256 ({                                                                       \
4257         bool __enabled;                                                  \
4258                                                                          \
4259         if (cpu_has_vmx_##name()) {                                      \
4260                 __enabled = guest_cpuid_has(&(vmx)->vcpu,                \
4261                                             X86_FEATURE_##feat_name);    \
4262                 vmx_adjust_secondary_exec_control(vmx, exec_control,     \
4263                         SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4264         }                                                                \
4265 })
4266
4267 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4268 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4269         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4270
4271 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4272         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4273
4274 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4275 {
4276         struct kvm_vcpu *vcpu = &vmx->vcpu;
4277
4278         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4279
4280         if (vmx_pt_mode_is_system())
4281                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4282         if (!cpu_need_virtualize_apic_accesses(vcpu))
4283                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4284         if (vmx->vpid == 0)
4285                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4286         if (!enable_ept) {
4287                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4288                 enable_unrestricted_guest = 0;
4289         }
4290         if (!enable_unrestricted_guest)
4291                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4292         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4293                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4294         if (!kvm_vcpu_apicv_active(vcpu))
4295                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4296                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4297         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4298
4299         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4300          * in vmx_set_cr4.  */
4301         exec_control &= ~SECONDARY_EXEC_DESC;
4302
4303         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4304            (handle_vmptrld).
4305            We can NOT enable shadow_vmcs here because we don't have yet
4306            a current VMCS12
4307         */
4308         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4309
4310         /*
4311          * PML is enabled/disabled when dirty logging of memsmlots changes, but
4312          * it needs to be set here when dirty logging is already active, e.g.
4313          * if this vCPU was created after dirty logging was enabled.
4314          */
4315         if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4316                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4317
4318         if (cpu_has_vmx_xsaves()) {
4319                 /* Exposing XSAVES only when XSAVE is exposed */
4320                 bool xsaves_enabled =
4321                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4322                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4323                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4324
4325                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4326
4327                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4328                                                   SECONDARY_EXEC_XSAVES,
4329                                                   xsaves_enabled, false);
4330         }
4331
4332         /*
4333          * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4334          * feature is exposed to the guest.  This creates a virtualization hole
4335          * if both are supported in hardware but only one is exposed to the
4336          * guest, but letting the guest execute RDTSCP or RDPID when either one
4337          * is advertised is preferable to emulating the advertised instruction
4338          * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4339          */
4340         if (cpu_has_vmx_rdtscp()) {
4341                 bool rdpid_or_rdtscp_enabled =
4342                         guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4343                         guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4344
4345                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4346                                                   SECONDARY_EXEC_ENABLE_RDTSCP,
4347                                                   rdpid_or_rdtscp_enabled, false);
4348         }
4349         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4350
4351         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4352         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4353
4354         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4355                                     ENABLE_USR_WAIT_PAUSE, false);
4356
4357         if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4358                 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4359
4360         return exec_control;
4361 }
4362
4363 #define VMX_XSS_EXIT_BITMAP 0
4364
4365 static void init_vmcs(struct vcpu_vmx *vmx)
4366 {
4367         if (nested)
4368                 nested_vmx_set_vmcs_shadowing_bitmap();
4369
4370         if (cpu_has_vmx_msr_bitmap())
4371                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4372
4373         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4374
4375         /* Control */
4376         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4377
4378         exec_controls_set(vmx, vmx_exec_control(vmx));
4379
4380         if (cpu_has_secondary_exec_ctrls())
4381                 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4382
4383         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4384                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4385                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4386                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4387                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4388
4389                 vmcs_write16(GUEST_INTR_STATUS, 0);
4390
4391                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4392                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4393         }
4394
4395         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4396                 vmcs_write32(PLE_GAP, ple_gap);
4397                 vmx->ple_window = ple_window;
4398                 vmx->ple_window_dirty = true;
4399         }
4400
4401         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4402         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4403         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4404
4405         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4406         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4407         vmx_set_constant_host_state(vmx);
4408         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4409         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4410
4411         if (cpu_has_vmx_vmfunc())
4412                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4413
4414         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4415         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4416         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4417         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4418         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4419
4420         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4421                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4422
4423         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4424
4425         /* 22.2.1, 20.8.1 */
4426         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4427
4428         vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4429         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4430
4431         set_cr4_guest_host_mask(vmx);
4432
4433         if (vmx->vpid != 0)
4434                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4435
4436         if (cpu_has_vmx_xsaves())
4437                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4438
4439         if (enable_pml) {
4440                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4441                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4442         }
4443
4444         vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4445
4446         if (vmx_pt_mode_is_host_guest()) {
4447                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4448                 /* Bit[6~0] are forced to 1, writes are ignored. */
4449                 vmx->pt_desc.guest.output_mask = 0x7F;
4450                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4451         }
4452
4453         vmcs_write32(GUEST_SYSENTER_CS, 0);
4454         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4455         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4456         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4457
4458         if (cpu_has_vmx_tpr_shadow()) {
4459                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4460                 if (cpu_need_tpr_shadow(&vmx->vcpu))
4461                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4462                                      __pa(vmx->vcpu.arch.apic->regs));
4463                 vmcs_write32(TPR_THRESHOLD, 0);
4464         }
4465
4466         vmx_setup_uret_msrs(vmx);
4467 }
4468
4469 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4470 {
4471         struct vcpu_vmx *vmx = to_vmx(vcpu);
4472
4473         init_vmcs(vmx);
4474
4475         if (nested)
4476                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4477
4478         vcpu_setup_sgx_lepubkeyhash(vcpu);
4479
4480         vmx->nested.posted_intr_nv = -1;
4481         vmx->nested.vmxon_ptr = INVALID_GPA;
4482         vmx->nested.current_vmptr = INVALID_GPA;
4483         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4484
4485         vcpu->arch.microcode_version = 0x100000000ULL;
4486         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4487
4488         /*
4489          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4490          * or POSTED_INTR_WAKEUP_VECTOR.
4491          */
4492         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4493         vmx->pi_desc.sn = 1;
4494 }
4495
4496 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4497 {
4498         struct vcpu_vmx *vmx = to_vmx(vcpu);
4499
4500         if (!init_event)
4501                 __vmx_vcpu_reset(vcpu);
4502
4503         vmx->rmode.vm86_active = 0;
4504         vmx->spec_ctrl = 0;
4505
4506         vmx->msr_ia32_umwait_control = 0;
4507
4508         vmx->hv_deadline_tsc = -1;
4509         kvm_set_cr8(vcpu, 0);
4510
4511         vmx_segment_cache_clear(vmx);
4512         kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4513
4514         seg_setup(VCPU_SREG_CS);
4515         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4516         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4517
4518         seg_setup(VCPU_SREG_DS);
4519         seg_setup(VCPU_SREG_ES);
4520         seg_setup(VCPU_SREG_FS);
4521         seg_setup(VCPU_SREG_GS);
4522         seg_setup(VCPU_SREG_SS);
4523
4524         vmcs_write16(GUEST_TR_SELECTOR, 0);
4525         vmcs_writel(GUEST_TR_BASE, 0);
4526         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4527         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4528
4529         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4530         vmcs_writel(GUEST_LDTR_BASE, 0);
4531         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4532         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4533
4534         vmcs_writel(GUEST_GDTR_BASE, 0);
4535         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4536
4537         vmcs_writel(GUEST_IDTR_BASE, 0);
4538         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4539
4540         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4541         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4542         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4543         if (kvm_mpx_supported())
4544                 vmcs_write64(GUEST_BNDCFGS, 0);
4545
4546         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4547
4548         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4549
4550         vpid_sync_context(vmx->vpid);
4551 }
4552
4553 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4554 {
4555         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4556 }
4557
4558 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4559 {
4560         if (!enable_vnmi ||
4561             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4562                 vmx_enable_irq_window(vcpu);
4563                 return;
4564         }
4565
4566         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4567 }
4568
4569 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4570 {
4571         struct vcpu_vmx *vmx = to_vmx(vcpu);
4572         uint32_t intr;
4573         int irq = vcpu->arch.interrupt.nr;
4574
4575         trace_kvm_inj_virq(irq);
4576
4577         ++vcpu->stat.irq_injections;
4578         if (vmx->rmode.vm86_active) {
4579                 int inc_eip = 0;
4580                 if (vcpu->arch.interrupt.soft)
4581                         inc_eip = vcpu->arch.event_exit_inst_len;
4582                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4583                 return;
4584         }
4585         intr = irq | INTR_INFO_VALID_MASK;
4586         if (vcpu->arch.interrupt.soft) {
4587                 intr |= INTR_TYPE_SOFT_INTR;
4588                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4589                              vmx->vcpu.arch.event_exit_inst_len);
4590         } else
4591                 intr |= INTR_TYPE_EXT_INTR;
4592         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4593
4594         vmx_clear_hlt(vcpu);
4595 }
4596
4597 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4598 {
4599         struct vcpu_vmx *vmx = to_vmx(vcpu);
4600
4601         if (!enable_vnmi) {
4602                 /*
4603                  * Tracking the NMI-blocked state in software is built upon
4604                  * finding the next open IRQ window. This, in turn, depends on
4605                  * well-behaving guests: They have to keep IRQs disabled at
4606                  * least as long as the NMI handler runs. Otherwise we may
4607                  * cause NMI nesting, maybe breaking the guest. But as this is
4608                  * highly unlikely, we can live with the residual risk.
4609                  */
4610                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4611                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4612         }
4613
4614         ++vcpu->stat.nmi_injections;
4615         vmx->loaded_vmcs->nmi_known_unmasked = false;
4616
4617         if (vmx->rmode.vm86_active) {
4618                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4619                 return;
4620         }
4621
4622         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4623                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4624
4625         vmx_clear_hlt(vcpu);
4626 }
4627
4628 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4629 {
4630         struct vcpu_vmx *vmx = to_vmx(vcpu);
4631         bool masked;
4632
4633         if (!enable_vnmi)
4634                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4635         if (vmx->loaded_vmcs->nmi_known_unmasked)
4636                 return false;
4637         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4638         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4639         return masked;
4640 }
4641
4642 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4643 {
4644         struct vcpu_vmx *vmx = to_vmx(vcpu);
4645
4646         if (!enable_vnmi) {
4647                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4648                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4649                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4650                 }
4651         } else {
4652                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4653                 if (masked)
4654                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4655                                       GUEST_INTR_STATE_NMI);
4656                 else
4657                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4658                                         GUEST_INTR_STATE_NMI);
4659         }
4660 }
4661
4662 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4663 {
4664         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4665                 return false;
4666
4667         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4668                 return true;
4669
4670         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4671                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4672                  GUEST_INTR_STATE_NMI));
4673 }
4674
4675 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4676 {
4677         if (to_vmx(vcpu)->nested.nested_run_pending)
4678                 return -EBUSY;
4679
4680         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4681         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4682                 return -EBUSY;
4683
4684         return !vmx_nmi_blocked(vcpu);
4685 }
4686
4687 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4688 {
4689         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4690                 return false;
4691
4692         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4693                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4694                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4695 }
4696
4697 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4698 {
4699         if (to_vmx(vcpu)->nested.nested_run_pending)
4700                 return -EBUSY;
4701
4702        /*
4703         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4704         * e.g. if the IRQ arrived asynchronously after checking nested events.
4705         */
4706         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4707                 return -EBUSY;
4708
4709         return !vmx_interrupt_blocked(vcpu);
4710 }
4711
4712 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4713 {
4714         void __user *ret;
4715
4716         if (enable_unrestricted_guest)
4717                 return 0;
4718
4719         mutex_lock(&kvm->slots_lock);
4720         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4721                                       PAGE_SIZE * 3);
4722         mutex_unlock(&kvm->slots_lock);
4723
4724         if (IS_ERR(ret))
4725                 return PTR_ERR(ret);
4726
4727         to_kvm_vmx(kvm)->tss_addr = addr;
4728
4729         return init_rmode_tss(kvm, ret);
4730 }
4731
4732 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4733 {
4734         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4735         return 0;
4736 }
4737
4738 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4739 {
4740         switch (vec) {
4741         case BP_VECTOR:
4742                 /*
4743                  * Update instruction length as we may reinject the exception
4744                  * from user space while in guest debugging mode.
4745                  */
4746                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4747                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4748                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4749                         return false;
4750                 fallthrough;
4751         case DB_VECTOR:
4752                 return !(vcpu->guest_debug &
4753                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4754         case DE_VECTOR:
4755         case OF_VECTOR:
4756         case BR_VECTOR:
4757         case UD_VECTOR:
4758         case DF_VECTOR:
4759         case SS_VECTOR:
4760         case GP_VECTOR:
4761         case MF_VECTOR:
4762                 return true;
4763         }
4764         return false;
4765 }
4766
4767 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4768                                   int vec, u32 err_code)
4769 {
4770         /*
4771          * Instruction with address size override prefix opcode 0x67
4772          * Cause the #SS fault with 0 error code in VM86 mode.
4773          */
4774         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4775                 if (kvm_emulate_instruction(vcpu, 0)) {
4776                         if (vcpu->arch.halt_request) {
4777                                 vcpu->arch.halt_request = 0;
4778                                 return kvm_emulate_halt_noskip(vcpu);
4779                         }
4780                         return 1;
4781                 }
4782                 return 0;
4783         }
4784
4785         /*
4786          * Forward all other exceptions that are valid in real mode.
4787          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4788          *        the required debugging infrastructure rework.
4789          */
4790         kvm_queue_exception(vcpu, vec);
4791         return 1;
4792 }
4793
4794 static int handle_machine_check(struct kvm_vcpu *vcpu)
4795 {
4796         /* handled by vmx_vcpu_run() */
4797         return 1;
4798 }
4799
4800 /*
4801  * If the host has split lock detection disabled, then #AC is
4802  * unconditionally injected into the guest, which is the pre split lock
4803  * detection behaviour.
4804  *
4805  * If the host has split lock detection enabled then #AC is
4806  * only injected into the guest when:
4807  *  - Guest CPL == 3 (user mode)
4808  *  - Guest has #AC detection enabled in CR0
4809  *  - Guest EFLAGS has AC bit set
4810  */
4811 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4812 {
4813         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4814                 return true;
4815
4816         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4817                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4818 }
4819
4820 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4821 {
4822         struct vcpu_vmx *vmx = to_vmx(vcpu);
4823         struct kvm_run *kvm_run = vcpu->run;
4824         u32 intr_info, ex_no, error_code;
4825         unsigned long cr2, dr6;
4826         u32 vect_info;
4827
4828         vect_info = vmx->idt_vectoring_info;
4829         intr_info = vmx_get_intr_info(vcpu);
4830
4831         if (is_machine_check(intr_info) || is_nmi(intr_info))
4832                 return 1; /* handled by handle_exception_nmi_irqoff() */
4833
4834         /*
4835          * Queue the exception here instead of in handle_nm_fault_irqoff().
4836          * This ensures the nested_vmx check is not skipped so vmexit can
4837          * be reflected to L1 (when it intercepts #NM) before reaching this
4838          * point.
4839          */
4840         if (is_nm_fault(intr_info)) {
4841                 kvm_queue_exception(vcpu, NM_VECTOR);
4842                 return 1;
4843         }
4844
4845         if (is_invalid_opcode(intr_info))
4846                 return handle_ud(vcpu);
4847
4848         error_code = 0;
4849         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4850                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4851
4852         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4853                 WARN_ON_ONCE(!enable_vmware_backdoor);
4854
4855                 /*
4856                  * VMware backdoor emulation on #GP interception only handles
4857                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4858                  * error code on #GP.
4859                  */
4860                 if (error_code) {
4861                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4862                         return 1;
4863                 }
4864                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4865         }
4866
4867         /*
4868          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4869          * MMIO, it is better to report an internal error.
4870          * See the comments in vmx_handle_exit.
4871          */
4872         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4873             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4874                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4875                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4876                 vcpu->run->internal.ndata = 4;
4877                 vcpu->run->internal.data[0] = vect_info;
4878                 vcpu->run->internal.data[1] = intr_info;
4879                 vcpu->run->internal.data[2] = error_code;
4880                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4881                 return 0;
4882         }
4883
4884         if (is_page_fault(intr_info)) {
4885                 cr2 = vmx_get_exit_qual(vcpu);
4886                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4887                         /*
4888                          * EPT will cause page fault only if we need to
4889                          * detect illegal GPAs.
4890                          */
4891                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4892                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4893                         return 1;
4894                 } else
4895                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4896         }
4897
4898         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4899
4900         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4901                 return handle_rmode_exception(vcpu, ex_no, error_code);
4902
4903         switch (ex_no) {
4904         case DB_VECTOR:
4905                 dr6 = vmx_get_exit_qual(vcpu);
4906                 if (!(vcpu->guest_debug &
4907                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4908                         /*
4909                          * If the #DB was due to ICEBP, a.k.a. INT1, skip the
4910                          * instruction.  ICEBP generates a trap-like #DB, but
4911                          * despite its interception control being tied to #DB,
4912                          * is an instruction intercept, i.e. the VM-Exit occurs
4913                          * on the ICEBP itself.  Note, skipping ICEBP also
4914                          * clears STI and MOVSS blocking.
4915                          *
4916                          * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
4917                          * if single-step is enabled in RFLAGS and STI or MOVSS
4918                          * blocking is active, as the CPU doesn't set the bit
4919                          * on VM-Exit due to #DB interception.  VM-Entry has a
4920                          * consistency check that a single-step #DB is pending
4921                          * in this scenario as the previous instruction cannot
4922                          * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
4923                          * don't modify RFLAGS), therefore the one instruction
4924                          * delay when activating single-step breakpoints must
4925                          * have already expired.  Note, the CPU sets/clears BS
4926                          * as appropriate for all other VM-Exits types.
4927                          */
4928                         if (is_icebp(intr_info))
4929                                 WARN_ON(!skip_emulated_instruction(vcpu));
4930                         else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
4931                                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4932                                   (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
4933                                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
4934                                             vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
4935
4936                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4937                         return 1;
4938                 }
4939                 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4940                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4941                 fallthrough;
4942         case BP_VECTOR:
4943                 /*
4944                  * Update instruction length as we may reinject #BP from
4945                  * user space while in guest debugging mode. Reading it for
4946                  * #DB as well causes no harm, it is not used in that case.
4947                  */
4948                 vmx->vcpu.arch.event_exit_inst_len =
4949                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4950                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4951                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4952                 kvm_run->debug.arch.exception = ex_no;
4953                 break;
4954         case AC_VECTOR:
4955                 if (vmx_guest_inject_ac(vcpu)) {
4956                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4957                         return 1;
4958                 }
4959
4960                 /*
4961                  * Handle split lock. Depending on detection mode this will
4962                  * either warn and disable split lock detection for this
4963                  * task or force SIGBUS on it.
4964                  */
4965                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4966                         return 1;
4967                 fallthrough;
4968         default:
4969                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4970                 kvm_run->ex.exception = ex_no;
4971                 kvm_run->ex.error_code = error_code;
4972                 break;
4973         }
4974         return 0;
4975 }
4976
4977 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4978 {
4979         ++vcpu->stat.irq_exits;
4980         return 1;
4981 }
4982
4983 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4984 {
4985         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4986         vcpu->mmio_needed = 0;
4987         return 0;
4988 }
4989
4990 static int handle_io(struct kvm_vcpu *vcpu)
4991 {
4992         unsigned long exit_qualification;
4993         int size, in, string;
4994         unsigned port;
4995
4996         exit_qualification = vmx_get_exit_qual(vcpu);
4997         string = (exit_qualification & 16) != 0;
4998
4999         ++vcpu->stat.io_exits;
5000
5001         if (string)
5002                 return kvm_emulate_instruction(vcpu, 0);
5003
5004         port = exit_qualification >> 16;
5005         size = (exit_qualification & 7) + 1;
5006         in = (exit_qualification & 8) != 0;
5007
5008         return kvm_fast_pio(vcpu, size, port, in);
5009 }
5010
5011 static void
5012 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5013 {
5014         /*
5015          * Patch in the VMCALL instruction:
5016          */
5017         hypercall[0] = 0x0f;
5018         hypercall[1] = 0x01;
5019         hypercall[2] = 0xc1;
5020 }
5021
5022 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5023 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5024 {
5025         if (is_guest_mode(vcpu)) {
5026                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5027                 unsigned long orig_val = val;
5028
5029                 /*
5030                  * We get here when L2 changed cr0 in a way that did not change
5031                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5032                  * but did change L0 shadowed bits. So we first calculate the
5033                  * effective cr0 value that L1 would like to write into the
5034                  * hardware. It consists of the L2-owned bits from the new
5035                  * value combined with the L1-owned bits from L1's guest_cr0.
5036                  */
5037                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5038                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5039
5040                 if (!nested_guest_cr0_valid(vcpu, val))
5041                         return 1;
5042
5043                 if (kvm_set_cr0(vcpu, val))
5044                         return 1;
5045                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5046                 return 0;
5047         } else {
5048                 if (to_vmx(vcpu)->nested.vmxon &&
5049                     !nested_host_cr0_valid(vcpu, val))
5050                         return 1;
5051
5052                 return kvm_set_cr0(vcpu, val);
5053         }
5054 }
5055
5056 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5057 {
5058         if (is_guest_mode(vcpu)) {
5059                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5060                 unsigned long orig_val = val;
5061
5062                 /* analogously to handle_set_cr0 */
5063                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5064                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5065                 if (kvm_set_cr4(vcpu, val))
5066                         return 1;
5067                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5068                 return 0;
5069         } else
5070                 return kvm_set_cr4(vcpu, val);
5071 }
5072
5073 static int handle_desc(struct kvm_vcpu *vcpu)
5074 {
5075         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5076         return kvm_emulate_instruction(vcpu, 0);
5077 }
5078
5079 static int handle_cr(struct kvm_vcpu *vcpu)
5080 {
5081         unsigned long exit_qualification, val;
5082         int cr;
5083         int reg;
5084         int err;
5085         int ret;
5086
5087         exit_qualification = vmx_get_exit_qual(vcpu);
5088         cr = exit_qualification & 15;
5089         reg = (exit_qualification >> 8) & 15;
5090         switch ((exit_qualification >> 4) & 3) {
5091         case 0: /* mov to cr */
5092                 val = kvm_register_read(vcpu, reg);
5093                 trace_kvm_cr_write(cr, val);
5094                 switch (cr) {
5095                 case 0:
5096                         err = handle_set_cr0(vcpu, val);
5097                         return kvm_complete_insn_gp(vcpu, err);
5098                 case 3:
5099                         WARN_ON_ONCE(enable_unrestricted_guest);
5100
5101                         err = kvm_set_cr3(vcpu, val);
5102                         return kvm_complete_insn_gp(vcpu, err);
5103                 case 4:
5104                         err = handle_set_cr4(vcpu, val);
5105                         return kvm_complete_insn_gp(vcpu, err);
5106                 case 8: {
5107                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5108                                 u8 cr8 = (u8)val;
5109                                 err = kvm_set_cr8(vcpu, cr8);
5110                                 ret = kvm_complete_insn_gp(vcpu, err);
5111                                 if (lapic_in_kernel(vcpu))
5112                                         return ret;
5113                                 if (cr8_prev <= cr8)
5114                                         return ret;
5115                                 /*
5116                                  * TODO: we might be squashing a
5117                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5118                                  * KVM_EXIT_DEBUG here.
5119                                  */
5120                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5121                                 return 0;
5122                         }
5123                 }
5124                 break;
5125         case 2: /* clts */
5126                 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5127                 return -EIO;
5128         case 1: /*mov from cr*/
5129                 switch (cr) {
5130                 case 3:
5131                         WARN_ON_ONCE(enable_unrestricted_guest);
5132
5133                         val = kvm_read_cr3(vcpu);
5134                         kvm_register_write(vcpu, reg, val);
5135                         trace_kvm_cr_read(cr, val);
5136                         return kvm_skip_emulated_instruction(vcpu);
5137                 case 8:
5138                         val = kvm_get_cr8(vcpu);
5139                         kvm_register_write(vcpu, reg, val);
5140                         trace_kvm_cr_read(cr, val);
5141                         return kvm_skip_emulated_instruction(vcpu);
5142                 }
5143                 break;
5144         case 3: /* lmsw */
5145                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5146                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5147                 kvm_lmsw(vcpu, val);
5148
5149                 return kvm_skip_emulated_instruction(vcpu);
5150         default:
5151                 break;
5152         }
5153         vcpu->run->exit_reason = 0;
5154         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5155                (int)(exit_qualification >> 4) & 3, cr);
5156         return 0;
5157 }
5158
5159 static int handle_dr(struct kvm_vcpu *vcpu)
5160 {
5161         unsigned long exit_qualification;
5162         int dr, dr7, reg;
5163         int err = 1;
5164
5165         exit_qualification = vmx_get_exit_qual(vcpu);
5166         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5167
5168         /* First, if DR does not exist, trigger UD */
5169         if (!kvm_require_dr(vcpu, dr))
5170                 return 1;
5171
5172         if (vmx_get_cpl(vcpu) > 0)
5173                 goto out;
5174
5175         dr7 = vmcs_readl(GUEST_DR7);
5176         if (dr7 & DR7_GD) {
5177                 /*
5178                  * As the vm-exit takes precedence over the debug trap, we
5179                  * need to emulate the latter, either for the host or the
5180                  * guest debugging itself.
5181                  */
5182                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5183                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5184                         vcpu->run->debug.arch.dr7 = dr7;
5185                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5186                         vcpu->run->debug.arch.exception = DB_VECTOR;
5187                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5188                         return 0;
5189                 } else {
5190                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5191                         return 1;
5192                 }
5193         }
5194
5195         if (vcpu->guest_debug == 0) {
5196                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5197
5198                 /*
5199                  * No more DR vmexits; force a reload of the debug registers
5200                  * and reenter on this instruction.  The next vmexit will
5201                  * retrieve the full state of the debug registers.
5202                  */
5203                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5204                 return 1;
5205         }
5206
5207         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5208         if (exit_qualification & TYPE_MOV_FROM_DR) {
5209                 unsigned long val;
5210
5211                 kvm_get_dr(vcpu, dr, &val);
5212                 kvm_register_write(vcpu, reg, val);
5213                 err = 0;
5214         } else {
5215                 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5216         }
5217
5218 out:
5219         return kvm_complete_insn_gp(vcpu, err);
5220 }
5221
5222 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5223 {
5224         get_debugreg(vcpu->arch.db[0], 0);
5225         get_debugreg(vcpu->arch.db[1], 1);
5226         get_debugreg(vcpu->arch.db[2], 2);
5227         get_debugreg(vcpu->arch.db[3], 3);
5228         get_debugreg(vcpu->arch.dr6, 6);
5229         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5230
5231         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5232         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5233
5234         /*
5235          * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5236          * a stale dr6 from the guest.
5237          */
5238         set_debugreg(DR6_RESERVED, 6);
5239 }
5240
5241 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5242 {
5243         vmcs_writel(GUEST_DR7, val);
5244 }
5245
5246 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5247 {
5248         kvm_apic_update_ppr(vcpu);
5249         return 1;
5250 }
5251
5252 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5253 {
5254         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5255
5256         kvm_make_request(KVM_REQ_EVENT, vcpu);
5257
5258         ++vcpu->stat.irq_window_exits;
5259         return 1;
5260 }
5261
5262 static int handle_invlpg(struct kvm_vcpu *vcpu)
5263 {
5264         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5265
5266         kvm_mmu_invlpg(vcpu, exit_qualification);
5267         return kvm_skip_emulated_instruction(vcpu);
5268 }
5269
5270 static int handle_apic_access(struct kvm_vcpu *vcpu)
5271 {
5272         if (likely(fasteoi)) {
5273                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5274                 int access_type, offset;
5275
5276                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5277                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5278                 /*
5279                  * Sane guest uses MOV to write EOI, with written value
5280                  * not cared. So make a short-circuit here by avoiding
5281                  * heavy instruction emulation.
5282                  */
5283                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5284                     (offset == APIC_EOI)) {
5285                         kvm_lapic_set_eoi(vcpu);
5286                         return kvm_skip_emulated_instruction(vcpu);
5287                 }
5288         }
5289         return kvm_emulate_instruction(vcpu, 0);
5290 }
5291
5292 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5293 {
5294         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5295         int vector = exit_qualification & 0xff;
5296
5297         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5298         kvm_apic_set_eoi_accelerated(vcpu, vector);
5299         return 1;
5300 }
5301
5302 static int handle_apic_write(struct kvm_vcpu *vcpu)
5303 {
5304         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5305
5306         /*
5307          * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5308          * hardware has done any necessary aliasing, offset adjustments, etc...
5309          * for the access.  I.e. the correct value has already been  written to
5310          * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5311          * retrieve the register value and emulate the access.
5312          */
5313         u32 offset = exit_qualification & 0xff0;
5314
5315         kvm_apic_write_nodecode(vcpu, offset);
5316         return 1;
5317 }
5318
5319 static int handle_task_switch(struct kvm_vcpu *vcpu)
5320 {
5321         struct vcpu_vmx *vmx = to_vmx(vcpu);
5322         unsigned long exit_qualification;
5323         bool has_error_code = false;
5324         u32 error_code = 0;
5325         u16 tss_selector;
5326         int reason, type, idt_v, idt_index;
5327
5328         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5329         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5330         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5331
5332         exit_qualification = vmx_get_exit_qual(vcpu);
5333
5334         reason = (u32)exit_qualification >> 30;
5335         if (reason == TASK_SWITCH_GATE && idt_v) {
5336                 switch (type) {
5337                 case INTR_TYPE_NMI_INTR:
5338                         vcpu->arch.nmi_injected = false;
5339                         vmx_set_nmi_mask(vcpu, true);
5340                         break;
5341                 case INTR_TYPE_EXT_INTR:
5342                 case INTR_TYPE_SOFT_INTR:
5343                         kvm_clear_interrupt_queue(vcpu);
5344                         break;
5345                 case INTR_TYPE_HARD_EXCEPTION:
5346                         if (vmx->idt_vectoring_info &
5347                             VECTORING_INFO_DELIVER_CODE_MASK) {
5348                                 has_error_code = true;
5349                                 error_code =
5350                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5351                         }
5352                         fallthrough;
5353                 case INTR_TYPE_SOFT_EXCEPTION:
5354                         kvm_clear_exception_queue(vcpu);
5355                         break;
5356                 default:
5357                         break;
5358                 }
5359         }
5360         tss_selector = exit_qualification;
5361
5362         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5363                        type != INTR_TYPE_EXT_INTR &&
5364                        type != INTR_TYPE_NMI_INTR))
5365                 WARN_ON(!skip_emulated_instruction(vcpu));
5366
5367         /*
5368          * TODO: What about debug traps on tss switch?
5369          *       Are we supposed to inject them and update dr6?
5370          */
5371         return kvm_task_switch(vcpu, tss_selector,
5372                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5373                                reason, has_error_code, error_code);
5374 }
5375
5376 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5377 {
5378         unsigned long exit_qualification;
5379         gpa_t gpa;
5380         u64 error_code;
5381
5382         exit_qualification = vmx_get_exit_qual(vcpu);
5383
5384         /*
5385          * EPT violation happened while executing iret from NMI,
5386          * "blocked by NMI" bit has to be set before next VM entry.
5387          * There are errata that may cause this bit to not be set:
5388          * AAK134, BY25.
5389          */
5390         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5391                         enable_vnmi &&
5392                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5393                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5394
5395         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5396         trace_kvm_page_fault(gpa, exit_qualification);
5397
5398         /* Is it a read fault? */
5399         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5400                      ? PFERR_USER_MASK : 0;
5401         /* Is it a write fault? */
5402         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5403                       ? PFERR_WRITE_MASK : 0;
5404         /* Is it a fetch fault? */
5405         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5406                       ? PFERR_FETCH_MASK : 0;
5407         /* ept page table entry is present? */
5408         error_code |= (exit_qualification &
5409                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5410                         EPT_VIOLATION_EXECUTABLE))
5411                       ? PFERR_PRESENT_MASK : 0;
5412
5413         error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5414                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5415
5416         vcpu->arch.exit_qualification = exit_qualification;
5417
5418         /*
5419          * Check that the GPA doesn't exceed physical memory limits, as that is
5420          * a guest page fault.  We have to emulate the instruction here, because
5421          * if the illegal address is that of a paging structure, then
5422          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5423          * would also use advanced VM-exit information for EPT violations to
5424          * reconstruct the page fault error code.
5425          */
5426         if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5427                 return kvm_emulate_instruction(vcpu, 0);
5428
5429         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5430 }
5431
5432 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5433 {
5434         gpa_t gpa;
5435
5436         if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5437                 return 1;
5438
5439         /*
5440          * A nested guest cannot optimize MMIO vmexits, because we have an
5441          * nGPA here instead of the required GPA.
5442          */
5443         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5444         if (!is_guest_mode(vcpu) &&
5445             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5446                 trace_kvm_fast_mmio(gpa);
5447                 return kvm_skip_emulated_instruction(vcpu);
5448         }
5449
5450         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5451 }
5452
5453 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5454 {
5455         if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5456                 return -EIO;
5457
5458         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5459         ++vcpu->stat.nmi_window_exits;
5460         kvm_make_request(KVM_REQ_EVENT, vcpu);
5461
5462         return 1;
5463 }
5464
5465 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5466 {
5467         struct vcpu_vmx *vmx = to_vmx(vcpu);
5468
5469         return vmx->emulation_required && !vmx->rmode.vm86_active &&
5470                vcpu->arch.exception.pending;
5471 }
5472
5473 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5474 {
5475         struct vcpu_vmx *vmx = to_vmx(vcpu);
5476         bool intr_window_requested;
5477         unsigned count = 130;
5478
5479         intr_window_requested = exec_controls_get(vmx) &
5480                                 CPU_BASED_INTR_WINDOW_EXITING;
5481
5482         while (vmx->emulation_required && count-- != 0) {
5483                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5484                         return handle_interrupt_window(&vmx->vcpu);
5485
5486                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5487                         return 1;
5488
5489                 if (!kvm_emulate_instruction(vcpu, 0))
5490                         return 0;
5491
5492                 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5493                         kvm_prepare_emulation_failure_exit(vcpu);
5494                         return 0;
5495                 }
5496
5497                 if (vcpu->arch.halt_request) {
5498                         vcpu->arch.halt_request = 0;
5499                         return kvm_emulate_halt_noskip(vcpu);
5500                 }
5501
5502                 /*
5503                  * Note, return 1 and not 0, vcpu_run() will invoke
5504                  * xfer_to_guest_mode() which will create a proper return
5505                  * code.
5506                  */
5507                 if (__xfer_to_guest_mode_work_pending())
5508                         return 1;
5509         }
5510
5511         return 1;
5512 }
5513
5514 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5515 {
5516         if (vmx_emulation_required_with_pending_exception(vcpu)) {
5517                 kvm_prepare_emulation_failure_exit(vcpu);
5518                 return 0;
5519         }
5520
5521         return 1;
5522 }
5523
5524 static void grow_ple_window(struct kvm_vcpu *vcpu)
5525 {
5526         struct vcpu_vmx *vmx = to_vmx(vcpu);
5527         unsigned int old = vmx->ple_window;
5528
5529         vmx->ple_window = __grow_ple_window(old, ple_window,
5530                                             ple_window_grow,
5531                                             ple_window_max);
5532
5533         if (vmx->ple_window != old) {
5534                 vmx->ple_window_dirty = true;
5535                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5536                                             vmx->ple_window, old);
5537         }
5538 }
5539
5540 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5541 {
5542         struct vcpu_vmx *vmx = to_vmx(vcpu);
5543         unsigned int old = vmx->ple_window;
5544
5545         vmx->ple_window = __shrink_ple_window(old, ple_window,
5546                                               ple_window_shrink,
5547                                               ple_window);
5548
5549         if (vmx->ple_window != old) {
5550                 vmx->ple_window_dirty = true;
5551                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5552                                             vmx->ple_window, old);
5553         }
5554 }
5555
5556 /*
5557  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5558  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5559  */
5560 static int handle_pause(struct kvm_vcpu *vcpu)
5561 {
5562         if (!kvm_pause_in_guest(vcpu->kvm))
5563                 grow_ple_window(vcpu);
5564
5565         /*
5566          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5567          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5568          * never set PAUSE_EXITING and just set PLE if supported,
5569          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5570          */
5571         kvm_vcpu_on_spin(vcpu, true);
5572         return kvm_skip_emulated_instruction(vcpu);
5573 }
5574
5575 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5576 {
5577         return 1;
5578 }
5579
5580 static int handle_invpcid(struct kvm_vcpu *vcpu)
5581 {
5582         u32 vmx_instruction_info;
5583         unsigned long type;
5584         gva_t gva;
5585         struct {
5586                 u64 pcid;
5587                 u64 gla;
5588         } operand;
5589         int gpr_index;
5590
5591         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5592                 kvm_queue_exception(vcpu, UD_VECTOR);
5593                 return 1;
5594         }
5595
5596         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5597         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5598         type = kvm_register_read(vcpu, gpr_index);
5599
5600         /* According to the Intel instruction reference, the memory operand
5601          * is read even if it isn't needed (e.g., for type==all)
5602          */
5603         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5604                                 vmx_instruction_info, false,
5605                                 sizeof(operand), &gva))
5606                 return 1;
5607
5608         return kvm_handle_invpcid(vcpu, type, gva);
5609 }
5610
5611 static int handle_pml_full(struct kvm_vcpu *vcpu)
5612 {
5613         unsigned long exit_qualification;
5614
5615         trace_kvm_pml_full(vcpu->vcpu_id);
5616
5617         exit_qualification = vmx_get_exit_qual(vcpu);
5618
5619         /*
5620          * PML buffer FULL happened while executing iret from NMI,
5621          * "blocked by NMI" bit has to be set before next VM entry.
5622          */
5623         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5624                         enable_vnmi &&
5625                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5626                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5627                                 GUEST_INTR_STATE_NMI);
5628
5629         /*
5630          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5631          * here.., and there's no userspace involvement needed for PML.
5632          */
5633         return 1;
5634 }
5635
5636 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5637 {
5638         struct vcpu_vmx *vmx = to_vmx(vcpu);
5639
5640         if (!vmx->req_immediate_exit &&
5641             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5642                 kvm_lapic_expired_hv_timer(vcpu);
5643                 return EXIT_FASTPATH_REENTER_GUEST;
5644         }
5645
5646         return EXIT_FASTPATH_NONE;
5647 }
5648
5649 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5650 {
5651         handle_fastpath_preemption_timer(vcpu);
5652         return 1;
5653 }
5654
5655 /*
5656  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5657  * are overwritten by nested_vmx_setup() when nested=1.
5658  */
5659 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5660 {
5661         kvm_queue_exception(vcpu, UD_VECTOR);
5662         return 1;
5663 }
5664
5665 #ifndef CONFIG_X86_SGX_KVM
5666 static int handle_encls(struct kvm_vcpu *vcpu)
5667 {
5668         /*
5669          * SGX virtualization is disabled.  There is no software enable bit for
5670          * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5671          * the guest from executing ENCLS (when SGX is supported by hardware).
5672          */
5673         kvm_queue_exception(vcpu, UD_VECTOR);
5674         return 1;
5675 }
5676 #endif /* CONFIG_X86_SGX_KVM */
5677
5678 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5679 {
5680         /*
5681          * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5682          * VM-Exits. Unconditionally set the flag here and leave the handling to
5683          * vmx_handle_exit().
5684          */
5685         to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5686         return 1;
5687 }
5688
5689 /*
5690  * The exit handlers return 1 if the exit was handled fully and guest execution
5691  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5692  * to be done to userspace and return 0.
5693  */
5694 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5695         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5696         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5697         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5698         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5699         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5700         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5701         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5702         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5703         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5704         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5705         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5706         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5707         [EXIT_REASON_INVD]                    = kvm_emulate_invd,
5708         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5709         [EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5710         [EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5711         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5712         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5713         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5714         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5715         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5716         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5717         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5718         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5719         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5720         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5721         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5722         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5723         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5724         [EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5725         [EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5726         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5727         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5728         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5729         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5730         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5731         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5732         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5733         [EXIT_REASON_MWAIT_INSTRUCTION]       = kvm_emulate_mwait,
5734         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5735         [EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5736         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5737         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5738         [EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5739         [EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5740         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5741         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5742         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5743         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5744         [EXIT_REASON_ENCLS]                   = handle_encls,
5745         [EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5746 };
5747
5748 static const int kvm_vmx_max_exit_handlers =
5749         ARRAY_SIZE(kvm_vmx_exit_handlers);
5750
5751 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
5752                               u64 *info1, u64 *info2,
5753                               u32 *intr_info, u32 *error_code)
5754 {
5755         struct vcpu_vmx *vmx = to_vmx(vcpu);
5756
5757         *reason = vmx->exit_reason.full;
5758         *info1 = vmx_get_exit_qual(vcpu);
5759         if (!(vmx->exit_reason.failed_vmentry)) {
5760                 *info2 = vmx->idt_vectoring_info;
5761                 *intr_info = vmx_get_intr_info(vcpu);
5762                 if (is_exception_with_error_code(*intr_info))
5763                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5764                 else
5765                         *error_code = 0;
5766         } else {
5767                 *info2 = 0;
5768                 *intr_info = 0;
5769                 *error_code = 0;
5770         }
5771 }
5772
5773 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5774 {
5775         if (vmx->pml_pg) {
5776                 __free_page(vmx->pml_pg);
5777                 vmx->pml_pg = NULL;
5778         }
5779 }
5780
5781 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5782 {
5783         struct vcpu_vmx *vmx = to_vmx(vcpu);
5784         u64 *pml_buf;
5785         u16 pml_idx;
5786
5787         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5788
5789         /* Do nothing if PML buffer is empty */
5790         if (pml_idx == (PML_ENTITY_NUM - 1))
5791                 return;
5792
5793         /* PML index always points to next available PML buffer entity */
5794         if (pml_idx >= PML_ENTITY_NUM)
5795                 pml_idx = 0;
5796         else
5797                 pml_idx++;
5798
5799         pml_buf = page_address(vmx->pml_pg);
5800         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5801                 u64 gpa;
5802
5803                 gpa = pml_buf[pml_idx];
5804                 WARN_ON(gpa & (PAGE_SIZE - 1));
5805                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5806         }
5807
5808         /* reset PML index */
5809         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5810 }
5811
5812 static void vmx_dump_sel(char *name, uint32_t sel)
5813 {
5814         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5815                name, vmcs_read16(sel),
5816                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5817                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5818                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5819 }
5820
5821 static void vmx_dump_dtsel(char *name, uint32_t limit)
5822 {
5823         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5824                name, vmcs_read32(limit),
5825                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5826 }
5827
5828 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5829 {
5830         unsigned int i;
5831         struct vmx_msr_entry *e;
5832
5833         pr_err("MSR %s:\n", name);
5834         for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5835                 pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5836 }
5837
5838 void dump_vmcs(struct kvm_vcpu *vcpu)
5839 {
5840         struct vcpu_vmx *vmx = to_vmx(vcpu);
5841         u32 vmentry_ctl, vmexit_ctl;
5842         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5843         unsigned long cr4;
5844         int efer_slot;
5845
5846         if (!dump_invalid_vmcs) {
5847                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5848                 return;
5849         }
5850
5851         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5852         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5853         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5854         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5855         cr4 = vmcs_readl(GUEST_CR4);
5856         secondary_exec_control = 0;
5857         if (cpu_has_secondary_exec_ctrls())
5858                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5859
5860         pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5861                vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5862         pr_err("*** Guest State ***\n");
5863         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5864                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5865                vmcs_readl(CR0_GUEST_HOST_MASK));
5866         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5867                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5868         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5869         if (cpu_has_vmx_ept()) {
5870                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5871                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5872                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5873                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5874         }
5875         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5876                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5877         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5878                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5879         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5880                vmcs_readl(GUEST_SYSENTER_ESP),
5881                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5882         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5883         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5884         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5885         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5886         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5887         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5888         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5889         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5890         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5891         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5892         efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5893         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5894                 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5895         else if (efer_slot >= 0)
5896                 pr_err("EFER= 0x%016llx (autoload)\n",
5897                        vmx->msr_autoload.guest.val[efer_slot].value);
5898         else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5899                 pr_err("EFER= 0x%016llx (effective)\n",
5900                        vcpu->arch.efer | (EFER_LMA | EFER_LME));
5901         else
5902                 pr_err("EFER= 0x%016llx (effective)\n",
5903                        vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5904         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5905                 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5906         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5907                vmcs_read64(GUEST_IA32_DEBUGCTL),
5908                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5909         if (cpu_has_load_perf_global_ctrl() &&
5910             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5911                 pr_err("PerfGlobCtl = 0x%016llx\n",
5912                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5913         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5914                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5915         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5916                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5917                vmcs_read32(GUEST_ACTIVITY_STATE));
5918         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5919                 pr_err("InterruptStatus = %04x\n",
5920                        vmcs_read16(GUEST_INTR_STATUS));
5921         if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5922                 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5923         if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5924                 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5925
5926         pr_err("*** Host State ***\n");
5927         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5928                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5929         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5930                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5931                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5932                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5933                vmcs_read16(HOST_TR_SELECTOR));
5934         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5935                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5936                vmcs_readl(HOST_TR_BASE));
5937         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5938                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5939         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5940                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5941                vmcs_readl(HOST_CR4));
5942         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5943                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5944                vmcs_read32(HOST_IA32_SYSENTER_CS),
5945                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5946         if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5947                 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5948         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5949                 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5950         if (cpu_has_load_perf_global_ctrl() &&
5951             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5952                 pr_err("PerfGlobCtl = 0x%016llx\n",
5953                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5954         if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5955                 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5956
5957         pr_err("*** Control State ***\n");
5958         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5959                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5960         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5961         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5962                vmcs_read32(EXCEPTION_BITMAP),
5963                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5964                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5965         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5966                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5967                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5968                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5969         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5970                vmcs_read32(VM_EXIT_INTR_INFO),
5971                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5972                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5973         pr_err("        reason=%08x qualification=%016lx\n",
5974                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5975         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5976                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5977                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5978         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5979         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5980                 pr_err("TSC Multiplier = 0x%016llx\n",
5981                        vmcs_read64(TSC_MULTIPLIER));
5982         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5983                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5984                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5985                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5986                 }
5987                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5988                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5989                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5990                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5991         }
5992         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5993                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5994         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5995                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5996         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5997                 pr_err("PLE Gap=%08x Window=%08x\n",
5998                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5999         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6000                 pr_err("Virtual processor ID = 0x%04x\n",
6001                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
6002 }
6003
6004 /*
6005  * The guest has exited.  See if we can fix it or if we need userspace
6006  * assistance.
6007  */
6008 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6009 {
6010         struct vcpu_vmx *vmx = to_vmx(vcpu);
6011         union vmx_exit_reason exit_reason = vmx->exit_reason;
6012         u32 vectoring_info = vmx->idt_vectoring_info;
6013         u16 exit_handler_index;
6014
6015         /*
6016          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6017          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6018          * querying dirty_bitmap, we only need to kick all vcpus out of guest
6019          * mode as if vcpus is in root mode, the PML buffer must has been
6020          * flushed already.  Note, PML is never enabled in hardware while
6021          * running L2.
6022          */
6023         if (enable_pml && !is_guest_mode(vcpu))
6024                 vmx_flush_pml_buffer(vcpu);
6025
6026         /*
6027          * KVM should never reach this point with a pending nested VM-Enter.
6028          * More specifically, short-circuiting VM-Entry to emulate L2 due to
6029          * invalid guest state should never happen as that means KVM knowingly
6030          * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6031          */
6032         if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6033                 return -EIO;
6034
6035         if (is_guest_mode(vcpu)) {
6036                 /*
6037                  * PML is never enabled when running L2, bail immediately if a
6038                  * PML full exit occurs as something is horribly wrong.
6039                  */
6040                 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6041                         goto unexpected_vmexit;
6042
6043                 /*
6044                  * The host physical addresses of some pages of guest memory
6045                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6046                  * Page). The CPU may write to these pages via their host
6047                  * physical address while L2 is running, bypassing any
6048                  * address-translation-based dirty tracking (e.g. EPT write
6049                  * protection).
6050                  *
6051                  * Mark them dirty on every exit from L2 to prevent them from
6052                  * getting out of sync with dirty tracking.
6053                  */
6054                 nested_mark_vmcs12_pages_dirty(vcpu);
6055
6056                 /*
6057                  * Synthesize a triple fault if L2 state is invalid.  In normal
6058                  * operation, nested VM-Enter rejects any attempt to enter L2
6059                  * with invalid state.  However, those checks are skipped if
6060                  * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6061                  * L2 state is invalid, it means either L1 modified SMRAM state
6062                  * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6063                  * doing so is architecturally allowed in the RSM case, and is
6064                  * the least awful solution for the userspace case without
6065                  * risking false positives.
6066                  */
6067                 if (vmx->emulation_required) {
6068                         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6069                         return 1;
6070                 }
6071
6072                 if (nested_vmx_reflect_vmexit(vcpu))
6073                         return 1;
6074         }
6075
6076         /* If guest state is invalid, start emulating.  L2 is handled above. */
6077         if (vmx->emulation_required)
6078                 return handle_invalid_guest_state(vcpu);
6079
6080         if (exit_reason.failed_vmentry) {
6081                 dump_vmcs(vcpu);
6082                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6083                 vcpu->run->fail_entry.hardware_entry_failure_reason
6084                         = exit_reason.full;
6085                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6086                 return 0;
6087         }
6088
6089         if (unlikely(vmx->fail)) {
6090                 dump_vmcs(vcpu);
6091                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6092                 vcpu->run->fail_entry.hardware_entry_failure_reason
6093                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6094                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6095                 return 0;
6096         }
6097
6098         /*
6099          * Note:
6100          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6101          * delivery event since it indicates guest is accessing MMIO.
6102          * The vm-exit can be triggered again after return to guest that
6103          * will cause infinite loop.
6104          */
6105         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6106             (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6107              exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6108              exit_reason.basic != EXIT_REASON_PML_FULL &&
6109              exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6110              exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6111                 int ndata = 3;
6112
6113                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6114                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6115                 vcpu->run->internal.data[0] = vectoring_info;
6116                 vcpu->run->internal.data[1] = exit_reason.full;
6117                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6118                 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6119                         vcpu->run->internal.data[ndata++] =
6120                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6121                 }
6122                 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6123                 vcpu->run->internal.ndata = ndata;
6124                 return 0;
6125         }
6126
6127         if (unlikely(!enable_vnmi &&
6128                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
6129                 if (!vmx_interrupt_blocked(vcpu)) {
6130                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6131                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6132                            vcpu->arch.nmi_pending) {
6133                         /*
6134                          * This CPU don't support us in finding the end of an
6135                          * NMI-blocked window if the guest runs with IRQs
6136                          * disabled. So we pull the trigger after 1 s of
6137                          * futile waiting, but inform the user about this.
6138                          */
6139                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6140                                "state on VCPU %d after 1 s timeout\n",
6141                                __func__, vcpu->vcpu_id);
6142                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6143                 }
6144         }
6145
6146         if (exit_fastpath != EXIT_FASTPATH_NONE)
6147                 return 1;
6148
6149         if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6150                 goto unexpected_vmexit;
6151 #ifdef CONFIG_RETPOLINE
6152         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6153                 return kvm_emulate_wrmsr(vcpu);
6154         else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6155                 return handle_preemption_timer(vcpu);
6156         else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6157                 return handle_interrupt_window(vcpu);
6158         else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6159                 return handle_external_interrupt(vcpu);
6160         else if (exit_reason.basic == EXIT_REASON_HLT)
6161                 return kvm_emulate_halt(vcpu);
6162         else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6163                 return handle_ept_misconfig(vcpu);
6164 #endif
6165
6166         exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6167                                                 kvm_vmx_max_exit_handlers);
6168         if (!kvm_vmx_exit_handlers[exit_handler_index])
6169                 goto unexpected_vmexit;
6170
6171         return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6172
6173 unexpected_vmexit:
6174         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6175                     exit_reason.full);
6176         dump_vmcs(vcpu);
6177         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6178         vcpu->run->internal.suberror =
6179                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6180         vcpu->run->internal.ndata = 2;
6181         vcpu->run->internal.data[0] = exit_reason.full;
6182         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6183         return 0;
6184 }
6185
6186 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6187 {
6188         int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6189
6190         /*
6191          * Exit to user space when bus lock detected to inform that there is
6192          * a bus lock in guest.
6193          */
6194         if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6195                 if (ret > 0)
6196                         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6197
6198                 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6199                 return 0;
6200         }
6201         return ret;
6202 }
6203
6204 /*
6205  * Software based L1D cache flush which is used when microcode providing
6206  * the cache control MSR is not loaded.
6207  *
6208  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6209  * flush it is required to read in 64 KiB because the replacement algorithm
6210  * is not exactly LRU. This could be sized at runtime via topology
6211  * information but as all relevant affected CPUs have 32KiB L1D cache size
6212  * there is no point in doing so.
6213  */
6214 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6215 {
6216         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6217
6218         /*
6219          * This code is only executed when the the flush mode is 'cond' or
6220          * 'always'
6221          */
6222         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6223                 bool flush_l1d;
6224
6225                 /*
6226                  * Clear the per-vcpu flush bit, it gets set again
6227                  * either from vcpu_run() or from one of the unsafe
6228                  * VMEXIT handlers.
6229                  */
6230                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6231                 vcpu->arch.l1tf_flush_l1d = false;
6232
6233                 /*
6234                  * Clear the per-cpu flush bit, it gets set again from
6235                  * the interrupt handlers.
6236                  */
6237                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6238                 kvm_clear_cpu_l1tf_flush_l1d();
6239
6240                 if (!flush_l1d)
6241                         return;
6242         }
6243
6244         vcpu->stat.l1d_flush++;
6245
6246         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6247                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6248                 return;
6249         }
6250
6251         asm volatile(
6252                 /* First ensure the pages are in the TLB */
6253                 "xorl   %%eax, %%eax\n"
6254                 ".Lpopulate_tlb:\n\t"
6255                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6256                 "addl   $4096, %%eax\n\t"
6257                 "cmpl   %%eax, %[size]\n\t"
6258                 "jne    .Lpopulate_tlb\n\t"
6259                 "xorl   %%eax, %%eax\n\t"
6260                 "cpuid\n\t"
6261                 /* Now fill the cache */
6262                 "xorl   %%eax, %%eax\n"
6263                 ".Lfill_cache:\n"
6264                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6265                 "addl   $64, %%eax\n\t"
6266                 "cmpl   %%eax, %[size]\n\t"
6267                 "jne    .Lfill_cache\n\t"
6268                 "lfence\n"
6269                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6270                     [size] "r" (size)
6271                 : "eax", "ebx", "ecx", "edx");
6272 }
6273
6274 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6275 {
6276         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6277         int tpr_threshold;
6278
6279         if (is_guest_mode(vcpu) &&
6280                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6281                 return;
6282
6283         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6284         if (is_guest_mode(vcpu))
6285                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6286         else
6287                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6288 }
6289
6290 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6291 {
6292         struct vcpu_vmx *vmx = to_vmx(vcpu);
6293         u32 sec_exec_control;
6294
6295         if (!lapic_in_kernel(vcpu))
6296                 return;
6297
6298         if (!flexpriority_enabled &&
6299             !cpu_has_vmx_virtualize_x2apic_mode())
6300                 return;
6301
6302         /* Postpone execution until vmcs01 is the current VMCS. */
6303         if (is_guest_mode(vcpu)) {
6304                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6305                 return;
6306         }
6307
6308         sec_exec_control = secondary_exec_controls_get(vmx);
6309         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6310                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6311
6312         switch (kvm_get_apic_mode(vcpu)) {
6313         case LAPIC_MODE_INVALID:
6314                 WARN_ONCE(true, "Invalid local APIC state");
6315                 break;
6316         case LAPIC_MODE_DISABLED:
6317                 break;
6318         case LAPIC_MODE_XAPIC:
6319                 if (flexpriority_enabled) {
6320                         sec_exec_control |=
6321                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6322                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6323
6324                         /*
6325                          * Flush the TLB, reloading the APIC access page will
6326                          * only do so if its physical address has changed, but
6327                          * the guest may have inserted a non-APIC mapping into
6328                          * the TLB while the APIC access page was disabled.
6329                          */
6330                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6331                 }
6332                 break;
6333         case LAPIC_MODE_X2APIC:
6334                 if (cpu_has_vmx_virtualize_x2apic_mode())
6335                         sec_exec_control |=
6336                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6337                 break;
6338         }
6339         secondary_exec_controls_set(vmx, sec_exec_control);
6340
6341         vmx_update_msr_bitmap_x2apic(vcpu);
6342 }
6343
6344 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6345 {
6346         struct page *page;
6347
6348         /* Defer reload until vmcs01 is the current VMCS. */
6349         if (is_guest_mode(vcpu)) {
6350                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6351                 return;
6352         }
6353
6354         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6355             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6356                 return;
6357
6358         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6359         if (is_error_page(page))
6360                 return;
6361
6362         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6363         vmx_flush_tlb_current(vcpu);
6364
6365         /*
6366          * Do not pin apic access page in memory, the MMU notifier
6367          * will call us again if it is migrated or swapped out.
6368          */
6369         put_page(page);
6370 }
6371
6372 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6373 {
6374         u16 status;
6375         u8 old;
6376
6377         if (max_isr == -1)
6378                 max_isr = 0;
6379
6380         status = vmcs_read16(GUEST_INTR_STATUS);
6381         old = status >> 8;
6382         if (max_isr != old) {
6383                 status &= 0xff;
6384                 status |= max_isr << 8;
6385                 vmcs_write16(GUEST_INTR_STATUS, status);
6386         }
6387 }
6388
6389 static void vmx_set_rvi(int vector)
6390 {
6391         u16 status;
6392         u8 old;
6393
6394         if (vector == -1)
6395                 vector = 0;
6396
6397         status = vmcs_read16(GUEST_INTR_STATUS);
6398         old = (u8)status & 0xff;
6399         if ((u8)vector != old) {
6400                 status &= ~0xff;
6401                 status |= (u8)vector;
6402                 vmcs_write16(GUEST_INTR_STATUS, status);
6403         }
6404 }
6405
6406 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6407 {
6408         /*
6409          * When running L2, updating RVI is only relevant when
6410          * vmcs12 virtual-interrupt-delivery enabled.
6411          * However, it can be enabled only when L1 also
6412          * intercepts external-interrupts and in that case
6413          * we should not update vmcs02 RVI but instead intercept
6414          * interrupt. Therefore, do nothing when running L2.
6415          */
6416         if (!is_guest_mode(vcpu))
6417                 vmx_set_rvi(max_irr);
6418 }
6419
6420 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6421 {
6422         struct vcpu_vmx *vmx = to_vmx(vcpu);
6423         int max_irr;
6424         bool got_posted_interrupt;
6425
6426         if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6427                 return -EIO;
6428
6429         if (pi_test_on(&vmx->pi_desc)) {
6430                 pi_clear_on(&vmx->pi_desc);
6431                 /*
6432                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6433                  * But on x86 this is just a compiler barrier anyway.
6434                  */
6435                 smp_mb__after_atomic();
6436                 got_posted_interrupt =
6437                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6438         } else {
6439                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6440                 got_posted_interrupt = false;
6441         }
6442
6443         /*
6444          * Newly recognized interrupts are injected via either virtual interrupt
6445          * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6446          * disabled in two cases:
6447          *
6448          * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6449          * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6450          * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6451          * into L2, but KVM doesn't use virtual interrupt delivery to inject
6452          * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6453          *
6454          * 2) If APICv is disabled for this vCPU, assigned devices may still
6455          * attempt to post interrupts.  The posted interrupt vector will cause
6456          * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6457          */
6458         if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6459                 vmx_set_rvi(max_irr);
6460         else if (got_posted_interrupt)
6461                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6462
6463         return max_irr;
6464 }
6465
6466 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6467 {
6468         if (!kvm_vcpu_apicv_active(vcpu))
6469                 return;
6470
6471         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6472         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6473         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6474         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6475 }
6476
6477 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6478 {
6479         struct vcpu_vmx *vmx = to_vmx(vcpu);
6480
6481         pi_clear_on(&vmx->pi_desc);
6482         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6483 }
6484
6485 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6486
6487 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6488                                         unsigned long entry)
6489 {
6490         bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist;
6491
6492         kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ);
6493         vmx_do_interrupt_nmi_irqoff(entry);
6494         kvm_after_interrupt(vcpu);
6495 }
6496
6497 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6498 {
6499         /*
6500          * Save xfd_err to guest_fpu before interrupt is enabled, so the
6501          * MSR value is not clobbered by the host activity before the guest
6502          * has chance to consume it.
6503          *
6504          * Do not blindly read xfd_err here, since this exception might
6505          * be caused by L1 interception on a platform which doesn't
6506          * support xfd at all.
6507          *
6508          * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6509          * only when xfd contains a non-zero value.
6510          *
6511          * Queuing exception is done in vmx_handle_exit. See comment there.
6512          */
6513         if (vcpu->arch.guest_fpu.fpstate->xfd)
6514                 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6515 }
6516
6517 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6518 {
6519         const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6520         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6521
6522         /* if exit due to PF check for async PF */
6523         if (is_page_fault(intr_info))
6524                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6525         /* if exit due to NM, handle before interrupts are enabled */
6526         else if (is_nm_fault(intr_info))
6527                 handle_nm_fault_irqoff(&vmx->vcpu);
6528         /* Handle machine checks before interrupts are enabled */
6529         else if (is_machine_check(intr_info))
6530                 kvm_machine_check();
6531         /* We need to handle NMIs before interrupts are enabled */
6532         else if (is_nmi(intr_info))
6533                 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6534 }
6535
6536 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6537 {
6538         u32 intr_info = vmx_get_intr_info(vcpu);
6539         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6540         gate_desc *desc = (gate_desc *)host_idt_base + vector;
6541
6542         if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6543             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6544                 return;
6545
6546         handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6547 }
6548
6549 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6550 {
6551         struct vcpu_vmx *vmx = to_vmx(vcpu);
6552
6553         if (vmx->emulation_required)
6554                 return;
6555
6556         if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6557                 handle_external_interrupt_irqoff(vcpu);
6558         else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6559                 handle_exception_nmi_irqoff(vmx);
6560 }
6561
6562 /*
6563  * The kvm parameter can be NULL (module initialization, or invocation before
6564  * VM creation). Be sure to check the kvm parameter before using it.
6565  */
6566 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6567 {
6568         switch (index) {
6569         case MSR_IA32_SMBASE:
6570                 /*
6571                  * We cannot do SMM unless we can run the guest in big
6572                  * real mode.
6573                  */
6574                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6575         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6576                 return nested;
6577         case MSR_AMD64_VIRT_SPEC_CTRL:
6578         case MSR_AMD64_TSC_RATIO:
6579                 /* This is AMD only.  */
6580                 return false;
6581         default:
6582                 return true;
6583         }
6584 }
6585
6586 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6587 {
6588         u32 exit_intr_info;
6589         bool unblock_nmi;
6590         u8 vector;
6591         bool idtv_info_valid;
6592
6593         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6594
6595         if (enable_vnmi) {
6596                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6597                         return;
6598
6599                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6600                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6601                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6602                 /*
6603                  * SDM 3: 27.7.1.2 (September 2008)
6604                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6605                  * a guest IRET fault.
6606                  * SDM 3: 23.2.2 (September 2008)
6607                  * Bit 12 is undefined in any of the following cases:
6608                  *  If the VM exit sets the valid bit in the IDT-vectoring
6609                  *   information field.
6610                  *  If the VM exit is due to a double fault.
6611                  */
6612                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6613                     vector != DF_VECTOR && !idtv_info_valid)
6614                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6615                                       GUEST_INTR_STATE_NMI);
6616                 else
6617                         vmx->loaded_vmcs->nmi_known_unmasked =
6618                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6619                                   & GUEST_INTR_STATE_NMI);
6620         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6621                 vmx->loaded_vmcs->vnmi_blocked_time +=
6622                         ktime_to_ns(ktime_sub(ktime_get(),
6623                                               vmx->loaded_vmcs->entry_time));
6624 }
6625
6626 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6627                                       u32 idt_vectoring_info,
6628                                       int instr_len_field,
6629                                       int error_code_field)
6630 {
6631         u8 vector;
6632         int type;
6633         bool idtv_info_valid;
6634
6635         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6636
6637         vcpu->arch.nmi_injected = false;
6638         kvm_clear_exception_queue(vcpu);
6639         kvm_clear_interrupt_queue(vcpu);
6640
6641         if (!idtv_info_valid)
6642                 return;
6643
6644         kvm_make_request(KVM_REQ_EVENT, vcpu);
6645
6646         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6647         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6648
6649         switch (type) {
6650         case INTR_TYPE_NMI_INTR:
6651                 vcpu->arch.nmi_injected = true;
6652                 /*
6653                  * SDM 3: 27.7.1.2 (September 2008)
6654                  * Clear bit "block by NMI" before VM entry if a NMI
6655                  * delivery faulted.
6656                  */
6657                 vmx_set_nmi_mask(vcpu, false);
6658                 break;
6659         case INTR_TYPE_SOFT_EXCEPTION:
6660                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6661                 fallthrough;
6662         case INTR_TYPE_HARD_EXCEPTION:
6663                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6664                         u32 err = vmcs_read32(error_code_field);
6665                         kvm_requeue_exception_e(vcpu, vector, err);
6666                 } else
6667                         kvm_requeue_exception(vcpu, vector);
6668                 break;
6669         case INTR_TYPE_SOFT_INTR:
6670                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6671                 fallthrough;
6672         case INTR_TYPE_EXT_INTR:
6673                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6674                 break;
6675         default:
6676                 break;
6677         }
6678 }
6679
6680 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6681 {
6682         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6683                                   VM_EXIT_INSTRUCTION_LEN,
6684                                   IDT_VECTORING_ERROR_CODE);
6685 }
6686
6687 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6688 {
6689         __vmx_complete_interrupts(vcpu,
6690                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6691                                   VM_ENTRY_INSTRUCTION_LEN,
6692                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6693
6694         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6695 }
6696
6697 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6698 {
6699         int i, nr_msrs;
6700         struct perf_guest_switch_msr *msrs;
6701
6702         /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6703         msrs = perf_guest_get_msrs(&nr_msrs);
6704         if (!msrs)
6705                 return;
6706
6707         for (i = 0; i < nr_msrs; i++)
6708                 if (msrs[i].host == msrs[i].guest)
6709                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6710                 else
6711                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6712                                         msrs[i].host, false);
6713 }
6714
6715 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6716 {
6717         struct vcpu_vmx *vmx = to_vmx(vcpu);
6718         u64 tscl;
6719         u32 delta_tsc;
6720
6721         if (vmx->req_immediate_exit) {
6722                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6723                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6724         } else if (vmx->hv_deadline_tsc != -1) {
6725                 tscl = rdtsc();
6726                 if (vmx->hv_deadline_tsc > tscl)
6727                         /* set_hv_timer ensures the delta fits in 32-bits */
6728                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6729                                 cpu_preemption_timer_multi);
6730                 else
6731                         delta_tsc = 0;
6732
6733                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6734                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6735         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6736                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6737                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6738         }
6739 }
6740
6741 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6742 {
6743         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6744                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6745                 vmcs_writel(HOST_RSP, host_rsp);
6746         }
6747 }
6748
6749 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6750 {
6751         switch (to_vmx(vcpu)->exit_reason.basic) {
6752         case EXIT_REASON_MSR_WRITE:
6753                 return handle_fastpath_set_msr_irqoff(vcpu);
6754         case EXIT_REASON_PREEMPTION_TIMER:
6755                 return handle_fastpath_preemption_timer(vcpu);
6756         default:
6757                 return EXIT_FASTPATH_NONE;
6758         }
6759 }
6760
6761 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6762                                         struct vcpu_vmx *vmx)
6763 {
6764         guest_state_enter_irqoff();
6765
6766         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6767         if (static_branch_unlikely(&vmx_l1d_should_flush))
6768                 vmx_l1d_flush(vcpu);
6769         else if (static_branch_unlikely(&mds_user_clear))
6770                 mds_clear_cpu_buffers();
6771
6772         if (vcpu->arch.cr2 != native_read_cr2())
6773                 native_write_cr2(vcpu->arch.cr2);
6774
6775         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6776                                    vmx->loaded_vmcs->launched);
6777
6778         vcpu->arch.cr2 = native_read_cr2();
6779
6780         guest_state_exit_irqoff();
6781 }
6782
6783 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6784 {
6785         struct vcpu_vmx *vmx = to_vmx(vcpu);
6786         unsigned long cr3, cr4;
6787
6788         /* Record the guest's net vcpu time for enforced NMI injections. */
6789         if (unlikely(!enable_vnmi &&
6790                      vmx->loaded_vmcs->soft_vnmi_blocked))
6791                 vmx->loaded_vmcs->entry_time = ktime_get();
6792
6793         /*
6794          * Don't enter VMX if guest state is invalid, let the exit handler
6795          * start emulation until we arrive back to a valid state.  Synthesize a
6796          * consistency check VM-Exit due to invalid guest state and bail.
6797          */
6798         if (unlikely(vmx->emulation_required)) {
6799                 vmx->fail = 0;
6800
6801                 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
6802                 vmx->exit_reason.failed_vmentry = 1;
6803                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
6804                 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
6805                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
6806                 vmx->exit_intr_info = 0;
6807                 return EXIT_FASTPATH_NONE;
6808         }
6809
6810         trace_kvm_entry(vcpu);
6811
6812         if (vmx->ple_window_dirty) {
6813                 vmx->ple_window_dirty = false;
6814                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6815         }
6816
6817         /*
6818          * We did this in prepare_switch_to_guest, because it needs to
6819          * be within srcu_read_lock.
6820          */
6821         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6822
6823         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6824                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6825         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6826                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6827         vcpu->arch.regs_dirty = 0;
6828
6829         /*
6830          * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
6831          * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
6832          * it switches back to the current->mm, which can occur in KVM context
6833          * when switching to a temporary mm to patch kernel code, e.g. if KVM
6834          * toggles a static key while handling a VM-Exit.
6835          */
6836         cr3 = __get_current_cr3_fast();
6837         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6838                 vmcs_writel(HOST_CR3, cr3);
6839                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6840         }
6841
6842         cr4 = cr4_read_shadow();
6843         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6844                 vmcs_writel(HOST_CR4, cr4);
6845                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6846         }
6847
6848         /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6849         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6850                 set_debugreg(vcpu->arch.dr6, 6);
6851
6852         /* When single-stepping over STI and MOV SS, we must clear the
6853          * corresponding interruptibility bits in the guest state. Otherwise
6854          * vmentry fails as it then expects bit 14 (BS) in pending debug
6855          * exceptions being set, but that's not correct for the guest debugging
6856          * case. */
6857         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6858                 vmx_set_interrupt_shadow(vcpu, 0);
6859
6860         kvm_load_guest_xsave_state(vcpu);
6861
6862         pt_guest_enter(vmx);
6863
6864         atomic_switch_perf_msrs(vmx);
6865         if (intel_pmu_lbr_is_enabled(vcpu))
6866                 vmx_passthrough_lbr_msrs(vcpu);
6867
6868         if (enable_preemption_timer)
6869                 vmx_update_hv_timer(vcpu);
6870
6871         kvm_wait_lapic_expire(vcpu);
6872
6873         /*
6874          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6875          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6876          * is no need to worry about the conditional branch over the wrmsr
6877          * being speculatively taken.
6878          */
6879         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6880
6881         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6882         vmx_vcpu_enter_exit(vcpu, vmx);
6883
6884         /*
6885          * We do not use IBRS in the kernel. If this vCPU has used the
6886          * SPEC_CTRL MSR it may have left it on; save the value and
6887          * turn it off. This is much more efficient than blindly adding
6888          * it to the atomic save/restore list. Especially as the former
6889          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6890          *
6891          * For non-nested case:
6892          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6893          * save it.
6894          *
6895          * For nested case:
6896          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6897          * save it.
6898          */
6899         if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
6900                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6901
6902         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6903
6904         /* All fields are clean at this point */
6905         if (static_branch_unlikely(&enable_evmcs)) {
6906                 current_evmcs->hv_clean_fields |=
6907                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6908
6909                 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6910         }
6911
6912         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6913         if (vmx->host_debugctlmsr)
6914                 update_debugctlmsr(vmx->host_debugctlmsr);
6915
6916 #ifndef CONFIG_X86_64
6917         /*
6918          * The sysexit path does not restore ds/es, so we must set them to
6919          * a reasonable value ourselves.
6920          *
6921          * We can't defer this to vmx_prepare_switch_to_host() since that
6922          * function may be executed in interrupt context, which saves and
6923          * restore segments around it, nullifying its effect.
6924          */
6925         loadsegment(ds, __USER_DS);
6926         loadsegment(es, __USER_DS);
6927 #endif
6928
6929         vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
6930
6931         pt_guest_exit(vmx);
6932
6933         kvm_load_host_xsave_state(vcpu);
6934
6935         if (is_guest_mode(vcpu)) {
6936                 /*
6937                  * Track VMLAUNCH/VMRESUME that have made past guest state
6938                  * checking.
6939                  */
6940                 if (vmx->nested.nested_run_pending &&
6941                     !vmx->exit_reason.failed_vmentry)
6942                         ++vcpu->stat.nested_run;
6943
6944                 vmx->nested.nested_run_pending = 0;
6945         }
6946
6947         vmx->idt_vectoring_info = 0;
6948
6949         if (unlikely(vmx->fail)) {
6950                 vmx->exit_reason.full = 0xdead;
6951                 return EXIT_FASTPATH_NONE;
6952         }
6953
6954         vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6955         if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6956                 kvm_machine_check();
6957
6958         if (likely(!vmx->exit_reason.failed_vmentry))
6959                 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6960
6961         trace_kvm_exit(vcpu, KVM_ISA_VMX);
6962
6963         if (unlikely(vmx->exit_reason.failed_vmentry))
6964                 return EXIT_FASTPATH_NONE;
6965
6966         vmx->loaded_vmcs->launched = 1;
6967
6968         vmx_recover_nmi_blocking(vmx);
6969         vmx_complete_interrupts(vmx);
6970
6971         if (is_guest_mode(vcpu))
6972                 return EXIT_FASTPATH_NONE;
6973
6974         return vmx_exit_handlers_fastpath(vcpu);
6975 }
6976
6977 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
6978 {
6979         struct vcpu_vmx *vmx = to_vmx(vcpu);
6980
6981         if (enable_pml)
6982                 vmx_destroy_pml_buffer(vmx);
6983         free_vpid(vmx->vpid);
6984         nested_vmx_free_vcpu(vcpu);
6985         free_loaded_vmcs(vmx->loaded_vmcs);
6986 }
6987
6988 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
6989 {
6990         struct vmx_uret_msr *tsx_ctrl;
6991         struct vcpu_vmx *vmx;
6992         int i, err;
6993
6994         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6995         vmx = to_vmx(vcpu);
6996
6997         INIT_LIST_HEAD(&vmx->pi_wakeup_list);
6998
6999         err = -ENOMEM;
7000
7001         vmx->vpid = allocate_vpid();
7002
7003         /*
7004          * If PML is turned on, failure on enabling PML just results in failure
7005          * of creating the vcpu, therefore we can simplify PML logic (by
7006          * avoiding dealing with cases, such as enabling PML partially on vcpus
7007          * for the guest), etc.
7008          */
7009         if (enable_pml) {
7010                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7011                 if (!vmx->pml_pg)
7012                         goto free_vpid;
7013         }
7014
7015         for (i = 0; i < kvm_nr_uret_msrs; ++i)
7016                 vmx->guest_uret_msrs[i].mask = -1ull;
7017         if (boot_cpu_has(X86_FEATURE_RTM)) {
7018                 /*
7019                  * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7020                  * Keep the host value unchanged to avoid changing CPUID bits
7021                  * under the host kernel's feet.
7022                  */
7023                 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7024                 if (tsx_ctrl)
7025                         tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7026         }
7027
7028         err = alloc_loaded_vmcs(&vmx->vmcs01);
7029         if (err < 0)
7030                 goto free_pml;
7031
7032         /*
7033          * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7034          * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7035          * feature only for vmcs01, KVM currently isn't equipped to realize any
7036          * performance benefits from enabling it for vmcs02.
7037          */
7038         if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7039             (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7040                 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7041
7042                 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7043         }
7044
7045         /* The MSR bitmap starts with all ones */
7046         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7047         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7048
7049         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7050 #ifdef CONFIG_X86_64
7051         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7052         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7053         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7054 #endif
7055         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7056         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7057         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7058         if (kvm_cstate_in_guest(vcpu->kvm)) {
7059                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7060                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7061                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7062                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7063         }
7064
7065         vmx->loaded_vmcs = &vmx->vmcs01;
7066
7067         if (cpu_need_virtualize_apic_accesses(vcpu)) {
7068                 err = alloc_apic_access_page(vcpu->kvm);
7069                 if (err)
7070                         goto free_vmcs;
7071         }
7072
7073         if (enable_ept && !enable_unrestricted_guest) {
7074                 err = init_rmode_identity_map(vcpu->kvm);
7075                 if (err)
7076                         goto free_vmcs;
7077         }
7078
7079         return 0;
7080
7081 free_vmcs:
7082         free_loaded_vmcs(vmx->loaded_vmcs);
7083 free_pml:
7084         vmx_destroy_pml_buffer(vmx);
7085 free_vpid:
7086         free_vpid(vmx->vpid);
7087         return err;
7088 }
7089
7090 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7091 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7092
7093 static int vmx_vm_init(struct kvm *kvm)
7094 {
7095         if (!ple_gap)
7096                 kvm->arch.pause_in_guest = true;
7097
7098         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7099                 switch (l1tf_mitigation) {
7100                 case L1TF_MITIGATION_OFF:
7101                 case L1TF_MITIGATION_FLUSH_NOWARN:
7102                         /* 'I explicitly don't care' is set */
7103                         break;
7104                 case L1TF_MITIGATION_FLUSH:
7105                 case L1TF_MITIGATION_FLUSH_NOSMT:
7106                 case L1TF_MITIGATION_FULL:
7107                         /*
7108                          * Warn upon starting the first VM in a potentially
7109                          * insecure environment.
7110                          */
7111                         if (sched_smt_active())
7112                                 pr_warn_once(L1TF_MSG_SMT);
7113                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7114                                 pr_warn_once(L1TF_MSG_L1D);
7115                         break;
7116                 case L1TF_MITIGATION_FULL_FORCE:
7117                         /* Flush is enforced */
7118                         break;
7119                 }
7120         }
7121         return 0;
7122 }
7123
7124 static int __init vmx_check_processor_compat(void)
7125 {
7126         struct vmcs_config vmcs_conf;
7127         struct vmx_capability vmx_cap;
7128
7129         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7130             !this_cpu_has(X86_FEATURE_VMX)) {
7131                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7132                 return -EIO;
7133         }
7134
7135         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7136                 return -EIO;
7137         if (nested)
7138                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7139         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7140                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7141                                 smp_processor_id());
7142                 return -EIO;
7143         }
7144         return 0;
7145 }
7146
7147 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7148 {
7149         u8 cache;
7150
7151         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7152          * memory aliases with conflicting memory types and sometimes MCEs.
7153          * We have to be careful as to what are honored and when.
7154          *
7155          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7156          * UC.  The effective memory type is UC or WC depending on guest PAT.
7157          * This was historically the source of MCEs and we want to be
7158          * conservative.
7159          *
7160          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7161          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7162          * EPT memory type is set to WB.  The effective memory type is forced
7163          * WB.
7164          *
7165          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7166          * EPT memory type is used to emulate guest CD/MTRR.
7167          */
7168
7169         if (is_mmio)
7170                 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7171
7172         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7173                 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7174
7175         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7176                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7177                         cache = MTRR_TYPE_WRBACK;
7178                 else
7179                         cache = MTRR_TYPE_UNCACHABLE;
7180
7181                 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7182         }
7183
7184         return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7185 }
7186
7187 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7188 {
7189         /*
7190          * These bits in the secondary execution controls field
7191          * are dynamic, the others are mostly based on the hypervisor
7192          * architecture and the guest's CPUID.  Do not touch the
7193          * dynamic bits.
7194          */
7195         u32 mask =
7196                 SECONDARY_EXEC_SHADOW_VMCS |
7197                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7198                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7199                 SECONDARY_EXEC_DESC;
7200
7201         u32 cur_ctl = secondary_exec_controls_get(vmx);
7202
7203         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7204 }
7205
7206 /*
7207  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7208  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7209  */
7210 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7211 {
7212         struct vcpu_vmx *vmx = to_vmx(vcpu);
7213         struct kvm_cpuid_entry2 *entry;
7214
7215         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7216         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7217
7218 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7219         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7220                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7221 } while (0)
7222
7223         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7224         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7225         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7226         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7227         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7228         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7229         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7230         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7231         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7232         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7233         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7234         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7235         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7236         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7237         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7238
7239         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7240         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7241         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7242         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7243         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7244         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7245         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7246
7247 #undef cr4_fixed1_update
7248 }
7249
7250 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7251 {
7252         struct vcpu_vmx *vmx = to_vmx(vcpu);
7253
7254         if (kvm_mpx_supported()) {
7255                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7256
7257                 if (mpx_enabled) {
7258                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7259                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7260                 } else {
7261                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7262                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7263                 }
7264         }
7265 }
7266
7267 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7268 {
7269         struct vcpu_vmx *vmx = to_vmx(vcpu);
7270         struct kvm_cpuid_entry2 *best = NULL;
7271         int i;
7272
7273         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7274                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7275                 if (!best)
7276                         return;
7277                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7278                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7279                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7280                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7281         }
7282
7283         /* Get the number of configurable Address Ranges for filtering */
7284         vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7285                                                 PT_CAP_num_address_ranges);
7286
7287         /* Initialize and clear the no dependency bits */
7288         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7289                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7290                         RTIT_CTL_BRANCH_EN);
7291
7292         /*
7293          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7294          * will inject an #GP
7295          */
7296         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7297                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7298
7299         /*
7300          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7301          * PSBFreq can be set
7302          */
7303         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7304                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7305                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7306
7307         /*
7308          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7309          */
7310         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7311                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7312                                               RTIT_CTL_MTC_RANGE);
7313
7314         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7315         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7316                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7317                                                         RTIT_CTL_PTW_EN);
7318
7319         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7320         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7321                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7322
7323         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7324         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7325                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7326
7327         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7328         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7329                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7330
7331         /* unmask address range configure area */
7332         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7333                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7334 }
7335
7336 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7337 {
7338         struct vcpu_vmx *vmx = to_vmx(vcpu);
7339
7340         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7341         vcpu->arch.xsaves_enabled = false;
7342
7343         vmx_setup_uret_msrs(vmx);
7344
7345         if (cpu_has_secondary_exec_ctrls())
7346                 vmcs_set_secondary_exec_control(vmx,
7347                                                 vmx_secondary_exec_control(vmx));
7348
7349         if (nested_vmx_allowed(vcpu))
7350                 vmx->msr_ia32_feature_control_valid_bits |=
7351                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7352                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7353         else
7354                 vmx->msr_ia32_feature_control_valid_bits &=
7355                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7356                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7357
7358         if (nested_vmx_allowed(vcpu)) {
7359                 nested_vmx_cr_fixed1_bits_update(vcpu);
7360                 nested_vmx_entry_exit_ctls_update(vcpu);
7361         }
7362
7363         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7364                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7365                 update_intel_pt_cfg(vcpu);
7366
7367         if (boot_cpu_has(X86_FEATURE_RTM)) {
7368                 struct vmx_uret_msr *msr;
7369                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7370                 if (msr) {
7371                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7372                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7373                 }
7374         }
7375
7376         if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7377                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7378                                           !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7379
7380
7381         set_cr4_guest_host_mask(vmx);
7382
7383         vmx_write_encls_bitmap(vcpu, NULL);
7384         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7385                 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7386         else
7387                 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7388
7389         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7390                 vmx->msr_ia32_feature_control_valid_bits |=
7391                         FEAT_CTL_SGX_LC_ENABLED;
7392         else
7393                 vmx->msr_ia32_feature_control_valid_bits &=
7394                         ~FEAT_CTL_SGX_LC_ENABLED;
7395
7396         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7397         vmx_update_exception_bitmap(vcpu);
7398 }
7399
7400 static __init void vmx_set_cpu_caps(void)
7401 {
7402         kvm_set_cpu_caps();
7403
7404         /* CPUID 0x1 */
7405         if (nested)
7406                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7407
7408         /* CPUID 0x7 */
7409         if (kvm_mpx_supported())
7410                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7411         if (!cpu_has_vmx_invpcid())
7412                 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7413         if (vmx_pt_mode_is_host_guest())
7414                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7415
7416         if (!enable_sgx) {
7417                 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7418                 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7419                 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7420                 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7421         }
7422
7423         if (vmx_umip_emulated())
7424                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7425
7426         /* CPUID 0xD.1 */
7427         supported_xss = 0;
7428         if (!cpu_has_vmx_xsaves())
7429                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7430
7431         /* CPUID 0x80000001 and 0x7 (RDPID) */
7432         if (!cpu_has_vmx_rdtscp()) {
7433                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7434                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7435         }
7436
7437         if (cpu_has_vmx_waitpkg())
7438                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7439 }
7440
7441 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7442 {
7443         to_vmx(vcpu)->req_immediate_exit = true;
7444 }
7445
7446 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7447                                   struct x86_instruction_info *info)
7448 {
7449         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7450         unsigned short port;
7451         bool intercept;
7452         int size;
7453
7454         if (info->intercept == x86_intercept_in ||
7455             info->intercept == x86_intercept_ins) {
7456                 port = info->src_val;
7457                 size = info->dst_bytes;
7458         } else {
7459                 port = info->dst_val;
7460                 size = info->src_bytes;
7461         }
7462
7463         /*
7464          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7465          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7466          * control.
7467          *
7468          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7469          */
7470         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7471                 intercept = nested_cpu_has(vmcs12,
7472                                            CPU_BASED_UNCOND_IO_EXITING);
7473         else
7474                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7475
7476         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7477         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7478 }
7479
7480 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7481                                struct x86_instruction_info *info,
7482                                enum x86_intercept_stage stage,
7483                                struct x86_exception *exception)
7484 {
7485         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7486
7487         switch (info->intercept) {
7488         /*
7489          * RDPID causes #UD if disabled through secondary execution controls.
7490          * Because it is marked as EmulateOnUD, we need to intercept it here.
7491          * Note, RDPID is hidden behind ENABLE_RDTSCP.
7492          */
7493         case x86_intercept_rdpid:
7494                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7495                         exception->vector = UD_VECTOR;
7496                         exception->error_code_valid = false;
7497                         return X86EMUL_PROPAGATE_FAULT;
7498                 }
7499                 break;
7500
7501         case x86_intercept_in:
7502         case x86_intercept_ins:
7503         case x86_intercept_out:
7504         case x86_intercept_outs:
7505                 return vmx_check_intercept_io(vcpu, info);
7506
7507         case x86_intercept_lgdt:
7508         case x86_intercept_lidt:
7509         case x86_intercept_lldt:
7510         case x86_intercept_ltr:
7511         case x86_intercept_sgdt:
7512         case x86_intercept_sidt:
7513         case x86_intercept_sldt:
7514         case x86_intercept_str:
7515                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7516                         return X86EMUL_CONTINUE;
7517
7518                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7519                 break;
7520
7521         /* TODO: check more intercepts... */
7522         default:
7523                 break;
7524         }
7525
7526         return X86EMUL_UNHANDLEABLE;
7527 }
7528
7529 #ifdef CONFIG_X86_64
7530 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7531 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7532                                   u64 divisor, u64 *result)
7533 {
7534         u64 low = a << shift, high = a >> (64 - shift);
7535
7536         /* To avoid the overflow on divq */
7537         if (high >= divisor)
7538                 return 1;
7539
7540         /* Low hold the result, high hold rem which is discarded */
7541         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7542             "rm" (divisor), "0" (low), "1" (high));
7543         *result = low;
7544
7545         return 0;
7546 }
7547
7548 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7549                             bool *expired)
7550 {
7551         struct vcpu_vmx *vmx;
7552         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7553         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7554
7555         vmx = to_vmx(vcpu);
7556         tscl = rdtsc();
7557         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7558         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7559         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7560                                                     ktimer->timer_advance_ns);
7561
7562         if (delta_tsc > lapic_timer_advance_cycles)
7563                 delta_tsc -= lapic_timer_advance_cycles;
7564         else
7565                 delta_tsc = 0;
7566
7567         /* Convert to host delta tsc if tsc scaling is enabled */
7568         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7569             delta_tsc && u64_shl_div_u64(delta_tsc,
7570                                 kvm_tsc_scaling_ratio_frac_bits,
7571                                 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7572                 return -ERANGE;
7573
7574         /*
7575          * If the delta tsc can't fit in the 32 bit after the multi shift,
7576          * we can't use the preemption timer.
7577          * It's possible that it fits on later vmentries, but checking
7578          * on every vmentry is costly so we just use an hrtimer.
7579          */
7580         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7581                 return -ERANGE;
7582
7583         vmx->hv_deadline_tsc = tscl + delta_tsc;
7584         *expired = !delta_tsc;
7585         return 0;
7586 }
7587
7588 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7589 {
7590         to_vmx(vcpu)->hv_deadline_tsc = -1;
7591 }
7592 #endif
7593
7594 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7595 {
7596         if (!kvm_pause_in_guest(vcpu->kvm))
7597                 shrink_ple_window(vcpu);
7598 }
7599
7600 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7601 {
7602         struct vcpu_vmx *vmx = to_vmx(vcpu);
7603
7604         if (is_guest_mode(vcpu)) {
7605                 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7606                 return;
7607         }
7608
7609         /*
7610          * Note, cpu_dirty_logging_count can be changed concurrent with this
7611          * code, but in that case another update request will be made and so
7612          * the guest will never run with a stale PML value.
7613          */
7614         if (vcpu->kvm->arch.cpu_dirty_logging_count)
7615                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7616         else
7617                 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7618 }
7619
7620 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7621 {
7622         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7623                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7624                         FEAT_CTL_LMCE_ENABLED;
7625         else
7626                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7627                         ~FEAT_CTL_LMCE_ENABLED;
7628 }
7629
7630 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7631 {
7632         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7633         if (to_vmx(vcpu)->nested.nested_run_pending)
7634                 return -EBUSY;
7635         return !is_smm(vcpu);
7636 }
7637
7638 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7639 {
7640         struct vcpu_vmx *vmx = to_vmx(vcpu);
7641
7642         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7643         if (vmx->nested.smm.guest_mode)
7644                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7645
7646         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7647         vmx->nested.vmxon = false;
7648         vmx_clear_hlt(vcpu);
7649         return 0;
7650 }
7651
7652 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7653 {
7654         struct vcpu_vmx *vmx = to_vmx(vcpu);
7655         int ret;
7656
7657         if (vmx->nested.smm.vmxon) {
7658                 vmx->nested.vmxon = true;
7659                 vmx->nested.smm.vmxon = false;
7660         }
7661
7662         if (vmx->nested.smm.guest_mode) {
7663                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7664                 if (ret)
7665                         return ret;
7666
7667                 vmx->nested.nested_run_pending = 1;
7668                 vmx->nested.smm.guest_mode = false;
7669         }
7670         return 0;
7671 }
7672
7673 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7674 {
7675         /* RSM will cause a vmexit anyway.  */
7676 }
7677
7678 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7679 {
7680         return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7681 }
7682
7683 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7684 {
7685         if (is_guest_mode(vcpu)) {
7686                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7687
7688                 if (hrtimer_try_to_cancel(timer) == 1)
7689                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7690         }
7691 }
7692
7693 static void vmx_hardware_unsetup(void)
7694 {
7695         kvm_set_posted_intr_wakeup_handler(NULL);
7696
7697         if (nested)
7698                 nested_vmx_hardware_unsetup();
7699
7700         free_kvm_area();
7701 }
7702
7703 static bool vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
7704 {
7705         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7706                           BIT(APICV_INHIBIT_REASON_ABSENT) |
7707                           BIT(APICV_INHIBIT_REASON_HYPERV) |
7708                           BIT(APICV_INHIBIT_REASON_BLOCKIRQ);
7709
7710         return supported & BIT(reason);
7711 }
7712
7713 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7714         .name = "kvm_intel",
7715
7716         .hardware_unsetup = vmx_hardware_unsetup,
7717
7718         .hardware_enable = vmx_hardware_enable,
7719         .hardware_disable = vmx_hardware_disable,
7720         .has_emulated_msr = vmx_has_emulated_msr,
7721
7722         .vm_size = sizeof(struct kvm_vmx),
7723         .vm_init = vmx_vm_init,
7724
7725         .vcpu_create = vmx_vcpu_create,
7726         .vcpu_free = vmx_vcpu_free,
7727         .vcpu_reset = vmx_vcpu_reset,
7728
7729         .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
7730         .vcpu_load = vmx_vcpu_load,
7731         .vcpu_put = vmx_vcpu_put,
7732
7733         .update_exception_bitmap = vmx_update_exception_bitmap,
7734         .get_msr_feature = vmx_get_msr_feature,
7735         .get_msr = vmx_get_msr,
7736         .set_msr = vmx_set_msr,
7737         .get_segment_base = vmx_get_segment_base,
7738         .get_segment = vmx_get_segment,
7739         .set_segment = vmx_set_segment,
7740         .get_cpl = vmx_get_cpl,
7741         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7742         .set_cr0 = vmx_set_cr0,
7743         .is_valid_cr4 = vmx_is_valid_cr4,
7744         .set_cr4 = vmx_set_cr4,
7745         .set_efer = vmx_set_efer,
7746         .get_idt = vmx_get_idt,
7747         .set_idt = vmx_set_idt,
7748         .get_gdt = vmx_get_gdt,
7749         .set_gdt = vmx_set_gdt,
7750         .set_dr7 = vmx_set_dr7,
7751         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7752         .cache_reg = vmx_cache_reg,
7753         .get_rflags = vmx_get_rflags,
7754         .set_rflags = vmx_set_rflags,
7755         .get_if_flag = vmx_get_if_flag,
7756
7757         .flush_tlb_all = vmx_flush_tlb_all,
7758         .flush_tlb_current = vmx_flush_tlb_current,
7759         .flush_tlb_gva = vmx_flush_tlb_gva,
7760         .flush_tlb_guest = vmx_flush_tlb_guest,
7761
7762         .vcpu_pre_run = vmx_vcpu_pre_run,
7763         .vcpu_run = vmx_vcpu_run,
7764         .handle_exit = vmx_handle_exit,
7765         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7766         .update_emulated_instruction = vmx_update_emulated_instruction,
7767         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7768         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7769         .patch_hypercall = vmx_patch_hypercall,
7770         .inject_irq = vmx_inject_irq,
7771         .inject_nmi = vmx_inject_nmi,
7772         .queue_exception = vmx_queue_exception,
7773         .cancel_injection = vmx_cancel_injection,
7774         .interrupt_allowed = vmx_interrupt_allowed,
7775         .nmi_allowed = vmx_nmi_allowed,
7776         .get_nmi_mask = vmx_get_nmi_mask,
7777         .set_nmi_mask = vmx_set_nmi_mask,
7778         .enable_nmi_window = vmx_enable_nmi_window,
7779         .enable_irq_window = vmx_enable_irq_window,
7780         .update_cr8_intercept = vmx_update_cr8_intercept,
7781         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7782         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7783         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7784         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7785         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7786         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7787         .hwapic_irr_update = vmx_hwapic_irr_update,
7788         .hwapic_isr_update = vmx_hwapic_isr_update,
7789         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7790         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7791         .deliver_interrupt = vmx_deliver_interrupt,
7792         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7793
7794         .set_tss_addr = vmx_set_tss_addr,
7795         .set_identity_map_addr = vmx_set_identity_map_addr,
7796         .get_mt_mask = vmx_get_mt_mask,
7797
7798         .get_exit_info = vmx_get_exit_info,
7799
7800         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7801
7802         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7803
7804         .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7805         .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7806         .write_tsc_offset = vmx_write_tsc_offset,
7807         .write_tsc_multiplier = vmx_write_tsc_multiplier,
7808
7809         .load_mmu_pgd = vmx_load_mmu_pgd,
7810
7811         .check_intercept = vmx_check_intercept,
7812         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7813
7814         .request_immediate_exit = vmx_request_immediate_exit,
7815
7816         .sched_in = vmx_sched_in,
7817
7818         .cpu_dirty_log_size = PML_ENTITY_NUM,
7819         .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7820
7821         .pmu_ops = &intel_pmu_ops,
7822         .nested_ops = &vmx_nested_ops,
7823
7824         .pi_update_irte = vmx_pi_update_irte,
7825         .pi_start_assignment = vmx_pi_start_assignment,
7826
7827 #ifdef CONFIG_X86_64
7828         .set_hv_timer = vmx_set_hv_timer,
7829         .cancel_hv_timer = vmx_cancel_hv_timer,
7830 #endif
7831
7832         .setup_mce = vmx_setup_mce,
7833
7834         .smi_allowed = vmx_smi_allowed,
7835         .enter_smm = vmx_enter_smm,
7836         .leave_smm = vmx_leave_smm,
7837         .enable_smi_window = vmx_enable_smi_window,
7838
7839         .can_emulate_instruction = vmx_can_emulate_instruction,
7840         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7841         .migrate_timers = vmx_migrate_timers,
7842
7843         .msr_filter_changed = vmx_msr_filter_changed,
7844         .complete_emulated_msr = kvm_complete_insn_gp,
7845
7846         .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7847 };
7848
7849 static unsigned int vmx_handle_intel_pt_intr(void)
7850 {
7851         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
7852
7853         /* '0' on failure so that the !PT case can use a RET0 static call. */
7854         if (!kvm_arch_pmi_in_guest(vcpu))
7855                 return 0;
7856
7857         kvm_make_request(KVM_REQ_PMI, vcpu);
7858         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7859                   (unsigned long *)&vcpu->arch.pmu.global_status);
7860         return 1;
7861 }
7862
7863 static __init void vmx_setup_user_return_msrs(void)
7864 {
7865
7866         /*
7867          * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7868          * will emulate SYSCALL in legacy mode if the vendor string in guest
7869          * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7870          * support this emulation, MSR_STAR is included in the list for i386,
7871          * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7872          * into hardware and is here purely for emulation purposes.
7873          */
7874         const u32 vmx_uret_msrs_list[] = {
7875         #ifdef CONFIG_X86_64
7876                 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7877         #endif
7878                 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7879                 MSR_IA32_TSX_CTRL,
7880         };
7881         int i;
7882
7883         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7884
7885         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7886                 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7887 }
7888
7889 static struct kvm_x86_init_ops vmx_init_ops __initdata;
7890
7891 static __init int hardware_setup(void)
7892 {
7893         unsigned long host_bndcfgs;
7894         struct desc_ptr dt;
7895         int r;
7896
7897         store_idt(&dt);
7898         host_idt_base = dt.address;
7899
7900         vmx_setup_user_return_msrs();
7901
7902         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7903                 return -EIO;
7904
7905         if (boot_cpu_has(X86_FEATURE_NX))
7906                 kvm_enable_efer_bits(EFER_NX);
7907
7908         if (boot_cpu_has(X86_FEATURE_MPX)) {
7909                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7910                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7911         }
7912
7913         if (!cpu_has_vmx_mpx())
7914                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7915                                     XFEATURE_MASK_BNDCSR);
7916
7917         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7918             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7919                 enable_vpid = 0;
7920
7921         if (!cpu_has_vmx_ept() ||
7922             !cpu_has_vmx_ept_4levels() ||
7923             !cpu_has_vmx_ept_mt_wb() ||
7924             !cpu_has_vmx_invept_global())
7925                 enable_ept = 0;
7926
7927         /* NX support is required for shadow paging. */
7928         if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7929                 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7930                 return -EOPNOTSUPP;
7931         }
7932
7933         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7934                 enable_ept_ad_bits = 0;
7935
7936         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7937                 enable_unrestricted_guest = 0;
7938
7939         if (!cpu_has_vmx_flexpriority())
7940                 flexpriority_enabled = 0;
7941
7942         if (!cpu_has_virtual_nmis())
7943                 enable_vnmi = 0;
7944
7945         /*
7946          * set_apic_access_page_addr() is used to reload apic access
7947          * page upon invalidation.  No need to do anything if not
7948          * using the APIC_ACCESS_ADDR VMCS field.
7949          */
7950         if (!flexpriority_enabled)
7951                 vmx_x86_ops.set_apic_access_page_addr = NULL;
7952
7953         if (!cpu_has_vmx_tpr_shadow())
7954                 vmx_x86_ops.update_cr8_intercept = NULL;
7955
7956 #if IS_ENABLED(CONFIG_HYPERV)
7957         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7958             && enable_ept) {
7959                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7960                 vmx_x86_ops.tlb_remote_flush_with_range =
7961                                 hv_remote_flush_tlb_with_range;
7962         }
7963 #endif
7964
7965         if (!cpu_has_vmx_ple()) {
7966                 ple_gap = 0;
7967                 ple_window = 0;
7968                 ple_window_grow = 0;
7969                 ple_window_max = 0;
7970                 ple_window_shrink = 0;
7971         }
7972
7973         if (!cpu_has_vmx_apicv())
7974                 enable_apicv = 0;
7975         if (!enable_apicv)
7976                 vmx_x86_ops.sync_pir_to_irr = NULL;
7977
7978         if (cpu_has_vmx_tsc_scaling())
7979                 kvm_has_tsc_control = true;
7980
7981         kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7982         kvm_tsc_scaling_ratio_frac_bits = 48;
7983         kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7984
7985         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7986
7987         if (enable_ept)
7988                 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7989                                       cpu_has_vmx_ept_execute_only());
7990
7991         kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
7992                           ept_caps_to_lpage_level(vmx_capability.ept));
7993
7994         /*
7995          * Only enable PML when hardware supports PML feature, and both EPT
7996          * and EPT A/D bit features are enabled -- PML depends on them to work.
7997          */
7998         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7999                 enable_pml = 0;
8000
8001         if (!enable_pml)
8002                 vmx_x86_ops.cpu_dirty_log_size = 0;
8003
8004         if (!cpu_has_vmx_preemption_timer())
8005                 enable_preemption_timer = false;
8006
8007         if (enable_preemption_timer) {
8008                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8009                 u64 vmx_msr;
8010
8011                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8012                 cpu_preemption_timer_multi =
8013                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8014
8015                 if (tsc_khz)
8016                         use_timer_freq = (u64)tsc_khz * 1000;
8017                 use_timer_freq >>= cpu_preemption_timer_multi;
8018
8019                 /*
8020                  * KVM "disables" the preemption timer by setting it to its max
8021                  * value.  Don't use the timer if it might cause spurious exits
8022                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8023                  */
8024                 if (use_timer_freq > 0xffffffffu / 10)
8025                         enable_preemption_timer = false;
8026         }
8027
8028         if (!enable_preemption_timer) {
8029                 vmx_x86_ops.set_hv_timer = NULL;
8030                 vmx_x86_ops.cancel_hv_timer = NULL;
8031                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8032         }
8033
8034         kvm_mce_cap_supported |= MCG_LMCE_P;
8035
8036         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8037                 return -EINVAL;
8038         if (!enable_ept || !cpu_has_vmx_intel_pt())
8039                 pt_mode = PT_MODE_SYSTEM;
8040         if (pt_mode == PT_MODE_HOST_GUEST)
8041                 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8042         else
8043                 vmx_init_ops.handle_intel_pt_intr = NULL;
8044
8045         setup_default_sgx_lepubkeyhash();
8046
8047         if (nested) {
8048                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8049                                            vmx_capability.ept);
8050
8051                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8052                 if (r)
8053                         return r;
8054         }
8055
8056         vmx_set_cpu_caps();
8057
8058         r = alloc_kvm_area();
8059         if (r && nested)
8060                 nested_vmx_hardware_unsetup();
8061
8062         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8063
8064         return r;
8065 }
8066
8067 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8068         .cpu_has_kvm_support = cpu_has_kvm_support,
8069         .disabled_by_bios = vmx_disabled_by_bios,
8070         .check_processor_compatibility = vmx_check_processor_compat,
8071         .hardware_setup = hardware_setup,
8072         .handle_intel_pt_intr = NULL,
8073
8074         .runtime_ops = &vmx_x86_ops,
8075 };
8076
8077 static void vmx_cleanup_l1d_flush(void)
8078 {
8079         if (vmx_l1d_flush_pages) {
8080                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8081                 vmx_l1d_flush_pages = NULL;
8082         }
8083         /* Restore state so sysfs ignores VMX */
8084         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8085 }
8086
8087 static void vmx_exit(void)
8088 {
8089 #ifdef CONFIG_KEXEC_CORE
8090         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8091         synchronize_rcu();
8092 #endif
8093
8094         kvm_exit();
8095
8096 #if IS_ENABLED(CONFIG_HYPERV)
8097         if (static_branch_unlikely(&enable_evmcs)) {
8098                 int cpu;
8099                 struct hv_vp_assist_page *vp_ap;
8100                 /*
8101                  * Reset everything to support using non-enlightened VMCS
8102                  * access later (e.g. when we reload the module with
8103                  * enlightened_vmcs=0)
8104                  */
8105                 for_each_online_cpu(cpu) {
8106                         vp_ap = hv_get_vp_assist_page(cpu);
8107
8108                         if (!vp_ap)
8109                                 continue;
8110
8111                         vp_ap->nested_control.features.directhypercall = 0;
8112                         vp_ap->current_nested_vmcs = 0;
8113                         vp_ap->enlighten_vmentry = 0;
8114                 }
8115
8116                 static_branch_disable(&enable_evmcs);
8117         }
8118 #endif
8119         vmx_cleanup_l1d_flush();
8120
8121         allow_smaller_maxphyaddr = false;
8122 }
8123 module_exit(vmx_exit);
8124
8125 static int __init vmx_init(void)
8126 {
8127         int r, cpu;
8128
8129 #if IS_ENABLED(CONFIG_HYPERV)
8130         /*
8131          * Enlightened VMCS usage should be recommended and the host needs
8132          * to support eVMCS v1 or above. We can also disable eVMCS support
8133          * with module parameter.
8134          */
8135         if (enlightened_vmcs &&
8136             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8137             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8138             KVM_EVMCS_VERSION) {
8139
8140                 /* Check that we have assist pages on all online CPUs */
8141                 for_each_online_cpu(cpu) {
8142                         if (!hv_get_vp_assist_page(cpu)) {
8143                                 enlightened_vmcs = false;
8144                                 break;
8145                         }
8146                 }
8147
8148                 if (enlightened_vmcs) {
8149                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8150                         static_branch_enable(&enable_evmcs);
8151                 }
8152
8153                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8154                         vmx_x86_ops.enable_direct_tlbflush
8155                                 = hv_enable_direct_tlbflush;
8156
8157         } else {
8158                 enlightened_vmcs = false;
8159         }
8160 #endif
8161
8162         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8163                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8164         if (r)
8165                 return r;
8166
8167         /*
8168          * Must be called after kvm_init() so enable_ept is properly set
8169          * up. Hand the parameter mitigation value in which was stored in
8170          * the pre module init parser. If no parameter was given, it will
8171          * contain 'auto' which will be turned into the default 'cond'
8172          * mitigation mode.
8173          */
8174         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8175         if (r) {
8176                 vmx_exit();
8177                 return r;
8178         }
8179
8180         for_each_possible_cpu(cpu) {
8181                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8182
8183                 pi_init_cpu(cpu);
8184         }
8185
8186 #ifdef CONFIG_KEXEC_CORE
8187         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8188                            crash_vmclear_local_loaded_vmcss);
8189 #endif
8190         vmx_check_vmcs12_offsets();
8191
8192         /*
8193          * Shadow paging doesn't have a (further) performance penalty
8194          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8195          * by default
8196          */
8197         if (!enable_ept)
8198                 allow_smaller_maxphyaddr = true;
8199
8200         return 0;
8201 }
8202 module_init(vmx_init);