Merge tag 'mips-fixes-5.17_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips...
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "evmcs.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "sgx.h"
16 #include "trace.h"
17 #include "vmx.h"
18 #include "x86.h"
19
20 static bool __read_mostly enable_shadow_vmcs = 1;
21 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
22
23 static bool __read_mostly nested_early_check = 0;
24 module_param(nested_early_check, bool, S_IRUGO);
25
26 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
27
28 /*
29  * Hyper-V requires all of these, so mark them as supported even though
30  * they are just treated the same as all-context.
31  */
32 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
33         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
34         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
35         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
36         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
37
38 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
39
40 enum {
41         VMX_VMREAD_BITMAP,
42         VMX_VMWRITE_BITMAP,
43         VMX_BITMAP_NR
44 };
45 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
46
47 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
48 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
49
50 struct shadow_vmcs_field {
51         u16     encoding;
52         u16     offset;
53 };
54 static struct shadow_vmcs_field shadow_read_only_fields[] = {
55 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
56 #include "vmcs_shadow_fields.h"
57 };
58 static int max_shadow_read_only_fields =
59         ARRAY_SIZE(shadow_read_only_fields);
60
61 static struct shadow_vmcs_field shadow_read_write_fields[] = {
62 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
63 #include "vmcs_shadow_fields.h"
64 };
65 static int max_shadow_read_write_fields =
66         ARRAY_SIZE(shadow_read_write_fields);
67
68 static void init_vmcs_shadow_fields(void)
69 {
70         int i, j;
71
72         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
73         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
74
75         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
76                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
77                 u16 field = entry.encoding;
78
79                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
80                     (i + 1 == max_shadow_read_only_fields ||
81                      shadow_read_only_fields[i + 1].encoding != field + 1))
82                         pr_err("Missing field from shadow_read_only_field %x\n",
83                                field + 1);
84
85                 clear_bit(field, vmx_vmread_bitmap);
86                 if (field & 1)
87 #ifdef CONFIG_X86_64
88                         continue;
89 #else
90                         entry.offset += sizeof(u32);
91 #endif
92                 shadow_read_only_fields[j++] = entry;
93         }
94         max_shadow_read_only_fields = j;
95
96         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
97                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
98                 u16 field = entry.encoding;
99
100                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
101                     (i + 1 == max_shadow_read_write_fields ||
102                      shadow_read_write_fields[i + 1].encoding != field + 1))
103                         pr_err("Missing field from shadow_read_write_field %x\n",
104                                field + 1);
105
106                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
107                           field <= GUEST_TR_AR_BYTES,
108                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
109
110                 /*
111                  * PML and the preemption timer can be emulated, but the
112                  * processor cannot vmwrite to fields that don't exist
113                  * on bare metal.
114                  */
115                 switch (field) {
116                 case GUEST_PML_INDEX:
117                         if (!cpu_has_vmx_pml())
118                                 continue;
119                         break;
120                 case VMX_PREEMPTION_TIMER_VALUE:
121                         if (!cpu_has_vmx_preemption_timer())
122                                 continue;
123                         break;
124                 case GUEST_INTR_STATUS:
125                         if (!cpu_has_vmx_apicv())
126                                 continue;
127                         break;
128                 default:
129                         break;
130                 }
131
132                 clear_bit(field, vmx_vmwrite_bitmap);
133                 clear_bit(field, vmx_vmread_bitmap);
134                 if (field & 1)
135 #ifdef CONFIG_X86_64
136                         continue;
137 #else
138                         entry.offset += sizeof(u32);
139 #endif
140                 shadow_read_write_fields[j++] = entry;
141         }
142         max_shadow_read_write_fields = j;
143 }
144
145 /*
146  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
147  * set the success or error code of an emulated VMX instruction (as specified
148  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
149  * instruction.
150  */
151 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
152 {
153         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
154                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
155                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
156         return kvm_skip_emulated_instruction(vcpu);
157 }
158
159 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
160 {
161         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
162                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
163                             X86_EFLAGS_SF | X86_EFLAGS_OF))
164                         | X86_EFLAGS_CF);
165         return kvm_skip_emulated_instruction(vcpu);
166 }
167
168 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
169                                 u32 vm_instruction_error)
170 {
171         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
172                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
173                             X86_EFLAGS_SF | X86_EFLAGS_OF))
174                         | X86_EFLAGS_ZF);
175         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
176         /*
177          * We don't need to force sync to shadow VMCS because
178          * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
179          * fields and thus must be synced.
180          */
181         if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
182                 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
183
184         return kvm_skip_emulated_instruction(vcpu);
185 }
186
187 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 {
189         struct vcpu_vmx *vmx = to_vmx(vcpu);
190
191         /*
192          * failValid writes the error number to the current VMCS, which
193          * can't be done if there isn't a current VMCS.
194          */
195         if (vmx->nested.current_vmptr == INVALID_GPA &&
196             !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
197                 return nested_vmx_failInvalid(vcpu);
198
199         return nested_vmx_failValid(vcpu, vm_instruction_error);
200 }
201
202 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
203 {
204         /* TODO: not to reset guest simply here. */
205         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
206         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
207 }
208
209 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
210 {
211         return fixed_bits_valid(control, low, high);
212 }
213
214 static inline u64 vmx_control_msr(u32 low, u32 high)
215 {
216         return low | ((u64)high << 32);
217 }
218
219 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
220 {
221         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
222         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
223         vmx->nested.need_vmcs12_to_shadow_sync = false;
224 }
225
226 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
227 {
228         struct vcpu_vmx *vmx = to_vmx(vcpu);
229
230         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
231                 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
232                 vmx->nested.hv_evmcs = NULL;
233         }
234
235         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
236 }
237
238 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
239                                      struct loaded_vmcs *prev)
240 {
241         struct vmcs_host_state *dest, *src;
242
243         if (unlikely(!vmx->guest_state_loaded))
244                 return;
245
246         src = &prev->host_state;
247         dest = &vmx->loaded_vmcs->host_state;
248
249         vmx_set_vmcs_host_state(dest, src->cr3, src->fs_sel, src->gs_sel,
250                                 src->fs_base, src->gs_base);
251         dest->ldt_sel = src->ldt_sel;
252 #ifdef CONFIG_X86_64
253         dest->ds_sel = src->ds_sel;
254         dest->es_sel = src->es_sel;
255 #endif
256 }
257
258 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
259 {
260         struct vcpu_vmx *vmx = to_vmx(vcpu);
261         struct loaded_vmcs *prev;
262         int cpu;
263
264         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
265                 return;
266
267         cpu = get_cpu();
268         prev = vmx->loaded_vmcs;
269         vmx->loaded_vmcs = vmcs;
270         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
271         vmx_sync_vmcs_host_state(vmx, prev);
272         put_cpu();
273
274         vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
275
276         /*
277          * All lazily updated registers will be reloaded from VMCS12 on both
278          * vmentry and vmexit.
279          */
280         vcpu->arch.regs_dirty = 0;
281 }
282
283 /*
284  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
285  * just stops using VMX.
286  */
287 static void free_nested(struct kvm_vcpu *vcpu)
288 {
289         struct vcpu_vmx *vmx = to_vmx(vcpu);
290
291         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
292                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
293
294         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
295                 return;
296
297         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
298
299         vmx->nested.vmxon = false;
300         vmx->nested.smm.vmxon = false;
301         vmx->nested.vmxon_ptr = INVALID_GPA;
302         free_vpid(vmx->nested.vpid02);
303         vmx->nested.posted_intr_nv = -1;
304         vmx->nested.current_vmptr = INVALID_GPA;
305         if (enable_shadow_vmcs) {
306                 vmx_disable_shadow_vmcs(vmx);
307                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
308                 free_vmcs(vmx->vmcs01.shadow_vmcs);
309                 vmx->vmcs01.shadow_vmcs = NULL;
310         }
311         kfree(vmx->nested.cached_vmcs12);
312         vmx->nested.cached_vmcs12 = NULL;
313         kfree(vmx->nested.cached_shadow_vmcs12);
314         vmx->nested.cached_shadow_vmcs12 = NULL;
315         /* Unpin physical memory we referred to in the vmcs02 */
316         if (vmx->nested.apic_access_page) {
317                 kvm_release_page_clean(vmx->nested.apic_access_page);
318                 vmx->nested.apic_access_page = NULL;
319         }
320         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
321         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
322         vmx->nested.pi_desc = NULL;
323
324         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
325
326         nested_release_evmcs(vcpu);
327
328         free_loaded_vmcs(&vmx->nested.vmcs02);
329 }
330
331 /*
332  * Ensure that the current vmcs of the logical processor is the
333  * vmcs01 of the vcpu before calling free_nested().
334  */
335 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
336 {
337         vcpu_load(vcpu);
338         vmx_leave_nested(vcpu);
339         vcpu_put(vcpu);
340 }
341
342 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
343
344 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
345 {
346         return VALID_PAGE(root_hpa) &&
347                ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
348 }
349
350 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
351                                        gpa_t addr)
352 {
353         uint i;
354         struct kvm_mmu_root_info *cached_root;
355
356         WARN_ON_ONCE(!mmu_is_nested(vcpu));
357
358         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
359                 cached_root = &vcpu->arch.mmu->prev_roots[i];
360
361                 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
362                                             eptp))
363                         vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
364         }
365 }
366
367 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
368                 struct x86_exception *fault)
369 {
370         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
371         struct vcpu_vmx *vmx = to_vmx(vcpu);
372         u32 vm_exit_reason;
373         unsigned long exit_qualification = vcpu->arch.exit_qualification;
374
375         if (vmx->nested.pml_full) {
376                 vm_exit_reason = EXIT_REASON_PML_FULL;
377                 vmx->nested.pml_full = false;
378                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
379         } else {
380                 if (fault->error_code & PFERR_RSVD_MASK)
381                         vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
382                 else
383                         vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
384
385                 /*
386                  * Although the caller (kvm_inject_emulated_page_fault) would
387                  * have already synced the faulting address in the shadow EPT
388                  * tables for the current EPTP12, we also need to sync it for
389                  * any other cached EPTP02s based on the same EP4TA, since the
390                  * TLB associates mappings to the EP4TA rather than the full EPTP.
391                  */
392                 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
393                                            fault->address);
394         }
395
396         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
397         vmcs12->guest_physical_address = fault->address;
398 }
399
400 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
401 {
402         struct vcpu_vmx *vmx = to_vmx(vcpu);
403         bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
404         int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
405
406         kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
407                                 nested_ept_ad_enabled(vcpu),
408                                 nested_ept_get_eptp(vcpu));
409 }
410
411 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
412 {
413         WARN_ON(mmu_is_nested(vcpu));
414
415         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
416         nested_ept_new_eptp(vcpu);
417         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
418         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
419         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
420
421         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
422 }
423
424 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
425 {
426         vcpu->arch.mmu = &vcpu->arch.root_mmu;
427         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
428 }
429
430 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
431                                             u16 error_code)
432 {
433         bool inequality, bit;
434
435         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
436         inequality =
437                 (error_code & vmcs12->page_fault_error_code_mask) !=
438                  vmcs12->page_fault_error_code_match;
439         return inequality ^ bit;
440 }
441
442
443 /*
444  * KVM wants to inject page-faults which it got to the guest. This function
445  * checks whether in a nested guest, we need to inject them to L1 or L2.
446  */
447 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
448 {
449         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
450         unsigned int nr = vcpu->arch.exception.nr;
451         bool has_payload = vcpu->arch.exception.has_payload;
452         unsigned long payload = vcpu->arch.exception.payload;
453
454         if (nr == PF_VECTOR) {
455                 if (vcpu->arch.exception.nested_apf) {
456                         *exit_qual = vcpu->arch.apf.nested_apf_token;
457                         return 1;
458                 }
459                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
460                                                     vcpu->arch.exception.error_code)) {
461                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
462                         return 1;
463                 }
464         } else if (vmcs12->exception_bitmap & (1u << nr)) {
465                 if (nr == DB_VECTOR) {
466                         if (!has_payload) {
467                                 payload = vcpu->arch.dr6;
468                                 payload &= ~DR6_BT;
469                                 payload ^= DR6_ACTIVE_LOW;
470                         }
471                         *exit_qual = payload;
472                 } else
473                         *exit_qual = 0;
474                 return 1;
475         }
476
477         return 0;
478 }
479
480
481 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
482                 struct x86_exception *fault)
483 {
484         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
485
486         WARN_ON(!is_guest_mode(vcpu));
487
488         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
489                 !to_vmx(vcpu)->nested.nested_run_pending) {
490                 vmcs12->vm_exit_intr_error_code = fault->error_code;
491                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
492                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
493                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
494                                   fault->address);
495         } else {
496                 kvm_inject_page_fault(vcpu, fault);
497         }
498 }
499
500 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
501                                                struct vmcs12 *vmcs12)
502 {
503         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
504                 return 0;
505
506         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
507             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
508                 return -EINVAL;
509
510         return 0;
511 }
512
513 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
514                                                 struct vmcs12 *vmcs12)
515 {
516         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
517                 return 0;
518
519         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
520                 return -EINVAL;
521
522         return 0;
523 }
524
525 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
526                                                 struct vmcs12 *vmcs12)
527 {
528         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
529                 return 0;
530
531         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
532                 return -EINVAL;
533
534         return 0;
535 }
536
537 /*
538  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
539  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
540  * only the "disable intercept" case needs to be handled.
541  */
542 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
543                                                         unsigned long *msr_bitmap_l0,
544                                                         u32 msr, int type)
545 {
546         if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
547                 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
548
549         if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
550                 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
551 }
552
553 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
554 {
555         int msr;
556
557         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
558                 unsigned word = msr / BITS_PER_LONG;
559
560                 msr_bitmap[word] = ~0;
561                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
562         }
563 }
564
565 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)                                     \
566 static inline                                                                   \
567 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,                  \
568                                          unsigned long *msr_bitmap_l1,          \
569                                          unsigned long *msr_bitmap_l0, u32 msr) \
570 {                                                                               \
571         if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||            \
572             vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))                       \
573                 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);                    \
574         else                                                                    \
575                 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);                  \
576 }
577 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
578 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
579
580 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
581                                                     unsigned long *msr_bitmap_l1,
582                                                     unsigned long *msr_bitmap_l0,
583                                                     u32 msr, int types)
584 {
585         if (types & MSR_TYPE_R)
586                 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
587                                                   msr_bitmap_l0, msr);
588         if (types & MSR_TYPE_W)
589                 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
590                                                    msr_bitmap_l0, msr);
591 }
592
593 /*
594  * Merge L0's and L1's MSR bitmap, return false to indicate that
595  * we do not use the hardware.
596  */
597 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
598                                                  struct vmcs12 *vmcs12)
599 {
600         struct vcpu_vmx *vmx = to_vmx(vcpu);
601         int msr;
602         unsigned long *msr_bitmap_l1;
603         unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
604         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
605         struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
606
607         /* Nothing to do if the MSR bitmap is not in use.  */
608         if (!cpu_has_vmx_msr_bitmap() ||
609             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
610                 return false;
611
612         /*
613          * MSR bitmap update can be skipped when:
614          * - MSR bitmap for L1 hasn't changed.
615          * - Nested hypervisor (L1) is attempting to launch the same L2 as
616          *   before.
617          * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
618          *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
619          */
620         if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
621             evmcs->hv_enlightenments_control.msr_bitmap &&
622             evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
623                 return true;
624
625         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
626                 return false;
627
628         msr_bitmap_l1 = (unsigned long *)map->hva;
629
630         /*
631          * To keep the control flow simple, pay eight 8-byte writes (sixteen
632          * 4-byte writes on 32-bit systems) up front to enable intercepts for
633          * the x2APIC MSR range and selectively toggle those relevant to L2.
634          */
635         enable_x2apic_msr_intercepts(msr_bitmap_l0);
636
637         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
638                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
639                         /*
640                          * L0 need not intercept reads for MSRs between 0x800
641                          * and 0x8ff, it just lets the processor take the value
642                          * from the virtual-APIC page; take those 256 bits
643                          * directly from the L1 bitmap.
644                          */
645                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
646                                 unsigned word = msr / BITS_PER_LONG;
647
648                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
649                         }
650                 }
651
652                 nested_vmx_disable_intercept_for_x2apic_msr(
653                         msr_bitmap_l1, msr_bitmap_l0,
654                         X2APIC_MSR(APIC_TASKPRI),
655                         MSR_TYPE_R | MSR_TYPE_W);
656
657                 if (nested_cpu_has_vid(vmcs12)) {
658                         nested_vmx_disable_intercept_for_x2apic_msr(
659                                 msr_bitmap_l1, msr_bitmap_l0,
660                                 X2APIC_MSR(APIC_EOI),
661                                 MSR_TYPE_W);
662                         nested_vmx_disable_intercept_for_x2apic_msr(
663                                 msr_bitmap_l1, msr_bitmap_l0,
664                                 X2APIC_MSR(APIC_SELF_IPI),
665                                 MSR_TYPE_W);
666                 }
667         }
668
669         /*
670          * Always check vmcs01's bitmap to honor userspace MSR filters and any
671          * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
672          */
673 #ifdef CONFIG_X86_64
674         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
675                                          MSR_FS_BASE, MSR_TYPE_RW);
676
677         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
678                                          MSR_GS_BASE, MSR_TYPE_RW);
679
680         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
681                                          MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
682 #endif
683         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
684                                          MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
685
686         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
687                                          MSR_IA32_PRED_CMD, MSR_TYPE_W);
688
689         kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
690
691         vmx->nested.force_msr_bitmap_recalc = false;
692
693         return true;
694 }
695
696 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
697                                        struct vmcs12 *vmcs12)
698 {
699         struct vcpu_vmx *vmx = to_vmx(vcpu);
700         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
701
702         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
703             vmcs12->vmcs_link_pointer == INVALID_GPA)
704                 return;
705
706         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
707             kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
708                                       vmcs12->vmcs_link_pointer, VMCS12_SIZE))
709                 return;
710
711         kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
712                               VMCS12_SIZE);
713 }
714
715 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
716                                               struct vmcs12 *vmcs12)
717 {
718         struct vcpu_vmx *vmx = to_vmx(vcpu);
719         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
720
721         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
722             vmcs12->vmcs_link_pointer == INVALID_GPA)
723                 return;
724
725         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
726             kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
727                                       vmcs12->vmcs_link_pointer, VMCS12_SIZE))
728                 return;
729
730         kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
731                                VMCS12_SIZE);
732 }
733
734 /*
735  * In nested virtualization, check if L1 has set
736  * VM_EXIT_ACK_INTR_ON_EXIT
737  */
738 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
739 {
740         return get_vmcs12(vcpu)->vm_exit_controls &
741                 VM_EXIT_ACK_INTR_ON_EXIT;
742 }
743
744 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
745                                           struct vmcs12 *vmcs12)
746 {
747         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
748             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
749                 return -EINVAL;
750         else
751                 return 0;
752 }
753
754 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
755                                            struct vmcs12 *vmcs12)
756 {
757         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
758             !nested_cpu_has_apic_reg_virt(vmcs12) &&
759             !nested_cpu_has_vid(vmcs12) &&
760             !nested_cpu_has_posted_intr(vmcs12))
761                 return 0;
762
763         /*
764          * If virtualize x2apic mode is enabled,
765          * virtualize apic access must be disabled.
766          */
767         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
768                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
769                 return -EINVAL;
770
771         /*
772          * If virtual interrupt delivery is enabled,
773          * we must exit on external interrupts.
774          */
775         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
776                 return -EINVAL;
777
778         /*
779          * bits 15:8 should be zero in posted_intr_nv,
780          * the descriptor address has been already checked
781          * in nested_get_vmcs12_pages.
782          *
783          * bits 5:0 of posted_intr_desc_addr should be zero.
784          */
785         if (nested_cpu_has_posted_intr(vmcs12) &&
786            (CC(!nested_cpu_has_vid(vmcs12)) ||
787             CC(!nested_exit_intr_ack_set(vcpu)) ||
788             CC((vmcs12->posted_intr_nv & 0xff00)) ||
789             CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
790                 return -EINVAL;
791
792         /* tpr shadow is needed by all apicv features. */
793         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
794                 return -EINVAL;
795
796         return 0;
797 }
798
799 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
800                                        u32 count, u64 addr)
801 {
802         if (count == 0)
803                 return 0;
804
805         if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
806             !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
807                 return -EINVAL;
808
809         return 0;
810 }
811
812 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
813                                                      struct vmcs12 *vmcs12)
814 {
815         if (CC(nested_vmx_check_msr_switch(vcpu,
816                                            vmcs12->vm_exit_msr_load_count,
817                                            vmcs12->vm_exit_msr_load_addr)) ||
818             CC(nested_vmx_check_msr_switch(vcpu,
819                                            vmcs12->vm_exit_msr_store_count,
820                                            vmcs12->vm_exit_msr_store_addr)))
821                 return -EINVAL;
822
823         return 0;
824 }
825
826 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
827                                                       struct vmcs12 *vmcs12)
828 {
829         if (CC(nested_vmx_check_msr_switch(vcpu,
830                                            vmcs12->vm_entry_msr_load_count,
831                                            vmcs12->vm_entry_msr_load_addr)))
832                 return -EINVAL;
833
834         return 0;
835 }
836
837 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
838                                          struct vmcs12 *vmcs12)
839 {
840         if (!nested_cpu_has_pml(vmcs12))
841                 return 0;
842
843         if (CC(!nested_cpu_has_ept(vmcs12)) ||
844             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
845                 return -EINVAL;
846
847         return 0;
848 }
849
850 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
851                                                         struct vmcs12 *vmcs12)
852 {
853         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
854                !nested_cpu_has_ept(vmcs12)))
855                 return -EINVAL;
856         return 0;
857 }
858
859 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
860                                                          struct vmcs12 *vmcs12)
861 {
862         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
863                !nested_cpu_has_ept(vmcs12)))
864                 return -EINVAL;
865         return 0;
866 }
867
868 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
869                                                  struct vmcs12 *vmcs12)
870 {
871         if (!nested_cpu_has_shadow_vmcs(vmcs12))
872                 return 0;
873
874         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
875             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
876                 return -EINVAL;
877
878         return 0;
879 }
880
881 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
882                                        struct vmx_msr_entry *e)
883 {
884         /* x2APIC MSR accesses are not allowed */
885         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
886                 return -EINVAL;
887         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
888             CC(e->index == MSR_IA32_UCODE_REV))
889                 return -EINVAL;
890         if (CC(e->reserved != 0))
891                 return -EINVAL;
892         return 0;
893 }
894
895 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
896                                      struct vmx_msr_entry *e)
897 {
898         if (CC(e->index == MSR_FS_BASE) ||
899             CC(e->index == MSR_GS_BASE) ||
900             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
901             nested_vmx_msr_check_common(vcpu, e))
902                 return -EINVAL;
903         return 0;
904 }
905
906 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
907                                       struct vmx_msr_entry *e)
908 {
909         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
910             nested_vmx_msr_check_common(vcpu, e))
911                 return -EINVAL;
912         return 0;
913 }
914
915 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
916 {
917         struct vcpu_vmx *vmx = to_vmx(vcpu);
918         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
919                                        vmx->nested.msrs.misc_high);
920
921         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
922 }
923
924 /*
925  * Load guest's/host's msr at nested entry/exit.
926  * return 0 for success, entry index for failure.
927  *
928  * One of the failure modes for MSR load/store is when a list exceeds the
929  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
930  * as possible, process all valid entries before failing rather than precheck
931  * for a capacity violation.
932  */
933 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
934 {
935         u32 i;
936         struct vmx_msr_entry e;
937         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
938
939         for (i = 0; i < count; i++) {
940                 if (unlikely(i >= max_msr_list_size))
941                         goto fail;
942
943                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
944                                         &e, sizeof(e))) {
945                         pr_debug_ratelimited(
946                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
947                                 __func__, i, gpa + i * sizeof(e));
948                         goto fail;
949                 }
950                 if (nested_vmx_load_msr_check(vcpu, &e)) {
951                         pr_debug_ratelimited(
952                                 "%s check failed (%u, 0x%x, 0x%x)\n",
953                                 __func__, i, e.index, e.reserved);
954                         goto fail;
955                 }
956                 if (kvm_set_msr(vcpu, e.index, e.value)) {
957                         pr_debug_ratelimited(
958                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
959                                 __func__, i, e.index, e.value);
960                         goto fail;
961                 }
962         }
963         return 0;
964 fail:
965         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
966         return i + 1;
967 }
968
969 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
970                                             u32 msr_index,
971                                             u64 *data)
972 {
973         struct vcpu_vmx *vmx = to_vmx(vcpu);
974
975         /*
976          * If the L0 hypervisor stored a more accurate value for the TSC that
977          * does not include the time taken for emulation of the L2->L1
978          * VM-exit in L0, use the more accurate value.
979          */
980         if (msr_index == MSR_IA32_TSC) {
981                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
982                                                     MSR_IA32_TSC);
983
984                 if (i >= 0) {
985                         u64 val = vmx->msr_autostore.guest.val[i].value;
986
987                         *data = kvm_read_l1_tsc(vcpu, val);
988                         return true;
989                 }
990         }
991
992         if (kvm_get_msr(vcpu, msr_index, data)) {
993                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
994                         msr_index);
995                 return false;
996         }
997         return true;
998 }
999
1000 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1001                                      struct vmx_msr_entry *e)
1002 {
1003         if (kvm_vcpu_read_guest(vcpu,
1004                                 gpa + i * sizeof(*e),
1005                                 e, 2 * sizeof(u32))) {
1006                 pr_debug_ratelimited(
1007                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
1008                         __func__, i, gpa + i * sizeof(*e));
1009                 return false;
1010         }
1011         if (nested_vmx_store_msr_check(vcpu, e)) {
1012                 pr_debug_ratelimited(
1013                         "%s check failed (%u, 0x%x, 0x%x)\n",
1014                         __func__, i, e->index, e->reserved);
1015                 return false;
1016         }
1017         return true;
1018 }
1019
1020 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1021 {
1022         u64 data;
1023         u32 i;
1024         struct vmx_msr_entry e;
1025         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1026
1027         for (i = 0; i < count; i++) {
1028                 if (unlikely(i >= max_msr_list_size))
1029                         return -EINVAL;
1030
1031                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1032                         return -EINVAL;
1033
1034                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1035                         return -EINVAL;
1036
1037                 if (kvm_vcpu_write_guest(vcpu,
1038                                          gpa + i * sizeof(e) +
1039                                              offsetof(struct vmx_msr_entry, value),
1040                                          &data, sizeof(data))) {
1041                         pr_debug_ratelimited(
1042                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1043                                 __func__, i, e.index, data);
1044                         return -EINVAL;
1045                 }
1046         }
1047         return 0;
1048 }
1049
1050 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1051 {
1052         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1053         u32 count = vmcs12->vm_exit_msr_store_count;
1054         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1055         struct vmx_msr_entry e;
1056         u32 i;
1057
1058         for (i = 0; i < count; i++) {
1059                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1060                         return false;
1061
1062                 if (e.index == msr_index)
1063                         return true;
1064         }
1065         return false;
1066 }
1067
1068 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1069                                            u32 msr_index)
1070 {
1071         struct vcpu_vmx *vmx = to_vmx(vcpu);
1072         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1073         bool in_vmcs12_store_list;
1074         int msr_autostore_slot;
1075         bool in_autostore_list;
1076         int last;
1077
1078         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1079         in_autostore_list = msr_autostore_slot >= 0;
1080         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1081
1082         if (in_vmcs12_store_list && !in_autostore_list) {
1083                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1084                         /*
1085                          * Emulated VMEntry does not fail here.  Instead a less
1086                          * accurate value will be returned by
1087                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1088                          * instead of reading the value from the vmcs02 VMExit
1089                          * MSR-store area.
1090                          */
1091                         pr_warn_ratelimited(
1092                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1093                                 msr_index);
1094                         return;
1095                 }
1096                 last = autostore->nr++;
1097                 autostore->val[last].index = msr_index;
1098         } else if (!in_vmcs12_store_list && in_autostore_list) {
1099                 last = --autostore->nr;
1100                 autostore->val[msr_autostore_slot] = autostore->val[last];
1101         }
1102 }
1103
1104 /*
1105  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1106  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1107  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1108  * @entry_failure_code.
1109  */
1110 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1111                                bool nested_ept, bool reload_pdptrs,
1112                                enum vm_entry_failure_code *entry_failure_code)
1113 {
1114         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1115                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1116                 return -EINVAL;
1117         }
1118
1119         /*
1120          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1121          * must not be dereferenced.
1122          */
1123         if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1124             CC(!load_pdptrs(vcpu, cr3))) {
1125                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1126                 return -EINVAL;
1127         }
1128
1129         if (!nested_ept)
1130                 kvm_mmu_new_pgd(vcpu, cr3);
1131
1132         vcpu->arch.cr3 = cr3;
1133         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1134
1135         /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1136         kvm_init_mmu(vcpu);
1137
1138         return 0;
1139 }
1140
1141 /*
1142  * Returns if KVM is able to config CPU to tag TLB entries
1143  * populated by L2 differently than TLB entries populated
1144  * by L1.
1145  *
1146  * If L0 uses EPT, L1 and L2 run with different EPTP because
1147  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1148  * are tagged with different EPTP.
1149  *
1150  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1151  * with different VPID (L1 entries are tagged with vmx->vpid
1152  * while L2 entries are tagged with vmx->nested.vpid02).
1153  */
1154 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1155 {
1156         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1157
1158         return enable_ept ||
1159                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1160 }
1161
1162 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1163                                             struct vmcs12 *vmcs12,
1164                                             bool is_vmenter)
1165 {
1166         struct vcpu_vmx *vmx = to_vmx(vcpu);
1167
1168         /*
1169          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1170          * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1171          * full TLB flush from the guest's perspective.  This is required even
1172          * if VPID is disabled in the host as KVM may need to synchronize the
1173          * MMU in response to the guest TLB flush.
1174          *
1175          * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1176          * EPT is a special snowflake, as guest-physical mappings aren't
1177          * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1178          * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1179          * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1180          * those mappings.
1181          */
1182         if (!nested_cpu_has_vpid(vmcs12)) {
1183                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1184                 return;
1185         }
1186
1187         /* L2 should never have a VPID if VPID is disabled. */
1188         WARN_ON(!enable_vpid);
1189
1190         /*
1191          * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1192          * emulate a guest TLB flush as KVM does not track vpid12 history nor
1193          * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1194          * that the new vpid12 has never been used and thus represents a new
1195          * guest ASID that cannot have entries in the TLB.
1196          */
1197         if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1198                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1199                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1200                 return;
1201         }
1202
1203         /*
1204          * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1205          * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1206          * KVM was unable to allocate a VPID for L2, flush the current context
1207          * as the effective ASID is common to both L1 and L2.
1208          */
1209         if (!nested_has_guest_tlb_tag(vcpu))
1210                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1211 }
1212
1213 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1214 {
1215         superset &= mask;
1216         subset &= mask;
1217
1218         return (superset | subset) == superset;
1219 }
1220
1221 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1222 {
1223         const u64 feature_and_reserved =
1224                 /* feature (except bit 48; see below) */
1225                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1226                 /* reserved */
1227                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1228         u64 vmx_basic = vmx->nested.msrs.basic;
1229
1230         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1231                 return -EINVAL;
1232
1233         /*
1234          * KVM does not emulate a version of VMX that constrains physical
1235          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1236          */
1237         if (data & BIT_ULL(48))
1238                 return -EINVAL;
1239
1240         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1241             vmx_basic_vmcs_revision_id(data))
1242                 return -EINVAL;
1243
1244         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1245                 return -EINVAL;
1246
1247         vmx->nested.msrs.basic = data;
1248         return 0;
1249 }
1250
1251 static int
1252 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1253 {
1254         u64 supported;
1255         u32 *lowp, *highp;
1256
1257         switch (msr_index) {
1258         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1259                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1260                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1261                 break;
1262         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1263                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1264                 highp = &vmx->nested.msrs.procbased_ctls_high;
1265                 break;
1266         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1267                 lowp = &vmx->nested.msrs.exit_ctls_low;
1268                 highp = &vmx->nested.msrs.exit_ctls_high;
1269                 break;
1270         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1271                 lowp = &vmx->nested.msrs.entry_ctls_low;
1272                 highp = &vmx->nested.msrs.entry_ctls_high;
1273                 break;
1274         case MSR_IA32_VMX_PROCBASED_CTLS2:
1275                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1276                 highp = &vmx->nested.msrs.secondary_ctls_high;
1277                 break;
1278         default:
1279                 BUG();
1280         }
1281
1282         supported = vmx_control_msr(*lowp, *highp);
1283
1284         /* Check must-be-1 bits are still 1. */
1285         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1286                 return -EINVAL;
1287
1288         /* Check must-be-0 bits are still 0. */
1289         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1290                 return -EINVAL;
1291
1292         *lowp = data;
1293         *highp = data >> 32;
1294         return 0;
1295 }
1296
1297 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1298 {
1299         const u64 feature_and_reserved_bits =
1300                 /* feature */
1301                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1302                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1303                 /* reserved */
1304                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1305         u64 vmx_misc;
1306
1307         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1308                                    vmx->nested.msrs.misc_high);
1309
1310         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1311                 return -EINVAL;
1312
1313         if ((vmx->nested.msrs.pinbased_ctls_high &
1314              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1315             vmx_misc_preemption_timer_rate(data) !=
1316             vmx_misc_preemption_timer_rate(vmx_misc))
1317                 return -EINVAL;
1318
1319         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1320                 return -EINVAL;
1321
1322         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1323                 return -EINVAL;
1324
1325         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1326                 return -EINVAL;
1327
1328         vmx->nested.msrs.misc_low = data;
1329         vmx->nested.msrs.misc_high = data >> 32;
1330
1331         return 0;
1332 }
1333
1334 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1335 {
1336         u64 vmx_ept_vpid_cap;
1337
1338         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1339                                            vmx->nested.msrs.vpid_caps);
1340
1341         /* Every bit is either reserved or a feature bit. */
1342         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1343                 return -EINVAL;
1344
1345         vmx->nested.msrs.ept_caps = data;
1346         vmx->nested.msrs.vpid_caps = data >> 32;
1347         return 0;
1348 }
1349
1350 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1351 {
1352         u64 *msr;
1353
1354         switch (msr_index) {
1355         case MSR_IA32_VMX_CR0_FIXED0:
1356                 msr = &vmx->nested.msrs.cr0_fixed0;
1357                 break;
1358         case MSR_IA32_VMX_CR4_FIXED0:
1359                 msr = &vmx->nested.msrs.cr4_fixed0;
1360                 break;
1361         default:
1362                 BUG();
1363         }
1364
1365         /*
1366          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1367          * must be 1 in the restored value.
1368          */
1369         if (!is_bitwise_subset(data, *msr, -1ULL))
1370                 return -EINVAL;
1371
1372         *msr = data;
1373         return 0;
1374 }
1375
1376 /*
1377  * Called when userspace is restoring VMX MSRs.
1378  *
1379  * Returns 0 on success, non-0 otherwise.
1380  */
1381 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1382 {
1383         struct vcpu_vmx *vmx = to_vmx(vcpu);
1384
1385         /*
1386          * Don't allow changes to the VMX capability MSRs while the vCPU
1387          * is in VMX operation.
1388          */
1389         if (vmx->nested.vmxon)
1390                 return -EBUSY;
1391
1392         switch (msr_index) {
1393         case MSR_IA32_VMX_BASIC:
1394                 return vmx_restore_vmx_basic(vmx, data);
1395         case MSR_IA32_VMX_PINBASED_CTLS:
1396         case MSR_IA32_VMX_PROCBASED_CTLS:
1397         case MSR_IA32_VMX_EXIT_CTLS:
1398         case MSR_IA32_VMX_ENTRY_CTLS:
1399                 /*
1400                  * The "non-true" VMX capability MSRs are generated from the
1401                  * "true" MSRs, so we do not support restoring them directly.
1402                  *
1403                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1404                  * should restore the "true" MSRs with the must-be-1 bits
1405                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1406                  * DEFAULT SETTINGS".
1407                  */
1408                 return -EINVAL;
1409         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1410         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1411         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1412         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1413         case MSR_IA32_VMX_PROCBASED_CTLS2:
1414                 return vmx_restore_control_msr(vmx, msr_index, data);
1415         case MSR_IA32_VMX_MISC:
1416                 return vmx_restore_vmx_misc(vmx, data);
1417         case MSR_IA32_VMX_CR0_FIXED0:
1418         case MSR_IA32_VMX_CR4_FIXED0:
1419                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1420         case MSR_IA32_VMX_CR0_FIXED1:
1421         case MSR_IA32_VMX_CR4_FIXED1:
1422                 /*
1423                  * These MSRs are generated based on the vCPU's CPUID, so we
1424                  * do not support restoring them directly.
1425                  */
1426                 return -EINVAL;
1427         case MSR_IA32_VMX_EPT_VPID_CAP:
1428                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1429         case MSR_IA32_VMX_VMCS_ENUM:
1430                 vmx->nested.msrs.vmcs_enum = data;
1431                 return 0;
1432         case MSR_IA32_VMX_VMFUNC:
1433                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1434                         return -EINVAL;
1435                 vmx->nested.msrs.vmfunc_controls = data;
1436                 return 0;
1437         default:
1438                 /*
1439                  * The rest of the VMX capability MSRs do not support restore.
1440                  */
1441                 return -EINVAL;
1442         }
1443 }
1444
1445 /* Returns 0 on success, non-0 otherwise. */
1446 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1447 {
1448         switch (msr_index) {
1449         case MSR_IA32_VMX_BASIC:
1450                 *pdata = msrs->basic;
1451                 break;
1452         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1453         case MSR_IA32_VMX_PINBASED_CTLS:
1454                 *pdata = vmx_control_msr(
1455                         msrs->pinbased_ctls_low,
1456                         msrs->pinbased_ctls_high);
1457                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1458                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1459                 break;
1460         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1461         case MSR_IA32_VMX_PROCBASED_CTLS:
1462                 *pdata = vmx_control_msr(
1463                         msrs->procbased_ctls_low,
1464                         msrs->procbased_ctls_high);
1465                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1466                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1467                 break;
1468         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1469         case MSR_IA32_VMX_EXIT_CTLS:
1470                 *pdata = vmx_control_msr(
1471                         msrs->exit_ctls_low,
1472                         msrs->exit_ctls_high);
1473                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1474                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1475                 break;
1476         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1477         case MSR_IA32_VMX_ENTRY_CTLS:
1478                 *pdata = vmx_control_msr(
1479                         msrs->entry_ctls_low,
1480                         msrs->entry_ctls_high);
1481                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1482                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1483                 break;
1484         case MSR_IA32_VMX_MISC:
1485                 *pdata = vmx_control_msr(
1486                         msrs->misc_low,
1487                         msrs->misc_high);
1488                 break;
1489         case MSR_IA32_VMX_CR0_FIXED0:
1490                 *pdata = msrs->cr0_fixed0;
1491                 break;
1492         case MSR_IA32_VMX_CR0_FIXED1:
1493                 *pdata = msrs->cr0_fixed1;
1494                 break;
1495         case MSR_IA32_VMX_CR4_FIXED0:
1496                 *pdata = msrs->cr4_fixed0;
1497                 break;
1498         case MSR_IA32_VMX_CR4_FIXED1:
1499                 *pdata = msrs->cr4_fixed1;
1500                 break;
1501         case MSR_IA32_VMX_VMCS_ENUM:
1502                 *pdata = msrs->vmcs_enum;
1503                 break;
1504         case MSR_IA32_VMX_PROCBASED_CTLS2:
1505                 *pdata = vmx_control_msr(
1506                         msrs->secondary_ctls_low,
1507                         msrs->secondary_ctls_high);
1508                 break;
1509         case MSR_IA32_VMX_EPT_VPID_CAP:
1510                 *pdata = msrs->ept_caps |
1511                         ((u64)msrs->vpid_caps << 32);
1512                 break;
1513         case MSR_IA32_VMX_VMFUNC:
1514                 *pdata = msrs->vmfunc_controls;
1515                 break;
1516         default:
1517                 return 1;
1518         }
1519
1520         return 0;
1521 }
1522
1523 /*
1524  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1525  * been modified by the L1 guest.  Note, "writable" in this context means
1526  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1527  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1528  * VM-exit information fields (which are actually writable if the vCPU is
1529  * configured to support "VMWRITE to any supported field in the VMCS").
1530  */
1531 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1532 {
1533         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1534         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1535         struct shadow_vmcs_field field;
1536         unsigned long val;
1537         int i;
1538
1539         if (WARN_ON(!shadow_vmcs))
1540                 return;
1541
1542         preempt_disable();
1543
1544         vmcs_load(shadow_vmcs);
1545
1546         for (i = 0; i < max_shadow_read_write_fields; i++) {
1547                 field = shadow_read_write_fields[i];
1548                 val = __vmcs_readl(field.encoding);
1549                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1550         }
1551
1552         vmcs_clear(shadow_vmcs);
1553         vmcs_load(vmx->loaded_vmcs->vmcs);
1554
1555         preempt_enable();
1556 }
1557
1558 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1559 {
1560         const struct shadow_vmcs_field *fields[] = {
1561                 shadow_read_write_fields,
1562                 shadow_read_only_fields
1563         };
1564         const int max_fields[] = {
1565                 max_shadow_read_write_fields,
1566                 max_shadow_read_only_fields
1567         };
1568         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1569         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1570         struct shadow_vmcs_field field;
1571         unsigned long val;
1572         int i, q;
1573
1574         if (WARN_ON(!shadow_vmcs))
1575                 return;
1576
1577         vmcs_load(shadow_vmcs);
1578
1579         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1580                 for (i = 0; i < max_fields[q]; i++) {
1581                         field = fields[q][i];
1582                         val = vmcs12_read_any(vmcs12, field.encoding,
1583                                               field.offset);
1584                         __vmcs_writel(field.encoding, val);
1585                 }
1586         }
1587
1588         vmcs_clear(shadow_vmcs);
1589         vmcs_load(vmx->loaded_vmcs->vmcs);
1590 }
1591
1592 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1593 {
1594         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1595         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1596
1597         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1598         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1599         vmcs12->guest_rip = evmcs->guest_rip;
1600
1601         if (unlikely(!(hv_clean_fields &
1602                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1603                 vmcs12->guest_rsp = evmcs->guest_rsp;
1604                 vmcs12->guest_rflags = evmcs->guest_rflags;
1605                 vmcs12->guest_interruptibility_info =
1606                         evmcs->guest_interruptibility_info;
1607         }
1608
1609         if (unlikely(!(hv_clean_fields &
1610                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1611                 vmcs12->cpu_based_vm_exec_control =
1612                         evmcs->cpu_based_vm_exec_control;
1613         }
1614
1615         if (unlikely(!(hv_clean_fields &
1616                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1617                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1618         }
1619
1620         if (unlikely(!(hv_clean_fields &
1621                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1622                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1623         }
1624
1625         if (unlikely(!(hv_clean_fields &
1626                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1627                 vmcs12->vm_entry_intr_info_field =
1628                         evmcs->vm_entry_intr_info_field;
1629                 vmcs12->vm_entry_exception_error_code =
1630                         evmcs->vm_entry_exception_error_code;
1631                 vmcs12->vm_entry_instruction_len =
1632                         evmcs->vm_entry_instruction_len;
1633         }
1634
1635         if (unlikely(!(hv_clean_fields &
1636                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1637                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1638                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1639                 vmcs12->host_cr0 = evmcs->host_cr0;
1640                 vmcs12->host_cr3 = evmcs->host_cr3;
1641                 vmcs12->host_cr4 = evmcs->host_cr4;
1642                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1643                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1644                 vmcs12->host_rip = evmcs->host_rip;
1645                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1646                 vmcs12->host_es_selector = evmcs->host_es_selector;
1647                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1648                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1649                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1650                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1651                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1652                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1653         }
1654
1655         if (unlikely(!(hv_clean_fields &
1656                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1657                 vmcs12->pin_based_vm_exec_control =
1658                         evmcs->pin_based_vm_exec_control;
1659                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1660                 vmcs12->secondary_vm_exec_control =
1661                         evmcs->secondary_vm_exec_control;
1662         }
1663
1664         if (unlikely(!(hv_clean_fields &
1665                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1666                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1667                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1668         }
1669
1670         if (unlikely(!(hv_clean_fields &
1671                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1672                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1673         }
1674
1675         if (unlikely(!(hv_clean_fields &
1676                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1677                 vmcs12->guest_es_base = evmcs->guest_es_base;
1678                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1679                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1680                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1681                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1682                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1683                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1684                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1685                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1686                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1687                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1688                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1689                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1690                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1691                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1692                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1693                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1694                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1695                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1696                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1697                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1698                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1699                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1700                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1701                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1702                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1703                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1704                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1705                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1706                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1707                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1708                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1709                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1710                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1711                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1712                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1713         }
1714
1715         if (unlikely(!(hv_clean_fields &
1716                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1717                 vmcs12->tsc_offset = evmcs->tsc_offset;
1718                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1719                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1720         }
1721
1722         if (unlikely(!(hv_clean_fields &
1723                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1724                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1725                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1726                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1727                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1728                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1729                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1730                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1731                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1732         }
1733
1734         if (unlikely(!(hv_clean_fields &
1735                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1736                 vmcs12->host_fs_base = evmcs->host_fs_base;
1737                 vmcs12->host_gs_base = evmcs->host_gs_base;
1738                 vmcs12->host_tr_base = evmcs->host_tr_base;
1739                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1740                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1741                 vmcs12->host_rsp = evmcs->host_rsp;
1742         }
1743
1744         if (unlikely(!(hv_clean_fields &
1745                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1746                 vmcs12->ept_pointer = evmcs->ept_pointer;
1747                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1748         }
1749
1750         if (unlikely(!(hv_clean_fields &
1751                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1752                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1753                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1754                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1755                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1756                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1757                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1758                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1759                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1760                 vmcs12->guest_pending_dbg_exceptions =
1761                         evmcs->guest_pending_dbg_exceptions;
1762                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1763                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1764                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1765                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1766                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1767         }
1768
1769         /*
1770          * Not used?
1771          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1772          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1773          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1774          * vmcs12->page_fault_error_code_mask =
1775          *              evmcs->page_fault_error_code_mask;
1776          * vmcs12->page_fault_error_code_match =
1777          *              evmcs->page_fault_error_code_match;
1778          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1779          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1780          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1781          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1782          */
1783
1784         /*
1785          * Read only fields:
1786          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1787          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1788          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1789          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1790          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1791          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1792          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1793          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1794          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1795          * vmcs12->exit_qualification = evmcs->exit_qualification;
1796          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1797          *
1798          * Not present in struct vmcs12:
1799          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1800          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1801          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1802          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1803          */
1804
1805         return;
1806 }
1807
1808 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1809 {
1810         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1811         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1812
1813         /*
1814          * Should not be changed by KVM:
1815          *
1816          * evmcs->host_es_selector = vmcs12->host_es_selector;
1817          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1818          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1819          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1820          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1821          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1822          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1823          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1824          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1825          * evmcs->host_cr0 = vmcs12->host_cr0;
1826          * evmcs->host_cr3 = vmcs12->host_cr3;
1827          * evmcs->host_cr4 = vmcs12->host_cr4;
1828          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1829          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1830          * evmcs->host_rip = vmcs12->host_rip;
1831          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1832          * evmcs->host_fs_base = vmcs12->host_fs_base;
1833          * evmcs->host_gs_base = vmcs12->host_gs_base;
1834          * evmcs->host_tr_base = vmcs12->host_tr_base;
1835          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1836          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1837          * evmcs->host_rsp = vmcs12->host_rsp;
1838          * sync_vmcs02_to_vmcs12() doesn't read these:
1839          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1840          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1841          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1842          * evmcs->ept_pointer = vmcs12->ept_pointer;
1843          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1844          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1845          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1846          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1847          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1848          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1849          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1850          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1851          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1852          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1853          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1854          * evmcs->page_fault_error_code_mask =
1855          *              vmcs12->page_fault_error_code_mask;
1856          * evmcs->page_fault_error_code_match =
1857          *              vmcs12->page_fault_error_code_match;
1858          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1859          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1860          * evmcs->tsc_offset = vmcs12->tsc_offset;
1861          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1862          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1863          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1864          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1865          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1866          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1867          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1868          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1869          *
1870          * Not present in struct vmcs12:
1871          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1872          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1873          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1874          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1875          */
1876
1877         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1878         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1879         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1880         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1881         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1882         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1883         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1884         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1885
1886         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1887         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1888         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1889         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1890         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1891         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1892         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1893         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1894         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1895         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1896
1897         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1898         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1899         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1900         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1901         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1902         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1903         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1904         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1905
1906         evmcs->guest_es_base = vmcs12->guest_es_base;
1907         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1908         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1909         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1910         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1911         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1912         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1913         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1914         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1915         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1916
1917         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1918         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1919
1920         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1921         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1922         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1923         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1924
1925         evmcs->guest_pending_dbg_exceptions =
1926                 vmcs12->guest_pending_dbg_exceptions;
1927         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1928         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1929
1930         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1931         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1932
1933         evmcs->guest_cr0 = vmcs12->guest_cr0;
1934         evmcs->guest_cr3 = vmcs12->guest_cr3;
1935         evmcs->guest_cr4 = vmcs12->guest_cr4;
1936         evmcs->guest_dr7 = vmcs12->guest_dr7;
1937
1938         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1939
1940         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1941         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1942         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1943         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1944         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1945         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1946         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1947         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1948
1949         evmcs->exit_qualification = vmcs12->exit_qualification;
1950
1951         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1952         evmcs->guest_rsp = vmcs12->guest_rsp;
1953         evmcs->guest_rflags = vmcs12->guest_rflags;
1954
1955         evmcs->guest_interruptibility_info =
1956                 vmcs12->guest_interruptibility_info;
1957         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1958         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1959         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1960         evmcs->vm_entry_exception_error_code =
1961                 vmcs12->vm_entry_exception_error_code;
1962         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1963
1964         evmcs->guest_rip = vmcs12->guest_rip;
1965
1966         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1967
1968         return;
1969 }
1970
1971 /*
1972  * This is an equivalent of the nested hypervisor executing the vmptrld
1973  * instruction.
1974  */
1975 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1976         struct kvm_vcpu *vcpu, bool from_launch)
1977 {
1978         struct vcpu_vmx *vmx = to_vmx(vcpu);
1979         bool evmcs_gpa_changed = false;
1980         u64 evmcs_gpa;
1981
1982         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1983                 return EVMPTRLD_DISABLED;
1984
1985         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1986                 nested_release_evmcs(vcpu);
1987                 return EVMPTRLD_DISABLED;
1988         }
1989
1990         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1991                 vmx->nested.current_vmptr = INVALID_GPA;
1992
1993                 nested_release_evmcs(vcpu);
1994
1995                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1996                                  &vmx->nested.hv_evmcs_map))
1997                         return EVMPTRLD_ERROR;
1998
1999                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2000
2001                 /*
2002                  * Currently, KVM only supports eVMCS version 1
2003                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2004                  * value to first u32 field of eVMCS which should specify eVMCS
2005                  * VersionNumber.
2006                  *
2007                  * Guest should be aware of supported eVMCS versions by host by
2008                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2009                  * expected to set this CPUID leaf according to the value
2010                  * returned in vmcs_version from nested_enable_evmcs().
2011                  *
2012                  * However, it turns out that Microsoft Hyper-V fails to comply
2013                  * to their own invented interface: When Hyper-V use eVMCS, it
2014                  * just sets first u32 field of eVMCS to revision_id specified
2015                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2016                  * which is one of the supported versions specified in
2017                  * CPUID.0x4000000A.EAX[0:15].
2018                  *
2019                  * To overcome Hyper-V bug, we accept here either a supported
2020                  * eVMCS version or VMCS12 revision_id as valid values for first
2021                  * u32 field of eVMCS.
2022                  */
2023                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2024                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2025                         nested_release_evmcs(vcpu);
2026                         return EVMPTRLD_VMFAIL;
2027                 }
2028
2029                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2030
2031                 evmcs_gpa_changed = true;
2032                 /*
2033                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2034                  * reloaded from guest's memory (read only fields, fields not
2035                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2036                  * are no leftovers.
2037                  */
2038                 if (from_launch) {
2039                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2040                         memset(vmcs12, 0, sizeof(*vmcs12));
2041                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2042                 }
2043
2044         }
2045
2046         /*
2047          * Clean fields data can't be used on VMLAUNCH and when we switch
2048          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2049          */
2050         if (from_launch || evmcs_gpa_changed) {
2051                 vmx->nested.hv_evmcs->hv_clean_fields &=
2052                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2053
2054                 vmx->nested.force_msr_bitmap_recalc = true;
2055         }
2056
2057         return EVMPTRLD_SUCCEEDED;
2058 }
2059
2060 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2061 {
2062         struct vcpu_vmx *vmx = to_vmx(vcpu);
2063
2064         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2065                 copy_vmcs12_to_enlightened(vmx);
2066         else
2067                 copy_vmcs12_to_shadow(vmx);
2068
2069         vmx->nested.need_vmcs12_to_shadow_sync = false;
2070 }
2071
2072 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2073 {
2074         struct vcpu_vmx *vmx =
2075                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2076
2077         vmx->nested.preemption_timer_expired = true;
2078         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2079         kvm_vcpu_kick(&vmx->vcpu);
2080
2081         return HRTIMER_NORESTART;
2082 }
2083
2084 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2085 {
2086         struct vcpu_vmx *vmx = to_vmx(vcpu);
2087         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2088
2089         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2090                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2091
2092         if (!vmx->nested.has_preemption_timer_deadline) {
2093                 vmx->nested.preemption_timer_deadline =
2094                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2095                 vmx->nested.has_preemption_timer_deadline = true;
2096         }
2097         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2098 }
2099
2100 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2101                                         u64 preemption_timeout)
2102 {
2103         struct vcpu_vmx *vmx = to_vmx(vcpu);
2104
2105         /*
2106          * A timer value of zero is architecturally guaranteed to cause
2107          * a VMExit prior to executing any instructions in the guest.
2108          */
2109         if (preemption_timeout == 0) {
2110                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2111                 return;
2112         }
2113
2114         if (vcpu->arch.virtual_tsc_khz == 0)
2115                 return;
2116
2117         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2118         preemption_timeout *= 1000000;
2119         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2120         hrtimer_start(&vmx->nested.preemption_timer,
2121                       ktime_add_ns(ktime_get(), preemption_timeout),
2122                       HRTIMER_MODE_ABS_PINNED);
2123 }
2124
2125 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2126 {
2127         if (vmx->nested.nested_run_pending &&
2128             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2129                 return vmcs12->guest_ia32_efer;
2130         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2131                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2132         else
2133                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2134 }
2135
2136 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2137 {
2138         /*
2139          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2140          * according to L0's settings (vmcs12 is irrelevant here).  Host
2141          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2142          * will be set as needed prior to VMLAUNCH/VMRESUME.
2143          */
2144         if (vmx->nested.vmcs02_initialized)
2145                 return;
2146         vmx->nested.vmcs02_initialized = true;
2147
2148         /*
2149          * We don't care what the EPTP value is we just need to guarantee
2150          * it's valid so we don't get a false positive when doing early
2151          * consistency checks.
2152          */
2153         if (enable_ept && nested_early_check)
2154                 vmcs_write64(EPT_POINTER,
2155                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2156
2157         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2158         if (cpu_has_vmx_vmfunc())
2159                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2160
2161         if (cpu_has_vmx_posted_intr())
2162                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2163
2164         if (cpu_has_vmx_msr_bitmap())
2165                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2166
2167         /*
2168          * PML is emulated for L2, but never enabled in hardware as the MMU
2169          * handles A/D emulation.  Disabling PML for L2 also avoids having to
2170          * deal with filtering out L2 GPAs from the buffer.
2171          */
2172         if (enable_pml) {
2173                 vmcs_write64(PML_ADDRESS, 0);
2174                 vmcs_write16(GUEST_PML_INDEX, -1);
2175         }
2176
2177         if (cpu_has_vmx_encls_vmexit())
2178                 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2179
2180         /*
2181          * Set the MSR load/store lists to match L0's settings.  Only the
2182          * addresses are constant (for vmcs02), the counts can change based
2183          * on L2's behavior, e.g. switching to/from long mode.
2184          */
2185         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2186         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2187         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2188
2189         vmx_set_constant_host_state(vmx);
2190 }
2191
2192 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2193                                       struct vmcs12 *vmcs12)
2194 {
2195         prepare_vmcs02_constant_state(vmx);
2196
2197         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2198
2199         if (enable_vpid) {
2200                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2201                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2202                 else
2203                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2204         }
2205 }
2206
2207 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2208                                  struct vmcs12 *vmcs12)
2209 {
2210         u32 exec_control;
2211         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2212
2213         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2214                 prepare_vmcs02_early_rare(vmx, vmcs12);
2215
2216         /*
2217          * PIN CONTROLS
2218          */
2219         exec_control = __pin_controls_get(vmcs01);
2220         exec_control |= (vmcs12->pin_based_vm_exec_control &
2221                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2222
2223         /* Posted interrupts setting is only taken from vmcs12.  */
2224         vmx->nested.pi_pending = false;
2225         if (nested_cpu_has_posted_intr(vmcs12))
2226                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2227         else
2228                 exec_control &= ~PIN_BASED_POSTED_INTR;
2229         pin_controls_set(vmx, exec_control);
2230
2231         /*
2232          * EXEC CONTROLS
2233          */
2234         exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2235         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2236         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2237         exec_control &= ~CPU_BASED_TPR_SHADOW;
2238         exec_control |= vmcs12->cpu_based_vm_exec_control;
2239
2240         vmx->nested.l1_tpr_threshold = -1;
2241         if (exec_control & CPU_BASED_TPR_SHADOW)
2242                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2243 #ifdef CONFIG_X86_64
2244         else
2245                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2246                                 CPU_BASED_CR8_STORE_EXITING;
2247 #endif
2248
2249         /*
2250          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2251          * for I/O port accesses.
2252          */
2253         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2254         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2255
2256         /*
2257          * This bit will be computed in nested_get_vmcs12_pages, because
2258          * we do not have access to L1's MSR bitmap yet.  For now, keep
2259          * the same bit as before, hoping to avoid multiple VMWRITEs that
2260          * only set/clear this bit.
2261          */
2262         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2263         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2264
2265         exec_controls_set(vmx, exec_control);
2266
2267         /*
2268          * SECONDARY EXEC CONTROLS
2269          */
2270         if (cpu_has_secondary_exec_ctrls()) {
2271                 exec_control = __secondary_exec_controls_get(vmcs01);
2272
2273                 /* Take the following fields only from vmcs12 */
2274                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2275                                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2276                                   SECONDARY_EXEC_ENABLE_INVPCID |
2277                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2278                                   SECONDARY_EXEC_XSAVES |
2279                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2280                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2281                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2282                                   SECONDARY_EXEC_ENABLE_VMFUNC |
2283                                   SECONDARY_EXEC_TSC_SCALING |
2284                                   SECONDARY_EXEC_DESC);
2285
2286                 if (nested_cpu_has(vmcs12,
2287                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2288                         exec_control |= vmcs12->secondary_vm_exec_control;
2289
2290                 /* PML is emulated and never enabled in hardware for L2. */
2291                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2292
2293                 /* VMCS shadowing for L2 is emulated for now */
2294                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2295
2296                 /*
2297                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2298                  * will not have to rewrite the controls just for this bit.
2299                  */
2300                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2301                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2302                         exec_control |= SECONDARY_EXEC_DESC;
2303
2304                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2305                         vmcs_write16(GUEST_INTR_STATUS,
2306                                 vmcs12->guest_intr_status);
2307
2308                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2309                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2310
2311                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2312                         vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2313
2314                 secondary_exec_controls_set(vmx, exec_control);
2315         }
2316
2317         /*
2318          * ENTRY CONTROLS
2319          *
2320          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2321          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2322          * on the related bits (if supported by the CPU) in the hope that
2323          * we can avoid VMWrites during vmx_set_efer().
2324          */
2325         exec_control = __vm_entry_controls_get(vmcs01);
2326         exec_control |= vmcs12->vm_entry_controls;
2327         exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2328         if (cpu_has_load_ia32_efer()) {
2329                 if (guest_efer & EFER_LMA)
2330                         exec_control |= VM_ENTRY_IA32E_MODE;
2331                 if (guest_efer != host_efer)
2332                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2333         }
2334         vm_entry_controls_set(vmx, exec_control);
2335
2336         /*
2337          * EXIT CONTROLS
2338          *
2339          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2340          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2341          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2342          */
2343         exec_control = __vm_exit_controls_get(vmcs01);
2344         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2345                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2346         else
2347                 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2348         vm_exit_controls_set(vmx, exec_control);
2349
2350         /*
2351          * Interrupt/Exception Fields
2352          */
2353         if (vmx->nested.nested_run_pending) {
2354                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2355                              vmcs12->vm_entry_intr_info_field);
2356                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2357                              vmcs12->vm_entry_exception_error_code);
2358                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2359                              vmcs12->vm_entry_instruction_len);
2360                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2361                              vmcs12->guest_interruptibility_info);
2362                 vmx->loaded_vmcs->nmi_known_unmasked =
2363                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2364         } else {
2365                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2366         }
2367 }
2368
2369 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2370 {
2371         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2372
2373         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2374                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2375                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2376                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2377                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2378                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2379                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2380                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2381                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2382                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2383                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2384                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2385                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2386                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2387                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2388                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2389                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2390                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2391                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2392                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2393                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2394                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2395                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2396                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2397                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2398                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2399                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2400                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2401                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2402                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2403                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2404                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2405                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2406                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2407                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2408                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2409                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2410                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2411
2412                 vmx->segment_cache.bitmask = 0;
2413         }
2414
2415         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2416                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2417                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2418                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2419                             vmcs12->guest_pending_dbg_exceptions);
2420                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2421                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2422
2423                 /*
2424                  * L1 may access the L2's PDPTR, so save them to construct
2425                  * vmcs12
2426                  */
2427                 if (enable_ept) {
2428                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2429                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2430                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2431                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2432                 }
2433
2434                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2435                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2436                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2437         }
2438
2439         if (nested_cpu_has_xsaves(vmcs12))
2440                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2441
2442         /*
2443          * Whether page-faults are trapped is determined by a combination of
2444          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2445          * doesn't care about page faults then we should set all of these to
2446          * L1's desires. However, if L0 does care about (some) page faults, it
2447          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2448          * simply ask to exit on each and every L2 page fault. This is done by
2449          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2450          * Note that below we don't need special code to set EB.PF beyond the
2451          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2452          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2453          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2454          */
2455         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2456                 /*
2457                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2458                  * go ahead and use it?
2459                  */
2460                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2461                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2462         } else {
2463                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2464                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2465         }
2466
2467         if (cpu_has_vmx_apicv()) {
2468                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2469                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2470                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2471                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2472         }
2473
2474         /*
2475          * Make sure the msr_autostore list is up to date before we set the
2476          * count in the vmcs02.
2477          */
2478         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2479
2480         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2481         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2482         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2483
2484         set_cr4_guest_host_mask(vmx);
2485 }
2486
2487 /*
2488  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2489  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2490  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2491  * guest in a way that will both be appropriate to L1's requests, and our
2492  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2493  * function also has additional necessary side-effects, like setting various
2494  * vcpu->arch fields.
2495  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2496  * is assigned to entry_failure_code on failure.
2497  */
2498 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2499                           bool from_vmentry,
2500                           enum vm_entry_failure_code *entry_failure_code)
2501 {
2502         struct vcpu_vmx *vmx = to_vmx(vcpu);
2503         bool load_guest_pdptrs_vmcs12 = false;
2504
2505         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2506                 prepare_vmcs02_rare(vmx, vmcs12);
2507                 vmx->nested.dirty_vmcs12 = false;
2508
2509                 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2510                         !(vmx->nested.hv_evmcs->hv_clean_fields &
2511                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2512         }
2513
2514         if (vmx->nested.nested_run_pending &&
2515             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2516                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2517                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2518         } else {
2519                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2520                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2521         }
2522         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2523             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2524                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2525         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2526
2527         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2528          * bitwise-or of what L1 wants to trap for L2, and what we want to
2529          * trap. Note that CR0.TS also needs updating - we do this later.
2530          */
2531         vmx_update_exception_bitmap(vcpu);
2532         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2533         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2534
2535         if (vmx->nested.nested_run_pending &&
2536             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2537                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2538                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2539         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2540                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2541         }
2542
2543         vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2544                         vcpu->arch.l1_tsc_offset,
2545                         vmx_get_l2_tsc_offset(vcpu),
2546                         vmx_get_l2_tsc_multiplier(vcpu));
2547
2548         vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2549                         vcpu->arch.l1_tsc_scaling_ratio,
2550                         vmx_get_l2_tsc_multiplier(vcpu));
2551
2552         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2553         if (kvm_has_tsc_control)
2554                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2555
2556         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2557
2558         if (nested_cpu_has_ept(vmcs12))
2559                 nested_ept_init_mmu_context(vcpu);
2560
2561         /*
2562          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2563          * bits which we consider mandatory enabled.
2564          * The CR0_READ_SHADOW is what L2 should have expected to read given
2565          * the specifications by L1; It's not enough to take
2566          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2567          * have more bits than L1 expected.
2568          */
2569         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2570         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2571
2572         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2573         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2574
2575         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2576         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2577         vmx_set_efer(vcpu, vcpu->arch.efer);
2578
2579         /*
2580          * Guest state is invalid and unrestricted guest is disabled,
2581          * which means L1 attempted VMEntry to L2 with invalid state.
2582          * Fail the VMEntry.
2583          *
2584          * However when force loading the guest state (SMM exit or
2585          * loading nested state after migration, it is possible to
2586          * have invalid guest state now, which will be later fixed by
2587          * restoring L2 register state
2588          */
2589         if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2590                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2591                 return -EINVAL;
2592         }
2593
2594         /* Shadow page tables on either EPT or shadow page tables. */
2595         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2596                                 from_vmentry, entry_failure_code))
2597                 return -EINVAL;
2598
2599         /*
2600          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2601          * on nested VM-Exit, which can occur without actually running L2 and
2602          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2603          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2604          * transition to HLT instead of running L2.
2605          */
2606         if (enable_ept)
2607                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2608
2609         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2610         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2611             is_pae_paging(vcpu)) {
2612                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2613                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2614                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2615                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2616         }
2617
2618         if (!enable_ept)
2619                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2620
2621         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2622             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2623                                      vmcs12->guest_ia32_perf_global_ctrl))) {
2624                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2625                 return -EINVAL;
2626         }
2627
2628         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2629         kvm_rip_write(vcpu, vmcs12->guest_rip);
2630
2631         /*
2632          * It was observed that genuine Hyper-V running in L1 doesn't reset
2633          * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2634          * bits when it changes a field in eVMCS. Mark all fields as clean
2635          * here.
2636          */
2637         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2638                 vmx->nested.hv_evmcs->hv_clean_fields |=
2639                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2640
2641         return 0;
2642 }
2643
2644 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2645 {
2646         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2647                nested_cpu_has_virtual_nmis(vmcs12)))
2648                 return -EINVAL;
2649
2650         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2651                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2652                 return -EINVAL;
2653
2654         return 0;
2655 }
2656
2657 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2658 {
2659         struct vcpu_vmx *vmx = to_vmx(vcpu);
2660
2661         /* Check for memory type validity */
2662         switch (new_eptp & VMX_EPTP_MT_MASK) {
2663         case VMX_EPTP_MT_UC:
2664                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2665                         return false;
2666                 break;
2667         case VMX_EPTP_MT_WB:
2668                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2669                         return false;
2670                 break;
2671         default:
2672                 return false;
2673         }
2674
2675         /* Page-walk levels validity. */
2676         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2677         case VMX_EPTP_PWL_5:
2678                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2679                         return false;
2680                 break;
2681         case VMX_EPTP_PWL_4:
2682                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2683                         return false;
2684                 break;
2685         default:
2686                 return false;
2687         }
2688
2689         /* Reserved bits should not be set */
2690         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2691                 return false;
2692
2693         /* AD, if set, should be supported */
2694         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2695                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2696                         return false;
2697         }
2698
2699         return true;
2700 }
2701
2702 /*
2703  * Checks related to VM-Execution Control Fields
2704  */
2705 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2706                                               struct vmcs12 *vmcs12)
2707 {
2708         struct vcpu_vmx *vmx = to_vmx(vcpu);
2709
2710         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2711                                    vmx->nested.msrs.pinbased_ctls_low,
2712                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2713             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2714                                    vmx->nested.msrs.procbased_ctls_low,
2715                                    vmx->nested.msrs.procbased_ctls_high)))
2716                 return -EINVAL;
2717
2718         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2719             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2720                                    vmx->nested.msrs.secondary_ctls_low,
2721                                    vmx->nested.msrs.secondary_ctls_high)))
2722                 return -EINVAL;
2723
2724         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2725             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2726             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2727             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2728             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2729             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2730             nested_vmx_check_nmi_controls(vmcs12) ||
2731             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2732             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2733             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2734             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2735             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2736                 return -EINVAL;
2737
2738         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2739             nested_cpu_has_save_preemption_timer(vmcs12))
2740                 return -EINVAL;
2741
2742         if (nested_cpu_has_ept(vmcs12) &&
2743             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2744                 return -EINVAL;
2745
2746         if (nested_cpu_has_vmfunc(vmcs12)) {
2747                 if (CC(vmcs12->vm_function_control &
2748                        ~vmx->nested.msrs.vmfunc_controls))
2749                         return -EINVAL;
2750
2751                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2752                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2753                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2754                                 return -EINVAL;
2755                 }
2756         }
2757
2758         return 0;
2759 }
2760
2761 /*
2762  * Checks related to VM-Exit Control Fields
2763  */
2764 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2765                                          struct vmcs12 *vmcs12)
2766 {
2767         struct vcpu_vmx *vmx = to_vmx(vcpu);
2768
2769         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2770                                     vmx->nested.msrs.exit_ctls_low,
2771                                     vmx->nested.msrs.exit_ctls_high)) ||
2772             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2773                 return -EINVAL;
2774
2775         return 0;
2776 }
2777
2778 /*
2779  * Checks related to VM-Entry Control Fields
2780  */
2781 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2782                                           struct vmcs12 *vmcs12)
2783 {
2784         struct vcpu_vmx *vmx = to_vmx(vcpu);
2785
2786         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2787                                     vmx->nested.msrs.entry_ctls_low,
2788                                     vmx->nested.msrs.entry_ctls_high)))
2789                 return -EINVAL;
2790
2791         /*
2792          * From the Intel SDM, volume 3:
2793          * Fields relevant to VM-entry event injection must be set properly.
2794          * These fields are the VM-entry interruption-information field, the
2795          * VM-entry exception error code, and the VM-entry instruction length.
2796          */
2797         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2798                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2799                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2800                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2801                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2802                 bool should_have_error_code;
2803                 bool urg = nested_cpu_has2(vmcs12,
2804                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2805                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2806
2807                 /* VM-entry interruption-info field: interruption type */
2808                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2809                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2810                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2811                         return -EINVAL;
2812
2813                 /* VM-entry interruption-info field: vector */
2814                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2815                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2816                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2817                         return -EINVAL;
2818
2819                 /* VM-entry interruption-info field: deliver error code */
2820                 should_have_error_code =
2821                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2822                         x86_exception_has_error_code(vector);
2823                 if (CC(has_error_code != should_have_error_code))
2824                         return -EINVAL;
2825
2826                 /* VM-entry exception error code */
2827                 if (CC(has_error_code &&
2828                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2829                         return -EINVAL;
2830
2831                 /* VM-entry interruption-info field: reserved bits */
2832                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2833                         return -EINVAL;
2834
2835                 /* VM-entry instruction length */
2836                 switch (intr_type) {
2837                 case INTR_TYPE_SOFT_EXCEPTION:
2838                 case INTR_TYPE_SOFT_INTR:
2839                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2840                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2841                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2842                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2843                                 return -EINVAL;
2844                 }
2845         }
2846
2847         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2848                 return -EINVAL;
2849
2850         return 0;
2851 }
2852
2853 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2854                                      struct vmcs12 *vmcs12)
2855 {
2856         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2857             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2858             nested_check_vm_entry_controls(vcpu, vmcs12))
2859                 return -EINVAL;
2860
2861         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2862                 return nested_evmcs_check_controls(vmcs12);
2863
2864         return 0;
2865 }
2866
2867 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2868                                        struct vmcs12 *vmcs12)
2869 {
2870 #ifdef CONFIG_X86_64
2871         if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2872                 !!(vcpu->arch.efer & EFER_LMA)))
2873                 return -EINVAL;
2874 #endif
2875         return 0;
2876 }
2877
2878 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2879                                        struct vmcs12 *vmcs12)
2880 {
2881         bool ia32e;
2882
2883         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2884             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2885             CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2886                 return -EINVAL;
2887
2888         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2889             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2890                 return -EINVAL;
2891
2892         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2893             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2894                 return -EINVAL;
2895
2896         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2897             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2898                                            vmcs12->host_ia32_perf_global_ctrl)))
2899                 return -EINVAL;
2900
2901 #ifdef CONFIG_X86_64
2902         ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2903 #else
2904         ia32e = false;
2905 #endif
2906
2907         if (ia32e) {
2908                 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2909                         return -EINVAL;
2910         } else {
2911                 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2912                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2913                     CC((vmcs12->host_rip) >> 32))
2914                         return -EINVAL;
2915         }
2916
2917         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2918             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2919             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2920             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2921             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2922             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2923             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2924             CC(vmcs12->host_cs_selector == 0) ||
2925             CC(vmcs12->host_tr_selector == 0) ||
2926             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2927                 return -EINVAL;
2928
2929         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2930             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2931             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2932             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2933             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2934             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2935                 return -EINVAL;
2936
2937         /*
2938          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2939          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2940          * the values of the LMA and LME bits in the field must each be that of
2941          * the host address-space size VM-exit control.
2942          */
2943         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2944                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2945                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2946                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2947                         return -EINVAL;
2948         }
2949
2950         return 0;
2951 }
2952
2953 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2954                                           struct vmcs12 *vmcs12)
2955 {
2956         struct vcpu_vmx *vmx = to_vmx(vcpu);
2957         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2958         struct vmcs_hdr hdr;
2959
2960         if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2961                 return 0;
2962
2963         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2964                 return -EINVAL;
2965
2966         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2967             CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2968                                          vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2969                 return -EINVAL;
2970
2971         if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2972                                             offsetof(struct vmcs12, hdr),
2973                                             sizeof(hdr))))
2974                 return -EINVAL;
2975
2976         if (CC(hdr.revision_id != VMCS12_REVISION) ||
2977             CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2978                 return -EINVAL;
2979
2980         return 0;
2981 }
2982
2983 /*
2984  * Checks related to Guest Non-register State
2985  */
2986 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2987 {
2988         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2989                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2990                vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2991                 return -EINVAL;
2992
2993         return 0;
2994 }
2995
2996 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2997                                         struct vmcs12 *vmcs12,
2998                                         enum vm_entry_failure_code *entry_failure_code)
2999 {
3000         bool ia32e;
3001
3002         *entry_failure_code = ENTRY_FAIL_DEFAULT;
3003
3004         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3005             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3006                 return -EINVAL;
3007
3008         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3009             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3010                 return -EINVAL;
3011
3012         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3013             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3014                 return -EINVAL;
3015
3016         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3017                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3018                 return -EINVAL;
3019         }
3020
3021         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3022             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3023                                            vmcs12->guest_ia32_perf_global_ctrl)))
3024                 return -EINVAL;
3025
3026         /*
3027          * If the load IA32_EFER VM-entry control is 1, the following checks
3028          * are performed on the field for the IA32_EFER MSR:
3029          * - Bits reserved in the IA32_EFER MSR must be 0.
3030          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3031          *   the IA-32e mode guest VM-exit control. It must also be identical
3032          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3033          *   CR0.PG) is 1.
3034          */
3035         if (to_vmx(vcpu)->nested.nested_run_pending &&
3036             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3037                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3038                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3039                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3040                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3041                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3042                         return -EINVAL;
3043         }
3044
3045         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3046             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3047              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3048                 return -EINVAL;
3049
3050         if (nested_check_guest_non_reg_state(vmcs12))
3051                 return -EINVAL;
3052
3053         return 0;
3054 }
3055
3056 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3057 {
3058         struct vcpu_vmx *vmx = to_vmx(vcpu);
3059         unsigned long cr4;
3060         bool vm_fail;
3061
3062         if (!nested_early_check)
3063                 return 0;
3064
3065         if (vmx->msr_autoload.host.nr)
3066                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3067         if (vmx->msr_autoload.guest.nr)
3068                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3069
3070         preempt_disable();
3071
3072         vmx_prepare_switch_to_guest(vcpu);
3073
3074         /*
3075          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3076          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3077          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3078          * there is no need to preserve other bits or save/restore the field.
3079          */
3080         vmcs_writel(GUEST_RFLAGS, 0);
3081
3082         cr4 = cr4_read_shadow();
3083         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3084                 vmcs_writel(HOST_CR4, cr4);
3085                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3086         }
3087
3088         vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3089                                  vmx->loaded_vmcs->launched);
3090
3091         if (vmx->msr_autoload.host.nr)
3092                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3093         if (vmx->msr_autoload.guest.nr)
3094                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3095
3096         if (vm_fail) {
3097                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3098
3099                 preempt_enable();
3100
3101                 trace_kvm_nested_vmenter_failed(
3102                         "early hardware check VM-instruction error: ", error);
3103                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3104                 return 1;
3105         }
3106
3107         /*
3108          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3109          */
3110         if (hw_breakpoint_active())
3111                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3112         local_irq_enable();
3113         preempt_enable();
3114
3115         /*
3116          * A non-failing VMEntry means we somehow entered guest mode with
3117          * an illegal RIP, and that's just the tip of the iceberg.  There
3118          * is no telling what memory has been modified or what state has
3119          * been exposed to unknown code.  Hitting this all but guarantees
3120          * a (very critical) hardware issue.
3121          */
3122         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3123                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3124
3125         return 0;
3126 }
3127
3128 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3129 {
3130         struct vcpu_vmx *vmx = to_vmx(vcpu);
3131
3132         /*
3133          * hv_evmcs may end up being not mapped after migration (when
3134          * L2 was running), map it here to make sure vmcs12 changes are
3135          * properly reflected.
3136          */
3137         if (vmx->nested.enlightened_vmcs_enabled &&
3138             vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3139                 enum nested_evmptrld_status evmptrld_status =
3140                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3141
3142                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3143                     evmptrld_status == EVMPTRLD_ERROR)
3144                         return false;
3145
3146                 /*
3147                  * Post migration VMCS12 always provides the most actual
3148                  * information, copy it to eVMCS upon entry.
3149                  */
3150                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3151         }
3152
3153         return true;
3154 }
3155
3156 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3157 {
3158         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3159         struct vcpu_vmx *vmx = to_vmx(vcpu);
3160         struct kvm_host_map *map;
3161         struct page *page;
3162         u64 hpa;
3163
3164         if (!vcpu->arch.pdptrs_from_userspace &&
3165             !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3166                 /*
3167                  * Reload the guest's PDPTRs since after a migration
3168                  * the guest CR3 might be restored prior to setting the nested
3169                  * state which can lead to a load of wrong PDPTRs.
3170                  */
3171                 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3172                         return false;
3173         }
3174
3175
3176         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3177                 /*
3178                  * Translate L1 physical address to host physical
3179                  * address for vmcs02. Keep the page pinned, so this
3180                  * physical address remains valid. We keep a reference
3181                  * to it so we can release it later.
3182                  */
3183                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3184                         kvm_release_page_clean(vmx->nested.apic_access_page);
3185                         vmx->nested.apic_access_page = NULL;
3186                 }
3187                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3188                 if (!is_error_page(page)) {
3189                         vmx->nested.apic_access_page = page;
3190                         hpa = page_to_phys(vmx->nested.apic_access_page);
3191                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3192                 } else {
3193                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3194                                              __func__);
3195                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3196                         vcpu->run->internal.suberror =
3197                                 KVM_INTERNAL_ERROR_EMULATION;
3198                         vcpu->run->internal.ndata = 0;
3199                         return false;
3200                 }
3201         }
3202
3203         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3204                 map = &vmx->nested.virtual_apic_map;
3205
3206                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3207                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3208                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3209                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3210                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3211                         /*
3212                          * The processor will never use the TPR shadow, simply
3213                          * clear the bit from the execution control.  Such a
3214                          * configuration is useless, but it happens in tests.
3215                          * For any other configuration, failing the vm entry is
3216                          * _not_ what the processor does but it's basically the
3217                          * only possibility we have.
3218                          */
3219                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3220                 } else {
3221                         /*
3222                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3223                          * force VM-Entry to fail.
3224                          */
3225                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3226                 }
3227         }
3228
3229         if (nested_cpu_has_posted_intr(vmcs12)) {
3230                 map = &vmx->nested.pi_desc_map;
3231
3232                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3233                         vmx->nested.pi_desc =
3234                                 (struct pi_desc *)(((void *)map->hva) +
3235                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3236                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3237                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3238                 } else {
3239                         /*
3240                          * Defer the KVM_INTERNAL_EXIT until KVM tries to
3241                          * access the contents of the VMCS12 posted interrupt
3242                          * descriptor. (Note that KVM may do this when it
3243                          * should not, per the architectural specification.)
3244                          */
3245                         vmx->nested.pi_desc = NULL;
3246                         pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3247                 }
3248         }
3249         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3250                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3251         else
3252                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3253
3254         return true;
3255 }
3256
3257 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3258 {
3259         if (!nested_get_evmcs_page(vcpu)) {
3260                 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3261                                      __func__);
3262                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3263                 vcpu->run->internal.suberror =
3264                         KVM_INTERNAL_ERROR_EMULATION;
3265                 vcpu->run->internal.ndata = 0;
3266
3267                 return false;
3268         }
3269
3270         if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3271                 return false;
3272
3273         return true;
3274 }
3275
3276 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3277 {
3278         struct vmcs12 *vmcs12;
3279         struct vcpu_vmx *vmx = to_vmx(vcpu);
3280         gpa_t dst;
3281
3282         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3283                 return 0;
3284
3285         if (WARN_ON_ONCE(vmx->nested.pml_full))
3286                 return 1;
3287
3288         /*
3289          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3290          * set is already checked as part of A/D emulation.
3291          */
3292         vmcs12 = get_vmcs12(vcpu);
3293         if (!nested_cpu_has_pml(vmcs12))
3294                 return 0;
3295
3296         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3297                 vmx->nested.pml_full = true;
3298                 return 1;
3299         }
3300
3301         gpa &= ~0xFFFull;
3302         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3303
3304         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3305                                  offset_in_page(dst), sizeof(gpa)))
3306                 return 0;
3307
3308         vmcs12->guest_pml_index--;
3309
3310         return 0;
3311 }
3312
3313 /*
3314  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3315  * for running VMX instructions (except VMXON, whose prerequisites are
3316  * slightly different). It also specifies what exception to inject otherwise.
3317  * Note that many of these exceptions have priority over VM exits, so they
3318  * don't have to be checked again here.
3319  */
3320 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3321 {
3322         if (!to_vmx(vcpu)->nested.vmxon) {
3323                 kvm_queue_exception(vcpu, UD_VECTOR);
3324                 return 0;
3325         }
3326
3327         if (vmx_get_cpl(vcpu)) {
3328                 kvm_inject_gp(vcpu, 0);
3329                 return 0;
3330         }
3331
3332         return 1;
3333 }
3334
3335 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3336 {
3337         u8 rvi = vmx_get_rvi();
3338         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3339
3340         return ((rvi & 0xf0) > (vppr & 0xf0));
3341 }
3342
3343 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3344                                    struct vmcs12 *vmcs12);
3345
3346 /*
3347  * If from_vmentry is false, this is being called from state restore (either RSM
3348  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3349  *
3350  * Returns:
3351  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3352  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3353  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3354  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3355  */
3356 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3357                                                         bool from_vmentry)
3358 {
3359         struct vcpu_vmx *vmx = to_vmx(vcpu);
3360         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3361         enum vm_entry_failure_code entry_failure_code;
3362         bool evaluate_pending_interrupts;
3363         union vmx_exit_reason exit_reason = {
3364                 .basic = EXIT_REASON_INVALID_STATE,
3365                 .failed_vmentry = 1,
3366         };
3367         u32 failed_index;
3368
3369         kvm_service_local_tlb_flush_requests(vcpu);
3370
3371         evaluate_pending_interrupts = exec_controls_get(vmx) &
3372                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3373         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3374                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3375
3376         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3377                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3378         if (kvm_mpx_supported() &&
3379                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3380                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3381
3382         /*
3383          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3384          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3385          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3386          * software model to the pre-VMEntry host state.  When EPT is disabled,
3387          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3388          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3389          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3390          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3391          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3392          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3393          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3394          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3395          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3396          * path would need to manually save/restore vmcs01.GUEST_CR3.
3397          */
3398         if (!enable_ept && !nested_early_check)
3399                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3400
3401         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3402
3403         prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3404
3405         if (from_vmentry) {
3406                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3407                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3408                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3409                 }
3410
3411                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3412                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3413                         return NVMX_VMENTRY_VMFAIL;
3414                 }
3415
3416                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3417                                                  &entry_failure_code)) {
3418                         exit_reason.basic = EXIT_REASON_INVALID_STATE;
3419                         vmcs12->exit_qualification = entry_failure_code;
3420                         goto vmentry_fail_vmexit;
3421                 }
3422         }
3423
3424         enter_guest_mode(vcpu);
3425
3426         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3427                 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3428                 vmcs12->exit_qualification = entry_failure_code;
3429                 goto vmentry_fail_vmexit_guest_mode;
3430         }
3431
3432         if (from_vmentry) {
3433                 failed_index = nested_vmx_load_msr(vcpu,
3434                                                    vmcs12->vm_entry_msr_load_addr,
3435                                                    vmcs12->vm_entry_msr_load_count);
3436                 if (failed_index) {
3437                         exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3438                         vmcs12->exit_qualification = failed_index;
3439                         goto vmentry_fail_vmexit_guest_mode;
3440                 }
3441         } else {
3442                 /*
3443                  * The MMU is not initialized to point at the right entities yet and
3444                  * "get pages" would need to read data from the guest (i.e. we will
3445                  * need to perform gpa to hpa translation). Request a call
3446                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3447                  * have already been set at vmentry time and should not be reset.
3448                  */
3449                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3450         }
3451
3452         /*
3453          * If L1 had a pending IRQ/NMI until it executed
3454          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3455          * disallowed (e.g. interrupts disabled), L0 needs to
3456          * evaluate if this pending event should cause an exit from L2
3457          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3458          * intercept EXTERNAL_INTERRUPT).
3459          *
3460          * Usually this would be handled by the processor noticing an
3461          * IRQ/NMI window request, or checking RVI during evaluation of
3462          * pending virtual interrupts.  However, this setting was done
3463          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3464          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3465          */
3466         if (unlikely(evaluate_pending_interrupts))
3467                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3468
3469         /*
3470          * Do not start the preemption timer hrtimer until after we know
3471          * we are successful, so that only nested_vmx_vmexit needs to cancel
3472          * the timer.
3473          */
3474         vmx->nested.preemption_timer_expired = false;
3475         if (nested_cpu_has_preemption_timer(vmcs12)) {
3476                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3477                 vmx_start_preemption_timer(vcpu, timer_value);
3478         }
3479
3480         /*
3481          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3482          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3483          * returned as far as L1 is concerned. It will only return (and set
3484          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3485          */
3486         return NVMX_VMENTRY_SUCCESS;
3487
3488         /*
3489          * A failed consistency check that leads to a VMExit during L1's
3490          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3491          * 26.7 "VM-entry failures during or after loading guest state".
3492          */
3493 vmentry_fail_vmexit_guest_mode:
3494         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3495                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3496         leave_guest_mode(vcpu);
3497
3498 vmentry_fail_vmexit:
3499         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3500
3501         if (!from_vmentry)
3502                 return NVMX_VMENTRY_VMEXIT;
3503
3504         load_vmcs12_host_state(vcpu, vmcs12);
3505         vmcs12->vm_exit_reason = exit_reason.full;
3506         if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3507                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3508         return NVMX_VMENTRY_VMEXIT;
3509 }
3510
3511 /*
3512  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3513  * for running an L2 nested guest.
3514  */
3515 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3516 {
3517         struct vmcs12 *vmcs12;
3518         enum nvmx_vmentry_status status;
3519         struct vcpu_vmx *vmx = to_vmx(vcpu);
3520         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3521         enum nested_evmptrld_status evmptrld_status;
3522
3523         if (!nested_vmx_check_permission(vcpu))
3524                 return 1;
3525
3526         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3527         if (evmptrld_status == EVMPTRLD_ERROR) {
3528                 kvm_queue_exception(vcpu, UD_VECTOR);
3529                 return 1;
3530         }
3531
3532         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3533
3534         if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3535                 return nested_vmx_failInvalid(vcpu);
3536
3537         if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3538                vmx->nested.current_vmptr == INVALID_GPA))
3539                 return nested_vmx_failInvalid(vcpu);
3540
3541         vmcs12 = get_vmcs12(vcpu);
3542
3543         /*
3544          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3545          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3546          * rather than RFLAGS.ZF, and no error number is stored to the
3547          * VM-instruction error field.
3548          */
3549         if (CC(vmcs12->hdr.shadow_vmcs))
3550                 return nested_vmx_failInvalid(vcpu);
3551
3552         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3553                 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3554                 /* Enlightened VMCS doesn't have launch state */
3555                 vmcs12->launch_state = !launch;
3556         } else if (enable_shadow_vmcs) {
3557                 copy_shadow_to_vmcs12(vmx);
3558         }
3559
3560         /*
3561          * The nested entry process starts with enforcing various prerequisites
3562          * on vmcs12 as required by the Intel SDM, and act appropriately when
3563          * they fail: As the SDM explains, some conditions should cause the
3564          * instruction to fail, while others will cause the instruction to seem
3565          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3566          * To speed up the normal (success) code path, we should avoid checking
3567          * for misconfigurations which will anyway be caught by the processor
3568          * when using the merged vmcs02.
3569          */
3570         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3571                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3572
3573         if (CC(vmcs12->launch_state == launch))
3574                 return nested_vmx_fail(vcpu,
3575                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3576                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3577
3578         if (nested_vmx_check_controls(vcpu, vmcs12))
3579                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3580
3581         if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3582                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3583
3584         if (nested_vmx_check_host_state(vcpu, vmcs12))
3585                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3586
3587         /*
3588          * We're finally done with prerequisite checking, and can start with
3589          * the nested entry.
3590          */
3591         vmx->nested.nested_run_pending = 1;
3592         vmx->nested.has_preemption_timer_deadline = false;
3593         status = nested_vmx_enter_non_root_mode(vcpu, true);
3594         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3595                 goto vmentry_failed;
3596
3597         /* Emulate processing of posted interrupts on VM-Enter. */
3598         if (nested_cpu_has_posted_intr(vmcs12) &&
3599             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3600                 vmx->nested.pi_pending = true;
3601                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3602                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3603         }
3604
3605         /* Hide L1D cache contents from the nested guest.  */
3606         vmx->vcpu.arch.l1tf_flush_l1d = true;
3607
3608         /*
3609          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3610          * also be used as part of restoring nVMX state for
3611          * snapshot restore (migration).
3612          *
3613          * In this flow, it is assumed that vmcs12 cache was
3614          * transferred as part of captured nVMX state and should
3615          * therefore not be read from guest memory (which may not
3616          * exist on destination host yet).
3617          */
3618         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3619
3620         switch (vmcs12->guest_activity_state) {
3621         case GUEST_ACTIVITY_HLT:
3622                 /*
3623                  * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3624                  * awakened by event injection or by an NMI-window VM-exit or
3625                  * by an interrupt-window VM-exit, halt the vcpu.
3626                  */
3627                 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3628                     !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3629                     !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3630                       (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3631                         vmx->nested.nested_run_pending = 0;
3632                         return kvm_emulate_halt_noskip(vcpu);
3633                 }
3634                 break;
3635         case GUEST_ACTIVITY_WAIT_SIPI:
3636                 vmx->nested.nested_run_pending = 0;
3637                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3638                 break;
3639         default:
3640                 break;
3641         }
3642
3643         return 1;
3644
3645 vmentry_failed:
3646         vmx->nested.nested_run_pending = 0;
3647         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3648                 return 0;
3649         if (status == NVMX_VMENTRY_VMEXIT)
3650                 return 1;
3651         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3652         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3653 }
3654
3655 /*
3656  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3657  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3658  * This function returns the new value we should put in vmcs12.guest_cr0.
3659  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3660  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3661  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3662  *     didn't trap the bit, because if L1 did, so would L0).
3663  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3664  *     been modified by L2, and L1 knows it. So just leave the old value of
3665  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3666  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3667  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3668  *     changed these bits, and therefore they need to be updated, but L0
3669  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3670  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3671  */
3672 static inline unsigned long
3673 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3674 {
3675         return
3676         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3677         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3678         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3679                         vcpu->arch.cr0_guest_owned_bits));
3680 }
3681
3682 static inline unsigned long
3683 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3684 {
3685         return
3686         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3687         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3688         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3689                         vcpu->arch.cr4_guest_owned_bits));
3690 }
3691
3692 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3693                                       struct vmcs12 *vmcs12)
3694 {
3695         u32 idt_vectoring;
3696         unsigned int nr;
3697
3698         if (vcpu->arch.exception.injected) {
3699                 nr = vcpu->arch.exception.nr;
3700                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3701
3702                 if (kvm_exception_is_soft(nr)) {
3703                         vmcs12->vm_exit_instruction_len =
3704                                 vcpu->arch.event_exit_inst_len;
3705                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3706                 } else
3707                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3708
3709                 if (vcpu->arch.exception.has_error_code) {
3710                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3711                         vmcs12->idt_vectoring_error_code =
3712                                 vcpu->arch.exception.error_code;
3713                 }
3714
3715                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3716         } else if (vcpu->arch.nmi_injected) {
3717                 vmcs12->idt_vectoring_info_field =
3718                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3719         } else if (vcpu->arch.interrupt.injected) {
3720                 nr = vcpu->arch.interrupt.nr;
3721                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3722
3723                 if (vcpu->arch.interrupt.soft) {
3724                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3725                         vmcs12->vm_entry_instruction_len =
3726                                 vcpu->arch.event_exit_inst_len;
3727                 } else
3728                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3729
3730                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3731         }
3732 }
3733
3734
3735 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3736 {
3737         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3738         gfn_t gfn;
3739
3740         /*
3741          * Don't need to mark the APIC access page dirty; it is never
3742          * written to by the CPU during APIC virtualization.
3743          */
3744
3745         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3746                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3747                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3748         }
3749
3750         if (nested_cpu_has_posted_intr(vmcs12)) {
3751                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3752                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3753         }
3754 }
3755
3756 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3757 {
3758         struct vcpu_vmx *vmx = to_vmx(vcpu);
3759         int max_irr;
3760         void *vapic_page;
3761         u16 status;
3762
3763         if (!vmx->nested.pi_pending)
3764                 return 0;
3765
3766         if (!vmx->nested.pi_desc)
3767                 goto mmio_needed;
3768
3769         vmx->nested.pi_pending = false;
3770
3771         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3772                 return 0;
3773
3774         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3775         if (max_irr != 256) {
3776                 vapic_page = vmx->nested.virtual_apic_map.hva;
3777                 if (!vapic_page)
3778                         goto mmio_needed;
3779
3780                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3781                         vapic_page, &max_irr);
3782                 status = vmcs_read16(GUEST_INTR_STATUS);
3783                 if ((u8)max_irr > ((u8)status & 0xff)) {
3784                         status &= ~0xff;
3785                         status |= (u8)max_irr;
3786                         vmcs_write16(GUEST_INTR_STATUS, status);
3787                 }
3788         }
3789
3790         nested_mark_vmcs12_pages_dirty(vcpu);
3791         return 0;
3792
3793 mmio_needed:
3794         kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3795         return -ENXIO;
3796 }
3797
3798 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3799                                                unsigned long exit_qual)
3800 {
3801         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3802         unsigned int nr = vcpu->arch.exception.nr;
3803         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3804
3805         if (vcpu->arch.exception.has_error_code) {
3806                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3807                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3808         }
3809
3810         if (kvm_exception_is_soft(nr))
3811                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3812         else
3813                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3814
3815         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3816             vmx_get_nmi_mask(vcpu))
3817                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3818
3819         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3820 }
3821
3822 /*
3823  * Returns true if a debug trap is pending delivery.
3824  *
3825  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3826  * exception may be inferred from the presence of an exception payload.
3827  */
3828 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3829 {
3830         return vcpu->arch.exception.pending &&
3831                         vcpu->arch.exception.nr == DB_VECTOR &&
3832                         vcpu->arch.exception.payload;
3833 }
3834
3835 /*
3836  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3837  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3838  * represents these debug traps with a payload that is said to be compatible
3839  * with the 'pending debug exceptions' field, write the payload to the VMCS
3840  * field if a VM-exit is delivered before the debug trap.
3841  */
3842 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3843 {
3844         if (vmx_pending_dbg_trap(vcpu))
3845                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3846                             vcpu->arch.exception.payload);
3847 }
3848
3849 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3850 {
3851         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3852                to_vmx(vcpu)->nested.preemption_timer_expired;
3853 }
3854
3855 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3856 {
3857         struct vcpu_vmx *vmx = to_vmx(vcpu);
3858         unsigned long exit_qual;
3859         bool block_nested_events =
3860             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3861         bool mtf_pending = vmx->nested.mtf_pending;
3862         struct kvm_lapic *apic = vcpu->arch.apic;
3863
3864         /*
3865          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3866          * this state is discarded.
3867          */
3868         if (!block_nested_events)
3869                 vmx->nested.mtf_pending = false;
3870
3871         if (lapic_in_kernel(vcpu) &&
3872                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3873                 if (block_nested_events)
3874                         return -EBUSY;
3875                 nested_vmx_update_pending_dbg(vcpu);
3876                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3877                 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3878                         nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3879                 return 0;
3880         }
3881
3882         if (lapic_in_kernel(vcpu) &&
3883             test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3884                 if (block_nested_events)
3885                         return -EBUSY;
3886
3887                 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3888                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3889                         nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3890                                                 apic->sipi_vector & 0xFFUL);
3891                 return 0;
3892         }
3893
3894         /*
3895          * Process any exceptions that are not debug traps before MTF.
3896          *
3897          * Note that only a pending nested run can block a pending exception.
3898          * Otherwise an injected NMI/interrupt should either be
3899          * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3900          * while delivering the pending exception.
3901          */
3902
3903         if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3904                 if (vmx->nested.nested_run_pending)
3905                         return -EBUSY;
3906                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3907                         goto no_vmexit;
3908                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3909                 return 0;
3910         }
3911
3912         if (mtf_pending) {
3913                 if (block_nested_events)
3914                         return -EBUSY;
3915                 nested_vmx_update_pending_dbg(vcpu);
3916                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3917                 return 0;
3918         }
3919
3920         if (vcpu->arch.exception.pending) {
3921                 if (vmx->nested.nested_run_pending)
3922                         return -EBUSY;
3923                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3924                         goto no_vmexit;
3925                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3926                 return 0;
3927         }
3928
3929         if (nested_vmx_preemption_timer_pending(vcpu)) {
3930                 if (block_nested_events)
3931                         return -EBUSY;
3932                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3933                 return 0;
3934         }
3935
3936         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3937                 if (block_nested_events)
3938                         return -EBUSY;
3939                 goto no_vmexit;
3940         }
3941
3942         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3943                 if (block_nested_events)
3944                         return -EBUSY;
3945                 if (!nested_exit_on_nmi(vcpu))
3946                         goto no_vmexit;
3947
3948                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3949                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3950                                   INTR_INFO_VALID_MASK, 0);
3951                 /*
3952                  * The NMI-triggered VM exit counts as injection:
3953                  * clear this one and block further NMIs.
3954                  */
3955                 vcpu->arch.nmi_pending = 0;
3956                 vmx_set_nmi_mask(vcpu, true);
3957                 return 0;
3958         }
3959
3960         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3961                 if (block_nested_events)
3962                         return -EBUSY;
3963                 if (!nested_exit_on_intr(vcpu))
3964                         goto no_vmexit;
3965                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3966                 return 0;
3967         }
3968
3969 no_vmexit:
3970         return vmx_complete_nested_posted_interrupt(vcpu);
3971 }
3972
3973 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3974 {
3975         ktime_t remaining =
3976                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3977         u64 value;
3978
3979         if (ktime_to_ns(remaining) <= 0)
3980                 return 0;
3981
3982         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3983         do_div(value, 1000000);
3984         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3985 }
3986
3987 static bool is_vmcs12_ext_field(unsigned long field)
3988 {
3989         switch (field) {
3990         case GUEST_ES_SELECTOR:
3991         case GUEST_CS_SELECTOR:
3992         case GUEST_SS_SELECTOR:
3993         case GUEST_DS_SELECTOR:
3994         case GUEST_FS_SELECTOR:
3995         case GUEST_GS_SELECTOR:
3996         case GUEST_LDTR_SELECTOR:
3997         case GUEST_TR_SELECTOR:
3998         case GUEST_ES_LIMIT:
3999         case GUEST_CS_LIMIT:
4000         case GUEST_SS_LIMIT:
4001         case GUEST_DS_LIMIT:
4002         case GUEST_FS_LIMIT:
4003         case GUEST_GS_LIMIT:
4004         case GUEST_LDTR_LIMIT:
4005         case GUEST_TR_LIMIT:
4006         case GUEST_GDTR_LIMIT:
4007         case GUEST_IDTR_LIMIT:
4008         case GUEST_ES_AR_BYTES:
4009         case GUEST_DS_AR_BYTES:
4010         case GUEST_FS_AR_BYTES:
4011         case GUEST_GS_AR_BYTES:
4012         case GUEST_LDTR_AR_BYTES:
4013         case GUEST_TR_AR_BYTES:
4014         case GUEST_ES_BASE:
4015         case GUEST_CS_BASE:
4016         case GUEST_SS_BASE:
4017         case GUEST_DS_BASE:
4018         case GUEST_FS_BASE:
4019         case GUEST_GS_BASE:
4020         case GUEST_LDTR_BASE:
4021         case GUEST_TR_BASE:
4022         case GUEST_GDTR_BASE:
4023         case GUEST_IDTR_BASE:
4024         case GUEST_PENDING_DBG_EXCEPTIONS:
4025         case GUEST_BNDCFGS:
4026                 return true;
4027         default:
4028                 break;
4029         }
4030
4031         return false;
4032 }
4033
4034 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4035                                        struct vmcs12 *vmcs12)
4036 {
4037         struct vcpu_vmx *vmx = to_vmx(vcpu);
4038
4039         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4040         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4041         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4042         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4043         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4044         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4045         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4046         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4047         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4048         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4049         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4050         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4051         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4052         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4053         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4054         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4055         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4056         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4057         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4058         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4059         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4060         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4061         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4062         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4063         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4064         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4065         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4066         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4067         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4068         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4069         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4070         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4071         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4072         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4073         vmcs12->guest_pending_dbg_exceptions =
4074                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4075         if (kvm_mpx_supported())
4076                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4077
4078         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4079 }
4080
4081 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4082                                        struct vmcs12 *vmcs12)
4083 {
4084         struct vcpu_vmx *vmx = to_vmx(vcpu);
4085         int cpu;
4086
4087         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4088                 return;
4089
4090
4091         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4092
4093         cpu = get_cpu();
4094         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4095         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4096
4097         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4098
4099         vmx->loaded_vmcs = &vmx->vmcs01;
4100         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4101         put_cpu();
4102 }
4103
4104 /*
4105  * Update the guest state fields of vmcs12 to reflect changes that
4106  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4107  * VM-entry controls is also updated, since this is really a guest
4108  * state bit.)
4109  */
4110 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4111 {
4112         struct vcpu_vmx *vmx = to_vmx(vcpu);
4113
4114         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4115                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4116
4117         vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4118                 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4119
4120         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4121         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4122
4123         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4124         vmcs12->guest_rip = kvm_rip_read(vcpu);
4125         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4126
4127         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4128         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4129
4130         vmcs12->guest_interruptibility_info =
4131                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4132
4133         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4134                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4135         else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4136                 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4137         else
4138                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4139
4140         if (nested_cpu_has_preemption_timer(vmcs12) &&
4141             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4142             !vmx->nested.nested_run_pending)
4143                 vmcs12->vmx_preemption_timer_value =
4144                         vmx_get_preemption_timer_value(vcpu);
4145
4146         /*
4147          * In some cases (usually, nested EPT), L2 is allowed to change its
4148          * own CR3 without exiting. If it has changed it, we must keep it.
4149          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4150          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4151          *
4152          * Additionally, restore L2's PDPTR to vmcs12.
4153          */
4154         if (enable_ept) {
4155                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4156                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4157                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4158                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4159                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4160                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4161                 }
4162         }
4163
4164         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4165
4166         if (nested_cpu_has_vid(vmcs12))
4167                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4168
4169         vmcs12->vm_entry_controls =
4170                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4171                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4172
4173         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4174                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4175
4176         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4177                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4178 }
4179
4180 /*
4181  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4182  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4183  * and this function updates it to reflect the changes to the guest state while
4184  * L2 was running (and perhaps made some exits which were handled directly by L0
4185  * without going back to L1), and to reflect the exit reason.
4186  * Note that we do not have to copy here all VMCS fields, just those that
4187  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4188  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4189  * which already writes to vmcs12 directly.
4190  */
4191 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4192                            u32 vm_exit_reason, u32 exit_intr_info,
4193                            unsigned long exit_qualification)
4194 {
4195         /* update exit information fields: */
4196         vmcs12->vm_exit_reason = vm_exit_reason;
4197         if (to_vmx(vcpu)->exit_reason.enclave_mode)
4198                 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4199         vmcs12->exit_qualification = exit_qualification;
4200         vmcs12->vm_exit_intr_info = exit_intr_info;
4201
4202         vmcs12->idt_vectoring_info_field = 0;
4203         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4204         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4205
4206         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4207                 vmcs12->launch_state = 1;
4208
4209                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4210                  * instead of reading the real value. */
4211                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4212
4213                 /*
4214                  * Transfer the event that L0 or L1 may wanted to inject into
4215                  * L2 to IDT_VECTORING_INFO_FIELD.
4216                  */
4217                 vmcs12_save_pending_event(vcpu, vmcs12);
4218
4219                 /*
4220                  * According to spec, there's no need to store the guest's
4221                  * MSRs if the exit is due to a VM-entry failure that occurs
4222                  * during or after loading the guest state. Since this exit
4223                  * does not fall in that category, we need to save the MSRs.
4224                  */
4225                 if (nested_vmx_store_msr(vcpu,
4226                                          vmcs12->vm_exit_msr_store_addr,
4227                                          vmcs12->vm_exit_msr_store_count))
4228                         nested_vmx_abort(vcpu,
4229                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4230         }
4231
4232         /*
4233          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4234          * preserved above and would only end up incorrectly in L1.
4235          */
4236         vcpu->arch.nmi_injected = false;
4237         kvm_clear_exception_queue(vcpu);
4238         kvm_clear_interrupt_queue(vcpu);
4239 }
4240
4241 /*
4242  * A part of what we need to when the nested L2 guest exits and we want to
4243  * run its L1 parent, is to reset L1's guest state to the host state specified
4244  * in vmcs12.
4245  * This function is to be called not only on normal nested exit, but also on
4246  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4247  * Failures During or After Loading Guest State").
4248  * This function should be called when the active VMCS is L1's (vmcs01).
4249  */
4250 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4251                                    struct vmcs12 *vmcs12)
4252 {
4253         enum vm_entry_failure_code ignored;
4254         struct kvm_segment seg;
4255
4256         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4257                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4258         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4259                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4260         else
4261                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4262         vmx_set_efer(vcpu, vcpu->arch.efer);
4263
4264         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4265         kvm_rip_write(vcpu, vmcs12->host_rip);
4266         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4267         vmx_set_interrupt_shadow(vcpu, 0);
4268
4269         /*
4270          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4271          * actually changed, because vmx_set_cr0 refers to efer set above.
4272          *
4273          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4274          * (KVM doesn't change it);
4275          */
4276         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4277         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4278
4279         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4280         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4281         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4282
4283         nested_ept_uninit_mmu_context(vcpu);
4284
4285         /*
4286          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4287          * couldn't have changed.
4288          */
4289         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4290                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4291
4292         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4293
4294         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4295         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4296         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4297         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4298         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4299         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4300         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4301
4302         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4303         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4304                 vmcs_write64(GUEST_BNDCFGS, 0);
4305
4306         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4307                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4308                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4309         }
4310         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4311                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4312                                          vmcs12->host_ia32_perf_global_ctrl));
4313
4314         /* Set L1 segment info according to Intel SDM
4315             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4316         seg = (struct kvm_segment) {
4317                 .base = 0,
4318                 .limit = 0xFFFFFFFF,
4319                 .selector = vmcs12->host_cs_selector,
4320                 .type = 11,
4321                 .present = 1,
4322                 .s = 1,
4323                 .g = 1
4324         };
4325         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4326                 seg.l = 1;
4327         else
4328                 seg.db = 1;
4329         __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4330         seg = (struct kvm_segment) {
4331                 .base = 0,
4332                 .limit = 0xFFFFFFFF,
4333                 .type = 3,
4334                 .present = 1,
4335                 .s = 1,
4336                 .db = 1,
4337                 .g = 1
4338         };
4339         seg.selector = vmcs12->host_ds_selector;
4340         __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4341         seg.selector = vmcs12->host_es_selector;
4342         __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4343         seg.selector = vmcs12->host_ss_selector;
4344         __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4345         seg.selector = vmcs12->host_fs_selector;
4346         seg.base = vmcs12->host_fs_base;
4347         __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4348         seg.selector = vmcs12->host_gs_selector;
4349         seg.base = vmcs12->host_gs_base;
4350         __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4351         seg = (struct kvm_segment) {
4352                 .base = vmcs12->host_tr_base,
4353                 .limit = 0x67,
4354                 .selector = vmcs12->host_tr_selector,
4355                 .type = 11,
4356                 .present = 1
4357         };
4358         __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4359
4360         memset(&seg, 0, sizeof(seg));
4361         seg.unusable = 1;
4362         __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4363
4364         kvm_set_dr(vcpu, 7, 0x400);
4365         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4366
4367         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4368                                 vmcs12->vm_exit_msr_load_count))
4369                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4370
4371         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4372 }
4373
4374 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4375 {
4376         struct vmx_uret_msr *efer_msr;
4377         unsigned int i;
4378
4379         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4380                 return vmcs_read64(GUEST_IA32_EFER);
4381
4382         if (cpu_has_load_ia32_efer())
4383                 return host_efer;
4384
4385         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4386                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4387                         return vmx->msr_autoload.guest.val[i].value;
4388         }
4389
4390         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4391         if (efer_msr)
4392                 return efer_msr->data;
4393
4394         return host_efer;
4395 }
4396
4397 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4398 {
4399         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4400         struct vcpu_vmx *vmx = to_vmx(vcpu);
4401         struct vmx_msr_entry g, h;
4402         gpa_t gpa;
4403         u32 i, j;
4404
4405         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4406
4407         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4408                 /*
4409                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4410                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4411                  * and vcpu->arch.dr7 is not squirreled away before the
4412                  * nested VMENTER (not worth adding a variable in nested_vmx).
4413                  */
4414                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4415                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4416                 else
4417                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4418         }
4419
4420         /*
4421          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4422          * handle a variety of side effects to KVM's software model.
4423          */
4424         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4425
4426         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4427         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4428
4429         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4430         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4431
4432         nested_ept_uninit_mmu_context(vcpu);
4433         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4434         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4435
4436         /*
4437          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4438          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4439          * VMFail, like everything else we just need to ensure our
4440          * software model is up-to-date.
4441          */
4442         if (enable_ept && is_pae_paging(vcpu))
4443                 ept_save_pdptrs(vcpu);
4444
4445         kvm_mmu_reset_context(vcpu);
4446
4447         /*
4448          * This nasty bit of open coding is a compromise between blindly
4449          * loading L1's MSRs using the exit load lists (incorrect emulation
4450          * of VMFail), leaving the nested VM's MSRs in the software model
4451          * (incorrect behavior) and snapshotting the modified MSRs (too
4452          * expensive since the lists are unbound by hardware).  For each
4453          * MSR that was (prematurely) loaded from the nested VMEntry load
4454          * list, reload it from the exit load list if it exists and differs
4455          * from the guest value.  The intent is to stuff host state as
4456          * silently as possible, not to fully process the exit load list.
4457          */
4458         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4459                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4460                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4461                         pr_debug_ratelimited(
4462                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4463                                 __func__, i, gpa);
4464                         goto vmabort;
4465                 }
4466
4467                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4468                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4469                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4470                                 pr_debug_ratelimited(
4471                                         "%s read MSR failed (%u, 0x%08llx)\n",
4472                                         __func__, j, gpa);
4473                                 goto vmabort;
4474                         }
4475                         if (h.index != g.index)
4476                                 continue;
4477                         if (h.value == g.value)
4478                                 break;
4479
4480                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4481                                 pr_debug_ratelimited(
4482                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4483                                         __func__, j, h.index, h.reserved);
4484                                 goto vmabort;
4485                         }
4486
4487                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4488                                 pr_debug_ratelimited(
4489                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4490                                         __func__, j, h.index, h.value);
4491                                 goto vmabort;
4492                         }
4493                 }
4494         }
4495
4496         return;
4497
4498 vmabort:
4499         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4500 }
4501
4502 /*
4503  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4504  * and modify vmcs12 to make it see what it would expect to see there if
4505  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4506  */
4507 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4508                        u32 exit_intr_info, unsigned long exit_qualification)
4509 {
4510         struct vcpu_vmx *vmx = to_vmx(vcpu);
4511         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4512
4513         /* trying to cancel vmlaunch/vmresume is a bug */
4514         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4515
4516         /* Similarly, triple faults in L2 should never escape. */
4517         WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4518
4519         if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4520                 /*
4521                  * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4522                  * Enlightened VMCS after migration and we still need to
4523                  * do that when something is forcing L2->L1 exit prior to
4524                  * the first L2 run.
4525                  */
4526                 (void)nested_get_evmcs_page(vcpu);
4527         }
4528
4529         /* Service pending TLB flush requests for L2 before switching to L1. */
4530         kvm_service_local_tlb_flush_requests(vcpu);
4531
4532         /*
4533          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4534          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4535          * up-to-date before switching to L1.
4536          */
4537         if (enable_ept && is_pae_paging(vcpu))
4538                 vmx_ept_load_pdptrs(vcpu);
4539
4540         leave_guest_mode(vcpu);
4541
4542         if (nested_cpu_has_preemption_timer(vmcs12))
4543                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4544
4545         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4546                 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4547                 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4548                         vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4549         }
4550
4551         if (likely(!vmx->fail)) {
4552                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4553
4554                 if (vm_exit_reason != -1)
4555                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4556                                        exit_intr_info, exit_qualification);
4557
4558                 /*
4559                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4560                  * also be used to capture vmcs12 cache as part of
4561                  * capturing nVMX state for snapshot (migration).
4562                  *
4563                  * Otherwise, this flush will dirty guest memory at a
4564                  * point it is already assumed by user-space to be
4565                  * immutable.
4566                  */
4567                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4568         } else {
4569                 /*
4570                  * The only expected VM-instruction error is "VM entry with
4571                  * invalid control field(s)." Anything else indicates a
4572                  * problem with L0.  And we should never get here with a
4573                  * VMFail of any type if early consistency checks are enabled.
4574                  */
4575                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4576                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4577                 WARN_ON_ONCE(nested_early_check);
4578         }
4579
4580         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4581
4582         /* Update any VMCS fields that might have changed while L2 ran */
4583         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4584         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4585         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4586         if (kvm_has_tsc_control)
4587                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4588
4589         if (vmx->nested.l1_tpr_threshold != -1)
4590                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4591
4592         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4593                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4594                 vmx_set_virtual_apic_mode(vcpu);
4595         }
4596
4597         if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4598                 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4599                 vmx_update_cpu_dirty_logging(vcpu);
4600         }
4601
4602         /* Unpin physical memory we referred to in vmcs02 */
4603         if (vmx->nested.apic_access_page) {
4604                 kvm_release_page_clean(vmx->nested.apic_access_page);
4605                 vmx->nested.apic_access_page = NULL;
4606         }
4607         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4608         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4609         vmx->nested.pi_desc = NULL;
4610
4611         if (vmx->nested.reload_vmcs01_apic_access_page) {
4612                 vmx->nested.reload_vmcs01_apic_access_page = false;
4613                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4614         }
4615
4616         if ((vm_exit_reason != -1) &&
4617             (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4618                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4619
4620         /* in case we halted in L2 */
4621         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4622
4623         if (likely(!vmx->fail)) {
4624                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4625                     nested_exit_intr_ack_set(vcpu)) {
4626                         int irq = kvm_cpu_get_interrupt(vcpu);
4627                         WARN_ON(irq < 0);
4628                         vmcs12->vm_exit_intr_info = irq |
4629                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4630                 }
4631
4632                 if (vm_exit_reason != -1)
4633                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4634                                                        vmcs12->exit_qualification,
4635                                                        vmcs12->idt_vectoring_info_field,
4636                                                        vmcs12->vm_exit_intr_info,
4637                                                        vmcs12->vm_exit_intr_error_code,
4638                                                        KVM_ISA_VMX);
4639
4640                 load_vmcs12_host_state(vcpu, vmcs12);
4641
4642                 return;
4643         }
4644
4645         /*
4646          * After an early L2 VM-entry failure, we're now back
4647          * in L1 which thinks it just finished a VMLAUNCH or
4648          * VMRESUME instruction, so we need to set the failure
4649          * flag and the VM-instruction error field of the VMCS
4650          * accordingly, and skip the emulated instruction.
4651          */
4652         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4653
4654         /*
4655          * Restore L1's host state to KVM's software model.  We're here
4656          * because a consistency check was caught by hardware, which
4657          * means some amount of guest state has been propagated to KVM's
4658          * model and needs to be unwound to the host's state.
4659          */
4660         nested_vmx_restore_host_state(vcpu);
4661
4662         vmx->fail = 0;
4663 }
4664
4665 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4666 {
4667         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4668 }
4669
4670 /*
4671  * Decode the memory-address operand of a vmx instruction, as recorded on an
4672  * exit caused by such an instruction (run by a guest hypervisor).
4673  * On success, returns 0. When the operand is invalid, returns 1 and throws
4674  * #UD, #GP, or #SS.
4675  */
4676 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4677                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4678 {
4679         gva_t off;
4680         bool exn;
4681         struct kvm_segment s;
4682
4683         /*
4684          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4685          * Execution", on an exit, vmx_instruction_info holds most of the
4686          * addressing components of the operand. Only the displacement part
4687          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4688          * For how an actual address is calculated from all these components,
4689          * refer to Vol. 1, "Operand Addressing".
4690          */
4691         int  scaling = vmx_instruction_info & 3;
4692         int  addr_size = (vmx_instruction_info >> 7) & 7;
4693         bool is_reg = vmx_instruction_info & (1u << 10);
4694         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4695         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4696         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4697         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4698         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4699
4700         if (is_reg) {
4701                 kvm_queue_exception(vcpu, UD_VECTOR);
4702                 return 1;
4703         }
4704
4705         /* Addr = segment_base + offset */
4706         /* offset = base + [index * scale] + displacement */
4707         off = exit_qualification; /* holds the displacement */
4708         if (addr_size == 1)
4709                 off = (gva_t)sign_extend64(off, 31);
4710         else if (addr_size == 0)
4711                 off = (gva_t)sign_extend64(off, 15);
4712         if (base_is_valid)
4713                 off += kvm_register_read(vcpu, base_reg);
4714         if (index_is_valid)
4715                 off += kvm_register_read(vcpu, index_reg) << scaling;
4716         vmx_get_segment(vcpu, &s, seg_reg);
4717
4718         /*
4719          * The effective address, i.e. @off, of a memory operand is truncated
4720          * based on the address size of the instruction.  Note that this is
4721          * the *effective address*, i.e. the address prior to accounting for
4722          * the segment's base.
4723          */
4724         if (addr_size == 1) /* 32 bit */
4725                 off &= 0xffffffff;
4726         else if (addr_size == 0) /* 16 bit */
4727                 off &= 0xffff;
4728
4729         /* Checks for #GP/#SS exceptions. */
4730         exn = false;
4731         if (is_long_mode(vcpu)) {
4732                 /*
4733                  * The virtual/linear address is never truncated in 64-bit
4734                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4735                  * address when using FS/GS with a non-zero base.
4736                  */
4737                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4738                         *ret = s.base + off;
4739                 else
4740                         *ret = off;
4741
4742                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4743                  * non-canonical form. This is the only check on the memory
4744                  * destination for long mode!
4745                  */
4746                 exn = is_noncanonical_address(*ret, vcpu);
4747         } else {
4748                 /*
4749                  * When not in long mode, the virtual/linear address is
4750                  * unconditionally truncated to 32 bits regardless of the
4751                  * address size.
4752                  */
4753                 *ret = (s.base + off) & 0xffffffff;
4754
4755                 /* Protected mode: apply checks for segment validity in the
4756                  * following order:
4757                  * - segment type check (#GP(0) may be thrown)
4758                  * - usability check (#GP(0)/#SS(0))
4759                  * - limit check (#GP(0)/#SS(0))
4760                  */
4761                 if (wr)
4762                         /* #GP(0) if the destination operand is located in a
4763                          * read-only data segment or any code segment.
4764                          */
4765                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4766                 else
4767                         /* #GP(0) if the source operand is located in an
4768                          * execute-only code segment
4769                          */
4770                         exn = ((s.type & 0xa) == 8);
4771                 if (exn) {
4772                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4773                         return 1;
4774                 }
4775                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4776                  */
4777                 exn = (s.unusable != 0);
4778
4779                 /*
4780                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4781                  * outside the segment limit.  All CPUs that support VMX ignore
4782                  * limit checks for flat segments, i.e. segments with base==0,
4783                  * limit==0xffffffff and of type expand-up data or code.
4784                  */
4785                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4786                      ((s.type & 8) || !(s.type & 4))))
4787                         exn = exn || ((u64)off + len - 1 > s.limit);
4788         }
4789         if (exn) {
4790                 kvm_queue_exception_e(vcpu,
4791                                       seg_reg == VCPU_SREG_SS ?
4792                                                 SS_VECTOR : GP_VECTOR,
4793                                       0);
4794                 return 1;
4795         }
4796
4797         return 0;
4798 }
4799
4800 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4801 {
4802         struct vcpu_vmx *vmx;
4803
4804         if (!nested_vmx_allowed(vcpu))
4805                 return;
4806
4807         vmx = to_vmx(vcpu);
4808         if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4809                 vmx->nested.msrs.entry_ctls_high |=
4810                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4811                 vmx->nested.msrs.exit_ctls_high |=
4812                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4813         } else {
4814                 vmx->nested.msrs.entry_ctls_high &=
4815                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4816                 vmx->nested.msrs.exit_ctls_high &=
4817                                 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4818         }
4819 }
4820
4821 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4822                                 int *ret)
4823 {
4824         gva_t gva;
4825         struct x86_exception e;
4826         int r;
4827
4828         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4829                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4830                                 sizeof(*vmpointer), &gva)) {
4831                 *ret = 1;
4832                 return -EINVAL;
4833         }
4834
4835         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4836         if (r != X86EMUL_CONTINUE) {
4837                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4838                 return -EINVAL;
4839         }
4840
4841         return 0;
4842 }
4843
4844 /*
4845  * Allocate a shadow VMCS and associate it with the currently loaded
4846  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4847  * VMCS is also VMCLEARed, so that it is ready for use.
4848  */
4849 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4850 {
4851         struct vcpu_vmx *vmx = to_vmx(vcpu);
4852         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4853
4854         /*
4855          * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
4856          * when L1 executes VMXOFF or the vCPU is forced out of nested
4857          * operation.  VMXON faults if the CPU is already post-VMXON, so it
4858          * should be impossible to already have an allocated shadow VMCS.  KVM
4859          * doesn't support virtualization of VMCS shadowing, so vmcs01 should
4860          * always be the loaded VMCS.
4861          */
4862         if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
4863                 return loaded_vmcs->shadow_vmcs;
4864
4865         loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4866         if (loaded_vmcs->shadow_vmcs)
4867                 vmcs_clear(loaded_vmcs->shadow_vmcs);
4868
4869         return loaded_vmcs->shadow_vmcs;
4870 }
4871
4872 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4873 {
4874         struct vcpu_vmx *vmx = to_vmx(vcpu);
4875         int r;
4876
4877         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4878         if (r < 0)
4879                 goto out_vmcs02;
4880
4881         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4882         if (!vmx->nested.cached_vmcs12)
4883                 goto out_cached_vmcs12;
4884
4885         vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
4886         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4887         if (!vmx->nested.cached_shadow_vmcs12)
4888                 goto out_cached_shadow_vmcs12;
4889
4890         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4891                 goto out_shadow_vmcs;
4892
4893         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4894                      HRTIMER_MODE_ABS_PINNED);
4895         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4896
4897         vmx->nested.vpid02 = allocate_vpid();
4898
4899         vmx->nested.vmcs02_initialized = false;
4900         vmx->nested.vmxon = true;
4901
4902         if (vmx_pt_mode_is_host_guest()) {
4903                 vmx->pt_desc.guest.ctl = 0;
4904                 pt_update_intercept_for_msr(vcpu);
4905         }
4906
4907         return 0;
4908
4909 out_shadow_vmcs:
4910         kfree(vmx->nested.cached_shadow_vmcs12);
4911
4912 out_cached_shadow_vmcs12:
4913         kfree(vmx->nested.cached_vmcs12);
4914
4915 out_cached_vmcs12:
4916         free_loaded_vmcs(&vmx->nested.vmcs02);
4917
4918 out_vmcs02:
4919         return -ENOMEM;
4920 }
4921
4922 /* Emulate the VMXON instruction. */
4923 static int handle_vmon(struct kvm_vcpu *vcpu)
4924 {
4925         int ret;
4926         gpa_t vmptr;
4927         uint32_t revision;
4928         struct vcpu_vmx *vmx = to_vmx(vcpu);
4929         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4930                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4931
4932         /*
4933          * The Intel VMX Instruction Reference lists a bunch of bits that are
4934          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4935          * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4936          * Otherwise, we should fail with #UD.  But most faulting conditions
4937          * have already been checked by hardware, prior to the VM-exit for
4938          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4939          * that bit set to 1 in non-root mode.
4940          */
4941         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4942                 kvm_queue_exception(vcpu, UD_VECTOR);
4943                 return 1;
4944         }
4945
4946         /* CPL=0 must be checked manually. */
4947         if (vmx_get_cpl(vcpu)) {
4948                 kvm_inject_gp(vcpu, 0);
4949                 return 1;
4950         }
4951
4952         if (vmx->nested.vmxon)
4953                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4954
4955         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4956                         != VMXON_NEEDED_FEATURES) {
4957                 kvm_inject_gp(vcpu, 0);
4958                 return 1;
4959         }
4960
4961         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4962                 return ret;
4963
4964         /*
4965          * SDM 3: 24.11.5
4966          * The first 4 bytes of VMXON region contain the supported
4967          * VMCS revision identifier
4968          *
4969          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4970          * which replaces physical address width with 32
4971          */
4972         if (!page_address_valid(vcpu, vmptr))
4973                 return nested_vmx_failInvalid(vcpu);
4974
4975         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4976             revision != VMCS12_REVISION)
4977                 return nested_vmx_failInvalid(vcpu);
4978
4979         vmx->nested.vmxon_ptr = vmptr;
4980         ret = enter_vmx_operation(vcpu);
4981         if (ret)
4982                 return ret;
4983
4984         return nested_vmx_succeed(vcpu);
4985 }
4986
4987 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4988 {
4989         struct vcpu_vmx *vmx = to_vmx(vcpu);
4990
4991         if (vmx->nested.current_vmptr == INVALID_GPA)
4992                 return;
4993
4994         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4995
4996         if (enable_shadow_vmcs) {
4997                 /* copy to memory all shadowed fields in case
4998                    they were modified */
4999                 copy_shadow_to_vmcs12(vmx);
5000                 vmx_disable_shadow_vmcs(vmx);
5001         }
5002         vmx->nested.posted_intr_nv = -1;
5003
5004         /* Flush VMCS12 to guest memory */
5005         kvm_vcpu_write_guest_page(vcpu,
5006                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
5007                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5008
5009         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5010
5011         vmx->nested.current_vmptr = INVALID_GPA;
5012 }
5013
5014 /* Emulate the VMXOFF instruction */
5015 static int handle_vmoff(struct kvm_vcpu *vcpu)
5016 {
5017         if (!nested_vmx_check_permission(vcpu))
5018                 return 1;
5019
5020         free_nested(vcpu);
5021
5022         /* Process a latched INIT during time CPU was in VMX operation */
5023         kvm_make_request(KVM_REQ_EVENT, vcpu);
5024
5025         return nested_vmx_succeed(vcpu);
5026 }
5027
5028 /* Emulate the VMCLEAR instruction */
5029 static int handle_vmclear(struct kvm_vcpu *vcpu)
5030 {
5031         struct vcpu_vmx *vmx = to_vmx(vcpu);
5032         u32 zero = 0;
5033         gpa_t vmptr;
5034         u64 evmcs_gpa;
5035         int r;
5036
5037         if (!nested_vmx_check_permission(vcpu))
5038                 return 1;
5039
5040         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5041                 return r;
5042
5043         if (!page_address_valid(vcpu, vmptr))
5044                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5045
5046         if (vmptr == vmx->nested.vmxon_ptr)
5047                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5048
5049         /*
5050          * When Enlightened VMEntry is enabled on the calling CPU we treat
5051          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5052          * way to distinguish it from VMCS12) and we must not corrupt it by
5053          * writing to the non-existent 'launch_state' field. The area doesn't
5054          * have to be the currently active EVMCS on the calling CPU and there's
5055          * nothing KVM has to do to transition it from 'active' to 'non-active'
5056          * state. It is possible that the area will stay mapped as
5057          * vmx->nested.hv_evmcs but this shouldn't be a problem.
5058          */
5059         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5060                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5061                 if (vmptr == vmx->nested.current_vmptr)
5062                         nested_release_vmcs12(vcpu);
5063
5064                 kvm_vcpu_write_guest(vcpu,
5065                                      vmptr + offsetof(struct vmcs12,
5066                                                       launch_state),
5067                                      &zero, sizeof(zero));
5068         } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5069                 nested_release_evmcs(vcpu);
5070         }
5071
5072         return nested_vmx_succeed(vcpu);
5073 }
5074
5075 /* Emulate the VMLAUNCH instruction */
5076 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5077 {
5078         return nested_vmx_run(vcpu, true);
5079 }
5080
5081 /* Emulate the VMRESUME instruction */
5082 static int handle_vmresume(struct kvm_vcpu *vcpu)
5083 {
5084
5085         return nested_vmx_run(vcpu, false);
5086 }
5087
5088 static int handle_vmread(struct kvm_vcpu *vcpu)
5089 {
5090         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5091                                                     : get_vmcs12(vcpu);
5092         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5093         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5094         struct vcpu_vmx *vmx = to_vmx(vcpu);
5095         struct x86_exception e;
5096         unsigned long field;
5097         u64 value;
5098         gva_t gva = 0;
5099         short offset;
5100         int len, r;
5101
5102         if (!nested_vmx_check_permission(vcpu))
5103                 return 1;
5104
5105         /* Decode instruction info and find the field to read */
5106         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5107
5108         if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5109                 /*
5110                  * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5111                  * any VMREAD sets the ALU flags for VMfailInvalid.
5112                  */
5113                 if (vmx->nested.current_vmptr == INVALID_GPA ||
5114                     (is_guest_mode(vcpu) &&
5115                      get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5116                         return nested_vmx_failInvalid(vcpu);
5117
5118                 offset = get_vmcs12_field_offset(field);
5119                 if (offset < 0)
5120                         return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5121
5122                 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5123                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5124
5125                 /* Read the field, zero-extended to a u64 value */
5126                 value = vmcs12_read_any(vmcs12, field, offset);
5127         } else {
5128                 /*
5129                  * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5130                  * enlightened VMCS is active VMREAD/VMWRITE instructions are
5131                  * unsupported. Unfortunately, certain versions of Windows 11
5132                  * don't comply with this requirement which is not enforced in
5133                  * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5134                  * workaround, as misbehaving guests will panic on VM-Fail.
5135                  * Note, enlightened VMCS is incompatible with shadow VMCS so
5136                  * all VMREADs from L2 should go to L1.
5137                  */
5138                 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5139                         return nested_vmx_failInvalid(vcpu);
5140
5141                 offset = evmcs_field_offset(field, NULL);
5142                 if (offset < 0)
5143                         return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5144
5145                 /* Read the field, zero-extended to a u64 value */
5146                 value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5147         }
5148
5149         /*
5150          * Now copy part of this value to register or memory, as requested.
5151          * Note that the number of bits actually copied is 32 or 64 depending
5152          * on the guest's mode (32 or 64 bit), not on the given field's length.
5153          */
5154         if (instr_info & BIT(10)) {
5155                 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5156         } else {
5157                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5158                 if (get_vmx_mem_address(vcpu, exit_qualification,
5159                                         instr_info, true, len, &gva))
5160                         return 1;
5161                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5162                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5163                 if (r != X86EMUL_CONTINUE)
5164                         return kvm_handle_memory_failure(vcpu, r, &e);
5165         }
5166
5167         return nested_vmx_succeed(vcpu);
5168 }
5169
5170 static bool is_shadow_field_rw(unsigned long field)
5171 {
5172         switch (field) {
5173 #define SHADOW_FIELD_RW(x, y) case x:
5174 #include "vmcs_shadow_fields.h"
5175                 return true;
5176         default:
5177                 break;
5178         }
5179         return false;
5180 }
5181
5182 static bool is_shadow_field_ro(unsigned long field)
5183 {
5184         switch (field) {
5185 #define SHADOW_FIELD_RO(x, y) case x:
5186 #include "vmcs_shadow_fields.h"
5187                 return true;
5188         default:
5189                 break;
5190         }
5191         return false;
5192 }
5193
5194 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5195 {
5196         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5197                                                     : get_vmcs12(vcpu);
5198         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5199         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5200         struct vcpu_vmx *vmx = to_vmx(vcpu);
5201         struct x86_exception e;
5202         unsigned long field;
5203         short offset;
5204         gva_t gva;
5205         int len, r;
5206
5207         /*
5208          * The value to write might be 32 or 64 bits, depending on L1's long
5209          * mode, and eventually we need to write that into a field of several
5210          * possible lengths. The code below first zero-extends the value to 64
5211          * bit (value), and then copies only the appropriate number of
5212          * bits into the vmcs12 field.
5213          */
5214         u64 value = 0;
5215
5216         if (!nested_vmx_check_permission(vcpu))
5217                 return 1;
5218
5219         /*
5220          * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5221          * any VMWRITE sets the ALU flags for VMfailInvalid.
5222          */
5223         if (vmx->nested.current_vmptr == INVALID_GPA ||
5224             (is_guest_mode(vcpu) &&
5225              get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5226                 return nested_vmx_failInvalid(vcpu);
5227
5228         if (instr_info & BIT(10))
5229                 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5230         else {
5231                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5232                 if (get_vmx_mem_address(vcpu, exit_qualification,
5233                                         instr_info, false, len, &gva))
5234                         return 1;
5235                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5236                 if (r != X86EMUL_CONTINUE)
5237                         return kvm_handle_memory_failure(vcpu, r, &e);
5238         }
5239
5240         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5241
5242         offset = get_vmcs12_field_offset(field);
5243         if (offset < 0)
5244                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5245
5246         /*
5247          * If the vCPU supports "VMWRITE to any supported field in the
5248          * VMCS," then the "read-only" fields are actually read/write.
5249          */
5250         if (vmcs_field_readonly(field) &&
5251             !nested_cpu_has_vmwrite_any_field(vcpu))
5252                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5253
5254         /*
5255          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5256          * vmcs12, else we may crush a field or consume a stale value.
5257          */
5258         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5259                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5260
5261         /*
5262          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5263          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5264          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5265          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5266          * from L1 will return a different value than VMREAD from L2 (L1 sees
5267          * the stripped down value, L2 sees the full value as stored by KVM).
5268          */
5269         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5270                 value &= 0x1f0ff;
5271
5272         vmcs12_write_any(vmcs12, field, offset, value);
5273
5274         /*
5275          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5276          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5277          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5278          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5279          */
5280         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5281                 /*
5282                  * L1 can read these fields without exiting, ensure the
5283                  * shadow VMCS is up-to-date.
5284                  */
5285                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5286                         preempt_disable();
5287                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5288
5289                         __vmcs_writel(field, value);
5290
5291                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5292                         vmcs_load(vmx->loaded_vmcs->vmcs);
5293                         preempt_enable();
5294                 }
5295                 vmx->nested.dirty_vmcs12 = true;
5296         }
5297
5298         return nested_vmx_succeed(vcpu);
5299 }
5300
5301 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5302 {
5303         vmx->nested.current_vmptr = vmptr;
5304         if (enable_shadow_vmcs) {
5305                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5306                 vmcs_write64(VMCS_LINK_POINTER,
5307                              __pa(vmx->vmcs01.shadow_vmcs));
5308                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5309         }
5310         vmx->nested.dirty_vmcs12 = true;
5311         vmx->nested.force_msr_bitmap_recalc = true;
5312 }
5313
5314 /* Emulate the VMPTRLD instruction */
5315 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5316 {
5317         struct vcpu_vmx *vmx = to_vmx(vcpu);
5318         gpa_t vmptr;
5319         int r;
5320
5321         if (!nested_vmx_check_permission(vcpu))
5322                 return 1;
5323
5324         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5325                 return r;
5326
5327         if (!page_address_valid(vcpu, vmptr))
5328                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5329
5330         if (vmptr == vmx->nested.vmxon_ptr)
5331                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5332
5333         /* Forbid normal VMPTRLD if Enlightened version was used */
5334         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5335                 return 1;
5336
5337         if (vmx->nested.current_vmptr != vmptr) {
5338                 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5339                 struct vmcs_hdr hdr;
5340
5341                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5342                         /*
5343                          * Reads from an unbacked page return all 1s,
5344                          * which means that the 32 bits located at the
5345                          * given physical address won't match the required
5346                          * VMCS12_REVISION identifier.
5347                          */
5348                         return nested_vmx_fail(vcpu,
5349                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5350                 }
5351
5352                 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5353                                                  offsetof(struct vmcs12, hdr),
5354                                                  sizeof(hdr))) {
5355                         return nested_vmx_fail(vcpu,
5356                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5357                 }
5358
5359                 if (hdr.revision_id != VMCS12_REVISION ||
5360                     (hdr.shadow_vmcs &&
5361                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5362                         return nested_vmx_fail(vcpu,
5363                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5364                 }
5365
5366                 nested_release_vmcs12(vcpu);
5367
5368                 /*
5369                  * Load VMCS12 from guest memory since it is not already
5370                  * cached.
5371                  */
5372                 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5373                                           VMCS12_SIZE)) {
5374                         return nested_vmx_fail(vcpu,
5375                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5376                 }
5377
5378                 set_current_vmptr(vmx, vmptr);
5379         }
5380
5381         return nested_vmx_succeed(vcpu);
5382 }
5383
5384 /* Emulate the VMPTRST instruction */
5385 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5386 {
5387         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5388         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5389         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5390         struct x86_exception e;
5391         gva_t gva;
5392         int r;
5393
5394         if (!nested_vmx_check_permission(vcpu))
5395                 return 1;
5396
5397         if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5398                 return 1;
5399
5400         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5401                                 true, sizeof(gpa_t), &gva))
5402                 return 1;
5403         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5404         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5405                                         sizeof(gpa_t), &e);
5406         if (r != X86EMUL_CONTINUE)
5407                 return kvm_handle_memory_failure(vcpu, r, &e);
5408
5409         return nested_vmx_succeed(vcpu);
5410 }
5411
5412 /* Emulate the INVEPT instruction */
5413 static int handle_invept(struct kvm_vcpu *vcpu)
5414 {
5415         struct vcpu_vmx *vmx = to_vmx(vcpu);
5416         u32 vmx_instruction_info, types;
5417         unsigned long type, roots_to_free;
5418         struct kvm_mmu *mmu;
5419         gva_t gva;
5420         struct x86_exception e;
5421         struct {
5422                 u64 eptp, gpa;
5423         } operand;
5424         int i, r, gpr_index;
5425
5426         if (!(vmx->nested.msrs.secondary_ctls_high &
5427               SECONDARY_EXEC_ENABLE_EPT) ||
5428             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5429                 kvm_queue_exception(vcpu, UD_VECTOR);
5430                 return 1;
5431         }
5432
5433         if (!nested_vmx_check_permission(vcpu))
5434                 return 1;
5435
5436         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5437         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5438         type = kvm_register_read(vcpu, gpr_index);
5439
5440         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5441
5442         if (type >= 32 || !(types & (1 << type)))
5443                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5444
5445         /* According to the Intel VMX instruction reference, the memory
5446          * operand is read even if it isn't needed (e.g., for type==global)
5447          */
5448         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5449                         vmx_instruction_info, false, sizeof(operand), &gva))
5450                 return 1;
5451         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5452         if (r != X86EMUL_CONTINUE)
5453                 return kvm_handle_memory_failure(vcpu, r, &e);
5454
5455         /*
5456          * Nested EPT roots are always held through guest_mmu,
5457          * not root_mmu.
5458          */
5459         mmu = &vcpu->arch.guest_mmu;
5460
5461         switch (type) {
5462         case VMX_EPT_EXTENT_CONTEXT:
5463                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5464                         return nested_vmx_fail(vcpu,
5465                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5466
5467                 roots_to_free = 0;
5468                 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5469                                             operand.eptp))
5470                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5471
5472                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5473                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5474                                                     mmu->prev_roots[i].pgd,
5475                                                     operand.eptp))
5476                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5477                 }
5478                 break;
5479         case VMX_EPT_EXTENT_GLOBAL:
5480                 roots_to_free = KVM_MMU_ROOTS_ALL;
5481                 break;
5482         default:
5483                 BUG();
5484                 break;
5485         }
5486
5487         if (roots_to_free)
5488                 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5489
5490         return nested_vmx_succeed(vcpu);
5491 }
5492
5493 static int handle_invvpid(struct kvm_vcpu *vcpu)
5494 {
5495         struct vcpu_vmx *vmx = to_vmx(vcpu);
5496         u32 vmx_instruction_info;
5497         unsigned long type, types;
5498         gva_t gva;
5499         struct x86_exception e;
5500         struct {
5501                 u64 vpid;
5502                 u64 gla;
5503         } operand;
5504         u16 vpid02;
5505         int r, gpr_index;
5506
5507         if (!(vmx->nested.msrs.secondary_ctls_high &
5508               SECONDARY_EXEC_ENABLE_VPID) ||
5509                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5510                 kvm_queue_exception(vcpu, UD_VECTOR);
5511                 return 1;
5512         }
5513
5514         if (!nested_vmx_check_permission(vcpu))
5515                 return 1;
5516
5517         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5518         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5519         type = kvm_register_read(vcpu, gpr_index);
5520
5521         types = (vmx->nested.msrs.vpid_caps &
5522                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5523
5524         if (type >= 32 || !(types & (1 << type)))
5525                 return nested_vmx_fail(vcpu,
5526                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5527
5528         /* according to the intel vmx instruction reference, the memory
5529          * operand is read even if it isn't needed (e.g., for type==global)
5530          */
5531         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5532                         vmx_instruction_info, false, sizeof(operand), &gva))
5533                 return 1;
5534         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5535         if (r != X86EMUL_CONTINUE)
5536                 return kvm_handle_memory_failure(vcpu, r, &e);
5537
5538         if (operand.vpid >> 16)
5539                 return nested_vmx_fail(vcpu,
5540                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5541
5542         vpid02 = nested_get_vpid02(vcpu);
5543         switch (type) {
5544         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5545                 if (!operand.vpid ||
5546                     is_noncanonical_address(operand.gla, vcpu))
5547                         return nested_vmx_fail(vcpu,
5548                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5549                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5550                 break;
5551         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5552         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5553                 if (!operand.vpid)
5554                         return nested_vmx_fail(vcpu,
5555                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5556                 vpid_sync_context(vpid02);
5557                 break;
5558         case VMX_VPID_EXTENT_ALL_CONTEXT:
5559                 vpid_sync_context(vpid02);
5560                 break;
5561         default:
5562                 WARN_ON_ONCE(1);
5563                 return kvm_skip_emulated_instruction(vcpu);
5564         }
5565
5566         /*
5567          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5568          * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5569          * roots as VPIDs are not tracked in the MMU role.
5570          *
5571          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5572          * an MMU when EPT is disabled.
5573          *
5574          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5575          */
5576         if (!enable_ept)
5577                 kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5578
5579         return nested_vmx_succeed(vcpu);
5580 }
5581
5582 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5583                                      struct vmcs12 *vmcs12)
5584 {
5585         u32 index = kvm_rcx_read(vcpu);
5586         u64 new_eptp;
5587
5588         if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5589                 return 1;
5590         if (index >= VMFUNC_EPTP_ENTRIES)
5591                 return 1;
5592
5593         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5594                                      &new_eptp, index * 8, 8))
5595                 return 1;
5596
5597         /*
5598          * If the (L2) guest does a vmfunc to the currently
5599          * active ept pointer, we don't have to do anything else
5600          */
5601         if (vmcs12->ept_pointer != new_eptp) {
5602                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5603                         return 1;
5604
5605                 vmcs12->ept_pointer = new_eptp;
5606                 nested_ept_new_eptp(vcpu);
5607
5608                 if (!nested_cpu_has_vpid(vmcs12))
5609                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5610         }
5611
5612         return 0;
5613 }
5614
5615 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5616 {
5617         struct vcpu_vmx *vmx = to_vmx(vcpu);
5618         struct vmcs12 *vmcs12;
5619         u32 function = kvm_rax_read(vcpu);
5620
5621         /*
5622          * VMFUNC is only supported for nested guests, but we always enable the
5623          * secondary control for simplicity; for non-nested mode, fake that we
5624          * didn't by injecting #UD.
5625          */
5626         if (!is_guest_mode(vcpu)) {
5627                 kvm_queue_exception(vcpu, UD_VECTOR);
5628                 return 1;
5629         }
5630
5631         vmcs12 = get_vmcs12(vcpu);
5632
5633         /*
5634          * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5635          * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5636          */
5637         if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5638                 kvm_queue_exception(vcpu, UD_VECTOR);
5639                 return 1;
5640         }
5641
5642         if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5643                 goto fail;
5644
5645         switch (function) {
5646         case 0:
5647                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5648                         goto fail;
5649                 break;
5650         default:
5651                 goto fail;
5652         }
5653         return kvm_skip_emulated_instruction(vcpu);
5654
5655 fail:
5656         /*
5657          * This is effectively a reflected VM-Exit, as opposed to a synthesized
5658          * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5659          * EXIT_REASON_VMFUNC as the exit reason.
5660          */
5661         nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5662                           vmx_get_intr_info(vcpu),
5663                           vmx_get_exit_qual(vcpu));
5664         return 1;
5665 }
5666
5667 /*
5668  * Return true if an IO instruction with the specified port and size should cause
5669  * a VM-exit into L1.
5670  */
5671 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5672                                  int size)
5673 {
5674         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5675         gpa_t bitmap, last_bitmap;
5676         u8 b;
5677
5678         last_bitmap = INVALID_GPA;
5679         b = -1;
5680
5681         while (size > 0) {
5682                 if (port < 0x8000)
5683                         bitmap = vmcs12->io_bitmap_a;
5684                 else if (port < 0x10000)
5685                         bitmap = vmcs12->io_bitmap_b;
5686                 else
5687                         return true;
5688                 bitmap += (port & 0x7fff) / 8;
5689
5690                 if (last_bitmap != bitmap)
5691                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5692                                 return true;
5693                 if (b & (1 << (port & 7)))
5694                         return true;
5695
5696                 port++;
5697                 size--;
5698                 last_bitmap = bitmap;
5699         }
5700
5701         return false;
5702 }
5703
5704 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5705                                        struct vmcs12 *vmcs12)
5706 {
5707         unsigned long exit_qualification;
5708         unsigned short port;
5709         int size;
5710
5711         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5712                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5713
5714         exit_qualification = vmx_get_exit_qual(vcpu);
5715
5716         port = exit_qualification >> 16;
5717         size = (exit_qualification & 7) + 1;
5718
5719         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5720 }
5721
5722 /*
5723  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5724  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5725  * disinterest in the current event (read or write a specific MSR) by using an
5726  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5727  */
5728 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5729                                         struct vmcs12 *vmcs12,
5730                                         union vmx_exit_reason exit_reason)
5731 {
5732         u32 msr_index = kvm_rcx_read(vcpu);
5733         gpa_t bitmap;
5734
5735         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5736                 return true;
5737
5738         /*
5739          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5740          * for the four combinations of read/write and low/high MSR numbers.
5741          * First we need to figure out which of the four to use:
5742          */
5743         bitmap = vmcs12->msr_bitmap;
5744         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5745                 bitmap += 2048;
5746         if (msr_index >= 0xc0000000) {
5747                 msr_index -= 0xc0000000;
5748                 bitmap += 1024;
5749         }
5750
5751         /* Then read the msr_index'th bit from this bitmap: */
5752         if (msr_index < 1024*8) {
5753                 unsigned char b;
5754                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5755                         return true;
5756                 return 1 & (b >> (msr_index & 7));
5757         } else
5758                 return true; /* let L1 handle the wrong parameter */
5759 }
5760
5761 /*
5762  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5763  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5764  * intercept (via guest_host_mask etc.) the current event.
5765  */
5766 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5767         struct vmcs12 *vmcs12)
5768 {
5769         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5770         int cr = exit_qualification & 15;
5771         int reg;
5772         unsigned long val;
5773
5774         switch ((exit_qualification >> 4) & 3) {
5775         case 0: /* mov to cr */
5776                 reg = (exit_qualification >> 8) & 15;
5777                 val = kvm_register_read(vcpu, reg);
5778                 switch (cr) {
5779                 case 0:
5780                         if (vmcs12->cr0_guest_host_mask &
5781                             (val ^ vmcs12->cr0_read_shadow))
5782                                 return true;
5783                         break;
5784                 case 3:
5785                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5786                                 return true;
5787                         break;
5788                 case 4:
5789                         if (vmcs12->cr4_guest_host_mask &
5790                             (vmcs12->cr4_read_shadow ^ val))
5791                                 return true;
5792                         break;
5793                 case 8:
5794                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5795                                 return true;
5796                         break;
5797                 }
5798                 break;
5799         case 2: /* clts */
5800                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5801                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5802                         return true;
5803                 break;
5804         case 1: /* mov from cr */
5805                 switch (cr) {
5806                 case 3:
5807                         if (vmcs12->cpu_based_vm_exec_control &
5808                             CPU_BASED_CR3_STORE_EXITING)
5809                                 return true;
5810                         break;
5811                 case 8:
5812                         if (vmcs12->cpu_based_vm_exec_control &
5813                             CPU_BASED_CR8_STORE_EXITING)
5814                                 return true;
5815                         break;
5816                 }
5817                 break;
5818         case 3: /* lmsw */
5819                 /*
5820                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5821                  * cr0. Other attempted changes are ignored, with no exit.
5822                  */
5823                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5824                 if (vmcs12->cr0_guest_host_mask & 0xe &
5825                     (val ^ vmcs12->cr0_read_shadow))
5826                         return true;
5827                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5828                     !(vmcs12->cr0_read_shadow & 0x1) &&
5829                     (val & 0x1))
5830                         return true;
5831                 break;
5832         }
5833         return false;
5834 }
5835
5836 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5837                                           struct vmcs12 *vmcs12)
5838 {
5839         u32 encls_leaf;
5840
5841         if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5842             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5843                 return false;
5844
5845         encls_leaf = kvm_rax_read(vcpu);
5846         if (encls_leaf > 62)
5847                 encls_leaf = 63;
5848         return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5849 }
5850
5851 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5852         struct vmcs12 *vmcs12, gpa_t bitmap)
5853 {
5854         u32 vmx_instruction_info;
5855         unsigned long field;
5856         u8 b;
5857
5858         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5859                 return true;
5860
5861         /* Decode instruction info and find the field to access */
5862         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5863         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5864
5865         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5866         if (field >> 15)
5867                 return true;
5868
5869         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5870                 return true;
5871
5872         return 1 & (b >> (field & 7));
5873 }
5874
5875 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5876 {
5877         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5878
5879         if (nested_cpu_has_mtf(vmcs12))
5880                 return true;
5881
5882         /*
5883          * An MTF VM-exit may be injected into the guest by setting the
5884          * interruption-type to 7 (other event) and the vector field to 0. Such
5885          * is the case regardless of the 'monitor trap flag' VM-execution
5886          * control.
5887          */
5888         return entry_intr_info == (INTR_INFO_VALID_MASK
5889                                    | INTR_TYPE_OTHER_EVENT);
5890 }
5891
5892 /*
5893  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5894  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5895  */
5896 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5897                                      union vmx_exit_reason exit_reason)
5898 {
5899         u32 intr_info;
5900
5901         switch ((u16)exit_reason.basic) {
5902         case EXIT_REASON_EXCEPTION_NMI:
5903                 intr_info = vmx_get_intr_info(vcpu);
5904                 if (is_nmi(intr_info))
5905                         return true;
5906                 else if (is_page_fault(intr_info))
5907                         return vcpu->arch.apf.host_apf_flags ||
5908                                vmx_need_pf_intercept(vcpu);
5909                 else if (is_debug(intr_info) &&
5910                          vcpu->guest_debug &
5911                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5912                         return true;
5913                 else if (is_breakpoint(intr_info) &&
5914                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5915                         return true;
5916                 else if (is_alignment_check(intr_info) &&
5917                          !vmx_guest_inject_ac(vcpu))
5918                         return true;
5919                 return false;
5920         case EXIT_REASON_EXTERNAL_INTERRUPT:
5921                 return true;
5922         case EXIT_REASON_MCE_DURING_VMENTRY:
5923                 return true;
5924         case EXIT_REASON_EPT_VIOLATION:
5925                 /*
5926                  * L0 always deals with the EPT violation. If nested EPT is
5927                  * used, and the nested mmu code discovers that the address is
5928                  * missing in the guest EPT table (EPT12), the EPT violation
5929                  * will be injected with nested_ept_inject_page_fault()
5930                  */
5931                 return true;
5932         case EXIT_REASON_EPT_MISCONFIG:
5933                 /*
5934                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5935                  * table (shadow on EPT) or a merged EPT table that L0 built
5936                  * (EPT on EPT). So any problems with the structure of the
5937                  * table is L0's fault.
5938                  */
5939                 return true;
5940         case EXIT_REASON_PREEMPTION_TIMER:
5941                 return true;
5942         case EXIT_REASON_PML_FULL:
5943                 /*
5944                  * PML is emulated for an L1 VMM and should never be enabled in
5945                  * vmcs02, always "handle" PML_FULL by exiting to userspace.
5946                  */
5947                 return true;
5948         case EXIT_REASON_VMFUNC:
5949                 /* VM functions are emulated through L2->L0 vmexits. */
5950                 return true;
5951         case EXIT_REASON_BUS_LOCK:
5952                 /*
5953                  * At present, bus lock VM exit is never exposed to L1.
5954                  * Handle L2's bus locks in L0 directly.
5955                  */
5956                 return true;
5957         default:
5958                 break;
5959         }
5960         return false;
5961 }
5962
5963 /*
5964  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5965  * is_guest_mode (L2).
5966  */
5967 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5968                                      union vmx_exit_reason exit_reason)
5969 {
5970         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5971         u32 intr_info;
5972
5973         switch ((u16)exit_reason.basic) {
5974         case EXIT_REASON_EXCEPTION_NMI:
5975                 intr_info = vmx_get_intr_info(vcpu);
5976                 if (is_nmi(intr_info))
5977                         return true;
5978                 else if (is_page_fault(intr_info))
5979                         return true;
5980                 return vmcs12->exception_bitmap &
5981                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5982         case EXIT_REASON_EXTERNAL_INTERRUPT:
5983                 return nested_exit_on_intr(vcpu);
5984         case EXIT_REASON_TRIPLE_FAULT:
5985                 return true;
5986         case EXIT_REASON_INTERRUPT_WINDOW:
5987                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5988         case EXIT_REASON_NMI_WINDOW:
5989                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5990         case EXIT_REASON_TASK_SWITCH:
5991                 return true;
5992         case EXIT_REASON_CPUID:
5993                 return true;
5994         case EXIT_REASON_HLT:
5995                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5996         case EXIT_REASON_INVD:
5997                 return true;
5998         case EXIT_REASON_INVLPG:
5999                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6000         case EXIT_REASON_RDPMC:
6001                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6002         case EXIT_REASON_RDRAND:
6003                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6004         case EXIT_REASON_RDSEED:
6005                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6006         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6007                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6008         case EXIT_REASON_VMREAD:
6009                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6010                         vmcs12->vmread_bitmap);
6011         case EXIT_REASON_VMWRITE:
6012                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6013                         vmcs12->vmwrite_bitmap);
6014         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6015         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6016         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6017         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6018         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6019                 /*
6020                  * VMX instructions trap unconditionally. This allows L1 to
6021                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6022                  */
6023                 return true;
6024         case EXIT_REASON_CR_ACCESS:
6025                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6026         case EXIT_REASON_DR_ACCESS:
6027                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6028         case EXIT_REASON_IO_INSTRUCTION:
6029                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6030         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6031                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6032         case EXIT_REASON_MSR_READ:
6033         case EXIT_REASON_MSR_WRITE:
6034                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6035         case EXIT_REASON_INVALID_STATE:
6036                 return true;
6037         case EXIT_REASON_MWAIT_INSTRUCTION:
6038                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6039         case EXIT_REASON_MONITOR_TRAP_FLAG:
6040                 return nested_vmx_exit_handled_mtf(vmcs12);
6041         case EXIT_REASON_MONITOR_INSTRUCTION:
6042                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6043         case EXIT_REASON_PAUSE_INSTRUCTION:
6044                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6045                         nested_cpu_has2(vmcs12,
6046                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6047         case EXIT_REASON_MCE_DURING_VMENTRY:
6048                 return true;
6049         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6050                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6051         case EXIT_REASON_APIC_ACCESS:
6052         case EXIT_REASON_APIC_WRITE:
6053         case EXIT_REASON_EOI_INDUCED:
6054                 /*
6055                  * The controls for "virtualize APIC accesses," "APIC-
6056                  * register virtualization," and "virtual-interrupt
6057                  * delivery" only come from vmcs12.
6058                  */
6059                 return true;
6060         case EXIT_REASON_INVPCID:
6061                 return
6062                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6063                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6064         case EXIT_REASON_WBINVD:
6065                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6066         case EXIT_REASON_XSETBV:
6067                 return true;
6068         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6069                 /*
6070                  * This should never happen, since it is not possible to
6071                  * set XSS to a non-zero value---neither in L1 nor in L2.
6072                  * If if it were, XSS would have to be checked against
6073                  * the XSS exit bitmap in vmcs12.
6074                  */
6075                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6076         case EXIT_REASON_UMWAIT:
6077         case EXIT_REASON_TPAUSE:
6078                 return nested_cpu_has2(vmcs12,
6079                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6080         case EXIT_REASON_ENCLS:
6081                 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6082         default:
6083                 return true;
6084         }
6085 }
6086
6087 /*
6088  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6089  * reflected into L1.
6090  */
6091 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6092 {
6093         struct vcpu_vmx *vmx = to_vmx(vcpu);
6094         union vmx_exit_reason exit_reason = vmx->exit_reason;
6095         unsigned long exit_qual;
6096         u32 exit_intr_info;
6097
6098         WARN_ON_ONCE(vmx->nested.nested_run_pending);
6099
6100         /*
6101          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6102          * has already loaded L2's state.
6103          */
6104         if (unlikely(vmx->fail)) {
6105                 trace_kvm_nested_vmenter_failed(
6106                         "hardware VM-instruction error: ",
6107                         vmcs_read32(VM_INSTRUCTION_ERROR));
6108                 exit_intr_info = 0;
6109                 exit_qual = 0;
6110                 goto reflect_vmexit;
6111         }
6112
6113         trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6114
6115         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6116         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6117                 return false;
6118
6119         /* If L1 doesn't want the exit, handle it in L0. */
6120         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6121                 return false;
6122
6123         /*
6124          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6125          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6126          * need to be synthesized by querying the in-kernel LAPIC, but external
6127          * interrupts are never reflected to L1 so it's a non-issue.
6128          */
6129         exit_intr_info = vmx_get_intr_info(vcpu);
6130         if (is_exception_with_error_code(exit_intr_info)) {
6131                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6132
6133                 vmcs12->vm_exit_intr_error_code =
6134                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6135         }
6136         exit_qual = vmx_get_exit_qual(vcpu);
6137
6138 reflect_vmexit:
6139         nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6140         return true;
6141 }
6142
6143 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6144                                 struct kvm_nested_state __user *user_kvm_nested_state,
6145                                 u32 user_data_size)
6146 {
6147         struct vcpu_vmx *vmx;
6148         struct vmcs12 *vmcs12;
6149         struct kvm_nested_state kvm_state = {
6150                 .flags = 0,
6151                 .format = KVM_STATE_NESTED_FORMAT_VMX,
6152                 .size = sizeof(kvm_state),
6153                 .hdr.vmx.flags = 0,
6154                 .hdr.vmx.vmxon_pa = INVALID_GPA,
6155                 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6156                 .hdr.vmx.preemption_timer_deadline = 0,
6157         };
6158         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6159                 &user_kvm_nested_state->data.vmx[0];
6160
6161         if (!vcpu)
6162                 return kvm_state.size + sizeof(*user_vmx_nested_state);
6163
6164         vmx = to_vmx(vcpu);
6165         vmcs12 = get_vmcs12(vcpu);
6166
6167         if (nested_vmx_allowed(vcpu) &&
6168             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6169                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6170                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6171
6172                 if (vmx_has_valid_vmcs12(vcpu)) {
6173                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6174
6175                         /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6176                         if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6177                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6178
6179                         if (is_guest_mode(vcpu) &&
6180                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6181                             vmcs12->vmcs_link_pointer != INVALID_GPA)
6182                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6183                 }
6184
6185                 if (vmx->nested.smm.vmxon)
6186                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6187
6188                 if (vmx->nested.smm.guest_mode)
6189                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6190
6191                 if (is_guest_mode(vcpu)) {
6192                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6193
6194                         if (vmx->nested.nested_run_pending)
6195                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6196
6197                         if (vmx->nested.mtf_pending)
6198                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6199
6200                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6201                             vmx->nested.has_preemption_timer_deadline) {
6202                                 kvm_state.hdr.vmx.flags |=
6203                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6204                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6205                                         vmx->nested.preemption_timer_deadline;
6206                         }
6207                 }
6208         }
6209
6210         if (user_data_size < kvm_state.size)
6211                 goto out;
6212
6213         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6214                 return -EFAULT;
6215
6216         if (!vmx_has_valid_vmcs12(vcpu))
6217                 goto out;
6218
6219         /*
6220          * When running L2, the authoritative vmcs12 state is in the
6221          * vmcs02. When running L1, the authoritative vmcs12 state is
6222          * in the shadow or enlightened vmcs linked to vmcs01, unless
6223          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6224          * vmcs12 state is in the vmcs12 already.
6225          */
6226         if (is_guest_mode(vcpu)) {
6227                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6228                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6229         } else  {
6230                 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6231                 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6232                         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6233                                 /*
6234                                  * L1 hypervisor is not obliged to keep eVMCS
6235                                  * clean fields data always up-to-date while
6236                                  * not in guest mode, 'hv_clean_fields' is only
6237                                  * supposed to be actual upon vmentry so we need
6238                                  * to ignore it here and do full copy.
6239                                  */
6240                                 copy_enlightened_to_vmcs12(vmx, 0);
6241                         else if (enable_shadow_vmcs)
6242                                 copy_shadow_to_vmcs12(vmx);
6243                 }
6244         }
6245
6246         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6247         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6248
6249         /*
6250          * Copy over the full allocated size of vmcs12 rather than just the size
6251          * of the struct.
6252          */
6253         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6254                 return -EFAULT;
6255
6256         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6257             vmcs12->vmcs_link_pointer != INVALID_GPA) {
6258                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6259                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6260                         return -EFAULT;
6261         }
6262 out:
6263         return kvm_state.size;
6264 }
6265
6266 /*
6267  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6268  */
6269 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6270 {
6271         if (is_guest_mode(vcpu)) {
6272                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6273                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6274         }
6275         free_nested(vcpu);
6276 }
6277
6278 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6279                                 struct kvm_nested_state __user *user_kvm_nested_state,
6280                                 struct kvm_nested_state *kvm_state)
6281 {
6282         struct vcpu_vmx *vmx = to_vmx(vcpu);
6283         struct vmcs12 *vmcs12;
6284         enum vm_entry_failure_code ignored;
6285         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6286                 &user_kvm_nested_state->data.vmx[0];
6287         int ret;
6288
6289         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6290                 return -EINVAL;
6291
6292         if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6293                 if (kvm_state->hdr.vmx.smm.flags)
6294                         return -EINVAL;
6295
6296                 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6297                         return -EINVAL;
6298
6299                 /*
6300                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6301                  * enable eVMCS capability on vCPU. However, since then
6302                  * code was changed such that flag signals vmcs12 should
6303                  * be copied into eVMCS in guest memory.
6304                  *
6305                  * To preserve backwards compatability, allow user
6306                  * to set this flag even when there is no VMXON region.
6307                  */
6308                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6309                         return -EINVAL;
6310         } else {
6311                 if (!nested_vmx_allowed(vcpu))
6312                         return -EINVAL;
6313
6314                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6315                         return -EINVAL;
6316         }
6317
6318         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6319             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6320                 return -EINVAL;
6321
6322         if (kvm_state->hdr.vmx.smm.flags &
6323             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6324                 return -EINVAL;
6325
6326         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6327                 return -EINVAL;
6328
6329         /*
6330          * SMM temporarily disables VMX, so we cannot be in guest mode,
6331          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6332          * must be zero.
6333          */
6334         if (is_smm(vcpu) ?
6335                 (kvm_state->flags &
6336                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6337                 : kvm_state->hdr.vmx.smm.flags)
6338                 return -EINVAL;
6339
6340         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6341             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6342                 return -EINVAL;
6343
6344         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6345                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6346                         return -EINVAL;
6347
6348         vmx_leave_nested(vcpu);
6349
6350         if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6351                 return 0;
6352
6353         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6354         ret = enter_vmx_operation(vcpu);
6355         if (ret)
6356                 return ret;
6357
6358         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6359         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6360                 /* See vmx_has_valid_vmcs12.  */
6361                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6362                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6363                     (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6364                         return -EINVAL;
6365                 else
6366                         return 0;
6367         }
6368
6369         if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6370                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6371                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6372                         return -EINVAL;
6373
6374                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6375         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6376                 /*
6377                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6378                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6379                  * restored yet. EVMCS will be mapped from
6380                  * nested_get_vmcs12_pages().
6381                  */
6382                 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6383                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6384         } else {
6385                 return -EINVAL;
6386         }
6387
6388         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6389                 vmx->nested.smm.vmxon = true;
6390                 vmx->nested.vmxon = false;
6391
6392                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6393                         vmx->nested.smm.guest_mode = true;
6394         }
6395
6396         vmcs12 = get_vmcs12(vcpu);
6397         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6398                 return -EFAULT;
6399
6400         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6401                 return -EINVAL;
6402
6403         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6404                 return 0;
6405
6406         vmx->nested.nested_run_pending =
6407                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6408
6409         vmx->nested.mtf_pending =
6410                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6411
6412         ret = -EINVAL;
6413         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6414             vmcs12->vmcs_link_pointer != INVALID_GPA) {
6415                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6416
6417                 if (kvm_state->size <
6418                     sizeof(*kvm_state) +
6419                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6420                         goto error_guest_mode;
6421
6422                 if (copy_from_user(shadow_vmcs12,
6423                                    user_vmx_nested_state->shadow_vmcs12,
6424                                    sizeof(*shadow_vmcs12))) {
6425                         ret = -EFAULT;
6426                         goto error_guest_mode;
6427                 }
6428
6429                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6430                     !shadow_vmcs12->hdr.shadow_vmcs)
6431                         goto error_guest_mode;
6432         }
6433
6434         vmx->nested.has_preemption_timer_deadline = false;
6435         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6436                 vmx->nested.has_preemption_timer_deadline = true;
6437                 vmx->nested.preemption_timer_deadline =
6438                         kvm_state->hdr.vmx.preemption_timer_deadline;
6439         }
6440
6441         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6442             nested_vmx_check_host_state(vcpu, vmcs12) ||
6443             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6444                 goto error_guest_mode;
6445
6446         vmx->nested.dirty_vmcs12 = true;
6447         vmx->nested.force_msr_bitmap_recalc = true;
6448         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6449         if (ret)
6450                 goto error_guest_mode;
6451
6452         return 0;
6453
6454 error_guest_mode:
6455         vmx->nested.nested_run_pending = 0;
6456         return ret;
6457 }
6458
6459 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6460 {
6461         if (enable_shadow_vmcs) {
6462                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6463                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6464         }
6465 }
6466
6467 /*
6468  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6469  * that madness to get the encoding for comparison.
6470  */
6471 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6472
6473 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6474 {
6475         /*
6476          * Note these are the so called "index" of the VMCS field encoding, not
6477          * the index into vmcs12.
6478          */
6479         unsigned int max_idx, idx;
6480         int i;
6481
6482         /*
6483          * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6484          * vmcs12, regardless of whether or not the associated feature is
6485          * exposed to L1.  Simply find the field with the highest index.
6486          */
6487         max_idx = 0;
6488         for (i = 0; i < nr_vmcs12_fields; i++) {
6489                 /* The vmcs12 table is very, very sparsely populated. */
6490                 if (!vmcs12_field_offsets[i])
6491                         continue;
6492
6493                 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6494                 if (idx > max_idx)
6495                         max_idx = idx;
6496         }
6497
6498         return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6499 }
6500
6501 /*
6502  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6503  * returned for the various VMX controls MSRs when nested VMX is enabled.
6504  * The same values should also be used to verify that vmcs12 control fields are
6505  * valid during nested entry from L1 to L2.
6506  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6507  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6508  * bit in the high half is on if the corresponding bit in the control field
6509  * may be on. See also vmx_control_verify().
6510  */
6511 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6512 {
6513         /*
6514          * Note that as a general rule, the high half of the MSRs (bits in
6515          * the control fields which may be 1) should be initialized by the
6516          * intersection of the underlying hardware's MSR (i.e., features which
6517          * can be supported) and the list of features we want to expose -
6518          * because they are known to be properly supported in our code.
6519          * Also, usually, the low half of the MSRs (bits which must be 1) can
6520          * be set to 0, meaning that L1 may turn off any of these bits. The
6521          * reason is that if one of these bits is necessary, it will appear
6522          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6523          * fields of vmcs01 and vmcs02, will turn these bits off - and
6524          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6525          * These rules have exceptions below.
6526          */
6527
6528         /* pin-based controls */
6529         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6530                 msrs->pinbased_ctls_low,
6531                 msrs->pinbased_ctls_high);
6532         msrs->pinbased_ctls_low |=
6533                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6534         msrs->pinbased_ctls_high &=
6535                 PIN_BASED_EXT_INTR_MASK |
6536                 PIN_BASED_NMI_EXITING |
6537                 PIN_BASED_VIRTUAL_NMIS |
6538                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6539         msrs->pinbased_ctls_high |=
6540                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6541                 PIN_BASED_VMX_PREEMPTION_TIMER;
6542
6543         /* exit controls */
6544         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6545                 msrs->exit_ctls_low,
6546                 msrs->exit_ctls_high);
6547         msrs->exit_ctls_low =
6548                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6549
6550         msrs->exit_ctls_high &=
6551 #ifdef CONFIG_X86_64
6552                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6553 #endif
6554                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6555                 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6556         msrs->exit_ctls_high |=
6557                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6558                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6559                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6560
6561         /* We support free control of debug control saving. */
6562         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6563
6564         /* entry controls */
6565         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6566                 msrs->entry_ctls_low,
6567                 msrs->entry_ctls_high);
6568         msrs->entry_ctls_low =
6569                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6570         msrs->entry_ctls_high &=
6571 #ifdef CONFIG_X86_64
6572                 VM_ENTRY_IA32E_MODE |
6573 #endif
6574                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6575                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6576         msrs->entry_ctls_high |=
6577                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6578
6579         /* We support free control of debug control loading. */
6580         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6581
6582         /* cpu-based controls */
6583         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6584                 msrs->procbased_ctls_low,
6585                 msrs->procbased_ctls_high);
6586         msrs->procbased_ctls_low =
6587                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6588         msrs->procbased_ctls_high &=
6589                 CPU_BASED_INTR_WINDOW_EXITING |
6590                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6591                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6592                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6593                 CPU_BASED_CR3_STORE_EXITING |
6594 #ifdef CONFIG_X86_64
6595                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6596 #endif
6597                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6598                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6599                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6600                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6601                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6602         /*
6603          * We can allow some features even when not supported by the
6604          * hardware. For example, L1 can specify an MSR bitmap - and we
6605          * can use it to avoid exits to L1 - even when L0 runs L2
6606          * without MSR bitmaps.
6607          */
6608         msrs->procbased_ctls_high |=
6609                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6610                 CPU_BASED_USE_MSR_BITMAPS;
6611
6612         /* We support free control of CR3 access interception. */
6613         msrs->procbased_ctls_low &=
6614                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6615
6616         /*
6617          * secondary cpu-based controls.  Do not include those that
6618          * depend on CPUID bits, they are added later by
6619          * vmx_vcpu_after_set_cpuid.
6620          */
6621         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6622                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6623                       msrs->secondary_ctls_low,
6624                       msrs->secondary_ctls_high);
6625
6626         msrs->secondary_ctls_low = 0;
6627         msrs->secondary_ctls_high &=
6628                 SECONDARY_EXEC_DESC |
6629                 SECONDARY_EXEC_ENABLE_RDTSCP |
6630                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6631                 SECONDARY_EXEC_WBINVD_EXITING |
6632                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6633                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6634                 SECONDARY_EXEC_RDRAND_EXITING |
6635                 SECONDARY_EXEC_ENABLE_INVPCID |
6636                 SECONDARY_EXEC_RDSEED_EXITING |
6637                 SECONDARY_EXEC_XSAVES |
6638                 SECONDARY_EXEC_TSC_SCALING;
6639
6640         /*
6641          * We can emulate "VMCS shadowing," even if the hardware
6642          * doesn't support it.
6643          */
6644         msrs->secondary_ctls_high |=
6645                 SECONDARY_EXEC_SHADOW_VMCS;
6646
6647         if (enable_ept) {
6648                 /* nested EPT: emulate EPT also to L1 */
6649                 msrs->secondary_ctls_high |=
6650                         SECONDARY_EXEC_ENABLE_EPT;
6651                 msrs->ept_caps =
6652                         VMX_EPT_PAGE_WALK_4_BIT |
6653                         VMX_EPT_PAGE_WALK_5_BIT |
6654                         VMX_EPTP_WB_BIT |
6655                         VMX_EPT_INVEPT_BIT |
6656                         VMX_EPT_EXECUTE_ONLY_BIT;
6657
6658                 msrs->ept_caps &= ept_caps;
6659                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6660                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6661                         VMX_EPT_1GB_PAGE_BIT;
6662                 if (enable_ept_ad_bits) {
6663                         msrs->secondary_ctls_high |=
6664                                 SECONDARY_EXEC_ENABLE_PML;
6665                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6666                 }
6667         }
6668
6669         if (cpu_has_vmx_vmfunc()) {
6670                 msrs->secondary_ctls_high |=
6671                         SECONDARY_EXEC_ENABLE_VMFUNC;
6672                 /*
6673                  * Advertise EPTP switching unconditionally
6674                  * since we emulate it
6675                  */
6676                 if (enable_ept)
6677                         msrs->vmfunc_controls =
6678                                 VMX_VMFUNC_EPTP_SWITCHING;
6679         }
6680
6681         /*
6682          * Old versions of KVM use the single-context version without
6683          * checking for support, so declare that it is supported even
6684          * though it is treated as global context.  The alternative is
6685          * not failing the single-context invvpid, and it is worse.
6686          */
6687         if (enable_vpid) {
6688                 msrs->secondary_ctls_high |=
6689                         SECONDARY_EXEC_ENABLE_VPID;
6690                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6691                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6692         }
6693
6694         if (enable_unrestricted_guest)
6695                 msrs->secondary_ctls_high |=
6696                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6697
6698         if (flexpriority_enabled)
6699                 msrs->secondary_ctls_high |=
6700                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6701
6702         if (enable_sgx)
6703                 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6704
6705         /* miscellaneous data */
6706         rdmsr(MSR_IA32_VMX_MISC,
6707                 msrs->misc_low,
6708                 msrs->misc_high);
6709         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6710         msrs->misc_low |=
6711                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6712                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6713                 VMX_MISC_ACTIVITY_HLT |
6714                 VMX_MISC_ACTIVITY_WAIT_SIPI;
6715         msrs->misc_high = 0;
6716
6717         /*
6718          * This MSR reports some information about VMX support. We
6719          * should return information about the VMX we emulate for the
6720          * guest, and the VMCS structure we give it - not about the
6721          * VMX support of the underlying hardware.
6722          */
6723         msrs->basic =
6724                 VMCS12_REVISION |
6725                 VMX_BASIC_TRUE_CTLS |
6726                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6727                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6728
6729         if (cpu_has_vmx_basic_inout())
6730                 msrs->basic |= VMX_BASIC_INOUT;
6731
6732         /*
6733          * These MSRs specify bits which the guest must keep fixed on
6734          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6735          * We picked the standard core2 setting.
6736          */
6737 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6738 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6739         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6740         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6741
6742         /* These MSRs specify bits which the guest must keep fixed off. */
6743         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6744         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6745
6746         msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6747 }
6748
6749 void nested_vmx_hardware_unsetup(void)
6750 {
6751         int i;
6752
6753         if (enable_shadow_vmcs) {
6754                 for (i = 0; i < VMX_BITMAP_NR; i++)
6755                         free_page((unsigned long)vmx_bitmap[i]);
6756         }
6757 }
6758
6759 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6760 {
6761         int i;
6762
6763         if (!cpu_has_vmx_shadow_vmcs())
6764                 enable_shadow_vmcs = 0;
6765         if (enable_shadow_vmcs) {
6766                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6767                         /*
6768                          * The vmx_bitmap is not tied to a VM and so should
6769                          * not be charged to a memcg.
6770                          */
6771                         vmx_bitmap[i] = (unsigned long *)
6772                                 __get_free_page(GFP_KERNEL);
6773                         if (!vmx_bitmap[i]) {
6774                                 nested_vmx_hardware_unsetup();
6775                                 return -ENOMEM;
6776                         }
6777                 }
6778
6779                 init_vmcs_shadow_fields();
6780         }
6781
6782         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6783         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6784         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6785         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6786         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6787         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6788         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6789         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6790         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6791         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6792         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6793         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6794
6795         return 0;
6796 }
6797
6798 struct kvm_x86_nested_ops vmx_nested_ops = {
6799         .leave_nested = vmx_leave_nested,
6800         .check_events = vmx_check_nested_events,
6801         .hv_timer_pending = nested_vmx_preemption_timer_pending,
6802         .triple_fault = nested_vmx_triple_fault,
6803         .get_state = vmx_get_nested_state,
6804         .set_state = vmx_set_nested_state,
6805         .get_nested_state_pages = vmx_get_nested_state_pages,
6806         .write_log_dirty = nested_vmx_write_pml_buffer,
6807         .enable_evmcs = nested_enable_evmcs,
6808         .get_evmcs_version = nested_get_evmcs_version,
6809 };