Merge tag 'char-misc-5.4-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 #define CC(consistency_check)                                           \
23 ({                                                                      \
24         bool failed = (consistency_check);                              \
25         if (failed)                                                     \
26                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
27         failed;                                                         \
28 })
29
30 /*
31  * Hyper-V requires all of these, so mark them as supported even though
32  * they are just treated the same as all-context.
33  */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
35         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
36         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
37         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41
42 enum {
43         VMX_VMREAD_BITMAP,
44         VMX_VMWRITE_BITMAP,
45         VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48
49 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
51
52 struct shadow_vmcs_field {
53         u16     encoding;
54         u16     offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61         ARRAY_SIZE(shadow_read_only_fields);
62
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68         ARRAY_SIZE(shadow_read_write_fields);
69
70 static void init_vmcs_shadow_fields(void)
71 {
72         int i, j;
73
74         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76
77         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79                 u16 field = entry.encoding;
80
81                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82                     (i + 1 == max_shadow_read_only_fields ||
83                      shadow_read_only_fields[i + 1].encoding != field + 1))
84                         pr_err("Missing field from shadow_read_only_field %x\n",
85                                field + 1);
86
87                 clear_bit(field, vmx_vmread_bitmap);
88                 if (field & 1)
89 #ifdef CONFIG_X86_64
90                         continue;
91 #else
92                         entry.offset += sizeof(u32);
93 #endif
94                 shadow_read_only_fields[j++] = entry;
95         }
96         max_shadow_read_only_fields = j;
97
98         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100                 u16 field = entry.encoding;
101
102                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103                     (i + 1 == max_shadow_read_write_fields ||
104                      shadow_read_write_fields[i + 1].encoding != field + 1))
105                         pr_err("Missing field from shadow_read_write_field %x\n",
106                                field + 1);
107
108                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109                           field <= GUEST_TR_AR_BYTES,
110                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111
112                 /*
113                  * PML and the preemption timer can be emulated, but the
114                  * processor cannot vmwrite to fields that don't exist
115                  * on bare metal.
116                  */
117                 switch (field) {
118                 case GUEST_PML_INDEX:
119                         if (!cpu_has_vmx_pml())
120                                 continue;
121                         break;
122                 case VMX_PREEMPTION_TIMER_VALUE:
123                         if (!cpu_has_vmx_preemption_timer())
124                                 continue;
125                         break;
126                 case GUEST_INTR_STATUS:
127                         if (!cpu_has_vmx_apicv())
128                                 continue;
129                         break;
130                 default:
131                         break;
132                 }
133
134                 clear_bit(field, vmx_vmwrite_bitmap);
135                 clear_bit(field, vmx_vmread_bitmap);
136                 if (field & 1)
137 #ifdef CONFIG_X86_64
138                         continue;
139 #else
140                         entry.offset += sizeof(u32);
141 #endif
142                 shadow_read_write_fields[j++] = entry;
143         }
144         max_shadow_read_write_fields = j;
145 }
146
147 /*
148  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149  * set the success or error code of an emulated VMX instruction (as specified
150  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151  * instruction.
152  */
153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158         return kvm_skip_emulated_instruction(vcpu);
159 }
160
161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165                             X86_EFLAGS_SF | X86_EFLAGS_OF))
166                         | X86_EFLAGS_CF);
167         return kvm_skip_emulated_instruction(vcpu);
168 }
169
170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171                                 u32 vm_instruction_error)
172 {
173         struct vcpu_vmx *vmx = to_vmx(vcpu);
174
175         /*
176          * failValid writes the error number to the current VMCS, which
177          * can't be done if there isn't a current VMCS.
178          */
179         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
180                 return nested_vmx_failInvalid(vcpu);
181
182         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
183                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
184                             X86_EFLAGS_SF | X86_EFLAGS_OF))
185                         | X86_EFLAGS_ZF);
186         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
187         /*
188          * We don't need to force a shadow sync because
189          * VM_INSTRUCTION_ERROR is not shadowed
190          */
191         return kvm_skip_emulated_instruction(vcpu);
192 }
193
194 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
195 {
196         /* TODO: not to reset guest simply here. */
197         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
198         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
199 }
200
201 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
202 {
203         return fixed_bits_valid(control, low, high);
204 }
205
206 static inline u64 vmx_control_msr(u32 low, u32 high)
207 {
208         return low | ((u64)high << 32);
209 }
210
211 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
212 {
213         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
214         vmcs_write64(VMCS_LINK_POINTER, -1ull);
215         vmx->nested.need_vmcs12_to_shadow_sync = false;
216 }
217
218 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
219 {
220         struct vcpu_vmx *vmx = to_vmx(vcpu);
221
222         if (!vmx->nested.hv_evmcs)
223                 return;
224
225         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
226         vmx->nested.hv_evmcs_vmptr = -1ull;
227         vmx->nested.hv_evmcs = NULL;
228 }
229
230 /*
231  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
232  * just stops using VMX.
233  */
234 static void free_nested(struct kvm_vcpu *vcpu)
235 {
236         struct vcpu_vmx *vmx = to_vmx(vcpu);
237
238         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
239                 return;
240
241         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
242
243         vmx->nested.vmxon = false;
244         vmx->nested.smm.vmxon = false;
245         free_vpid(vmx->nested.vpid02);
246         vmx->nested.posted_intr_nv = -1;
247         vmx->nested.current_vmptr = -1ull;
248         if (enable_shadow_vmcs) {
249                 vmx_disable_shadow_vmcs(vmx);
250                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
251                 free_vmcs(vmx->vmcs01.shadow_vmcs);
252                 vmx->vmcs01.shadow_vmcs = NULL;
253         }
254         kfree(vmx->nested.cached_vmcs12);
255         vmx->nested.cached_vmcs12 = NULL;
256         kfree(vmx->nested.cached_shadow_vmcs12);
257         vmx->nested.cached_shadow_vmcs12 = NULL;
258         /* Unpin physical memory we referred to in the vmcs02 */
259         if (vmx->nested.apic_access_page) {
260                 kvm_release_page_dirty(vmx->nested.apic_access_page);
261                 vmx->nested.apic_access_page = NULL;
262         }
263         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
264         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
265         vmx->nested.pi_desc = NULL;
266
267         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
268
269         nested_release_evmcs(vcpu);
270
271         free_loaded_vmcs(&vmx->nested.vmcs02);
272 }
273
274 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
275                                      struct loaded_vmcs *prev)
276 {
277         struct vmcs_host_state *dest, *src;
278
279         if (unlikely(!vmx->guest_state_loaded))
280                 return;
281
282         src = &prev->host_state;
283         dest = &vmx->loaded_vmcs->host_state;
284
285         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
286         dest->ldt_sel = src->ldt_sel;
287 #ifdef CONFIG_X86_64
288         dest->ds_sel = src->ds_sel;
289         dest->es_sel = src->es_sel;
290 #endif
291 }
292
293 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
294 {
295         struct vcpu_vmx *vmx = to_vmx(vcpu);
296         struct loaded_vmcs *prev;
297         int cpu;
298
299         if (vmx->loaded_vmcs == vmcs)
300                 return;
301
302         cpu = get_cpu();
303         prev = vmx->loaded_vmcs;
304         vmx->loaded_vmcs = vmcs;
305         vmx_vcpu_load_vmcs(vcpu, cpu);
306         vmx_sync_vmcs_host_state(vmx, prev);
307         put_cpu();
308
309         vmx_segment_cache_clear(vmx);
310 }
311
312 /*
313  * Ensure that the current vmcs of the logical processor is the
314  * vmcs01 of the vcpu before calling free_nested().
315  */
316 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
317 {
318         vcpu_load(vcpu);
319         vmx_leave_nested(vcpu);
320         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
321         free_nested(vcpu);
322         vcpu_put(vcpu);
323 }
324
325 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
326                 struct x86_exception *fault)
327 {
328         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
329         struct vcpu_vmx *vmx = to_vmx(vcpu);
330         u32 exit_reason;
331         unsigned long exit_qualification = vcpu->arch.exit_qualification;
332
333         if (vmx->nested.pml_full) {
334                 exit_reason = EXIT_REASON_PML_FULL;
335                 vmx->nested.pml_full = false;
336                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
337         } else if (fault->error_code & PFERR_RSVD_MASK)
338                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
339         else
340                 exit_reason = EXIT_REASON_EPT_VIOLATION;
341
342         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
343         vmcs12->guest_physical_address = fault->address;
344 }
345
346 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
347 {
348         WARN_ON(mmu_is_nested(vcpu));
349
350         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
351         kvm_init_shadow_ept_mmu(vcpu,
352                         to_vmx(vcpu)->nested.msrs.ept_caps &
353                         VMX_EPT_EXECUTE_ONLY_BIT,
354                         nested_ept_ad_enabled(vcpu),
355                         nested_ept_get_cr3(vcpu));
356         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
357         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
358         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
359         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
360
361         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
362 }
363
364 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
365 {
366         vcpu->arch.mmu = &vcpu->arch.root_mmu;
367         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
368 }
369
370 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
371                                             u16 error_code)
372 {
373         bool inequality, bit;
374
375         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
376         inequality =
377                 (error_code & vmcs12->page_fault_error_code_mask) !=
378                  vmcs12->page_fault_error_code_match;
379         return inequality ^ bit;
380 }
381
382
383 /*
384  * KVM wants to inject page-faults which it got to the guest. This function
385  * checks whether in a nested guest, we need to inject them to L1 or L2.
386  */
387 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
388 {
389         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
390         unsigned int nr = vcpu->arch.exception.nr;
391         bool has_payload = vcpu->arch.exception.has_payload;
392         unsigned long payload = vcpu->arch.exception.payload;
393
394         if (nr == PF_VECTOR) {
395                 if (vcpu->arch.exception.nested_apf) {
396                         *exit_qual = vcpu->arch.apf.nested_apf_token;
397                         return 1;
398                 }
399                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
400                                                     vcpu->arch.exception.error_code)) {
401                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
402                         return 1;
403                 }
404         } else if (vmcs12->exception_bitmap & (1u << nr)) {
405                 if (nr == DB_VECTOR) {
406                         if (!has_payload) {
407                                 payload = vcpu->arch.dr6;
408                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
409                                 payload ^= DR6_RTM;
410                         }
411                         *exit_qual = payload;
412                 } else
413                         *exit_qual = 0;
414                 return 1;
415         }
416
417         return 0;
418 }
419
420
421 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
422                 struct x86_exception *fault)
423 {
424         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
425
426         WARN_ON(!is_guest_mode(vcpu));
427
428         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
429                 !to_vmx(vcpu)->nested.nested_run_pending) {
430                 vmcs12->vm_exit_intr_error_code = fault->error_code;
431                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
432                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
433                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
434                                   fault->address);
435         } else {
436                 kvm_inject_page_fault(vcpu, fault);
437         }
438 }
439
440 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
441 {
442         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
443 }
444
445 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
446                                                struct vmcs12 *vmcs12)
447 {
448         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
449                 return 0;
450
451         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
452             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
453                 return -EINVAL;
454
455         return 0;
456 }
457
458 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
459                                                 struct vmcs12 *vmcs12)
460 {
461         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
462                 return 0;
463
464         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
465                 return -EINVAL;
466
467         return 0;
468 }
469
470 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
471                                                 struct vmcs12 *vmcs12)
472 {
473         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
474                 return 0;
475
476         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
477                 return -EINVAL;
478
479         return 0;
480 }
481
482 /*
483  * Check if MSR is intercepted for L01 MSR bitmap.
484  */
485 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
486 {
487         unsigned long *msr_bitmap;
488         int f = sizeof(unsigned long);
489
490         if (!cpu_has_vmx_msr_bitmap())
491                 return true;
492
493         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
494
495         if (msr <= 0x1fff) {
496                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
497         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
498                 msr &= 0x1fff;
499                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
500         }
501
502         return true;
503 }
504
505 /*
506  * If a msr is allowed by L0, we should check whether it is allowed by L1.
507  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
508  */
509 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
510                                                unsigned long *msr_bitmap_nested,
511                                                u32 msr, int type)
512 {
513         int f = sizeof(unsigned long);
514
515         /*
516          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
517          * have the write-low and read-high bitmap offsets the wrong way round.
518          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
519          */
520         if (msr <= 0x1fff) {
521                 if (type & MSR_TYPE_R &&
522                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
523                         /* read-low */
524                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
525
526                 if (type & MSR_TYPE_W &&
527                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
528                         /* write-low */
529                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
530
531         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
532                 msr &= 0x1fff;
533                 if (type & MSR_TYPE_R &&
534                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
535                         /* read-high */
536                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
537
538                 if (type & MSR_TYPE_W &&
539                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
540                         /* write-high */
541                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
542
543         }
544 }
545
546 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
547         int msr;
548
549         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
550                 unsigned word = msr / BITS_PER_LONG;
551
552                 msr_bitmap[word] = ~0;
553                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
554         }
555 }
556
557 /*
558  * Merge L0's and L1's MSR bitmap, return false to indicate that
559  * we do not use the hardware.
560  */
561 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
562                                                  struct vmcs12 *vmcs12)
563 {
564         int msr;
565         unsigned long *msr_bitmap_l1;
566         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
567         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
568
569         /* Nothing to do if the MSR bitmap is not in use.  */
570         if (!cpu_has_vmx_msr_bitmap() ||
571             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
572                 return false;
573
574         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
575                 return false;
576
577         msr_bitmap_l1 = (unsigned long *)map->hva;
578
579         /*
580          * To keep the control flow simple, pay eight 8-byte writes (sixteen
581          * 4-byte writes on 32-bit systems) up front to enable intercepts for
582          * the x2APIC MSR range and selectively disable them below.
583          */
584         enable_x2apic_msr_intercepts(msr_bitmap_l0);
585
586         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
587                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
588                         /*
589                          * L0 need not intercept reads for MSRs between 0x800
590                          * and 0x8ff, it just lets the processor take the value
591                          * from the virtual-APIC page; take those 256 bits
592                          * directly from the L1 bitmap.
593                          */
594                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
595                                 unsigned word = msr / BITS_PER_LONG;
596
597                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
598                         }
599                 }
600
601                 nested_vmx_disable_intercept_for_msr(
602                         msr_bitmap_l1, msr_bitmap_l0,
603                         X2APIC_MSR(APIC_TASKPRI),
604                         MSR_TYPE_R | MSR_TYPE_W);
605
606                 if (nested_cpu_has_vid(vmcs12)) {
607                         nested_vmx_disable_intercept_for_msr(
608                                 msr_bitmap_l1, msr_bitmap_l0,
609                                 X2APIC_MSR(APIC_EOI),
610                                 MSR_TYPE_W);
611                         nested_vmx_disable_intercept_for_msr(
612                                 msr_bitmap_l1, msr_bitmap_l0,
613                                 X2APIC_MSR(APIC_SELF_IPI),
614                                 MSR_TYPE_W);
615                 }
616         }
617
618         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
619         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
620                                              MSR_FS_BASE, MSR_TYPE_RW);
621
622         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
623                                              MSR_GS_BASE, MSR_TYPE_RW);
624
625         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
626                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
627
628         /*
629          * Checking the L0->L1 bitmap is trying to verify two things:
630          *
631          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
632          *    ensures that we do not accidentally generate an L02 MSR bitmap
633          *    from the L12 MSR bitmap that is too permissive.
634          * 2. That L1 or L2s have actually used the MSR. This avoids
635          *    unnecessarily merging of the bitmap if the MSR is unused. This
636          *    works properly because we only update the L01 MSR bitmap lazily.
637          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
638          *    updated to reflect this when L1 (or its L2s) actually write to
639          *    the MSR.
640          */
641         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
642                 nested_vmx_disable_intercept_for_msr(
643                                         msr_bitmap_l1, msr_bitmap_l0,
644                                         MSR_IA32_SPEC_CTRL,
645                                         MSR_TYPE_R | MSR_TYPE_W);
646
647         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
648                 nested_vmx_disable_intercept_for_msr(
649                                         msr_bitmap_l1, msr_bitmap_l0,
650                                         MSR_IA32_PRED_CMD,
651                                         MSR_TYPE_W);
652
653         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
654
655         return true;
656 }
657
658 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
659                                        struct vmcs12 *vmcs12)
660 {
661         struct kvm_host_map map;
662         struct vmcs12 *shadow;
663
664         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
665             vmcs12->vmcs_link_pointer == -1ull)
666                 return;
667
668         shadow = get_shadow_vmcs12(vcpu);
669
670         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
671                 return;
672
673         memcpy(shadow, map.hva, VMCS12_SIZE);
674         kvm_vcpu_unmap(vcpu, &map, false);
675 }
676
677 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
678                                               struct vmcs12 *vmcs12)
679 {
680         struct vcpu_vmx *vmx = to_vmx(vcpu);
681
682         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
683             vmcs12->vmcs_link_pointer == -1ull)
684                 return;
685
686         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
687                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
688 }
689
690 /*
691  * In nested virtualization, check if L1 has set
692  * VM_EXIT_ACK_INTR_ON_EXIT
693  */
694 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
695 {
696         return get_vmcs12(vcpu)->vm_exit_controls &
697                 VM_EXIT_ACK_INTR_ON_EXIT;
698 }
699
700 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
701 {
702         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
703 }
704
705 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
706                                           struct vmcs12 *vmcs12)
707 {
708         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
709             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
710                 return -EINVAL;
711         else
712                 return 0;
713 }
714
715 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
716                                            struct vmcs12 *vmcs12)
717 {
718         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
719             !nested_cpu_has_apic_reg_virt(vmcs12) &&
720             !nested_cpu_has_vid(vmcs12) &&
721             !nested_cpu_has_posted_intr(vmcs12))
722                 return 0;
723
724         /*
725          * If virtualize x2apic mode is enabled,
726          * virtualize apic access must be disabled.
727          */
728         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
729                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
730                 return -EINVAL;
731
732         /*
733          * If virtual interrupt delivery is enabled,
734          * we must exit on external interrupts.
735          */
736         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
737                 return -EINVAL;
738
739         /*
740          * bits 15:8 should be zero in posted_intr_nv,
741          * the descriptor address has been already checked
742          * in nested_get_vmcs12_pages.
743          *
744          * bits 5:0 of posted_intr_desc_addr should be zero.
745          */
746         if (nested_cpu_has_posted_intr(vmcs12) &&
747            (CC(!nested_cpu_has_vid(vmcs12)) ||
748             CC(!nested_exit_intr_ack_set(vcpu)) ||
749             CC((vmcs12->posted_intr_nv & 0xff00)) ||
750             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
751             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
752                 return -EINVAL;
753
754         /* tpr shadow is needed by all apicv features. */
755         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
756                 return -EINVAL;
757
758         return 0;
759 }
760
761 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
762                                        u32 count, u64 addr)
763 {
764         int maxphyaddr;
765
766         if (count == 0)
767                 return 0;
768         maxphyaddr = cpuid_maxphyaddr(vcpu);
769         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
770             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
771                 return -EINVAL;
772
773         return 0;
774 }
775
776 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
777                                                      struct vmcs12 *vmcs12)
778 {
779         if (CC(nested_vmx_check_msr_switch(vcpu,
780                                            vmcs12->vm_exit_msr_load_count,
781                                            vmcs12->vm_exit_msr_load_addr)) ||
782             CC(nested_vmx_check_msr_switch(vcpu,
783                                            vmcs12->vm_exit_msr_store_count,
784                                            vmcs12->vm_exit_msr_store_addr)))
785                 return -EINVAL;
786
787         return 0;
788 }
789
790 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
791                                                       struct vmcs12 *vmcs12)
792 {
793         if (CC(nested_vmx_check_msr_switch(vcpu,
794                                            vmcs12->vm_entry_msr_load_count,
795                                            vmcs12->vm_entry_msr_load_addr)))
796                 return -EINVAL;
797
798         return 0;
799 }
800
801 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
802                                          struct vmcs12 *vmcs12)
803 {
804         if (!nested_cpu_has_pml(vmcs12))
805                 return 0;
806
807         if (CC(!nested_cpu_has_ept(vmcs12)) ||
808             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
809                 return -EINVAL;
810
811         return 0;
812 }
813
814 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
815                                                         struct vmcs12 *vmcs12)
816 {
817         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
818                !nested_cpu_has_ept(vmcs12)))
819                 return -EINVAL;
820         return 0;
821 }
822
823 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
824                                                          struct vmcs12 *vmcs12)
825 {
826         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
827                !nested_cpu_has_ept(vmcs12)))
828                 return -EINVAL;
829         return 0;
830 }
831
832 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
833                                                  struct vmcs12 *vmcs12)
834 {
835         if (!nested_cpu_has_shadow_vmcs(vmcs12))
836                 return 0;
837
838         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
839             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
840                 return -EINVAL;
841
842         return 0;
843 }
844
845 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
846                                        struct vmx_msr_entry *e)
847 {
848         /* x2APIC MSR accesses are not allowed */
849         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
850                 return -EINVAL;
851         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
852             CC(e->index == MSR_IA32_UCODE_REV))
853                 return -EINVAL;
854         if (CC(e->reserved != 0))
855                 return -EINVAL;
856         return 0;
857 }
858
859 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
860                                      struct vmx_msr_entry *e)
861 {
862         if (CC(e->index == MSR_FS_BASE) ||
863             CC(e->index == MSR_GS_BASE) ||
864             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
865             nested_vmx_msr_check_common(vcpu, e))
866                 return -EINVAL;
867         return 0;
868 }
869
870 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
871                                       struct vmx_msr_entry *e)
872 {
873         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
874             nested_vmx_msr_check_common(vcpu, e))
875                 return -EINVAL;
876         return 0;
877 }
878
879 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
880 {
881         struct vcpu_vmx *vmx = to_vmx(vcpu);
882         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
883                                        vmx->nested.msrs.misc_high);
884
885         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
886 }
887
888 /*
889  * Load guest's/host's msr at nested entry/exit.
890  * return 0 for success, entry index for failure.
891  *
892  * One of the failure modes for MSR load/store is when a list exceeds the
893  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
894  * as possible, process all valid entries before failing rather than precheck
895  * for a capacity violation.
896  */
897 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
898 {
899         u32 i;
900         struct vmx_msr_entry e;
901         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
902
903         for (i = 0; i < count; i++) {
904                 if (unlikely(i >= max_msr_list_size))
905                         goto fail;
906
907                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
908                                         &e, sizeof(e))) {
909                         pr_debug_ratelimited(
910                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
911                                 __func__, i, gpa + i * sizeof(e));
912                         goto fail;
913                 }
914                 if (nested_vmx_load_msr_check(vcpu, &e)) {
915                         pr_debug_ratelimited(
916                                 "%s check failed (%u, 0x%x, 0x%x)\n",
917                                 __func__, i, e.index, e.reserved);
918                         goto fail;
919                 }
920                 if (kvm_set_msr(vcpu, e.index, e.value)) {
921                         pr_debug_ratelimited(
922                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
923                                 __func__, i, e.index, e.value);
924                         goto fail;
925                 }
926         }
927         return 0;
928 fail:
929         return i + 1;
930 }
931
932 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
933 {
934         u64 data;
935         u32 i;
936         struct vmx_msr_entry e;
937         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
938
939         for (i = 0; i < count; i++) {
940                 if (unlikely(i >= max_msr_list_size))
941                         return -EINVAL;
942
943                 if (kvm_vcpu_read_guest(vcpu,
944                                         gpa + i * sizeof(e),
945                                         &e, 2 * sizeof(u32))) {
946                         pr_debug_ratelimited(
947                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
948                                 __func__, i, gpa + i * sizeof(e));
949                         return -EINVAL;
950                 }
951                 if (nested_vmx_store_msr_check(vcpu, &e)) {
952                         pr_debug_ratelimited(
953                                 "%s check failed (%u, 0x%x, 0x%x)\n",
954                                 __func__, i, e.index, e.reserved);
955                         return -EINVAL;
956                 }
957                 if (kvm_get_msr(vcpu, e.index, &data)) {
958                         pr_debug_ratelimited(
959                                 "%s cannot read MSR (%u, 0x%x)\n",
960                                 __func__, i, e.index);
961                         return -EINVAL;
962                 }
963                 if (kvm_vcpu_write_guest(vcpu,
964                                          gpa + i * sizeof(e) +
965                                              offsetof(struct vmx_msr_entry, value),
966                                          &data, sizeof(data))) {
967                         pr_debug_ratelimited(
968                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
969                                 __func__, i, e.index, data);
970                         return -EINVAL;
971                 }
972         }
973         return 0;
974 }
975
976 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
977 {
978         unsigned long invalid_mask;
979
980         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
981         return (val & invalid_mask) == 0;
982 }
983
984 /*
985  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
986  * emulating VM entry into a guest with EPT enabled.
987  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
988  * is assigned to entry_failure_code on failure.
989  */
990 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
991                                u32 *entry_failure_code)
992 {
993         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
994                 if (CC(!nested_cr3_valid(vcpu, cr3))) {
995                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
996                         return -EINVAL;
997                 }
998
999                 /*
1000                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1001                  * must not be dereferenced.
1002                  */
1003                 if (is_pae_paging(vcpu) && !nested_ept) {
1004                         if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1005                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1006                                 return -EINVAL;
1007                         }
1008                 }
1009         }
1010
1011         if (!nested_ept)
1012                 kvm_mmu_new_cr3(vcpu, cr3, false);
1013
1014         vcpu->arch.cr3 = cr3;
1015         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1016
1017         kvm_init_mmu(vcpu, false);
1018
1019         return 0;
1020 }
1021
1022 /*
1023  * Returns if KVM is able to config CPU to tag TLB entries
1024  * populated by L2 differently than TLB entries populated
1025  * by L1.
1026  *
1027  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
1028  *
1029  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1030  * with different VPID (L1 entries are tagged with vmx->vpid
1031  * while L2 entries are tagged with vmx->nested.vpid02).
1032  */
1033 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1034 {
1035         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1036
1037         return nested_cpu_has_ept(vmcs12) ||
1038                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1039 }
1040
1041 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1042 {
1043         struct vcpu_vmx *vmx = to_vmx(vcpu);
1044
1045         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1046 }
1047
1048 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1049 {
1050         superset &= mask;
1051         subset &= mask;
1052
1053         return (superset | subset) == superset;
1054 }
1055
1056 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1057 {
1058         const u64 feature_and_reserved =
1059                 /* feature (except bit 48; see below) */
1060                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1061                 /* reserved */
1062                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1063         u64 vmx_basic = vmx->nested.msrs.basic;
1064
1065         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1066                 return -EINVAL;
1067
1068         /*
1069          * KVM does not emulate a version of VMX that constrains physical
1070          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1071          */
1072         if (data & BIT_ULL(48))
1073                 return -EINVAL;
1074
1075         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1076             vmx_basic_vmcs_revision_id(data))
1077                 return -EINVAL;
1078
1079         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1080                 return -EINVAL;
1081
1082         vmx->nested.msrs.basic = data;
1083         return 0;
1084 }
1085
1086 static int
1087 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1088 {
1089         u64 supported;
1090         u32 *lowp, *highp;
1091
1092         switch (msr_index) {
1093         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1094                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1095                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1096                 break;
1097         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1098                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1099                 highp = &vmx->nested.msrs.procbased_ctls_high;
1100                 break;
1101         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1102                 lowp = &vmx->nested.msrs.exit_ctls_low;
1103                 highp = &vmx->nested.msrs.exit_ctls_high;
1104                 break;
1105         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1106                 lowp = &vmx->nested.msrs.entry_ctls_low;
1107                 highp = &vmx->nested.msrs.entry_ctls_high;
1108                 break;
1109         case MSR_IA32_VMX_PROCBASED_CTLS2:
1110                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1111                 highp = &vmx->nested.msrs.secondary_ctls_high;
1112                 break;
1113         default:
1114                 BUG();
1115         }
1116
1117         supported = vmx_control_msr(*lowp, *highp);
1118
1119         /* Check must-be-1 bits are still 1. */
1120         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1121                 return -EINVAL;
1122
1123         /* Check must-be-0 bits are still 0. */
1124         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1125                 return -EINVAL;
1126
1127         *lowp = data;
1128         *highp = data >> 32;
1129         return 0;
1130 }
1131
1132 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1133 {
1134         const u64 feature_and_reserved_bits =
1135                 /* feature */
1136                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1137                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1138                 /* reserved */
1139                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1140         u64 vmx_misc;
1141
1142         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1143                                    vmx->nested.msrs.misc_high);
1144
1145         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1146                 return -EINVAL;
1147
1148         if ((vmx->nested.msrs.pinbased_ctls_high &
1149              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1150             vmx_misc_preemption_timer_rate(data) !=
1151             vmx_misc_preemption_timer_rate(vmx_misc))
1152                 return -EINVAL;
1153
1154         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1155                 return -EINVAL;
1156
1157         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1158                 return -EINVAL;
1159
1160         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1161                 return -EINVAL;
1162
1163         vmx->nested.msrs.misc_low = data;
1164         vmx->nested.msrs.misc_high = data >> 32;
1165
1166         return 0;
1167 }
1168
1169 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1170 {
1171         u64 vmx_ept_vpid_cap;
1172
1173         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1174                                            vmx->nested.msrs.vpid_caps);
1175
1176         /* Every bit is either reserved or a feature bit. */
1177         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1178                 return -EINVAL;
1179
1180         vmx->nested.msrs.ept_caps = data;
1181         vmx->nested.msrs.vpid_caps = data >> 32;
1182         return 0;
1183 }
1184
1185 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1186 {
1187         u64 *msr;
1188
1189         switch (msr_index) {
1190         case MSR_IA32_VMX_CR0_FIXED0:
1191                 msr = &vmx->nested.msrs.cr0_fixed0;
1192                 break;
1193         case MSR_IA32_VMX_CR4_FIXED0:
1194                 msr = &vmx->nested.msrs.cr4_fixed0;
1195                 break;
1196         default:
1197                 BUG();
1198         }
1199
1200         /*
1201          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1202          * must be 1 in the restored value.
1203          */
1204         if (!is_bitwise_subset(data, *msr, -1ULL))
1205                 return -EINVAL;
1206
1207         *msr = data;
1208         return 0;
1209 }
1210
1211 /*
1212  * Called when userspace is restoring VMX MSRs.
1213  *
1214  * Returns 0 on success, non-0 otherwise.
1215  */
1216 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1217 {
1218         struct vcpu_vmx *vmx = to_vmx(vcpu);
1219
1220         /*
1221          * Don't allow changes to the VMX capability MSRs while the vCPU
1222          * is in VMX operation.
1223          */
1224         if (vmx->nested.vmxon)
1225                 return -EBUSY;
1226
1227         switch (msr_index) {
1228         case MSR_IA32_VMX_BASIC:
1229                 return vmx_restore_vmx_basic(vmx, data);
1230         case MSR_IA32_VMX_PINBASED_CTLS:
1231         case MSR_IA32_VMX_PROCBASED_CTLS:
1232         case MSR_IA32_VMX_EXIT_CTLS:
1233         case MSR_IA32_VMX_ENTRY_CTLS:
1234                 /*
1235                  * The "non-true" VMX capability MSRs are generated from the
1236                  * "true" MSRs, so we do not support restoring them directly.
1237                  *
1238                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1239                  * should restore the "true" MSRs with the must-be-1 bits
1240                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1241                  * DEFAULT SETTINGS".
1242                  */
1243                 return -EINVAL;
1244         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1245         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1246         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1247         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248         case MSR_IA32_VMX_PROCBASED_CTLS2:
1249                 return vmx_restore_control_msr(vmx, msr_index, data);
1250         case MSR_IA32_VMX_MISC:
1251                 return vmx_restore_vmx_misc(vmx, data);
1252         case MSR_IA32_VMX_CR0_FIXED0:
1253         case MSR_IA32_VMX_CR4_FIXED0:
1254                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1255         case MSR_IA32_VMX_CR0_FIXED1:
1256         case MSR_IA32_VMX_CR4_FIXED1:
1257                 /*
1258                  * These MSRs are generated based on the vCPU's CPUID, so we
1259                  * do not support restoring them directly.
1260                  */
1261                 return -EINVAL;
1262         case MSR_IA32_VMX_EPT_VPID_CAP:
1263                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1264         case MSR_IA32_VMX_VMCS_ENUM:
1265                 vmx->nested.msrs.vmcs_enum = data;
1266                 return 0;
1267         case MSR_IA32_VMX_VMFUNC:
1268                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1269                         return -EINVAL;
1270                 vmx->nested.msrs.vmfunc_controls = data;
1271                 return 0;
1272         default:
1273                 /*
1274                  * The rest of the VMX capability MSRs do not support restore.
1275                  */
1276                 return -EINVAL;
1277         }
1278 }
1279
1280 /* Returns 0 on success, non-0 otherwise. */
1281 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1282 {
1283         switch (msr_index) {
1284         case MSR_IA32_VMX_BASIC:
1285                 *pdata = msrs->basic;
1286                 break;
1287         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1288         case MSR_IA32_VMX_PINBASED_CTLS:
1289                 *pdata = vmx_control_msr(
1290                         msrs->pinbased_ctls_low,
1291                         msrs->pinbased_ctls_high);
1292                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1293                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1294                 break;
1295         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1296         case MSR_IA32_VMX_PROCBASED_CTLS:
1297                 *pdata = vmx_control_msr(
1298                         msrs->procbased_ctls_low,
1299                         msrs->procbased_ctls_high);
1300                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1301                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1302                 break;
1303         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1304         case MSR_IA32_VMX_EXIT_CTLS:
1305                 *pdata = vmx_control_msr(
1306                         msrs->exit_ctls_low,
1307                         msrs->exit_ctls_high);
1308                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1309                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1310                 break;
1311         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1312         case MSR_IA32_VMX_ENTRY_CTLS:
1313                 *pdata = vmx_control_msr(
1314                         msrs->entry_ctls_low,
1315                         msrs->entry_ctls_high);
1316                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1317                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1318                 break;
1319         case MSR_IA32_VMX_MISC:
1320                 *pdata = vmx_control_msr(
1321                         msrs->misc_low,
1322                         msrs->misc_high);
1323                 break;
1324         case MSR_IA32_VMX_CR0_FIXED0:
1325                 *pdata = msrs->cr0_fixed0;
1326                 break;
1327         case MSR_IA32_VMX_CR0_FIXED1:
1328                 *pdata = msrs->cr0_fixed1;
1329                 break;
1330         case MSR_IA32_VMX_CR4_FIXED0:
1331                 *pdata = msrs->cr4_fixed0;
1332                 break;
1333         case MSR_IA32_VMX_CR4_FIXED1:
1334                 *pdata = msrs->cr4_fixed1;
1335                 break;
1336         case MSR_IA32_VMX_VMCS_ENUM:
1337                 *pdata = msrs->vmcs_enum;
1338                 break;
1339         case MSR_IA32_VMX_PROCBASED_CTLS2:
1340                 *pdata = vmx_control_msr(
1341                         msrs->secondary_ctls_low,
1342                         msrs->secondary_ctls_high);
1343                 break;
1344         case MSR_IA32_VMX_EPT_VPID_CAP:
1345                 *pdata = msrs->ept_caps |
1346                         ((u64)msrs->vpid_caps << 32);
1347                 break;
1348         case MSR_IA32_VMX_VMFUNC:
1349                 *pdata = msrs->vmfunc_controls;
1350                 break;
1351         default:
1352                 return 1;
1353         }
1354
1355         return 0;
1356 }
1357
1358 /*
1359  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1360  * been modified by the L1 guest.  Note, "writable" in this context means
1361  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1362  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1363  * VM-exit information fields (which are actually writable if the vCPU is
1364  * configured to support "VMWRITE to any supported field in the VMCS").
1365  */
1366 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1367 {
1368         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1369         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1370         struct shadow_vmcs_field field;
1371         unsigned long val;
1372         int i;
1373
1374         if (WARN_ON(!shadow_vmcs))
1375                 return;
1376
1377         preempt_disable();
1378
1379         vmcs_load(shadow_vmcs);
1380
1381         for (i = 0; i < max_shadow_read_write_fields; i++) {
1382                 field = shadow_read_write_fields[i];
1383                 val = __vmcs_readl(field.encoding);
1384                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1385         }
1386
1387         vmcs_clear(shadow_vmcs);
1388         vmcs_load(vmx->loaded_vmcs->vmcs);
1389
1390         preempt_enable();
1391 }
1392
1393 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1394 {
1395         const struct shadow_vmcs_field *fields[] = {
1396                 shadow_read_write_fields,
1397                 shadow_read_only_fields
1398         };
1399         const int max_fields[] = {
1400                 max_shadow_read_write_fields,
1401                 max_shadow_read_only_fields
1402         };
1403         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1404         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1405         struct shadow_vmcs_field field;
1406         unsigned long val;
1407         int i, q;
1408
1409         if (WARN_ON(!shadow_vmcs))
1410                 return;
1411
1412         vmcs_load(shadow_vmcs);
1413
1414         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1415                 for (i = 0; i < max_fields[q]; i++) {
1416                         field = fields[q][i];
1417                         val = vmcs12_read_any(vmcs12, field.encoding,
1418                                               field.offset);
1419                         __vmcs_writel(field.encoding, val);
1420                 }
1421         }
1422
1423         vmcs_clear(shadow_vmcs);
1424         vmcs_load(vmx->loaded_vmcs->vmcs);
1425 }
1426
1427 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1428 {
1429         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1430         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1431
1432         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1433         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1434         vmcs12->guest_rip = evmcs->guest_rip;
1435
1436         if (unlikely(!(evmcs->hv_clean_fields &
1437                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1438                 vmcs12->guest_rsp = evmcs->guest_rsp;
1439                 vmcs12->guest_rflags = evmcs->guest_rflags;
1440                 vmcs12->guest_interruptibility_info =
1441                         evmcs->guest_interruptibility_info;
1442         }
1443
1444         if (unlikely(!(evmcs->hv_clean_fields &
1445                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1446                 vmcs12->cpu_based_vm_exec_control =
1447                         evmcs->cpu_based_vm_exec_control;
1448         }
1449
1450         if (unlikely(!(evmcs->hv_clean_fields &
1451                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1452                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1453         }
1454
1455         if (unlikely(!(evmcs->hv_clean_fields &
1456                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1457                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1458         }
1459
1460         if (unlikely(!(evmcs->hv_clean_fields &
1461                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1462                 vmcs12->vm_entry_intr_info_field =
1463                         evmcs->vm_entry_intr_info_field;
1464                 vmcs12->vm_entry_exception_error_code =
1465                         evmcs->vm_entry_exception_error_code;
1466                 vmcs12->vm_entry_instruction_len =
1467                         evmcs->vm_entry_instruction_len;
1468         }
1469
1470         if (unlikely(!(evmcs->hv_clean_fields &
1471                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1472                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1473                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1474                 vmcs12->host_cr0 = evmcs->host_cr0;
1475                 vmcs12->host_cr3 = evmcs->host_cr3;
1476                 vmcs12->host_cr4 = evmcs->host_cr4;
1477                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1478                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1479                 vmcs12->host_rip = evmcs->host_rip;
1480                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1481                 vmcs12->host_es_selector = evmcs->host_es_selector;
1482                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1483                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1484                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1485                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1486                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1487                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1488         }
1489
1490         if (unlikely(!(evmcs->hv_clean_fields &
1491                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1492                 vmcs12->pin_based_vm_exec_control =
1493                         evmcs->pin_based_vm_exec_control;
1494                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1495                 vmcs12->secondary_vm_exec_control =
1496                         evmcs->secondary_vm_exec_control;
1497         }
1498
1499         if (unlikely(!(evmcs->hv_clean_fields &
1500                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1501                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1502                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1503         }
1504
1505         if (unlikely(!(evmcs->hv_clean_fields &
1506                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1507                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1508         }
1509
1510         if (unlikely(!(evmcs->hv_clean_fields &
1511                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1512                 vmcs12->guest_es_base = evmcs->guest_es_base;
1513                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1514                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1515                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1516                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1517                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1518                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1519                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1520                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1521                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1522                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1523                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1524                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1525                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1526                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1527                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1528                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1529                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1530                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1531                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1532                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1533                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1534                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1535                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1536                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1537                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1538                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1539                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1540                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1541                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1542                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1543                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1544                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1545                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1546                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1547                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1548         }
1549
1550         if (unlikely(!(evmcs->hv_clean_fields &
1551                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1552                 vmcs12->tsc_offset = evmcs->tsc_offset;
1553                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1554                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1555         }
1556
1557         if (unlikely(!(evmcs->hv_clean_fields &
1558                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1559                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1560                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1561                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1562                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1563                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1564                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1565                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1566                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1567         }
1568
1569         if (unlikely(!(evmcs->hv_clean_fields &
1570                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1571                 vmcs12->host_fs_base = evmcs->host_fs_base;
1572                 vmcs12->host_gs_base = evmcs->host_gs_base;
1573                 vmcs12->host_tr_base = evmcs->host_tr_base;
1574                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1575                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1576                 vmcs12->host_rsp = evmcs->host_rsp;
1577         }
1578
1579         if (unlikely(!(evmcs->hv_clean_fields &
1580                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1581                 vmcs12->ept_pointer = evmcs->ept_pointer;
1582                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1583         }
1584
1585         if (unlikely(!(evmcs->hv_clean_fields &
1586                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1587                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1588                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1589                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1590                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1591                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1592                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1593                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1594                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1595                 vmcs12->guest_pending_dbg_exceptions =
1596                         evmcs->guest_pending_dbg_exceptions;
1597                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1598                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1599                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1600                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1601                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1602         }
1603
1604         /*
1605          * Not used?
1606          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1607          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1608          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1609          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1610          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1611          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1612          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1613          * vmcs12->page_fault_error_code_mask =
1614          *              evmcs->page_fault_error_code_mask;
1615          * vmcs12->page_fault_error_code_match =
1616          *              evmcs->page_fault_error_code_match;
1617          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1618          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1619          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1620          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1621          */
1622
1623         /*
1624          * Read only fields:
1625          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1626          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1627          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1628          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1629          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1630          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1631          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1632          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1633          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1634          * vmcs12->exit_qualification = evmcs->exit_qualification;
1635          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1636          *
1637          * Not present in struct vmcs12:
1638          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1639          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1640          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1641          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1642          */
1643
1644         return 0;
1645 }
1646
1647 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1648 {
1649         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1650         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1651
1652         /*
1653          * Should not be changed by KVM:
1654          *
1655          * evmcs->host_es_selector = vmcs12->host_es_selector;
1656          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1657          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1658          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1659          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1660          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1661          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1662          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1663          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1664          * evmcs->host_cr0 = vmcs12->host_cr0;
1665          * evmcs->host_cr3 = vmcs12->host_cr3;
1666          * evmcs->host_cr4 = vmcs12->host_cr4;
1667          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1668          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1669          * evmcs->host_rip = vmcs12->host_rip;
1670          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1671          * evmcs->host_fs_base = vmcs12->host_fs_base;
1672          * evmcs->host_gs_base = vmcs12->host_gs_base;
1673          * evmcs->host_tr_base = vmcs12->host_tr_base;
1674          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1675          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1676          * evmcs->host_rsp = vmcs12->host_rsp;
1677          * sync_vmcs02_to_vmcs12() doesn't read these:
1678          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1679          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1680          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1681          * evmcs->ept_pointer = vmcs12->ept_pointer;
1682          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1683          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1684          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1685          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1686          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1687          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1688          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1689          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1690          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1691          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1692          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1693          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1694          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1695          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1696          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1697          * evmcs->page_fault_error_code_mask =
1698          *              vmcs12->page_fault_error_code_mask;
1699          * evmcs->page_fault_error_code_match =
1700          *              vmcs12->page_fault_error_code_match;
1701          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1702          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1703          * evmcs->tsc_offset = vmcs12->tsc_offset;
1704          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1705          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1706          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1707          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1708          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1709          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1710          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1711          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1712          *
1713          * Not present in struct vmcs12:
1714          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1715          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1716          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1717          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1718          */
1719
1720         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1721         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1722         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1723         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1724         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1725         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1726         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1727         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1728
1729         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1730         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1731         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1732         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1733         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1734         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1735         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1736         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1737         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1738         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1739
1740         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1741         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1742         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1743         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1744         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1745         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1746         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1747         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1748
1749         evmcs->guest_es_base = vmcs12->guest_es_base;
1750         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1751         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1752         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1753         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1754         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1755         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1756         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1757         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1758         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1759
1760         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1761         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1762
1763         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1764         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1765         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1766         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1767
1768         evmcs->guest_pending_dbg_exceptions =
1769                 vmcs12->guest_pending_dbg_exceptions;
1770         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1771         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1772
1773         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1774         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1775
1776         evmcs->guest_cr0 = vmcs12->guest_cr0;
1777         evmcs->guest_cr3 = vmcs12->guest_cr3;
1778         evmcs->guest_cr4 = vmcs12->guest_cr4;
1779         evmcs->guest_dr7 = vmcs12->guest_dr7;
1780
1781         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1782
1783         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1784         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1785         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1786         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1787         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1788         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1789         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1790         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1791
1792         evmcs->exit_qualification = vmcs12->exit_qualification;
1793
1794         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1795         evmcs->guest_rsp = vmcs12->guest_rsp;
1796         evmcs->guest_rflags = vmcs12->guest_rflags;
1797
1798         evmcs->guest_interruptibility_info =
1799                 vmcs12->guest_interruptibility_info;
1800         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1801         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1802         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1803         evmcs->vm_entry_exception_error_code =
1804                 vmcs12->vm_entry_exception_error_code;
1805         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1806
1807         evmcs->guest_rip = vmcs12->guest_rip;
1808
1809         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1810
1811         return 0;
1812 }
1813
1814 /*
1815  * This is an equivalent of the nested hypervisor executing the vmptrld
1816  * instruction.
1817  */
1818 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1819                                                  bool from_launch)
1820 {
1821         struct vcpu_vmx *vmx = to_vmx(vcpu);
1822         bool evmcs_gpa_changed = false;
1823         u64 evmcs_gpa;
1824
1825         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1826                 return 1;
1827
1828         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1829                 return 1;
1830
1831         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1832                 if (!vmx->nested.hv_evmcs)
1833                         vmx->nested.current_vmptr = -1ull;
1834
1835                 nested_release_evmcs(vcpu);
1836
1837                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1838                                  &vmx->nested.hv_evmcs_map))
1839                         return 0;
1840
1841                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1842
1843                 /*
1844                  * Currently, KVM only supports eVMCS version 1
1845                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1846                  * value to first u32 field of eVMCS which should specify eVMCS
1847                  * VersionNumber.
1848                  *
1849                  * Guest should be aware of supported eVMCS versions by host by
1850                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1851                  * expected to set this CPUID leaf according to the value
1852                  * returned in vmcs_version from nested_enable_evmcs().
1853                  *
1854                  * However, it turns out that Microsoft Hyper-V fails to comply
1855                  * to their own invented interface: When Hyper-V use eVMCS, it
1856                  * just sets first u32 field of eVMCS to revision_id specified
1857                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1858                  * which is one of the supported versions specified in
1859                  * CPUID.0x4000000A.EAX[0:15].
1860                  *
1861                  * To overcome Hyper-V bug, we accept here either a supported
1862                  * eVMCS version or VMCS12 revision_id as valid values for first
1863                  * u32 field of eVMCS.
1864                  */
1865                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1866                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1867                         nested_release_evmcs(vcpu);
1868                         return 0;
1869                 }
1870
1871                 vmx->nested.dirty_vmcs12 = true;
1872                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1873
1874                 evmcs_gpa_changed = true;
1875                 /*
1876                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1877                  * reloaded from guest's memory (read only fields, fields not
1878                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1879                  * are no leftovers.
1880                  */
1881                 if (from_launch) {
1882                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1883                         memset(vmcs12, 0, sizeof(*vmcs12));
1884                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1885                 }
1886
1887         }
1888
1889         /*
1890          * Clean fields data can't de used on VMLAUNCH and when we switch
1891          * between different L2 guests as KVM keeps a single VMCS12 per L1.
1892          */
1893         if (from_launch || evmcs_gpa_changed)
1894                 vmx->nested.hv_evmcs->hv_clean_fields &=
1895                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1896
1897         return 1;
1898 }
1899
1900 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1901 {
1902         struct vcpu_vmx *vmx = to_vmx(vcpu);
1903
1904         /*
1905          * hv_evmcs may end up being not mapped after migration (when
1906          * L2 was running), map it here to make sure vmcs12 changes are
1907          * properly reflected.
1908          */
1909         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1910                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1911
1912         if (vmx->nested.hv_evmcs) {
1913                 copy_vmcs12_to_enlightened(vmx);
1914                 /* All fields are clean */
1915                 vmx->nested.hv_evmcs->hv_clean_fields |=
1916                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1917         } else {
1918                 copy_vmcs12_to_shadow(vmx);
1919         }
1920
1921         vmx->nested.need_vmcs12_to_shadow_sync = false;
1922 }
1923
1924 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1925 {
1926         struct vcpu_vmx *vmx =
1927                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1928
1929         vmx->nested.preemption_timer_expired = true;
1930         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1931         kvm_vcpu_kick(&vmx->vcpu);
1932
1933         return HRTIMER_NORESTART;
1934 }
1935
1936 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1937 {
1938         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1939         struct vcpu_vmx *vmx = to_vmx(vcpu);
1940
1941         /*
1942          * A timer value of zero is architecturally guaranteed to cause
1943          * a VMExit prior to executing any instructions in the guest.
1944          */
1945         if (preemption_timeout == 0) {
1946                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1947                 return;
1948         }
1949
1950         if (vcpu->arch.virtual_tsc_khz == 0)
1951                 return;
1952
1953         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1954         preemption_timeout *= 1000000;
1955         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1956         hrtimer_start(&vmx->nested.preemption_timer,
1957                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1958 }
1959
1960 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1961 {
1962         if (vmx->nested.nested_run_pending &&
1963             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1964                 return vmcs12->guest_ia32_efer;
1965         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1966                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1967         else
1968                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1969 }
1970
1971 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1972 {
1973         /*
1974          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1975          * according to L0's settings (vmcs12 is irrelevant here).  Host
1976          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1977          * will be set as needed prior to VMLAUNCH/VMRESUME.
1978          */
1979         if (vmx->nested.vmcs02_initialized)
1980                 return;
1981         vmx->nested.vmcs02_initialized = true;
1982
1983         /*
1984          * We don't care what the EPTP value is we just need to guarantee
1985          * it's valid so we don't get a false positive when doing early
1986          * consistency checks.
1987          */
1988         if (enable_ept && nested_early_check)
1989                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1990
1991         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1992         if (cpu_has_vmx_vmfunc())
1993                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1994
1995         if (cpu_has_vmx_posted_intr())
1996                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1997
1998         if (cpu_has_vmx_msr_bitmap())
1999                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2000
2001         /*
2002          * The PML address never changes, so it is constant in vmcs02.
2003          * Conceptually we want to copy the PML index from vmcs01 here,
2004          * and then back to vmcs01 on nested vmexit.  But since we flush
2005          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2006          * index is also effectively constant in vmcs02.
2007          */
2008         if (enable_pml) {
2009                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2010                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2011         }
2012
2013         if (cpu_has_vmx_encls_vmexit())
2014                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2015
2016         /*
2017          * Set the MSR load/store lists to match L0's settings.  Only the
2018          * addresses are constant (for vmcs02), the counts can change based
2019          * on L2's behavior, e.g. switching to/from long mode.
2020          */
2021         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2022         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2023         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2024
2025         vmx_set_constant_host_state(vmx);
2026 }
2027
2028 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2029                                       struct vmcs12 *vmcs12)
2030 {
2031         prepare_vmcs02_constant_state(vmx);
2032
2033         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2034
2035         if (enable_vpid) {
2036                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2037                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2038                 else
2039                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2040         }
2041 }
2042
2043 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2044 {
2045         u32 exec_control, vmcs12_exec_ctrl;
2046         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2047
2048         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2049                 prepare_vmcs02_early_rare(vmx, vmcs12);
2050
2051         /*
2052          * PIN CONTROLS
2053          */
2054         exec_control = vmx_pin_based_exec_ctrl(vmx);
2055         exec_control |= (vmcs12->pin_based_vm_exec_control &
2056                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2057
2058         /* Posted interrupts setting is only taken from vmcs12.  */
2059         if (nested_cpu_has_posted_intr(vmcs12)) {
2060                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2061                 vmx->nested.pi_pending = false;
2062         } else {
2063                 exec_control &= ~PIN_BASED_POSTED_INTR;
2064         }
2065         pin_controls_set(vmx, exec_control);
2066
2067         /*
2068          * EXEC CONTROLS
2069          */
2070         exec_control = vmx_exec_control(vmx); /* L0's desires */
2071         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2072         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2073         exec_control &= ~CPU_BASED_TPR_SHADOW;
2074         exec_control |= vmcs12->cpu_based_vm_exec_control;
2075
2076         if (exec_control & CPU_BASED_TPR_SHADOW)
2077                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2078 #ifdef CONFIG_X86_64
2079         else
2080                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2081                                 CPU_BASED_CR8_STORE_EXITING;
2082 #endif
2083
2084         /*
2085          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2086          * for I/O port accesses.
2087          */
2088         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2089         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2090
2091         /*
2092          * This bit will be computed in nested_get_vmcs12_pages, because
2093          * we do not have access to L1's MSR bitmap yet.  For now, keep
2094          * the same bit as before, hoping to avoid multiple VMWRITEs that
2095          * only set/clear this bit.
2096          */
2097         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2098         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2099
2100         exec_controls_set(vmx, exec_control);
2101
2102         /*
2103          * SECONDARY EXEC CONTROLS
2104          */
2105         if (cpu_has_secondary_exec_ctrls()) {
2106                 exec_control = vmx->secondary_exec_control;
2107
2108                 /* Take the following fields only from vmcs12 */
2109                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2110                                   SECONDARY_EXEC_ENABLE_INVPCID |
2111                                   SECONDARY_EXEC_RDTSCP |
2112                                   SECONDARY_EXEC_XSAVES |
2113                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2114                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2115                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2116                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2117                 if (nested_cpu_has(vmcs12,
2118                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2119                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2120                                 ~SECONDARY_EXEC_ENABLE_PML;
2121                         exec_control |= vmcs12_exec_ctrl;
2122                 }
2123
2124                 /* VMCS shadowing for L2 is emulated for now */
2125                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2126
2127                 /*
2128                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2129                  * will not have to rewrite the controls just for this bit.
2130                  */
2131                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2132                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2133                         exec_control |= SECONDARY_EXEC_DESC;
2134
2135                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2136                         vmcs_write16(GUEST_INTR_STATUS,
2137                                 vmcs12->guest_intr_status);
2138
2139                 secondary_exec_controls_set(vmx, exec_control);
2140         }
2141
2142         /*
2143          * ENTRY CONTROLS
2144          *
2145          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2146          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2147          * on the related bits (if supported by the CPU) in the hope that
2148          * we can avoid VMWrites during vmx_set_efer().
2149          */
2150         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2151                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2152         if (cpu_has_load_ia32_efer()) {
2153                 if (guest_efer & EFER_LMA)
2154                         exec_control |= VM_ENTRY_IA32E_MODE;
2155                 if (guest_efer != host_efer)
2156                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2157         }
2158         vm_entry_controls_set(vmx, exec_control);
2159
2160         /*
2161          * EXIT CONTROLS
2162          *
2163          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2164          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2165          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2166          */
2167         exec_control = vmx_vmexit_ctrl();
2168         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2169                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2170         vm_exit_controls_set(vmx, exec_control);
2171
2172         /*
2173          * Interrupt/Exception Fields
2174          */
2175         if (vmx->nested.nested_run_pending) {
2176                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2177                              vmcs12->vm_entry_intr_info_field);
2178                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2179                              vmcs12->vm_entry_exception_error_code);
2180                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2181                              vmcs12->vm_entry_instruction_len);
2182                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2183                              vmcs12->guest_interruptibility_info);
2184                 vmx->loaded_vmcs->nmi_known_unmasked =
2185                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2186         } else {
2187                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2188         }
2189 }
2190
2191 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2192 {
2193         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2194
2195         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2196                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2197                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2198                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2199                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2200                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2201                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2202                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2203                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2204                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2205                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2206                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2207                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2208                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2209                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2210                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2211                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2212                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2213                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2214                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2215                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2216                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2217                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2218                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2219                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2220                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2221                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2222                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2223                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2224                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2225                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2226                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2227                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2228                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2229                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2230                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2231                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2232                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2233         }
2234
2235         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2236                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2237                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2238                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2239                             vmcs12->guest_pending_dbg_exceptions);
2240                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2241                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2242
2243                 /*
2244                  * L1 may access the L2's PDPTR, so save them to construct
2245                  * vmcs12
2246                  */
2247                 if (enable_ept) {
2248                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2249                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2250                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2251                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2252                 }
2253
2254                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2255                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2256                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2257         }
2258
2259         if (nested_cpu_has_xsaves(vmcs12))
2260                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2261
2262         /*
2263          * Whether page-faults are trapped is determined by a combination of
2264          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2265          * If enable_ept, L0 doesn't care about page faults and we should
2266          * set all of these to L1's desires. However, if !enable_ept, L0 does
2267          * care about (at least some) page faults, and because it is not easy
2268          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2269          * to exit on each and every L2 page fault. This is done by setting
2270          * MASK=MATCH=0 and (see below) EB.PF=1.
2271          * Note that below we don't need special code to set EB.PF beyond the
2272          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2273          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2274          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2275          */
2276         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2277                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2278         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2279                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2280
2281         if (cpu_has_vmx_apicv()) {
2282                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2283                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2284                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2285                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2286         }
2287
2288         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2289         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2290
2291         set_cr4_guest_host_mask(vmx);
2292 }
2293
2294 /*
2295  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2296  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2297  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2298  * guest in a way that will both be appropriate to L1's requests, and our
2299  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2300  * function also has additional necessary side-effects, like setting various
2301  * vcpu->arch fields.
2302  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2303  * is assigned to entry_failure_code on failure.
2304  */
2305 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2306                           u32 *entry_failure_code)
2307 {
2308         struct vcpu_vmx *vmx = to_vmx(vcpu);
2309         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2310         bool load_guest_pdptrs_vmcs12 = false;
2311
2312         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2313                 prepare_vmcs02_rare(vmx, vmcs12);
2314                 vmx->nested.dirty_vmcs12 = false;
2315
2316                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2317                         !(hv_evmcs->hv_clean_fields &
2318                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2319         }
2320
2321         if (vmx->nested.nested_run_pending &&
2322             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2323                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2324                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2325         } else {
2326                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2327                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2328         }
2329         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2330             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2331                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2332         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2333
2334         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2335          * bitwise-or of what L1 wants to trap for L2, and what we want to
2336          * trap. Note that CR0.TS also needs updating - we do this later.
2337          */
2338         update_exception_bitmap(vcpu);
2339         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2340         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2341
2342         if (vmx->nested.nested_run_pending &&
2343             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2344                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2345                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2346         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2347                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2348         }
2349
2350         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2351
2352         if (kvm_has_tsc_control)
2353                 decache_tsc_multiplier(vmx);
2354
2355         if (enable_vpid) {
2356                 /*
2357                  * There is no direct mapping between vpid02 and vpid12, the
2358                  * vpid02 is per-vCPU for L0 and reused while the value of
2359                  * vpid12 is changed w/ one invvpid during nested vmentry.
2360                  * The vpid12 is allocated by L1 for L2, so it will not
2361                  * influence global bitmap(for vpid01 and vpid02 allocation)
2362                  * even if spawn a lot of nested vCPUs.
2363                  */
2364                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2365                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2366                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2367                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2368                         }
2369                 } else {
2370                         /*
2371                          * If L1 use EPT, then L0 needs to execute INVEPT on
2372                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2373                          * flush until vmcs02->eptp is fully updated by
2374                          * KVM_REQ_LOAD_CR3. Note that this assumes
2375                          * KVM_REQ_TLB_FLUSH is evaluated after
2376                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2377                          */
2378                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2379                 }
2380         }
2381
2382         if (nested_cpu_has_ept(vmcs12))
2383                 nested_ept_init_mmu_context(vcpu);
2384         else if (nested_cpu_has2(vmcs12,
2385                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2386                 vmx_flush_tlb(vcpu, true);
2387
2388         /*
2389          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2390          * bits which we consider mandatory enabled.
2391          * The CR0_READ_SHADOW is what L2 should have expected to read given
2392          * the specifications by L1; It's not enough to take
2393          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2394          * have more bits than L1 expected.
2395          */
2396         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2397         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2398
2399         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2400         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2401
2402         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2403         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2404         vmx_set_efer(vcpu, vcpu->arch.efer);
2405
2406         /*
2407          * Guest state is invalid and unrestricted guest is disabled,
2408          * which means L1 attempted VMEntry to L2 with invalid state.
2409          * Fail the VMEntry.
2410          */
2411         if (vmx->emulation_required) {
2412                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2413                 return -EINVAL;
2414         }
2415
2416         /* Shadow page tables on either EPT or shadow page tables. */
2417         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2418                                 entry_failure_code))
2419                 return -EINVAL;
2420
2421         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2422         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2423             is_pae_paging(vcpu)) {
2424                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2425                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2426                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2427                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2428         }
2429
2430         if (!enable_ept)
2431                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2432
2433         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2434         kvm_rip_write(vcpu, vmcs12->guest_rip);
2435         return 0;
2436 }
2437
2438 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2439 {
2440         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2441                nested_cpu_has_virtual_nmis(vmcs12)))
2442                 return -EINVAL;
2443
2444         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2445                nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)))
2446                 return -EINVAL;
2447
2448         return 0;
2449 }
2450
2451 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2452 {
2453         struct vcpu_vmx *vmx = to_vmx(vcpu);
2454         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2455
2456         /* Check for memory type validity */
2457         switch (address & VMX_EPTP_MT_MASK) {
2458         case VMX_EPTP_MT_UC:
2459                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2460                         return false;
2461                 break;
2462         case VMX_EPTP_MT_WB:
2463                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2464                         return false;
2465                 break;
2466         default:
2467                 return false;
2468         }
2469
2470         /* only 4 levels page-walk length are valid */
2471         if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2472                 return false;
2473
2474         /* Reserved bits should not be set */
2475         if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2476                 return false;
2477
2478         /* AD, if set, should be supported */
2479         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2480                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2481                         return false;
2482         }
2483
2484         return true;
2485 }
2486
2487 /*
2488  * Checks related to VM-Execution Control Fields
2489  */
2490 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2491                                               struct vmcs12 *vmcs12)
2492 {
2493         struct vcpu_vmx *vmx = to_vmx(vcpu);
2494
2495         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2496                                    vmx->nested.msrs.pinbased_ctls_low,
2497                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2498             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2499                                    vmx->nested.msrs.procbased_ctls_low,
2500                                    vmx->nested.msrs.procbased_ctls_high)))
2501                 return -EINVAL;
2502
2503         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2504             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2505                                    vmx->nested.msrs.secondary_ctls_low,
2506                                    vmx->nested.msrs.secondary_ctls_high)))
2507                 return -EINVAL;
2508
2509         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2510             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2511             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2512             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2513             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2514             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2515             nested_vmx_check_nmi_controls(vmcs12) ||
2516             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2517             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2518             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2519             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2520             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2521                 return -EINVAL;
2522
2523         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2524             nested_cpu_has_save_preemption_timer(vmcs12))
2525                 return -EINVAL;
2526
2527         if (nested_cpu_has_ept(vmcs12) &&
2528             CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2529                 return -EINVAL;
2530
2531         if (nested_cpu_has_vmfunc(vmcs12)) {
2532                 if (CC(vmcs12->vm_function_control &
2533                        ~vmx->nested.msrs.vmfunc_controls))
2534                         return -EINVAL;
2535
2536                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2537                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2538                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2539                                 return -EINVAL;
2540                 }
2541         }
2542
2543         return 0;
2544 }
2545
2546 /*
2547  * Checks related to VM-Exit Control Fields
2548  */
2549 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2550                                          struct vmcs12 *vmcs12)
2551 {
2552         struct vcpu_vmx *vmx = to_vmx(vcpu);
2553
2554         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2555                                     vmx->nested.msrs.exit_ctls_low,
2556                                     vmx->nested.msrs.exit_ctls_high)) ||
2557             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2558                 return -EINVAL;
2559
2560         return 0;
2561 }
2562
2563 /*
2564  * Checks related to VM-Entry Control Fields
2565  */
2566 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2567                                           struct vmcs12 *vmcs12)
2568 {
2569         struct vcpu_vmx *vmx = to_vmx(vcpu);
2570
2571         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2572                                     vmx->nested.msrs.entry_ctls_low,
2573                                     vmx->nested.msrs.entry_ctls_high)))
2574                 return -EINVAL;
2575
2576         /*
2577          * From the Intel SDM, volume 3:
2578          * Fields relevant to VM-entry event injection must be set properly.
2579          * These fields are the VM-entry interruption-information field, the
2580          * VM-entry exception error code, and the VM-entry instruction length.
2581          */
2582         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2583                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2584                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2585                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2586                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2587                 bool should_have_error_code;
2588                 bool urg = nested_cpu_has2(vmcs12,
2589                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2590                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2591
2592                 /* VM-entry interruption-info field: interruption type */
2593                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2594                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2595                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2596                         return -EINVAL;
2597
2598                 /* VM-entry interruption-info field: vector */
2599                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2600                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2601                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2602                         return -EINVAL;
2603
2604                 /* VM-entry interruption-info field: deliver error code */
2605                 should_have_error_code =
2606                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2607                         x86_exception_has_error_code(vector);
2608                 if (CC(has_error_code != should_have_error_code))
2609                         return -EINVAL;
2610
2611                 /* VM-entry exception error code */
2612                 if (CC(has_error_code &&
2613                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2614                         return -EINVAL;
2615
2616                 /* VM-entry interruption-info field: reserved bits */
2617                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2618                         return -EINVAL;
2619
2620                 /* VM-entry instruction length */
2621                 switch (intr_type) {
2622                 case INTR_TYPE_SOFT_EXCEPTION:
2623                 case INTR_TYPE_SOFT_INTR:
2624                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2625                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2626                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2627                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2628                                 return -EINVAL;
2629                 }
2630         }
2631
2632         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2633                 return -EINVAL;
2634
2635         return 0;
2636 }
2637
2638 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2639                                      struct vmcs12 *vmcs12)
2640 {
2641         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2642             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2643             nested_check_vm_entry_controls(vcpu, vmcs12))
2644                 return -EINVAL;
2645
2646         return 0;
2647 }
2648
2649 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2650                                        struct vmcs12 *vmcs12)
2651 {
2652         bool ia32e;
2653
2654         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2655             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2656             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2657                 return -EINVAL;
2658
2659         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2660             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2661                 return -EINVAL;
2662
2663         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2664             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2665                 return -EINVAL;
2666
2667 #ifdef CONFIG_X86_64
2668         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2669 #else
2670         ia32e = false;
2671 #endif
2672
2673         if (ia32e) {
2674                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2675                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2676                         return -EINVAL;
2677         } else {
2678                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2679                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2680                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2681                     CC((vmcs12->host_rip) >> 32))
2682                         return -EINVAL;
2683         }
2684
2685         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2686             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2687             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2688             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2689             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2690             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2691             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2692             CC(vmcs12->host_cs_selector == 0) ||
2693             CC(vmcs12->host_tr_selector == 0) ||
2694             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2695                 return -EINVAL;
2696
2697 #ifdef CONFIG_X86_64
2698         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2699             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2700             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2701             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2702             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2703             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2704                 return -EINVAL;
2705 #endif
2706
2707         /*
2708          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2709          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2710          * the values of the LMA and LME bits in the field must each be that of
2711          * the host address-space size VM-exit control.
2712          */
2713         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2714                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2715                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2716                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2717                         return -EINVAL;
2718         }
2719
2720         return 0;
2721 }
2722
2723 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2724                                           struct vmcs12 *vmcs12)
2725 {
2726         int r = 0;
2727         struct vmcs12 *shadow;
2728         struct kvm_host_map map;
2729
2730         if (vmcs12->vmcs_link_pointer == -1ull)
2731                 return 0;
2732
2733         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2734                 return -EINVAL;
2735
2736         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2737                 return -EINVAL;
2738
2739         shadow = map.hva;
2740
2741         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2742             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2743                 r = -EINVAL;
2744
2745         kvm_vcpu_unmap(vcpu, &map, false);
2746         return r;
2747 }
2748
2749 /*
2750  * Checks related to Guest Non-register State
2751  */
2752 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2753 {
2754         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2755                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2756                 return -EINVAL;
2757
2758         return 0;
2759 }
2760
2761 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2762                                         struct vmcs12 *vmcs12,
2763                                         u32 *exit_qual)
2764 {
2765         bool ia32e;
2766
2767         *exit_qual = ENTRY_FAIL_DEFAULT;
2768
2769         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2770             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2771                 return -EINVAL;
2772
2773         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2774             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2775                 return -EINVAL;
2776
2777         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2778                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2779                 return -EINVAL;
2780         }
2781
2782         /*
2783          * If the load IA32_EFER VM-entry control is 1, the following checks
2784          * are performed on the field for the IA32_EFER MSR:
2785          * - Bits reserved in the IA32_EFER MSR must be 0.
2786          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2787          *   the IA-32e mode guest VM-exit control. It must also be identical
2788          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2789          *   CR0.PG) is 1.
2790          */
2791         if (to_vmx(vcpu)->nested.nested_run_pending &&
2792             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2793                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2794                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2795                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2796                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2797                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2798                         return -EINVAL;
2799         }
2800
2801         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2802             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2803              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2804                 return -EINVAL;
2805
2806         if (nested_check_guest_non_reg_state(vmcs12))
2807                 return -EINVAL;
2808
2809         return 0;
2810 }
2811
2812 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2813 {
2814         struct vcpu_vmx *vmx = to_vmx(vcpu);
2815         unsigned long cr3, cr4;
2816         bool vm_fail;
2817
2818         if (!nested_early_check)
2819                 return 0;
2820
2821         if (vmx->msr_autoload.host.nr)
2822                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2823         if (vmx->msr_autoload.guest.nr)
2824                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2825
2826         preempt_disable();
2827
2828         vmx_prepare_switch_to_guest(vcpu);
2829
2830         /*
2831          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2832          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2833          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2834          * there is no need to preserve other bits or save/restore the field.
2835          */
2836         vmcs_writel(GUEST_RFLAGS, 0);
2837
2838         cr3 = __get_current_cr3_fast();
2839         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2840                 vmcs_writel(HOST_CR3, cr3);
2841                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2842         }
2843
2844         cr4 = cr4_read_shadow();
2845         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2846                 vmcs_writel(HOST_CR4, cr4);
2847                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2848         }
2849
2850         asm(
2851                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2852                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2853                 "je 1f \n\t"
2854                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2855                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2856                 "1: \n\t"
2857                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2858
2859                 /* Check if vmlaunch or vmresume is needed */
2860                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2861
2862                 /*
2863                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2864                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2865                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2866                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2867                  */
2868                 "call vmx_vmenter\n\t"
2869
2870                 CC_SET(be)
2871               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2872               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
2873                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
2874                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
2875                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2876                 [wordsize]"i"(sizeof(ulong))
2877               : "memory"
2878         );
2879
2880         if (vmx->msr_autoload.host.nr)
2881                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2882         if (vmx->msr_autoload.guest.nr)
2883                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2884
2885         if (vm_fail) {
2886                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
2887
2888                 preempt_enable();
2889
2890                 trace_kvm_nested_vmenter_failed(
2891                         "early hardware check VM-instruction error: ", error);
2892                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2893                 return 1;
2894         }
2895
2896         /*
2897          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2898          */
2899         local_irq_enable();
2900         if (hw_breakpoint_active())
2901                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2902         preempt_enable();
2903
2904         /*
2905          * A non-failing VMEntry means we somehow entered guest mode with
2906          * an illegal RIP, and that's just the tip of the iceberg.  There
2907          * is no telling what memory has been modified or what state has
2908          * been exposed to unknown code.  Hitting this all but guarantees
2909          * a (very critical) hardware issue.
2910          */
2911         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2912                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2913
2914         return 0;
2915 }
2916
2917 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2918                                                  struct vmcs12 *vmcs12);
2919
2920 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2921 {
2922         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2923         struct vcpu_vmx *vmx = to_vmx(vcpu);
2924         struct kvm_host_map *map;
2925         struct page *page;
2926         u64 hpa;
2927
2928         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2929                 /*
2930                  * Translate L1 physical address to host physical
2931                  * address for vmcs02. Keep the page pinned, so this
2932                  * physical address remains valid. We keep a reference
2933                  * to it so we can release it later.
2934                  */
2935                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2936                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2937                         vmx->nested.apic_access_page = NULL;
2938                 }
2939                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2940                 if (!is_error_page(page)) {
2941                         vmx->nested.apic_access_page = page;
2942                         hpa = page_to_phys(vmx->nested.apic_access_page);
2943                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2944                 } else {
2945                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
2946                                              __func__);
2947                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2948                         vcpu->run->internal.suberror =
2949                                 KVM_INTERNAL_ERROR_EMULATION;
2950                         vcpu->run->internal.ndata = 0;
2951                         return false;
2952                 }
2953         }
2954
2955         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2956                 map = &vmx->nested.virtual_apic_map;
2957
2958                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
2959                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
2960                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
2961                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
2962                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2963                         /*
2964                          * The processor will never use the TPR shadow, simply
2965                          * clear the bit from the execution control.  Such a
2966                          * configuration is useless, but it happens in tests.
2967                          * For any other configuration, failing the vm entry is
2968                          * _not_ what the processor does but it's basically the
2969                          * only possibility we have.
2970                          */
2971                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
2972                 } else {
2973                         /*
2974                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
2975                          * force VM-Entry to fail.
2976                          */
2977                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2978                 }
2979         }
2980
2981         if (nested_cpu_has_posted_intr(vmcs12)) {
2982                 map = &vmx->nested.pi_desc_map;
2983
2984                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
2985                         vmx->nested.pi_desc =
2986                                 (struct pi_desc *)(((void *)map->hva) +
2987                                 offset_in_page(vmcs12->posted_intr_desc_addr));
2988                         vmcs_write64(POSTED_INTR_DESC_ADDR,
2989                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
2990                 }
2991         }
2992         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2993                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2994         else
2995                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2996         return true;
2997 }
2998
2999 /*
3000  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3001  * for running VMX instructions (except VMXON, whose prerequisites are
3002  * slightly different). It also specifies what exception to inject otherwise.
3003  * Note that many of these exceptions have priority over VM exits, so they
3004  * don't have to be checked again here.
3005  */
3006 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3007 {
3008         if (!to_vmx(vcpu)->nested.vmxon) {
3009                 kvm_queue_exception(vcpu, UD_VECTOR);
3010                 return 0;
3011         }
3012
3013         if (vmx_get_cpl(vcpu)) {
3014                 kvm_inject_gp(vcpu, 0);
3015                 return 0;
3016         }
3017
3018         return 1;
3019 }
3020
3021 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3022 {
3023         u8 rvi = vmx_get_rvi();
3024         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3025
3026         return ((rvi & 0xf0) > (vppr & 0xf0));
3027 }
3028
3029 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3030                                    struct vmcs12 *vmcs12);
3031
3032 /*
3033  * If from_vmentry is false, this is being called from state restore (either RSM
3034  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3035  *
3036  * Returns:
3037  *      NVMX_ENTRY_SUCCESS: Entered VMX non-root mode
3038  *      NVMX_ENTRY_VMFAIL:  Consistency check VMFail
3039  *      NVMX_ENTRY_VMEXIT:  Consistency check VMExit
3040  *      NVMX_ENTRY_KVM_INTERNAL_ERROR: KVM internal error
3041  */
3042 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3043                                                         bool from_vmentry)
3044 {
3045         struct vcpu_vmx *vmx = to_vmx(vcpu);
3046         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3047         bool evaluate_pending_interrupts;
3048         u32 exit_reason = EXIT_REASON_INVALID_STATE;
3049         u32 exit_qual;
3050
3051         evaluate_pending_interrupts = exec_controls_get(vmx) &
3052                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
3053         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3054                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3055
3056         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3057                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3058         if (kvm_mpx_supported() &&
3059                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3060                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3061
3062         /*
3063          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3064          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3065          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3066          * software model to the pre-VMEntry host state.  When EPT is disabled,
3067          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3068          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3069          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3070          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3071          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3072          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3073          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3074          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3075          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3076          * path would need to manually save/restore vmcs01.GUEST_CR3.
3077          */
3078         if (!enable_ept && !nested_early_check)
3079                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3080
3081         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3082
3083         prepare_vmcs02_early(vmx, vmcs12);
3084
3085         if (from_vmentry) {
3086                 if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3087                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3088
3089                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3090                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3091                         return NVMX_VMENTRY_VMFAIL;
3092                 }
3093
3094                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3095                         goto vmentry_fail_vmexit;
3096         }
3097
3098         enter_guest_mode(vcpu);
3099         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3100                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3101
3102         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3103                 goto vmentry_fail_vmexit_guest_mode;
3104
3105         if (from_vmentry) {
3106                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3107                 exit_qual = nested_vmx_load_msr(vcpu,
3108                                                 vmcs12->vm_entry_msr_load_addr,
3109                                                 vmcs12->vm_entry_msr_load_count);
3110                 if (exit_qual)
3111                         goto vmentry_fail_vmexit_guest_mode;
3112         } else {
3113                 /*
3114                  * The MMU is not initialized to point at the right entities yet and
3115                  * "get pages" would need to read data from the guest (i.e. we will
3116                  * need to perform gpa to hpa translation). Request a call
3117                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3118                  * have already been set at vmentry time and should not be reset.
3119                  */
3120                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3121         }
3122
3123         /*
3124          * If L1 had a pending IRQ/NMI until it executed
3125          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3126          * disallowed (e.g. interrupts disabled), L0 needs to
3127          * evaluate if this pending event should cause an exit from L2
3128          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3129          * intercept EXTERNAL_INTERRUPT).
3130          *
3131          * Usually this would be handled by the processor noticing an
3132          * IRQ/NMI window request, or checking RVI during evaluation of
3133          * pending virtual interrupts.  However, this setting was done
3134          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3135          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3136          */
3137         if (unlikely(evaluate_pending_interrupts))
3138                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3139
3140         /*
3141          * Do not start the preemption timer hrtimer until after we know
3142          * we are successful, so that only nested_vmx_vmexit needs to cancel
3143          * the timer.
3144          */
3145         vmx->nested.preemption_timer_expired = false;
3146         if (nested_cpu_has_preemption_timer(vmcs12))
3147                 vmx_start_preemption_timer(vcpu);
3148
3149         /*
3150          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3151          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3152          * returned as far as L1 is concerned. It will only return (and set
3153          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3154          */
3155         return NVMX_VMENTRY_SUCCESS;
3156
3157         /*
3158          * A failed consistency check that leads to a VMExit during L1's
3159          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3160          * 26.7 "VM-entry failures during or after loading guest state".
3161          */
3162 vmentry_fail_vmexit_guest_mode:
3163         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3164                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3165         leave_guest_mode(vcpu);
3166
3167 vmentry_fail_vmexit:
3168         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3169
3170         if (!from_vmentry)
3171                 return NVMX_VMENTRY_VMEXIT;
3172
3173         load_vmcs12_host_state(vcpu, vmcs12);
3174         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3175         vmcs12->exit_qualification = exit_qual;
3176         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3177                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3178         return NVMX_VMENTRY_VMEXIT;
3179 }
3180
3181 /*
3182  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3183  * for running an L2 nested guest.
3184  */
3185 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3186 {
3187         struct vmcs12 *vmcs12;
3188         enum nvmx_vmentry_status status;
3189         struct vcpu_vmx *vmx = to_vmx(vcpu);
3190         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3191
3192         if (!nested_vmx_check_permission(vcpu))
3193                 return 1;
3194
3195         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3196                 return 1;
3197
3198         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3199                 return nested_vmx_failInvalid(vcpu);
3200
3201         vmcs12 = get_vmcs12(vcpu);
3202
3203         /*
3204          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3205          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3206          * rather than RFLAGS.ZF, and no error number is stored to the
3207          * VM-instruction error field.
3208          */
3209         if (vmcs12->hdr.shadow_vmcs)
3210                 return nested_vmx_failInvalid(vcpu);
3211
3212         if (vmx->nested.hv_evmcs) {
3213                 copy_enlightened_to_vmcs12(vmx);
3214                 /* Enlightened VMCS doesn't have launch state */
3215                 vmcs12->launch_state = !launch;
3216         } else if (enable_shadow_vmcs) {
3217                 copy_shadow_to_vmcs12(vmx);
3218         }
3219
3220         /*
3221          * The nested entry process starts with enforcing various prerequisites
3222          * on vmcs12 as required by the Intel SDM, and act appropriately when
3223          * they fail: As the SDM explains, some conditions should cause the
3224          * instruction to fail, while others will cause the instruction to seem
3225          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3226          * To speed up the normal (success) code path, we should avoid checking
3227          * for misconfigurations which will anyway be caught by the processor
3228          * when using the merged vmcs02.
3229          */
3230         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3231                 return nested_vmx_failValid(vcpu,
3232                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3233
3234         if (vmcs12->launch_state == launch)
3235                 return nested_vmx_failValid(vcpu,
3236                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3237                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3238
3239         if (nested_vmx_check_controls(vcpu, vmcs12))
3240                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3241
3242         if (nested_vmx_check_host_state(vcpu, vmcs12))
3243                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3244
3245         /*
3246          * We're finally done with prerequisite checking, and can start with
3247          * the nested entry.
3248          */
3249         vmx->nested.nested_run_pending = 1;
3250         status = nested_vmx_enter_non_root_mode(vcpu, true);
3251         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3252                 goto vmentry_failed;
3253
3254         /* Hide L1D cache contents from the nested guest.  */
3255         vmx->vcpu.arch.l1tf_flush_l1d = true;
3256
3257         /*
3258          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3259          * also be used as part of restoring nVMX state for
3260          * snapshot restore (migration).
3261          *
3262          * In this flow, it is assumed that vmcs12 cache was
3263          * trasferred as part of captured nVMX state and should
3264          * therefore not be read from guest memory (which may not
3265          * exist on destination host yet).
3266          */
3267         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3268
3269         /*
3270          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3271          * awakened by event injection or by an NMI-window VM-exit or
3272          * by an interrupt-window VM-exit, halt the vcpu.
3273          */
3274         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3275             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3276             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3277             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3278               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3279                 vmx->nested.nested_run_pending = 0;
3280                 return kvm_vcpu_halt(vcpu);
3281         }
3282         return 1;
3283
3284 vmentry_failed:
3285         vmx->nested.nested_run_pending = 0;
3286         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3287                 return 0;
3288         if (status == NVMX_VMENTRY_VMEXIT)
3289                 return 1;
3290         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3291         return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3292 }
3293
3294 /*
3295  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3296  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3297  * This function returns the new value we should put in vmcs12.guest_cr0.
3298  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3299  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3300  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3301  *     didn't trap the bit, because if L1 did, so would L0).
3302  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3303  *     been modified by L2, and L1 knows it. So just leave the old value of
3304  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3305  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3306  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3307  *     changed these bits, and therefore they need to be updated, but L0
3308  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3309  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3310  */
3311 static inline unsigned long
3312 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3313 {
3314         return
3315         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3316         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3317         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3318                         vcpu->arch.cr0_guest_owned_bits));
3319 }
3320
3321 static inline unsigned long
3322 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3323 {
3324         return
3325         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3326         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3327         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3328                         vcpu->arch.cr4_guest_owned_bits));
3329 }
3330
3331 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3332                                       struct vmcs12 *vmcs12)
3333 {
3334         u32 idt_vectoring;
3335         unsigned int nr;
3336
3337         if (vcpu->arch.exception.injected) {
3338                 nr = vcpu->arch.exception.nr;
3339                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3340
3341                 if (kvm_exception_is_soft(nr)) {
3342                         vmcs12->vm_exit_instruction_len =
3343                                 vcpu->arch.event_exit_inst_len;
3344                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3345                 } else
3346                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3347
3348                 if (vcpu->arch.exception.has_error_code) {
3349                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3350                         vmcs12->idt_vectoring_error_code =
3351                                 vcpu->arch.exception.error_code;
3352                 }
3353
3354                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3355         } else if (vcpu->arch.nmi_injected) {
3356                 vmcs12->idt_vectoring_info_field =
3357                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3358         } else if (vcpu->arch.interrupt.injected) {
3359                 nr = vcpu->arch.interrupt.nr;
3360                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3361
3362                 if (vcpu->arch.interrupt.soft) {
3363                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3364                         vmcs12->vm_entry_instruction_len =
3365                                 vcpu->arch.event_exit_inst_len;
3366                 } else
3367                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3368
3369                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3370         }
3371 }
3372
3373
3374 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3375 {
3376         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3377         gfn_t gfn;
3378
3379         /*
3380          * Don't need to mark the APIC access page dirty; it is never
3381          * written to by the CPU during APIC virtualization.
3382          */
3383
3384         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3385                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3386                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3387         }
3388
3389         if (nested_cpu_has_posted_intr(vmcs12)) {
3390                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3391                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3392         }
3393 }
3394
3395 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3396 {
3397         struct vcpu_vmx *vmx = to_vmx(vcpu);
3398         int max_irr;
3399         void *vapic_page;
3400         u16 status;
3401
3402         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3403                 return;
3404
3405         vmx->nested.pi_pending = false;
3406         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3407                 return;
3408
3409         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3410         if (max_irr != 256) {
3411                 vapic_page = vmx->nested.virtual_apic_map.hva;
3412                 if (!vapic_page)
3413                         return;
3414
3415                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3416                         vapic_page, &max_irr);
3417                 status = vmcs_read16(GUEST_INTR_STATUS);
3418                 if ((u8)max_irr > ((u8)status & 0xff)) {
3419                         status &= ~0xff;
3420                         status |= (u8)max_irr;
3421                         vmcs_write16(GUEST_INTR_STATUS, status);
3422                 }
3423         }
3424
3425         nested_mark_vmcs12_pages_dirty(vcpu);
3426 }
3427
3428 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3429                                                unsigned long exit_qual)
3430 {
3431         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3432         unsigned int nr = vcpu->arch.exception.nr;
3433         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3434
3435         if (vcpu->arch.exception.has_error_code) {
3436                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3437                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3438         }
3439
3440         if (kvm_exception_is_soft(nr))
3441                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3442         else
3443                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3444
3445         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3446             vmx_get_nmi_mask(vcpu))
3447                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3448
3449         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3450 }
3451
3452 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3453 {
3454         struct vcpu_vmx *vmx = to_vmx(vcpu);
3455         unsigned long exit_qual;
3456         bool block_nested_events =
3457             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3458         struct kvm_lapic *apic = vcpu->arch.apic;
3459
3460         if (lapic_in_kernel(vcpu) &&
3461                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3462                 if (block_nested_events)
3463                         return -EBUSY;
3464                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3465                 return 0;
3466         }
3467
3468         if (vcpu->arch.exception.pending &&
3469                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3470                 if (block_nested_events)
3471                         return -EBUSY;
3472                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3473                 return 0;
3474         }
3475
3476         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3477             vmx->nested.preemption_timer_expired) {
3478                 if (block_nested_events)
3479                         return -EBUSY;
3480                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3481                 return 0;
3482         }
3483
3484         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3485                 if (block_nested_events)
3486                         return -EBUSY;
3487                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3488                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3489                                   INTR_INFO_VALID_MASK, 0);
3490                 /*
3491                  * The NMI-triggered VM exit counts as injection:
3492                  * clear this one and block further NMIs.
3493                  */
3494                 vcpu->arch.nmi_pending = 0;
3495                 vmx_set_nmi_mask(vcpu, true);
3496                 return 0;
3497         }
3498
3499         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3500             nested_exit_on_intr(vcpu)) {
3501                 if (block_nested_events)
3502                         return -EBUSY;
3503                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3504                 return 0;
3505         }
3506
3507         vmx_complete_nested_posted_interrupt(vcpu);
3508         return 0;
3509 }
3510
3511 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3512 {
3513         ktime_t remaining =
3514                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3515         u64 value;
3516
3517         if (ktime_to_ns(remaining) <= 0)
3518                 return 0;
3519
3520         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3521         do_div(value, 1000000);
3522         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3523 }
3524
3525 static bool is_vmcs12_ext_field(unsigned long field)
3526 {
3527         switch (field) {
3528         case GUEST_ES_SELECTOR:
3529         case GUEST_CS_SELECTOR:
3530         case GUEST_SS_SELECTOR:
3531         case GUEST_DS_SELECTOR:
3532         case GUEST_FS_SELECTOR:
3533         case GUEST_GS_SELECTOR:
3534         case GUEST_LDTR_SELECTOR:
3535         case GUEST_TR_SELECTOR:
3536         case GUEST_ES_LIMIT:
3537         case GUEST_CS_LIMIT:
3538         case GUEST_SS_LIMIT:
3539         case GUEST_DS_LIMIT:
3540         case GUEST_FS_LIMIT:
3541         case GUEST_GS_LIMIT:
3542         case GUEST_LDTR_LIMIT:
3543         case GUEST_TR_LIMIT:
3544         case GUEST_GDTR_LIMIT:
3545         case GUEST_IDTR_LIMIT:
3546         case GUEST_ES_AR_BYTES:
3547         case GUEST_DS_AR_BYTES:
3548         case GUEST_FS_AR_BYTES:
3549         case GUEST_GS_AR_BYTES:
3550         case GUEST_LDTR_AR_BYTES:
3551         case GUEST_TR_AR_BYTES:
3552         case GUEST_ES_BASE:
3553         case GUEST_CS_BASE:
3554         case GUEST_SS_BASE:
3555         case GUEST_DS_BASE:
3556         case GUEST_FS_BASE:
3557         case GUEST_GS_BASE:
3558         case GUEST_LDTR_BASE:
3559         case GUEST_TR_BASE:
3560         case GUEST_GDTR_BASE:
3561         case GUEST_IDTR_BASE:
3562         case GUEST_PENDING_DBG_EXCEPTIONS:
3563         case GUEST_BNDCFGS:
3564                 return true;
3565         default:
3566                 break;
3567         }
3568
3569         return false;
3570 }
3571
3572 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3573                                        struct vmcs12 *vmcs12)
3574 {
3575         struct vcpu_vmx *vmx = to_vmx(vcpu);
3576
3577         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3578         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3579         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3580         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3581         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3582         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3583         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3584         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3585         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3586         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3587         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3588         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3589         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3590         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3591         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3592         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3593         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3594         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3595         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3596         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3597         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3598         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3599         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3600         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3601         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3602         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3603         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3604         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3605         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3606         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3607         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3608         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3609         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3610         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3611         vmcs12->guest_pending_dbg_exceptions =
3612                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3613         if (kvm_mpx_supported())
3614                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3615
3616         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3617 }
3618
3619 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3620                                        struct vmcs12 *vmcs12)
3621 {
3622         struct vcpu_vmx *vmx = to_vmx(vcpu);
3623         int cpu;
3624
3625         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3626                 return;
3627
3628
3629         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3630
3631         cpu = get_cpu();
3632         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3633         vmx_vcpu_load(&vmx->vcpu, cpu);
3634
3635         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3636
3637         vmx->loaded_vmcs = &vmx->vmcs01;
3638         vmx_vcpu_load(&vmx->vcpu, cpu);
3639         put_cpu();
3640 }
3641
3642 /*
3643  * Update the guest state fields of vmcs12 to reflect changes that
3644  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3645  * VM-entry controls is also updated, since this is really a guest
3646  * state bit.)
3647  */
3648 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3649 {
3650         struct vcpu_vmx *vmx = to_vmx(vcpu);
3651
3652         if (vmx->nested.hv_evmcs)
3653                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3654
3655         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3656
3657         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3658         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3659
3660         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3661         vmcs12->guest_rip = kvm_rip_read(vcpu);
3662         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3663
3664         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3665         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3666
3667         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3668         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3669         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3670
3671         vmcs12->guest_interruptibility_info =
3672                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3673
3674         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3675                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3676         else
3677                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3678
3679         if (nested_cpu_has_preemption_timer(vmcs12) &&
3680             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3681                         vmcs12->vmx_preemption_timer_value =
3682                                 vmx_get_preemption_timer_value(vcpu);
3683
3684         /*
3685          * In some cases (usually, nested EPT), L2 is allowed to change its
3686          * own CR3 without exiting. If it has changed it, we must keep it.
3687          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3688          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3689          *
3690          * Additionally, restore L2's PDPTR to vmcs12.
3691          */
3692         if (enable_ept) {
3693                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3694                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3695                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3696                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3697                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3698                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3699                 }
3700         }
3701
3702         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3703
3704         if (nested_cpu_has_vid(vmcs12))
3705                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3706
3707         vmcs12->vm_entry_controls =
3708                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3709                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3710
3711         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3712                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3713
3714         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3715                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3716 }
3717
3718 /*
3719  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3720  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3721  * and this function updates it to reflect the changes to the guest state while
3722  * L2 was running (and perhaps made some exits which were handled directly by L0
3723  * without going back to L1), and to reflect the exit reason.
3724  * Note that we do not have to copy here all VMCS fields, just those that
3725  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3726  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3727  * which already writes to vmcs12 directly.
3728  */
3729 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3730                            u32 exit_reason, u32 exit_intr_info,
3731                            unsigned long exit_qualification)
3732 {
3733         /* update exit information fields: */
3734         vmcs12->vm_exit_reason = exit_reason;
3735         vmcs12->exit_qualification = exit_qualification;
3736         vmcs12->vm_exit_intr_info = exit_intr_info;
3737
3738         vmcs12->idt_vectoring_info_field = 0;
3739         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3740         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3741
3742         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3743                 vmcs12->launch_state = 1;
3744
3745                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3746                  * instead of reading the real value. */
3747                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3748
3749                 /*
3750                  * Transfer the event that L0 or L1 may wanted to inject into
3751                  * L2 to IDT_VECTORING_INFO_FIELD.
3752                  */
3753                 vmcs12_save_pending_event(vcpu, vmcs12);
3754
3755                 /*
3756                  * According to spec, there's no need to store the guest's
3757                  * MSRs if the exit is due to a VM-entry failure that occurs
3758                  * during or after loading the guest state. Since this exit
3759                  * does not fall in that category, we need to save the MSRs.
3760                  */
3761                 if (nested_vmx_store_msr(vcpu,
3762                                          vmcs12->vm_exit_msr_store_addr,
3763                                          vmcs12->vm_exit_msr_store_count))
3764                         nested_vmx_abort(vcpu,
3765                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3766         }
3767
3768         /*
3769          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3770          * preserved above and would only end up incorrectly in L1.
3771          */
3772         vcpu->arch.nmi_injected = false;
3773         kvm_clear_exception_queue(vcpu);
3774         kvm_clear_interrupt_queue(vcpu);
3775 }
3776
3777 /*
3778  * A part of what we need to when the nested L2 guest exits and we want to
3779  * run its L1 parent, is to reset L1's guest state to the host state specified
3780  * in vmcs12.
3781  * This function is to be called not only on normal nested exit, but also on
3782  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3783  * Failures During or After Loading Guest State").
3784  * This function should be called when the active VMCS is L1's (vmcs01).
3785  */
3786 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3787                                    struct vmcs12 *vmcs12)
3788 {
3789         struct kvm_segment seg;
3790         u32 entry_failure_code;
3791
3792         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3793                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3794         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3795                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3796         else
3797                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3798         vmx_set_efer(vcpu, vcpu->arch.efer);
3799
3800         kvm_rsp_write(vcpu, vmcs12->host_rsp);
3801         kvm_rip_write(vcpu, vmcs12->host_rip);
3802         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3803         vmx_set_interrupt_shadow(vcpu, 0);
3804
3805         /*
3806          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3807          * actually changed, because vmx_set_cr0 refers to efer set above.
3808          *
3809          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3810          * (KVM doesn't change it);
3811          */
3812         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3813         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3814
3815         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3816         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3817         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3818
3819         nested_ept_uninit_mmu_context(vcpu);
3820
3821         /*
3822          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3823          * couldn't have changed.
3824          */
3825         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3826                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3827
3828         if (!enable_ept)
3829                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3830
3831         /*
3832          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3833          * VMEntry/VMExit. Thus, no need to flush TLB.
3834          *
3835          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3836          * flushed on every VMEntry/VMExit.
3837          *
3838          * Otherwise, we can preserve TLB entries as long as we are
3839          * able to tag L1 TLB entries differently than L2 TLB entries.
3840          *
3841          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3842          * and therefore we request the TLB flush to happen only after VMCS EPTP
3843          * has been set by KVM_REQ_LOAD_CR3.
3844          */
3845         if (enable_vpid &&
3846             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3847                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3848         }
3849
3850         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3851         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3852         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3853         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3854         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3855         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3856         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3857
3858         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3859         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3860                 vmcs_write64(GUEST_BNDCFGS, 0);
3861
3862         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3863                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3864                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3865         }
3866         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3867                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3868                         vmcs12->host_ia32_perf_global_ctrl);
3869
3870         /* Set L1 segment info according to Intel SDM
3871             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3872         seg = (struct kvm_segment) {
3873                 .base = 0,
3874                 .limit = 0xFFFFFFFF,
3875                 .selector = vmcs12->host_cs_selector,
3876                 .type = 11,
3877                 .present = 1,
3878                 .s = 1,
3879                 .g = 1
3880         };
3881         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3882                 seg.l = 1;
3883         else
3884                 seg.db = 1;
3885         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3886         seg = (struct kvm_segment) {
3887                 .base = 0,
3888                 .limit = 0xFFFFFFFF,
3889                 .type = 3,
3890                 .present = 1,
3891                 .s = 1,
3892                 .db = 1,
3893                 .g = 1
3894         };
3895         seg.selector = vmcs12->host_ds_selector;
3896         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3897         seg.selector = vmcs12->host_es_selector;
3898         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3899         seg.selector = vmcs12->host_ss_selector;
3900         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3901         seg.selector = vmcs12->host_fs_selector;
3902         seg.base = vmcs12->host_fs_base;
3903         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3904         seg.selector = vmcs12->host_gs_selector;
3905         seg.base = vmcs12->host_gs_base;
3906         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3907         seg = (struct kvm_segment) {
3908                 .base = vmcs12->host_tr_base,
3909                 .limit = 0x67,
3910                 .selector = vmcs12->host_tr_selector,
3911                 .type = 11,
3912                 .present = 1
3913         };
3914         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3915
3916         kvm_set_dr(vcpu, 7, 0x400);
3917         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3918
3919         if (cpu_has_vmx_msr_bitmap())
3920                 vmx_update_msr_bitmap(vcpu);
3921
3922         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3923                                 vmcs12->vm_exit_msr_load_count))
3924                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3925 }
3926
3927 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3928 {
3929         struct shared_msr_entry *efer_msr;
3930         unsigned int i;
3931
3932         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3933                 return vmcs_read64(GUEST_IA32_EFER);
3934
3935         if (cpu_has_load_ia32_efer())
3936                 return host_efer;
3937
3938         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3939                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3940                         return vmx->msr_autoload.guest.val[i].value;
3941         }
3942
3943         efer_msr = find_msr_entry(vmx, MSR_EFER);
3944         if (efer_msr)
3945                 return efer_msr->data;
3946
3947         return host_efer;
3948 }
3949
3950 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3951 {
3952         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3953         struct vcpu_vmx *vmx = to_vmx(vcpu);
3954         struct vmx_msr_entry g, h;
3955         gpa_t gpa;
3956         u32 i, j;
3957
3958         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3959
3960         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3961                 /*
3962                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3963                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3964                  * and vcpu->arch.dr7 is not squirreled away before the
3965                  * nested VMENTER (not worth adding a variable in nested_vmx).
3966                  */
3967                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3968                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3969                 else
3970                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3971         }
3972
3973         /*
3974          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3975          * handle a variety of side effects to KVM's software model.
3976          */
3977         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3978
3979         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3980         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3981
3982         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3983         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3984
3985         nested_ept_uninit_mmu_context(vcpu);
3986         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3987         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3988
3989         /*
3990          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3991          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3992          * VMFail, like everything else we just need to ensure our
3993          * software model is up-to-date.
3994          */
3995         if (enable_ept)
3996                 ept_save_pdptrs(vcpu);
3997
3998         kvm_mmu_reset_context(vcpu);
3999
4000         if (cpu_has_vmx_msr_bitmap())
4001                 vmx_update_msr_bitmap(vcpu);
4002
4003         /*
4004          * This nasty bit of open coding is a compromise between blindly
4005          * loading L1's MSRs using the exit load lists (incorrect emulation
4006          * of VMFail), leaving the nested VM's MSRs in the software model
4007          * (incorrect behavior) and snapshotting the modified MSRs (too
4008          * expensive since the lists are unbound by hardware).  For each
4009          * MSR that was (prematurely) loaded from the nested VMEntry load
4010          * list, reload it from the exit load list if it exists and differs
4011          * from the guest value.  The intent is to stuff host state as
4012          * silently as possible, not to fully process the exit load list.
4013          */
4014         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4015                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4016                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4017                         pr_debug_ratelimited(
4018                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4019                                 __func__, i, gpa);
4020                         goto vmabort;
4021                 }
4022
4023                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4024                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4025                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4026                                 pr_debug_ratelimited(
4027                                         "%s read MSR failed (%u, 0x%08llx)\n",
4028                                         __func__, j, gpa);
4029                                 goto vmabort;
4030                         }
4031                         if (h.index != g.index)
4032                                 continue;
4033                         if (h.value == g.value)
4034                                 break;
4035
4036                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4037                                 pr_debug_ratelimited(
4038                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4039                                         __func__, j, h.index, h.reserved);
4040                                 goto vmabort;
4041                         }
4042
4043                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4044                                 pr_debug_ratelimited(
4045                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4046                                         __func__, j, h.index, h.value);
4047                                 goto vmabort;
4048                         }
4049                 }
4050         }
4051
4052         return;
4053
4054 vmabort:
4055         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4056 }
4057
4058 /*
4059  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4060  * and modify vmcs12 to make it see what it would expect to see there if
4061  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4062  */
4063 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4064                        u32 exit_intr_info, unsigned long exit_qualification)
4065 {
4066         struct vcpu_vmx *vmx = to_vmx(vcpu);
4067         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4068
4069         /* trying to cancel vmlaunch/vmresume is a bug */
4070         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4071
4072         leave_guest_mode(vcpu);
4073
4074         if (nested_cpu_has_preemption_timer(vmcs12))
4075                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4076
4077         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
4078                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4079
4080         if (likely(!vmx->fail)) {
4081                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4082
4083                 if (exit_reason != -1)
4084                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4085                                        exit_qualification);
4086
4087                 /*
4088                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4089                  * also be used to capture vmcs12 cache as part of
4090                  * capturing nVMX state for snapshot (migration).
4091                  *
4092                  * Otherwise, this flush will dirty guest memory at a
4093                  * point it is already assumed by user-space to be
4094                  * immutable.
4095                  */
4096                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4097         } else {
4098                 /*
4099                  * The only expected VM-instruction error is "VM entry with
4100                  * invalid control field(s)." Anything else indicates a
4101                  * problem with L0.  And we should never get here with a
4102                  * VMFail of any type if early consistency checks are enabled.
4103                  */
4104                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4105                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4106                 WARN_ON_ONCE(nested_early_check);
4107         }
4108
4109         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4110
4111         /* Update any VMCS fields that might have changed while L2 ran */
4112         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4113         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4114         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4115
4116         if (kvm_has_tsc_control)
4117                 decache_tsc_multiplier(vmx);
4118
4119         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4120                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4121                 vmx_set_virtual_apic_mode(vcpu);
4122         } else if (!nested_cpu_has_ept(vmcs12) &&
4123                    nested_cpu_has2(vmcs12,
4124                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
4125                 vmx_flush_tlb(vcpu, true);
4126         }
4127
4128         /* Unpin physical memory we referred to in vmcs02 */
4129         if (vmx->nested.apic_access_page) {
4130                 kvm_release_page_dirty(vmx->nested.apic_access_page);
4131                 vmx->nested.apic_access_page = NULL;
4132         }
4133         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4134         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4135         vmx->nested.pi_desc = NULL;
4136
4137         /*
4138          * We are now running in L2, mmu_notifier will force to reload the
4139          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4140          */
4141         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4142
4143         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4144                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4145
4146         /* in case we halted in L2 */
4147         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4148
4149         if (likely(!vmx->fail)) {
4150                 /*
4151                  * TODO: SDM says that with acknowledge interrupt on
4152                  * exit, bit 31 of the VM-exit interrupt information
4153                  * (valid interrupt) is always set to 1 on
4154                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4155                  * need kvm_cpu_has_interrupt().  See the commit
4156                  * message for details.
4157                  */
4158                 if (nested_exit_intr_ack_set(vcpu) &&
4159                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4160                     kvm_cpu_has_interrupt(vcpu)) {
4161                         int irq = kvm_cpu_get_interrupt(vcpu);
4162                         WARN_ON(irq < 0);
4163                         vmcs12->vm_exit_intr_info = irq |
4164                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4165                 }
4166
4167                 if (exit_reason != -1)
4168                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4169                                                        vmcs12->exit_qualification,
4170                                                        vmcs12->idt_vectoring_info_field,
4171                                                        vmcs12->vm_exit_intr_info,
4172                                                        vmcs12->vm_exit_intr_error_code,
4173                                                        KVM_ISA_VMX);
4174
4175                 load_vmcs12_host_state(vcpu, vmcs12);
4176
4177                 return;
4178         }
4179
4180         /*
4181          * After an early L2 VM-entry failure, we're now back
4182          * in L1 which thinks it just finished a VMLAUNCH or
4183          * VMRESUME instruction, so we need to set the failure
4184          * flag and the VM-instruction error field of the VMCS
4185          * accordingly, and skip the emulated instruction.
4186          */
4187         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4188
4189         /*
4190          * Restore L1's host state to KVM's software model.  We're here
4191          * because a consistency check was caught by hardware, which
4192          * means some amount of guest state has been propagated to KVM's
4193          * model and needs to be unwound to the host's state.
4194          */
4195         nested_vmx_restore_host_state(vcpu);
4196
4197         vmx->fail = 0;
4198 }
4199
4200 /*
4201  * Decode the memory-address operand of a vmx instruction, as recorded on an
4202  * exit caused by such an instruction (run by a guest hypervisor).
4203  * On success, returns 0. When the operand is invalid, returns 1 and throws
4204  * #UD or #GP.
4205  */
4206 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4207                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4208 {
4209         gva_t off;
4210         bool exn;
4211         struct kvm_segment s;
4212
4213         /*
4214          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4215          * Execution", on an exit, vmx_instruction_info holds most of the
4216          * addressing components of the operand. Only the displacement part
4217          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4218          * For how an actual address is calculated from all these components,
4219          * refer to Vol. 1, "Operand Addressing".
4220          */
4221         int  scaling = vmx_instruction_info & 3;
4222         int  addr_size = (vmx_instruction_info >> 7) & 7;
4223         bool is_reg = vmx_instruction_info & (1u << 10);
4224         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4225         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4226         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4227         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4228         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4229
4230         if (is_reg) {
4231                 kvm_queue_exception(vcpu, UD_VECTOR);
4232                 return 1;
4233         }
4234
4235         /* Addr = segment_base + offset */
4236         /* offset = base + [index * scale] + displacement */
4237         off = exit_qualification; /* holds the displacement */
4238         if (addr_size == 1)
4239                 off = (gva_t)sign_extend64(off, 31);
4240         else if (addr_size == 0)
4241                 off = (gva_t)sign_extend64(off, 15);
4242         if (base_is_valid)
4243                 off += kvm_register_read(vcpu, base_reg);
4244         if (index_is_valid)
4245                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4246         vmx_get_segment(vcpu, &s, seg_reg);
4247
4248         /*
4249          * The effective address, i.e. @off, of a memory operand is truncated
4250          * based on the address size of the instruction.  Note that this is
4251          * the *effective address*, i.e. the address prior to accounting for
4252          * the segment's base.
4253          */
4254         if (addr_size == 1) /* 32 bit */
4255                 off &= 0xffffffff;
4256         else if (addr_size == 0) /* 16 bit */
4257                 off &= 0xffff;
4258
4259         /* Checks for #GP/#SS exceptions. */
4260         exn = false;
4261         if (is_long_mode(vcpu)) {
4262                 /*
4263                  * The virtual/linear address is never truncated in 64-bit
4264                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4265                  * address when using FS/GS with a non-zero base.
4266                  */
4267                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4268                         *ret = s.base + off;
4269                 else
4270                         *ret = off;
4271
4272                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4273                  * non-canonical form. This is the only check on the memory
4274                  * destination for long mode!
4275                  */
4276                 exn = is_noncanonical_address(*ret, vcpu);
4277         } else {
4278                 /*
4279                  * When not in long mode, the virtual/linear address is
4280                  * unconditionally truncated to 32 bits regardless of the
4281                  * address size.
4282                  */
4283                 *ret = (s.base + off) & 0xffffffff;
4284
4285                 /* Protected mode: apply checks for segment validity in the
4286                  * following order:
4287                  * - segment type check (#GP(0) may be thrown)
4288                  * - usability check (#GP(0)/#SS(0))
4289                  * - limit check (#GP(0)/#SS(0))
4290                  */
4291                 if (wr)
4292                         /* #GP(0) if the destination operand is located in a
4293                          * read-only data segment or any code segment.
4294                          */
4295                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4296                 else
4297                         /* #GP(0) if the source operand is located in an
4298                          * execute-only code segment
4299                          */
4300                         exn = ((s.type & 0xa) == 8);
4301                 if (exn) {
4302                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4303                         return 1;
4304                 }
4305                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4306                  */
4307                 exn = (s.unusable != 0);
4308
4309                 /*
4310                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4311                  * outside the segment limit.  All CPUs that support VMX ignore
4312                  * limit checks for flat segments, i.e. segments with base==0,
4313                  * limit==0xffffffff and of type expand-up data or code.
4314                  */
4315                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4316                      ((s.type & 8) || !(s.type & 4))))
4317                         exn = exn || ((u64)off + len - 1 > s.limit);
4318         }
4319         if (exn) {
4320                 kvm_queue_exception_e(vcpu,
4321                                       seg_reg == VCPU_SREG_SS ?
4322                                                 SS_VECTOR : GP_VECTOR,
4323                                       0);
4324                 return 1;
4325         }
4326
4327         return 0;
4328 }
4329
4330 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4331 {
4332         gva_t gva;
4333         struct x86_exception e;
4334
4335         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4336                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4337                                 sizeof(*vmpointer), &gva))
4338                 return 1;
4339
4340         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4341                 kvm_inject_page_fault(vcpu, &e);
4342                 return 1;
4343         }
4344
4345         return 0;
4346 }
4347
4348 /*
4349  * Allocate a shadow VMCS and associate it with the currently loaded
4350  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4351  * VMCS is also VMCLEARed, so that it is ready for use.
4352  */
4353 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4354 {
4355         struct vcpu_vmx *vmx = to_vmx(vcpu);
4356         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4357
4358         /*
4359          * We should allocate a shadow vmcs for vmcs01 only when L1
4360          * executes VMXON and free it when L1 executes VMXOFF.
4361          * As it is invalid to execute VMXON twice, we shouldn't reach
4362          * here when vmcs01 already have an allocated shadow vmcs.
4363          */
4364         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4365
4366         if (!loaded_vmcs->shadow_vmcs) {
4367                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4368                 if (loaded_vmcs->shadow_vmcs)
4369                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4370         }
4371         return loaded_vmcs->shadow_vmcs;
4372 }
4373
4374 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4375 {
4376         struct vcpu_vmx *vmx = to_vmx(vcpu);
4377         int r;
4378
4379         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4380         if (r < 0)
4381                 goto out_vmcs02;
4382
4383         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4384         if (!vmx->nested.cached_vmcs12)
4385                 goto out_cached_vmcs12;
4386
4387         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4388         if (!vmx->nested.cached_shadow_vmcs12)
4389                 goto out_cached_shadow_vmcs12;
4390
4391         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4392                 goto out_shadow_vmcs;
4393
4394         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4395                      HRTIMER_MODE_REL_PINNED);
4396         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4397
4398         vmx->nested.vpid02 = allocate_vpid();
4399
4400         vmx->nested.vmcs02_initialized = false;
4401         vmx->nested.vmxon = true;
4402
4403         if (pt_mode == PT_MODE_HOST_GUEST) {
4404                 vmx->pt_desc.guest.ctl = 0;
4405                 pt_update_intercept_for_msr(vmx);
4406         }
4407
4408         return 0;
4409
4410 out_shadow_vmcs:
4411         kfree(vmx->nested.cached_shadow_vmcs12);
4412
4413 out_cached_shadow_vmcs12:
4414         kfree(vmx->nested.cached_vmcs12);
4415
4416 out_cached_vmcs12:
4417         free_loaded_vmcs(&vmx->nested.vmcs02);
4418
4419 out_vmcs02:
4420         return -ENOMEM;
4421 }
4422
4423 /*
4424  * Emulate the VMXON instruction.
4425  * Currently, we just remember that VMX is active, and do not save or even
4426  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4427  * do not currently need to store anything in that guest-allocated memory
4428  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4429  * argument is different from the VMXON pointer (which the spec says they do).
4430  */
4431 static int handle_vmon(struct kvm_vcpu *vcpu)
4432 {
4433         int ret;
4434         gpa_t vmptr;
4435         uint32_t revision;
4436         struct vcpu_vmx *vmx = to_vmx(vcpu);
4437         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4438                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4439
4440         /*
4441          * The Intel VMX Instruction Reference lists a bunch of bits that are
4442          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4443          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4444          * Otherwise, we should fail with #UD.  But most faulting conditions
4445          * have already been checked by hardware, prior to the VM-exit for
4446          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4447          * that bit set to 1 in non-root mode.
4448          */
4449         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4450                 kvm_queue_exception(vcpu, UD_VECTOR);
4451                 return 1;
4452         }
4453
4454         /* CPL=0 must be checked manually. */
4455         if (vmx_get_cpl(vcpu)) {
4456                 kvm_inject_gp(vcpu, 0);
4457                 return 1;
4458         }
4459
4460         if (vmx->nested.vmxon)
4461                 return nested_vmx_failValid(vcpu,
4462                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4463
4464         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4465                         != VMXON_NEEDED_FEATURES) {
4466                 kvm_inject_gp(vcpu, 0);
4467                 return 1;
4468         }
4469
4470         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4471                 return 1;
4472
4473         /*
4474          * SDM 3: 24.11.5
4475          * The first 4 bytes of VMXON region contain the supported
4476          * VMCS revision identifier
4477          *
4478          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4479          * which replaces physical address width with 32
4480          */
4481         if (!page_address_valid(vcpu, vmptr))
4482                 return nested_vmx_failInvalid(vcpu);
4483
4484         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4485             revision != VMCS12_REVISION)
4486                 return nested_vmx_failInvalid(vcpu);
4487
4488         vmx->nested.vmxon_ptr = vmptr;
4489         ret = enter_vmx_operation(vcpu);
4490         if (ret)
4491                 return ret;
4492
4493         return nested_vmx_succeed(vcpu);
4494 }
4495
4496 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4497 {
4498         struct vcpu_vmx *vmx = to_vmx(vcpu);
4499
4500         if (vmx->nested.current_vmptr == -1ull)
4501                 return;
4502
4503         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4504
4505         if (enable_shadow_vmcs) {
4506                 /* copy to memory all shadowed fields in case
4507                    they were modified */
4508                 copy_shadow_to_vmcs12(vmx);
4509                 vmx_disable_shadow_vmcs(vmx);
4510         }
4511         vmx->nested.posted_intr_nv = -1;
4512
4513         /* Flush VMCS12 to guest memory */
4514         kvm_vcpu_write_guest_page(vcpu,
4515                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4516                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4517
4518         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4519
4520         vmx->nested.current_vmptr = -1ull;
4521 }
4522
4523 /* Emulate the VMXOFF instruction */
4524 static int handle_vmoff(struct kvm_vcpu *vcpu)
4525 {
4526         if (!nested_vmx_check_permission(vcpu))
4527                 return 1;
4528
4529         free_nested(vcpu);
4530
4531         /* Process a latched INIT during time CPU was in VMX operation */
4532         kvm_make_request(KVM_REQ_EVENT, vcpu);
4533
4534         return nested_vmx_succeed(vcpu);
4535 }
4536
4537 /* Emulate the VMCLEAR instruction */
4538 static int handle_vmclear(struct kvm_vcpu *vcpu)
4539 {
4540         struct vcpu_vmx *vmx = to_vmx(vcpu);
4541         u32 zero = 0;
4542         gpa_t vmptr;
4543         u64 evmcs_gpa;
4544
4545         if (!nested_vmx_check_permission(vcpu))
4546                 return 1;
4547
4548         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4549                 return 1;
4550
4551         if (!page_address_valid(vcpu, vmptr))
4552                 return nested_vmx_failValid(vcpu,
4553                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4554
4555         if (vmptr == vmx->nested.vmxon_ptr)
4556                 return nested_vmx_failValid(vcpu,
4557                         VMXERR_VMCLEAR_VMXON_POINTER);
4558
4559         /*
4560          * When Enlightened VMEntry is enabled on the calling CPU we treat
4561          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4562          * way to distinguish it from VMCS12) and we must not corrupt it by
4563          * writing to the non-existent 'launch_state' field. The area doesn't
4564          * have to be the currently active EVMCS on the calling CPU and there's
4565          * nothing KVM has to do to transition it from 'active' to 'non-active'
4566          * state. It is possible that the area will stay mapped as
4567          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4568          */
4569         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4570                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4571                 if (vmptr == vmx->nested.current_vmptr)
4572                         nested_release_vmcs12(vcpu);
4573
4574                 kvm_vcpu_write_guest(vcpu,
4575                                      vmptr + offsetof(struct vmcs12,
4576                                                       launch_state),
4577                                      &zero, sizeof(zero));
4578         }
4579
4580         return nested_vmx_succeed(vcpu);
4581 }
4582
4583 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4584
4585 /* Emulate the VMLAUNCH instruction */
4586 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4587 {
4588         return nested_vmx_run(vcpu, true);
4589 }
4590
4591 /* Emulate the VMRESUME instruction */
4592 static int handle_vmresume(struct kvm_vcpu *vcpu)
4593 {
4594
4595         return nested_vmx_run(vcpu, false);
4596 }
4597
4598 static int handle_vmread(struct kvm_vcpu *vcpu)
4599 {
4600         unsigned long field;
4601         u64 field_value;
4602         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4603         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4604         int len;
4605         gva_t gva = 0;
4606         struct vmcs12 *vmcs12;
4607         struct x86_exception e;
4608         short offset;
4609
4610         if (!nested_vmx_check_permission(vcpu))
4611                 return 1;
4612
4613         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4614                 return nested_vmx_failInvalid(vcpu);
4615
4616         if (!is_guest_mode(vcpu))
4617                 vmcs12 = get_vmcs12(vcpu);
4618         else {
4619                 /*
4620                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4621                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4622                  */
4623                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4624                         return nested_vmx_failInvalid(vcpu);
4625                 vmcs12 = get_shadow_vmcs12(vcpu);
4626         }
4627
4628         /* Decode instruction info and find the field to read */
4629         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4630
4631         offset = vmcs_field_to_offset(field);
4632         if (offset < 0)
4633                 return nested_vmx_failValid(vcpu,
4634                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4635
4636         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4637                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4638
4639         /* Read the field, zero-extended to a u64 field_value */
4640         field_value = vmcs12_read_any(vmcs12, field, offset);
4641
4642         /*
4643          * Now copy part of this value to register or memory, as requested.
4644          * Note that the number of bits actually copied is 32 or 64 depending
4645          * on the guest's mode (32 or 64 bit), not on the given field's length.
4646          */
4647         if (vmx_instruction_info & (1u << 10)) {
4648                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4649                         field_value);
4650         } else {
4651                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4652                 if (get_vmx_mem_address(vcpu, exit_qualification,
4653                                 vmx_instruction_info, true, len, &gva))
4654                         return 1;
4655                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4656                 if (kvm_write_guest_virt_system(vcpu, gva, &field_value, len, &e))
4657                         kvm_inject_page_fault(vcpu, &e);
4658         }
4659
4660         return nested_vmx_succeed(vcpu);
4661 }
4662
4663 static bool is_shadow_field_rw(unsigned long field)
4664 {
4665         switch (field) {
4666 #define SHADOW_FIELD_RW(x, y) case x:
4667 #include "vmcs_shadow_fields.h"
4668                 return true;
4669         default:
4670                 break;
4671         }
4672         return false;
4673 }
4674
4675 static bool is_shadow_field_ro(unsigned long field)
4676 {
4677         switch (field) {
4678 #define SHADOW_FIELD_RO(x, y) case x:
4679 #include "vmcs_shadow_fields.h"
4680                 return true;
4681         default:
4682                 break;
4683         }
4684         return false;
4685 }
4686
4687 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4688 {
4689         unsigned long field;
4690         int len;
4691         gva_t gva;
4692         struct vcpu_vmx *vmx = to_vmx(vcpu);
4693         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4694         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4695
4696         /* The value to write might be 32 or 64 bits, depending on L1's long
4697          * mode, and eventually we need to write that into a field of several
4698          * possible lengths. The code below first zero-extends the value to 64
4699          * bit (field_value), and then copies only the appropriate number of
4700          * bits into the vmcs12 field.
4701          */
4702         u64 field_value = 0;
4703         struct x86_exception e;
4704         struct vmcs12 *vmcs12;
4705         short offset;
4706
4707         if (!nested_vmx_check_permission(vcpu))
4708                 return 1;
4709
4710         if (vmx->nested.current_vmptr == -1ull)
4711                 return nested_vmx_failInvalid(vcpu);
4712
4713         if (vmx_instruction_info & (1u << 10))
4714                 field_value = kvm_register_readl(vcpu,
4715                         (((vmx_instruction_info) >> 3) & 0xf));
4716         else {
4717                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4718                 if (get_vmx_mem_address(vcpu, exit_qualification,
4719                                 vmx_instruction_info, false, len, &gva))
4720                         return 1;
4721                 if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
4722                         kvm_inject_page_fault(vcpu, &e);
4723                         return 1;
4724                 }
4725         }
4726
4727
4728         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4729         /*
4730          * If the vCPU supports "VMWRITE to any supported field in the
4731          * VMCS," then the "read-only" fields are actually read/write.
4732          */
4733         if (vmcs_field_readonly(field) &&
4734             !nested_cpu_has_vmwrite_any_field(vcpu))
4735                 return nested_vmx_failValid(vcpu,
4736                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4737
4738         if (!is_guest_mode(vcpu)) {
4739                 vmcs12 = get_vmcs12(vcpu);
4740
4741                 /*
4742                  * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4743                  * vmcs12, else we may crush a field or consume a stale value.
4744                  */
4745                 if (!is_shadow_field_rw(field))
4746                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4747         } else {
4748                 /*
4749                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4750                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4751                  */
4752                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4753                         return nested_vmx_failInvalid(vcpu);
4754                 vmcs12 = get_shadow_vmcs12(vcpu);
4755         }
4756
4757         offset = vmcs_field_to_offset(field);
4758         if (offset < 0)
4759                 return nested_vmx_failValid(vcpu,
4760                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4761
4762         /*
4763          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4764          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4765          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4766          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4767          * from L1 will return a different value than VMREAD from L2 (L1 sees
4768          * the stripped down value, L2 sees the full value as stored by KVM).
4769          */
4770         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4771                 field_value &= 0x1f0ff;
4772
4773         vmcs12_write_any(vmcs12, field, offset, field_value);
4774
4775         /*
4776          * Do not track vmcs12 dirty-state if in guest-mode as we actually
4777          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4778          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4779          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4780          */
4781         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4782                 /*
4783                  * L1 can read these fields without exiting, ensure the
4784                  * shadow VMCS is up-to-date.
4785                  */
4786                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4787                         preempt_disable();
4788                         vmcs_load(vmx->vmcs01.shadow_vmcs);
4789
4790                         __vmcs_writel(field, field_value);
4791
4792                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
4793                         vmcs_load(vmx->loaded_vmcs->vmcs);
4794                         preempt_enable();
4795                 }
4796                 vmx->nested.dirty_vmcs12 = true;
4797         }
4798
4799         return nested_vmx_succeed(vcpu);
4800 }
4801
4802 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4803 {
4804         vmx->nested.current_vmptr = vmptr;
4805         if (enable_shadow_vmcs) {
4806                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4807                 vmcs_write64(VMCS_LINK_POINTER,
4808                              __pa(vmx->vmcs01.shadow_vmcs));
4809                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4810         }
4811         vmx->nested.dirty_vmcs12 = true;
4812 }
4813
4814 /* Emulate the VMPTRLD instruction */
4815 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4816 {
4817         struct vcpu_vmx *vmx = to_vmx(vcpu);
4818         gpa_t vmptr;
4819
4820         if (!nested_vmx_check_permission(vcpu))
4821                 return 1;
4822
4823         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4824                 return 1;
4825
4826         if (!page_address_valid(vcpu, vmptr))
4827                 return nested_vmx_failValid(vcpu,
4828                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4829
4830         if (vmptr == vmx->nested.vmxon_ptr)
4831                 return nested_vmx_failValid(vcpu,
4832                         VMXERR_VMPTRLD_VMXON_POINTER);
4833
4834         /* Forbid normal VMPTRLD if Enlightened version was used */
4835         if (vmx->nested.hv_evmcs)
4836                 return 1;
4837
4838         if (vmx->nested.current_vmptr != vmptr) {
4839                 struct kvm_host_map map;
4840                 struct vmcs12 *new_vmcs12;
4841
4842                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4843                         /*
4844                          * Reads from an unbacked page return all 1s,
4845                          * which means that the 32 bits located at the
4846                          * given physical address won't match the required
4847                          * VMCS12_REVISION identifier.
4848                          */
4849                         return nested_vmx_failValid(vcpu,
4850                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4851                 }
4852
4853                 new_vmcs12 = map.hva;
4854
4855                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4856                     (new_vmcs12->hdr.shadow_vmcs &&
4857                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4858                         kvm_vcpu_unmap(vcpu, &map, false);
4859                         return nested_vmx_failValid(vcpu,
4860                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4861                 }
4862
4863                 nested_release_vmcs12(vcpu);
4864
4865                 /*
4866                  * Load VMCS12 from guest memory since it is not already
4867                  * cached.
4868                  */
4869                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4870                 kvm_vcpu_unmap(vcpu, &map, false);
4871
4872                 set_current_vmptr(vmx, vmptr);
4873         }
4874
4875         return nested_vmx_succeed(vcpu);
4876 }
4877
4878 /* Emulate the VMPTRST instruction */
4879 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4880 {
4881         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4882         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4883         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4884         struct x86_exception e;
4885         gva_t gva;
4886
4887         if (!nested_vmx_check_permission(vcpu))
4888                 return 1;
4889
4890         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4891                 return 1;
4892
4893         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
4894                                 true, sizeof(gpa_t), &gva))
4895                 return 1;
4896         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4897         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4898                                         sizeof(gpa_t), &e)) {
4899                 kvm_inject_page_fault(vcpu, &e);
4900                 return 1;
4901         }
4902         return nested_vmx_succeed(vcpu);
4903 }
4904
4905 /* Emulate the INVEPT instruction */
4906 static int handle_invept(struct kvm_vcpu *vcpu)
4907 {
4908         struct vcpu_vmx *vmx = to_vmx(vcpu);
4909         u32 vmx_instruction_info, types;
4910         unsigned long type;
4911         gva_t gva;
4912         struct x86_exception e;
4913         struct {
4914                 u64 eptp, gpa;
4915         } operand;
4916
4917         if (!(vmx->nested.msrs.secondary_ctls_high &
4918               SECONDARY_EXEC_ENABLE_EPT) ||
4919             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4920                 kvm_queue_exception(vcpu, UD_VECTOR);
4921                 return 1;
4922         }
4923
4924         if (!nested_vmx_check_permission(vcpu))
4925                 return 1;
4926
4927         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4928         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4929
4930         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4931
4932         if (type >= 32 || !(types & (1 << type)))
4933                 return nested_vmx_failValid(vcpu,
4934                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4935
4936         /* According to the Intel VMX instruction reference, the memory
4937          * operand is read even if it isn't needed (e.g., for type==global)
4938          */
4939         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4940                         vmx_instruction_info, false, sizeof(operand), &gva))
4941                 return 1;
4942         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4943                 kvm_inject_page_fault(vcpu, &e);
4944                 return 1;
4945         }
4946
4947         switch (type) {
4948         case VMX_EPT_EXTENT_GLOBAL:
4949         case VMX_EPT_EXTENT_CONTEXT:
4950         /*
4951          * TODO: Sync the necessary shadow EPT roots here, rather than
4952          * at the next emulated VM-entry.
4953          */
4954                 break;
4955         default:
4956                 BUG_ON(1);
4957                 break;
4958         }
4959
4960         return nested_vmx_succeed(vcpu);
4961 }
4962
4963 static int handle_invvpid(struct kvm_vcpu *vcpu)
4964 {
4965         struct vcpu_vmx *vmx = to_vmx(vcpu);
4966         u32 vmx_instruction_info;
4967         unsigned long type, types;
4968         gva_t gva;
4969         struct x86_exception e;
4970         struct {
4971                 u64 vpid;
4972                 u64 gla;
4973         } operand;
4974         u16 vpid02;
4975
4976         if (!(vmx->nested.msrs.secondary_ctls_high &
4977               SECONDARY_EXEC_ENABLE_VPID) ||
4978                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4979                 kvm_queue_exception(vcpu, UD_VECTOR);
4980                 return 1;
4981         }
4982
4983         if (!nested_vmx_check_permission(vcpu))
4984                 return 1;
4985
4986         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4987         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4988
4989         types = (vmx->nested.msrs.vpid_caps &
4990                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4991
4992         if (type >= 32 || !(types & (1 << type)))
4993                 return nested_vmx_failValid(vcpu,
4994                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4995
4996         /* according to the intel vmx instruction reference, the memory
4997          * operand is read even if it isn't needed (e.g., for type==global)
4998          */
4999         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5000                         vmx_instruction_info, false, sizeof(operand), &gva))
5001                 return 1;
5002         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5003                 kvm_inject_page_fault(vcpu, &e);
5004                 return 1;
5005         }
5006         if (operand.vpid >> 16)
5007                 return nested_vmx_failValid(vcpu,
5008                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5009
5010         vpid02 = nested_get_vpid02(vcpu);
5011         switch (type) {
5012         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5013                 if (!operand.vpid ||
5014                     is_noncanonical_address(operand.gla, vcpu))
5015                         return nested_vmx_failValid(vcpu,
5016                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5017                 if (cpu_has_vmx_invvpid_individual_addr()) {
5018                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5019                                 vpid02, operand.gla);
5020                 } else
5021                         __vmx_flush_tlb(vcpu, vpid02, false);
5022                 break;
5023         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5024         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5025                 if (!operand.vpid)
5026                         return nested_vmx_failValid(vcpu,
5027                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5028                 __vmx_flush_tlb(vcpu, vpid02, false);
5029                 break;
5030         case VMX_VPID_EXTENT_ALL_CONTEXT:
5031                 __vmx_flush_tlb(vcpu, vpid02, false);
5032                 break;
5033         default:
5034                 WARN_ON_ONCE(1);
5035                 return kvm_skip_emulated_instruction(vcpu);
5036         }
5037
5038         return nested_vmx_succeed(vcpu);
5039 }
5040
5041 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5042                                      struct vmcs12 *vmcs12)
5043 {
5044         u32 index = kvm_rcx_read(vcpu);
5045         u64 address;
5046         bool accessed_dirty;
5047         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5048
5049         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5050             !nested_cpu_has_ept(vmcs12))
5051                 return 1;
5052
5053         if (index >= VMFUNC_EPTP_ENTRIES)
5054                 return 1;
5055
5056
5057         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5058                                      &address, index * 8, 8))
5059                 return 1;
5060
5061         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5062
5063         /*
5064          * If the (L2) guest does a vmfunc to the currently
5065          * active ept pointer, we don't have to do anything else
5066          */
5067         if (vmcs12->ept_pointer != address) {
5068                 if (!valid_ept_address(vcpu, address))
5069                         return 1;
5070
5071                 kvm_mmu_unload(vcpu);
5072                 mmu->ept_ad = accessed_dirty;
5073                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5074                 vmcs12->ept_pointer = address;
5075                 /*
5076                  * TODO: Check what's the correct approach in case
5077                  * mmu reload fails. Currently, we just let the next
5078                  * reload potentially fail
5079                  */
5080                 kvm_mmu_reload(vcpu);
5081         }
5082
5083         return 0;
5084 }
5085
5086 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5087 {
5088         struct vcpu_vmx *vmx = to_vmx(vcpu);
5089         struct vmcs12 *vmcs12;
5090         u32 function = kvm_rax_read(vcpu);
5091
5092         /*
5093          * VMFUNC is only supported for nested guests, but we always enable the
5094          * secondary control for simplicity; for non-nested mode, fake that we
5095          * didn't by injecting #UD.
5096          */
5097         if (!is_guest_mode(vcpu)) {
5098                 kvm_queue_exception(vcpu, UD_VECTOR);
5099                 return 1;
5100         }
5101
5102         vmcs12 = get_vmcs12(vcpu);
5103         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5104                 goto fail;
5105
5106         switch (function) {
5107         case 0:
5108                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5109                         goto fail;
5110                 break;
5111         default:
5112                 goto fail;
5113         }
5114         return kvm_skip_emulated_instruction(vcpu);
5115
5116 fail:
5117         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5118                           vmcs_read32(VM_EXIT_INTR_INFO),
5119                           vmcs_readl(EXIT_QUALIFICATION));
5120         return 1;
5121 }
5122
5123
5124 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5125                                        struct vmcs12 *vmcs12)
5126 {
5127         unsigned long exit_qualification;
5128         gpa_t bitmap, last_bitmap;
5129         unsigned int port;
5130         int size;
5131         u8 b;
5132
5133         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5134                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5135
5136         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5137
5138         port = exit_qualification >> 16;
5139         size = (exit_qualification & 7) + 1;
5140
5141         last_bitmap = (gpa_t)-1;
5142         b = -1;
5143
5144         while (size > 0) {
5145                 if (port < 0x8000)
5146                         bitmap = vmcs12->io_bitmap_a;
5147                 else if (port < 0x10000)
5148                         bitmap = vmcs12->io_bitmap_b;
5149                 else
5150                         return true;
5151                 bitmap += (port & 0x7fff) / 8;
5152
5153                 if (last_bitmap != bitmap)
5154                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5155                                 return true;
5156                 if (b & (1 << (port & 7)))
5157                         return true;
5158
5159                 port++;
5160                 size--;
5161                 last_bitmap = bitmap;
5162         }
5163
5164         return false;
5165 }
5166
5167 /*
5168  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5169  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5170  * disinterest in the current event (read or write a specific MSR) by using an
5171  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5172  */
5173 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5174         struct vmcs12 *vmcs12, u32 exit_reason)
5175 {
5176         u32 msr_index = kvm_rcx_read(vcpu);
5177         gpa_t bitmap;
5178
5179         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5180                 return true;
5181
5182         /*
5183          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5184          * for the four combinations of read/write and low/high MSR numbers.
5185          * First we need to figure out which of the four to use:
5186          */
5187         bitmap = vmcs12->msr_bitmap;
5188         if (exit_reason == EXIT_REASON_MSR_WRITE)
5189                 bitmap += 2048;
5190         if (msr_index >= 0xc0000000) {
5191                 msr_index -= 0xc0000000;
5192                 bitmap += 1024;
5193         }
5194
5195         /* Then read the msr_index'th bit from this bitmap: */
5196         if (msr_index < 1024*8) {
5197                 unsigned char b;
5198                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5199                         return true;
5200                 return 1 & (b >> (msr_index & 7));
5201         } else
5202                 return true; /* let L1 handle the wrong parameter */
5203 }
5204
5205 /*
5206  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5207  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5208  * intercept (via guest_host_mask etc.) the current event.
5209  */
5210 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5211         struct vmcs12 *vmcs12)
5212 {
5213         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5214         int cr = exit_qualification & 15;
5215         int reg;
5216         unsigned long val;
5217
5218         switch ((exit_qualification >> 4) & 3) {
5219         case 0: /* mov to cr */
5220                 reg = (exit_qualification >> 8) & 15;
5221                 val = kvm_register_readl(vcpu, reg);
5222                 switch (cr) {
5223                 case 0:
5224                         if (vmcs12->cr0_guest_host_mask &
5225                             (val ^ vmcs12->cr0_read_shadow))
5226                                 return true;
5227                         break;
5228                 case 3:
5229                         if ((vmcs12->cr3_target_count >= 1 &&
5230                                         vmcs12->cr3_target_value0 == val) ||
5231                                 (vmcs12->cr3_target_count >= 2 &&
5232                                         vmcs12->cr3_target_value1 == val) ||
5233                                 (vmcs12->cr3_target_count >= 3 &&
5234                                         vmcs12->cr3_target_value2 == val) ||
5235                                 (vmcs12->cr3_target_count >= 4 &&
5236                                         vmcs12->cr3_target_value3 == val))
5237                                 return false;
5238                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5239                                 return true;
5240                         break;
5241                 case 4:
5242                         if (vmcs12->cr4_guest_host_mask &
5243                             (vmcs12->cr4_read_shadow ^ val))
5244                                 return true;
5245                         break;
5246                 case 8:
5247                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5248                                 return true;
5249                         break;
5250                 }
5251                 break;
5252         case 2: /* clts */
5253                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5254                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5255                         return true;
5256                 break;
5257         case 1: /* mov from cr */
5258                 switch (cr) {
5259                 case 3:
5260                         if (vmcs12->cpu_based_vm_exec_control &
5261                             CPU_BASED_CR3_STORE_EXITING)
5262                                 return true;
5263                         break;
5264                 case 8:
5265                         if (vmcs12->cpu_based_vm_exec_control &
5266                             CPU_BASED_CR8_STORE_EXITING)
5267                                 return true;
5268                         break;
5269                 }
5270                 break;
5271         case 3: /* lmsw */
5272                 /*
5273                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5274                  * cr0. Other attempted changes are ignored, with no exit.
5275                  */
5276                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5277                 if (vmcs12->cr0_guest_host_mask & 0xe &
5278                     (val ^ vmcs12->cr0_read_shadow))
5279                         return true;
5280                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5281                     !(vmcs12->cr0_read_shadow & 0x1) &&
5282                     (val & 0x1))
5283                         return true;
5284                 break;
5285         }
5286         return false;
5287 }
5288
5289 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5290         struct vmcs12 *vmcs12, gpa_t bitmap)
5291 {
5292         u32 vmx_instruction_info;
5293         unsigned long field;
5294         u8 b;
5295
5296         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5297                 return true;
5298
5299         /* Decode instruction info and find the field to access */
5300         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5301         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5302
5303         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5304         if (field >> 15)
5305                 return true;
5306
5307         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5308                 return true;
5309
5310         return 1 & (b >> (field & 7));
5311 }
5312
5313 /*
5314  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5315  * should handle it ourselves in L0 (and then continue L2). Only call this
5316  * when in is_guest_mode (L2).
5317  */
5318 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5319 {
5320         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5321         struct vcpu_vmx *vmx = to_vmx(vcpu);
5322         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5323
5324         if (vmx->nested.nested_run_pending)
5325                 return false;
5326
5327         if (unlikely(vmx->fail)) {
5328                 trace_kvm_nested_vmenter_failed(
5329                         "hardware VM-instruction error: ",
5330                         vmcs_read32(VM_INSTRUCTION_ERROR));
5331                 return true;
5332         }
5333
5334         /*
5335          * The host physical addresses of some pages of guest memory
5336          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5337          * Page). The CPU may write to these pages via their host
5338          * physical address while L2 is running, bypassing any
5339          * address-translation-based dirty tracking (e.g. EPT write
5340          * protection).
5341          *
5342          * Mark them dirty on every exit from L2 to prevent them from
5343          * getting out of sync with dirty tracking.
5344          */
5345         nested_mark_vmcs12_pages_dirty(vcpu);
5346
5347         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5348                                 vmcs_readl(EXIT_QUALIFICATION),
5349                                 vmx->idt_vectoring_info,
5350                                 intr_info,
5351                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5352                                 KVM_ISA_VMX);
5353
5354         switch (exit_reason) {
5355         case EXIT_REASON_EXCEPTION_NMI:
5356                 if (is_nmi(intr_info))
5357                         return false;
5358                 else if (is_page_fault(intr_info))
5359                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5360                 else if (is_debug(intr_info) &&
5361                          vcpu->guest_debug &
5362                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5363                         return false;
5364                 else if (is_breakpoint(intr_info) &&
5365                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5366                         return false;
5367                 return vmcs12->exception_bitmap &
5368                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5369         case EXIT_REASON_EXTERNAL_INTERRUPT:
5370                 return false;
5371         case EXIT_REASON_TRIPLE_FAULT:
5372                 return true;
5373         case EXIT_REASON_PENDING_INTERRUPT:
5374                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5375         case EXIT_REASON_NMI_WINDOW:
5376                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5377         case EXIT_REASON_TASK_SWITCH:
5378                 return true;
5379         case EXIT_REASON_CPUID:
5380                 return true;
5381         case EXIT_REASON_HLT:
5382                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5383         case EXIT_REASON_INVD:
5384                 return true;
5385         case EXIT_REASON_INVLPG:
5386                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5387         case EXIT_REASON_RDPMC:
5388                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5389         case EXIT_REASON_RDRAND:
5390                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5391         case EXIT_REASON_RDSEED:
5392                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5393         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5394                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5395         case EXIT_REASON_VMREAD:
5396                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5397                         vmcs12->vmread_bitmap);
5398         case EXIT_REASON_VMWRITE:
5399                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5400                         vmcs12->vmwrite_bitmap);
5401         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5402         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5403         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5404         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5405         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5406                 /*
5407                  * VMX instructions trap unconditionally. This allows L1 to
5408                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5409                  */
5410                 return true;
5411         case EXIT_REASON_CR_ACCESS:
5412                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5413         case EXIT_REASON_DR_ACCESS:
5414                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5415         case EXIT_REASON_IO_INSTRUCTION:
5416                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5417         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5418                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5419         case EXIT_REASON_MSR_READ:
5420         case EXIT_REASON_MSR_WRITE:
5421                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5422         case EXIT_REASON_INVALID_STATE:
5423                 return true;
5424         case EXIT_REASON_MWAIT_INSTRUCTION:
5425                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5426         case EXIT_REASON_MONITOR_TRAP_FLAG:
5427                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5428         case EXIT_REASON_MONITOR_INSTRUCTION:
5429                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5430         case EXIT_REASON_PAUSE_INSTRUCTION:
5431                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5432                         nested_cpu_has2(vmcs12,
5433                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5434         case EXIT_REASON_MCE_DURING_VMENTRY:
5435                 return false;
5436         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5437                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5438         case EXIT_REASON_APIC_ACCESS:
5439         case EXIT_REASON_APIC_WRITE:
5440         case EXIT_REASON_EOI_INDUCED:
5441                 /*
5442                  * The controls for "virtualize APIC accesses," "APIC-
5443                  * register virtualization," and "virtual-interrupt
5444                  * delivery" only come from vmcs12.
5445                  */
5446                 return true;
5447         case EXIT_REASON_EPT_VIOLATION:
5448                 /*
5449                  * L0 always deals with the EPT violation. If nested EPT is
5450                  * used, and the nested mmu code discovers that the address is
5451                  * missing in the guest EPT table (EPT12), the EPT violation
5452                  * will be injected with nested_ept_inject_page_fault()
5453                  */
5454                 return false;
5455         case EXIT_REASON_EPT_MISCONFIG:
5456                 /*
5457                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5458                  * table (shadow on EPT) or a merged EPT table that L0 built
5459                  * (EPT on EPT). So any problems with the structure of the
5460                  * table is L0's fault.
5461                  */
5462                 return false;
5463         case EXIT_REASON_INVPCID:
5464                 return
5465                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5466                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5467         case EXIT_REASON_WBINVD:
5468                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5469         case EXIT_REASON_XSETBV:
5470                 return true;
5471         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5472                 /*
5473                  * This should never happen, since it is not possible to
5474                  * set XSS to a non-zero value---neither in L1 nor in L2.
5475                  * If if it were, XSS would have to be checked against
5476                  * the XSS exit bitmap in vmcs12.
5477                  */
5478                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5479         case EXIT_REASON_PREEMPTION_TIMER:
5480                 return false;
5481         case EXIT_REASON_PML_FULL:
5482                 /* We emulate PML support to L1. */
5483                 return false;
5484         case EXIT_REASON_VMFUNC:
5485                 /* VM functions are emulated through L2->L0 vmexits. */
5486                 return false;
5487         case EXIT_REASON_ENCLS:
5488                 /* SGX is never exposed to L1 */
5489                 return false;
5490         case EXIT_REASON_UMWAIT:
5491         case EXIT_REASON_TPAUSE:
5492                 return nested_cpu_has2(vmcs12,
5493                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5494         default:
5495                 return true;
5496         }
5497 }
5498
5499
5500 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5501                                 struct kvm_nested_state __user *user_kvm_nested_state,
5502                                 u32 user_data_size)
5503 {
5504         struct vcpu_vmx *vmx;
5505         struct vmcs12 *vmcs12;
5506         struct kvm_nested_state kvm_state = {
5507                 .flags = 0,
5508                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5509                 .size = sizeof(kvm_state),
5510                 .hdr.vmx.vmxon_pa = -1ull,
5511                 .hdr.vmx.vmcs12_pa = -1ull,
5512         };
5513         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5514                 &user_kvm_nested_state->data.vmx[0];
5515
5516         if (!vcpu)
5517                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5518
5519         vmx = to_vmx(vcpu);
5520         vmcs12 = get_vmcs12(vcpu);
5521
5522         if (nested_vmx_allowed(vcpu) &&
5523             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5524                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5525                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5526
5527                 if (vmx_has_valid_vmcs12(vcpu)) {
5528                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5529
5530                         if (vmx->nested.hv_evmcs)
5531                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5532
5533                         if (is_guest_mode(vcpu) &&
5534                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5535                             vmcs12->vmcs_link_pointer != -1ull)
5536                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5537                 }
5538
5539                 if (vmx->nested.smm.vmxon)
5540                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5541
5542                 if (vmx->nested.smm.guest_mode)
5543                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5544
5545                 if (is_guest_mode(vcpu)) {
5546                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5547
5548                         if (vmx->nested.nested_run_pending)
5549                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5550                 }
5551         }
5552
5553         if (user_data_size < kvm_state.size)
5554                 goto out;
5555
5556         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5557                 return -EFAULT;
5558
5559         if (!vmx_has_valid_vmcs12(vcpu))
5560                 goto out;
5561
5562         /*
5563          * When running L2, the authoritative vmcs12 state is in the
5564          * vmcs02. When running L1, the authoritative vmcs12 state is
5565          * in the shadow or enlightened vmcs linked to vmcs01, unless
5566          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5567          * vmcs12 state is in the vmcs12 already.
5568          */
5569         if (is_guest_mode(vcpu)) {
5570                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5571                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5572         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5573                 if (vmx->nested.hv_evmcs)
5574                         copy_enlightened_to_vmcs12(vmx);
5575                 else if (enable_shadow_vmcs)
5576                         copy_shadow_to_vmcs12(vmx);
5577         }
5578
5579         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5580         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5581
5582         /*
5583          * Copy over the full allocated size of vmcs12 rather than just the size
5584          * of the struct.
5585          */
5586         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5587                 return -EFAULT;
5588
5589         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5590             vmcs12->vmcs_link_pointer != -1ull) {
5591                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5592                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5593                         return -EFAULT;
5594         }
5595
5596 out:
5597         return kvm_state.size;
5598 }
5599
5600 /*
5601  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5602  */
5603 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5604 {
5605         if (is_guest_mode(vcpu)) {
5606                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5607                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5608         }
5609         free_nested(vcpu);
5610 }
5611
5612 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5613                                 struct kvm_nested_state __user *user_kvm_nested_state,
5614                                 struct kvm_nested_state *kvm_state)
5615 {
5616         struct vcpu_vmx *vmx = to_vmx(vcpu);
5617         struct vmcs12 *vmcs12;
5618         u32 exit_qual;
5619         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5620                 &user_kvm_nested_state->data.vmx[0];
5621         int ret;
5622
5623         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5624                 return -EINVAL;
5625
5626         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5627                 if (kvm_state->hdr.vmx.smm.flags)
5628                         return -EINVAL;
5629
5630                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5631                         return -EINVAL;
5632
5633                 /*
5634                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5635                  * enable eVMCS capability on vCPU. However, since then
5636                  * code was changed such that flag signals vmcs12 should
5637                  * be copied into eVMCS in guest memory.
5638                  *
5639                  * To preserve backwards compatability, allow user
5640                  * to set this flag even when there is no VMXON region.
5641                  */
5642                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5643                         return -EINVAL;
5644         } else {
5645                 if (!nested_vmx_allowed(vcpu))
5646                         return -EINVAL;
5647
5648                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5649                         return -EINVAL;
5650         }
5651
5652         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5653             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5654                 return -EINVAL;
5655
5656         if (kvm_state->hdr.vmx.smm.flags &
5657             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5658                 return -EINVAL;
5659
5660         /*
5661          * SMM temporarily disables VMX, so we cannot be in guest mode,
5662          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5663          * must be zero.
5664          */
5665         if (is_smm(vcpu) ?
5666                 (kvm_state->flags &
5667                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5668                 : kvm_state->hdr.vmx.smm.flags)
5669                 return -EINVAL;
5670
5671         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5672             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5673                 return -EINVAL;
5674
5675         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5676                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5677                         return -EINVAL;
5678
5679         vmx_leave_nested(vcpu);
5680
5681         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5682                 return 0;
5683
5684         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5685         ret = enter_vmx_operation(vcpu);
5686         if (ret)
5687                 return ret;
5688
5689         /* Empty 'VMXON' state is permitted */
5690         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5691                 return 0;
5692
5693         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5694                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5695                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5696                         return -EINVAL;
5697
5698                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5699         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5700                 /*
5701                  * Sync eVMCS upon entry as we may not have
5702                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5703                  */
5704                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5705         } else {
5706                 return -EINVAL;
5707         }
5708
5709         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5710                 vmx->nested.smm.vmxon = true;
5711                 vmx->nested.vmxon = false;
5712
5713                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5714                         vmx->nested.smm.guest_mode = true;
5715         }
5716
5717         vmcs12 = get_vmcs12(vcpu);
5718         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5719                 return -EFAULT;
5720
5721         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5722                 return -EINVAL;
5723
5724         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5725                 return 0;
5726
5727         vmx->nested.nested_run_pending =
5728                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5729
5730         ret = -EINVAL;
5731         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5732             vmcs12->vmcs_link_pointer != -1ull) {
5733                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5734
5735                 if (kvm_state->size <
5736                     sizeof(*kvm_state) +
5737                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5738                         goto error_guest_mode;
5739
5740                 if (copy_from_user(shadow_vmcs12,
5741                                    user_vmx_nested_state->shadow_vmcs12,
5742                                    sizeof(*shadow_vmcs12))) {
5743                         ret = -EFAULT;
5744                         goto error_guest_mode;
5745                 }
5746
5747                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5748                     !shadow_vmcs12->hdr.shadow_vmcs)
5749                         goto error_guest_mode;
5750         }
5751
5752         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5753             nested_vmx_check_host_state(vcpu, vmcs12) ||
5754             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5755                 goto error_guest_mode;
5756
5757         vmx->nested.dirty_vmcs12 = true;
5758         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5759         if (ret)
5760                 goto error_guest_mode;
5761
5762         return 0;
5763
5764 error_guest_mode:
5765         vmx->nested.nested_run_pending = 0;
5766         return ret;
5767 }
5768
5769 void nested_vmx_vcpu_setup(void)
5770 {
5771         if (enable_shadow_vmcs) {
5772                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5773                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5774         }
5775 }
5776
5777 /*
5778  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5779  * returned for the various VMX controls MSRs when nested VMX is enabled.
5780  * The same values should also be used to verify that vmcs12 control fields are
5781  * valid during nested entry from L1 to L2.
5782  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5783  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5784  * bit in the high half is on if the corresponding bit in the control field
5785  * may be on. See also vmx_control_verify().
5786  */
5787 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5788                                 bool apicv)
5789 {
5790         /*
5791          * Note that as a general rule, the high half of the MSRs (bits in
5792          * the control fields which may be 1) should be initialized by the
5793          * intersection of the underlying hardware's MSR (i.e., features which
5794          * can be supported) and the list of features we want to expose -
5795          * because they are known to be properly supported in our code.
5796          * Also, usually, the low half of the MSRs (bits which must be 1) can
5797          * be set to 0, meaning that L1 may turn off any of these bits. The
5798          * reason is that if one of these bits is necessary, it will appear
5799          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5800          * fields of vmcs01 and vmcs02, will turn these bits off - and
5801          * nested_vmx_exit_reflected() will not pass related exits to L1.
5802          * These rules have exceptions below.
5803          */
5804
5805         /* pin-based controls */
5806         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5807                 msrs->pinbased_ctls_low,
5808                 msrs->pinbased_ctls_high);
5809         msrs->pinbased_ctls_low |=
5810                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5811         msrs->pinbased_ctls_high &=
5812                 PIN_BASED_EXT_INTR_MASK |
5813                 PIN_BASED_NMI_EXITING |
5814                 PIN_BASED_VIRTUAL_NMIS |
5815                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5816         msrs->pinbased_ctls_high |=
5817                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5818                 PIN_BASED_VMX_PREEMPTION_TIMER;
5819
5820         /* exit controls */
5821         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5822                 msrs->exit_ctls_low,
5823                 msrs->exit_ctls_high);
5824         msrs->exit_ctls_low =
5825                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5826
5827         msrs->exit_ctls_high &=
5828 #ifdef CONFIG_X86_64
5829                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5830 #endif
5831                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5832         msrs->exit_ctls_high |=
5833                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5834                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5835                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5836
5837         /* We support free control of debug control saving. */
5838         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5839
5840         /* entry controls */
5841         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5842                 msrs->entry_ctls_low,
5843                 msrs->entry_ctls_high);
5844         msrs->entry_ctls_low =
5845                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5846         msrs->entry_ctls_high &=
5847 #ifdef CONFIG_X86_64
5848                 VM_ENTRY_IA32E_MODE |
5849 #endif
5850                 VM_ENTRY_LOAD_IA32_PAT;
5851         msrs->entry_ctls_high |=
5852                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5853
5854         /* We support free control of debug control loading. */
5855         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5856
5857         /* cpu-based controls */
5858         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5859                 msrs->procbased_ctls_low,
5860                 msrs->procbased_ctls_high);
5861         msrs->procbased_ctls_low =
5862                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5863         msrs->procbased_ctls_high &=
5864                 CPU_BASED_VIRTUAL_INTR_PENDING |
5865                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5866                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5867                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5868                 CPU_BASED_CR3_STORE_EXITING |
5869 #ifdef CONFIG_X86_64
5870                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5871 #endif
5872                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5873                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5874                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5875                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5876                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5877         /*
5878          * We can allow some features even when not supported by the
5879          * hardware. For example, L1 can specify an MSR bitmap - and we
5880          * can use it to avoid exits to L1 - even when L0 runs L2
5881          * without MSR bitmaps.
5882          */
5883         msrs->procbased_ctls_high |=
5884                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5885                 CPU_BASED_USE_MSR_BITMAPS;
5886
5887         /* We support free control of CR3 access interception. */
5888         msrs->procbased_ctls_low &=
5889                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5890
5891         /*
5892          * secondary cpu-based controls.  Do not include those that
5893          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5894          */
5895         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5896                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5897                       msrs->secondary_ctls_low,
5898                       msrs->secondary_ctls_high);
5899
5900         msrs->secondary_ctls_low = 0;
5901         msrs->secondary_ctls_high &=
5902                 SECONDARY_EXEC_DESC |
5903                 SECONDARY_EXEC_RDTSCP |
5904                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5905                 SECONDARY_EXEC_WBINVD_EXITING |
5906                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5907                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5908                 SECONDARY_EXEC_RDRAND_EXITING |
5909                 SECONDARY_EXEC_ENABLE_INVPCID |
5910                 SECONDARY_EXEC_RDSEED_EXITING |
5911                 SECONDARY_EXEC_XSAVES;
5912
5913         /*
5914          * We can emulate "VMCS shadowing," even if the hardware
5915          * doesn't support it.
5916          */
5917         msrs->secondary_ctls_high |=
5918                 SECONDARY_EXEC_SHADOW_VMCS;
5919
5920         if (enable_ept) {
5921                 /* nested EPT: emulate EPT also to L1 */
5922                 msrs->secondary_ctls_high |=
5923                         SECONDARY_EXEC_ENABLE_EPT;
5924                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5925                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5926                 if (cpu_has_vmx_ept_execute_only())
5927                         msrs->ept_caps |=
5928                                 VMX_EPT_EXECUTE_ONLY_BIT;
5929                 msrs->ept_caps &= ept_caps;
5930                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5931                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5932                         VMX_EPT_1GB_PAGE_BIT;
5933                 if (enable_ept_ad_bits) {
5934                         msrs->secondary_ctls_high |=
5935                                 SECONDARY_EXEC_ENABLE_PML;
5936                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5937                 }
5938         }
5939
5940         if (cpu_has_vmx_vmfunc()) {
5941                 msrs->secondary_ctls_high |=
5942                         SECONDARY_EXEC_ENABLE_VMFUNC;
5943                 /*
5944                  * Advertise EPTP switching unconditionally
5945                  * since we emulate it
5946                  */
5947                 if (enable_ept)
5948                         msrs->vmfunc_controls =
5949                                 VMX_VMFUNC_EPTP_SWITCHING;
5950         }
5951
5952         /*
5953          * Old versions of KVM use the single-context version without
5954          * checking for support, so declare that it is supported even
5955          * though it is treated as global context.  The alternative is
5956          * not failing the single-context invvpid, and it is worse.
5957          */
5958         if (enable_vpid) {
5959                 msrs->secondary_ctls_high |=
5960                         SECONDARY_EXEC_ENABLE_VPID;
5961                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5962                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5963         }
5964
5965         if (enable_unrestricted_guest)
5966                 msrs->secondary_ctls_high |=
5967                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5968
5969         if (flexpriority_enabled)
5970                 msrs->secondary_ctls_high |=
5971                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5972
5973         /* miscellaneous data */
5974         rdmsr(MSR_IA32_VMX_MISC,
5975                 msrs->misc_low,
5976                 msrs->misc_high);
5977         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5978         msrs->misc_low |=
5979                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5980                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5981                 VMX_MISC_ACTIVITY_HLT;
5982         msrs->misc_high = 0;
5983
5984         /*
5985          * This MSR reports some information about VMX support. We
5986          * should return information about the VMX we emulate for the
5987          * guest, and the VMCS structure we give it - not about the
5988          * VMX support of the underlying hardware.
5989          */
5990         msrs->basic =
5991                 VMCS12_REVISION |
5992                 VMX_BASIC_TRUE_CTLS |
5993                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5994                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5995
5996         if (cpu_has_vmx_basic_inout())
5997                 msrs->basic |= VMX_BASIC_INOUT;
5998
5999         /*
6000          * These MSRs specify bits which the guest must keep fixed on
6001          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6002          * We picked the standard core2 setting.
6003          */
6004 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6005 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6006         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6007         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6008
6009         /* These MSRs specify bits which the guest must keep fixed off. */
6010         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6011         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6012
6013         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6014         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6015 }
6016
6017 void nested_vmx_hardware_unsetup(void)
6018 {
6019         int i;
6020
6021         if (enable_shadow_vmcs) {
6022                 for (i = 0; i < VMX_BITMAP_NR; i++)
6023                         free_page((unsigned long)vmx_bitmap[i]);
6024         }
6025 }
6026
6027 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6028 {
6029         int i;
6030
6031         if (!cpu_has_vmx_shadow_vmcs())
6032                 enable_shadow_vmcs = 0;
6033         if (enable_shadow_vmcs) {
6034                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6035                         /*
6036                          * The vmx_bitmap is not tied to a VM and so should
6037                          * not be charged to a memcg.
6038                          */
6039                         vmx_bitmap[i] = (unsigned long *)
6040                                 __get_free_page(GFP_KERNEL);
6041                         if (!vmx_bitmap[i]) {
6042                                 nested_vmx_hardware_unsetup();
6043                                 return -ENOMEM;
6044                         }
6045                 }
6046
6047                 init_vmcs_shadow_fields();
6048         }
6049
6050         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
6051         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
6052         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
6053         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
6054         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
6055         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
6056         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
6057         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
6058         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
6059         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
6060         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
6061         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
6062
6063         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6064         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6065         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6066         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
6067         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6068         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6069
6070         return 0;
6071 }