Merge tag 'memblock-v6.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt...
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9
10 #include "cpuid.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "sgx.h"
16 #include "trace.h"
17 #include "vmx.h"
18 #include "x86.h"
19 #include "smm.h"
20
21 static bool __read_mostly enable_shadow_vmcs = 1;
22 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
23
24 static bool __read_mostly nested_early_check = 0;
25 module_param(nested_early_check, bool, S_IRUGO);
26
27 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
28
29 /*
30  * Hyper-V requires all of these, so mark them as supported even though
31  * they are just treated the same as all-context.
32  */
33 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
34         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
35         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
36         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
37         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
38
39 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
40
41 enum {
42         VMX_VMREAD_BITMAP,
43         VMX_VMWRITE_BITMAP,
44         VMX_BITMAP_NR
45 };
46 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
47
48 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
49 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
50
51 struct shadow_vmcs_field {
52         u16     encoding;
53         u16     offset;
54 };
55 static struct shadow_vmcs_field shadow_read_only_fields[] = {
56 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
57 #include "vmcs_shadow_fields.h"
58 };
59 static int max_shadow_read_only_fields =
60         ARRAY_SIZE(shadow_read_only_fields);
61
62 static struct shadow_vmcs_field shadow_read_write_fields[] = {
63 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
64 #include "vmcs_shadow_fields.h"
65 };
66 static int max_shadow_read_write_fields =
67         ARRAY_SIZE(shadow_read_write_fields);
68
69 static void init_vmcs_shadow_fields(void)
70 {
71         int i, j;
72
73         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
74         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
75
76         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
77                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
78                 u16 field = entry.encoding;
79
80                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
81                     (i + 1 == max_shadow_read_only_fields ||
82                      shadow_read_only_fields[i + 1].encoding != field + 1))
83                         pr_err("Missing field from shadow_read_only_field %x\n",
84                                field + 1);
85
86                 clear_bit(field, vmx_vmread_bitmap);
87                 if (field & 1)
88 #ifdef CONFIG_X86_64
89                         continue;
90 #else
91                         entry.offset += sizeof(u32);
92 #endif
93                 shadow_read_only_fields[j++] = entry;
94         }
95         max_shadow_read_only_fields = j;
96
97         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
98                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
99                 u16 field = entry.encoding;
100
101                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
102                     (i + 1 == max_shadow_read_write_fields ||
103                      shadow_read_write_fields[i + 1].encoding != field + 1))
104                         pr_err("Missing field from shadow_read_write_field %x\n",
105                                field + 1);
106
107                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
108                           field <= GUEST_TR_AR_BYTES,
109                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
110
111                 /*
112                  * PML and the preemption timer can be emulated, but the
113                  * processor cannot vmwrite to fields that don't exist
114                  * on bare metal.
115                  */
116                 switch (field) {
117                 case GUEST_PML_INDEX:
118                         if (!cpu_has_vmx_pml())
119                                 continue;
120                         break;
121                 case VMX_PREEMPTION_TIMER_VALUE:
122                         if (!cpu_has_vmx_preemption_timer())
123                                 continue;
124                         break;
125                 case GUEST_INTR_STATUS:
126                         if (!cpu_has_vmx_apicv())
127                                 continue;
128                         break;
129                 default:
130                         break;
131                 }
132
133                 clear_bit(field, vmx_vmwrite_bitmap);
134                 clear_bit(field, vmx_vmread_bitmap);
135                 if (field & 1)
136 #ifdef CONFIG_X86_64
137                         continue;
138 #else
139                         entry.offset += sizeof(u32);
140 #endif
141                 shadow_read_write_fields[j++] = entry;
142         }
143         max_shadow_read_write_fields = j;
144 }
145
146 /*
147  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
148  * set the success or error code of an emulated VMX instruction (as specified
149  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
150  * instruction.
151  */
152 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
153 {
154         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
155                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
156                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
157         return kvm_skip_emulated_instruction(vcpu);
158 }
159
160 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
161 {
162         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
163                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
164                             X86_EFLAGS_SF | X86_EFLAGS_OF))
165                         | X86_EFLAGS_CF);
166         return kvm_skip_emulated_instruction(vcpu);
167 }
168
169 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
170                                 u32 vm_instruction_error)
171 {
172         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
173                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
174                             X86_EFLAGS_SF | X86_EFLAGS_OF))
175                         | X86_EFLAGS_ZF);
176         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
177         /*
178          * We don't need to force sync to shadow VMCS because
179          * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
180          * fields and thus must be synced.
181          */
182         if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
183                 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
184
185         return kvm_skip_emulated_instruction(vcpu);
186 }
187
188 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
189 {
190         struct vcpu_vmx *vmx = to_vmx(vcpu);
191
192         /*
193          * failValid writes the error number to the current VMCS, which
194          * can't be done if there isn't a current VMCS.
195          */
196         if (vmx->nested.current_vmptr == INVALID_GPA &&
197             !nested_vmx_is_evmptr12_valid(vmx))
198                 return nested_vmx_failInvalid(vcpu);
199
200         return nested_vmx_failValid(vcpu, vm_instruction_error);
201 }
202
203 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
204 {
205         /* TODO: not to reset guest simply here. */
206         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
207         pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
208 }
209
210 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
211 {
212         return fixed_bits_valid(control, low, high);
213 }
214
215 static inline u64 vmx_control_msr(u32 low, u32 high)
216 {
217         return low | ((u64)high << 32);
218 }
219
220 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
221 {
222         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
223         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
224         vmx->nested.need_vmcs12_to_shadow_sync = false;
225 }
226
227 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
228 {
229 #ifdef CONFIG_KVM_HYPERV
230         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
231         struct vcpu_vmx *vmx = to_vmx(vcpu);
232
233         if (nested_vmx_is_evmptr12_valid(vmx)) {
234                 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
235                 vmx->nested.hv_evmcs = NULL;
236         }
237
238         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
239
240         if (hv_vcpu) {
241                 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
242                 hv_vcpu->nested.vm_id = 0;
243                 hv_vcpu->nested.vp_id = 0;
244         }
245 #endif
246 }
247
248 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
249 {
250 #ifdef CONFIG_KVM_HYPERV
251         struct vcpu_vmx *vmx = to_vmx(vcpu);
252         /*
253          * When Enlightened VMEntry is enabled on the calling CPU we treat
254          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
255          * way to distinguish it from VMCS12) and we must not corrupt it by
256          * writing to the non-existent 'launch_state' field. The area doesn't
257          * have to be the currently active EVMCS on the calling CPU and there's
258          * nothing KVM has to do to transition it from 'active' to 'non-active'
259          * state. It is possible that the area will stay mapped as
260          * vmx->nested.hv_evmcs but this shouldn't be a problem.
261          */
262         if (!guest_cpuid_has_evmcs(vcpu) ||
263             !evmptr_is_valid(nested_get_evmptr(vcpu)))
264                 return false;
265
266         if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
267                 nested_release_evmcs(vcpu);
268
269         return true;
270 #else
271         return false;
272 #endif
273 }
274
275 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276                                      struct loaded_vmcs *prev)
277 {
278         struct vmcs_host_state *dest, *src;
279
280         if (unlikely(!vmx->guest_state_loaded))
281                 return;
282
283         src = &prev->host_state;
284         dest = &vmx->loaded_vmcs->host_state;
285
286         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
287         dest->ldt_sel = src->ldt_sel;
288 #ifdef CONFIG_X86_64
289         dest->ds_sel = src->ds_sel;
290         dest->es_sel = src->es_sel;
291 #endif
292 }
293
294 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
295 {
296         struct vcpu_vmx *vmx = to_vmx(vcpu);
297         struct loaded_vmcs *prev;
298         int cpu;
299
300         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
301                 return;
302
303         cpu = get_cpu();
304         prev = vmx->loaded_vmcs;
305         vmx->loaded_vmcs = vmcs;
306         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
307         vmx_sync_vmcs_host_state(vmx, prev);
308         put_cpu();
309
310         vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
311
312         /*
313          * All lazily updated registers will be reloaded from VMCS12 on both
314          * vmentry and vmexit.
315          */
316         vcpu->arch.regs_dirty = 0;
317 }
318
319 /*
320  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
321  * just stops using VMX.
322  */
323 static void free_nested(struct kvm_vcpu *vcpu)
324 {
325         struct vcpu_vmx *vmx = to_vmx(vcpu);
326
327         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
328                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
329
330         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
331                 return;
332
333         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
334
335         vmx->nested.vmxon = false;
336         vmx->nested.smm.vmxon = false;
337         vmx->nested.vmxon_ptr = INVALID_GPA;
338         free_vpid(vmx->nested.vpid02);
339         vmx->nested.posted_intr_nv = -1;
340         vmx->nested.current_vmptr = INVALID_GPA;
341         if (enable_shadow_vmcs) {
342                 vmx_disable_shadow_vmcs(vmx);
343                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
344                 free_vmcs(vmx->vmcs01.shadow_vmcs);
345                 vmx->vmcs01.shadow_vmcs = NULL;
346         }
347         kfree(vmx->nested.cached_vmcs12);
348         vmx->nested.cached_vmcs12 = NULL;
349         kfree(vmx->nested.cached_shadow_vmcs12);
350         vmx->nested.cached_shadow_vmcs12 = NULL;
351         /*
352          * Unpin physical memory we referred to in the vmcs02.  The APIC access
353          * page's backing page (yeah, confusing) shouldn't actually be accessed,
354          * and if it is written, the contents are irrelevant.
355          */
356         kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
357         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
358         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
359         vmx->nested.pi_desc = NULL;
360
361         kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
362
363         nested_release_evmcs(vcpu);
364
365         free_loaded_vmcs(&vmx->nested.vmcs02);
366 }
367
368 /*
369  * Ensure that the current vmcs of the logical processor is the
370  * vmcs01 of the vcpu before calling free_nested().
371  */
372 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
373 {
374         vcpu_load(vcpu);
375         vmx_leave_nested(vcpu);
376         vcpu_put(vcpu);
377 }
378
379 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
380
381 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
382 {
383         return VALID_PAGE(root_hpa) &&
384                ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
385 }
386
387 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
388                                        gpa_t addr)
389 {
390         unsigned long roots = 0;
391         uint i;
392         struct kvm_mmu_root_info *cached_root;
393
394         WARN_ON_ONCE(!mmu_is_nested(vcpu));
395
396         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
397                 cached_root = &vcpu->arch.mmu->prev_roots[i];
398
399                 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
400                                             eptp))
401                         roots |= KVM_MMU_ROOT_PREVIOUS(i);
402         }
403         if (roots)
404                 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
405 }
406
407 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
408                 struct x86_exception *fault)
409 {
410         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
411         struct vcpu_vmx *vmx = to_vmx(vcpu);
412         u32 vm_exit_reason;
413         unsigned long exit_qualification = vcpu->arch.exit_qualification;
414
415         if (vmx->nested.pml_full) {
416                 vm_exit_reason = EXIT_REASON_PML_FULL;
417                 vmx->nested.pml_full = false;
418                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
419         } else {
420                 if (fault->error_code & PFERR_RSVD_MASK)
421                         vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
422                 else
423                         vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
424
425                 /*
426                  * Although the caller (kvm_inject_emulated_page_fault) would
427                  * have already synced the faulting address in the shadow EPT
428                  * tables for the current EPTP12, we also need to sync it for
429                  * any other cached EPTP02s based on the same EP4TA, since the
430                  * TLB associates mappings to the EP4TA rather than the full EPTP.
431                  */
432                 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
433                                            fault->address);
434         }
435
436         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
437         vmcs12->guest_physical_address = fault->address;
438 }
439
440 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
441 {
442         struct vcpu_vmx *vmx = to_vmx(vcpu);
443         bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
444         int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
445
446         kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
447                                 nested_ept_ad_enabled(vcpu),
448                                 nested_ept_get_eptp(vcpu));
449 }
450
451 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
452 {
453         WARN_ON(mmu_is_nested(vcpu));
454
455         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
456         nested_ept_new_eptp(vcpu);
457         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
458         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
459         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
460
461         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
462 }
463
464 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
465 {
466         vcpu->arch.mmu = &vcpu->arch.root_mmu;
467         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
468 }
469
470 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
471                                             u16 error_code)
472 {
473         bool inequality, bit;
474
475         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
476         inequality =
477                 (error_code & vmcs12->page_fault_error_code_mask) !=
478                  vmcs12->page_fault_error_code_match;
479         return inequality ^ bit;
480 }
481
482 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
483                                            u32 error_code)
484 {
485         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
486
487         /*
488          * Drop bits 31:16 of the error code when performing the #PF mask+match
489          * check.  All VMCS fields involved are 32 bits, but Intel CPUs never
490          * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
491          * error code.  Including the to-be-dropped bits in the check might
492          * result in an "impossible" or missed exit from L1's perspective.
493          */
494         if (vector == PF_VECTOR)
495                 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
496
497         return (vmcs12->exception_bitmap & (1u << vector));
498 }
499
500 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
501                                                struct vmcs12 *vmcs12)
502 {
503         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
504                 return 0;
505
506         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
507             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
508                 return -EINVAL;
509
510         return 0;
511 }
512
513 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
514                                                 struct vmcs12 *vmcs12)
515 {
516         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
517                 return 0;
518
519         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
520                 return -EINVAL;
521
522         return 0;
523 }
524
525 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
526                                                 struct vmcs12 *vmcs12)
527 {
528         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
529                 return 0;
530
531         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
532                 return -EINVAL;
533
534         return 0;
535 }
536
537 /*
538  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
539  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
540  * only the "disable intercept" case needs to be handled.
541  */
542 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
543                                                         unsigned long *msr_bitmap_l0,
544                                                         u32 msr, int type)
545 {
546         if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
547                 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
548
549         if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
550                 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
551 }
552
553 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
554 {
555         int msr;
556
557         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
558                 unsigned word = msr / BITS_PER_LONG;
559
560                 msr_bitmap[word] = ~0;
561                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
562         }
563 }
564
565 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)                                     \
566 static inline                                                                   \
567 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,                  \
568                                          unsigned long *msr_bitmap_l1,          \
569                                          unsigned long *msr_bitmap_l0, u32 msr) \
570 {                                                                               \
571         if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||            \
572             vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))                       \
573                 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);                    \
574         else                                                                    \
575                 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);                  \
576 }
577 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
578 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
579
580 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
581                                                     unsigned long *msr_bitmap_l1,
582                                                     unsigned long *msr_bitmap_l0,
583                                                     u32 msr, int types)
584 {
585         if (types & MSR_TYPE_R)
586                 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
587                                                   msr_bitmap_l0, msr);
588         if (types & MSR_TYPE_W)
589                 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
590                                                    msr_bitmap_l0, msr);
591 }
592
593 /*
594  * Merge L0's and L1's MSR bitmap, return false to indicate that
595  * we do not use the hardware.
596  */
597 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
598                                                  struct vmcs12 *vmcs12)
599 {
600         struct vcpu_vmx *vmx = to_vmx(vcpu);
601         int msr;
602         unsigned long *msr_bitmap_l1;
603         unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
604         struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
605
606         /* Nothing to do if the MSR bitmap is not in use.  */
607         if (!cpu_has_vmx_msr_bitmap() ||
608             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
609                 return false;
610
611         /*
612          * MSR bitmap update can be skipped when:
613          * - MSR bitmap for L1 hasn't changed.
614          * - Nested hypervisor (L1) is attempting to launch the same L2 as
615          *   before.
616          * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
617          *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
618          */
619         if (!vmx->nested.force_msr_bitmap_recalc) {
620                 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
621
622                 if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
623                     evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
624                         return true;
625         }
626
627         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
628                 return false;
629
630         msr_bitmap_l1 = (unsigned long *)map->hva;
631
632         /*
633          * To keep the control flow simple, pay eight 8-byte writes (sixteen
634          * 4-byte writes on 32-bit systems) up front to enable intercepts for
635          * the x2APIC MSR range and selectively toggle those relevant to L2.
636          */
637         enable_x2apic_msr_intercepts(msr_bitmap_l0);
638
639         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
640                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
641                         /*
642                          * L0 need not intercept reads for MSRs between 0x800
643                          * and 0x8ff, it just lets the processor take the value
644                          * from the virtual-APIC page; take those 256 bits
645                          * directly from the L1 bitmap.
646                          */
647                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
648                                 unsigned word = msr / BITS_PER_LONG;
649
650                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
651                         }
652                 }
653
654                 nested_vmx_disable_intercept_for_x2apic_msr(
655                         msr_bitmap_l1, msr_bitmap_l0,
656                         X2APIC_MSR(APIC_TASKPRI),
657                         MSR_TYPE_R | MSR_TYPE_W);
658
659                 if (nested_cpu_has_vid(vmcs12)) {
660                         nested_vmx_disable_intercept_for_x2apic_msr(
661                                 msr_bitmap_l1, msr_bitmap_l0,
662                                 X2APIC_MSR(APIC_EOI),
663                                 MSR_TYPE_W);
664                         nested_vmx_disable_intercept_for_x2apic_msr(
665                                 msr_bitmap_l1, msr_bitmap_l0,
666                                 X2APIC_MSR(APIC_SELF_IPI),
667                                 MSR_TYPE_W);
668                 }
669         }
670
671         /*
672          * Always check vmcs01's bitmap to honor userspace MSR filters and any
673          * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
674          */
675 #ifdef CONFIG_X86_64
676         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
677                                          MSR_FS_BASE, MSR_TYPE_RW);
678
679         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
680                                          MSR_GS_BASE, MSR_TYPE_RW);
681
682         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
683                                          MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
684 #endif
685         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
686                                          MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
687
688         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
689                                          MSR_IA32_PRED_CMD, MSR_TYPE_W);
690
691         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
692                                          MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
693
694         kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
695
696         vmx->nested.force_msr_bitmap_recalc = false;
697
698         return true;
699 }
700
701 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
702                                        struct vmcs12 *vmcs12)
703 {
704         struct vcpu_vmx *vmx = to_vmx(vcpu);
705         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
706
707         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
708             vmcs12->vmcs_link_pointer == INVALID_GPA)
709                 return;
710
711         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
712             kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
713                                       vmcs12->vmcs_link_pointer, VMCS12_SIZE))
714                 return;
715
716         kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
717                               VMCS12_SIZE);
718 }
719
720 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
721                                               struct vmcs12 *vmcs12)
722 {
723         struct vcpu_vmx *vmx = to_vmx(vcpu);
724         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
725
726         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
727             vmcs12->vmcs_link_pointer == INVALID_GPA)
728                 return;
729
730         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
731             kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
732                                       vmcs12->vmcs_link_pointer, VMCS12_SIZE))
733                 return;
734
735         kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
736                                VMCS12_SIZE);
737 }
738
739 /*
740  * In nested virtualization, check if L1 has set
741  * VM_EXIT_ACK_INTR_ON_EXIT
742  */
743 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
744 {
745         return get_vmcs12(vcpu)->vm_exit_controls &
746                 VM_EXIT_ACK_INTR_ON_EXIT;
747 }
748
749 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
750                                           struct vmcs12 *vmcs12)
751 {
752         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
753             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
754                 return -EINVAL;
755         else
756                 return 0;
757 }
758
759 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
760                                            struct vmcs12 *vmcs12)
761 {
762         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
763             !nested_cpu_has_apic_reg_virt(vmcs12) &&
764             !nested_cpu_has_vid(vmcs12) &&
765             !nested_cpu_has_posted_intr(vmcs12))
766                 return 0;
767
768         /*
769          * If virtualize x2apic mode is enabled,
770          * virtualize apic access must be disabled.
771          */
772         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
773                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
774                 return -EINVAL;
775
776         /*
777          * If virtual interrupt delivery is enabled,
778          * we must exit on external interrupts.
779          */
780         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
781                 return -EINVAL;
782
783         /*
784          * bits 15:8 should be zero in posted_intr_nv,
785          * the descriptor address has been already checked
786          * in nested_get_vmcs12_pages.
787          *
788          * bits 5:0 of posted_intr_desc_addr should be zero.
789          */
790         if (nested_cpu_has_posted_intr(vmcs12) &&
791            (CC(!nested_cpu_has_vid(vmcs12)) ||
792             CC(!nested_exit_intr_ack_set(vcpu)) ||
793             CC((vmcs12->posted_intr_nv & 0xff00)) ||
794             CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
795                 return -EINVAL;
796
797         /* tpr shadow is needed by all apicv features. */
798         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
799                 return -EINVAL;
800
801         return 0;
802 }
803
804 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
805                                        u32 count, u64 addr)
806 {
807         if (count == 0)
808                 return 0;
809
810         if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
811             !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
812                 return -EINVAL;
813
814         return 0;
815 }
816
817 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
818                                                      struct vmcs12 *vmcs12)
819 {
820         if (CC(nested_vmx_check_msr_switch(vcpu,
821                                            vmcs12->vm_exit_msr_load_count,
822                                            vmcs12->vm_exit_msr_load_addr)) ||
823             CC(nested_vmx_check_msr_switch(vcpu,
824                                            vmcs12->vm_exit_msr_store_count,
825                                            vmcs12->vm_exit_msr_store_addr)))
826                 return -EINVAL;
827
828         return 0;
829 }
830
831 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
832                                                       struct vmcs12 *vmcs12)
833 {
834         if (CC(nested_vmx_check_msr_switch(vcpu,
835                                            vmcs12->vm_entry_msr_load_count,
836                                            vmcs12->vm_entry_msr_load_addr)))
837                 return -EINVAL;
838
839         return 0;
840 }
841
842 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
843                                          struct vmcs12 *vmcs12)
844 {
845         if (!nested_cpu_has_pml(vmcs12))
846                 return 0;
847
848         if (CC(!nested_cpu_has_ept(vmcs12)) ||
849             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
850                 return -EINVAL;
851
852         return 0;
853 }
854
855 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
856                                                         struct vmcs12 *vmcs12)
857 {
858         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
859                !nested_cpu_has_ept(vmcs12)))
860                 return -EINVAL;
861         return 0;
862 }
863
864 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
865                                                          struct vmcs12 *vmcs12)
866 {
867         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
868                !nested_cpu_has_ept(vmcs12)))
869                 return -EINVAL;
870         return 0;
871 }
872
873 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
874                                                  struct vmcs12 *vmcs12)
875 {
876         if (!nested_cpu_has_shadow_vmcs(vmcs12))
877                 return 0;
878
879         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
880             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
881                 return -EINVAL;
882
883         return 0;
884 }
885
886 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
887                                        struct vmx_msr_entry *e)
888 {
889         /* x2APIC MSR accesses are not allowed */
890         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
891                 return -EINVAL;
892         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
893             CC(e->index == MSR_IA32_UCODE_REV))
894                 return -EINVAL;
895         if (CC(e->reserved != 0))
896                 return -EINVAL;
897         return 0;
898 }
899
900 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
901                                      struct vmx_msr_entry *e)
902 {
903         if (CC(e->index == MSR_FS_BASE) ||
904             CC(e->index == MSR_GS_BASE) ||
905             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
906             nested_vmx_msr_check_common(vcpu, e))
907                 return -EINVAL;
908         return 0;
909 }
910
911 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
912                                       struct vmx_msr_entry *e)
913 {
914         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
915             nested_vmx_msr_check_common(vcpu, e))
916                 return -EINVAL;
917         return 0;
918 }
919
920 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
921 {
922         struct vcpu_vmx *vmx = to_vmx(vcpu);
923         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
924                                        vmx->nested.msrs.misc_high);
925
926         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
927 }
928
929 /*
930  * Load guest's/host's msr at nested entry/exit.
931  * return 0 for success, entry index for failure.
932  *
933  * One of the failure modes for MSR load/store is when a list exceeds the
934  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
935  * as possible, process all valid entries before failing rather than precheck
936  * for a capacity violation.
937  */
938 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
939 {
940         u32 i;
941         struct vmx_msr_entry e;
942         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
943
944         for (i = 0; i < count; i++) {
945                 if (unlikely(i >= max_msr_list_size))
946                         goto fail;
947
948                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
949                                         &e, sizeof(e))) {
950                         pr_debug_ratelimited(
951                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
952                                 __func__, i, gpa + i * sizeof(e));
953                         goto fail;
954                 }
955                 if (nested_vmx_load_msr_check(vcpu, &e)) {
956                         pr_debug_ratelimited(
957                                 "%s check failed (%u, 0x%x, 0x%x)\n",
958                                 __func__, i, e.index, e.reserved);
959                         goto fail;
960                 }
961                 if (kvm_set_msr(vcpu, e.index, e.value)) {
962                         pr_debug_ratelimited(
963                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
964                                 __func__, i, e.index, e.value);
965                         goto fail;
966                 }
967         }
968         return 0;
969 fail:
970         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
971         return i + 1;
972 }
973
974 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
975                                             u32 msr_index,
976                                             u64 *data)
977 {
978         struct vcpu_vmx *vmx = to_vmx(vcpu);
979
980         /*
981          * If the L0 hypervisor stored a more accurate value for the TSC that
982          * does not include the time taken for emulation of the L2->L1
983          * VM-exit in L0, use the more accurate value.
984          */
985         if (msr_index == MSR_IA32_TSC) {
986                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
987                                                     MSR_IA32_TSC);
988
989                 if (i >= 0) {
990                         u64 val = vmx->msr_autostore.guest.val[i].value;
991
992                         *data = kvm_read_l1_tsc(vcpu, val);
993                         return true;
994                 }
995         }
996
997         if (kvm_get_msr(vcpu, msr_index, data)) {
998                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
999                         msr_index);
1000                 return false;
1001         }
1002         return true;
1003 }
1004
1005 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1006                                      struct vmx_msr_entry *e)
1007 {
1008         if (kvm_vcpu_read_guest(vcpu,
1009                                 gpa + i * sizeof(*e),
1010                                 e, 2 * sizeof(u32))) {
1011                 pr_debug_ratelimited(
1012                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
1013                         __func__, i, gpa + i * sizeof(*e));
1014                 return false;
1015         }
1016         if (nested_vmx_store_msr_check(vcpu, e)) {
1017                 pr_debug_ratelimited(
1018                         "%s check failed (%u, 0x%x, 0x%x)\n",
1019                         __func__, i, e->index, e->reserved);
1020                 return false;
1021         }
1022         return true;
1023 }
1024
1025 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1026 {
1027         u64 data;
1028         u32 i;
1029         struct vmx_msr_entry e;
1030         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1031
1032         for (i = 0; i < count; i++) {
1033                 if (unlikely(i >= max_msr_list_size))
1034                         return -EINVAL;
1035
1036                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1037                         return -EINVAL;
1038
1039                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1040                         return -EINVAL;
1041
1042                 if (kvm_vcpu_write_guest(vcpu,
1043                                          gpa + i * sizeof(e) +
1044                                              offsetof(struct vmx_msr_entry, value),
1045                                          &data, sizeof(data))) {
1046                         pr_debug_ratelimited(
1047                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1048                                 __func__, i, e.index, data);
1049                         return -EINVAL;
1050                 }
1051         }
1052         return 0;
1053 }
1054
1055 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1056 {
1057         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1058         u32 count = vmcs12->vm_exit_msr_store_count;
1059         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1060         struct vmx_msr_entry e;
1061         u32 i;
1062
1063         for (i = 0; i < count; i++) {
1064                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1065                         return false;
1066
1067                 if (e.index == msr_index)
1068                         return true;
1069         }
1070         return false;
1071 }
1072
1073 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1074                                            u32 msr_index)
1075 {
1076         struct vcpu_vmx *vmx = to_vmx(vcpu);
1077         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1078         bool in_vmcs12_store_list;
1079         int msr_autostore_slot;
1080         bool in_autostore_list;
1081         int last;
1082
1083         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1084         in_autostore_list = msr_autostore_slot >= 0;
1085         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1086
1087         if (in_vmcs12_store_list && !in_autostore_list) {
1088                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1089                         /*
1090                          * Emulated VMEntry does not fail here.  Instead a less
1091                          * accurate value will be returned by
1092                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1093                          * instead of reading the value from the vmcs02 VMExit
1094                          * MSR-store area.
1095                          */
1096                         pr_warn_ratelimited(
1097                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1098                                 msr_index);
1099                         return;
1100                 }
1101                 last = autostore->nr++;
1102                 autostore->val[last].index = msr_index;
1103         } else if (!in_vmcs12_store_list && in_autostore_list) {
1104                 last = --autostore->nr;
1105                 autostore->val[msr_autostore_slot] = autostore->val[last];
1106         }
1107 }
1108
1109 /*
1110  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1111  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1112  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1113  * @entry_failure_code.
1114  */
1115 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1116                                bool nested_ept, bool reload_pdptrs,
1117                                enum vm_entry_failure_code *entry_failure_code)
1118 {
1119         if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1120                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1121                 return -EINVAL;
1122         }
1123
1124         /*
1125          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1126          * must not be dereferenced.
1127          */
1128         if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1129             CC(!load_pdptrs(vcpu, cr3))) {
1130                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1131                 return -EINVAL;
1132         }
1133
1134         vcpu->arch.cr3 = cr3;
1135         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1136
1137         /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1138         kvm_init_mmu(vcpu);
1139
1140         if (!nested_ept)
1141                 kvm_mmu_new_pgd(vcpu, cr3);
1142
1143         return 0;
1144 }
1145
1146 /*
1147  * Returns if KVM is able to config CPU to tag TLB entries
1148  * populated by L2 differently than TLB entries populated
1149  * by L1.
1150  *
1151  * If L0 uses EPT, L1 and L2 run with different EPTP because
1152  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1153  * are tagged with different EPTP.
1154  *
1155  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1156  * with different VPID (L1 entries are tagged with vmx->vpid
1157  * while L2 entries are tagged with vmx->nested.vpid02).
1158  */
1159 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1160 {
1161         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1162
1163         return enable_ept ||
1164                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1165 }
1166
1167 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1168                                             struct vmcs12 *vmcs12,
1169                                             bool is_vmenter)
1170 {
1171         struct vcpu_vmx *vmx = to_vmx(vcpu);
1172
1173         /* Handle pending Hyper-V TLB flush requests */
1174         kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1175
1176         /*
1177          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1178          * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1179          * full TLB flush from the guest's perspective.  This is required even
1180          * if VPID is disabled in the host as KVM may need to synchronize the
1181          * MMU in response to the guest TLB flush.
1182          *
1183          * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1184          * EPT is a special snowflake, as guest-physical mappings aren't
1185          * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1186          * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1187          * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1188          * those mappings.
1189          */
1190         if (!nested_cpu_has_vpid(vmcs12)) {
1191                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1192                 return;
1193         }
1194
1195         /* L2 should never have a VPID if VPID is disabled. */
1196         WARN_ON(!enable_vpid);
1197
1198         /*
1199          * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1200          * emulate a guest TLB flush as KVM does not track vpid12 history nor
1201          * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1202          * that the new vpid12 has never been used and thus represents a new
1203          * guest ASID that cannot have entries in the TLB.
1204          */
1205         if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1206                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1207                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1208                 return;
1209         }
1210
1211         /*
1212          * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1213          * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1214          * KVM was unable to allocate a VPID for L2, flush the current context
1215          * as the effective ASID is common to both L1 and L2.
1216          */
1217         if (!nested_has_guest_tlb_tag(vcpu))
1218                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1219 }
1220
1221 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1222 {
1223         superset &= mask;
1224         subset &= mask;
1225
1226         return (superset | subset) == superset;
1227 }
1228
1229 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1230 {
1231         const u64 feature_and_reserved =
1232                 /* feature (except bit 48; see below) */
1233                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1234                 /* reserved */
1235                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1236         u64 vmx_basic = vmcs_config.nested.basic;
1237
1238         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1239                 return -EINVAL;
1240
1241         /*
1242          * KVM does not emulate a version of VMX that constrains physical
1243          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1244          */
1245         if (data & BIT_ULL(48))
1246                 return -EINVAL;
1247
1248         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1249             vmx_basic_vmcs_revision_id(data))
1250                 return -EINVAL;
1251
1252         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1253                 return -EINVAL;
1254
1255         vmx->nested.msrs.basic = data;
1256         return 0;
1257 }
1258
1259 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1260                                 u32 **low, u32 **high)
1261 {
1262         switch (msr_index) {
1263         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1264                 *low = &msrs->pinbased_ctls_low;
1265                 *high = &msrs->pinbased_ctls_high;
1266                 break;
1267         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1268                 *low = &msrs->procbased_ctls_low;
1269                 *high = &msrs->procbased_ctls_high;
1270                 break;
1271         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1272                 *low = &msrs->exit_ctls_low;
1273                 *high = &msrs->exit_ctls_high;
1274                 break;
1275         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1276                 *low = &msrs->entry_ctls_low;
1277                 *high = &msrs->entry_ctls_high;
1278                 break;
1279         case MSR_IA32_VMX_PROCBASED_CTLS2:
1280                 *low = &msrs->secondary_ctls_low;
1281                 *high = &msrs->secondary_ctls_high;
1282                 break;
1283         default:
1284                 BUG();
1285         }
1286 }
1287
1288 static int
1289 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1290 {
1291         u32 *lowp, *highp;
1292         u64 supported;
1293
1294         vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1295
1296         supported = vmx_control_msr(*lowp, *highp);
1297
1298         /* Check must-be-1 bits are still 1. */
1299         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1300                 return -EINVAL;
1301
1302         /* Check must-be-0 bits are still 0. */
1303         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1304                 return -EINVAL;
1305
1306         vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1307         *lowp = data;
1308         *highp = data >> 32;
1309         return 0;
1310 }
1311
1312 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1313 {
1314         const u64 feature_and_reserved_bits =
1315                 /* feature */
1316                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1317                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1318                 /* reserved */
1319                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1320         u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1321                                        vmcs_config.nested.misc_high);
1322
1323         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1324                 return -EINVAL;
1325
1326         if ((vmx->nested.msrs.pinbased_ctls_high &
1327              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1328             vmx_misc_preemption_timer_rate(data) !=
1329             vmx_misc_preemption_timer_rate(vmx_misc))
1330                 return -EINVAL;
1331
1332         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1333                 return -EINVAL;
1334
1335         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1336                 return -EINVAL;
1337
1338         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1339                 return -EINVAL;
1340
1341         vmx->nested.msrs.misc_low = data;
1342         vmx->nested.msrs.misc_high = data >> 32;
1343
1344         return 0;
1345 }
1346
1347 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1348 {
1349         u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1350                                                vmcs_config.nested.vpid_caps);
1351
1352         /* Every bit is either reserved or a feature bit. */
1353         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1354                 return -EINVAL;
1355
1356         vmx->nested.msrs.ept_caps = data;
1357         vmx->nested.msrs.vpid_caps = data >> 32;
1358         return 0;
1359 }
1360
1361 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1362 {
1363         switch (msr_index) {
1364         case MSR_IA32_VMX_CR0_FIXED0:
1365                 return &msrs->cr0_fixed0;
1366         case MSR_IA32_VMX_CR4_FIXED0:
1367                 return &msrs->cr4_fixed0;
1368         default:
1369                 BUG();
1370         }
1371 }
1372
1373 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1374 {
1375         const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1376
1377         /*
1378          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1379          * must be 1 in the restored value.
1380          */
1381         if (!is_bitwise_subset(data, *msr, -1ULL))
1382                 return -EINVAL;
1383
1384         *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1385         return 0;
1386 }
1387
1388 /*
1389  * Called when userspace is restoring VMX MSRs.
1390  *
1391  * Returns 0 on success, non-0 otherwise.
1392  */
1393 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1394 {
1395         struct vcpu_vmx *vmx = to_vmx(vcpu);
1396
1397         /*
1398          * Don't allow changes to the VMX capability MSRs while the vCPU
1399          * is in VMX operation.
1400          */
1401         if (vmx->nested.vmxon)
1402                 return -EBUSY;
1403
1404         switch (msr_index) {
1405         case MSR_IA32_VMX_BASIC:
1406                 return vmx_restore_vmx_basic(vmx, data);
1407         case MSR_IA32_VMX_PINBASED_CTLS:
1408         case MSR_IA32_VMX_PROCBASED_CTLS:
1409         case MSR_IA32_VMX_EXIT_CTLS:
1410         case MSR_IA32_VMX_ENTRY_CTLS:
1411                 /*
1412                  * The "non-true" VMX capability MSRs are generated from the
1413                  * "true" MSRs, so we do not support restoring them directly.
1414                  *
1415                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1416                  * should restore the "true" MSRs with the must-be-1 bits
1417                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1418                  * DEFAULT SETTINGS".
1419                  */
1420                 return -EINVAL;
1421         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1422         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1423         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1424         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1425         case MSR_IA32_VMX_PROCBASED_CTLS2:
1426                 return vmx_restore_control_msr(vmx, msr_index, data);
1427         case MSR_IA32_VMX_MISC:
1428                 return vmx_restore_vmx_misc(vmx, data);
1429         case MSR_IA32_VMX_CR0_FIXED0:
1430         case MSR_IA32_VMX_CR4_FIXED0:
1431                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1432         case MSR_IA32_VMX_CR0_FIXED1:
1433         case MSR_IA32_VMX_CR4_FIXED1:
1434                 /*
1435                  * These MSRs are generated based on the vCPU's CPUID, so we
1436                  * do not support restoring them directly.
1437                  */
1438                 return -EINVAL;
1439         case MSR_IA32_VMX_EPT_VPID_CAP:
1440                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1441         case MSR_IA32_VMX_VMCS_ENUM:
1442                 vmx->nested.msrs.vmcs_enum = data;
1443                 return 0;
1444         case MSR_IA32_VMX_VMFUNC:
1445                 if (data & ~vmcs_config.nested.vmfunc_controls)
1446                         return -EINVAL;
1447                 vmx->nested.msrs.vmfunc_controls = data;
1448                 return 0;
1449         default:
1450                 /*
1451                  * The rest of the VMX capability MSRs do not support restore.
1452                  */
1453                 return -EINVAL;
1454         }
1455 }
1456
1457 /* Returns 0 on success, non-0 otherwise. */
1458 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1459 {
1460         switch (msr_index) {
1461         case MSR_IA32_VMX_BASIC:
1462                 *pdata = msrs->basic;
1463                 break;
1464         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1465         case MSR_IA32_VMX_PINBASED_CTLS:
1466                 *pdata = vmx_control_msr(
1467                         msrs->pinbased_ctls_low,
1468                         msrs->pinbased_ctls_high);
1469                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1470                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1471                 break;
1472         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1473         case MSR_IA32_VMX_PROCBASED_CTLS:
1474                 *pdata = vmx_control_msr(
1475                         msrs->procbased_ctls_low,
1476                         msrs->procbased_ctls_high);
1477                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1478                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1479                 break;
1480         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1481         case MSR_IA32_VMX_EXIT_CTLS:
1482                 *pdata = vmx_control_msr(
1483                         msrs->exit_ctls_low,
1484                         msrs->exit_ctls_high);
1485                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1486                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1487                 break;
1488         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1489         case MSR_IA32_VMX_ENTRY_CTLS:
1490                 *pdata = vmx_control_msr(
1491                         msrs->entry_ctls_low,
1492                         msrs->entry_ctls_high);
1493                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1494                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1495                 break;
1496         case MSR_IA32_VMX_MISC:
1497                 *pdata = vmx_control_msr(
1498                         msrs->misc_low,
1499                         msrs->misc_high);
1500                 break;
1501         case MSR_IA32_VMX_CR0_FIXED0:
1502                 *pdata = msrs->cr0_fixed0;
1503                 break;
1504         case MSR_IA32_VMX_CR0_FIXED1:
1505                 *pdata = msrs->cr0_fixed1;
1506                 break;
1507         case MSR_IA32_VMX_CR4_FIXED0:
1508                 *pdata = msrs->cr4_fixed0;
1509                 break;
1510         case MSR_IA32_VMX_CR4_FIXED1:
1511                 *pdata = msrs->cr4_fixed1;
1512                 break;
1513         case MSR_IA32_VMX_VMCS_ENUM:
1514                 *pdata = msrs->vmcs_enum;
1515                 break;
1516         case MSR_IA32_VMX_PROCBASED_CTLS2:
1517                 *pdata = vmx_control_msr(
1518                         msrs->secondary_ctls_low,
1519                         msrs->secondary_ctls_high);
1520                 break;
1521         case MSR_IA32_VMX_EPT_VPID_CAP:
1522                 *pdata = msrs->ept_caps |
1523                         ((u64)msrs->vpid_caps << 32);
1524                 break;
1525         case MSR_IA32_VMX_VMFUNC:
1526                 *pdata = msrs->vmfunc_controls;
1527                 break;
1528         default:
1529                 return 1;
1530         }
1531
1532         return 0;
1533 }
1534
1535 /*
1536  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1537  * been modified by the L1 guest.  Note, "writable" in this context means
1538  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1539  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1540  * VM-exit information fields (which are actually writable if the vCPU is
1541  * configured to support "VMWRITE to any supported field in the VMCS").
1542  */
1543 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1544 {
1545         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1546         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1547         struct shadow_vmcs_field field;
1548         unsigned long val;
1549         int i;
1550
1551         if (WARN_ON(!shadow_vmcs))
1552                 return;
1553
1554         preempt_disable();
1555
1556         vmcs_load(shadow_vmcs);
1557
1558         for (i = 0; i < max_shadow_read_write_fields; i++) {
1559                 field = shadow_read_write_fields[i];
1560                 val = __vmcs_readl(field.encoding);
1561                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1562         }
1563
1564         vmcs_clear(shadow_vmcs);
1565         vmcs_load(vmx->loaded_vmcs->vmcs);
1566
1567         preempt_enable();
1568 }
1569
1570 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1571 {
1572         const struct shadow_vmcs_field *fields[] = {
1573                 shadow_read_write_fields,
1574                 shadow_read_only_fields
1575         };
1576         const int max_fields[] = {
1577                 max_shadow_read_write_fields,
1578                 max_shadow_read_only_fields
1579         };
1580         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1581         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1582         struct shadow_vmcs_field field;
1583         unsigned long val;
1584         int i, q;
1585
1586         if (WARN_ON(!shadow_vmcs))
1587                 return;
1588
1589         vmcs_load(shadow_vmcs);
1590
1591         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1592                 for (i = 0; i < max_fields[q]; i++) {
1593                         field = fields[q][i];
1594                         val = vmcs12_read_any(vmcs12, field.encoding,
1595                                               field.offset);
1596                         __vmcs_writel(field.encoding, val);
1597                 }
1598         }
1599
1600         vmcs_clear(shadow_vmcs);
1601         vmcs_load(vmx->loaded_vmcs->vmcs);
1602 }
1603
1604 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1605 {
1606 #ifdef CONFIG_KVM_HYPERV
1607         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1608         struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1609         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1610
1611         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1612         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1613         vmcs12->guest_rip = evmcs->guest_rip;
1614
1615         if (unlikely(!(hv_clean_fields &
1616                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1617                 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1618                 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1619                 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1620         }
1621
1622         if (unlikely(!(hv_clean_fields &
1623                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1624                 vmcs12->guest_rsp = evmcs->guest_rsp;
1625                 vmcs12->guest_rflags = evmcs->guest_rflags;
1626                 vmcs12->guest_interruptibility_info =
1627                         evmcs->guest_interruptibility_info;
1628                 /*
1629                  * Not present in struct vmcs12:
1630                  * vmcs12->guest_ssp = evmcs->guest_ssp;
1631                  */
1632         }
1633
1634         if (unlikely(!(hv_clean_fields &
1635                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1636                 vmcs12->cpu_based_vm_exec_control =
1637                         evmcs->cpu_based_vm_exec_control;
1638         }
1639
1640         if (unlikely(!(hv_clean_fields &
1641                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1642                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1643         }
1644
1645         if (unlikely(!(hv_clean_fields &
1646                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1647                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1648         }
1649
1650         if (unlikely(!(hv_clean_fields &
1651                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1652                 vmcs12->vm_entry_intr_info_field =
1653                         evmcs->vm_entry_intr_info_field;
1654                 vmcs12->vm_entry_exception_error_code =
1655                         evmcs->vm_entry_exception_error_code;
1656                 vmcs12->vm_entry_instruction_len =
1657                         evmcs->vm_entry_instruction_len;
1658         }
1659
1660         if (unlikely(!(hv_clean_fields &
1661                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1662                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1663                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1664                 vmcs12->host_cr0 = evmcs->host_cr0;
1665                 vmcs12->host_cr3 = evmcs->host_cr3;
1666                 vmcs12->host_cr4 = evmcs->host_cr4;
1667                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1668                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1669                 vmcs12->host_rip = evmcs->host_rip;
1670                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1671                 vmcs12->host_es_selector = evmcs->host_es_selector;
1672                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1673                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1674                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1675                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1676                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1677                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1678                 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1679                 /*
1680                  * Not present in struct vmcs12:
1681                  * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1682                  * vmcs12->host_ssp = evmcs->host_ssp;
1683                  * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1684                  */
1685         }
1686
1687         if (unlikely(!(hv_clean_fields &
1688                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1689                 vmcs12->pin_based_vm_exec_control =
1690                         evmcs->pin_based_vm_exec_control;
1691                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1692                 vmcs12->secondary_vm_exec_control =
1693                         evmcs->secondary_vm_exec_control;
1694         }
1695
1696         if (unlikely(!(hv_clean_fields &
1697                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1698                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1699                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1700         }
1701
1702         if (unlikely(!(hv_clean_fields &
1703                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1704                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1705         }
1706
1707         if (unlikely(!(hv_clean_fields &
1708                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1709                 vmcs12->guest_es_base = evmcs->guest_es_base;
1710                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1711                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1712                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1713                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1714                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1715                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1716                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1717                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1718                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1719                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1720                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1721                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1722                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1723                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1724                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1725                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1726                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1727                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1728                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1729                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1730                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1731                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1732                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1733                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1734                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1735                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1736                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1737                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1738                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1739                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1740                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1741                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1742                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1743                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1744                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1745         }
1746
1747         if (unlikely(!(hv_clean_fields &
1748                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1749                 vmcs12->tsc_offset = evmcs->tsc_offset;
1750                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1751                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1752                 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1753                 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1754         }
1755
1756         if (unlikely(!(hv_clean_fields &
1757                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1758                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1759                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1760                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1761                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1762                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1763                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1764                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1765                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1766         }
1767
1768         if (unlikely(!(hv_clean_fields &
1769                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1770                 vmcs12->host_fs_base = evmcs->host_fs_base;
1771                 vmcs12->host_gs_base = evmcs->host_gs_base;
1772                 vmcs12->host_tr_base = evmcs->host_tr_base;
1773                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1774                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1775                 vmcs12->host_rsp = evmcs->host_rsp;
1776         }
1777
1778         if (unlikely(!(hv_clean_fields &
1779                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1780                 vmcs12->ept_pointer = evmcs->ept_pointer;
1781                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1782         }
1783
1784         if (unlikely(!(hv_clean_fields &
1785                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1786                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1787                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1788                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1789                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1790                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1791                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1792                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1793                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1794                 vmcs12->guest_pending_dbg_exceptions =
1795                         evmcs->guest_pending_dbg_exceptions;
1796                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1797                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1798                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1799                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1800                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1801                 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1802                 /*
1803                  * Not present in struct vmcs12:
1804                  * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1805                  * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1806                  * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1807                  */
1808         }
1809
1810         /*
1811          * Not used?
1812          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1813          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1814          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1815          * vmcs12->page_fault_error_code_mask =
1816          *              evmcs->page_fault_error_code_mask;
1817          * vmcs12->page_fault_error_code_match =
1818          *              evmcs->page_fault_error_code_match;
1819          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1820          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1821          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1822          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1823          */
1824
1825         /*
1826          * Read only fields:
1827          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1828          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1829          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1830          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1831          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1832          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1833          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1834          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1835          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1836          * vmcs12->exit_qualification = evmcs->exit_qualification;
1837          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1838          *
1839          * Not present in struct vmcs12:
1840          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1841          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1842          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1843          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1844          */
1845
1846         return;
1847 #else /* CONFIG_KVM_HYPERV */
1848         KVM_BUG_ON(1, vmx->vcpu.kvm);
1849 #endif /* CONFIG_KVM_HYPERV */
1850 }
1851
1852 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1853 {
1854 #ifdef CONFIG_KVM_HYPERV
1855         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1856         struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1857
1858         /*
1859          * Should not be changed by KVM:
1860          *
1861          * evmcs->host_es_selector = vmcs12->host_es_selector;
1862          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1863          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1864          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1865          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1866          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1867          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1868          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1869          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1870          * evmcs->host_cr0 = vmcs12->host_cr0;
1871          * evmcs->host_cr3 = vmcs12->host_cr3;
1872          * evmcs->host_cr4 = vmcs12->host_cr4;
1873          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1874          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1875          * evmcs->host_rip = vmcs12->host_rip;
1876          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1877          * evmcs->host_fs_base = vmcs12->host_fs_base;
1878          * evmcs->host_gs_base = vmcs12->host_gs_base;
1879          * evmcs->host_tr_base = vmcs12->host_tr_base;
1880          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1881          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1882          * evmcs->host_rsp = vmcs12->host_rsp;
1883          * sync_vmcs02_to_vmcs12() doesn't read these:
1884          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1885          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1886          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1887          * evmcs->ept_pointer = vmcs12->ept_pointer;
1888          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1889          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1890          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1891          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1892          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1893          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1894          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1895          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1896          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1897          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1898          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1899          * evmcs->page_fault_error_code_mask =
1900          *              vmcs12->page_fault_error_code_mask;
1901          * evmcs->page_fault_error_code_match =
1902          *              vmcs12->page_fault_error_code_match;
1903          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1904          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1905          * evmcs->tsc_offset = vmcs12->tsc_offset;
1906          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1907          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1908          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1909          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1910          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1911          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1912          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1913          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1914          * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1915          * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1916          * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1917          * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1918          *
1919          * Not present in struct vmcs12:
1920          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1921          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1922          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1923          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1924          * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1925          * evmcs->host_ssp = vmcs12->host_ssp;
1926          * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1927          * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1928          * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1929          * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1930          * evmcs->guest_ssp = vmcs12->guest_ssp;
1931          */
1932
1933         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1934         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1935         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1936         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1937         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1938         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1939         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1940         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1941
1942         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1943         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1944         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1945         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1946         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1947         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1948         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1949         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1950         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1951         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1952
1953         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1954         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1955         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1956         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1957         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1958         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1959         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1960         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1961
1962         evmcs->guest_es_base = vmcs12->guest_es_base;
1963         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1964         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1965         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1966         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1967         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1968         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1969         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1970         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1971         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1972
1973         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1974         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1975
1976         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1977         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1978         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1979         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1980
1981         evmcs->guest_pending_dbg_exceptions =
1982                 vmcs12->guest_pending_dbg_exceptions;
1983         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1984         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1985
1986         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1987         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1988
1989         evmcs->guest_cr0 = vmcs12->guest_cr0;
1990         evmcs->guest_cr3 = vmcs12->guest_cr3;
1991         evmcs->guest_cr4 = vmcs12->guest_cr4;
1992         evmcs->guest_dr7 = vmcs12->guest_dr7;
1993
1994         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1995
1996         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1997         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1998         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1999         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2000         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2001         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2002         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2003         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2004
2005         evmcs->exit_qualification = vmcs12->exit_qualification;
2006
2007         evmcs->guest_linear_address = vmcs12->guest_linear_address;
2008         evmcs->guest_rsp = vmcs12->guest_rsp;
2009         evmcs->guest_rflags = vmcs12->guest_rflags;
2010
2011         evmcs->guest_interruptibility_info =
2012                 vmcs12->guest_interruptibility_info;
2013         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2014         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2015         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2016         evmcs->vm_entry_exception_error_code =
2017                 vmcs12->vm_entry_exception_error_code;
2018         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2019
2020         evmcs->guest_rip = vmcs12->guest_rip;
2021
2022         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2023
2024         return;
2025 #else /* CONFIG_KVM_HYPERV */
2026         KVM_BUG_ON(1, vmx->vcpu.kvm);
2027 #endif /* CONFIG_KVM_HYPERV */
2028 }
2029
2030 /*
2031  * This is an equivalent of the nested hypervisor executing the vmptrld
2032  * instruction.
2033  */
2034 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2035         struct kvm_vcpu *vcpu, bool from_launch)
2036 {
2037 #ifdef CONFIG_KVM_HYPERV
2038         struct vcpu_vmx *vmx = to_vmx(vcpu);
2039         bool evmcs_gpa_changed = false;
2040         u64 evmcs_gpa;
2041
2042         if (likely(!guest_cpuid_has_evmcs(vcpu)))
2043                 return EVMPTRLD_DISABLED;
2044
2045         evmcs_gpa = nested_get_evmptr(vcpu);
2046         if (!evmptr_is_valid(evmcs_gpa)) {
2047                 nested_release_evmcs(vcpu);
2048                 return EVMPTRLD_DISABLED;
2049         }
2050
2051         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2052                 vmx->nested.current_vmptr = INVALID_GPA;
2053
2054                 nested_release_evmcs(vcpu);
2055
2056                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2057                                  &vmx->nested.hv_evmcs_map))
2058                         return EVMPTRLD_ERROR;
2059
2060                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2061
2062                 /*
2063                  * Currently, KVM only supports eVMCS version 1
2064                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2065                  * value to first u32 field of eVMCS which should specify eVMCS
2066                  * VersionNumber.
2067                  *
2068                  * Guest should be aware of supported eVMCS versions by host by
2069                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2070                  * expected to set this CPUID leaf according to the value
2071                  * returned in vmcs_version from nested_enable_evmcs().
2072                  *
2073                  * However, it turns out that Microsoft Hyper-V fails to comply
2074                  * to their own invented interface: When Hyper-V use eVMCS, it
2075                  * just sets first u32 field of eVMCS to revision_id specified
2076                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2077                  * which is one of the supported versions specified in
2078                  * CPUID.0x4000000A.EAX[0:15].
2079                  *
2080                  * To overcome Hyper-V bug, we accept here either a supported
2081                  * eVMCS version or VMCS12 revision_id as valid values for first
2082                  * u32 field of eVMCS.
2083                  */
2084                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2085                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2086                         nested_release_evmcs(vcpu);
2087                         return EVMPTRLD_VMFAIL;
2088                 }
2089
2090                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2091
2092                 evmcs_gpa_changed = true;
2093                 /*
2094                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2095                  * reloaded from guest's memory (read only fields, fields not
2096                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2097                  * are no leftovers.
2098                  */
2099                 if (from_launch) {
2100                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2101                         memset(vmcs12, 0, sizeof(*vmcs12));
2102                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2103                 }
2104
2105         }
2106
2107         /*
2108          * Clean fields data can't be used on VMLAUNCH and when we switch
2109          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2110          */
2111         if (from_launch || evmcs_gpa_changed) {
2112                 vmx->nested.hv_evmcs->hv_clean_fields &=
2113                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2114
2115                 vmx->nested.force_msr_bitmap_recalc = true;
2116         }
2117
2118         return EVMPTRLD_SUCCEEDED;
2119 #else
2120         return EVMPTRLD_DISABLED;
2121 #endif
2122 }
2123
2124 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2125 {
2126         struct vcpu_vmx *vmx = to_vmx(vcpu);
2127
2128         if (nested_vmx_is_evmptr12_valid(vmx))
2129                 copy_vmcs12_to_enlightened(vmx);
2130         else
2131                 copy_vmcs12_to_shadow(vmx);
2132
2133         vmx->nested.need_vmcs12_to_shadow_sync = false;
2134 }
2135
2136 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2137 {
2138         struct vcpu_vmx *vmx =
2139                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2140
2141         vmx->nested.preemption_timer_expired = true;
2142         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2143         kvm_vcpu_kick(&vmx->vcpu);
2144
2145         return HRTIMER_NORESTART;
2146 }
2147
2148 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2149 {
2150         struct vcpu_vmx *vmx = to_vmx(vcpu);
2151         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2152
2153         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2154                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2155
2156         if (!vmx->nested.has_preemption_timer_deadline) {
2157                 vmx->nested.preemption_timer_deadline =
2158                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2159                 vmx->nested.has_preemption_timer_deadline = true;
2160         }
2161         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2162 }
2163
2164 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2165                                         u64 preemption_timeout)
2166 {
2167         struct vcpu_vmx *vmx = to_vmx(vcpu);
2168
2169         /*
2170          * A timer value of zero is architecturally guaranteed to cause
2171          * a VMExit prior to executing any instructions in the guest.
2172          */
2173         if (preemption_timeout == 0) {
2174                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2175                 return;
2176         }
2177
2178         if (vcpu->arch.virtual_tsc_khz == 0)
2179                 return;
2180
2181         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2182         preemption_timeout *= 1000000;
2183         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2184         hrtimer_start(&vmx->nested.preemption_timer,
2185                       ktime_add_ns(ktime_get(), preemption_timeout),
2186                       HRTIMER_MODE_ABS_PINNED);
2187 }
2188
2189 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2190 {
2191         if (vmx->nested.nested_run_pending &&
2192             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2193                 return vmcs12->guest_ia32_efer;
2194         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2195                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2196         else
2197                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2198 }
2199
2200 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2201 {
2202         struct kvm *kvm = vmx->vcpu.kvm;
2203
2204         /*
2205          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2206          * according to L0's settings (vmcs12 is irrelevant here).  Host
2207          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2208          * will be set as needed prior to VMLAUNCH/VMRESUME.
2209          */
2210         if (vmx->nested.vmcs02_initialized)
2211                 return;
2212         vmx->nested.vmcs02_initialized = true;
2213
2214         /*
2215          * We don't care what the EPTP value is we just need to guarantee
2216          * it's valid so we don't get a false positive when doing early
2217          * consistency checks.
2218          */
2219         if (enable_ept && nested_early_check)
2220                 vmcs_write64(EPT_POINTER,
2221                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2222
2223         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2224         if (cpu_has_vmx_vmfunc())
2225                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2226
2227         if (cpu_has_vmx_posted_intr())
2228                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2229
2230         if (cpu_has_vmx_msr_bitmap())
2231                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2232
2233         /*
2234          * PML is emulated for L2, but never enabled in hardware as the MMU
2235          * handles A/D emulation.  Disabling PML for L2 also avoids having to
2236          * deal with filtering out L2 GPAs from the buffer.
2237          */
2238         if (enable_pml) {
2239                 vmcs_write64(PML_ADDRESS, 0);
2240                 vmcs_write16(GUEST_PML_INDEX, -1);
2241         }
2242
2243         if (cpu_has_vmx_encls_vmexit())
2244                 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2245
2246         if (kvm_notify_vmexit_enabled(kvm))
2247                 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2248
2249         /*
2250          * Set the MSR load/store lists to match L0's settings.  Only the
2251          * addresses are constant (for vmcs02), the counts can change based
2252          * on L2's behavior, e.g. switching to/from long mode.
2253          */
2254         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2255         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2256         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2257
2258         vmx_set_constant_host_state(vmx);
2259 }
2260
2261 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2262                                       struct vmcs12 *vmcs12)
2263 {
2264         prepare_vmcs02_constant_state(vmx);
2265
2266         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2267
2268         if (enable_vpid) {
2269                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2270                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2271                 else
2272                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2273         }
2274 }
2275
2276 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2277                                  struct vmcs12 *vmcs12)
2278 {
2279         u32 exec_control;
2280         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2281
2282         if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2283                 prepare_vmcs02_early_rare(vmx, vmcs12);
2284
2285         /*
2286          * PIN CONTROLS
2287          */
2288         exec_control = __pin_controls_get(vmcs01);
2289         exec_control |= (vmcs12->pin_based_vm_exec_control &
2290                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2291
2292         /* Posted interrupts setting is only taken from vmcs12.  */
2293         vmx->nested.pi_pending = false;
2294         if (nested_cpu_has_posted_intr(vmcs12))
2295                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2296         else
2297                 exec_control &= ~PIN_BASED_POSTED_INTR;
2298         pin_controls_set(vmx, exec_control);
2299
2300         /*
2301          * EXEC CONTROLS
2302          */
2303         exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2304         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2305         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2306         exec_control &= ~CPU_BASED_TPR_SHADOW;
2307         exec_control |= vmcs12->cpu_based_vm_exec_control;
2308
2309         vmx->nested.l1_tpr_threshold = -1;
2310         if (exec_control & CPU_BASED_TPR_SHADOW)
2311                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2312 #ifdef CONFIG_X86_64
2313         else
2314                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2315                                 CPU_BASED_CR8_STORE_EXITING;
2316 #endif
2317
2318         /*
2319          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2320          * for I/O port accesses.
2321          */
2322         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2323         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2324
2325         /*
2326          * This bit will be computed in nested_get_vmcs12_pages, because
2327          * we do not have access to L1's MSR bitmap yet.  For now, keep
2328          * the same bit as before, hoping to avoid multiple VMWRITEs that
2329          * only set/clear this bit.
2330          */
2331         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2332         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2333
2334         exec_controls_set(vmx, exec_control);
2335
2336         /*
2337          * SECONDARY EXEC CONTROLS
2338          */
2339         if (cpu_has_secondary_exec_ctrls()) {
2340                 exec_control = __secondary_exec_controls_get(vmcs01);
2341
2342                 /* Take the following fields only from vmcs12 */
2343                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2344                                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2345                                   SECONDARY_EXEC_ENABLE_INVPCID |
2346                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2347                                   SECONDARY_EXEC_ENABLE_XSAVES |
2348                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2349                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2350                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2351                                   SECONDARY_EXEC_ENABLE_VMFUNC |
2352                                   SECONDARY_EXEC_DESC);
2353
2354                 if (nested_cpu_has(vmcs12,
2355                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2356                         exec_control |= vmcs12->secondary_vm_exec_control;
2357
2358                 /* PML is emulated and never enabled in hardware for L2. */
2359                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2360
2361                 /* VMCS shadowing for L2 is emulated for now */
2362                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2363
2364                 /*
2365                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2366                  * will not have to rewrite the controls just for this bit.
2367                  */
2368                 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2369                         exec_control |= SECONDARY_EXEC_DESC;
2370
2371                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2372                         vmcs_write16(GUEST_INTR_STATUS,
2373                                 vmcs12->guest_intr_status);
2374
2375                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2376                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2377
2378                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2379                         vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2380
2381                 secondary_exec_controls_set(vmx, exec_control);
2382         }
2383
2384         /*
2385          * ENTRY CONTROLS
2386          *
2387          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2388          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2389          * on the related bits (if supported by the CPU) in the hope that
2390          * we can avoid VMWrites during vmx_set_efer().
2391          *
2392          * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2393          * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2394          * do the same for L2.
2395          */
2396         exec_control = __vm_entry_controls_get(vmcs01);
2397         exec_control |= (vmcs12->vm_entry_controls &
2398                          ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2399         exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2400         if (cpu_has_load_ia32_efer()) {
2401                 if (guest_efer & EFER_LMA)
2402                         exec_control |= VM_ENTRY_IA32E_MODE;
2403                 if (guest_efer != host_efer)
2404                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2405         }
2406         vm_entry_controls_set(vmx, exec_control);
2407
2408         /*
2409          * EXIT CONTROLS
2410          *
2411          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2412          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2413          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2414          */
2415         exec_control = __vm_exit_controls_get(vmcs01);
2416         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2417                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2418         else
2419                 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2420         vm_exit_controls_set(vmx, exec_control);
2421
2422         /*
2423          * Interrupt/Exception Fields
2424          */
2425         if (vmx->nested.nested_run_pending) {
2426                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2427                              vmcs12->vm_entry_intr_info_field);
2428                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2429                              vmcs12->vm_entry_exception_error_code);
2430                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2431                              vmcs12->vm_entry_instruction_len);
2432                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2433                              vmcs12->guest_interruptibility_info);
2434                 vmx->loaded_vmcs->nmi_known_unmasked =
2435                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2436         } else {
2437                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2438         }
2439 }
2440
2441 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2442 {
2443         struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2444
2445         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2446                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2447                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2448                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2449                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2450                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2451                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2452                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2453                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2454                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2455                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2456                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2457                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2458                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2459                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2460                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2461                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2462                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2463                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2464                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2465                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2466                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2467                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2468                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2469                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2470                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2471                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2472                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2473                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2474                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2475                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2476                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2477                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2478                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2479                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2480                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2481                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2482                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2483
2484                 vmx->segment_cache.bitmask = 0;
2485         }
2486
2487         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2488                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2489                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2490                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2491                             vmcs12->guest_pending_dbg_exceptions);
2492                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2493                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2494
2495                 /*
2496                  * L1 may access the L2's PDPTR, so save them to construct
2497                  * vmcs12
2498                  */
2499                 if (enable_ept) {
2500                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2501                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2502                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2503                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2504                 }
2505
2506                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2507                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2508                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2509         }
2510
2511         if (nested_cpu_has_xsaves(vmcs12))
2512                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2513
2514         /*
2515          * Whether page-faults are trapped is determined by a combination of
2516          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2517          * doesn't care about page faults then we should set all of these to
2518          * L1's desires. However, if L0 does care about (some) page faults, it
2519          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2520          * simply ask to exit on each and every L2 page fault. This is done by
2521          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2522          * Note that below we don't need special code to set EB.PF beyond the
2523          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2524          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2525          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2526          */
2527         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2528                 /*
2529                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2530                  * go ahead and use it?
2531                  */
2532                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2533                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2534         } else {
2535                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2536                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2537         }
2538
2539         if (cpu_has_vmx_apicv()) {
2540                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2541                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2542                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2543                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2544         }
2545
2546         /*
2547          * Make sure the msr_autostore list is up to date before we set the
2548          * count in the vmcs02.
2549          */
2550         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2551
2552         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2553         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2554         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2555
2556         set_cr4_guest_host_mask(vmx);
2557 }
2558
2559 /*
2560  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2561  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2562  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2563  * guest in a way that will both be appropriate to L1's requests, and our
2564  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2565  * function also has additional necessary side-effects, like setting various
2566  * vcpu->arch fields.
2567  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2568  * is assigned to entry_failure_code on failure.
2569  */
2570 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2571                           bool from_vmentry,
2572                           enum vm_entry_failure_code *entry_failure_code)
2573 {
2574         struct vcpu_vmx *vmx = to_vmx(vcpu);
2575         struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2576         bool load_guest_pdptrs_vmcs12 = false;
2577
2578         if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2579                 prepare_vmcs02_rare(vmx, vmcs12);
2580                 vmx->nested.dirty_vmcs12 = false;
2581
2582                 load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2583                         !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2584         }
2585
2586         if (vmx->nested.nested_run_pending &&
2587             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2588                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2589                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2590         } else {
2591                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2592                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2593         }
2594         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2595             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2596                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2597         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2598
2599         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2600          * bitwise-or of what L1 wants to trap for L2, and what we want to
2601          * trap. Note that CR0.TS also needs updating - we do this later.
2602          */
2603         vmx_update_exception_bitmap(vcpu);
2604         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2605         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2606
2607         if (vmx->nested.nested_run_pending &&
2608             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2609                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2610                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2611         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2612                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2613         }
2614
2615         vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2616                         vcpu->arch.l1_tsc_offset,
2617                         vmx_get_l2_tsc_offset(vcpu),
2618                         vmx_get_l2_tsc_multiplier(vcpu));
2619
2620         vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2621                         vcpu->arch.l1_tsc_scaling_ratio,
2622                         vmx_get_l2_tsc_multiplier(vcpu));
2623
2624         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2625         if (kvm_caps.has_tsc_control)
2626                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2627
2628         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2629
2630         if (nested_cpu_has_ept(vmcs12))
2631                 nested_ept_init_mmu_context(vcpu);
2632
2633         /*
2634          * Override the CR0/CR4 read shadows after setting the effective guest
2635          * CR0/CR4.  The common helpers also set the shadows, but they don't
2636          * account for vmcs12's cr0/4_guest_host_mask.
2637          */
2638         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2639         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2640
2641         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2642         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2643
2644         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2645         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2646         vmx_set_efer(vcpu, vcpu->arch.efer);
2647
2648         /*
2649          * Guest state is invalid and unrestricted guest is disabled,
2650          * which means L1 attempted VMEntry to L2 with invalid state.
2651          * Fail the VMEntry.
2652          *
2653          * However when force loading the guest state (SMM exit or
2654          * loading nested state after migration, it is possible to
2655          * have invalid guest state now, which will be later fixed by
2656          * restoring L2 register state
2657          */
2658         if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2659                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2660                 return -EINVAL;
2661         }
2662
2663         /* Shadow page tables on either EPT or shadow page tables. */
2664         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2665                                 from_vmentry, entry_failure_code))
2666                 return -EINVAL;
2667
2668         /*
2669          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2670          * on nested VM-Exit, which can occur without actually running L2 and
2671          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2672          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2673          * transition to HLT instead of running L2.
2674          */
2675         if (enable_ept)
2676                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2677
2678         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2679         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2680             is_pae_paging(vcpu)) {
2681                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2682                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2683                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2684                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2685         }
2686
2687         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2688             kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2689             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2690                                      vmcs12->guest_ia32_perf_global_ctrl))) {
2691                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2692                 return -EINVAL;
2693         }
2694
2695         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2696         kvm_rip_write(vcpu, vmcs12->guest_rip);
2697
2698         /*
2699          * It was observed that genuine Hyper-V running in L1 doesn't reset
2700          * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2701          * bits when it changes a field in eVMCS. Mark all fields as clean
2702          * here.
2703          */
2704         if (nested_vmx_is_evmptr12_valid(vmx))
2705                 evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2706
2707         return 0;
2708 }
2709
2710 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2711 {
2712         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2713                nested_cpu_has_virtual_nmis(vmcs12)))
2714                 return -EINVAL;
2715
2716         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2717                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2718                 return -EINVAL;
2719
2720         return 0;
2721 }
2722
2723 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2724 {
2725         struct vcpu_vmx *vmx = to_vmx(vcpu);
2726
2727         /* Check for memory type validity */
2728         switch (new_eptp & VMX_EPTP_MT_MASK) {
2729         case VMX_EPTP_MT_UC:
2730                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2731                         return false;
2732                 break;
2733         case VMX_EPTP_MT_WB:
2734                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2735                         return false;
2736                 break;
2737         default:
2738                 return false;
2739         }
2740
2741         /* Page-walk levels validity. */
2742         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2743         case VMX_EPTP_PWL_5:
2744                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2745                         return false;
2746                 break;
2747         case VMX_EPTP_PWL_4:
2748                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2749                         return false;
2750                 break;
2751         default:
2752                 return false;
2753         }
2754
2755         /* Reserved bits should not be set */
2756         if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2757                 return false;
2758
2759         /* AD, if set, should be supported */
2760         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2761                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2762                         return false;
2763         }
2764
2765         return true;
2766 }
2767
2768 /*
2769  * Checks related to VM-Execution Control Fields
2770  */
2771 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2772                                               struct vmcs12 *vmcs12)
2773 {
2774         struct vcpu_vmx *vmx = to_vmx(vcpu);
2775
2776         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2777                                    vmx->nested.msrs.pinbased_ctls_low,
2778                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2779             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2780                                    vmx->nested.msrs.procbased_ctls_low,
2781                                    vmx->nested.msrs.procbased_ctls_high)))
2782                 return -EINVAL;
2783
2784         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2785             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2786                                    vmx->nested.msrs.secondary_ctls_low,
2787                                    vmx->nested.msrs.secondary_ctls_high)))
2788                 return -EINVAL;
2789
2790         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2791             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2792             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2793             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2794             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2795             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2796             nested_vmx_check_nmi_controls(vmcs12) ||
2797             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2798             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2799             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2800             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2801             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2802                 return -EINVAL;
2803
2804         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2805             nested_cpu_has_save_preemption_timer(vmcs12))
2806                 return -EINVAL;
2807
2808         if (nested_cpu_has_ept(vmcs12) &&
2809             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2810                 return -EINVAL;
2811
2812         if (nested_cpu_has_vmfunc(vmcs12)) {
2813                 if (CC(vmcs12->vm_function_control &
2814                        ~vmx->nested.msrs.vmfunc_controls))
2815                         return -EINVAL;
2816
2817                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2818                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2819                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2820                                 return -EINVAL;
2821                 }
2822         }
2823
2824         return 0;
2825 }
2826
2827 /*
2828  * Checks related to VM-Exit Control Fields
2829  */
2830 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2831                                          struct vmcs12 *vmcs12)
2832 {
2833         struct vcpu_vmx *vmx = to_vmx(vcpu);
2834
2835         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2836                                     vmx->nested.msrs.exit_ctls_low,
2837                                     vmx->nested.msrs.exit_ctls_high)) ||
2838             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2839                 return -EINVAL;
2840
2841         return 0;
2842 }
2843
2844 /*
2845  * Checks related to VM-Entry Control Fields
2846  */
2847 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2848                                           struct vmcs12 *vmcs12)
2849 {
2850         struct vcpu_vmx *vmx = to_vmx(vcpu);
2851
2852         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2853                                     vmx->nested.msrs.entry_ctls_low,
2854                                     vmx->nested.msrs.entry_ctls_high)))
2855                 return -EINVAL;
2856
2857         /*
2858          * From the Intel SDM, volume 3:
2859          * Fields relevant to VM-entry event injection must be set properly.
2860          * These fields are the VM-entry interruption-information field, the
2861          * VM-entry exception error code, and the VM-entry instruction length.
2862          */
2863         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2864                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2865                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2866                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2867                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2868                 bool should_have_error_code;
2869                 bool urg = nested_cpu_has2(vmcs12,
2870                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2871                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2872
2873                 /* VM-entry interruption-info field: interruption type */
2874                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2875                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2876                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2877                         return -EINVAL;
2878
2879                 /* VM-entry interruption-info field: vector */
2880                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2881                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2882                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2883                         return -EINVAL;
2884
2885                 /* VM-entry interruption-info field: deliver error code */
2886                 should_have_error_code =
2887                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2888                         x86_exception_has_error_code(vector);
2889                 if (CC(has_error_code != should_have_error_code))
2890                         return -EINVAL;
2891
2892                 /* VM-entry exception error code */
2893                 if (CC(has_error_code &&
2894                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2895                         return -EINVAL;
2896
2897                 /* VM-entry interruption-info field: reserved bits */
2898                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2899                         return -EINVAL;
2900
2901                 /* VM-entry instruction length */
2902                 switch (intr_type) {
2903                 case INTR_TYPE_SOFT_EXCEPTION:
2904                 case INTR_TYPE_SOFT_INTR:
2905                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2906                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2907                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2908                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2909                                 return -EINVAL;
2910                 }
2911         }
2912
2913         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2914                 return -EINVAL;
2915
2916         return 0;
2917 }
2918
2919 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2920                                      struct vmcs12 *vmcs12)
2921 {
2922         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2923             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2924             nested_check_vm_entry_controls(vcpu, vmcs12))
2925                 return -EINVAL;
2926
2927 #ifdef CONFIG_KVM_HYPERV
2928         if (guest_cpuid_has_evmcs(vcpu))
2929                 return nested_evmcs_check_controls(vmcs12);
2930 #endif
2931
2932         return 0;
2933 }
2934
2935 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2936                                        struct vmcs12 *vmcs12)
2937 {
2938 #ifdef CONFIG_X86_64
2939         if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2940                 !!(vcpu->arch.efer & EFER_LMA)))
2941                 return -EINVAL;
2942 #endif
2943         return 0;
2944 }
2945
2946 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2947                                        struct vmcs12 *vmcs12)
2948 {
2949         bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2950
2951         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2952             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2953             CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
2954                 return -EINVAL;
2955
2956         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2957             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2958                 return -EINVAL;
2959
2960         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2961             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2962                 return -EINVAL;
2963
2964         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2965             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2966                                            vmcs12->host_ia32_perf_global_ctrl)))
2967                 return -EINVAL;
2968
2969         if (ia32e) {
2970                 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2971                         return -EINVAL;
2972         } else {
2973                 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2974                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2975                     CC((vmcs12->host_rip) >> 32))
2976                         return -EINVAL;
2977         }
2978
2979         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2980             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2981             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2982             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2983             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2984             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2985             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2986             CC(vmcs12->host_cs_selector == 0) ||
2987             CC(vmcs12->host_tr_selector == 0) ||
2988             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2989                 return -EINVAL;
2990
2991         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2992             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2993             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2994             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2995             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2996             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2997                 return -EINVAL;
2998
2999         /*
3000          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3001          * IA32_EFER MSR must be 0 in the field for that register. In addition,
3002          * the values of the LMA and LME bits in the field must each be that of
3003          * the host address-space size VM-exit control.
3004          */
3005         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3006                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3007                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3008                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3009                         return -EINVAL;
3010         }
3011
3012         return 0;
3013 }
3014
3015 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3016                                           struct vmcs12 *vmcs12)
3017 {
3018         struct vcpu_vmx *vmx = to_vmx(vcpu);
3019         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3020         struct vmcs_hdr hdr;
3021
3022         if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3023                 return 0;
3024
3025         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3026                 return -EINVAL;
3027
3028         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3029             CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3030                                          vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3031                 return -EINVAL;
3032
3033         if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3034                                             offsetof(struct vmcs12, hdr),
3035                                             sizeof(hdr))))
3036                 return -EINVAL;
3037
3038         if (CC(hdr.revision_id != VMCS12_REVISION) ||
3039             CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3040                 return -EINVAL;
3041
3042         return 0;
3043 }
3044
3045 /*
3046  * Checks related to Guest Non-register State
3047  */
3048 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3049 {
3050         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3051                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3052                vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3053                 return -EINVAL;
3054
3055         return 0;
3056 }
3057
3058 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3059                                         struct vmcs12 *vmcs12,
3060                                         enum vm_entry_failure_code *entry_failure_code)
3061 {
3062         bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3063
3064         *entry_failure_code = ENTRY_FAIL_DEFAULT;
3065
3066         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3067             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3068                 return -EINVAL;
3069
3070         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3071             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3072                 return -EINVAL;
3073
3074         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3075             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3076                 return -EINVAL;
3077
3078         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3079                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3080                 return -EINVAL;
3081         }
3082
3083         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3084             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3085                                            vmcs12->guest_ia32_perf_global_ctrl)))
3086                 return -EINVAL;
3087
3088         if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3089                 return -EINVAL;
3090
3091         if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3092             CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3093                 return -EINVAL;
3094
3095         /*
3096          * If the load IA32_EFER VM-entry control is 1, the following checks
3097          * are performed on the field for the IA32_EFER MSR:
3098          * - Bits reserved in the IA32_EFER MSR must be 0.
3099          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3100          *   the IA-32e mode guest VM-exit control. It must also be identical
3101          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3102          *   CR0.PG) is 1.
3103          */
3104         if (to_vmx(vcpu)->nested.nested_run_pending &&
3105             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3106                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3107                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3108                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3109                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3110                         return -EINVAL;
3111         }
3112
3113         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3114             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3115              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3116                 return -EINVAL;
3117
3118         if (nested_check_guest_non_reg_state(vmcs12))
3119                 return -EINVAL;
3120
3121         return 0;
3122 }
3123
3124 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3125 {
3126         struct vcpu_vmx *vmx = to_vmx(vcpu);
3127         unsigned long cr3, cr4;
3128         bool vm_fail;
3129
3130         if (!nested_early_check)
3131                 return 0;
3132
3133         if (vmx->msr_autoload.host.nr)
3134                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3135         if (vmx->msr_autoload.guest.nr)
3136                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3137
3138         preempt_disable();
3139
3140         vmx_prepare_switch_to_guest(vcpu);
3141
3142         /*
3143          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3144          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3145          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3146          * there is no need to preserve other bits or save/restore the field.
3147          */
3148         vmcs_writel(GUEST_RFLAGS, 0);
3149
3150         cr3 = __get_current_cr3_fast();
3151         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3152                 vmcs_writel(HOST_CR3, cr3);
3153                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3154         }
3155
3156         cr4 = cr4_read_shadow();
3157         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3158                 vmcs_writel(HOST_CR4, cr4);
3159                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3160         }
3161
3162         vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3163                                  __vmx_vcpu_run_flags(vmx));
3164
3165         if (vmx->msr_autoload.host.nr)
3166                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3167         if (vmx->msr_autoload.guest.nr)
3168                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3169
3170         if (vm_fail) {
3171                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3172
3173                 preempt_enable();
3174
3175                 trace_kvm_nested_vmenter_failed(
3176                         "early hardware check VM-instruction error: ", error);
3177                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3178                 return 1;
3179         }
3180
3181         /*
3182          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3183          */
3184         if (hw_breakpoint_active())
3185                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3186         local_irq_enable();
3187         preempt_enable();
3188
3189         /*
3190          * A non-failing VMEntry means we somehow entered guest mode with
3191          * an illegal RIP, and that's just the tip of the iceberg.  There
3192          * is no telling what memory has been modified or what state has
3193          * been exposed to unknown code.  Hitting this all but guarantees
3194          * a (very critical) hardware issue.
3195          */
3196         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3197                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3198
3199         return 0;
3200 }
3201
3202 #ifdef CONFIG_KVM_HYPERV
3203 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3204 {
3205         struct vcpu_vmx *vmx = to_vmx(vcpu);
3206
3207         /*
3208          * hv_evmcs may end up being not mapped after migration (when
3209          * L2 was running), map it here to make sure vmcs12 changes are
3210          * properly reflected.
3211          */
3212         if (guest_cpuid_has_evmcs(vcpu) &&
3213             vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3214                 enum nested_evmptrld_status evmptrld_status =
3215                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3216
3217                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3218                     evmptrld_status == EVMPTRLD_ERROR)
3219                         return false;
3220
3221                 /*
3222                  * Post migration VMCS12 always provides the most actual
3223                  * information, copy it to eVMCS upon entry.
3224                  */
3225                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3226         }
3227
3228         return true;
3229 }
3230 #endif
3231
3232 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3233 {
3234         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3235         struct vcpu_vmx *vmx = to_vmx(vcpu);
3236         struct kvm_host_map *map;
3237
3238         if (!vcpu->arch.pdptrs_from_userspace &&
3239             !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3240                 /*
3241                  * Reload the guest's PDPTRs since after a migration
3242                  * the guest CR3 might be restored prior to setting the nested
3243                  * state which can lead to a load of wrong PDPTRs.
3244                  */
3245                 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3246                         return false;
3247         }
3248
3249
3250         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3251                 map = &vmx->nested.apic_access_page_map;
3252
3253                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3254                         vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3255                 } else {
3256                         pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3257                                              __func__);
3258                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3259                         vcpu->run->internal.suberror =
3260                                 KVM_INTERNAL_ERROR_EMULATION;
3261                         vcpu->run->internal.ndata = 0;
3262                         return false;
3263                 }
3264         }
3265
3266         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3267                 map = &vmx->nested.virtual_apic_map;
3268
3269                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3270                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3271                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3272                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3273                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3274                         /*
3275                          * The processor will never use the TPR shadow, simply
3276                          * clear the bit from the execution control.  Such a
3277                          * configuration is useless, but it happens in tests.
3278                          * For any other configuration, failing the vm entry is
3279                          * _not_ what the processor does but it's basically the
3280                          * only possibility we have.
3281                          */
3282                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3283                 } else {
3284                         /*
3285                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3286                          * force VM-Entry to fail.
3287                          */
3288                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3289                 }
3290         }
3291
3292         if (nested_cpu_has_posted_intr(vmcs12)) {
3293                 map = &vmx->nested.pi_desc_map;
3294
3295                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3296                         vmx->nested.pi_desc =
3297                                 (struct pi_desc *)(((void *)map->hva) +
3298                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3299                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3300                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3301                 } else {
3302                         /*
3303                          * Defer the KVM_INTERNAL_EXIT until KVM tries to
3304                          * access the contents of the VMCS12 posted interrupt
3305                          * descriptor. (Note that KVM may do this when it
3306                          * should not, per the architectural specification.)
3307                          */
3308                         vmx->nested.pi_desc = NULL;
3309                         pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3310                 }
3311         }
3312         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3313                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3314         else
3315                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3316
3317         return true;
3318 }
3319
3320 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3321 {
3322 #ifdef CONFIG_KVM_HYPERV
3323         /*
3324          * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3325          * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3326          * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3327          * migration.
3328          */
3329         if (!nested_get_evmcs_page(vcpu)) {
3330                 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3331                                      __func__);
3332                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3333                 vcpu->run->internal.suberror =
3334                         KVM_INTERNAL_ERROR_EMULATION;
3335                 vcpu->run->internal.ndata = 0;
3336
3337                 return false;
3338         }
3339 #endif
3340
3341         if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3342                 return false;
3343
3344         return true;
3345 }
3346
3347 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3348 {
3349         struct vmcs12 *vmcs12;
3350         struct vcpu_vmx *vmx = to_vmx(vcpu);
3351         gpa_t dst;
3352
3353         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3354                 return 0;
3355
3356         if (WARN_ON_ONCE(vmx->nested.pml_full))
3357                 return 1;
3358
3359         /*
3360          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3361          * set is already checked as part of A/D emulation.
3362          */
3363         vmcs12 = get_vmcs12(vcpu);
3364         if (!nested_cpu_has_pml(vmcs12))
3365                 return 0;
3366
3367         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3368                 vmx->nested.pml_full = true;
3369                 return 1;
3370         }
3371
3372         gpa &= ~0xFFFull;
3373         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3374
3375         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3376                                  offset_in_page(dst), sizeof(gpa)))
3377                 return 0;
3378
3379         vmcs12->guest_pml_index--;
3380
3381         return 0;
3382 }
3383
3384 /*
3385  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3386  * for running VMX instructions (except VMXON, whose prerequisites are
3387  * slightly different). It also specifies what exception to inject otherwise.
3388  * Note that many of these exceptions have priority over VM exits, so they
3389  * don't have to be checked again here.
3390  */
3391 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3392 {
3393         if (!to_vmx(vcpu)->nested.vmxon) {
3394                 kvm_queue_exception(vcpu, UD_VECTOR);
3395                 return 0;
3396         }
3397
3398         if (vmx_get_cpl(vcpu)) {
3399                 kvm_inject_gp(vcpu, 0);
3400                 return 0;
3401         }
3402
3403         return 1;
3404 }
3405
3406 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3407 {
3408         u8 rvi = vmx_get_rvi();
3409         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3410
3411         return ((rvi & 0xf0) > (vppr & 0xf0));
3412 }
3413
3414 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3415                                    struct vmcs12 *vmcs12);
3416
3417 /*
3418  * If from_vmentry is false, this is being called from state restore (either RSM
3419  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3420  *
3421  * Returns:
3422  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3423  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3424  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3425  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3426  */
3427 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3428                                                         bool from_vmentry)
3429 {
3430         struct vcpu_vmx *vmx = to_vmx(vcpu);
3431         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3432         enum vm_entry_failure_code entry_failure_code;
3433         bool evaluate_pending_interrupts;
3434         union vmx_exit_reason exit_reason = {
3435                 .basic = EXIT_REASON_INVALID_STATE,
3436                 .failed_vmentry = 1,
3437         };
3438         u32 failed_index;
3439
3440         trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3441                                  vmx->nested.current_vmptr,
3442                                  vmcs12->guest_rip,
3443                                  vmcs12->guest_intr_status,
3444                                  vmcs12->vm_entry_intr_info_field,
3445                                  vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3446                                  vmcs12->ept_pointer,
3447                                  vmcs12->guest_cr3,
3448                                  KVM_ISA_VMX);
3449
3450         kvm_service_local_tlb_flush_requests(vcpu);
3451
3452         evaluate_pending_interrupts = exec_controls_get(vmx) &
3453                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3454         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3455                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3456         if (!evaluate_pending_interrupts)
3457                 evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3458
3459         if (!vmx->nested.nested_run_pending ||
3460             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3461                 vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3462         if (kvm_mpx_supported() &&
3463             (!vmx->nested.nested_run_pending ||
3464              !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3465                 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3466
3467         /*
3468          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3469          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3470          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3471          * software model to the pre-VMEntry host state.  When EPT is disabled,
3472          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3473          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3474          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3475          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3476          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3477          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3478          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3479          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3480          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3481          * path would need to manually save/restore vmcs01.GUEST_CR3.
3482          */
3483         if (!enable_ept && !nested_early_check)
3484                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3485
3486         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3487
3488         prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3489
3490         if (from_vmentry) {
3491                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3492                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3493                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3494                 }
3495
3496                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3497                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3498                         return NVMX_VMENTRY_VMFAIL;
3499                 }
3500
3501                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3502                                                  &entry_failure_code)) {
3503                         exit_reason.basic = EXIT_REASON_INVALID_STATE;
3504                         vmcs12->exit_qualification = entry_failure_code;
3505                         goto vmentry_fail_vmexit;
3506                 }
3507         }
3508
3509         enter_guest_mode(vcpu);
3510
3511         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3512                 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3513                 vmcs12->exit_qualification = entry_failure_code;
3514                 goto vmentry_fail_vmexit_guest_mode;
3515         }
3516
3517         if (from_vmentry) {
3518                 failed_index = nested_vmx_load_msr(vcpu,
3519                                                    vmcs12->vm_entry_msr_load_addr,
3520                                                    vmcs12->vm_entry_msr_load_count);
3521                 if (failed_index) {
3522                         exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3523                         vmcs12->exit_qualification = failed_index;
3524                         goto vmentry_fail_vmexit_guest_mode;
3525                 }
3526         } else {
3527                 /*
3528                  * The MMU is not initialized to point at the right entities yet and
3529                  * "get pages" would need to read data from the guest (i.e. we will
3530                  * need to perform gpa to hpa translation). Request a call
3531                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3532                  * have already been set at vmentry time and should not be reset.
3533                  */
3534                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3535         }
3536
3537         /*
3538          * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3539          * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3540          * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3541          * unconditionally.
3542          */
3543         if (unlikely(evaluate_pending_interrupts))
3544                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3545
3546         /*
3547          * Do not start the preemption timer hrtimer until after we know
3548          * we are successful, so that only nested_vmx_vmexit needs to cancel
3549          * the timer.
3550          */
3551         vmx->nested.preemption_timer_expired = false;
3552         if (nested_cpu_has_preemption_timer(vmcs12)) {
3553                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3554                 vmx_start_preemption_timer(vcpu, timer_value);
3555         }
3556
3557         /*
3558          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3559          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3560          * returned as far as L1 is concerned. It will only return (and set
3561          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3562          */
3563         return NVMX_VMENTRY_SUCCESS;
3564
3565         /*
3566          * A failed consistency check that leads to a VMExit during L1's
3567          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3568          * 26.7 "VM-entry failures during or after loading guest state".
3569          */
3570 vmentry_fail_vmexit_guest_mode:
3571         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3572                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3573         leave_guest_mode(vcpu);
3574
3575 vmentry_fail_vmexit:
3576         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3577
3578         if (!from_vmentry)
3579                 return NVMX_VMENTRY_VMEXIT;
3580
3581         load_vmcs12_host_state(vcpu, vmcs12);
3582         vmcs12->vm_exit_reason = exit_reason.full;
3583         if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3584                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3585         return NVMX_VMENTRY_VMEXIT;
3586 }
3587
3588 /*
3589  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3590  * for running an L2 nested guest.
3591  */
3592 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3593 {
3594         struct vmcs12 *vmcs12;
3595         enum nvmx_vmentry_status status;
3596         struct vcpu_vmx *vmx = to_vmx(vcpu);
3597         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3598         enum nested_evmptrld_status evmptrld_status;
3599
3600         if (!nested_vmx_check_permission(vcpu))
3601                 return 1;
3602
3603         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3604         if (evmptrld_status == EVMPTRLD_ERROR) {
3605                 kvm_queue_exception(vcpu, UD_VECTOR);
3606                 return 1;
3607         }
3608
3609         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3610
3611         if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3612                 return nested_vmx_failInvalid(vcpu);
3613
3614         if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3615                vmx->nested.current_vmptr == INVALID_GPA))
3616                 return nested_vmx_failInvalid(vcpu);
3617
3618         vmcs12 = get_vmcs12(vcpu);
3619
3620         /*
3621          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3622          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3623          * rather than RFLAGS.ZF, and no error number is stored to the
3624          * VM-instruction error field.
3625          */
3626         if (CC(vmcs12->hdr.shadow_vmcs))
3627                 return nested_vmx_failInvalid(vcpu);
3628
3629         if (nested_vmx_is_evmptr12_valid(vmx)) {
3630                 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3631
3632                 copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3633                 /* Enlightened VMCS doesn't have launch state */
3634                 vmcs12->launch_state = !launch;
3635         } else if (enable_shadow_vmcs) {
3636                 copy_shadow_to_vmcs12(vmx);
3637         }
3638
3639         /*
3640          * The nested entry process starts with enforcing various prerequisites
3641          * on vmcs12 as required by the Intel SDM, and act appropriately when
3642          * they fail: As the SDM explains, some conditions should cause the
3643          * instruction to fail, while others will cause the instruction to seem
3644          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3645          * To speed up the normal (success) code path, we should avoid checking
3646          * for misconfigurations which will anyway be caught by the processor
3647          * when using the merged vmcs02.
3648          */
3649         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3650                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3651
3652         if (CC(vmcs12->launch_state == launch))
3653                 return nested_vmx_fail(vcpu,
3654                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3655                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3656
3657         if (nested_vmx_check_controls(vcpu, vmcs12))
3658                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3659
3660         if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3661                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3662
3663         if (nested_vmx_check_host_state(vcpu, vmcs12))
3664                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3665
3666         /*
3667          * We're finally done with prerequisite checking, and can start with
3668          * the nested entry.
3669          */
3670         vmx->nested.nested_run_pending = 1;
3671         vmx->nested.has_preemption_timer_deadline = false;
3672         status = nested_vmx_enter_non_root_mode(vcpu, true);
3673         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3674                 goto vmentry_failed;
3675
3676         /* Emulate processing of posted interrupts on VM-Enter. */
3677         if (nested_cpu_has_posted_intr(vmcs12) &&
3678             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3679                 vmx->nested.pi_pending = true;
3680                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3681                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3682         }
3683
3684         /* Hide L1D cache contents from the nested guest.  */
3685         vmx->vcpu.arch.l1tf_flush_l1d = true;
3686
3687         /*
3688          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3689          * also be used as part of restoring nVMX state for
3690          * snapshot restore (migration).
3691          *
3692          * In this flow, it is assumed that vmcs12 cache was
3693          * transferred as part of captured nVMX state and should
3694          * therefore not be read from guest memory (which may not
3695          * exist on destination host yet).
3696          */
3697         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3698
3699         switch (vmcs12->guest_activity_state) {
3700         case GUEST_ACTIVITY_HLT:
3701                 /*
3702                  * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3703                  * awakened by event injection or by an NMI-window VM-exit or
3704                  * by an interrupt-window VM-exit, halt the vcpu.
3705                  */
3706                 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3707                     !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3708                     !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3709                       (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3710                         vmx->nested.nested_run_pending = 0;
3711                         return kvm_emulate_halt_noskip(vcpu);
3712                 }
3713                 break;
3714         case GUEST_ACTIVITY_WAIT_SIPI:
3715                 vmx->nested.nested_run_pending = 0;
3716                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3717                 break;
3718         default:
3719                 break;
3720         }
3721
3722         return 1;
3723
3724 vmentry_failed:
3725         vmx->nested.nested_run_pending = 0;
3726         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3727                 return 0;
3728         if (status == NVMX_VMENTRY_VMEXIT)
3729                 return 1;
3730         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3731         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3732 }
3733
3734 /*
3735  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3736  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3737  * This function returns the new value we should put in vmcs12.guest_cr0.
3738  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3739  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3740  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3741  *     didn't trap the bit, because if L1 did, so would L0).
3742  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3743  *     been modified by L2, and L1 knows it. So just leave the old value of
3744  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3745  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3746  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3747  *     changed these bits, and therefore they need to be updated, but L0
3748  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3749  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3750  */
3751 static inline unsigned long
3752 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3753 {
3754         return
3755         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3756         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3757         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3758                         vcpu->arch.cr0_guest_owned_bits));
3759 }
3760
3761 static inline unsigned long
3762 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3763 {
3764         return
3765         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3766         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3767         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3768                         vcpu->arch.cr4_guest_owned_bits));
3769 }
3770
3771 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3772                                       struct vmcs12 *vmcs12,
3773                                       u32 vm_exit_reason, u32 exit_intr_info)
3774 {
3775         u32 idt_vectoring;
3776         unsigned int nr;
3777
3778         /*
3779          * Per the SDM, VM-Exits due to double and triple faults are never
3780          * considered to occur during event delivery, even if the double/triple
3781          * fault is the result of an escalating vectoring issue.
3782          *
3783          * Note, the SDM qualifies the double fault behavior with "The original
3784          * event results in a double-fault exception".  It's unclear why the
3785          * qualification exists since exits due to double fault can occur only
3786          * while vectoring a different exception (injected events are never
3787          * subject to interception), i.e. there's _always_ an original event.
3788          *
3789          * The SDM also uses NMI as a confusing example for the "original event
3790          * causes the VM exit directly" clause.  NMI isn't special in any way,
3791          * the same rule applies to all events that cause an exit directly.
3792          * NMI is an odd choice for the example because NMIs can only occur on
3793          * instruction boundaries, i.e. they _can't_ occur during vectoring.
3794          */
3795         if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3796             ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3797              is_double_fault(exit_intr_info))) {
3798                 vmcs12->idt_vectoring_info_field = 0;
3799         } else if (vcpu->arch.exception.injected) {
3800                 nr = vcpu->arch.exception.vector;
3801                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3802
3803                 if (kvm_exception_is_soft(nr)) {
3804                         vmcs12->vm_exit_instruction_len =
3805                                 vcpu->arch.event_exit_inst_len;
3806                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3807                 } else
3808                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3809
3810                 if (vcpu->arch.exception.has_error_code) {
3811                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3812                         vmcs12->idt_vectoring_error_code =
3813                                 vcpu->arch.exception.error_code;
3814                 }
3815
3816                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3817         } else if (vcpu->arch.nmi_injected) {
3818                 vmcs12->idt_vectoring_info_field =
3819                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3820         } else if (vcpu->arch.interrupt.injected) {
3821                 nr = vcpu->arch.interrupt.nr;
3822                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3823
3824                 if (vcpu->arch.interrupt.soft) {
3825                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3826                         vmcs12->vm_entry_instruction_len =
3827                                 vcpu->arch.event_exit_inst_len;
3828                 } else
3829                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3830
3831                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3832         } else {
3833                 vmcs12->idt_vectoring_info_field = 0;
3834         }
3835 }
3836
3837
3838 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3839 {
3840         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3841         gfn_t gfn;
3842
3843         /*
3844          * Don't need to mark the APIC access page dirty; it is never
3845          * written to by the CPU during APIC virtualization.
3846          */
3847
3848         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3849                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3850                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3851         }
3852
3853         if (nested_cpu_has_posted_intr(vmcs12)) {
3854                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3855                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3856         }
3857 }
3858
3859 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3860 {
3861         struct vcpu_vmx *vmx = to_vmx(vcpu);
3862         int max_irr;
3863         void *vapic_page;
3864         u16 status;
3865
3866         if (!vmx->nested.pi_pending)
3867                 return 0;
3868
3869         if (!vmx->nested.pi_desc)
3870                 goto mmio_needed;
3871
3872         vmx->nested.pi_pending = false;
3873
3874         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3875                 return 0;
3876
3877         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3878         if (max_irr != 256) {
3879                 vapic_page = vmx->nested.virtual_apic_map.hva;
3880                 if (!vapic_page)
3881                         goto mmio_needed;
3882
3883                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3884                         vapic_page, &max_irr);
3885                 status = vmcs_read16(GUEST_INTR_STATUS);
3886                 if ((u8)max_irr > ((u8)status & 0xff)) {
3887                         status &= ~0xff;
3888                         status |= (u8)max_irr;
3889                         vmcs_write16(GUEST_INTR_STATUS, status);
3890                 }
3891         }
3892
3893         nested_mark_vmcs12_pages_dirty(vcpu);
3894         return 0;
3895
3896 mmio_needed:
3897         kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3898         return -ENXIO;
3899 }
3900
3901 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3902 {
3903         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3904         u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3905         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3906         unsigned long exit_qual;
3907
3908         if (ex->has_payload) {
3909                 exit_qual = ex->payload;
3910         } else if (ex->vector == PF_VECTOR) {
3911                 exit_qual = vcpu->arch.cr2;
3912         } else if (ex->vector == DB_VECTOR) {
3913                 exit_qual = vcpu->arch.dr6;
3914                 exit_qual &= ~DR6_BT;
3915                 exit_qual ^= DR6_ACTIVE_LOW;
3916         } else {
3917                 exit_qual = 0;
3918         }
3919
3920         /*
3921          * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3922          * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3923          * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3924          */
3925         if (ex->has_error_code && is_protmode(vcpu)) {
3926                 /*
3927                  * Intel CPUs do not generate error codes with bits 31:16 set,
3928                  * and more importantly VMX disallows setting bits 31:16 in the
3929                  * injected error code for VM-Entry.  Drop the bits to mimic
3930                  * hardware and avoid inducing failure on nested VM-Entry if L1
3931                  * chooses to inject the exception back to L2.  AMD CPUs _do_
3932                  * generate "full" 32-bit error codes, so KVM allows userspace
3933                  * to inject exception error codes with bits 31:16 set.
3934                  */
3935                 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3936                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3937         }
3938
3939         if (kvm_exception_is_soft(ex->vector))
3940                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3941         else
3942                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3943
3944         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3945             vmx_get_nmi_mask(vcpu))
3946                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3947
3948         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3949 }
3950
3951 /*
3952  * Returns true if a debug trap is (likely) pending delivery.  Infer the class
3953  * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3954  * Using the payload is flawed because code breakpoints (fault-like) and data
3955  * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3956  * this will return false positives if a to-be-injected code breakpoint #DB is
3957  * pending (from KVM's perspective, but not "pending" across an instruction
3958  * boundary).  ICEBP, a.k.a. INT1, is also not reflected here even though it
3959  * too is trap-like.
3960  *
3961  * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3962  * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3963  * #DB has already happened), and MTF isn't marked pending on code breakpoints
3964  * from the emulator (because such #DBs are fault-like and thus don't trigger
3965  * actions that fire on instruction retire).
3966  */
3967 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3968 {
3969         if (!ex->pending || ex->vector != DB_VECTOR)
3970                 return 0;
3971
3972         /* General Detect #DBs are always fault-like. */
3973         return ex->payload & ~DR6_BD;
3974 }
3975
3976 /*
3977  * Returns true if there's a pending #DB exception that is lower priority than
3978  * a pending Monitor Trap Flag VM-Exit.  TSS T-flag #DBs are not emulated by
3979  * KVM, but could theoretically be injected by userspace.  Note, this code is
3980  * imperfect, see above.
3981  */
3982 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
3983 {
3984         return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
3985 }
3986
3987 /*
3988  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3989  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3990  * represents these debug traps with a payload that is said to be compatible
3991  * with the 'pending debug exceptions' field, write the payload to the VMCS
3992  * field if a VM-exit is delivered before the debug trap.
3993  */
3994 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3995 {
3996         unsigned long pending_dbg;
3997
3998         pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
3999         if (pending_dbg)
4000                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4001 }
4002
4003 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4004 {
4005         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4006                to_vmx(vcpu)->nested.preemption_timer_expired;
4007 }
4008
4009 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu)
4010 {
4011         return nested_vmx_preemption_timer_pending(vcpu) ||
4012                to_vmx(vcpu)->nested.mtf_pending;
4013 }
4014
4015 /*
4016  * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4017  * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4018  * and less minor edits to splice in the priority of VMX Non-Root specific
4019  * events, e.g. MTF and NMI/INTR-window exiting.
4020  *
4021  * 1 Hardware Reset and Machine Checks
4022  *      - RESET
4023  *      - Machine Check
4024  *
4025  * 2 Trap on Task Switch
4026  *      - T flag in TSS is set (on task switch)
4027  *
4028  * 3 External Hardware Interventions
4029  *      - FLUSH
4030  *      - STOPCLK
4031  *      - SMI
4032  *      - INIT
4033  *
4034  * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4035  *
4036  * 4 Traps on Previous Instruction
4037  *      - Breakpoints
4038  *      - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4039  *        breakpoint, or #DB due to a split-lock access)
4040  *
4041  * 4.3  VMX-preemption timer expired VM-exit
4042  *
4043  * 4.6  NMI-window exiting VM-exit[2]
4044  *
4045  * 5 Nonmaskable Interrupts (NMI)
4046  *
4047  * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4048  *
4049  * 6 Maskable Hardware Interrupts
4050  *
4051  * 7 Code Breakpoint Fault
4052  *
4053  * 8 Faults from Fetching Next Instruction
4054  *      - Code-Segment Limit Violation
4055  *      - Code Page Fault
4056  *      - Control protection exception (missing ENDBRANCH at target of indirect
4057  *                                      call or jump)
4058  *
4059  * 9 Faults from Decoding Next Instruction
4060  *      - Instruction length > 15 bytes
4061  *      - Invalid Opcode
4062  *      - Coprocessor Not Available
4063  *
4064  *10 Faults on Executing Instruction
4065  *      - Overflow
4066  *      - Bound error
4067  *      - Invalid TSS
4068  *      - Segment Not Present
4069  *      - Stack fault
4070  *      - General Protection
4071  *      - Data Page Fault
4072  *      - Alignment Check
4073  *      - x86 FPU Floating-point exception
4074  *      - SIMD floating-point exception
4075  *      - Virtualization exception
4076  *      - Control protection exception
4077  *
4078  * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4079  *     INIT signals, and higher priority events take priority over MTF VM exits.
4080  *     MTF VM exits take priority over debug-trap exceptions and lower priority
4081  *     events.
4082  *
4083  * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4084  *     caused by the VMX-preemption timer.  VM exits caused by the VMX-preemption
4085  *     timer take priority over VM exits caused by the "NMI-window exiting"
4086  *     VM-execution control and lower priority events.
4087  *
4088  * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4089  *     caused by "NMI-window exiting".  VM exits caused by this control take
4090  *     priority over non-maskable interrupts (NMIs) and lower priority events.
4091  *
4092  * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4093  *     the 1-setting of the "interrupt-window exiting" VM-execution control.  Thus,
4094  *     non-maskable interrupts (NMIs) and higher priority events take priority over
4095  *     delivery of a virtual interrupt; delivery of a virtual interrupt takes
4096  *     priority over external interrupts and lower priority events.
4097  */
4098 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4099 {
4100         struct kvm_lapic *apic = vcpu->arch.apic;
4101         struct vcpu_vmx *vmx = to_vmx(vcpu);
4102         /*
4103          * Only a pending nested run blocks a pending exception.  If there is a
4104          * previously injected event, the pending exception occurred while said
4105          * event was being delivered and thus needs to be handled.
4106          */
4107         bool block_nested_exceptions = vmx->nested.nested_run_pending;
4108         /*
4109          * New events (not exceptions) are only recognized at instruction
4110          * boundaries.  If an event needs reinjection, then KVM is handling a
4111          * VM-Exit that occurred _during_ instruction execution; new events are
4112          * blocked until the instruction completes.
4113          */
4114         bool block_nested_events = block_nested_exceptions ||
4115                                    kvm_event_needs_reinjection(vcpu);
4116
4117         if (lapic_in_kernel(vcpu) &&
4118                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4119                 if (block_nested_events)
4120                         return -EBUSY;
4121                 nested_vmx_update_pending_dbg(vcpu);
4122                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4123                 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4124                         nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4125
4126                 /* MTF is discarded if the vCPU is in WFS. */
4127                 vmx->nested.mtf_pending = false;
4128                 return 0;
4129         }
4130
4131         if (lapic_in_kernel(vcpu) &&
4132             test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4133                 if (block_nested_events)
4134                         return -EBUSY;
4135
4136                 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4137                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4138                         nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4139                                                 apic->sipi_vector & 0xFFUL);
4140                         return 0;
4141                 }
4142                 /* Fallthrough, the SIPI is completely ignored. */
4143         }
4144
4145         /*
4146          * Process exceptions that are higher priority than Monitor Trap Flag:
4147          * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4148          * could theoretically come in from userspace), and ICEBP (INT1).
4149          *
4150          * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4151          * for TSS T flag #DBs).  KVM also doesn't save/restore pending MTF
4152          * across SMI/RSM as it should; that needs to be addressed in order to
4153          * prioritize SMI over MTF and trap-like #DBs.
4154          */
4155         if (vcpu->arch.exception_vmexit.pending &&
4156             !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4157                 if (block_nested_exceptions)
4158                         return -EBUSY;
4159
4160                 nested_vmx_inject_exception_vmexit(vcpu);
4161                 return 0;
4162         }
4163
4164         if (vcpu->arch.exception.pending &&
4165             !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4166                 if (block_nested_exceptions)
4167                         return -EBUSY;
4168                 goto no_vmexit;
4169         }
4170
4171         if (vmx->nested.mtf_pending) {
4172                 if (block_nested_events)
4173                         return -EBUSY;
4174                 nested_vmx_update_pending_dbg(vcpu);
4175                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4176                 return 0;
4177         }
4178
4179         if (vcpu->arch.exception_vmexit.pending) {
4180                 if (block_nested_exceptions)
4181                         return -EBUSY;
4182
4183                 nested_vmx_inject_exception_vmexit(vcpu);
4184                 return 0;
4185         }
4186
4187         if (vcpu->arch.exception.pending) {
4188                 if (block_nested_exceptions)
4189                         return -EBUSY;
4190                 goto no_vmexit;
4191         }
4192
4193         if (nested_vmx_preemption_timer_pending(vcpu)) {
4194                 if (block_nested_events)
4195                         return -EBUSY;
4196                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4197                 return 0;
4198         }
4199
4200         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4201                 if (block_nested_events)
4202                         return -EBUSY;
4203                 goto no_vmexit;
4204         }
4205
4206         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4207                 if (block_nested_events)
4208                         return -EBUSY;
4209                 if (!nested_exit_on_nmi(vcpu))
4210                         goto no_vmexit;
4211
4212                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4213                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
4214                                   INTR_INFO_VALID_MASK, 0);
4215                 /*
4216                  * The NMI-triggered VM exit counts as injection:
4217                  * clear this one and block further NMIs.
4218                  */
4219                 vcpu->arch.nmi_pending = 0;
4220                 vmx_set_nmi_mask(vcpu, true);
4221                 return 0;
4222         }
4223
4224         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4225                 if (block_nested_events)
4226                         return -EBUSY;
4227                 if (!nested_exit_on_intr(vcpu))
4228                         goto no_vmexit;
4229                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4230                 return 0;
4231         }
4232
4233 no_vmexit:
4234         return vmx_complete_nested_posted_interrupt(vcpu);
4235 }
4236
4237 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4238 {
4239         ktime_t remaining =
4240                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4241         u64 value;
4242
4243         if (ktime_to_ns(remaining) <= 0)
4244                 return 0;
4245
4246         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4247         do_div(value, 1000000);
4248         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4249 }
4250
4251 static bool is_vmcs12_ext_field(unsigned long field)
4252 {
4253         switch (field) {
4254         case GUEST_ES_SELECTOR:
4255         case GUEST_CS_SELECTOR:
4256         case GUEST_SS_SELECTOR:
4257         case GUEST_DS_SELECTOR:
4258         case GUEST_FS_SELECTOR:
4259         case GUEST_GS_SELECTOR:
4260         case GUEST_LDTR_SELECTOR:
4261         case GUEST_TR_SELECTOR:
4262         case GUEST_ES_LIMIT:
4263         case GUEST_CS_LIMIT:
4264         case GUEST_SS_LIMIT:
4265         case GUEST_DS_LIMIT:
4266         case GUEST_FS_LIMIT:
4267         case GUEST_GS_LIMIT:
4268         case GUEST_LDTR_LIMIT:
4269         case GUEST_TR_LIMIT:
4270         case GUEST_GDTR_LIMIT:
4271         case GUEST_IDTR_LIMIT:
4272         case GUEST_ES_AR_BYTES:
4273         case GUEST_DS_AR_BYTES:
4274         case GUEST_FS_AR_BYTES:
4275         case GUEST_GS_AR_BYTES:
4276         case GUEST_LDTR_AR_BYTES:
4277         case GUEST_TR_AR_BYTES:
4278         case GUEST_ES_BASE:
4279         case GUEST_CS_BASE:
4280         case GUEST_SS_BASE:
4281         case GUEST_DS_BASE:
4282         case GUEST_FS_BASE:
4283         case GUEST_GS_BASE:
4284         case GUEST_LDTR_BASE:
4285         case GUEST_TR_BASE:
4286         case GUEST_GDTR_BASE:
4287         case GUEST_IDTR_BASE:
4288         case GUEST_PENDING_DBG_EXCEPTIONS:
4289         case GUEST_BNDCFGS:
4290                 return true;
4291         default:
4292                 break;
4293         }
4294
4295         return false;
4296 }
4297
4298 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4299                                        struct vmcs12 *vmcs12)
4300 {
4301         struct vcpu_vmx *vmx = to_vmx(vcpu);
4302
4303         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4304         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4305         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4306         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4307         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4308         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4309         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4310         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4311         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4312         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4313         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4314         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4315         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4316         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4317         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4318         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4319         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4320         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4321         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4322         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4323         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4324         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4325         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4326         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4327         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4328         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4329         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4330         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4331         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4332         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4333         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4334         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4335         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4336         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4337         vmcs12->guest_pending_dbg_exceptions =
4338                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4339
4340         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4341 }
4342
4343 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4344                                        struct vmcs12 *vmcs12)
4345 {
4346         struct vcpu_vmx *vmx = to_vmx(vcpu);
4347         int cpu;
4348
4349         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4350                 return;
4351
4352
4353         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4354
4355         cpu = get_cpu();
4356         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4357         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4358
4359         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4360
4361         vmx->loaded_vmcs = &vmx->vmcs01;
4362         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4363         put_cpu();
4364 }
4365
4366 /*
4367  * Update the guest state fields of vmcs12 to reflect changes that
4368  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4369  * VM-entry controls is also updated, since this is really a guest
4370  * state bit.)
4371  */
4372 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4373 {
4374         struct vcpu_vmx *vmx = to_vmx(vcpu);
4375
4376         if (nested_vmx_is_evmptr12_valid(vmx))
4377                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4378
4379         vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4380                 !nested_vmx_is_evmptr12_valid(vmx);
4381
4382         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4383         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4384
4385         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4386         vmcs12->guest_rip = kvm_rip_read(vcpu);
4387         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4388
4389         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4390         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4391
4392         vmcs12->guest_interruptibility_info =
4393                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4394
4395         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4396                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4397         else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4398                 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4399         else
4400                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4401
4402         if (nested_cpu_has_preemption_timer(vmcs12) &&
4403             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4404             !vmx->nested.nested_run_pending)
4405                 vmcs12->vmx_preemption_timer_value =
4406                         vmx_get_preemption_timer_value(vcpu);
4407
4408         /*
4409          * In some cases (usually, nested EPT), L2 is allowed to change its
4410          * own CR3 without exiting. If it has changed it, we must keep it.
4411          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4412          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4413          *
4414          * Additionally, restore L2's PDPTR to vmcs12.
4415          */
4416         if (enable_ept) {
4417                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4418                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4419                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4420                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4421                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4422                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4423                 }
4424         }
4425
4426         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4427
4428         if (nested_cpu_has_vid(vmcs12))
4429                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4430
4431         vmcs12->vm_entry_controls =
4432                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4433                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4434
4435         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4436                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4437
4438         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4439                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4440 }
4441
4442 /*
4443  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4444  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4445  * and this function updates it to reflect the changes to the guest state while
4446  * L2 was running (and perhaps made some exits which were handled directly by L0
4447  * without going back to L1), and to reflect the exit reason.
4448  * Note that we do not have to copy here all VMCS fields, just those that
4449  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4450  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4451  * which already writes to vmcs12 directly.
4452  */
4453 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4454                            u32 vm_exit_reason, u32 exit_intr_info,
4455                            unsigned long exit_qualification)
4456 {
4457         /* update exit information fields: */
4458         vmcs12->vm_exit_reason = vm_exit_reason;
4459         if (to_vmx(vcpu)->exit_reason.enclave_mode)
4460                 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4461         vmcs12->exit_qualification = exit_qualification;
4462
4463         /*
4464          * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4465          * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4466          * exit info fields are unmodified.
4467          */
4468         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4469                 vmcs12->launch_state = 1;
4470
4471                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4472                  * instead of reading the real value. */
4473                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4474
4475                 /*
4476                  * Transfer the event that L0 or L1 may wanted to inject into
4477                  * L2 to IDT_VECTORING_INFO_FIELD.
4478                  */
4479                 vmcs12_save_pending_event(vcpu, vmcs12,
4480                                           vm_exit_reason, exit_intr_info);
4481
4482                 vmcs12->vm_exit_intr_info = exit_intr_info;
4483                 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4484                 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4485
4486                 /*
4487                  * According to spec, there's no need to store the guest's
4488                  * MSRs if the exit is due to a VM-entry failure that occurs
4489                  * during or after loading the guest state. Since this exit
4490                  * does not fall in that category, we need to save the MSRs.
4491                  */
4492                 if (nested_vmx_store_msr(vcpu,
4493                                          vmcs12->vm_exit_msr_store_addr,
4494                                          vmcs12->vm_exit_msr_store_count))
4495                         nested_vmx_abort(vcpu,
4496                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4497         }
4498 }
4499
4500 /*
4501  * A part of what we need to when the nested L2 guest exits and we want to
4502  * run its L1 parent, is to reset L1's guest state to the host state specified
4503  * in vmcs12.
4504  * This function is to be called not only on normal nested exit, but also on
4505  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4506  * Failures During or After Loading Guest State").
4507  * This function should be called when the active VMCS is L1's (vmcs01).
4508  */
4509 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4510                                    struct vmcs12 *vmcs12)
4511 {
4512         enum vm_entry_failure_code ignored;
4513         struct kvm_segment seg;
4514
4515         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4516                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4517         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4518                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4519         else
4520                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4521         vmx_set_efer(vcpu, vcpu->arch.efer);
4522
4523         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4524         kvm_rip_write(vcpu, vmcs12->host_rip);
4525         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4526         vmx_set_interrupt_shadow(vcpu, 0);
4527
4528         /*
4529          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4530          * actually changed, because vmx_set_cr0 refers to efer set above.
4531          *
4532          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4533          * (KVM doesn't change it);
4534          */
4535         vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4536         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4537
4538         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4539         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4540         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4541
4542         nested_ept_uninit_mmu_context(vcpu);
4543
4544         /*
4545          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4546          * couldn't have changed.
4547          */
4548         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4549                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4550
4551         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4552
4553         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4554         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4555         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4556         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4557         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4558         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4559         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4560
4561         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4562         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4563                 vmcs_write64(GUEST_BNDCFGS, 0);
4564
4565         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4566                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4567                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4568         }
4569         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4570             kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4571                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4572                                          vmcs12->host_ia32_perf_global_ctrl));
4573
4574         /* Set L1 segment info according to Intel SDM
4575             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4576         seg = (struct kvm_segment) {
4577                 .base = 0,
4578                 .limit = 0xFFFFFFFF,
4579                 .selector = vmcs12->host_cs_selector,
4580                 .type = 11,
4581                 .present = 1,
4582                 .s = 1,
4583                 .g = 1
4584         };
4585         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4586                 seg.l = 1;
4587         else
4588                 seg.db = 1;
4589         __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4590         seg = (struct kvm_segment) {
4591                 .base = 0,
4592                 .limit = 0xFFFFFFFF,
4593                 .type = 3,
4594                 .present = 1,
4595                 .s = 1,
4596                 .db = 1,
4597                 .g = 1
4598         };
4599         seg.selector = vmcs12->host_ds_selector;
4600         __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4601         seg.selector = vmcs12->host_es_selector;
4602         __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4603         seg.selector = vmcs12->host_ss_selector;
4604         __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4605         seg.selector = vmcs12->host_fs_selector;
4606         seg.base = vmcs12->host_fs_base;
4607         __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4608         seg.selector = vmcs12->host_gs_selector;
4609         seg.base = vmcs12->host_gs_base;
4610         __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4611         seg = (struct kvm_segment) {
4612                 .base = vmcs12->host_tr_base,
4613                 .limit = 0x67,
4614                 .selector = vmcs12->host_tr_selector,
4615                 .type = 11,
4616                 .present = 1
4617         };
4618         __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4619
4620         memset(&seg, 0, sizeof(seg));
4621         seg.unusable = 1;
4622         __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4623
4624         kvm_set_dr(vcpu, 7, 0x400);
4625         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4626
4627         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4628                                 vmcs12->vm_exit_msr_load_count))
4629                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4630
4631         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4632 }
4633
4634 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4635 {
4636         struct vmx_uret_msr *efer_msr;
4637         unsigned int i;
4638
4639         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4640                 return vmcs_read64(GUEST_IA32_EFER);
4641
4642         if (cpu_has_load_ia32_efer())
4643                 return host_efer;
4644
4645         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4646                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4647                         return vmx->msr_autoload.guest.val[i].value;
4648         }
4649
4650         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4651         if (efer_msr)
4652                 return efer_msr->data;
4653
4654         return host_efer;
4655 }
4656
4657 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4658 {
4659         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4660         struct vcpu_vmx *vmx = to_vmx(vcpu);
4661         struct vmx_msr_entry g, h;
4662         gpa_t gpa;
4663         u32 i, j;
4664
4665         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4666
4667         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4668                 /*
4669                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4670                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4671                  * and vcpu->arch.dr7 is not squirreled away before the
4672                  * nested VMENTER (not worth adding a variable in nested_vmx).
4673                  */
4674                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4675                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4676                 else
4677                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4678         }
4679
4680         /*
4681          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4682          * handle a variety of side effects to KVM's software model.
4683          */
4684         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4685
4686         vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4687         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4688
4689         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4690         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4691
4692         nested_ept_uninit_mmu_context(vcpu);
4693         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4694         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4695
4696         /*
4697          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4698          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4699          * VMFail, like everything else we just need to ensure our
4700          * software model is up-to-date.
4701          */
4702         if (enable_ept && is_pae_paging(vcpu))
4703                 ept_save_pdptrs(vcpu);
4704
4705         kvm_mmu_reset_context(vcpu);
4706
4707         /*
4708          * This nasty bit of open coding is a compromise between blindly
4709          * loading L1's MSRs using the exit load lists (incorrect emulation
4710          * of VMFail), leaving the nested VM's MSRs in the software model
4711          * (incorrect behavior) and snapshotting the modified MSRs (too
4712          * expensive since the lists are unbound by hardware).  For each
4713          * MSR that was (prematurely) loaded from the nested VMEntry load
4714          * list, reload it from the exit load list if it exists and differs
4715          * from the guest value.  The intent is to stuff host state as
4716          * silently as possible, not to fully process the exit load list.
4717          */
4718         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4719                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4720                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4721                         pr_debug_ratelimited(
4722                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4723                                 __func__, i, gpa);
4724                         goto vmabort;
4725                 }
4726
4727                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4728                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4729                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4730                                 pr_debug_ratelimited(
4731                                         "%s read MSR failed (%u, 0x%08llx)\n",
4732                                         __func__, j, gpa);
4733                                 goto vmabort;
4734                         }
4735                         if (h.index != g.index)
4736                                 continue;
4737                         if (h.value == g.value)
4738                                 break;
4739
4740                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4741                                 pr_debug_ratelimited(
4742                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4743                                         __func__, j, h.index, h.reserved);
4744                                 goto vmabort;
4745                         }
4746
4747                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4748                                 pr_debug_ratelimited(
4749                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4750                                         __func__, j, h.index, h.value);
4751                                 goto vmabort;
4752                         }
4753                 }
4754         }
4755
4756         return;
4757
4758 vmabort:
4759         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4760 }
4761
4762 /*
4763  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4764  * and modify vmcs12 to make it see what it would expect to see there if
4765  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4766  */
4767 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4768                        u32 exit_intr_info, unsigned long exit_qualification)
4769 {
4770         struct vcpu_vmx *vmx = to_vmx(vcpu);
4771         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4772
4773         /* Pending MTF traps are discarded on VM-Exit. */
4774         vmx->nested.mtf_pending = false;
4775
4776         /* trying to cancel vmlaunch/vmresume is a bug */
4777         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4778
4779 #ifdef CONFIG_KVM_HYPERV
4780         if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4781                 /*
4782                  * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4783                  * Enlightened VMCS after migration and we still need to
4784                  * do that when something is forcing L2->L1 exit prior to
4785                  * the first L2 run.
4786                  */
4787                 (void)nested_get_evmcs_page(vcpu);
4788         }
4789 #endif
4790
4791         /* Service pending TLB flush requests for L2 before switching to L1. */
4792         kvm_service_local_tlb_flush_requests(vcpu);
4793
4794         /*
4795          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4796          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4797          * up-to-date before switching to L1.
4798          */
4799         if (enable_ept && is_pae_paging(vcpu))
4800                 vmx_ept_load_pdptrs(vcpu);
4801
4802         leave_guest_mode(vcpu);
4803
4804         if (nested_cpu_has_preemption_timer(vmcs12))
4805                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4806
4807         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4808                 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4809                 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4810                         vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4811         }
4812
4813         if (likely(!vmx->fail)) {
4814                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4815
4816                 if (vm_exit_reason != -1)
4817                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4818                                        exit_intr_info, exit_qualification);
4819
4820                 /*
4821                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4822                  * also be used to capture vmcs12 cache as part of
4823                  * capturing nVMX state for snapshot (migration).
4824                  *
4825                  * Otherwise, this flush will dirty guest memory at a
4826                  * point it is already assumed by user-space to be
4827                  * immutable.
4828                  */
4829                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4830         } else {
4831                 /*
4832                  * The only expected VM-instruction error is "VM entry with
4833                  * invalid control field(s)." Anything else indicates a
4834                  * problem with L0.  And we should never get here with a
4835                  * VMFail of any type if early consistency checks are enabled.
4836                  */
4837                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4838                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4839                 WARN_ON_ONCE(nested_early_check);
4840         }
4841
4842         /*
4843          * Drop events/exceptions that were queued for re-injection to L2
4844          * (picked up via vmx_complete_interrupts()), as well as exceptions
4845          * that were pending for L2.  Note, this must NOT be hoisted above
4846          * prepare_vmcs12(), events/exceptions queued for re-injection need to
4847          * be captured in vmcs12 (see vmcs12_save_pending_event()).
4848          */
4849         vcpu->arch.nmi_injected = false;
4850         kvm_clear_exception_queue(vcpu);
4851         kvm_clear_interrupt_queue(vcpu);
4852
4853         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4854
4855         /*
4856          * If IBRS is advertised to the vCPU, KVM must flush the indirect
4857          * branch predictors when transitioning from L2 to L1, as L1 expects
4858          * hardware (KVM in this case) to provide separate predictor modes.
4859          * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4860          * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4861          * separate modes for L2 vs L1.
4862          */
4863         if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4864                 indirect_branch_prediction_barrier();
4865
4866         /* Update any VMCS fields that might have changed while L2 ran */
4867         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4868         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4869         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4870         if (kvm_caps.has_tsc_control)
4871                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4872
4873         if (vmx->nested.l1_tpr_threshold != -1)
4874                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4875
4876         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4877                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4878                 vmx_set_virtual_apic_mode(vcpu);
4879         }
4880
4881         if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4882                 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4883                 vmx_update_cpu_dirty_logging(vcpu);
4884         }
4885
4886         /* Unpin physical memory we referred to in vmcs02 */
4887         kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
4888         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4889         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4890         vmx->nested.pi_desc = NULL;
4891
4892         if (vmx->nested.reload_vmcs01_apic_access_page) {
4893                 vmx->nested.reload_vmcs01_apic_access_page = false;
4894                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4895         }
4896
4897         if (vmx->nested.update_vmcs01_apicv_status) {
4898                 vmx->nested.update_vmcs01_apicv_status = false;
4899                 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4900         }
4901
4902         if ((vm_exit_reason != -1) &&
4903             (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
4904                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4905
4906         /* in case we halted in L2 */
4907         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4908
4909         if (likely(!vmx->fail)) {
4910                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4911                     nested_exit_intr_ack_set(vcpu)) {
4912                         int irq = kvm_cpu_get_interrupt(vcpu);
4913                         WARN_ON(irq < 0);
4914                         vmcs12->vm_exit_intr_info = irq |
4915                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4916                 }
4917
4918                 if (vm_exit_reason != -1)
4919                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4920                                                        vmcs12->exit_qualification,
4921                                                        vmcs12->idt_vectoring_info_field,
4922                                                        vmcs12->vm_exit_intr_info,
4923                                                        vmcs12->vm_exit_intr_error_code,
4924                                                        KVM_ISA_VMX);
4925
4926                 load_vmcs12_host_state(vcpu, vmcs12);
4927
4928                 return;
4929         }
4930
4931         /*
4932          * After an early L2 VM-entry failure, we're now back
4933          * in L1 which thinks it just finished a VMLAUNCH or
4934          * VMRESUME instruction, so we need to set the failure
4935          * flag and the VM-instruction error field of the VMCS
4936          * accordingly, and skip the emulated instruction.
4937          */
4938         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4939
4940         /*
4941          * Restore L1's host state to KVM's software model.  We're here
4942          * because a consistency check was caught by hardware, which
4943          * means some amount of guest state has been propagated to KVM's
4944          * model and needs to be unwound to the host's state.
4945          */
4946         nested_vmx_restore_host_state(vcpu);
4947
4948         vmx->fail = 0;
4949 }
4950
4951 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4952 {
4953         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4954         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4955 }
4956
4957 /*
4958  * Decode the memory-address operand of a vmx instruction, as recorded on an
4959  * exit caused by such an instruction (run by a guest hypervisor).
4960  * On success, returns 0. When the operand is invalid, returns 1 and throws
4961  * #UD, #GP, or #SS.
4962  */
4963 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4964                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4965 {
4966         gva_t off;
4967         bool exn;
4968         struct kvm_segment s;
4969
4970         /*
4971          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4972          * Execution", on an exit, vmx_instruction_info holds most of the
4973          * addressing components of the operand. Only the displacement part
4974          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4975          * For how an actual address is calculated from all these components,
4976          * refer to Vol. 1, "Operand Addressing".
4977          */
4978         int  scaling = vmx_instruction_info & 3;
4979         int  addr_size = (vmx_instruction_info >> 7) & 7;
4980         bool is_reg = vmx_instruction_info & (1u << 10);
4981         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4982         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4983         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4984         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4985         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4986
4987         if (is_reg) {
4988                 kvm_queue_exception(vcpu, UD_VECTOR);
4989                 return 1;
4990         }
4991
4992         /* Addr = segment_base + offset */
4993         /* offset = base + [index * scale] + displacement */
4994         off = exit_qualification; /* holds the displacement */
4995         if (addr_size == 1)
4996                 off = (gva_t)sign_extend64(off, 31);
4997         else if (addr_size == 0)
4998                 off = (gva_t)sign_extend64(off, 15);
4999         if (base_is_valid)
5000                 off += kvm_register_read(vcpu, base_reg);
5001         if (index_is_valid)
5002                 off += kvm_register_read(vcpu, index_reg) << scaling;
5003         vmx_get_segment(vcpu, &s, seg_reg);
5004
5005         /*
5006          * The effective address, i.e. @off, of a memory operand is truncated
5007          * based on the address size of the instruction.  Note that this is
5008          * the *effective address*, i.e. the address prior to accounting for
5009          * the segment's base.
5010          */
5011         if (addr_size == 1) /* 32 bit */
5012                 off &= 0xffffffff;
5013         else if (addr_size == 0) /* 16 bit */
5014                 off &= 0xffff;
5015
5016         /* Checks for #GP/#SS exceptions. */
5017         exn = false;
5018         if (is_long_mode(vcpu)) {
5019                 /*
5020                  * The virtual/linear address is never truncated in 64-bit
5021                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5022                  * address when using FS/GS with a non-zero base.
5023                  */
5024                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5025                         *ret = s.base + off;
5026                 else
5027                         *ret = off;
5028
5029                 *ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5030                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
5031                  * non-canonical form. This is the only check on the memory
5032                  * destination for long mode!
5033                  */
5034                 exn = is_noncanonical_address(*ret, vcpu);
5035         } else {
5036                 /*
5037                  * When not in long mode, the virtual/linear address is
5038                  * unconditionally truncated to 32 bits regardless of the
5039                  * address size.
5040                  */
5041                 *ret = (s.base + off) & 0xffffffff;
5042
5043                 /* Protected mode: apply checks for segment validity in the
5044                  * following order:
5045                  * - segment type check (#GP(0) may be thrown)
5046                  * - usability check (#GP(0)/#SS(0))
5047                  * - limit check (#GP(0)/#SS(0))
5048                  */
5049                 if (wr)
5050                         /* #GP(0) if the destination operand is located in a
5051                          * read-only data segment or any code segment.
5052                          */
5053                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
5054                 else
5055                         /* #GP(0) if the source operand is located in an
5056                          * execute-only code segment
5057                          */
5058                         exn = ((s.type & 0xa) == 8);
5059                 if (exn) {
5060                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5061                         return 1;
5062                 }
5063                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5064                  */
5065                 exn = (s.unusable != 0);
5066
5067                 /*
5068                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
5069                  * outside the segment limit.  All CPUs that support VMX ignore
5070                  * limit checks for flat segments, i.e. segments with base==0,
5071                  * limit==0xffffffff and of type expand-up data or code.
5072                  */
5073                 if (!(s.base == 0 && s.limit == 0xffffffff &&
5074                      ((s.type & 8) || !(s.type & 4))))
5075                         exn = exn || ((u64)off + len - 1 > s.limit);
5076         }
5077         if (exn) {
5078                 kvm_queue_exception_e(vcpu,
5079                                       seg_reg == VCPU_SREG_SS ?
5080                                                 SS_VECTOR : GP_VECTOR,
5081                                       0);
5082                 return 1;
5083         }
5084
5085         return 0;
5086 }
5087
5088 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5089                                 int *ret)
5090 {
5091         gva_t gva;
5092         struct x86_exception e;
5093         int r;
5094
5095         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5096                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5097                                 sizeof(*vmpointer), &gva)) {
5098                 *ret = 1;
5099                 return -EINVAL;
5100         }
5101
5102         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5103         if (r != X86EMUL_CONTINUE) {
5104                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5105                 return -EINVAL;
5106         }
5107
5108         return 0;
5109 }
5110
5111 /*
5112  * Allocate a shadow VMCS and associate it with the currently loaded
5113  * VMCS, unless such a shadow VMCS already exists. The newly allocated
5114  * VMCS is also VMCLEARed, so that it is ready for use.
5115  */
5116 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5117 {
5118         struct vcpu_vmx *vmx = to_vmx(vcpu);
5119         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5120
5121         /*
5122          * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5123          * when L1 executes VMXOFF or the vCPU is forced out of nested
5124          * operation.  VMXON faults if the CPU is already post-VMXON, so it
5125          * should be impossible to already have an allocated shadow VMCS.  KVM
5126          * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5127          * always be the loaded VMCS.
5128          */
5129         if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5130                 return loaded_vmcs->shadow_vmcs;
5131
5132         loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5133         if (loaded_vmcs->shadow_vmcs)
5134                 vmcs_clear(loaded_vmcs->shadow_vmcs);
5135
5136         return loaded_vmcs->shadow_vmcs;
5137 }
5138
5139 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5140 {
5141         struct vcpu_vmx *vmx = to_vmx(vcpu);
5142         int r;
5143
5144         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5145         if (r < 0)
5146                 goto out_vmcs02;
5147
5148         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5149         if (!vmx->nested.cached_vmcs12)
5150                 goto out_cached_vmcs12;
5151
5152         vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5153         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5154         if (!vmx->nested.cached_shadow_vmcs12)
5155                 goto out_cached_shadow_vmcs12;
5156
5157         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5158                 goto out_shadow_vmcs;
5159
5160         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5161                      HRTIMER_MODE_ABS_PINNED);
5162         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5163
5164         vmx->nested.vpid02 = allocate_vpid();
5165
5166         vmx->nested.vmcs02_initialized = false;
5167         vmx->nested.vmxon = true;
5168
5169         if (vmx_pt_mode_is_host_guest()) {
5170                 vmx->pt_desc.guest.ctl = 0;
5171                 pt_update_intercept_for_msr(vcpu);
5172         }
5173
5174         return 0;
5175
5176 out_shadow_vmcs:
5177         kfree(vmx->nested.cached_shadow_vmcs12);
5178
5179 out_cached_shadow_vmcs12:
5180         kfree(vmx->nested.cached_vmcs12);
5181
5182 out_cached_vmcs12:
5183         free_loaded_vmcs(&vmx->nested.vmcs02);
5184
5185 out_vmcs02:
5186         return -ENOMEM;
5187 }
5188
5189 /* Emulate the VMXON instruction. */
5190 static int handle_vmxon(struct kvm_vcpu *vcpu)
5191 {
5192         int ret;
5193         gpa_t vmptr;
5194         uint32_t revision;
5195         struct vcpu_vmx *vmx = to_vmx(vcpu);
5196         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5197                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5198
5199         /*
5200          * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5201          * the guest and so cannot rely on hardware to perform the check,
5202          * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5203          * for VMXON).
5204          *
5205          * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5206          * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
5207          * force any of the relevant guest state.  For a restricted guest, KVM
5208          * does force CR0.PE=1, but only to also force VM86 in order to emulate
5209          * Real Mode, and so there's no need to check CR0.PE manually.
5210          */
5211         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5212                 kvm_queue_exception(vcpu, UD_VECTOR);
5213                 return 1;
5214         }
5215
5216         /*
5217          * The CPL is checked for "not in VMX operation" and for "in VMX root",
5218          * and has higher priority than the VM-Fail due to being post-VMXON,
5219          * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
5220          * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5221          * from L2 to L1, i.e. there's no need to check for the vCPU being in
5222          * VMX non-root.
5223          *
5224          * Forwarding the VM-Exit unconditionally, i.e. without performing the
5225          * #UD checks (see above), is functionally ok because KVM doesn't allow
5226          * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5227          * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5228          * missed by hardware due to shadowing CR0 and/or CR4.
5229          */
5230         if (vmx_get_cpl(vcpu)) {
5231                 kvm_inject_gp(vcpu, 0);
5232                 return 1;
5233         }
5234
5235         if (vmx->nested.vmxon)
5236                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5237
5238         /*
5239          * Invalid CR0/CR4 generates #GP.  These checks are performed if and
5240          * only if the vCPU isn't already in VMX operation, i.e. effectively
5241          * have lower priority than the VM-Fail above.
5242          */
5243         if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5244             !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5245                 kvm_inject_gp(vcpu, 0);
5246                 return 1;
5247         }
5248
5249         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5250                         != VMXON_NEEDED_FEATURES) {
5251                 kvm_inject_gp(vcpu, 0);
5252                 return 1;
5253         }
5254
5255         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5256                 return ret;
5257
5258         /*
5259          * SDM 3: 24.11.5
5260          * The first 4 bytes of VMXON region contain the supported
5261          * VMCS revision identifier
5262          *
5263          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5264          * which replaces physical address width with 32
5265          */
5266         if (!page_address_valid(vcpu, vmptr))
5267                 return nested_vmx_failInvalid(vcpu);
5268
5269         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5270             revision != VMCS12_REVISION)
5271                 return nested_vmx_failInvalid(vcpu);
5272
5273         vmx->nested.vmxon_ptr = vmptr;
5274         ret = enter_vmx_operation(vcpu);
5275         if (ret)
5276                 return ret;
5277
5278         return nested_vmx_succeed(vcpu);
5279 }
5280
5281 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5282 {
5283         struct vcpu_vmx *vmx = to_vmx(vcpu);
5284
5285         if (vmx->nested.current_vmptr == INVALID_GPA)
5286                 return;
5287
5288         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5289
5290         if (enable_shadow_vmcs) {
5291                 /* copy to memory all shadowed fields in case
5292                    they were modified */
5293                 copy_shadow_to_vmcs12(vmx);
5294                 vmx_disable_shadow_vmcs(vmx);
5295         }
5296         vmx->nested.posted_intr_nv = -1;
5297
5298         /* Flush VMCS12 to guest memory */
5299         kvm_vcpu_write_guest_page(vcpu,
5300                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
5301                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5302
5303         kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5304
5305         vmx->nested.current_vmptr = INVALID_GPA;
5306 }
5307
5308 /* Emulate the VMXOFF instruction */
5309 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5310 {
5311         if (!nested_vmx_check_permission(vcpu))
5312                 return 1;
5313
5314         free_nested(vcpu);
5315
5316         if (kvm_apic_has_pending_init_or_sipi(vcpu))
5317                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5318
5319         return nested_vmx_succeed(vcpu);
5320 }
5321
5322 /* Emulate the VMCLEAR instruction */
5323 static int handle_vmclear(struct kvm_vcpu *vcpu)
5324 {
5325         struct vcpu_vmx *vmx = to_vmx(vcpu);
5326         u32 zero = 0;
5327         gpa_t vmptr;
5328         int r;
5329
5330         if (!nested_vmx_check_permission(vcpu))
5331                 return 1;
5332
5333         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5334                 return r;
5335
5336         if (!page_address_valid(vcpu, vmptr))
5337                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5338
5339         if (vmptr == vmx->nested.vmxon_ptr)
5340                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5341
5342         if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5343                 if (vmptr == vmx->nested.current_vmptr)
5344                         nested_release_vmcs12(vcpu);
5345
5346                 /*
5347                  * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5348                  * for VMCLEAR includes a "ensure that data for VMCS referenced
5349                  * by the operand is in memory" clause that guards writes to
5350                  * memory, i.e. doing nothing for I/O is architecturally valid.
5351                  *
5352                  * FIXME: Suppress failures if and only if no memslot is found,
5353                  * i.e. exit to userspace if __copy_to_user() fails.
5354                  */
5355                 (void)kvm_vcpu_write_guest(vcpu,
5356                                            vmptr + offsetof(struct vmcs12,
5357                                                             launch_state),
5358                                            &zero, sizeof(zero));
5359         }
5360
5361         return nested_vmx_succeed(vcpu);
5362 }
5363
5364 /* Emulate the VMLAUNCH instruction */
5365 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5366 {
5367         return nested_vmx_run(vcpu, true);
5368 }
5369
5370 /* Emulate the VMRESUME instruction */
5371 static int handle_vmresume(struct kvm_vcpu *vcpu)
5372 {
5373
5374         return nested_vmx_run(vcpu, false);
5375 }
5376
5377 static int handle_vmread(struct kvm_vcpu *vcpu)
5378 {
5379         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5380                                                     : get_vmcs12(vcpu);
5381         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5382         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5383         struct vcpu_vmx *vmx = to_vmx(vcpu);
5384         struct x86_exception e;
5385         unsigned long field;
5386         u64 value;
5387         gva_t gva = 0;
5388         short offset;
5389         int len, r;
5390
5391         if (!nested_vmx_check_permission(vcpu))
5392                 return 1;
5393
5394         /* Decode instruction info and find the field to read */
5395         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5396
5397         if (!nested_vmx_is_evmptr12_valid(vmx)) {
5398                 /*
5399                  * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5400                  * any VMREAD sets the ALU flags for VMfailInvalid.
5401                  */
5402                 if (vmx->nested.current_vmptr == INVALID_GPA ||
5403                     (is_guest_mode(vcpu) &&
5404                      get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5405                         return nested_vmx_failInvalid(vcpu);
5406
5407                 offset = get_vmcs12_field_offset(field);
5408                 if (offset < 0)
5409                         return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5410
5411                 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5412                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5413
5414                 /* Read the field, zero-extended to a u64 value */
5415                 value = vmcs12_read_any(vmcs12, field, offset);
5416         } else {
5417                 /*
5418                  * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5419                  * enlightened VMCS is active VMREAD/VMWRITE instructions are
5420                  * unsupported. Unfortunately, certain versions of Windows 11
5421                  * don't comply with this requirement which is not enforced in
5422                  * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5423                  * workaround, as misbehaving guests will panic on VM-Fail.
5424                  * Note, enlightened VMCS is incompatible with shadow VMCS so
5425                  * all VMREADs from L2 should go to L1.
5426                  */
5427                 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5428                         return nested_vmx_failInvalid(vcpu);
5429
5430                 offset = evmcs_field_offset(field, NULL);
5431                 if (offset < 0)
5432                         return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5433
5434                 /* Read the field, zero-extended to a u64 value */
5435                 value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5436         }
5437
5438         /*
5439          * Now copy part of this value to register or memory, as requested.
5440          * Note that the number of bits actually copied is 32 or 64 depending
5441          * on the guest's mode (32 or 64 bit), not on the given field's length.
5442          */
5443         if (instr_info & BIT(10)) {
5444                 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5445         } else {
5446                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5447                 if (get_vmx_mem_address(vcpu, exit_qualification,
5448                                         instr_info, true, len, &gva))
5449                         return 1;
5450                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5451                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5452                 if (r != X86EMUL_CONTINUE)
5453                         return kvm_handle_memory_failure(vcpu, r, &e);
5454         }
5455
5456         return nested_vmx_succeed(vcpu);
5457 }
5458
5459 static bool is_shadow_field_rw(unsigned long field)
5460 {
5461         switch (field) {
5462 #define SHADOW_FIELD_RW(x, y) case x:
5463 #include "vmcs_shadow_fields.h"
5464                 return true;
5465         default:
5466                 break;
5467         }
5468         return false;
5469 }
5470
5471 static bool is_shadow_field_ro(unsigned long field)
5472 {
5473         switch (field) {
5474 #define SHADOW_FIELD_RO(x, y) case x:
5475 #include "vmcs_shadow_fields.h"
5476                 return true;
5477         default:
5478                 break;
5479         }
5480         return false;
5481 }
5482
5483 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5484 {
5485         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5486                                                     : get_vmcs12(vcpu);
5487         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5488         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5489         struct vcpu_vmx *vmx = to_vmx(vcpu);
5490         struct x86_exception e;
5491         unsigned long field;
5492         short offset;
5493         gva_t gva;
5494         int len, r;
5495
5496         /*
5497          * The value to write might be 32 or 64 bits, depending on L1's long
5498          * mode, and eventually we need to write that into a field of several
5499          * possible lengths. The code below first zero-extends the value to 64
5500          * bit (value), and then copies only the appropriate number of
5501          * bits into the vmcs12 field.
5502          */
5503         u64 value = 0;
5504
5505         if (!nested_vmx_check_permission(vcpu))
5506                 return 1;
5507
5508         /*
5509          * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5510          * any VMWRITE sets the ALU flags for VMfailInvalid.
5511          */
5512         if (vmx->nested.current_vmptr == INVALID_GPA ||
5513             (is_guest_mode(vcpu) &&
5514              get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5515                 return nested_vmx_failInvalid(vcpu);
5516
5517         if (instr_info & BIT(10))
5518                 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5519         else {
5520                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5521                 if (get_vmx_mem_address(vcpu, exit_qualification,
5522                                         instr_info, false, len, &gva))
5523                         return 1;
5524                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5525                 if (r != X86EMUL_CONTINUE)
5526                         return kvm_handle_memory_failure(vcpu, r, &e);
5527         }
5528
5529         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5530
5531         offset = get_vmcs12_field_offset(field);
5532         if (offset < 0)
5533                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5534
5535         /*
5536          * If the vCPU supports "VMWRITE to any supported field in the
5537          * VMCS," then the "read-only" fields are actually read/write.
5538          */
5539         if (vmcs_field_readonly(field) &&
5540             !nested_cpu_has_vmwrite_any_field(vcpu))
5541                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5542
5543         /*
5544          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5545          * vmcs12, else we may crush a field or consume a stale value.
5546          */
5547         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5548                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5549
5550         /*
5551          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5552          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5553          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5554          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5555          * from L1 will return a different value than VMREAD from L2 (L1 sees
5556          * the stripped down value, L2 sees the full value as stored by KVM).
5557          */
5558         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5559                 value &= 0x1f0ff;
5560
5561         vmcs12_write_any(vmcs12, field, offset, value);
5562
5563         /*
5564          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5565          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5566          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5567          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5568          */
5569         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5570                 /*
5571                  * L1 can read these fields without exiting, ensure the
5572                  * shadow VMCS is up-to-date.
5573                  */
5574                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5575                         preempt_disable();
5576                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5577
5578                         __vmcs_writel(field, value);
5579
5580                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5581                         vmcs_load(vmx->loaded_vmcs->vmcs);
5582                         preempt_enable();
5583                 }
5584                 vmx->nested.dirty_vmcs12 = true;
5585         }
5586
5587         return nested_vmx_succeed(vcpu);
5588 }
5589
5590 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5591 {
5592         vmx->nested.current_vmptr = vmptr;
5593         if (enable_shadow_vmcs) {
5594                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5595                 vmcs_write64(VMCS_LINK_POINTER,
5596                              __pa(vmx->vmcs01.shadow_vmcs));
5597                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5598         }
5599         vmx->nested.dirty_vmcs12 = true;
5600         vmx->nested.force_msr_bitmap_recalc = true;
5601 }
5602
5603 /* Emulate the VMPTRLD instruction */
5604 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5605 {
5606         struct vcpu_vmx *vmx = to_vmx(vcpu);
5607         gpa_t vmptr;
5608         int r;
5609
5610         if (!nested_vmx_check_permission(vcpu))
5611                 return 1;
5612
5613         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5614                 return r;
5615
5616         if (!page_address_valid(vcpu, vmptr))
5617                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5618
5619         if (vmptr == vmx->nested.vmxon_ptr)
5620                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5621
5622         /* Forbid normal VMPTRLD if Enlightened version was used */
5623         if (nested_vmx_is_evmptr12_valid(vmx))
5624                 return 1;
5625
5626         if (vmx->nested.current_vmptr != vmptr) {
5627                 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5628                 struct vmcs_hdr hdr;
5629
5630                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5631                         /*
5632                          * Reads from an unbacked page return all 1s,
5633                          * which means that the 32 bits located at the
5634                          * given physical address won't match the required
5635                          * VMCS12_REVISION identifier.
5636                          */
5637                         return nested_vmx_fail(vcpu,
5638                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5639                 }
5640
5641                 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5642                                                  offsetof(struct vmcs12, hdr),
5643                                                  sizeof(hdr))) {
5644                         return nested_vmx_fail(vcpu,
5645                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5646                 }
5647
5648                 if (hdr.revision_id != VMCS12_REVISION ||
5649                     (hdr.shadow_vmcs &&
5650                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5651                         return nested_vmx_fail(vcpu,
5652                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5653                 }
5654
5655                 nested_release_vmcs12(vcpu);
5656
5657                 /*
5658                  * Load VMCS12 from guest memory since it is not already
5659                  * cached.
5660                  */
5661                 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5662                                           VMCS12_SIZE)) {
5663                         return nested_vmx_fail(vcpu,
5664                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5665                 }
5666
5667                 set_current_vmptr(vmx, vmptr);
5668         }
5669
5670         return nested_vmx_succeed(vcpu);
5671 }
5672
5673 /* Emulate the VMPTRST instruction */
5674 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5675 {
5676         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5677         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5678         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5679         struct x86_exception e;
5680         gva_t gva;
5681         int r;
5682
5683         if (!nested_vmx_check_permission(vcpu))
5684                 return 1;
5685
5686         if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5687                 return 1;
5688
5689         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5690                                 true, sizeof(gpa_t), &gva))
5691                 return 1;
5692         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5693         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5694                                         sizeof(gpa_t), &e);
5695         if (r != X86EMUL_CONTINUE)
5696                 return kvm_handle_memory_failure(vcpu, r, &e);
5697
5698         return nested_vmx_succeed(vcpu);
5699 }
5700
5701 /* Emulate the INVEPT instruction */
5702 static int handle_invept(struct kvm_vcpu *vcpu)
5703 {
5704         struct vcpu_vmx *vmx = to_vmx(vcpu);
5705         u32 vmx_instruction_info, types;
5706         unsigned long type, roots_to_free;
5707         struct kvm_mmu *mmu;
5708         gva_t gva;
5709         struct x86_exception e;
5710         struct {
5711                 u64 eptp, gpa;
5712         } operand;
5713         int i, r, gpr_index;
5714
5715         if (!(vmx->nested.msrs.secondary_ctls_high &
5716               SECONDARY_EXEC_ENABLE_EPT) ||
5717             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5718                 kvm_queue_exception(vcpu, UD_VECTOR);
5719                 return 1;
5720         }
5721
5722         if (!nested_vmx_check_permission(vcpu))
5723                 return 1;
5724
5725         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5726         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5727         type = kvm_register_read(vcpu, gpr_index);
5728
5729         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5730
5731         if (type >= 32 || !(types & (1 << type)))
5732                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5733
5734         /* According to the Intel VMX instruction reference, the memory
5735          * operand is read even if it isn't needed (e.g., for type==global)
5736          */
5737         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5738                         vmx_instruction_info, false, sizeof(operand), &gva))
5739                 return 1;
5740         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5741         if (r != X86EMUL_CONTINUE)
5742                 return kvm_handle_memory_failure(vcpu, r, &e);
5743
5744         /*
5745          * Nested EPT roots are always held through guest_mmu,
5746          * not root_mmu.
5747          */
5748         mmu = &vcpu->arch.guest_mmu;
5749
5750         switch (type) {
5751         case VMX_EPT_EXTENT_CONTEXT:
5752                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5753                         return nested_vmx_fail(vcpu,
5754                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5755
5756                 roots_to_free = 0;
5757                 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5758                                             operand.eptp))
5759                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5760
5761                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5762                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5763                                                     mmu->prev_roots[i].pgd,
5764                                                     operand.eptp))
5765                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5766                 }
5767                 break;
5768         case VMX_EPT_EXTENT_GLOBAL:
5769                 roots_to_free = KVM_MMU_ROOTS_ALL;
5770                 break;
5771         default:
5772                 BUG();
5773                 break;
5774         }
5775
5776         if (roots_to_free)
5777                 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5778
5779         return nested_vmx_succeed(vcpu);
5780 }
5781
5782 static int handle_invvpid(struct kvm_vcpu *vcpu)
5783 {
5784         struct vcpu_vmx *vmx = to_vmx(vcpu);
5785         u32 vmx_instruction_info;
5786         unsigned long type, types;
5787         gva_t gva;
5788         struct x86_exception e;
5789         struct {
5790                 u64 vpid;
5791                 u64 gla;
5792         } operand;
5793         u16 vpid02;
5794         int r, gpr_index;
5795
5796         if (!(vmx->nested.msrs.secondary_ctls_high &
5797               SECONDARY_EXEC_ENABLE_VPID) ||
5798                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5799                 kvm_queue_exception(vcpu, UD_VECTOR);
5800                 return 1;
5801         }
5802
5803         if (!nested_vmx_check_permission(vcpu))
5804                 return 1;
5805
5806         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5807         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5808         type = kvm_register_read(vcpu, gpr_index);
5809
5810         types = (vmx->nested.msrs.vpid_caps &
5811                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5812
5813         if (type >= 32 || !(types & (1 << type)))
5814                 return nested_vmx_fail(vcpu,
5815                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5816
5817         /* according to the intel vmx instruction reference, the memory
5818          * operand is read even if it isn't needed (e.g., for type==global)
5819          */
5820         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5821                         vmx_instruction_info, false, sizeof(operand), &gva))
5822                 return 1;
5823         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5824         if (r != X86EMUL_CONTINUE)
5825                 return kvm_handle_memory_failure(vcpu, r, &e);
5826
5827         if (operand.vpid >> 16)
5828                 return nested_vmx_fail(vcpu,
5829                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5830
5831         vpid02 = nested_get_vpid02(vcpu);
5832         switch (type) {
5833         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5834                 /*
5835                  * LAM doesn't apply to addresses that are inputs to TLB
5836                  * invalidation.
5837                  */
5838                 if (!operand.vpid ||
5839                     is_noncanonical_address(operand.gla, vcpu))
5840                         return nested_vmx_fail(vcpu,
5841                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5842                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5843                 break;
5844         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5845         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5846                 if (!operand.vpid)
5847                         return nested_vmx_fail(vcpu,
5848                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5849                 vpid_sync_context(vpid02);
5850                 break;
5851         case VMX_VPID_EXTENT_ALL_CONTEXT:
5852                 vpid_sync_context(vpid02);
5853                 break;
5854         default:
5855                 WARN_ON_ONCE(1);
5856                 return kvm_skip_emulated_instruction(vcpu);
5857         }
5858
5859         /*
5860          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5861          * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5862          * roots as VPIDs are not tracked in the MMU role.
5863          *
5864          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5865          * an MMU when EPT is disabled.
5866          *
5867          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5868          */
5869         if (!enable_ept)
5870                 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5871
5872         return nested_vmx_succeed(vcpu);
5873 }
5874
5875 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5876                                      struct vmcs12 *vmcs12)
5877 {
5878         u32 index = kvm_rcx_read(vcpu);
5879         u64 new_eptp;
5880
5881         if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5882                 return 1;
5883         if (index >= VMFUNC_EPTP_ENTRIES)
5884                 return 1;
5885
5886         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5887                                      &new_eptp, index * 8, 8))
5888                 return 1;
5889
5890         /*
5891          * If the (L2) guest does a vmfunc to the currently
5892          * active ept pointer, we don't have to do anything else
5893          */
5894         if (vmcs12->ept_pointer != new_eptp) {
5895                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5896                         return 1;
5897
5898                 vmcs12->ept_pointer = new_eptp;
5899                 nested_ept_new_eptp(vcpu);
5900
5901                 if (!nested_cpu_has_vpid(vmcs12))
5902                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5903         }
5904
5905         return 0;
5906 }
5907
5908 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5909 {
5910         struct vcpu_vmx *vmx = to_vmx(vcpu);
5911         struct vmcs12 *vmcs12;
5912         u32 function = kvm_rax_read(vcpu);
5913
5914         /*
5915          * VMFUNC should never execute cleanly while L1 is active; KVM supports
5916          * VMFUNC for nested VMs, but not for L1.
5917          */
5918         if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
5919                 kvm_queue_exception(vcpu, UD_VECTOR);
5920                 return 1;
5921         }
5922
5923         vmcs12 = get_vmcs12(vcpu);
5924
5925         /*
5926          * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5927          * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5928          */
5929         if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5930                 kvm_queue_exception(vcpu, UD_VECTOR);
5931                 return 1;
5932         }
5933
5934         if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5935                 goto fail;
5936
5937         switch (function) {
5938         case 0:
5939                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5940                         goto fail;
5941                 break;
5942         default:
5943                 goto fail;
5944         }
5945         return kvm_skip_emulated_instruction(vcpu);
5946
5947 fail:
5948         /*
5949          * This is effectively a reflected VM-Exit, as opposed to a synthesized
5950          * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5951          * EXIT_REASON_VMFUNC as the exit reason.
5952          */
5953         nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5954                           vmx_get_intr_info(vcpu),
5955                           vmx_get_exit_qual(vcpu));
5956         return 1;
5957 }
5958
5959 /*
5960  * Return true if an IO instruction with the specified port and size should cause
5961  * a VM-exit into L1.
5962  */
5963 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5964                                  int size)
5965 {
5966         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5967         gpa_t bitmap, last_bitmap;
5968         u8 b;
5969
5970         last_bitmap = INVALID_GPA;
5971         b = -1;
5972
5973         while (size > 0) {
5974                 if (port < 0x8000)
5975                         bitmap = vmcs12->io_bitmap_a;
5976                 else if (port < 0x10000)
5977                         bitmap = vmcs12->io_bitmap_b;
5978                 else
5979                         return true;
5980                 bitmap += (port & 0x7fff) / 8;
5981
5982                 if (last_bitmap != bitmap)
5983                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5984                                 return true;
5985                 if (b & (1 << (port & 7)))
5986                         return true;
5987
5988                 port++;
5989                 size--;
5990                 last_bitmap = bitmap;
5991         }
5992
5993         return false;
5994 }
5995
5996 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5997                                        struct vmcs12 *vmcs12)
5998 {
5999         unsigned long exit_qualification;
6000         unsigned short port;
6001         int size;
6002
6003         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6004                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6005
6006         exit_qualification = vmx_get_exit_qual(vcpu);
6007
6008         port = exit_qualification >> 16;
6009         size = (exit_qualification & 7) + 1;
6010
6011         return nested_vmx_check_io_bitmaps(vcpu, port, size);
6012 }
6013
6014 /*
6015  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6016  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6017  * disinterest in the current event (read or write a specific MSR) by using an
6018  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6019  */
6020 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6021                                         struct vmcs12 *vmcs12,
6022                                         union vmx_exit_reason exit_reason)
6023 {
6024         u32 msr_index = kvm_rcx_read(vcpu);
6025         gpa_t bitmap;
6026
6027         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6028                 return true;
6029
6030         /*
6031          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6032          * for the four combinations of read/write and low/high MSR numbers.
6033          * First we need to figure out which of the four to use:
6034          */
6035         bitmap = vmcs12->msr_bitmap;
6036         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6037                 bitmap += 2048;
6038         if (msr_index >= 0xc0000000) {
6039                 msr_index -= 0xc0000000;
6040                 bitmap += 1024;
6041         }
6042
6043         /* Then read the msr_index'th bit from this bitmap: */
6044         if (msr_index < 1024*8) {
6045                 unsigned char b;
6046                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6047                         return true;
6048                 return 1 & (b >> (msr_index & 7));
6049         } else
6050                 return true; /* let L1 handle the wrong parameter */
6051 }
6052
6053 /*
6054  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6055  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6056  * intercept (via guest_host_mask etc.) the current event.
6057  */
6058 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6059         struct vmcs12 *vmcs12)
6060 {
6061         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6062         int cr = exit_qualification & 15;
6063         int reg;
6064         unsigned long val;
6065
6066         switch ((exit_qualification >> 4) & 3) {
6067         case 0: /* mov to cr */
6068                 reg = (exit_qualification >> 8) & 15;
6069                 val = kvm_register_read(vcpu, reg);
6070                 switch (cr) {
6071                 case 0:
6072                         if (vmcs12->cr0_guest_host_mask &
6073                             (val ^ vmcs12->cr0_read_shadow))
6074                                 return true;
6075                         break;
6076                 case 3:
6077                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6078                                 return true;
6079                         break;
6080                 case 4:
6081                         if (vmcs12->cr4_guest_host_mask &
6082                             (vmcs12->cr4_read_shadow ^ val))
6083                                 return true;
6084                         break;
6085                 case 8:
6086                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6087                                 return true;
6088                         break;
6089                 }
6090                 break;
6091         case 2: /* clts */
6092                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6093                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6094                         return true;
6095                 break;
6096         case 1: /* mov from cr */
6097                 switch (cr) {
6098                 case 3:
6099                         if (vmcs12->cpu_based_vm_exec_control &
6100                             CPU_BASED_CR3_STORE_EXITING)
6101                                 return true;
6102                         break;
6103                 case 8:
6104                         if (vmcs12->cpu_based_vm_exec_control &
6105                             CPU_BASED_CR8_STORE_EXITING)
6106                                 return true;
6107                         break;
6108                 }
6109                 break;
6110         case 3: /* lmsw */
6111                 /*
6112                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6113                  * cr0. Other attempted changes are ignored, with no exit.
6114                  */
6115                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6116                 if (vmcs12->cr0_guest_host_mask & 0xe &
6117                     (val ^ vmcs12->cr0_read_shadow))
6118                         return true;
6119                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6120                     !(vmcs12->cr0_read_shadow & 0x1) &&
6121                     (val & 0x1))
6122                         return true;
6123                 break;
6124         }
6125         return false;
6126 }
6127
6128 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6129                                           struct vmcs12 *vmcs12)
6130 {
6131         u32 encls_leaf;
6132
6133         if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6134             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6135                 return false;
6136
6137         encls_leaf = kvm_rax_read(vcpu);
6138         if (encls_leaf > 62)
6139                 encls_leaf = 63;
6140         return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6141 }
6142
6143 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6144         struct vmcs12 *vmcs12, gpa_t bitmap)
6145 {
6146         u32 vmx_instruction_info;
6147         unsigned long field;
6148         u8 b;
6149
6150         if (!nested_cpu_has_shadow_vmcs(vmcs12))
6151                 return true;
6152
6153         /* Decode instruction info and find the field to access */
6154         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6155         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6156
6157         /* Out-of-range fields always cause a VM exit from L2 to L1 */
6158         if (field >> 15)
6159                 return true;
6160
6161         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6162                 return true;
6163
6164         return 1 & (b >> (field & 7));
6165 }
6166
6167 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6168 {
6169         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6170
6171         if (nested_cpu_has_mtf(vmcs12))
6172                 return true;
6173
6174         /*
6175          * An MTF VM-exit may be injected into the guest by setting the
6176          * interruption-type to 7 (other event) and the vector field to 0. Such
6177          * is the case regardless of the 'monitor trap flag' VM-execution
6178          * control.
6179          */
6180         return entry_intr_info == (INTR_INFO_VALID_MASK
6181                                    | INTR_TYPE_OTHER_EVENT);
6182 }
6183
6184 /*
6185  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6186  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
6187  */
6188 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6189                                      union vmx_exit_reason exit_reason)
6190 {
6191         u32 intr_info;
6192
6193         switch ((u16)exit_reason.basic) {
6194         case EXIT_REASON_EXCEPTION_NMI:
6195                 intr_info = vmx_get_intr_info(vcpu);
6196                 if (is_nmi(intr_info))
6197                         return true;
6198                 else if (is_page_fault(intr_info))
6199                         return vcpu->arch.apf.host_apf_flags ||
6200                                vmx_need_pf_intercept(vcpu);
6201                 else if (is_debug(intr_info) &&
6202                          vcpu->guest_debug &
6203                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6204                         return true;
6205                 else if (is_breakpoint(intr_info) &&
6206                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6207                         return true;
6208                 else if (is_alignment_check(intr_info) &&
6209                          !vmx_guest_inject_ac(vcpu))
6210                         return true;
6211                 return false;
6212         case EXIT_REASON_EXTERNAL_INTERRUPT:
6213                 return true;
6214         case EXIT_REASON_MCE_DURING_VMENTRY:
6215                 return true;
6216         case EXIT_REASON_EPT_VIOLATION:
6217                 /*
6218                  * L0 always deals with the EPT violation. If nested EPT is
6219                  * used, and the nested mmu code discovers that the address is
6220                  * missing in the guest EPT table (EPT12), the EPT violation
6221                  * will be injected with nested_ept_inject_page_fault()
6222                  */
6223                 return true;
6224         case EXIT_REASON_EPT_MISCONFIG:
6225                 /*
6226                  * L2 never uses directly L1's EPT, but rather L0's own EPT
6227                  * table (shadow on EPT) or a merged EPT table that L0 built
6228                  * (EPT on EPT). So any problems with the structure of the
6229                  * table is L0's fault.
6230                  */
6231                 return true;
6232         case EXIT_REASON_PREEMPTION_TIMER:
6233                 return true;
6234         case EXIT_REASON_PML_FULL:
6235                 /*
6236                  * PML is emulated for an L1 VMM and should never be enabled in
6237                  * vmcs02, always "handle" PML_FULL by exiting to userspace.
6238                  */
6239                 return true;
6240         case EXIT_REASON_VMFUNC:
6241                 /* VM functions are emulated through L2->L0 vmexits. */
6242                 return true;
6243         case EXIT_REASON_BUS_LOCK:
6244                 /*
6245                  * At present, bus lock VM exit is never exposed to L1.
6246                  * Handle L2's bus locks in L0 directly.
6247                  */
6248                 return true;
6249 #ifdef CONFIG_KVM_HYPERV
6250         case EXIT_REASON_VMCALL:
6251                 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6252                 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6253                         nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6254                         kvm_hv_is_tlb_flush_hcall(vcpu);
6255 #endif
6256         default:
6257                 break;
6258         }
6259         return false;
6260 }
6261
6262 /*
6263  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6264  * is_guest_mode (L2).
6265  */
6266 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6267                                      union vmx_exit_reason exit_reason)
6268 {
6269         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6270         u32 intr_info;
6271
6272         switch ((u16)exit_reason.basic) {
6273         case EXIT_REASON_EXCEPTION_NMI:
6274                 intr_info = vmx_get_intr_info(vcpu);
6275                 if (is_nmi(intr_info))
6276                         return true;
6277                 else if (is_page_fault(intr_info))
6278                         return true;
6279                 return vmcs12->exception_bitmap &
6280                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6281         case EXIT_REASON_EXTERNAL_INTERRUPT:
6282                 return nested_exit_on_intr(vcpu);
6283         case EXIT_REASON_TRIPLE_FAULT:
6284                 return true;
6285         case EXIT_REASON_INTERRUPT_WINDOW:
6286                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6287         case EXIT_REASON_NMI_WINDOW:
6288                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6289         case EXIT_REASON_TASK_SWITCH:
6290                 return true;
6291         case EXIT_REASON_CPUID:
6292                 return true;
6293         case EXIT_REASON_HLT:
6294                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6295         case EXIT_REASON_INVD:
6296                 return true;
6297         case EXIT_REASON_INVLPG:
6298                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6299         case EXIT_REASON_RDPMC:
6300                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6301         case EXIT_REASON_RDRAND:
6302                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6303         case EXIT_REASON_RDSEED:
6304                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6305         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6306                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6307         case EXIT_REASON_VMREAD:
6308                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6309                         vmcs12->vmread_bitmap);
6310         case EXIT_REASON_VMWRITE:
6311                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6312                         vmcs12->vmwrite_bitmap);
6313         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6314         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6315         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6316         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6317         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6318                 /*
6319                  * VMX instructions trap unconditionally. This allows L1 to
6320                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6321                  */
6322                 return true;
6323         case EXIT_REASON_CR_ACCESS:
6324                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6325         case EXIT_REASON_DR_ACCESS:
6326                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6327         case EXIT_REASON_IO_INSTRUCTION:
6328                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6329         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6330                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6331         case EXIT_REASON_MSR_READ:
6332         case EXIT_REASON_MSR_WRITE:
6333                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6334         case EXIT_REASON_INVALID_STATE:
6335                 return true;
6336         case EXIT_REASON_MWAIT_INSTRUCTION:
6337                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6338         case EXIT_REASON_MONITOR_TRAP_FLAG:
6339                 return nested_vmx_exit_handled_mtf(vmcs12);
6340         case EXIT_REASON_MONITOR_INSTRUCTION:
6341                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6342         case EXIT_REASON_PAUSE_INSTRUCTION:
6343                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6344                         nested_cpu_has2(vmcs12,
6345                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6346         case EXIT_REASON_MCE_DURING_VMENTRY:
6347                 return true;
6348         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6349                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6350         case EXIT_REASON_APIC_ACCESS:
6351         case EXIT_REASON_APIC_WRITE:
6352         case EXIT_REASON_EOI_INDUCED:
6353                 /*
6354                  * The controls for "virtualize APIC accesses," "APIC-
6355                  * register virtualization," and "virtual-interrupt
6356                  * delivery" only come from vmcs12.
6357                  */
6358                 return true;
6359         case EXIT_REASON_INVPCID:
6360                 return
6361                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6362                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6363         case EXIT_REASON_WBINVD:
6364                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6365         case EXIT_REASON_XSETBV:
6366                 return true;
6367         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6368                 /*
6369                  * This should never happen, since it is not possible to
6370                  * set XSS to a non-zero value---neither in L1 nor in L2.
6371                  * If if it were, XSS would have to be checked against
6372                  * the XSS exit bitmap in vmcs12.
6373                  */
6374                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6375         case EXIT_REASON_UMWAIT:
6376         case EXIT_REASON_TPAUSE:
6377                 return nested_cpu_has2(vmcs12,
6378                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6379         case EXIT_REASON_ENCLS:
6380                 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6381         case EXIT_REASON_NOTIFY:
6382                 /* Notify VM exit is not exposed to L1 */
6383                 return false;
6384         default:
6385                 return true;
6386         }
6387 }
6388
6389 /*
6390  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6391  * reflected into L1.
6392  */
6393 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6394 {
6395         struct vcpu_vmx *vmx = to_vmx(vcpu);
6396         union vmx_exit_reason exit_reason = vmx->exit_reason;
6397         unsigned long exit_qual;
6398         u32 exit_intr_info;
6399
6400         WARN_ON_ONCE(vmx->nested.nested_run_pending);
6401
6402         /*
6403          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6404          * has already loaded L2's state.
6405          */
6406         if (unlikely(vmx->fail)) {
6407                 trace_kvm_nested_vmenter_failed(
6408                         "hardware VM-instruction error: ",
6409                         vmcs_read32(VM_INSTRUCTION_ERROR));
6410                 exit_intr_info = 0;
6411                 exit_qual = 0;
6412                 goto reflect_vmexit;
6413         }
6414
6415         trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6416
6417         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6418         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6419                 return false;
6420
6421         /* If L1 doesn't want the exit, handle it in L0. */
6422         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6423                 return false;
6424
6425         /*
6426          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6427          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6428          * need to be synthesized by querying the in-kernel LAPIC, but external
6429          * interrupts are never reflected to L1 so it's a non-issue.
6430          */
6431         exit_intr_info = vmx_get_intr_info(vcpu);
6432         if (is_exception_with_error_code(exit_intr_info)) {
6433                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6434
6435                 vmcs12->vm_exit_intr_error_code =
6436                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6437         }
6438         exit_qual = vmx_get_exit_qual(vcpu);
6439
6440 reflect_vmexit:
6441         nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6442         return true;
6443 }
6444
6445 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6446                                 struct kvm_nested_state __user *user_kvm_nested_state,
6447                                 u32 user_data_size)
6448 {
6449         struct vcpu_vmx *vmx;
6450         struct vmcs12 *vmcs12;
6451         struct kvm_nested_state kvm_state = {
6452                 .flags = 0,
6453                 .format = KVM_STATE_NESTED_FORMAT_VMX,
6454                 .size = sizeof(kvm_state),
6455                 .hdr.vmx.flags = 0,
6456                 .hdr.vmx.vmxon_pa = INVALID_GPA,
6457                 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6458                 .hdr.vmx.preemption_timer_deadline = 0,
6459         };
6460         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6461                 &user_kvm_nested_state->data.vmx[0];
6462
6463         if (!vcpu)
6464                 return kvm_state.size + sizeof(*user_vmx_nested_state);
6465
6466         vmx = to_vmx(vcpu);
6467         vmcs12 = get_vmcs12(vcpu);
6468
6469         if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6470             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6471                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6472                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6473
6474                 if (vmx_has_valid_vmcs12(vcpu)) {
6475                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6476
6477                         /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6478                         if (nested_vmx_is_evmptr12_set(vmx))
6479                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6480
6481                         if (is_guest_mode(vcpu) &&
6482                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6483                             vmcs12->vmcs_link_pointer != INVALID_GPA)
6484                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6485                 }
6486
6487                 if (vmx->nested.smm.vmxon)
6488                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6489
6490                 if (vmx->nested.smm.guest_mode)
6491                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6492
6493                 if (is_guest_mode(vcpu)) {
6494                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6495
6496                         if (vmx->nested.nested_run_pending)
6497                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6498
6499                         if (vmx->nested.mtf_pending)
6500                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6501
6502                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6503                             vmx->nested.has_preemption_timer_deadline) {
6504                                 kvm_state.hdr.vmx.flags |=
6505                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6506                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6507                                         vmx->nested.preemption_timer_deadline;
6508                         }
6509                 }
6510         }
6511
6512         if (user_data_size < kvm_state.size)
6513                 goto out;
6514
6515         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6516                 return -EFAULT;
6517
6518         if (!vmx_has_valid_vmcs12(vcpu))
6519                 goto out;
6520
6521         /*
6522          * When running L2, the authoritative vmcs12 state is in the
6523          * vmcs02. When running L1, the authoritative vmcs12 state is
6524          * in the shadow or enlightened vmcs linked to vmcs01, unless
6525          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6526          * vmcs12 state is in the vmcs12 already.
6527          */
6528         if (is_guest_mode(vcpu)) {
6529                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6530                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6531         } else  {
6532                 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6533                 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6534                         if (nested_vmx_is_evmptr12_valid(vmx))
6535                                 /*
6536                                  * L1 hypervisor is not obliged to keep eVMCS
6537                                  * clean fields data always up-to-date while
6538                                  * not in guest mode, 'hv_clean_fields' is only
6539                                  * supposed to be actual upon vmentry so we need
6540                                  * to ignore it here and do full copy.
6541                                  */
6542                                 copy_enlightened_to_vmcs12(vmx, 0);
6543                         else if (enable_shadow_vmcs)
6544                                 copy_shadow_to_vmcs12(vmx);
6545                 }
6546         }
6547
6548         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6549         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6550
6551         /*
6552          * Copy over the full allocated size of vmcs12 rather than just the size
6553          * of the struct.
6554          */
6555         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6556                 return -EFAULT;
6557
6558         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6559             vmcs12->vmcs_link_pointer != INVALID_GPA) {
6560                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6561                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6562                         return -EFAULT;
6563         }
6564 out:
6565         return kvm_state.size;
6566 }
6567
6568 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6569 {
6570         if (is_guest_mode(vcpu)) {
6571                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6572                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6573         }
6574         free_nested(vcpu);
6575 }
6576
6577 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6578                                 struct kvm_nested_state __user *user_kvm_nested_state,
6579                                 struct kvm_nested_state *kvm_state)
6580 {
6581         struct vcpu_vmx *vmx = to_vmx(vcpu);
6582         struct vmcs12 *vmcs12;
6583         enum vm_entry_failure_code ignored;
6584         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6585                 &user_kvm_nested_state->data.vmx[0];
6586         int ret;
6587
6588         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6589                 return -EINVAL;
6590
6591         if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6592                 if (kvm_state->hdr.vmx.smm.flags)
6593                         return -EINVAL;
6594
6595                 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6596                         return -EINVAL;
6597
6598                 /*
6599                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6600                  * enable eVMCS capability on vCPU. However, since then
6601                  * code was changed such that flag signals vmcs12 should
6602                  * be copied into eVMCS in guest memory.
6603                  *
6604                  * To preserve backwards compatibility, allow user
6605                  * to set this flag even when there is no VMXON region.
6606                  */
6607                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6608                         return -EINVAL;
6609         } else {
6610                 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6611                         return -EINVAL;
6612
6613                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6614                         return -EINVAL;
6615         }
6616
6617         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6618             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6619                 return -EINVAL;
6620
6621         if (kvm_state->hdr.vmx.smm.flags &
6622             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6623                 return -EINVAL;
6624
6625         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6626                 return -EINVAL;
6627
6628         /*
6629          * SMM temporarily disables VMX, so we cannot be in guest mode,
6630          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6631          * must be zero.
6632          */
6633         if (is_smm(vcpu) ?
6634                 (kvm_state->flags &
6635                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6636                 : kvm_state->hdr.vmx.smm.flags)
6637                 return -EINVAL;
6638
6639         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6640             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6641                 return -EINVAL;
6642
6643         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6644             (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6645              !vmx->nested.enlightened_vmcs_enabled))
6646                         return -EINVAL;
6647
6648         vmx_leave_nested(vcpu);
6649
6650         if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6651                 return 0;
6652
6653         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6654         ret = enter_vmx_operation(vcpu);
6655         if (ret)
6656                 return ret;
6657
6658         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6659         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6660                 /* See vmx_has_valid_vmcs12.  */
6661                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6662                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6663                     (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6664                         return -EINVAL;
6665                 else
6666                         return 0;
6667         }
6668
6669         if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6670                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6671                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6672                         return -EINVAL;
6673
6674                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6675 #ifdef CONFIG_KVM_HYPERV
6676         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6677                 /*
6678                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6679                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6680                  * restored yet. EVMCS will be mapped from
6681                  * nested_get_vmcs12_pages().
6682                  */
6683                 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6684                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6685 #endif
6686         } else {
6687                 return -EINVAL;
6688         }
6689
6690         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6691                 vmx->nested.smm.vmxon = true;
6692                 vmx->nested.vmxon = false;
6693
6694                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6695                         vmx->nested.smm.guest_mode = true;
6696         }
6697
6698         vmcs12 = get_vmcs12(vcpu);
6699         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6700                 return -EFAULT;
6701
6702         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6703                 return -EINVAL;
6704
6705         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6706                 return 0;
6707
6708         vmx->nested.nested_run_pending =
6709                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6710
6711         vmx->nested.mtf_pending =
6712                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6713
6714         ret = -EINVAL;
6715         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6716             vmcs12->vmcs_link_pointer != INVALID_GPA) {
6717                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6718
6719                 if (kvm_state->size <
6720                     sizeof(*kvm_state) +
6721                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6722                         goto error_guest_mode;
6723
6724                 if (copy_from_user(shadow_vmcs12,
6725                                    user_vmx_nested_state->shadow_vmcs12,
6726                                    sizeof(*shadow_vmcs12))) {
6727                         ret = -EFAULT;
6728                         goto error_guest_mode;
6729                 }
6730
6731                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6732                     !shadow_vmcs12->hdr.shadow_vmcs)
6733                         goto error_guest_mode;
6734         }
6735
6736         vmx->nested.has_preemption_timer_deadline = false;
6737         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6738                 vmx->nested.has_preemption_timer_deadline = true;
6739                 vmx->nested.preemption_timer_deadline =
6740                         kvm_state->hdr.vmx.preemption_timer_deadline;
6741         }
6742
6743         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6744             nested_vmx_check_host_state(vcpu, vmcs12) ||
6745             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6746                 goto error_guest_mode;
6747
6748         vmx->nested.dirty_vmcs12 = true;
6749         vmx->nested.force_msr_bitmap_recalc = true;
6750         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6751         if (ret)
6752                 goto error_guest_mode;
6753
6754         if (vmx->nested.mtf_pending)
6755                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6756
6757         return 0;
6758
6759 error_guest_mode:
6760         vmx->nested.nested_run_pending = 0;
6761         return ret;
6762 }
6763
6764 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6765 {
6766         if (enable_shadow_vmcs) {
6767                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6768                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6769         }
6770 }
6771
6772 /*
6773  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6774  * that madness to get the encoding for comparison.
6775  */
6776 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6777
6778 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6779 {
6780         /*
6781          * Note these are the so called "index" of the VMCS field encoding, not
6782          * the index into vmcs12.
6783          */
6784         unsigned int max_idx, idx;
6785         int i;
6786
6787         /*
6788          * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6789          * vmcs12, regardless of whether or not the associated feature is
6790          * exposed to L1.  Simply find the field with the highest index.
6791          */
6792         max_idx = 0;
6793         for (i = 0; i < nr_vmcs12_fields; i++) {
6794                 /* The vmcs12 table is very, very sparsely populated. */
6795                 if (!vmcs12_field_offsets[i])
6796                         continue;
6797
6798                 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6799                 if (idx > max_idx)
6800                         max_idx = idx;
6801         }
6802
6803         return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6804 }
6805
6806 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6807                                            struct nested_vmx_msrs *msrs)
6808 {
6809         msrs->pinbased_ctls_low =
6810                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6811
6812         msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6813         msrs->pinbased_ctls_high &=
6814                 PIN_BASED_EXT_INTR_MASK |
6815                 PIN_BASED_NMI_EXITING |
6816                 PIN_BASED_VIRTUAL_NMIS |
6817                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6818         msrs->pinbased_ctls_high |=
6819                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6820                 PIN_BASED_VMX_PREEMPTION_TIMER;
6821 }
6822
6823 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6824                                        struct nested_vmx_msrs *msrs)
6825 {
6826         msrs->exit_ctls_low =
6827                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6828
6829         msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6830         msrs->exit_ctls_high &=
6831 #ifdef CONFIG_X86_64
6832                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6833 #endif
6834                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6835                 VM_EXIT_CLEAR_BNDCFGS;
6836         msrs->exit_ctls_high |=
6837                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6838                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6839                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6840                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6841
6842         /* We support free control of debug control saving. */
6843         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6844 }
6845
6846 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
6847                                         struct nested_vmx_msrs *msrs)
6848 {
6849         msrs->entry_ctls_low =
6850                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6851
6852         msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6853         msrs->entry_ctls_high &=
6854 #ifdef CONFIG_X86_64
6855                 VM_ENTRY_IA32E_MODE |
6856 #endif
6857                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6858         msrs->entry_ctls_high |=
6859                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6860                  VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6861
6862         /* We support free control of debug control loading. */
6863         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6864 }
6865
6866 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
6867                                            struct nested_vmx_msrs *msrs)
6868 {
6869         msrs->procbased_ctls_low =
6870                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6871
6872         msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6873         msrs->procbased_ctls_high &=
6874                 CPU_BASED_INTR_WINDOW_EXITING |
6875                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6876                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6877                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6878                 CPU_BASED_CR3_STORE_EXITING |
6879 #ifdef CONFIG_X86_64
6880                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6881 #endif
6882                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6883                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6884                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6885                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6886                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6887         /*
6888          * We can allow some features even when not supported by the
6889          * hardware. For example, L1 can specify an MSR bitmap - and we
6890          * can use it to avoid exits to L1 - even when L0 runs L2
6891          * without MSR bitmaps.
6892          */
6893         msrs->procbased_ctls_high |=
6894                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6895                 CPU_BASED_USE_MSR_BITMAPS;
6896
6897         /* We support free control of CR3 access interception. */
6898         msrs->procbased_ctls_low &=
6899                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6900 }
6901
6902 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
6903                                             struct vmcs_config *vmcs_conf,
6904                                             struct nested_vmx_msrs *msrs)
6905 {
6906         msrs->secondary_ctls_low = 0;
6907
6908         msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6909         msrs->secondary_ctls_high &=
6910                 SECONDARY_EXEC_DESC |
6911                 SECONDARY_EXEC_ENABLE_RDTSCP |
6912                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6913                 SECONDARY_EXEC_WBINVD_EXITING |
6914                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6915                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6916                 SECONDARY_EXEC_RDRAND_EXITING |
6917                 SECONDARY_EXEC_ENABLE_INVPCID |
6918                 SECONDARY_EXEC_ENABLE_VMFUNC |
6919                 SECONDARY_EXEC_RDSEED_EXITING |
6920                 SECONDARY_EXEC_ENABLE_XSAVES |
6921                 SECONDARY_EXEC_TSC_SCALING |
6922                 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6923
6924         /*
6925          * We can emulate "VMCS shadowing," even if the hardware
6926          * doesn't support it.
6927          */
6928         msrs->secondary_ctls_high |=
6929                 SECONDARY_EXEC_SHADOW_VMCS;
6930
6931         if (enable_ept) {
6932                 /* nested EPT: emulate EPT also to L1 */
6933                 msrs->secondary_ctls_high |=
6934                         SECONDARY_EXEC_ENABLE_EPT;
6935                 msrs->ept_caps =
6936                         VMX_EPT_PAGE_WALK_4_BIT |
6937                         VMX_EPT_PAGE_WALK_5_BIT |
6938                         VMX_EPTP_WB_BIT |
6939                         VMX_EPT_INVEPT_BIT |
6940                         VMX_EPT_EXECUTE_ONLY_BIT;
6941
6942                 msrs->ept_caps &= ept_caps;
6943                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6944                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6945                         VMX_EPT_1GB_PAGE_BIT;
6946                 if (enable_ept_ad_bits) {
6947                         msrs->secondary_ctls_high |=
6948                                 SECONDARY_EXEC_ENABLE_PML;
6949                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6950                 }
6951
6952                 /*
6953                  * Advertise EPTP switching irrespective of hardware support,
6954                  * KVM emulates it in software so long as VMFUNC is supported.
6955                  */
6956                 if (cpu_has_vmx_vmfunc())
6957                         msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
6958         }
6959
6960         /*
6961          * Old versions of KVM use the single-context version without
6962          * checking for support, so declare that it is supported even
6963          * though it is treated as global context.  The alternative is
6964          * not failing the single-context invvpid, and it is worse.
6965          */
6966         if (enable_vpid) {
6967                 msrs->secondary_ctls_high |=
6968                         SECONDARY_EXEC_ENABLE_VPID;
6969                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6970                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6971         }
6972
6973         if (enable_unrestricted_guest)
6974                 msrs->secondary_ctls_high |=
6975                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6976
6977         if (flexpriority_enabled)
6978                 msrs->secondary_ctls_high |=
6979                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6980
6981         if (enable_sgx)
6982                 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6983 }
6984
6985 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
6986                                        struct nested_vmx_msrs *msrs)
6987 {
6988         msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
6989         msrs->misc_low |=
6990                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6991                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6992                 VMX_MISC_ACTIVITY_HLT |
6993                 VMX_MISC_ACTIVITY_WAIT_SIPI;
6994         msrs->misc_high = 0;
6995 }
6996
6997 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
6998 {
6999         /*
7000          * This MSR reports some information about VMX support. We
7001          * should return information about the VMX we emulate for the
7002          * guest, and the VMCS structure we give it - not about the
7003          * VMX support of the underlying hardware.
7004          */
7005         msrs->basic =
7006                 VMCS12_REVISION |
7007                 VMX_BASIC_TRUE_CTLS |
7008                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
7009                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
7010
7011         if (cpu_has_vmx_basic_inout())
7012                 msrs->basic |= VMX_BASIC_INOUT;
7013 }
7014
7015 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7016 {
7017         /*
7018          * These MSRs specify bits which the guest must keep fixed on
7019          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7020          * We picked the standard core2 setting.
7021          */
7022 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7023 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
7024         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7025         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7026
7027         /* These MSRs specify bits which the guest must keep fixed off. */
7028         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7029         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7030
7031         if (vmx_umip_emulated())
7032                 msrs->cr4_fixed1 |= X86_CR4_UMIP;
7033 }
7034
7035 /*
7036  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7037  * returned for the various VMX controls MSRs when nested VMX is enabled.
7038  * The same values should also be used to verify that vmcs12 control fields are
7039  * valid during nested entry from L1 to L2.
7040  * Each of these control msrs has a low and high 32-bit half: A low bit is on
7041  * if the corresponding bit in the (32-bit) control field *must* be on, and a
7042  * bit in the high half is on if the corresponding bit in the control field
7043  * may be on. See also vmx_control_verify().
7044  */
7045 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7046 {
7047         struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7048
7049         /*
7050          * Note that as a general rule, the high half of the MSRs (bits in
7051          * the control fields which may be 1) should be initialized by the
7052          * intersection of the underlying hardware's MSR (i.e., features which
7053          * can be supported) and the list of features we want to expose -
7054          * because they are known to be properly supported in our code.
7055          * Also, usually, the low half of the MSRs (bits which must be 1) can
7056          * be set to 0, meaning that L1 may turn off any of these bits. The
7057          * reason is that if one of these bits is necessary, it will appear
7058          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7059          * fields of vmcs01 and vmcs02, will turn these bits off - and
7060          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7061          * These rules have exceptions below.
7062          */
7063         nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7064
7065         nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7066
7067         nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7068
7069         nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7070
7071         nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7072
7073         nested_vmx_setup_misc_data(vmcs_conf, msrs);
7074
7075         nested_vmx_setup_basic(msrs);
7076
7077         nested_vmx_setup_cr_fixed(msrs);
7078
7079         msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7080 }
7081
7082 void nested_vmx_hardware_unsetup(void)
7083 {
7084         int i;
7085
7086         if (enable_shadow_vmcs) {
7087                 for (i = 0; i < VMX_BITMAP_NR; i++)
7088                         free_page((unsigned long)vmx_bitmap[i]);
7089         }
7090 }
7091
7092 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7093 {
7094         int i;
7095
7096         if (!cpu_has_vmx_shadow_vmcs())
7097                 enable_shadow_vmcs = 0;
7098         if (enable_shadow_vmcs) {
7099                 for (i = 0; i < VMX_BITMAP_NR; i++) {
7100                         /*
7101                          * The vmx_bitmap is not tied to a VM and so should
7102                          * not be charged to a memcg.
7103                          */
7104                         vmx_bitmap[i] = (unsigned long *)
7105                                 __get_free_page(GFP_KERNEL);
7106                         if (!vmx_bitmap[i]) {
7107                                 nested_vmx_hardware_unsetup();
7108                                 return -ENOMEM;
7109                         }
7110                 }
7111
7112                 init_vmcs_shadow_fields();
7113         }
7114
7115         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
7116         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
7117         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
7118         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
7119         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
7120         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
7121         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
7122         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmxoff;
7123         exit_handlers[EXIT_REASON_VMON]         = handle_vmxon;
7124         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
7125         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
7126         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
7127
7128         return 0;
7129 }
7130
7131 struct kvm_x86_nested_ops vmx_nested_ops = {
7132         .leave_nested = vmx_leave_nested,
7133         .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7134         .check_events = vmx_check_nested_events,
7135         .has_events = vmx_has_nested_events,
7136         .triple_fault = nested_vmx_triple_fault,
7137         .get_state = vmx_get_nested_state,
7138         .set_state = vmx_set_nested_state,
7139         .get_nested_state_pages = vmx_get_nested_state_pages,
7140         .write_log_dirty = nested_vmx_write_pml_buffer,
7141 #ifdef CONFIG_KVM_HYPERV
7142         .enable_evmcs = nested_enable_evmcs,
7143         .get_evmcs_version = nested_get_evmcs_version,
7144         .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7145 #endif
7146 };