Merge branch 'dmi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvar...
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "evmcs.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "sgx.h"
16 #include "trace.h"
17 #include "vmx.h"
18 #include "x86.h"
19
20 static bool __read_mostly enable_shadow_vmcs = 1;
21 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
22
23 static bool __read_mostly nested_early_check = 0;
24 module_param(nested_early_check, bool, S_IRUGO);
25
26 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
27
28 /*
29  * Hyper-V requires all of these, so mark them as supported even though
30  * they are just treated the same as all-context.
31  */
32 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
33         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
34         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
35         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
36         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
37
38 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
39
40 enum {
41         VMX_VMREAD_BITMAP,
42         VMX_VMWRITE_BITMAP,
43         VMX_BITMAP_NR
44 };
45 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
46
47 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
48 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
49
50 struct shadow_vmcs_field {
51         u16     encoding;
52         u16     offset;
53 };
54 static struct shadow_vmcs_field shadow_read_only_fields[] = {
55 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
56 #include "vmcs_shadow_fields.h"
57 };
58 static int max_shadow_read_only_fields =
59         ARRAY_SIZE(shadow_read_only_fields);
60
61 static struct shadow_vmcs_field shadow_read_write_fields[] = {
62 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
63 #include "vmcs_shadow_fields.h"
64 };
65 static int max_shadow_read_write_fields =
66         ARRAY_SIZE(shadow_read_write_fields);
67
68 static void init_vmcs_shadow_fields(void)
69 {
70         int i, j;
71
72         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
73         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
74
75         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
76                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
77                 u16 field = entry.encoding;
78
79                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
80                     (i + 1 == max_shadow_read_only_fields ||
81                      shadow_read_only_fields[i + 1].encoding != field + 1))
82                         pr_err("Missing field from shadow_read_only_field %x\n",
83                                field + 1);
84
85                 clear_bit(field, vmx_vmread_bitmap);
86                 if (field & 1)
87 #ifdef CONFIG_X86_64
88                         continue;
89 #else
90                         entry.offset += sizeof(u32);
91 #endif
92                 shadow_read_only_fields[j++] = entry;
93         }
94         max_shadow_read_only_fields = j;
95
96         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
97                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
98                 u16 field = entry.encoding;
99
100                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
101                     (i + 1 == max_shadow_read_write_fields ||
102                      shadow_read_write_fields[i + 1].encoding != field + 1))
103                         pr_err("Missing field from shadow_read_write_field %x\n",
104                                field + 1);
105
106                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
107                           field <= GUEST_TR_AR_BYTES,
108                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
109
110                 /*
111                  * PML and the preemption timer can be emulated, but the
112                  * processor cannot vmwrite to fields that don't exist
113                  * on bare metal.
114                  */
115                 switch (field) {
116                 case GUEST_PML_INDEX:
117                         if (!cpu_has_vmx_pml())
118                                 continue;
119                         break;
120                 case VMX_PREEMPTION_TIMER_VALUE:
121                         if (!cpu_has_vmx_preemption_timer())
122                                 continue;
123                         break;
124                 case GUEST_INTR_STATUS:
125                         if (!cpu_has_vmx_apicv())
126                                 continue;
127                         break;
128                 default:
129                         break;
130                 }
131
132                 clear_bit(field, vmx_vmwrite_bitmap);
133                 clear_bit(field, vmx_vmread_bitmap);
134                 if (field & 1)
135 #ifdef CONFIG_X86_64
136                         continue;
137 #else
138                         entry.offset += sizeof(u32);
139 #endif
140                 shadow_read_write_fields[j++] = entry;
141         }
142         max_shadow_read_write_fields = j;
143 }
144
145 /*
146  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
147  * set the success or error code of an emulated VMX instruction (as specified
148  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
149  * instruction.
150  */
151 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
152 {
153         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
154                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
155                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
156         return kvm_skip_emulated_instruction(vcpu);
157 }
158
159 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
160 {
161         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
162                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
163                             X86_EFLAGS_SF | X86_EFLAGS_OF))
164                         | X86_EFLAGS_CF);
165         return kvm_skip_emulated_instruction(vcpu);
166 }
167
168 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
169                                 u32 vm_instruction_error)
170 {
171         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
172                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
173                             X86_EFLAGS_SF | X86_EFLAGS_OF))
174                         | X86_EFLAGS_ZF);
175         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
176         /*
177          * We don't need to force sync to shadow VMCS because
178          * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
179          * fields and thus must be synced.
180          */
181         if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
182                 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
183
184         return kvm_skip_emulated_instruction(vcpu);
185 }
186
187 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 {
189         struct vcpu_vmx *vmx = to_vmx(vcpu);
190
191         /*
192          * failValid writes the error number to the current VMCS, which
193          * can't be done if there isn't a current VMCS.
194          */
195         if (vmx->nested.current_vmptr == INVALID_GPA &&
196             !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
197                 return nested_vmx_failInvalid(vcpu);
198
199         return nested_vmx_failValid(vcpu, vm_instruction_error);
200 }
201
202 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
203 {
204         /* TODO: not to reset guest simply here. */
205         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
206         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
207 }
208
209 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
210 {
211         return fixed_bits_valid(control, low, high);
212 }
213
214 static inline u64 vmx_control_msr(u32 low, u32 high)
215 {
216         return low | ((u64)high << 32);
217 }
218
219 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
220 {
221         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
222         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
223         vmx->nested.need_vmcs12_to_shadow_sync = false;
224 }
225
226 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
227 {
228         struct vcpu_vmx *vmx = to_vmx(vcpu);
229
230         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
231                 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
232                 vmx->nested.hv_evmcs = NULL;
233         }
234
235         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
236 }
237
238 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
239                                      struct loaded_vmcs *prev)
240 {
241         struct vmcs_host_state *dest, *src;
242
243         if (unlikely(!vmx->guest_state_loaded))
244                 return;
245
246         src = &prev->host_state;
247         dest = &vmx->loaded_vmcs->host_state;
248
249         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
250         dest->ldt_sel = src->ldt_sel;
251 #ifdef CONFIG_X86_64
252         dest->ds_sel = src->ds_sel;
253         dest->es_sel = src->es_sel;
254 #endif
255 }
256
257 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
258 {
259         struct vcpu_vmx *vmx = to_vmx(vcpu);
260         struct loaded_vmcs *prev;
261         int cpu;
262
263         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
264                 return;
265
266         cpu = get_cpu();
267         prev = vmx->loaded_vmcs;
268         vmx->loaded_vmcs = vmcs;
269         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
270         vmx_sync_vmcs_host_state(vmx, prev);
271         put_cpu();
272
273         vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
274
275         /*
276          * All lazily updated registers will be reloaded from VMCS12 on both
277          * vmentry and vmexit.
278          */
279         vcpu->arch.regs_dirty = 0;
280 }
281
282 /*
283  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
284  * just stops using VMX.
285  */
286 static void free_nested(struct kvm_vcpu *vcpu)
287 {
288         struct vcpu_vmx *vmx = to_vmx(vcpu);
289
290         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
291                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
292
293         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
294                 return;
295
296         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
297
298         vmx->nested.vmxon = false;
299         vmx->nested.smm.vmxon = false;
300         vmx->nested.vmxon_ptr = INVALID_GPA;
301         free_vpid(vmx->nested.vpid02);
302         vmx->nested.posted_intr_nv = -1;
303         vmx->nested.current_vmptr = INVALID_GPA;
304         if (enable_shadow_vmcs) {
305                 vmx_disable_shadow_vmcs(vmx);
306                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
307                 free_vmcs(vmx->vmcs01.shadow_vmcs);
308                 vmx->vmcs01.shadow_vmcs = NULL;
309         }
310         kfree(vmx->nested.cached_vmcs12);
311         vmx->nested.cached_vmcs12 = NULL;
312         kfree(vmx->nested.cached_shadow_vmcs12);
313         vmx->nested.cached_shadow_vmcs12 = NULL;
314         /*
315          * Unpin physical memory we referred to in the vmcs02.  The APIC access
316          * page's backing page (yeah, confusing) shouldn't actually be accessed,
317          * and if it is written, the contents are irrelevant.
318          */
319         kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
320         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
321         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
322         vmx->nested.pi_desc = NULL;
323
324         kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
325
326         nested_release_evmcs(vcpu);
327
328         free_loaded_vmcs(&vmx->nested.vmcs02);
329 }
330
331 /*
332  * Ensure that the current vmcs of the logical processor is the
333  * vmcs01 of the vcpu before calling free_nested().
334  */
335 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
336 {
337         vcpu_load(vcpu);
338         vmx_leave_nested(vcpu);
339         vcpu_put(vcpu);
340 }
341
342 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
343
344 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
345 {
346         return VALID_PAGE(root_hpa) &&
347                ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
348 }
349
350 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
351                                        gpa_t addr)
352 {
353         uint i;
354         struct kvm_mmu_root_info *cached_root;
355
356         WARN_ON_ONCE(!mmu_is_nested(vcpu));
357
358         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
359                 cached_root = &vcpu->arch.mmu->prev_roots[i];
360
361                 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
362                                             eptp))
363                         vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
364         }
365 }
366
367 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
368                 struct x86_exception *fault)
369 {
370         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
371         struct vcpu_vmx *vmx = to_vmx(vcpu);
372         u32 vm_exit_reason;
373         unsigned long exit_qualification = vcpu->arch.exit_qualification;
374
375         if (vmx->nested.pml_full) {
376                 vm_exit_reason = EXIT_REASON_PML_FULL;
377                 vmx->nested.pml_full = false;
378                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
379         } else {
380                 if (fault->error_code & PFERR_RSVD_MASK)
381                         vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
382                 else
383                         vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
384
385                 /*
386                  * Although the caller (kvm_inject_emulated_page_fault) would
387                  * have already synced the faulting address in the shadow EPT
388                  * tables for the current EPTP12, we also need to sync it for
389                  * any other cached EPTP02s based on the same EP4TA, since the
390                  * TLB associates mappings to the EP4TA rather than the full EPTP.
391                  */
392                 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
393                                            fault->address);
394         }
395
396         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
397         vmcs12->guest_physical_address = fault->address;
398 }
399
400 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
401 {
402         struct vcpu_vmx *vmx = to_vmx(vcpu);
403         bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
404         int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
405
406         kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
407                                 nested_ept_ad_enabled(vcpu),
408                                 nested_ept_get_eptp(vcpu));
409 }
410
411 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
412 {
413         WARN_ON(mmu_is_nested(vcpu));
414
415         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
416         nested_ept_new_eptp(vcpu);
417         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
418         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
419         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
420
421         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
422 }
423
424 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
425 {
426         vcpu->arch.mmu = &vcpu->arch.root_mmu;
427         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
428 }
429
430 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
431                                             u16 error_code)
432 {
433         bool inequality, bit;
434
435         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
436         inequality =
437                 (error_code & vmcs12->page_fault_error_code_mask) !=
438                  vmcs12->page_fault_error_code_match;
439         return inequality ^ bit;
440 }
441
442 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
443                                            u32 error_code)
444 {
445         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
446
447         /*
448          * Drop bits 31:16 of the error code when performing the #PF mask+match
449          * check.  All VMCS fields involved are 32 bits, but Intel CPUs never
450          * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
451          * error code.  Including the to-be-dropped bits in the check might
452          * result in an "impossible" or missed exit from L1's perspective.
453          */
454         if (vector == PF_VECTOR)
455                 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
456
457         return (vmcs12->exception_bitmap & (1u << vector));
458 }
459
460 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
461                                                struct vmcs12 *vmcs12)
462 {
463         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
464                 return 0;
465
466         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
467             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
468                 return -EINVAL;
469
470         return 0;
471 }
472
473 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
474                                                 struct vmcs12 *vmcs12)
475 {
476         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
477                 return 0;
478
479         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
480                 return -EINVAL;
481
482         return 0;
483 }
484
485 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
486                                                 struct vmcs12 *vmcs12)
487 {
488         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
489                 return 0;
490
491         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
492                 return -EINVAL;
493
494         return 0;
495 }
496
497 /*
498  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
499  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
500  * only the "disable intercept" case needs to be handled.
501  */
502 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
503                                                         unsigned long *msr_bitmap_l0,
504                                                         u32 msr, int type)
505 {
506         if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
507                 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
508
509         if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
510                 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
511 }
512
513 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
514 {
515         int msr;
516
517         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
518                 unsigned word = msr / BITS_PER_LONG;
519
520                 msr_bitmap[word] = ~0;
521                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
522         }
523 }
524
525 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)                                     \
526 static inline                                                                   \
527 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,                  \
528                                          unsigned long *msr_bitmap_l1,          \
529                                          unsigned long *msr_bitmap_l0, u32 msr) \
530 {                                                                               \
531         if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||            \
532             vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))                       \
533                 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);                    \
534         else                                                                    \
535                 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);                  \
536 }
537 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
538 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
539
540 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
541                                                     unsigned long *msr_bitmap_l1,
542                                                     unsigned long *msr_bitmap_l0,
543                                                     u32 msr, int types)
544 {
545         if (types & MSR_TYPE_R)
546                 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
547                                                   msr_bitmap_l0, msr);
548         if (types & MSR_TYPE_W)
549                 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
550                                                    msr_bitmap_l0, msr);
551 }
552
553 /*
554  * Merge L0's and L1's MSR bitmap, return false to indicate that
555  * we do not use the hardware.
556  */
557 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
558                                                  struct vmcs12 *vmcs12)
559 {
560         struct vcpu_vmx *vmx = to_vmx(vcpu);
561         int msr;
562         unsigned long *msr_bitmap_l1;
563         unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
564         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
565         struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
566
567         /* Nothing to do if the MSR bitmap is not in use.  */
568         if (!cpu_has_vmx_msr_bitmap() ||
569             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
570                 return false;
571
572         /*
573          * MSR bitmap update can be skipped when:
574          * - MSR bitmap for L1 hasn't changed.
575          * - Nested hypervisor (L1) is attempting to launch the same L2 as
576          *   before.
577          * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
578          *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
579          */
580         if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
581             evmcs->hv_enlightenments_control.msr_bitmap &&
582             evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
583                 return true;
584
585         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
586                 return false;
587
588         msr_bitmap_l1 = (unsigned long *)map->hva;
589
590         /*
591          * To keep the control flow simple, pay eight 8-byte writes (sixteen
592          * 4-byte writes on 32-bit systems) up front to enable intercepts for
593          * the x2APIC MSR range and selectively toggle those relevant to L2.
594          */
595         enable_x2apic_msr_intercepts(msr_bitmap_l0);
596
597         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
598                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
599                         /*
600                          * L0 need not intercept reads for MSRs between 0x800
601                          * and 0x8ff, it just lets the processor take the value
602                          * from the virtual-APIC page; take those 256 bits
603                          * directly from the L1 bitmap.
604                          */
605                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
606                                 unsigned word = msr / BITS_PER_LONG;
607
608                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
609                         }
610                 }
611
612                 nested_vmx_disable_intercept_for_x2apic_msr(
613                         msr_bitmap_l1, msr_bitmap_l0,
614                         X2APIC_MSR(APIC_TASKPRI),
615                         MSR_TYPE_R | MSR_TYPE_W);
616
617                 if (nested_cpu_has_vid(vmcs12)) {
618                         nested_vmx_disable_intercept_for_x2apic_msr(
619                                 msr_bitmap_l1, msr_bitmap_l0,
620                                 X2APIC_MSR(APIC_EOI),
621                                 MSR_TYPE_W);
622                         nested_vmx_disable_intercept_for_x2apic_msr(
623                                 msr_bitmap_l1, msr_bitmap_l0,
624                                 X2APIC_MSR(APIC_SELF_IPI),
625                                 MSR_TYPE_W);
626                 }
627         }
628
629         /*
630          * Always check vmcs01's bitmap to honor userspace MSR filters and any
631          * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
632          */
633 #ifdef CONFIG_X86_64
634         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
635                                          MSR_FS_BASE, MSR_TYPE_RW);
636
637         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
638                                          MSR_GS_BASE, MSR_TYPE_RW);
639
640         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
641                                          MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
642 #endif
643         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
644                                          MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
645
646         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
647                                          MSR_IA32_PRED_CMD, MSR_TYPE_W);
648
649         kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
650
651         vmx->nested.force_msr_bitmap_recalc = false;
652
653         return true;
654 }
655
656 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
657                                        struct vmcs12 *vmcs12)
658 {
659         struct vcpu_vmx *vmx = to_vmx(vcpu);
660         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
661
662         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
663             vmcs12->vmcs_link_pointer == INVALID_GPA)
664                 return;
665
666         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
667             kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
668                                       vmcs12->vmcs_link_pointer, VMCS12_SIZE))
669                 return;
670
671         kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
672                               VMCS12_SIZE);
673 }
674
675 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
676                                               struct vmcs12 *vmcs12)
677 {
678         struct vcpu_vmx *vmx = to_vmx(vcpu);
679         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
680
681         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
682             vmcs12->vmcs_link_pointer == INVALID_GPA)
683                 return;
684
685         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
686             kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
687                                       vmcs12->vmcs_link_pointer, VMCS12_SIZE))
688                 return;
689
690         kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
691                                VMCS12_SIZE);
692 }
693
694 /*
695  * In nested virtualization, check if L1 has set
696  * VM_EXIT_ACK_INTR_ON_EXIT
697  */
698 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
699 {
700         return get_vmcs12(vcpu)->vm_exit_controls &
701                 VM_EXIT_ACK_INTR_ON_EXIT;
702 }
703
704 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
705                                           struct vmcs12 *vmcs12)
706 {
707         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
708             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
709                 return -EINVAL;
710         else
711                 return 0;
712 }
713
714 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
715                                            struct vmcs12 *vmcs12)
716 {
717         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
718             !nested_cpu_has_apic_reg_virt(vmcs12) &&
719             !nested_cpu_has_vid(vmcs12) &&
720             !nested_cpu_has_posted_intr(vmcs12))
721                 return 0;
722
723         /*
724          * If virtualize x2apic mode is enabled,
725          * virtualize apic access must be disabled.
726          */
727         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
728                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
729                 return -EINVAL;
730
731         /*
732          * If virtual interrupt delivery is enabled,
733          * we must exit on external interrupts.
734          */
735         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
736                 return -EINVAL;
737
738         /*
739          * bits 15:8 should be zero in posted_intr_nv,
740          * the descriptor address has been already checked
741          * in nested_get_vmcs12_pages.
742          *
743          * bits 5:0 of posted_intr_desc_addr should be zero.
744          */
745         if (nested_cpu_has_posted_intr(vmcs12) &&
746            (CC(!nested_cpu_has_vid(vmcs12)) ||
747             CC(!nested_exit_intr_ack_set(vcpu)) ||
748             CC((vmcs12->posted_intr_nv & 0xff00)) ||
749             CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
750                 return -EINVAL;
751
752         /* tpr shadow is needed by all apicv features. */
753         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
754                 return -EINVAL;
755
756         return 0;
757 }
758
759 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
760                                        u32 count, u64 addr)
761 {
762         if (count == 0)
763                 return 0;
764
765         if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
766             !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
767                 return -EINVAL;
768
769         return 0;
770 }
771
772 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
773                                                      struct vmcs12 *vmcs12)
774 {
775         if (CC(nested_vmx_check_msr_switch(vcpu,
776                                            vmcs12->vm_exit_msr_load_count,
777                                            vmcs12->vm_exit_msr_load_addr)) ||
778             CC(nested_vmx_check_msr_switch(vcpu,
779                                            vmcs12->vm_exit_msr_store_count,
780                                            vmcs12->vm_exit_msr_store_addr)))
781                 return -EINVAL;
782
783         return 0;
784 }
785
786 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
787                                                       struct vmcs12 *vmcs12)
788 {
789         if (CC(nested_vmx_check_msr_switch(vcpu,
790                                            vmcs12->vm_entry_msr_load_count,
791                                            vmcs12->vm_entry_msr_load_addr)))
792                 return -EINVAL;
793
794         return 0;
795 }
796
797 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
798                                          struct vmcs12 *vmcs12)
799 {
800         if (!nested_cpu_has_pml(vmcs12))
801                 return 0;
802
803         if (CC(!nested_cpu_has_ept(vmcs12)) ||
804             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
805                 return -EINVAL;
806
807         return 0;
808 }
809
810 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
811                                                         struct vmcs12 *vmcs12)
812 {
813         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
814                !nested_cpu_has_ept(vmcs12)))
815                 return -EINVAL;
816         return 0;
817 }
818
819 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
820                                                          struct vmcs12 *vmcs12)
821 {
822         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
823                !nested_cpu_has_ept(vmcs12)))
824                 return -EINVAL;
825         return 0;
826 }
827
828 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
829                                                  struct vmcs12 *vmcs12)
830 {
831         if (!nested_cpu_has_shadow_vmcs(vmcs12))
832                 return 0;
833
834         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
835             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
836                 return -EINVAL;
837
838         return 0;
839 }
840
841 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
842                                        struct vmx_msr_entry *e)
843 {
844         /* x2APIC MSR accesses are not allowed */
845         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
846                 return -EINVAL;
847         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
848             CC(e->index == MSR_IA32_UCODE_REV))
849                 return -EINVAL;
850         if (CC(e->reserved != 0))
851                 return -EINVAL;
852         return 0;
853 }
854
855 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
856                                      struct vmx_msr_entry *e)
857 {
858         if (CC(e->index == MSR_FS_BASE) ||
859             CC(e->index == MSR_GS_BASE) ||
860             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
861             nested_vmx_msr_check_common(vcpu, e))
862                 return -EINVAL;
863         return 0;
864 }
865
866 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
867                                       struct vmx_msr_entry *e)
868 {
869         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
870             nested_vmx_msr_check_common(vcpu, e))
871                 return -EINVAL;
872         return 0;
873 }
874
875 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
876 {
877         struct vcpu_vmx *vmx = to_vmx(vcpu);
878         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
879                                        vmx->nested.msrs.misc_high);
880
881         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
882 }
883
884 /*
885  * Load guest's/host's msr at nested entry/exit.
886  * return 0 for success, entry index for failure.
887  *
888  * One of the failure modes for MSR load/store is when a list exceeds the
889  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
890  * as possible, process all valid entries before failing rather than precheck
891  * for a capacity violation.
892  */
893 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
894 {
895         u32 i;
896         struct vmx_msr_entry e;
897         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
898
899         for (i = 0; i < count; i++) {
900                 if (unlikely(i >= max_msr_list_size))
901                         goto fail;
902
903                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
904                                         &e, sizeof(e))) {
905                         pr_debug_ratelimited(
906                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
907                                 __func__, i, gpa + i * sizeof(e));
908                         goto fail;
909                 }
910                 if (nested_vmx_load_msr_check(vcpu, &e)) {
911                         pr_debug_ratelimited(
912                                 "%s check failed (%u, 0x%x, 0x%x)\n",
913                                 __func__, i, e.index, e.reserved);
914                         goto fail;
915                 }
916                 if (kvm_set_msr(vcpu, e.index, e.value)) {
917                         pr_debug_ratelimited(
918                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
919                                 __func__, i, e.index, e.value);
920                         goto fail;
921                 }
922         }
923         return 0;
924 fail:
925         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
926         return i + 1;
927 }
928
929 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
930                                             u32 msr_index,
931                                             u64 *data)
932 {
933         struct vcpu_vmx *vmx = to_vmx(vcpu);
934
935         /*
936          * If the L0 hypervisor stored a more accurate value for the TSC that
937          * does not include the time taken for emulation of the L2->L1
938          * VM-exit in L0, use the more accurate value.
939          */
940         if (msr_index == MSR_IA32_TSC) {
941                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
942                                                     MSR_IA32_TSC);
943
944                 if (i >= 0) {
945                         u64 val = vmx->msr_autostore.guest.val[i].value;
946
947                         *data = kvm_read_l1_tsc(vcpu, val);
948                         return true;
949                 }
950         }
951
952         if (kvm_get_msr(vcpu, msr_index, data)) {
953                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
954                         msr_index);
955                 return false;
956         }
957         return true;
958 }
959
960 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
961                                      struct vmx_msr_entry *e)
962 {
963         if (kvm_vcpu_read_guest(vcpu,
964                                 gpa + i * sizeof(*e),
965                                 e, 2 * sizeof(u32))) {
966                 pr_debug_ratelimited(
967                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
968                         __func__, i, gpa + i * sizeof(*e));
969                 return false;
970         }
971         if (nested_vmx_store_msr_check(vcpu, e)) {
972                 pr_debug_ratelimited(
973                         "%s check failed (%u, 0x%x, 0x%x)\n",
974                         __func__, i, e->index, e->reserved);
975                 return false;
976         }
977         return true;
978 }
979
980 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
981 {
982         u64 data;
983         u32 i;
984         struct vmx_msr_entry e;
985         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
986
987         for (i = 0; i < count; i++) {
988                 if (unlikely(i >= max_msr_list_size))
989                         return -EINVAL;
990
991                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
992                         return -EINVAL;
993
994                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
995                         return -EINVAL;
996
997                 if (kvm_vcpu_write_guest(vcpu,
998                                          gpa + i * sizeof(e) +
999                                              offsetof(struct vmx_msr_entry, value),
1000                                          &data, sizeof(data))) {
1001                         pr_debug_ratelimited(
1002                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1003                                 __func__, i, e.index, data);
1004                         return -EINVAL;
1005                 }
1006         }
1007         return 0;
1008 }
1009
1010 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1011 {
1012         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1013         u32 count = vmcs12->vm_exit_msr_store_count;
1014         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1015         struct vmx_msr_entry e;
1016         u32 i;
1017
1018         for (i = 0; i < count; i++) {
1019                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1020                         return false;
1021
1022                 if (e.index == msr_index)
1023                         return true;
1024         }
1025         return false;
1026 }
1027
1028 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1029                                            u32 msr_index)
1030 {
1031         struct vcpu_vmx *vmx = to_vmx(vcpu);
1032         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1033         bool in_vmcs12_store_list;
1034         int msr_autostore_slot;
1035         bool in_autostore_list;
1036         int last;
1037
1038         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1039         in_autostore_list = msr_autostore_slot >= 0;
1040         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1041
1042         if (in_vmcs12_store_list && !in_autostore_list) {
1043                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1044                         /*
1045                          * Emulated VMEntry does not fail here.  Instead a less
1046                          * accurate value will be returned by
1047                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1048                          * instead of reading the value from the vmcs02 VMExit
1049                          * MSR-store area.
1050                          */
1051                         pr_warn_ratelimited(
1052                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1053                                 msr_index);
1054                         return;
1055                 }
1056                 last = autostore->nr++;
1057                 autostore->val[last].index = msr_index;
1058         } else if (!in_vmcs12_store_list && in_autostore_list) {
1059                 last = --autostore->nr;
1060                 autostore->val[msr_autostore_slot] = autostore->val[last];
1061         }
1062 }
1063
1064 /*
1065  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1066  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1067  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1068  * @entry_failure_code.
1069  */
1070 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1071                                bool nested_ept, bool reload_pdptrs,
1072                                enum vm_entry_failure_code *entry_failure_code)
1073 {
1074         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1075                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1076                 return -EINVAL;
1077         }
1078
1079         /*
1080          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1081          * must not be dereferenced.
1082          */
1083         if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1084             CC(!load_pdptrs(vcpu, cr3))) {
1085                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1086                 return -EINVAL;
1087         }
1088
1089         vcpu->arch.cr3 = cr3;
1090         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1091
1092         /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1093         kvm_init_mmu(vcpu);
1094
1095         if (!nested_ept)
1096                 kvm_mmu_new_pgd(vcpu, cr3);
1097
1098         return 0;
1099 }
1100
1101 /*
1102  * Returns if KVM is able to config CPU to tag TLB entries
1103  * populated by L2 differently than TLB entries populated
1104  * by L1.
1105  *
1106  * If L0 uses EPT, L1 and L2 run with different EPTP because
1107  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1108  * are tagged with different EPTP.
1109  *
1110  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1111  * with different VPID (L1 entries are tagged with vmx->vpid
1112  * while L2 entries are tagged with vmx->nested.vpid02).
1113  */
1114 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1115 {
1116         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1117
1118         return enable_ept ||
1119                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1120 }
1121
1122 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1123                                             struct vmcs12 *vmcs12,
1124                                             bool is_vmenter)
1125 {
1126         struct vcpu_vmx *vmx = to_vmx(vcpu);
1127
1128         /*
1129          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1130          * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1131          * full TLB flush from the guest's perspective.  This is required even
1132          * if VPID is disabled in the host as KVM may need to synchronize the
1133          * MMU in response to the guest TLB flush.
1134          *
1135          * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1136          * EPT is a special snowflake, as guest-physical mappings aren't
1137          * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1138          * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1139          * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1140          * those mappings.
1141          */
1142         if (!nested_cpu_has_vpid(vmcs12)) {
1143                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1144                 return;
1145         }
1146
1147         /* L2 should never have a VPID if VPID is disabled. */
1148         WARN_ON(!enable_vpid);
1149
1150         /*
1151          * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1152          * emulate a guest TLB flush as KVM does not track vpid12 history nor
1153          * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1154          * that the new vpid12 has never been used and thus represents a new
1155          * guest ASID that cannot have entries in the TLB.
1156          */
1157         if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1158                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1159                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1160                 return;
1161         }
1162
1163         /*
1164          * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1165          * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1166          * KVM was unable to allocate a VPID for L2, flush the current context
1167          * as the effective ASID is common to both L1 and L2.
1168          */
1169         if (!nested_has_guest_tlb_tag(vcpu))
1170                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1171 }
1172
1173 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1174 {
1175         superset &= mask;
1176         subset &= mask;
1177
1178         return (superset | subset) == superset;
1179 }
1180
1181 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1182 {
1183         const u64 feature_and_reserved =
1184                 /* feature (except bit 48; see below) */
1185                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1186                 /* reserved */
1187                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1188         u64 vmx_basic = vmcs_config.nested.basic;
1189
1190         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1191                 return -EINVAL;
1192
1193         /*
1194          * KVM does not emulate a version of VMX that constrains physical
1195          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1196          */
1197         if (data & BIT_ULL(48))
1198                 return -EINVAL;
1199
1200         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1201             vmx_basic_vmcs_revision_id(data))
1202                 return -EINVAL;
1203
1204         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1205                 return -EINVAL;
1206
1207         vmx->nested.msrs.basic = data;
1208         return 0;
1209 }
1210
1211 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1212                                 u32 **low, u32 **high)
1213 {
1214         switch (msr_index) {
1215         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1216                 *low = &msrs->pinbased_ctls_low;
1217                 *high = &msrs->pinbased_ctls_high;
1218                 break;
1219         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1220                 *low = &msrs->procbased_ctls_low;
1221                 *high = &msrs->procbased_ctls_high;
1222                 break;
1223         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1224                 *low = &msrs->exit_ctls_low;
1225                 *high = &msrs->exit_ctls_high;
1226                 break;
1227         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1228                 *low = &msrs->entry_ctls_low;
1229                 *high = &msrs->entry_ctls_high;
1230                 break;
1231         case MSR_IA32_VMX_PROCBASED_CTLS2:
1232                 *low = &msrs->secondary_ctls_low;
1233                 *high = &msrs->secondary_ctls_high;
1234                 break;
1235         default:
1236                 BUG();
1237         }
1238 }
1239
1240 static int
1241 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1242 {
1243         u32 *lowp, *highp;
1244         u64 supported;
1245
1246         vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1247
1248         supported = vmx_control_msr(*lowp, *highp);
1249
1250         /* Check must-be-1 bits are still 1. */
1251         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1252                 return -EINVAL;
1253
1254         /* Check must-be-0 bits are still 0. */
1255         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1256                 return -EINVAL;
1257
1258         vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1259         *lowp = data;
1260         *highp = data >> 32;
1261         return 0;
1262 }
1263
1264 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1265 {
1266         const u64 feature_and_reserved_bits =
1267                 /* feature */
1268                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1269                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1270                 /* reserved */
1271                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1272         u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1273                                        vmcs_config.nested.misc_high);
1274
1275         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1276                 return -EINVAL;
1277
1278         if ((vmx->nested.msrs.pinbased_ctls_high &
1279              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1280             vmx_misc_preemption_timer_rate(data) !=
1281             vmx_misc_preemption_timer_rate(vmx_misc))
1282                 return -EINVAL;
1283
1284         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1285                 return -EINVAL;
1286
1287         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1288                 return -EINVAL;
1289
1290         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1291                 return -EINVAL;
1292
1293         vmx->nested.msrs.misc_low = data;
1294         vmx->nested.msrs.misc_high = data >> 32;
1295
1296         return 0;
1297 }
1298
1299 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1300 {
1301         u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1302                                                vmcs_config.nested.vpid_caps);
1303
1304         /* Every bit is either reserved or a feature bit. */
1305         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1306                 return -EINVAL;
1307
1308         vmx->nested.msrs.ept_caps = data;
1309         vmx->nested.msrs.vpid_caps = data >> 32;
1310         return 0;
1311 }
1312
1313 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1314 {
1315         switch (msr_index) {
1316         case MSR_IA32_VMX_CR0_FIXED0:
1317                 return &msrs->cr0_fixed0;
1318         case MSR_IA32_VMX_CR4_FIXED0:
1319                 return &msrs->cr4_fixed0;
1320         default:
1321                 BUG();
1322         }
1323 }
1324
1325 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1326 {
1327         const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1328
1329         /*
1330          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1331          * must be 1 in the restored value.
1332          */
1333         if (!is_bitwise_subset(data, *msr, -1ULL))
1334                 return -EINVAL;
1335
1336         *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1337         return 0;
1338 }
1339
1340 /*
1341  * Called when userspace is restoring VMX MSRs.
1342  *
1343  * Returns 0 on success, non-0 otherwise.
1344  */
1345 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1346 {
1347         struct vcpu_vmx *vmx = to_vmx(vcpu);
1348
1349         /*
1350          * Don't allow changes to the VMX capability MSRs while the vCPU
1351          * is in VMX operation.
1352          */
1353         if (vmx->nested.vmxon)
1354                 return -EBUSY;
1355
1356         switch (msr_index) {
1357         case MSR_IA32_VMX_BASIC:
1358                 return vmx_restore_vmx_basic(vmx, data);
1359         case MSR_IA32_VMX_PINBASED_CTLS:
1360         case MSR_IA32_VMX_PROCBASED_CTLS:
1361         case MSR_IA32_VMX_EXIT_CTLS:
1362         case MSR_IA32_VMX_ENTRY_CTLS:
1363                 /*
1364                  * The "non-true" VMX capability MSRs are generated from the
1365                  * "true" MSRs, so we do not support restoring them directly.
1366                  *
1367                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1368                  * should restore the "true" MSRs with the must-be-1 bits
1369                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1370                  * DEFAULT SETTINGS".
1371                  */
1372                 return -EINVAL;
1373         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1374         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1375         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1376         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1377         case MSR_IA32_VMX_PROCBASED_CTLS2:
1378                 return vmx_restore_control_msr(vmx, msr_index, data);
1379         case MSR_IA32_VMX_MISC:
1380                 return vmx_restore_vmx_misc(vmx, data);
1381         case MSR_IA32_VMX_CR0_FIXED0:
1382         case MSR_IA32_VMX_CR4_FIXED0:
1383                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1384         case MSR_IA32_VMX_CR0_FIXED1:
1385         case MSR_IA32_VMX_CR4_FIXED1:
1386                 /*
1387                  * These MSRs are generated based on the vCPU's CPUID, so we
1388                  * do not support restoring them directly.
1389                  */
1390                 return -EINVAL;
1391         case MSR_IA32_VMX_EPT_VPID_CAP:
1392                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1393         case MSR_IA32_VMX_VMCS_ENUM:
1394                 vmx->nested.msrs.vmcs_enum = data;
1395                 return 0;
1396         case MSR_IA32_VMX_VMFUNC:
1397                 if (data & ~vmcs_config.nested.vmfunc_controls)
1398                         return -EINVAL;
1399                 vmx->nested.msrs.vmfunc_controls = data;
1400                 return 0;
1401         default:
1402                 /*
1403                  * The rest of the VMX capability MSRs do not support restore.
1404                  */
1405                 return -EINVAL;
1406         }
1407 }
1408
1409 /* Returns 0 on success, non-0 otherwise. */
1410 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1411 {
1412         switch (msr_index) {
1413         case MSR_IA32_VMX_BASIC:
1414                 *pdata = msrs->basic;
1415                 break;
1416         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1417         case MSR_IA32_VMX_PINBASED_CTLS:
1418                 *pdata = vmx_control_msr(
1419                         msrs->pinbased_ctls_low,
1420                         msrs->pinbased_ctls_high);
1421                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1422                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1423                 break;
1424         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1425         case MSR_IA32_VMX_PROCBASED_CTLS:
1426                 *pdata = vmx_control_msr(
1427                         msrs->procbased_ctls_low,
1428                         msrs->procbased_ctls_high);
1429                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1430                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1431                 break;
1432         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1433         case MSR_IA32_VMX_EXIT_CTLS:
1434                 *pdata = vmx_control_msr(
1435                         msrs->exit_ctls_low,
1436                         msrs->exit_ctls_high);
1437                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1438                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1439                 break;
1440         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1441         case MSR_IA32_VMX_ENTRY_CTLS:
1442                 *pdata = vmx_control_msr(
1443                         msrs->entry_ctls_low,
1444                         msrs->entry_ctls_high);
1445                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1446                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1447                 break;
1448         case MSR_IA32_VMX_MISC:
1449                 *pdata = vmx_control_msr(
1450                         msrs->misc_low,
1451                         msrs->misc_high);
1452                 break;
1453         case MSR_IA32_VMX_CR0_FIXED0:
1454                 *pdata = msrs->cr0_fixed0;
1455                 break;
1456         case MSR_IA32_VMX_CR0_FIXED1:
1457                 *pdata = msrs->cr0_fixed1;
1458                 break;
1459         case MSR_IA32_VMX_CR4_FIXED0:
1460                 *pdata = msrs->cr4_fixed0;
1461                 break;
1462         case MSR_IA32_VMX_CR4_FIXED1:
1463                 *pdata = msrs->cr4_fixed1;
1464                 break;
1465         case MSR_IA32_VMX_VMCS_ENUM:
1466                 *pdata = msrs->vmcs_enum;
1467                 break;
1468         case MSR_IA32_VMX_PROCBASED_CTLS2:
1469                 *pdata = vmx_control_msr(
1470                         msrs->secondary_ctls_low,
1471                         msrs->secondary_ctls_high);
1472                 break;
1473         case MSR_IA32_VMX_EPT_VPID_CAP:
1474                 *pdata = msrs->ept_caps |
1475                         ((u64)msrs->vpid_caps << 32);
1476                 break;
1477         case MSR_IA32_VMX_VMFUNC:
1478                 *pdata = msrs->vmfunc_controls;
1479                 break;
1480         default:
1481                 return 1;
1482         }
1483
1484         return 0;
1485 }
1486
1487 /*
1488  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1489  * been modified by the L1 guest.  Note, "writable" in this context means
1490  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1491  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1492  * VM-exit information fields (which are actually writable if the vCPU is
1493  * configured to support "VMWRITE to any supported field in the VMCS").
1494  */
1495 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1496 {
1497         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1498         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1499         struct shadow_vmcs_field field;
1500         unsigned long val;
1501         int i;
1502
1503         if (WARN_ON(!shadow_vmcs))
1504                 return;
1505
1506         preempt_disable();
1507
1508         vmcs_load(shadow_vmcs);
1509
1510         for (i = 0; i < max_shadow_read_write_fields; i++) {
1511                 field = shadow_read_write_fields[i];
1512                 val = __vmcs_readl(field.encoding);
1513                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1514         }
1515
1516         vmcs_clear(shadow_vmcs);
1517         vmcs_load(vmx->loaded_vmcs->vmcs);
1518
1519         preempt_enable();
1520 }
1521
1522 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1523 {
1524         const struct shadow_vmcs_field *fields[] = {
1525                 shadow_read_write_fields,
1526                 shadow_read_only_fields
1527         };
1528         const int max_fields[] = {
1529                 max_shadow_read_write_fields,
1530                 max_shadow_read_only_fields
1531         };
1532         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1533         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1534         struct shadow_vmcs_field field;
1535         unsigned long val;
1536         int i, q;
1537
1538         if (WARN_ON(!shadow_vmcs))
1539                 return;
1540
1541         vmcs_load(shadow_vmcs);
1542
1543         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1544                 for (i = 0; i < max_fields[q]; i++) {
1545                         field = fields[q][i];
1546                         val = vmcs12_read_any(vmcs12, field.encoding,
1547                                               field.offset);
1548                         __vmcs_writel(field.encoding, val);
1549                 }
1550         }
1551
1552         vmcs_clear(shadow_vmcs);
1553         vmcs_load(vmx->loaded_vmcs->vmcs);
1554 }
1555
1556 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1557 {
1558         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1559         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1560
1561         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1562         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1563         vmcs12->guest_rip = evmcs->guest_rip;
1564
1565         if (unlikely(!(hv_clean_fields &
1566                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1567                 vmcs12->guest_rsp = evmcs->guest_rsp;
1568                 vmcs12->guest_rflags = evmcs->guest_rflags;
1569                 vmcs12->guest_interruptibility_info =
1570                         evmcs->guest_interruptibility_info;
1571                 /*
1572                  * Not present in struct vmcs12:
1573                  * vmcs12->guest_ssp = evmcs->guest_ssp;
1574                  */
1575         }
1576
1577         if (unlikely(!(hv_clean_fields &
1578                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1579                 vmcs12->cpu_based_vm_exec_control =
1580                         evmcs->cpu_based_vm_exec_control;
1581         }
1582
1583         if (unlikely(!(hv_clean_fields &
1584                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1585                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1586         }
1587
1588         if (unlikely(!(hv_clean_fields &
1589                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1590                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1591         }
1592
1593         if (unlikely(!(hv_clean_fields &
1594                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1595                 vmcs12->vm_entry_intr_info_field =
1596                         evmcs->vm_entry_intr_info_field;
1597                 vmcs12->vm_entry_exception_error_code =
1598                         evmcs->vm_entry_exception_error_code;
1599                 vmcs12->vm_entry_instruction_len =
1600                         evmcs->vm_entry_instruction_len;
1601         }
1602
1603         if (unlikely(!(hv_clean_fields &
1604                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1605                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1606                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1607                 vmcs12->host_cr0 = evmcs->host_cr0;
1608                 vmcs12->host_cr3 = evmcs->host_cr3;
1609                 vmcs12->host_cr4 = evmcs->host_cr4;
1610                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1611                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1612                 vmcs12->host_rip = evmcs->host_rip;
1613                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1614                 vmcs12->host_es_selector = evmcs->host_es_selector;
1615                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1616                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1617                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1618                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1619                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1620                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1621                 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1622                 /*
1623                  * Not present in struct vmcs12:
1624                  * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1625                  * vmcs12->host_ssp = evmcs->host_ssp;
1626                  * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1627                  */
1628         }
1629
1630         if (unlikely(!(hv_clean_fields &
1631                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1632                 vmcs12->pin_based_vm_exec_control =
1633                         evmcs->pin_based_vm_exec_control;
1634                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1635                 vmcs12->secondary_vm_exec_control =
1636                         evmcs->secondary_vm_exec_control;
1637         }
1638
1639         if (unlikely(!(hv_clean_fields &
1640                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1641                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1642                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1643         }
1644
1645         if (unlikely(!(hv_clean_fields &
1646                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1647                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1648         }
1649
1650         if (unlikely(!(hv_clean_fields &
1651                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1652                 vmcs12->guest_es_base = evmcs->guest_es_base;
1653                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1654                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1655                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1656                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1657                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1658                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1659                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1660                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1661                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1662                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1663                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1664                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1665                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1666                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1667                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1668                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1669                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1670                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1671                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1672                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1673                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1674                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1675                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1676                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1677                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1678                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1679                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1680                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1681                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1682                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1683                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1684                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1685                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1686                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1687                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1688         }
1689
1690         if (unlikely(!(hv_clean_fields &
1691                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1692                 vmcs12->tsc_offset = evmcs->tsc_offset;
1693                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1694                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1695                 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1696                 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1697         }
1698
1699         if (unlikely(!(hv_clean_fields &
1700                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1701                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1702                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1703                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1704                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1705                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1706                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1707                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1708                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1709         }
1710
1711         if (unlikely(!(hv_clean_fields &
1712                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1713                 vmcs12->host_fs_base = evmcs->host_fs_base;
1714                 vmcs12->host_gs_base = evmcs->host_gs_base;
1715                 vmcs12->host_tr_base = evmcs->host_tr_base;
1716                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1717                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1718                 vmcs12->host_rsp = evmcs->host_rsp;
1719         }
1720
1721         if (unlikely(!(hv_clean_fields &
1722                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1723                 vmcs12->ept_pointer = evmcs->ept_pointer;
1724                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1725         }
1726
1727         if (unlikely(!(hv_clean_fields &
1728                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1729                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1730                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1731                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1732                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1733                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1734                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1735                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1736                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1737                 vmcs12->guest_pending_dbg_exceptions =
1738                         evmcs->guest_pending_dbg_exceptions;
1739                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1740                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1741                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1742                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1743                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1744                 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1745                 /*
1746                  * Not present in struct vmcs12:
1747                  * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1748                  * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1749                  * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1750                  */
1751         }
1752
1753         /*
1754          * Not used?
1755          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1756          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1757          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1758          * vmcs12->page_fault_error_code_mask =
1759          *              evmcs->page_fault_error_code_mask;
1760          * vmcs12->page_fault_error_code_match =
1761          *              evmcs->page_fault_error_code_match;
1762          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1763          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1764          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1765          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1766          */
1767
1768         /*
1769          * Read only fields:
1770          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1771          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1772          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1773          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1774          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1775          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1776          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1777          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1778          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1779          * vmcs12->exit_qualification = evmcs->exit_qualification;
1780          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1781          *
1782          * Not present in struct vmcs12:
1783          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1784          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1785          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1786          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1787          */
1788
1789         return;
1790 }
1791
1792 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1793 {
1794         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1795         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1796
1797         /*
1798          * Should not be changed by KVM:
1799          *
1800          * evmcs->host_es_selector = vmcs12->host_es_selector;
1801          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1802          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1803          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1804          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1805          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1806          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1807          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1808          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1809          * evmcs->host_cr0 = vmcs12->host_cr0;
1810          * evmcs->host_cr3 = vmcs12->host_cr3;
1811          * evmcs->host_cr4 = vmcs12->host_cr4;
1812          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1813          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1814          * evmcs->host_rip = vmcs12->host_rip;
1815          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1816          * evmcs->host_fs_base = vmcs12->host_fs_base;
1817          * evmcs->host_gs_base = vmcs12->host_gs_base;
1818          * evmcs->host_tr_base = vmcs12->host_tr_base;
1819          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1820          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1821          * evmcs->host_rsp = vmcs12->host_rsp;
1822          * sync_vmcs02_to_vmcs12() doesn't read these:
1823          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1824          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1825          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1826          * evmcs->ept_pointer = vmcs12->ept_pointer;
1827          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1828          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1829          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1830          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1831          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1832          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1833          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1834          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1835          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1836          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1837          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1838          * evmcs->page_fault_error_code_mask =
1839          *              vmcs12->page_fault_error_code_mask;
1840          * evmcs->page_fault_error_code_match =
1841          *              vmcs12->page_fault_error_code_match;
1842          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1843          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1844          * evmcs->tsc_offset = vmcs12->tsc_offset;
1845          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1846          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1847          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1848          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1849          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1850          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1851          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1852          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1853          * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1854          * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1855          * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1856          * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1857          *
1858          * Not present in struct vmcs12:
1859          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1860          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1861          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1862          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1863          * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1864          * evmcs->host_ssp = vmcs12->host_ssp;
1865          * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1866          * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1867          * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1868          * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1869          * evmcs->guest_ssp = vmcs12->guest_ssp;
1870          */
1871
1872         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1873         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1874         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1875         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1876         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1877         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1878         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1879         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1880
1881         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1882         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1883         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1884         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1885         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1886         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1887         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1888         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1889         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1890         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1891
1892         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1893         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1894         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1895         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1896         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1897         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1898         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1899         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1900
1901         evmcs->guest_es_base = vmcs12->guest_es_base;
1902         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1903         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1904         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1905         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1906         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1907         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1908         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1909         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1910         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1911
1912         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1913         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1914
1915         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1916         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1917         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1918         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1919
1920         evmcs->guest_pending_dbg_exceptions =
1921                 vmcs12->guest_pending_dbg_exceptions;
1922         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1923         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1924
1925         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1926         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1927
1928         evmcs->guest_cr0 = vmcs12->guest_cr0;
1929         evmcs->guest_cr3 = vmcs12->guest_cr3;
1930         evmcs->guest_cr4 = vmcs12->guest_cr4;
1931         evmcs->guest_dr7 = vmcs12->guest_dr7;
1932
1933         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1934
1935         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1936         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1937         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1938         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1939         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1940         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1941         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1942         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1943
1944         evmcs->exit_qualification = vmcs12->exit_qualification;
1945
1946         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1947         evmcs->guest_rsp = vmcs12->guest_rsp;
1948         evmcs->guest_rflags = vmcs12->guest_rflags;
1949
1950         evmcs->guest_interruptibility_info =
1951                 vmcs12->guest_interruptibility_info;
1952         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1953         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1954         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1955         evmcs->vm_entry_exception_error_code =
1956                 vmcs12->vm_entry_exception_error_code;
1957         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1958
1959         evmcs->guest_rip = vmcs12->guest_rip;
1960
1961         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1962
1963         return;
1964 }
1965
1966 /*
1967  * This is an equivalent of the nested hypervisor executing the vmptrld
1968  * instruction.
1969  */
1970 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1971         struct kvm_vcpu *vcpu, bool from_launch)
1972 {
1973         struct vcpu_vmx *vmx = to_vmx(vcpu);
1974         bool evmcs_gpa_changed = false;
1975         u64 evmcs_gpa;
1976
1977         if (likely(!guest_cpuid_has_evmcs(vcpu)))
1978                 return EVMPTRLD_DISABLED;
1979
1980         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1981                 nested_release_evmcs(vcpu);
1982                 return EVMPTRLD_DISABLED;
1983         }
1984
1985         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1986                 vmx->nested.current_vmptr = INVALID_GPA;
1987
1988                 nested_release_evmcs(vcpu);
1989
1990                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1991                                  &vmx->nested.hv_evmcs_map))
1992                         return EVMPTRLD_ERROR;
1993
1994                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1995
1996                 /*
1997                  * Currently, KVM only supports eVMCS version 1
1998                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1999                  * value to first u32 field of eVMCS which should specify eVMCS
2000                  * VersionNumber.
2001                  *
2002                  * Guest should be aware of supported eVMCS versions by host by
2003                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2004                  * expected to set this CPUID leaf according to the value
2005                  * returned in vmcs_version from nested_enable_evmcs().
2006                  *
2007                  * However, it turns out that Microsoft Hyper-V fails to comply
2008                  * to their own invented interface: When Hyper-V use eVMCS, it
2009                  * just sets first u32 field of eVMCS to revision_id specified
2010                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2011                  * which is one of the supported versions specified in
2012                  * CPUID.0x4000000A.EAX[0:15].
2013                  *
2014                  * To overcome Hyper-V bug, we accept here either a supported
2015                  * eVMCS version or VMCS12 revision_id as valid values for first
2016                  * u32 field of eVMCS.
2017                  */
2018                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2019                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2020                         nested_release_evmcs(vcpu);
2021                         return EVMPTRLD_VMFAIL;
2022                 }
2023
2024                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2025
2026                 evmcs_gpa_changed = true;
2027                 /*
2028                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2029                  * reloaded from guest's memory (read only fields, fields not
2030                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2031                  * are no leftovers.
2032                  */
2033                 if (from_launch) {
2034                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2035                         memset(vmcs12, 0, sizeof(*vmcs12));
2036                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2037                 }
2038
2039         }
2040
2041         /*
2042          * Clean fields data can't be used on VMLAUNCH and when we switch
2043          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2044          */
2045         if (from_launch || evmcs_gpa_changed) {
2046                 vmx->nested.hv_evmcs->hv_clean_fields &=
2047                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2048
2049                 vmx->nested.force_msr_bitmap_recalc = true;
2050         }
2051
2052         return EVMPTRLD_SUCCEEDED;
2053 }
2054
2055 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2056 {
2057         struct vcpu_vmx *vmx = to_vmx(vcpu);
2058
2059         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2060                 copy_vmcs12_to_enlightened(vmx);
2061         else
2062                 copy_vmcs12_to_shadow(vmx);
2063
2064         vmx->nested.need_vmcs12_to_shadow_sync = false;
2065 }
2066
2067 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2068 {
2069         struct vcpu_vmx *vmx =
2070                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2071
2072         vmx->nested.preemption_timer_expired = true;
2073         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2074         kvm_vcpu_kick(&vmx->vcpu);
2075
2076         return HRTIMER_NORESTART;
2077 }
2078
2079 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2080 {
2081         struct vcpu_vmx *vmx = to_vmx(vcpu);
2082         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2083
2084         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2085                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2086
2087         if (!vmx->nested.has_preemption_timer_deadline) {
2088                 vmx->nested.preemption_timer_deadline =
2089                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2090                 vmx->nested.has_preemption_timer_deadline = true;
2091         }
2092         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2093 }
2094
2095 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2096                                         u64 preemption_timeout)
2097 {
2098         struct vcpu_vmx *vmx = to_vmx(vcpu);
2099
2100         /*
2101          * A timer value of zero is architecturally guaranteed to cause
2102          * a VMExit prior to executing any instructions in the guest.
2103          */
2104         if (preemption_timeout == 0) {
2105                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2106                 return;
2107         }
2108
2109         if (vcpu->arch.virtual_tsc_khz == 0)
2110                 return;
2111
2112         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2113         preemption_timeout *= 1000000;
2114         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2115         hrtimer_start(&vmx->nested.preemption_timer,
2116                       ktime_add_ns(ktime_get(), preemption_timeout),
2117                       HRTIMER_MODE_ABS_PINNED);
2118 }
2119
2120 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2121 {
2122         if (vmx->nested.nested_run_pending &&
2123             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2124                 return vmcs12->guest_ia32_efer;
2125         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2126                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2127         else
2128                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2129 }
2130
2131 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2132 {
2133         struct kvm *kvm = vmx->vcpu.kvm;
2134
2135         /*
2136          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2137          * according to L0's settings (vmcs12 is irrelevant here).  Host
2138          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2139          * will be set as needed prior to VMLAUNCH/VMRESUME.
2140          */
2141         if (vmx->nested.vmcs02_initialized)
2142                 return;
2143         vmx->nested.vmcs02_initialized = true;
2144
2145         /*
2146          * We don't care what the EPTP value is we just need to guarantee
2147          * it's valid so we don't get a false positive when doing early
2148          * consistency checks.
2149          */
2150         if (enable_ept && nested_early_check)
2151                 vmcs_write64(EPT_POINTER,
2152                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2153
2154         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2155         if (cpu_has_vmx_vmfunc())
2156                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2157
2158         if (cpu_has_vmx_posted_intr())
2159                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2160
2161         if (cpu_has_vmx_msr_bitmap())
2162                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2163
2164         /*
2165          * PML is emulated for L2, but never enabled in hardware as the MMU
2166          * handles A/D emulation.  Disabling PML for L2 also avoids having to
2167          * deal with filtering out L2 GPAs from the buffer.
2168          */
2169         if (enable_pml) {
2170                 vmcs_write64(PML_ADDRESS, 0);
2171                 vmcs_write16(GUEST_PML_INDEX, -1);
2172         }
2173
2174         if (cpu_has_vmx_encls_vmexit())
2175                 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2176
2177         if (kvm_notify_vmexit_enabled(kvm))
2178                 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2179
2180         /*
2181          * Set the MSR load/store lists to match L0's settings.  Only the
2182          * addresses are constant (for vmcs02), the counts can change based
2183          * on L2's behavior, e.g. switching to/from long mode.
2184          */
2185         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2186         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2187         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2188
2189         vmx_set_constant_host_state(vmx);
2190 }
2191
2192 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2193                                       struct vmcs12 *vmcs12)
2194 {
2195         prepare_vmcs02_constant_state(vmx);
2196
2197         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2198
2199         if (enable_vpid) {
2200                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2201                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2202                 else
2203                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2204         }
2205 }
2206
2207 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2208                                  struct vmcs12 *vmcs12)
2209 {
2210         u32 exec_control;
2211         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2212
2213         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2214                 prepare_vmcs02_early_rare(vmx, vmcs12);
2215
2216         /*
2217          * PIN CONTROLS
2218          */
2219         exec_control = __pin_controls_get(vmcs01);
2220         exec_control |= (vmcs12->pin_based_vm_exec_control &
2221                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2222
2223         /* Posted interrupts setting is only taken from vmcs12.  */
2224         vmx->nested.pi_pending = false;
2225         if (nested_cpu_has_posted_intr(vmcs12))
2226                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2227         else
2228                 exec_control &= ~PIN_BASED_POSTED_INTR;
2229         pin_controls_set(vmx, exec_control);
2230
2231         /*
2232          * EXEC CONTROLS
2233          */
2234         exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2235         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2236         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2237         exec_control &= ~CPU_BASED_TPR_SHADOW;
2238         exec_control |= vmcs12->cpu_based_vm_exec_control;
2239
2240         vmx->nested.l1_tpr_threshold = -1;
2241         if (exec_control & CPU_BASED_TPR_SHADOW)
2242                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2243 #ifdef CONFIG_X86_64
2244         else
2245                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2246                                 CPU_BASED_CR8_STORE_EXITING;
2247 #endif
2248
2249         /*
2250          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2251          * for I/O port accesses.
2252          */
2253         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2254         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2255
2256         /*
2257          * This bit will be computed in nested_get_vmcs12_pages, because
2258          * we do not have access to L1's MSR bitmap yet.  For now, keep
2259          * the same bit as before, hoping to avoid multiple VMWRITEs that
2260          * only set/clear this bit.
2261          */
2262         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2263         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2264
2265         exec_controls_set(vmx, exec_control);
2266
2267         /*
2268          * SECONDARY EXEC CONTROLS
2269          */
2270         if (cpu_has_secondary_exec_ctrls()) {
2271                 exec_control = __secondary_exec_controls_get(vmcs01);
2272
2273                 /* Take the following fields only from vmcs12 */
2274                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2275                                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2276                                   SECONDARY_EXEC_ENABLE_INVPCID |
2277                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2278                                   SECONDARY_EXEC_XSAVES |
2279                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2280                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2281                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2282                                   SECONDARY_EXEC_ENABLE_VMFUNC |
2283                                   SECONDARY_EXEC_DESC);
2284
2285                 if (nested_cpu_has(vmcs12,
2286                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2287                         exec_control |= vmcs12->secondary_vm_exec_control;
2288
2289                 /* PML is emulated and never enabled in hardware for L2. */
2290                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2291
2292                 /* VMCS shadowing for L2 is emulated for now */
2293                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2294
2295                 /*
2296                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2297                  * will not have to rewrite the controls just for this bit.
2298                  */
2299                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2300                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2301                         exec_control |= SECONDARY_EXEC_DESC;
2302
2303                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2304                         vmcs_write16(GUEST_INTR_STATUS,
2305                                 vmcs12->guest_intr_status);
2306
2307                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2308                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2309
2310                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2311                         vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2312
2313                 secondary_exec_controls_set(vmx, exec_control);
2314         }
2315
2316         /*
2317          * ENTRY CONTROLS
2318          *
2319          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2320          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2321          * on the related bits (if supported by the CPU) in the hope that
2322          * we can avoid VMWrites during vmx_set_efer().
2323          *
2324          * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2325          * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2326          * do the same for L2.
2327          */
2328         exec_control = __vm_entry_controls_get(vmcs01);
2329         exec_control |= (vmcs12->vm_entry_controls &
2330                          ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2331         exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2332         if (cpu_has_load_ia32_efer()) {
2333                 if (guest_efer & EFER_LMA)
2334                         exec_control |= VM_ENTRY_IA32E_MODE;
2335                 if (guest_efer != host_efer)
2336                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2337         }
2338         vm_entry_controls_set(vmx, exec_control);
2339
2340         /*
2341          * EXIT CONTROLS
2342          *
2343          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2344          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2345          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2346          */
2347         exec_control = __vm_exit_controls_get(vmcs01);
2348         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2349                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2350         else
2351                 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2352         vm_exit_controls_set(vmx, exec_control);
2353
2354         /*
2355          * Interrupt/Exception Fields
2356          */
2357         if (vmx->nested.nested_run_pending) {
2358                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2359                              vmcs12->vm_entry_intr_info_field);
2360                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2361                              vmcs12->vm_entry_exception_error_code);
2362                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2363                              vmcs12->vm_entry_instruction_len);
2364                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2365                              vmcs12->guest_interruptibility_info);
2366                 vmx->loaded_vmcs->nmi_known_unmasked =
2367                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2368         } else {
2369                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2370         }
2371 }
2372
2373 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2374 {
2375         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2376
2377         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2378                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2379                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2380                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2381                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2382                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2383                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2384                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2385                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2386                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2387                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2388                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2389                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2390                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2391                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2392                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2393                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2394                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2395                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2396                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2397                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2398                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2399                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2400                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2401                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2402                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2403                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2404                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2405                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2406                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2407                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2408                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2409                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2410                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2411                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2412                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2413                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2414                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2415
2416                 vmx->segment_cache.bitmask = 0;
2417         }
2418
2419         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2420                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2421                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2422                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2423                             vmcs12->guest_pending_dbg_exceptions);
2424                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2425                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2426
2427                 /*
2428                  * L1 may access the L2's PDPTR, so save them to construct
2429                  * vmcs12
2430                  */
2431                 if (enable_ept) {
2432                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2433                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2434                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2435                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2436                 }
2437
2438                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2439                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2440                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2441         }
2442
2443         if (nested_cpu_has_xsaves(vmcs12))
2444                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2445
2446         /*
2447          * Whether page-faults are trapped is determined by a combination of
2448          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2449          * doesn't care about page faults then we should set all of these to
2450          * L1's desires. However, if L0 does care about (some) page faults, it
2451          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2452          * simply ask to exit on each and every L2 page fault. This is done by
2453          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2454          * Note that below we don't need special code to set EB.PF beyond the
2455          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2456          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2457          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2458          */
2459         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2460                 /*
2461                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2462                  * go ahead and use it?
2463                  */
2464                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2465                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2466         } else {
2467                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2468                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2469         }
2470
2471         if (cpu_has_vmx_apicv()) {
2472                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2473                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2474                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2475                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2476         }
2477
2478         /*
2479          * Make sure the msr_autostore list is up to date before we set the
2480          * count in the vmcs02.
2481          */
2482         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2483
2484         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2485         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2486         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2487
2488         set_cr4_guest_host_mask(vmx);
2489 }
2490
2491 /*
2492  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2493  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2494  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2495  * guest in a way that will both be appropriate to L1's requests, and our
2496  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2497  * function also has additional necessary side-effects, like setting various
2498  * vcpu->arch fields.
2499  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2500  * is assigned to entry_failure_code on failure.
2501  */
2502 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2503                           bool from_vmentry,
2504                           enum vm_entry_failure_code *entry_failure_code)
2505 {
2506         struct vcpu_vmx *vmx = to_vmx(vcpu);
2507         bool load_guest_pdptrs_vmcs12 = false;
2508
2509         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2510                 prepare_vmcs02_rare(vmx, vmcs12);
2511                 vmx->nested.dirty_vmcs12 = false;
2512
2513                 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2514                         !(vmx->nested.hv_evmcs->hv_clean_fields &
2515                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2516         }
2517
2518         if (vmx->nested.nested_run_pending &&
2519             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2520                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2521                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2522         } else {
2523                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2524                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2525         }
2526         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2527             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2528                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2529         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2530
2531         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2532          * bitwise-or of what L1 wants to trap for L2, and what we want to
2533          * trap. Note that CR0.TS also needs updating - we do this later.
2534          */
2535         vmx_update_exception_bitmap(vcpu);
2536         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2537         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2538
2539         if (vmx->nested.nested_run_pending &&
2540             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2541                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2542                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2543         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2544                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2545         }
2546
2547         vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2548                         vcpu->arch.l1_tsc_offset,
2549                         vmx_get_l2_tsc_offset(vcpu),
2550                         vmx_get_l2_tsc_multiplier(vcpu));
2551
2552         vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2553                         vcpu->arch.l1_tsc_scaling_ratio,
2554                         vmx_get_l2_tsc_multiplier(vcpu));
2555
2556         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2557         if (kvm_caps.has_tsc_control)
2558                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2559
2560         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2561
2562         if (nested_cpu_has_ept(vmcs12))
2563                 nested_ept_init_mmu_context(vcpu);
2564
2565         /*
2566          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2567          * bits which we consider mandatory enabled.
2568          * The CR0_READ_SHADOW is what L2 should have expected to read given
2569          * the specifications by L1; It's not enough to take
2570          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we
2571          * have more bits than L1 expected.
2572          */
2573         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2574         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2575
2576         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2577         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2578
2579         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2580         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2581         vmx_set_efer(vcpu, vcpu->arch.efer);
2582
2583         /*
2584          * Guest state is invalid and unrestricted guest is disabled,
2585          * which means L1 attempted VMEntry to L2 with invalid state.
2586          * Fail the VMEntry.
2587          *
2588          * However when force loading the guest state (SMM exit or
2589          * loading nested state after migration, it is possible to
2590          * have invalid guest state now, which will be later fixed by
2591          * restoring L2 register state
2592          */
2593         if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2594                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2595                 return -EINVAL;
2596         }
2597
2598         /* Shadow page tables on either EPT or shadow page tables. */
2599         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2600                                 from_vmentry, entry_failure_code))
2601                 return -EINVAL;
2602
2603         /*
2604          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2605          * on nested VM-Exit, which can occur without actually running L2 and
2606          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2607          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2608          * transition to HLT instead of running L2.
2609          */
2610         if (enable_ept)
2611                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2612
2613         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2614         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2615             is_pae_paging(vcpu)) {
2616                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2617                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2618                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2619                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2620         }
2621
2622         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2623             intel_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2624             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2625                                      vmcs12->guest_ia32_perf_global_ctrl))) {
2626                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2627                 return -EINVAL;
2628         }
2629
2630         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2631         kvm_rip_write(vcpu, vmcs12->guest_rip);
2632
2633         /*
2634          * It was observed that genuine Hyper-V running in L1 doesn't reset
2635          * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2636          * bits when it changes a field in eVMCS. Mark all fields as clean
2637          * here.
2638          */
2639         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2640                 vmx->nested.hv_evmcs->hv_clean_fields |=
2641                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2642
2643         return 0;
2644 }
2645
2646 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2647 {
2648         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2649                nested_cpu_has_virtual_nmis(vmcs12)))
2650                 return -EINVAL;
2651
2652         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2653                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2654                 return -EINVAL;
2655
2656         return 0;
2657 }
2658
2659 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2660 {
2661         struct vcpu_vmx *vmx = to_vmx(vcpu);
2662
2663         /* Check for memory type validity */
2664         switch (new_eptp & VMX_EPTP_MT_MASK) {
2665         case VMX_EPTP_MT_UC:
2666                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2667                         return false;
2668                 break;
2669         case VMX_EPTP_MT_WB:
2670                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2671                         return false;
2672                 break;
2673         default:
2674                 return false;
2675         }
2676
2677         /* Page-walk levels validity. */
2678         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2679         case VMX_EPTP_PWL_5:
2680                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2681                         return false;
2682                 break;
2683         case VMX_EPTP_PWL_4:
2684                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2685                         return false;
2686                 break;
2687         default:
2688                 return false;
2689         }
2690
2691         /* Reserved bits should not be set */
2692         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2693                 return false;
2694
2695         /* AD, if set, should be supported */
2696         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2697                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2698                         return false;
2699         }
2700
2701         return true;
2702 }
2703
2704 /*
2705  * Checks related to VM-Execution Control Fields
2706  */
2707 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2708                                               struct vmcs12 *vmcs12)
2709 {
2710         struct vcpu_vmx *vmx = to_vmx(vcpu);
2711
2712         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2713                                    vmx->nested.msrs.pinbased_ctls_low,
2714                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2715             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2716                                    vmx->nested.msrs.procbased_ctls_low,
2717                                    vmx->nested.msrs.procbased_ctls_high)))
2718                 return -EINVAL;
2719
2720         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2721             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2722                                    vmx->nested.msrs.secondary_ctls_low,
2723                                    vmx->nested.msrs.secondary_ctls_high)))
2724                 return -EINVAL;
2725
2726         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2727             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2728             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2729             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2730             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2731             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2732             nested_vmx_check_nmi_controls(vmcs12) ||
2733             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2734             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2735             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2736             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2737             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2738                 return -EINVAL;
2739
2740         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2741             nested_cpu_has_save_preemption_timer(vmcs12))
2742                 return -EINVAL;
2743
2744         if (nested_cpu_has_ept(vmcs12) &&
2745             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2746                 return -EINVAL;
2747
2748         if (nested_cpu_has_vmfunc(vmcs12)) {
2749                 if (CC(vmcs12->vm_function_control &
2750                        ~vmx->nested.msrs.vmfunc_controls))
2751                         return -EINVAL;
2752
2753                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2754                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2755                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2756                                 return -EINVAL;
2757                 }
2758         }
2759
2760         return 0;
2761 }
2762
2763 /*
2764  * Checks related to VM-Exit Control Fields
2765  */
2766 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2767                                          struct vmcs12 *vmcs12)
2768 {
2769         struct vcpu_vmx *vmx = to_vmx(vcpu);
2770
2771         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2772                                     vmx->nested.msrs.exit_ctls_low,
2773                                     vmx->nested.msrs.exit_ctls_high)) ||
2774             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2775                 return -EINVAL;
2776
2777         return 0;
2778 }
2779
2780 /*
2781  * Checks related to VM-Entry Control Fields
2782  */
2783 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2784                                           struct vmcs12 *vmcs12)
2785 {
2786         struct vcpu_vmx *vmx = to_vmx(vcpu);
2787
2788         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2789                                     vmx->nested.msrs.entry_ctls_low,
2790                                     vmx->nested.msrs.entry_ctls_high)))
2791                 return -EINVAL;
2792
2793         /*
2794          * From the Intel SDM, volume 3:
2795          * Fields relevant to VM-entry event injection must be set properly.
2796          * These fields are the VM-entry interruption-information field, the
2797          * VM-entry exception error code, and the VM-entry instruction length.
2798          */
2799         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2800                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2801                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2802                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2803                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2804                 bool should_have_error_code;
2805                 bool urg = nested_cpu_has2(vmcs12,
2806                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2807                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2808
2809                 /* VM-entry interruption-info field: interruption type */
2810                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2811                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2812                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2813                         return -EINVAL;
2814
2815                 /* VM-entry interruption-info field: vector */
2816                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2817                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2818                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2819                         return -EINVAL;
2820
2821                 /* VM-entry interruption-info field: deliver error code */
2822                 should_have_error_code =
2823                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2824                         x86_exception_has_error_code(vector);
2825                 if (CC(has_error_code != should_have_error_code))
2826                         return -EINVAL;
2827
2828                 /* VM-entry exception error code */
2829                 if (CC(has_error_code &&
2830                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2831                         return -EINVAL;
2832
2833                 /* VM-entry interruption-info field: reserved bits */
2834                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2835                         return -EINVAL;
2836
2837                 /* VM-entry instruction length */
2838                 switch (intr_type) {
2839                 case INTR_TYPE_SOFT_EXCEPTION:
2840                 case INTR_TYPE_SOFT_INTR:
2841                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2842                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2843                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2844                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2845                                 return -EINVAL;
2846                 }
2847         }
2848
2849         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2850                 return -EINVAL;
2851
2852         return 0;
2853 }
2854
2855 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2856                                      struct vmcs12 *vmcs12)
2857 {
2858         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2859             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2860             nested_check_vm_entry_controls(vcpu, vmcs12))
2861                 return -EINVAL;
2862
2863         if (guest_cpuid_has_evmcs(vcpu))
2864                 return nested_evmcs_check_controls(vmcs12);
2865
2866         return 0;
2867 }
2868
2869 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2870                                        struct vmcs12 *vmcs12)
2871 {
2872 #ifdef CONFIG_X86_64
2873         if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2874                 !!(vcpu->arch.efer & EFER_LMA)))
2875                 return -EINVAL;
2876 #endif
2877         return 0;
2878 }
2879
2880 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2881                                        struct vmcs12 *vmcs12)
2882 {
2883         bool ia32e;
2884
2885         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2886             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2887             CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2888                 return -EINVAL;
2889
2890         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2891             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2892                 return -EINVAL;
2893
2894         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2895             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2896                 return -EINVAL;
2897
2898         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2899             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2900                                            vmcs12->host_ia32_perf_global_ctrl)))
2901                 return -EINVAL;
2902
2903 #ifdef CONFIG_X86_64
2904         ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2905 #else
2906         ia32e = false;
2907 #endif
2908
2909         if (ia32e) {
2910                 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2911                         return -EINVAL;
2912         } else {
2913                 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2914                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2915                     CC((vmcs12->host_rip) >> 32))
2916                         return -EINVAL;
2917         }
2918
2919         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2920             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2921             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2922             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2923             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2924             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2925             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2926             CC(vmcs12->host_cs_selector == 0) ||
2927             CC(vmcs12->host_tr_selector == 0) ||
2928             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2929                 return -EINVAL;
2930
2931         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2932             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2933             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2934             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2935             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2936             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2937                 return -EINVAL;
2938
2939         /*
2940          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2941          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2942          * the values of the LMA and LME bits in the field must each be that of
2943          * the host address-space size VM-exit control.
2944          */
2945         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2946                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2947                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2948                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2949                         return -EINVAL;
2950         }
2951
2952         return 0;
2953 }
2954
2955 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2956                                           struct vmcs12 *vmcs12)
2957 {
2958         struct vcpu_vmx *vmx = to_vmx(vcpu);
2959         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2960         struct vmcs_hdr hdr;
2961
2962         if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2963                 return 0;
2964
2965         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2966                 return -EINVAL;
2967
2968         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2969             CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2970                                          vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2971                 return -EINVAL;
2972
2973         if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2974                                             offsetof(struct vmcs12, hdr),
2975                                             sizeof(hdr))))
2976                 return -EINVAL;
2977
2978         if (CC(hdr.revision_id != VMCS12_REVISION) ||
2979             CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2980                 return -EINVAL;
2981
2982         return 0;
2983 }
2984
2985 /*
2986  * Checks related to Guest Non-register State
2987  */
2988 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2989 {
2990         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2991                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2992                vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2993                 return -EINVAL;
2994
2995         return 0;
2996 }
2997
2998 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2999                                         struct vmcs12 *vmcs12,
3000                                         enum vm_entry_failure_code *entry_failure_code)
3001 {
3002         bool ia32e;
3003
3004         *entry_failure_code = ENTRY_FAIL_DEFAULT;
3005
3006         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3007             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3008                 return -EINVAL;
3009
3010         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3011             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3012                 return -EINVAL;
3013
3014         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3015             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3016                 return -EINVAL;
3017
3018         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3019                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3020                 return -EINVAL;
3021         }
3022
3023         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3024             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3025                                            vmcs12->guest_ia32_perf_global_ctrl)))
3026                 return -EINVAL;
3027
3028         /*
3029          * If the load IA32_EFER VM-entry control is 1, the following checks
3030          * are performed on the field for the IA32_EFER MSR:
3031          * - Bits reserved in the IA32_EFER MSR must be 0.
3032          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3033          *   the IA-32e mode guest VM-exit control. It must also be identical
3034          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3035          *   CR0.PG) is 1.
3036          */
3037         if (to_vmx(vcpu)->nested.nested_run_pending &&
3038             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3039                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3040                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3041                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3042                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3043                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3044                         return -EINVAL;
3045         }
3046
3047         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3048             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3049              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3050                 return -EINVAL;
3051
3052         if (nested_check_guest_non_reg_state(vmcs12))
3053                 return -EINVAL;
3054
3055         return 0;
3056 }
3057
3058 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3059 {
3060         struct vcpu_vmx *vmx = to_vmx(vcpu);
3061         unsigned long cr3, cr4;
3062         bool vm_fail;
3063
3064         if (!nested_early_check)
3065                 return 0;
3066
3067         if (vmx->msr_autoload.host.nr)
3068                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3069         if (vmx->msr_autoload.guest.nr)
3070                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3071
3072         preempt_disable();
3073
3074         vmx_prepare_switch_to_guest(vcpu);
3075
3076         /*
3077          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3078          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3079          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3080          * there is no need to preserve other bits or save/restore the field.
3081          */
3082         vmcs_writel(GUEST_RFLAGS, 0);
3083
3084         cr3 = __get_current_cr3_fast();
3085         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3086                 vmcs_writel(HOST_CR3, cr3);
3087                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3088         }
3089
3090         cr4 = cr4_read_shadow();
3091         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3092                 vmcs_writel(HOST_CR4, cr4);
3093                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3094         }
3095
3096         vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3097                                  __vmx_vcpu_run_flags(vmx));
3098
3099         if (vmx->msr_autoload.host.nr)
3100                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3101         if (vmx->msr_autoload.guest.nr)
3102                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3103
3104         if (vm_fail) {
3105                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3106
3107                 preempt_enable();
3108
3109                 trace_kvm_nested_vmenter_failed(
3110                         "early hardware check VM-instruction error: ", error);
3111                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3112                 return 1;
3113         }
3114
3115         /*
3116          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3117          */
3118         if (hw_breakpoint_active())
3119                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3120         local_irq_enable();
3121         preempt_enable();
3122
3123         /*
3124          * A non-failing VMEntry means we somehow entered guest mode with
3125          * an illegal RIP, and that's just the tip of the iceberg.  There
3126          * is no telling what memory has been modified or what state has
3127          * been exposed to unknown code.  Hitting this all but guarantees
3128          * a (very critical) hardware issue.
3129          */
3130         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3131                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3132
3133         return 0;
3134 }
3135
3136 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3137 {
3138         struct vcpu_vmx *vmx = to_vmx(vcpu);
3139
3140         /*
3141          * hv_evmcs may end up being not mapped after migration (when
3142          * L2 was running), map it here to make sure vmcs12 changes are
3143          * properly reflected.
3144          */
3145         if (guest_cpuid_has_evmcs(vcpu) &&
3146             vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3147                 enum nested_evmptrld_status evmptrld_status =
3148                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3149
3150                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3151                     evmptrld_status == EVMPTRLD_ERROR)
3152                         return false;
3153
3154                 /*
3155                  * Post migration VMCS12 always provides the most actual
3156                  * information, copy it to eVMCS upon entry.
3157                  */
3158                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3159         }
3160
3161         return true;
3162 }
3163
3164 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3165 {
3166         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3167         struct vcpu_vmx *vmx = to_vmx(vcpu);
3168         struct kvm_host_map *map;
3169
3170         if (!vcpu->arch.pdptrs_from_userspace &&
3171             !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3172                 /*
3173                  * Reload the guest's PDPTRs since after a migration
3174                  * the guest CR3 might be restored prior to setting the nested
3175                  * state which can lead to a load of wrong PDPTRs.
3176                  */
3177                 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3178                         return false;
3179         }
3180
3181
3182         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3183                 map = &vmx->nested.apic_access_page_map;
3184
3185                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3186                         vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3187                 } else {
3188                         pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3189                                              __func__);
3190                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3191                         vcpu->run->internal.suberror =
3192                                 KVM_INTERNAL_ERROR_EMULATION;
3193                         vcpu->run->internal.ndata = 0;
3194                         return false;
3195                 }
3196         }
3197
3198         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3199                 map = &vmx->nested.virtual_apic_map;
3200
3201                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3202                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3203                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3204                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3205                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3206                         /*
3207                          * The processor will never use the TPR shadow, simply
3208                          * clear the bit from the execution control.  Such a
3209                          * configuration is useless, but it happens in tests.
3210                          * For any other configuration, failing the vm entry is
3211                          * _not_ what the processor does but it's basically the
3212                          * only possibility we have.
3213                          */
3214                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3215                 } else {
3216                         /*
3217                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3218                          * force VM-Entry to fail.
3219                          */
3220                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3221                 }
3222         }
3223
3224         if (nested_cpu_has_posted_intr(vmcs12)) {
3225                 map = &vmx->nested.pi_desc_map;
3226
3227                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3228                         vmx->nested.pi_desc =
3229                                 (struct pi_desc *)(((void *)map->hva) +
3230                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3231                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3232                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3233                 } else {
3234                         /*
3235                          * Defer the KVM_INTERNAL_EXIT until KVM tries to
3236                          * access the contents of the VMCS12 posted interrupt
3237                          * descriptor. (Note that KVM may do this when it
3238                          * should not, per the architectural specification.)
3239                          */
3240                         vmx->nested.pi_desc = NULL;
3241                         pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3242                 }
3243         }
3244         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3245                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3246         else
3247                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3248
3249         return true;
3250 }
3251
3252 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3253 {
3254         if (!nested_get_evmcs_page(vcpu)) {
3255                 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3256                                      __func__);
3257                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3258                 vcpu->run->internal.suberror =
3259                         KVM_INTERNAL_ERROR_EMULATION;
3260                 vcpu->run->internal.ndata = 0;
3261
3262                 return false;
3263         }
3264
3265         if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3266                 return false;
3267
3268         return true;
3269 }
3270
3271 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3272 {
3273         struct vmcs12 *vmcs12;
3274         struct vcpu_vmx *vmx = to_vmx(vcpu);
3275         gpa_t dst;
3276
3277         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3278                 return 0;
3279
3280         if (WARN_ON_ONCE(vmx->nested.pml_full))
3281                 return 1;
3282
3283         /*
3284          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3285          * set is already checked as part of A/D emulation.
3286          */
3287         vmcs12 = get_vmcs12(vcpu);
3288         if (!nested_cpu_has_pml(vmcs12))
3289                 return 0;
3290
3291         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3292                 vmx->nested.pml_full = true;
3293                 return 1;
3294         }
3295
3296         gpa &= ~0xFFFull;
3297         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3298
3299         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3300                                  offset_in_page(dst), sizeof(gpa)))
3301                 return 0;
3302
3303         vmcs12->guest_pml_index--;
3304
3305         return 0;
3306 }
3307
3308 /*
3309  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3310  * for running VMX instructions (except VMXON, whose prerequisites are
3311  * slightly different). It also specifies what exception to inject otherwise.
3312  * Note that many of these exceptions have priority over VM exits, so they
3313  * don't have to be checked again here.
3314  */
3315 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3316 {
3317         if (!to_vmx(vcpu)->nested.vmxon) {
3318                 kvm_queue_exception(vcpu, UD_VECTOR);
3319                 return 0;
3320         }
3321
3322         if (vmx_get_cpl(vcpu)) {
3323                 kvm_inject_gp(vcpu, 0);
3324                 return 0;
3325         }
3326
3327         return 1;
3328 }
3329
3330 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3331 {
3332         u8 rvi = vmx_get_rvi();
3333         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3334
3335         return ((rvi & 0xf0) > (vppr & 0xf0));
3336 }
3337
3338 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3339                                    struct vmcs12 *vmcs12);
3340
3341 /*
3342  * If from_vmentry is false, this is being called from state restore (either RSM
3343  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3344  *
3345  * Returns:
3346  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3347  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3348  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3349  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3350  */
3351 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3352                                                         bool from_vmentry)
3353 {
3354         struct vcpu_vmx *vmx = to_vmx(vcpu);
3355         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3356         enum vm_entry_failure_code entry_failure_code;
3357         bool evaluate_pending_interrupts;
3358         union vmx_exit_reason exit_reason = {
3359                 .basic = EXIT_REASON_INVALID_STATE,
3360                 .failed_vmentry = 1,
3361         };
3362         u32 failed_index;
3363
3364         trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3365                                  vmx->nested.current_vmptr,
3366                                  vmcs12->guest_rip,
3367                                  vmcs12->guest_intr_status,
3368                                  vmcs12->vm_entry_intr_info_field,
3369                                  vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3370                                  vmcs12->ept_pointer,
3371                                  vmcs12->guest_cr3,
3372                                  KVM_ISA_VMX);
3373
3374         kvm_service_local_tlb_flush_requests(vcpu);
3375
3376         evaluate_pending_interrupts = exec_controls_get(vmx) &
3377                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3378         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3379                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3380         if (!evaluate_pending_interrupts)
3381                 evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3382
3383         if (!vmx->nested.nested_run_pending ||
3384             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3385                 vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3386         if (kvm_mpx_supported() &&
3387             (!vmx->nested.nested_run_pending ||
3388              !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3389                 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3390
3391         /*
3392          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3393          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3394          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3395          * software model to the pre-VMEntry host state.  When EPT is disabled,
3396          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3397          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3398          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3399          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3400          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3401          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3402          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3403          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3404          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3405          * path would need to manually save/restore vmcs01.GUEST_CR3.
3406          */
3407         if (!enable_ept && !nested_early_check)
3408                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3409
3410         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3411
3412         prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3413
3414         if (from_vmentry) {
3415                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3416                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3417                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3418                 }
3419
3420                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3421                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3422                         return NVMX_VMENTRY_VMFAIL;
3423                 }
3424
3425                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3426                                                  &entry_failure_code)) {
3427                         exit_reason.basic = EXIT_REASON_INVALID_STATE;
3428                         vmcs12->exit_qualification = entry_failure_code;
3429                         goto vmentry_fail_vmexit;
3430                 }
3431         }
3432
3433         enter_guest_mode(vcpu);
3434
3435         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3436                 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3437                 vmcs12->exit_qualification = entry_failure_code;
3438                 goto vmentry_fail_vmexit_guest_mode;
3439         }
3440
3441         if (from_vmentry) {
3442                 failed_index = nested_vmx_load_msr(vcpu,
3443                                                    vmcs12->vm_entry_msr_load_addr,
3444                                                    vmcs12->vm_entry_msr_load_count);
3445                 if (failed_index) {
3446                         exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3447                         vmcs12->exit_qualification = failed_index;
3448                         goto vmentry_fail_vmexit_guest_mode;
3449                 }
3450         } else {
3451                 /*
3452                  * The MMU is not initialized to point at the right entities yet and
3453                  * "get pages" would need to read data from the guest (i.e. we will
3454                  * need to perform gpa to hpa translation). Request a call
3455                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3456                  * have already been set at vmentry time and should not be reset.
3457                  */
3458                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3459         }
3460
3461         /*
3462          * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3463          * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3464          * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3465          * unconditionally.
3466          */
3467         if (unlikely(evaluate_pending_interrupts))
3468                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3469
3470         /*
3471          * Do not start the preemption timer hrtimer until after we know
3472          * we are successful, so that only nested_vmx_vmexit needs to cancel
3473          * the timer.
3474          */
3475         vmx->nested.preemption_timer_expired = false;
3476         if (nested_cpu_has_preemption_timer(vmcs12)) {
3477                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3478                 vmx_start_preemption_timer(vcpu, timer_value);
3479         }
3480
3481         /*
3482          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3483          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3484          * returned as far as L1 is concerned. It will only return (and set
3485          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3486          */
3487         return NVMX_VMENTRY_SUCCESS;
3488
3489         /*
3490          * A failed consistency check that leads to a VMExit during L1's
3491          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3492          * 26.7 "VM-entry failures during or after loading guest state".
3493          */
3494 vmentry_fail_vmexit_guest_mode:
3495         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3496                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3497         leave_guest_mode(vcpu);
3498
3499 vmentry_fail_vmexit:
3500         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3501
3502         if (!from_vmentry)
3503                 return NVMX_VMENTRY_VMEXIT;
3504
3505         load_vmcs12_host_state(vcpu, vmcs12);
3506         vmcs12->vm_exit_reason = exit_reason.full;
3507         if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3508                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3509         return NVMX_VMENTRY_VMEXIT;
3510 }
3511
3512 /*
3513  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3514  * for running an L2 nested guest.
3515  */
3516 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3517 {
3518         struct vmcs12 *vmcs12;
3519         enum nvmx_vmentry_status status;
3520         struct vcpu_vmx *vmx = to_vmx(vcpu);
3521         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3522         enum nested_evmptrld_status evmptrld_status;
3523
3524         if (!nested_vmx_check_permission(vcpu))
3525                 return 1;
3526
3527         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3528         if (evmptrld_status == EVMPTRLD_ERROR) {
3529                 kvm_queue_exception(vcpu, UD_VECTOR);
3530                 return 1;
3531         }
3532
3533         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3534
3535         if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3536                 return nested_vmx_failInvalid(vcpu);
3537
3538         if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3539                vmx->nested.current_vmptr == INVALID_GPA))
3540                 return nested_vmx_failInvalid(vcpu);
3541
3542         vmcs12 = get_vmcs12(vcpu);
3543
3544         /*
3545          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3546          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3547          * rather than RFLAGS.ZF, and no error number is stored to the
3548          * VM-instruction error field.
3549          */
3550         if (CC(vmcs12->hdr.shadow_vmcs))
3551                 return nested_vmx_failInvalid(vcpu);
3552
3553         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3554                 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3555                 /* Enlightened VMCS doesn't have launch state */
3556                 vmcs12->launch_state = !launch;
3557         } else if (enable_shadow_vmcs) {
3558                 copy_shadow_to_vmcs12(vmx);
3559         }
3560
3561         /*
3562          * The nested entry process starts with enforcing various prerequisites
3563          * on vmcs12 as required by the Intel SDM, and act appropriately when
3564          * they fail: As the SDM explains, some conditions should cause the
3565          * instruction to fail, while others will cause the instruction to seem
3566          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3567          * To speed up the normal (success) code path, we should avoid checking
3568          * for misconfigurations which will anyway be caught by the processor
3569          * when using the merged vmcs02.
3570          */
3571         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3572                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3573
3574         if (CC(vmcs12->launch_state == launch))
3575                 return nested_vmx_fail(vcpu,
3576                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3577                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3578
3579         if (nested_vmx_check_controls(vcpu, vmcs12))
3580                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3581
3582         if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3583                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3584
3585         if (nested_vmx_check_host_state(vcpu, vmcs12))
3586                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3587
3588         /*
3589          * We're finally done with prerequisite checking, and can start with
3590          * the nested entry.
3591          */
3592         vmx->nested.nested_run_pending = 1;
3593         vmx->nested.has_preemption_timer_deadline = false;
3594         status = nested_vmx_enter_non_root_mode(vcpu, true);
3595         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3596                 goto vmentry_failed;
3597
3598         /* Emulate processing of posted interrupts on VM-Enter. */
3599         if (nested_cpu_has_posted_intr(vmcs12) &&
3600             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3601                 vmx->nested.pi_pending = true;
3602                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3603                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3604         }
3605
3606         /* Hide L1D cache contents from the nested guest.  */
3607         vmx->vcpu.arch.l1tf_flush_l1d = true;
3608
3609         /*
3610          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3611          * also be used as part of restoring nVMX state for
3612          * snapshot restore (migration).
3613          *
3614          * In this flow, it is assumed that vmcs12 cache was
3615          * transferred as part of captured nVMX state and should
3616          * therefore not be read from guest memory (which may not
3617          * exist on destination host yet).
3618          */
3619         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3620
3621         switch (vmcs12->guest_activity_state) {
3622         case GUEST_ACTIVITY_HLT:
3623                 /*
3624                  * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3625                  * awakened by event injection or by an NMI-window VM-exit or
3626                  * by an interrupt-window VM-exit, halt the vcpu.
3627                  */
3628                 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3629                     !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3630                     !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3631                       (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3632                         vmx->nested.nested_run_pending = 0;
3633                         return kvm_emulate_halt_noskip(vcpu);
3634                 }
3635                 break;
3636         case GUEST_ACTIVITY_WAIT_SIPI:
3637                 vmx->nested.nested_run_pending = 0;
3638                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3639                 break;
3640         default:
3641                 break;
3642         }
3643
3644         return 1;
3645
3646 vmentry_failed:
3647         vmx->nested.nested_run_pending = 0;
3648         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3649                 return 0;
3650         if (status == NVMX_VMENTRY_VMEXIT)
3651                 return 1;
3652         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3653         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3654 }
3655
3656 /*
3657  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3658  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3659  * This function returns the new value we should put in vmcs12.guest_cr0.
3660  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3661  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3662  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3663  *     didn't trap the bit, because if L1 did, so would L0).
3664  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3665  *     been modified by L2, and L1 knows it. So just leave the old value of
3666  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3667  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3668  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3669  *     changed these bits, and therefore they need to be updated, but L0
3670  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3671  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3672  */
3673 static inline unsigned long
3674 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3675 {
3676         return
3677         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3678         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3679         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3680                         vcpu->arch.cr0_guest_owned_bits));
3681 }
3682
3683 static inline unsigned long
3684 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3685 {
3686         return
3687         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3688         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3689         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3690                         vcpu->arch.cr4_guest_owned_bits));
3691 }
3692
3693 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3694                                       struct vmcs12 *vmcs12,
3695                                       u32 vm_exit_reason, u32 exit_intr_info)
3696 {
3697         u32 idt_vectoring;
3698         unsigned int nr;
3699
3700         /*
3701          * Per the SDM, VM-Exits due to double and triple faults are never
3702          * considered to occur during event delivery, even if the double/triple
3703          * fault is the result of an escalating vectoring issue.
3704          *
3705          * Note, the SDM qualifies the double fault behavior with "The original
3706          * event results in a double-fault exception".  It's unclear why the
3707          * qualification exists since exits due to double fault can occur only
3708          * while vectoring a different exception (injected events are never
3709          * subject to interception), i.e. there's _always_ an original event.
3710          *
3711          * The SDM also uses NMI as a confusing example for the "original event
3712          * causes the VM exit directly" clause.  NMI isn't special in any way,
3713          * the same rule applies to all events that cause an exit directly.
3714          * NMI is an odd choice for the example because NMIs can only occur on
3715          * instruction boundaries, i.e. they _can't_ occur during vectoring.
3716          */
3717         if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3718             ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3719              is_double_fault(exit_intr_info))) {
3720                 vmcs12->idt_vectoring_info_field = 0;
3721         } else if (vcpu->arch.exception.injected) {
3722                 nr = vcpu->arch.exception.vector;
3723                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3724
3725                 if (kvm_exception_is_soft(nr)) {
3726                         vmcs12->vm_exit_instruction_len =
3727                                 vcpu->arch.event_exit_inst_len;
3728                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3729                 } else
3730                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3731
3732                 if (vcpu->arch.exception.has_error_code) {
3733                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3734                         vmcs12->idt_vectoring_error_code =
3735                                 vcpu->arch.exception.error_code;
3736                 }
3737
3738                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3739         } else if (vcpu->arch.nmi_injected) {
3740                 vmcs12->idt_vectoring_info_field =
3741                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3742         } else if (vcpu->arch.interrupt.injected) {
3743                 nr = vcpu->arch.interrupt.nr;
3744                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3745
3746                 if (vcpu->arch.interrupt.soft) {
3747                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3748                         vmcs12->vm_entry_instruction_len =
3749                                 vcpu->arch.event_exit_inst_len;
3750                 } else
3751                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3752
3753                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3754         } else {
3755                 vmcs12->idt_vectoring_info_field = 0;
3756         }
3757 }
3758
3759
3760 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3761 {
3762         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3763         gfn_t gfn;
3764
3765         /*
3766          * Don't need to mark the APIC access page dirty; it is never
3767          * written to by the CPU during APIC virtualization.
3768          */
3769
3770         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3771                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3772                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3773         }
3774
3775         if (nested_cpu_has_posted_intr(vmcs12)) {
3776                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3777                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3778         }
3779 }
3780
3781 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3782 {
3783         struct vcpu_vmx *vmx = to_vmx(vcpu);
3784         int max_irr;
3785         void *vapic_page;
3786         u16 status;
3787
3788         if (!vmx->nested.pi_pending)
3789                 return 0;
3790
3791         if (!vmx->nested.pi_desc)
3792                 goto mmio_needed;
3793
3794         vmx->nested.pi_pending = false;
3795
3796         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3797                 return 0;
3798
3799         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3800         if (max_irr != 256) {
3801                 vapic_page = vmx->nested.virtual_apic_map.hva;
3802                 if (!vapic_page)
3803                         goto mmio_needed;
3804
3805                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3806                         vapic_page, &max_irr);
3807                 status = vmcs_read16(GUEST_INTR_STATUS);
3808                 if ((u8)max_irr > ((u8)status & 0xff)) {
3809                         status &= ~0xff;
3810                         status |= (u8)max_irr;
3811                         vmcs_write16(GUEST_INTR_STATUS, status);
3812                 }
3813         }
3814
3815         nested_mark_vmcs12_pages_dirty(vcpu);
3816         return 0;
3817
3818 mmio_needed:
3819         kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3820         return -ENXIO;
3821 }
3822
3823 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3824 {
3825         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3826         u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3827         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3828         unsigned long exit_qual;
3829
3830         if (ex->has_payload) {
3831                 exit_qual = ex->payload;
3832         } else if (ex->vector == PF_VECTOR) {
3833                 exit_qual = vcpu->arch.cr2;
3834         } else if (ex->vector == DB_VECTOR) {
3835                 exit_qual = vcpu->arch.dr6;
3836                 exit_qual &= ~DR6_BT;
3837                 exit_qual ^= DR6_ACTIVE_LOW;
3838         } else {
3839                 exit_qual = 0;
3840         }
3841
3842         if (ex->has_error_code) {
3843                 /*
3844                  * Intel CPUs do not generate error codes with bits 31:16 set,
3845                  * and more importantly VMX disallows setting bits 31:16 in the
3846                  * injected error code for VM-Entry.  Drop the bits to mimic
3847                  * hardware and avoid inducing failure on nested VM-Entry if L1
3848                  * chooses to inject the exception back to L2.  AMD CPUs _do_
3849                  * generate "full" 32-bit error codes, so KVM allows userspace
3850                  * to inject exception error codes with bits 31:16 set.
3851                  */
3852                 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3853                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3854         }
3855
3856         if (kvm_exception_is_soft(ex->vector))
3857                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3858         else
3859                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3860
3861         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3862             vmx_get_nmi_mask(vcpu))
3863                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3864
3865         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3866 }
3867
3868 /*
3869  * Returns true if a debug trap is (likely) pending delivery.  Infer the class
3870  * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3871  * Using the payload is flawed because code breakpoints (fault-like) and data
3872  * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3873  * this will return false positives if a to-be-injected code breakpoint #DB is
3874  * pending (from KVM's perspective, but not "pending" across an instruction
3875  * boundary).  ICEBP, a.k.a. INT1, is also not reflected here even though it
3876  * too is trap-like.
3877  *
3878  * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3879  * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3880  * #DB has already happened), and MTF isn't marked pending on code breakpoints
3881  * from the emulator (because such #DBs are fault-like and thus don't trigger
3882  * actions that fire on instruction retire).
3883  */
3884 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3885 {
3886         if (!ex->pending || ex->vector != DB_VECTOR)
3887                 return 0;
3888
3889         /* General Detect #DBs are always fault-like. */
3890         return ex->payload & ~DR6_BD;
3891 }
3892
3893 /*
3894  * Returns true if there's a pending #DB exception that is lower priority than
3895  * a pending Monitor Trap Flag VM-Exit.  TSS T-flag #DBs are not emulated by
3896  * KVM, but could theoretically be injected by userspace.  Note, this code is
3897  * imperfect, see above.
3898  */
3899 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
3900 {
3901         return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
3902 }
3903
3904 /*
3905  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3906  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3907  * represents these debug traps with a payload that is said to be compatible
3908  * with the 'pending debug exceptions' field, write the payload to the VMCS
3909  * field if a VM-exit is delivered before the debug trap.
3910  */
3911 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3912 {
3913         unsigned long pending_dbg;
3914
3915         pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
3916         if (pending_dbg)
3917                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
3918 }
3919
3920 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3921 {
3922         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3923                to_vmx(vcpu)->nested.preemption_timer_expired;
3924 }
3925
3926 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu)
3927 {
3928         return nested_vmx_preemption_timer_pending(vcpu) ||
3929                to_vmx(vcpu)->nested.mtf_pending;
3930 }
3931
3932 /*
3933  * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
3934  * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
3935  * and less minor edits to splice in the priority of VMX Non-Root specific
3936  * events, e.g. MTF and NMI/INTR-window exiting.
3937  *
3938  * 1 Hardware Reset and Machine Checks
3939  *      - RESET
3940  *      - Machine Check
3941  *
3942  * 2 Trap on Task Switch
3943  *      - T flag in TSS is set (on task switch)
3944  *
3945  * 3 External Hardware Interventions
3946  *      - FLUSH
3947  *      - STOPCLK
3948  *      - SMI
3949  *      - INIT
3950  *
3951  * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
3952  *
3953  * 4 Traps on Previous Instruction
3954  *      - Breakpoints
3955  *      - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
3956  *        breakpoint, or #DB due to a split-lock access)
3957  *
3958  * 4.3  VMX-preemption timer expired VM-exit
3959  *
3960  * 4.6  NMI-window exiting VM-exit[2]
3961  *
3962  * 5 Nonmaskable Interrupts (NMI)
3963  *
3964  * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
3965  *
3966  * 6 Maskable Hardware Interrupts
3967  *
3968  * 7 Code Breakpoint Fault
3969  *
3970  * 8 Faults from Fetching Next Instruction
3971  *      - Code-Segment Limit Violation
3972  *      - Code Page Fault
3973  *      - Control protection exception (missing ENDBRANCH at target of indirect
3974  *                                      call or jump)
3975  *
3976  * 9 Faults from Decoding Next Instruction
3977  *      - Instruction length > 15 bytes
3978  *      - Invalid Opcode
3979  *      - Coprocessor Not Available
3980  *
3981  *10 Faults on Executing Instruction
3982  *      - Overflow
3983  *      - Bound error
3984  *      - Invalid TSS
3985  *      - Segment Not Present
3986  *      - Stack fault
3987  *      - General Protection
3988  *      - Data Page Fault
3989  *      - Alignment Check
3990  *      - x86 FPU Floating-point exception
3991  *      - SIMD floating-point exception
3992  *      - Virtualization exception
3993  *      - Control protection exception
3994  *
3995  * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
3996  *     INIT signals, and higher priority events take priority over MTF VM exits.
3997  *     MTF VM exits take priority over debug-trap exceptions and lower priority
3998  *     events.
3999  *
4000  * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4001  *     caused by the VMX-preemption timer.  VM exits caused by the VMX-preemption
4002  *     timer take priority over VM exits caused by the "NMI-window exiting"
4003  *     VM-execution control and lower priority events.
4004  *
4005  * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4006  *     caused by "NMI-window exiting".  VM exits caused by this control take
4007  *     priority over non-maskable interrupts (NMIs) and lower priority events.
4008  *
4009  * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4010  *     the 1-setting of the "interrupt-window exiting" VM-execution control.  Thus,
4011  *     non-maskable interrupts (NMIs) and higher priority events take priority over
4012  *     delivery of a virtual interrupt; delivery of a virtual interrupt takes
4013  *     priority over external interrupts and lower priority events.
4014  */
4015 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4016 {
4017         struct kvm_lapic *apic = vcpu->arch.apic;
4018         struct vcpu_vmx *vmx = to_vmx(vcpu);
4019         /*
4020          * Only a pending nested run blocks a pending exception.  If there is a
4021          * previously injected event, the pending exception occurred while said
4022          * event was being delivered and thus needs to be handled.
4023          */
4024         bool block_nested_exceptions = vmx->nested.nested_run_pending;
4025         /*
4026          * New events (not exceptions) are only recognized at instruction
4027          * boundaries.  If an event needs reinjection, then KVM is handling a
4028          * VM-Exit that occurred _during_ instruction execution; new events are
4029          * blocked until the instruction completes.
4030          */
4031         bool block_nested_events = block_nested_exceptions ||
4032                                    kvm_event_needs_reinjection(vcpu);
4033
4034         if (lapic_in_kernel(vcpu) &&
4035                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4036                 if (block_nested_events)
4037                         return -EBUSY;
4038                 nested_vmx_update_pending_dbg(vcpu);
4039                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4040                 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4041                         nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4042
4043                 /* MTF is discarded if the vCPU is in WFS. */
4044                 vmx->nested.mtf_pending = false;
4045                 return 0;
4046         }
4047
4048         if (lapic_in_kernel(vcpu) &&
4049             test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4050                 if (block_nested_events)
4051                         return -EBUSY;
4052
4053                 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4054                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4055                         nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4056                                                 apic->sipi_vector & 0xFFUL);
4057                         return 0;
4058                 }
4059                 /* Fallthrough, the SIPI is completely ignored. */
4060         }
4061
4062         /*
4063          * Process exceptions that are higher priority than Monitor Trap Flag:
4064          * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4065          * could theoretically come in from userspace), and ICEBP (INT1).
4066          *
4067          * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4068          * for TSS T flag #DBs).  KVM also doesn't save/restore pending MTF
4069          * across SMI/RSM as it should; that needs to be addressed in order to
4070          * prioritize SMI over MTF and trap-like #DBs.
4071          */
4072         if (vcpu->arch.exception_vmexit.pending &&
4073             !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4074                 if (block_nested_exceptions)
4075                         return -EBUSY;
4076
4077                 nested_vmx_inject_exception_vmexit(vcpu);
4078                 return 0;
4079         }
4080
4081         if (vcpu->arch.exception.pending &&
4082             !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4083                 if (block_nested_exceptions)
4084                         return -EBUSY;
4085                 goto no_vmexit;
4086         }
4087
4088         if (vmx->nested.mtf_pending) {
4089                 if (block_nested_events)
4090                         return -EBUSY;
4091                 nested_vmx_update_pending_dbg(vcpu);
4092                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4093                 return 0;
4094         }
4095
4096         if (vcpu->arch.exception_vmexit.pending) {
4097                 if (block_nested_exceptions)
4098                         return -EBUSY;
4099
4100                 nested_vmx_inject_exception_vmexit(vcpu);
4101                 return 0;
4102         }
4103
4104         if (vcpu->arch.exception.pending) {
4105                 if (block_nested_exceptions)
4106                         return -EBUSY;
4107                 goto no_vmexit;
4108         }
4109
4110         if (nested_vmx_preemption_timer_pending(vcpu)) {
4111                 if (block_nested_events)
4112                         return -EBUSY;
4113                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4114                 return 0;
4115         }
4116
4117         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4118                 if (block_nested_events)
4119                         return -EBUSY;
4120                 goto no_vmexit;
4121         }
4122
4123         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4124                 if (block_nested_events)
4125                         return -EBUSY;
4126                 if (!nested_exit_on_nmi(vcpu))
4127                         goto no_vmexit;
4128
4129                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4130                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
4131                                   INTR_INFO_VALID_MASK, 0);
4132                 /*
4133                  * The NMI-triggered VM exit counts as injection:
4134                  * clear this one and block further NMIs.
4135                  */
4136                 vcpu->arch.nmi_pending = 0;
4137                 vmx_set_nmi_mask(vcpu, true);
4138                 return 0;
4139         }
4140
4141         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4142                 if (block_nested_events)
4143                         return -EBUSY;
4144                 if (!nested_exit_on_intr(vcpu))
4145                         goto no_vmexit;
4146                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4147                 return 0;
4148         }
4149
4150 no_vmexit:
4151         return vmx_complete_nested_posted_interrupt(vcpu);
4152 }
4153
4154 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4155 {
4156         ktime_t remaining =
4157                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4158         u64 value;
4159
4160         if (ktime_to_ns(remaining) <= 0)
4161                 return 0;
4162
4163         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4164         do_div(value, 1000000);
4165         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4166 }
4167
4168 static bool is_vmcs12_ext_field(unsigned long field)
4169 {
4170         switch (field) {
4171         case GUEST_ES_SELECTOR:
4172         case GUEST_CS_SELECTOR:
4173         case GUEST_SS_SELECTOR:
4174         case GUEST_DS_SELECTOR:
4175         case GUEST_FS_SELECTOR:
4176         case GUEST_GS_SELECTOR:
4177         case GUEST_LDTR_SELECTOR:
4178         case GUEST_TR_SELECTOR:
4179         case GUEST_ES_LIMIT:
4180         case GUEST_CS_LIMIT:
4181         case GUEST_SS_LIMIT:
4182         case GUEST_DS_LIMIT:
4183         case GUEST_FS_LIMIT:
4184         case GUEST_GS_LIMIT:
4185         case GUEST_LDTR_LIMIT:
4186         case GUEST_TR_LIMIT:
4187         case GUEST_GDTR_LIMIT:
4188         case GUEST_IDTR_LIMIT:
4189         case GUEST_ES_AR_BYTES:
4190         case GUEST_DS_AR_BYTES:
4191         case GUEST_FS_AR_BYTES:
4192         case GUEST_GS_AR_BYTES:
4193         case GUEST_LDTR_AR_BYTES:
4194         case GUEST_TR_AR_BYTES:
4195         case GUEST_ES_BASE:
4196         case GUEST_CS_BASE:
4197         case GUEST_SS_BASE:
4198         case GUEST_DS_BASE:
4199         case GUEST_FS_BASE:
4200         case GUEST_GS_BASE:
4201         case GUEST_LDTR_BASE:
4202         case GUEST_TR_BASE:
4203         case GUEST_GDTR_BASE:
4204         case GUEST_IDTR_BASE:
4205         case GUEST_PENDING_DBG_EXCEPTIONS:
4206         case GUEST_BNDCFGS:
4207                 return true;
4208         default:
4209                 break;
4210         }
4211
4212         return false;
4213 }
4214
4215 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4216                                        struct vmcs12 *vmcs12)
4217 {
4218         struct vcpu_vmx *vmx = to_vmx(vcpu);
4219
4220         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4221         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4222         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4223         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4224         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4225         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4226         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4227         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4228         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4229         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4230         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4231         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4232         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4233         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4234         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4235         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4236         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4237         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4238         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4239         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4240         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4241         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4242         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4243         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4244         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4245         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4246         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4247         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4248         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4249         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4250         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4251         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4252         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4253         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4254         vmcs12->guest_pending_dbg_exceptions =
4255                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4256
4257         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4258 }
4259
4260 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4261                                        struct vmcs12 *vmcs12)
4262 {
4263         struct vcpu_vmx *vmx = to_vmx(vcpu);
4264         int cpu;
4265
4266         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4267                 return;
4268
4269
4270         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4271
4272         cpu = get_cpu();
4273         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4274         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4275
4276         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4277
4278         vmx->loaded_vmcs = &vmx->vmcs01;
4279         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4280         put_cpu();
4281 }
4282
4283 /*
4284  * Update the guest state fields of vmcs12 to reflect changes that
4285  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4286  * VM-entry controls is also updated, since this is really a guest
4287  * state bit.)
4288  */
4289 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4290 {
4291         struct vcpu_vmx *vmx = to_vmx(vcpu);
4292
4293         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4294                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4295
4296         vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4297                 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4298
4299         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4300         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4301
4302         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4303         vmcs12->guest_rip = kvm_rip_read(vcpu);
4304         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4305
4306         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4307         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4308
4309         vmcs12->guest_interruptibility_info =
4310                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4311
4312         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4313                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4314         else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4315                 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4316         else
4317                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4318
4319         if (nested_cpu_has_preemption_timer(vmcs12) &&
4320             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4321             !vmx->nested.nested_run_pending)
4322                 vmcs12->vmx_preemption_timer_value =
4323                         vmx_get_preemption_timer_value(vcpu);
4324
4325         /*
4326          * In some cases (usually, nested EPT), L2 is allowed to change its
4327          * own CR3 without exiting. If it has changed it, we must keep it.
4328          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4329          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4330          *
4331          * Additionally, restore L2's PDPTR to vmcs12.
4332          */
4333         if (enable_ept) {
4334                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4335                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4336                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4337                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4338                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4339                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4340                 }
4341         }
4342
4343         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4344
4345         if (nested_cpu_has_vid(vmcs12))
4346                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4347
4348         vmcs12->vm_entry_controls =
4349                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4350                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4351
4352         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4353                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4354
4355         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4356                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4357 }
4358
4359 /*
4360  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4361  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4362  * and this function updates it to reflect the changes to the guest state while
4363  * L2 was running (and perhaps made some exits which were handled directly by L0
4364  * without going back to L1), and to reflect the exit reason.
4365  * Note that we do not have to copy here all VMCS fields, just those that
4366  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4367  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4368  * which already writes to vmcs12 directly.
4369  */
4370 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4371                            u32 vm_exit_reason, u32 exit_intr_info,
4372                            unsigned long exit_qualification)
4373 {
4374         /* update exit information fields: */
4375         vmcs12->vm_exit_reason = vm_exit_reason;
4376         if (to_vmx(vcpu)->exit_reason.enclave_mode)
4377                 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4378         vmcs12->exit_qualification = exit_qualification;
4379
4380         /*
4381          * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4382          * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4383          * exit info fields are unmodified.
4384          */
4385         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4386                 vmcs12->launch_state = 1;
4387
4388                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4389                  * instead of reading the real value. */
4390                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4391
4392                 /*
4393                  * Transfer the event that L0 or L1 may wanted to inject into
4394                  * L2 to IDT_VECTORING_INFO_FIELD.
4395                  */
4396                 vmcs12_save_pending_event(vcpu, vmcs12,
4397                                           vm_exit_reason, exit_intr_info);
4398
4399                 vmcs12->vm_exit_intr_info = exit_intr_info;
4400                 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4401                 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4402
4403                 /*
4404                  * According to spec, there's no need to store the guest's
4405                  * MSRs if the exit is due to a VM-entry failure that occurs
4406                  * during or after loading the guest state. Since this exit
4407                  * does not fall in that category, we need to save the MSRs.
4408                  */
4409                 if (nested_vmx_store_msr(vcpu,
4410                                          vmcs12->vm_exit_msr_store_addr,
4411                                          vmcs12->vm_exit_msr_store_count))
4412                         nested_vmx_abort(vcpu,
4413                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4414         }
4415 }
4416
4417 /*
4418  * A part of what we need to when the nested L2 guest exits and we want to
4419  * run its L1 parent, is to reset L1's guest state to the host state specified
4420  * in vmcs12.
4421  * This function is to be called not only on normal nested exit, but also on
4422  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4423  * Failures During or After Loading Guest State").
4424  * This function should be called when the active VMCS is L1's (vmcs01).
4425  */
4426 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4427                                    struct vmcs12 *vmcs12)
4428 {
4429         enum vm_entry_failure_code ignored;
4430         struct kvm_segment seg;
4431
4432         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4433                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4434         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4435                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4436         else
4437                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4438         vmx_set_efer(vcpu, vcpu->arch.efer);
4439
4440         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4441         kvm_rip_write(vcpu, vmcs12->host_rip);
4442         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4443         vmx_set_interrupt_shadow(vcpu, 0);
4444
4445         /*
4446          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4447          * actually changed, because vmx_set_cr0 refers to efer set above.
4448          *
4449          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4450          * (KVM doesn't change it);
4451          */
4452         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4453         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4454
4455         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4456         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4457         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4458
4459         nested_ept_uninit_mmu_context(vcpu);
4460
4461         /*
4462          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4463          * couldn't have changed.
4464          */
4465         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4466                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4467
4468         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4469
4470         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4471         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4472         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4473         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4474         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4475         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4476         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4477
4478         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4479         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4480                 vmcs_write64(GUEST_BNDCFGS, 0);
4481
4482         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4483                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4484                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4485         }
4486         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4487             intel_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4488                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4489                                          vmcs12->host_ia32_perf_global_ctrl));
4490
4491         /* Set L1 segment info according to Intel SDM
4492             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4493         seg = (struct kvm_segment) {
4494                 .base = 0,
4495                 .limit = 0xFFFFFFFF,
4496                 .selector = vmcs12->host_cs_selector,
4497                 .type = 11,
4498                 .present = 1,
4499                 .s = 1,
4500                 .g = 1
4501         };
4502         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4503                 seg.l = 1;
4504         else
4505                 seg.db = 1;
4506         __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4507         seg = (struct kvm_segment) {
4508                 .base = 0,
4509                 .limit = 0xFFFFFFFF,
4510                 .type = 3,
4511                 .present = 1,
4512                 .s = 1,
4513                 .db = 1,
4514                 .g = 1
4515         };
4516         seg.selector = vmcs12->host_ds_selector;
4517         __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4518         seg.selector = vmcs12->host_es_selector;
4519         __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4520         seg.selector = vmcs12->host_ss_selector;
4521         __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4522         seg.selector = vmcs12->host_fs_selector;
4523         seg.base = vmcs12->host_fs_base;
4524         __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4525         seg.selector = vmcs12->host_gs_selector;
4526         seg.base = vmcs12->host_gs_base;
4527         __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4528         seg = (struct kvm_segment) {
4529                 .base = vmcs12->host_tr_base,
4530                 .limit = 0x67,
4531                 .selector = vmcs12->host_tr_selector,
4532                 .type = 11,
4533                 .present = 1
4534         };
4535         __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4536
4537         memset(&seg, 0, sizeof(seg));
4538         seg.unusable = 1;
4539         __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4540
4541         kvm_set_dr(vcpu, 7, 0x400);
4542         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4543
4544         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4545                                 vmcs12->vm_exit_msr_load_count))
4546                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4547
4548         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4549 }
4550
4551 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4552 {
4553         struct vmx_uret_msr *efer_msr;
4554         unsigned int i;
4555
4556         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4557                 return vmcs_read64(GUEST_IA32_EFER);
4558
4559         if (cpu_has_load_ia32_efer())
4560                 return host_efer;
4561
4562         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4563                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4564                         return vmx->msr_autoload.guest.val[i].value;
4565         }
4566
4567         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4568         if (efer_msr)
4569                 return efer_msr->data;
4570
4571         return host_efer;
4572 }
4573
4574 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4575 {
4576         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4577         struct vcpu_vmx *vmx = to_vmx(vcpu);
4578         struct vmx_msr_entry g, h;
4579         gpa_t gpa;
4580         u32 i, j;
4581
4582         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4583
4584         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4585                 /*
4586                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4587                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4588                  * and vcpu->arch.dr7 is not squirreled away before the
4589                  * nested VMENTER (not worth adding a variable in nested_vmx).
4590                  */
4591                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4592                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4593                 else
4594                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4595         }
4596
4597         /*
4598          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4599          * handle a variety of side effects to KVM's software model.
4600          */
4601         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4602
4603         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4604         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4605
4606         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4607         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4608
4609         nested_ept_uninit_mmu_context(vcpu);
4610         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4611         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4612
4613         /*
4614          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4615          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4616          * VMFail, like everything else we just need to ensure our
4617          * software model is up-to-date.
4618          */
4619         if (enable_ept && is_pae_paging(vcpu))
4620                 ept_save_pdptrs(vcpu);
4621
4622         kvm_mmu_reset_context(vcpu);
4623
4624         /*
4625          * This nasty bit of open coding is a compromise between blindly
4626          * loading L1's MSRs using the exit load lists (incorrect emulation
4627          * of VMFail), leaving the nested VM's MSRs in the software model
4628          * (incorrect behavior) and snapshotting the modified MSRs (too
4629          * expensive since the lists are unbound by hardware).  For each
4630          * MSR that was (prematurely) loaded from the nested VMEntry load
4631          * list, reload it from the exit load list if it exists and differs
4632          * from the guest value.  The intent is to stuff host state as
4633          * silently as possible, not to fully process the exit load list.
4634          */
4635         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4636                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4637                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4638                         pr_debug_ratelimited(
4639                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4640                                 __func__, i, gpa);
4641                         goto vmabort;
4642                 }
4643
4644                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4645                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4646                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4647                                 pr_debug_ratelimited(
4648                                         "%s read MSR failed (%u, 0x%08llx)\n",
4649                                         __func__, j, gpa);
4650                                 goto vmabort;
4651                         }
4652                         if (h.index != g.index)
4653                                 continue;
4654                         if (h.value == g.value)
4655                                 break;
4656
4657                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4658                                 pr_debug_ratelimited(
4659                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4660                                         __func__, j, h.index, h.reserved);
4661                                 goto vmabort;
4662                         }
4663
4664                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4665                                 pr_debug_ratelimited(
4666                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4667                                         __func__, j, h.index, h.value);
4668                                 goto vmabort;
4669                         }
4670                 }
4671         }
4672
4673         return;
4674
4675 vmabort:
4676         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4677 }
4678
4679 /*
4680  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4681  * and modify vmcs12 to make it see what it would expect to see there if
4682  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4683  */
4684 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4685                        u32 exit_intr_info, unsigned long exit_qualification)
4686 {
4687         struct vcpu_vmx *vmx = to_vmx(vcpu);
4688         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4689
4690         /* Pending MTF traps are discarded on VM-Exit. */
4691         vmx->nested.mtf_pending = false;
4692
4693         /* trying to cancel vmlaunch/vmresume is a bug */
4694         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4695
4696         if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4697                 /*
4698                  * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4699                  * Enlightened VMCS after migration and we still need to
4700                  * do that when something is forcing L2->L1 exit prior to
4701                  * the first L2 run.
4702                  */
4703                 (void)nested_get_evmcs_page(vcpu);
4704         }
4705
4706         /* Service pending TLB flush requests for L2 before switching to L1. */
4707         kvm_service_local_tlb_flush_requests(vcpu);
4708
4709         /*
4710          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4711          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4712          * up-to-date before switching to L1.
4713          */
4714         if (enable_ept && is_pae_paging(vcpu))
4715                 vmx_ept_load_pdptrs(vcpu);
4716
4717         leave_guest_mode(vcpu);
4718
4719         if (nested_cpu_has_preemption_timer(vmcs12))
4720                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4721
4722         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4723                 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4724                 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4725                         vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4726         }
4727
4728         if (likely(!vmx->fail)) {
4729                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4730
4731                 if (vm_exit_reason != -1)
4732                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4733                                        exit_intr_info, exit_qualification);
4734
4735                 /*
4736                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4737                  * also be used to capture vmcs12 cache as part of
4738                  * capturing nVMX state for snapshot (migration).
4739                  *
4740                  * Otherwise, this flush will dirty guest memory at a
4741                  * point it is already assumed by user-space to be
4742                  * immutable.
4743                  */
4744                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4745         } else {
4746                 /*
4747                  * The only expected VM-instruction error is "VM entry with
4748                  * invalid control field(s)." Anything else indicates a
4749                  * problem with L0.  And we should never get here with a
4750                  * VMFail of any type if early consistency checks are enabled.
4751                  */
4752                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4753                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4754                 WARN_ON_ONCE(nested_early_check);
4755         }
4756
4757         /*
4758          * Drop events/exceptions that were queued for re-injection to L2
4759          * (picked up via vmx_complete_interrupts()), as well as exceptions
4760          * that were pending for L2.  Note, this must NOT be hoisted above
4761          * prepare_vmcs12(), events/exceptions queued for re-injection need to
4762          * be captured in vmcs12 (see vmcs12_save_pending_event()).
4763          */
4764         vcpu->arch.nmi_injected = false;
4765         kvm_clear_exception_queue(vcpu);
4766         kvm_clear_interrupt_queue(vcpu);
4767
4768         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4769
4770         /* Update any VMCS fields that might have changed while L2 ran */
4771         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4772         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4773         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4774         if (kvm_caps.has_tsc_control)
4775                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4776
4777         if (vmx->nested.l1_tpr_threshold != -1)
4778                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4779
4780         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4781                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4782                 vmx_set_virtual_apic_mode(vcpu);
4783         }
4784
4785         if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4786                 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4787                 vmx_update_cpu_dirty_logging(vcpu);
4788         }
4789
4790         /* Unpin physical memory we referred to in vmcs02 */
4791         kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
4792         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4793         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4794         vmx->nested.pi_desc = NULL;
4795
4796         if (vmx->nested.reload_vmcs01_apic_access_page) {
4797                 vmx->nested.reload_vmcs01_apic_access_page = false;
4798                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4799         }
4800
4801         if (vmx->nested.update_vmcs01_apicv_status) {
4802                 vmx->nested.update_vmcs01_apicv_status = false;
4803                 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4804         }
4805
4806         if ((vm_exit_reason != -1) &&
4807             (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4808                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4809
4810         /* in case we halted in L2 */
4811         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4812
4813         if (likely(!vmx->fail)) {
4814                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4815                     nested_exit_intr_ack_set(vcpu)) {
4816                         int irq = kvm_cpu_get_interrupt(vcpu);
4817                         WARN_ON(irq < 0);
4818                         vmcs12->vm_exit_intr_info = irq |
4819                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4820                 }
4821
4822                 if (vm_exit_reason != -1)
4823                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4824                                                        vmcs12->exit_qualification,
4825                                                        vmcs12->idt_vectoring_info_field,
4826                                                        vmcs12->vm_exit_intr_info,
4827                                                        vmcs12->vm_exit_intr_error_code,
4828                                                        KVM_ISA_VMX);
4829
4830                 load_vmcs12_host_state(vcpu, vmcs12);
4831
4832                 return;
4833         }
4834
4835         /*
4836          * After an early L2 VM-entry failure, we're now back
4837          * in L1 which thinks it just finished a VMLAUNCH or
4838          * VMRESUME instruction, so we need to set the failure
4839          * flag and the VM-instruction error field of the VMCS
4840          * accordingly, and skip the emulated instruction.
4841          */
4842         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4843
4844         /*
4845          * Restore L1's host state to KVM's software model.  We're here
4846          * because a consistency check was caught by hardware, which
4847          * means some amount of guest state has been propagated to KVM's
4848          * model and needs to be unwound to the host's state.
4849          */
4850         nested_vmx_restore_host_state(vcpu);
4851
4852         vmx->fail = 0;
4853 }
4854
4855 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4856 {
4857         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4858 }
4859
4860 /*
4861  * Decode the memory-address operand of a vmx instruction, as recorded on an
4862  * exit caused by such an instruction (run by a guest hypervisor).
4863  * On success, returns 0. When the operand is invalid, returns 1 and throws
4864  * #UD, #GP, or #SS.
4865  */
4866 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4867                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4868 {
4869         gva_t off;
4870         bool exn;
4871         struct kvm_segment s;
4872
4873         /*
4874          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4875          * Execution", on an exit, vmx_instruction_info holds most of the
4876          * addressing components of the operand. Only the displacement part
4877          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4878          * For how an actual address is calculated from all these components,
4879          * refer to Vol. 1, "Operand Addressing".
4880          */
4881         int  scaling = vmx_instruction_info & 3;
4882         int  addr_size = (vmx_instruction_info >> 7) & 7;
4883         bool is_reg = vmx_instruction_info & (1u << 10);
4884         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4885         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4886         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4887         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4888         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4889
4890         if (is_reg) {
4891                 kvm_queue_exception(vcpu, UD_VECTOR);
4892                 return 1;
4893         }
4894
4895         /* Addr = segment_base + offset */
4896         /* offset = base + [index * scale] + displacement */
4897         off = exit_qualification; /* holds the displacement */
4898         if (addr_size == 1)
4899                 off = (gva_t)sign_extend64(off, 31);
4900         else if (addr_size == 0)
4901                 off = (gva_t)sign_extend64(off, 15);
4902         if (base_is_valid)
4903                 off += kvm_register_read(vcpu, base_reg);
4904         if (index_is_valid)
4905                 off += kvm_register_read(vcpu, index_reg) << scaling;
4906         vmx_get_segment(vcpu, &s, seg_reg);
4907
4908         /*
4909          * The effective address, i.e. @off, of a memory operand is truncated
4910          * based on the address size of the instruction.  Note that this is
4911          * the *effective address*, i.e. the address prior to accounting for
4912          * the segment's base.
4913          */
4914         if (addr_size == 1) /* 32 bit */
4915                 off &= 0xffffffff;
4916         else if (addr_size == 0) /* 16 bit */
4917                 off &= 0xffff;
4918
4919         /* Checks for #GP/#SS exceptions. */
4920         exn = false;
4921         if (is_long_mode(vcpu)) {
4922                 /*
4923                  * The virtual/linear address is never truncated in 64-bit
4924                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4925                  * address when using FS/GS with a non-zero base.
4926                  */
4927                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4928                         *ret = s.base + off;
4929                 else
4930                         *ret = off;
4931
4932                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4933                  * non-canonical form. This is the only check on the memory
4934                  * destination for long mode!
4935                  */
4936                 exn = is_noncanonical_address(*ret, vcpu);
4937         } else {
4938                 /*
4939                  * When not in long mode, the virtual/linear address is
4940                  * unconditionally truncated to 32 bits regardless of the
4941                  * address size.
4942                  */
4943                 *ret = (s.base + off) & 0xffffffff;
4944
4945                 /* Protected mode: apply checks for segment validity in the
4946                  * following order:
4947                  * - segment type check (#GP(0) may be thrown)
4948                  * - usability check (#GP(0)/#SS(0))
4949                  * - limit check (#GP(0)/#SS(0))
4950                  */
4951                 if (wr)
4952                         /* #GP(0) if the destination operand is located in a
4953                          * read-only data segment or any code segment.
4954                          */
4955                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4956                 else
4957                         /* #GP(0) if the source operand is located in an
4958                          * execute-only code segment
4959                          */
4960                         exn = ((s.type & 0xa) == 8);
4961                 if (exn) {
4962                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4963                         return 1;
4964                 }
4965                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4966                  */
4967                 exn = (s.unusable != 0);
4968
4969                 /*
4970                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4971                  * outside the segment limit.  All CPUs that support VMX ignore
4972                  * limit checks for flat segments, i.e. segments with base==0,
4973                  * limit==0xffffffff and of type expand-up data or code.
4974                  */
4975                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4976                      ((s.type & 8) || !(s.type & 4))))
4977                         exn = exn || ((u64)off + len - 1 > s.limit);
4978         }
4979         if (exn) {
4980                 kvm_queue_exception_e(vcpu,
4981                                       seg_reg == VCPU_SREG_SS ?
4982                                                 SS_VECTOR : GP_VECTOR,
4983                                       0);
4984                 return 1;
4985         }
4986
4987         return 0;
4988 }
4989
4990 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4991                                 int *ret)
4992 {
4993         gva_t gva;
4994         struct x86_exception e;
4995         int r;
4996
4997         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4998                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4999                                 sizeof(*vmpointer), &gva)) {
5000                 *ret = 1;
5001                 return -EINVAL;
5002         }
5003
5004         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5005         if (r != X86EMUL_CONTINUE) {
5006                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5007                 return -EINVAL;
5008         }
5009
5010         return 0;
5011 }
5012
5013 /*
5014  * Allocate a shadow VMCS and associate it with the currently loaded
5015  * VMCS, unless such a shadow VMCS already exists. The newly allocated
5016  * VMCS is also VMCLEARed, so that it is ready for use.
5017  */
5018 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5019 {
5020         struct vcpu_vmx *vmx = to_vmx(vcpu);
5021         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5022
5023         /*
5024          * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5025          * when L1 executes VMXOFF or the vCPU is forced out of nested
5026          * operation.  VMXON faults if the CPU is already post-VMXON, so it
5027          * should be impossible to already have an allocated shadow VMCS.  KVM
5028          * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5029          * always be the loaded VMCS.
5030          */
5031         if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5032                 return loaded_vmcs->shadow_vmcs;
5033
5034         loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5035         if (loaded_vmcs->shadow_vmcs)
5036                 vmcs_clear(loaded_vmcs->shadow_vmcs);
5037
5038         return loaded_vmcs->shadow_vmcs;
5039 }
5040
5041 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5042 {
5043         struct vcpu_vmx *vmx = to_vmx(vcpu);
5044         int r;
5045
5046         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5047         if (r < 0)
5048                 goto out_vmcs02;
5049
5050         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5051         if (!vmx->nested.cached_vmcs12)
5052                 goto out_cached_vmcs12;
5053
5054         vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5055         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5056         if (!vmx->nested.cached_shadow_vmcs12)
5057                 goto out_cached_shadow_vmcs12;
5058
5059         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5060                 goto out_shadow_vmcs;
5061
5062         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5063                      HRTIMER_MODE_ABS_PINNED);
5064         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5065
5066         vmx->nested.vpid02 = allocate_vpid();
5067
5068         vmx->nested.vmcs02_initialized = false;
5069         vmx->nested.vmxon = true;
5070
5071         if (vmx_pt_mode_is_host_guest()) {
5072                 vmx->pt_desc.guest.ctl = 0;
5073                 pt_update_intercept_for_msr(vcpu);
5074         }
5075
5076         return 0;
5077
5078 out_shadow_vmcs:
5079         kfree(vmx->nested.cached_shadow_vmcs12);
5080
5081 out_cached_shadow_vmcs12:
5082         kfree(vmx->nested.cached_vmcs12);
5083
5084 out_cached_vmcs12:
5085         free_loaded_vmcs(&vmx->nested.vmcs02);
5086
5087 out_vmcs02:
5088         return -ENOMEM;
5089 }
5090
5091 /* Emulate the VMXON instruction. */
5092 static int handle_vmxon(struct kvm_vcpu *vcpu)
5093 {
5094         int ret;
5095         gpa_t vmptr;
5096         uint32_t revision;
5097         struct vcpu_vmx *vmx = to_vmx(vcpu);
5098         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5099                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5100
5101         /*
5102          * Note, KVM cannot rely on hardware to perform the CR0/CR4 #UD checks
5103          * that have higher priority than VM-Exit (see Intel SDM's pseudocode
5104          * for VMXON), as KVM must load valid CR0/CR4 values into hardware while
5105          * running the guest, i.e. KVM needs to check the _guest_ values.
5106          *
5107          * Rely on hardware for the other two pre-VM-Exit checks, !VM86 and
5108          * !COMPATIBILITY modes.  KVM may run the guest in VM86 to emulate Real
5109          * Mode, but KVM will never take the guest out of those modes.
5110          */
5111         if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5112             !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5113                 kvm_queue_exception(vcpu, UD_VECTOR);
5114                 return 1;
5115         }
5116
5117         /*
5118          * CPL=0 and all other checks that are lower priority than VM-Exit must
5119          * be checked manually.
5120          */
5121         if (vmx_get_cpl(vcpu)) {
5122                 kvm_inject_gp(vcpu, 0);
5123                 return 1;
5124         }
5125
5126         if (vmx->nested.vmxon)
5127                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5128
5129         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5130                         != VMXON_NEEDED_FEATURES) {
5131                 kvm_inject_gp(vcpu, 0);
5132                 return 1;
5133         }
5134
5135         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5136                 return ret;
5137
5138         /*
5139          * SDM 3: 24.11.5
5140          * The first 4 bytes of VMXON region contain the supported
5141          * VMCS revision identifier
5142          *
5143          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5144          * which replaces physical address width with 32
5145          */
5146         if (!page_address_valid(vcpu, vmptr))
5147                 return nested_vmx_failInvalid(vcpu);
5148
5149         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5150             revision != VMCS12_REVISION)
5151                 return nested_vmx_failInvalid(vcpu);
5152
5153         vmx->nested.vmxon_ptr = vmptr;
5154         ret = enter_vmx_operation(vcpu);
5155         if (ret)
5156                 return ret;
5157
5158         return nested_vmx_succeed(vcpu);
5159 }
5160
5161 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5162 {
5163         struct vcpu_vmx *vmx = to_vmx(vcpu);
5164
5165         if (vmx->nested.current_vmptr == INVALID_GPA)
5166                 return;
5167
5168         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5169
5170         if (enable_shadow_vmcs) {
5171                 /* copy to memory all shadowed fields in case
5172                    they were modified */
5173                 copy_shadow_to_vmcs12(vmx);
5174                 vmx_disable_shadow_vmcs(vmx);
5175         }
5176         vmx->nested.posted_intr_nv = -1;
5177
5178         /* Flush VMCS12 to guest memory */
5179         kvm_vcpu_write_guest_page(vcpu,
5180                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
5181                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5182
5183         kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5184
5185         vmx->nested.current_vmptr = INVALID_GPA;
5186 }
5187
5188 /* Emulate the VMXOFF instruction */
5189 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5190 {
5191         if (!nested_vmx_check_permission(vcpu))
5192                 return 1;
5193
5194         free_nested(vcpu);
5195
5196         if (kvm_apic_has_pending_init_or_sipi(vcpu))
5197                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5198
5199         return nested_vmx_succeed(vcpu);
5200 }
5201
5202 /* Emulate the VMCLEAR instruction */
5203 static int handle_vmclear(struct kvm_vcpu *vcpu)
5204 {
5205         struct vcpu_vmx *vmx = to_vmx(vcpu);
5206         u32 zero = 0;
5207         gpa_t vmptr;
5208         u64 evmcs_gpa;
5209         int r;
5210
5211         if (!nested_vmx_check_permission(vcpu))
5212                 return 1;
5213
5214         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5215                 return r;
5216
5217         if (!page_address_valid(vcpu, vmptr))
5218                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5219
5220         if (vmptr == vmx->nested.vmxon_ptr)
5221                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5222
5223         /*
5224          * When Enlightened VMEntry is enabled on the calling CPU we treat
5225          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5226          * way to distinguish it from VMCS12) and we must not corrupt it by
5227          * writing to the non-existent 'launch_state' field. The area doesn't
5228          * have to be the currently active EVMCS on the calling CPU and there's
5229          * nothing KVM has to do to transition it from 'active' to 'non-active'
5230          * state. It is possible that the area will stay mapped as
5231          * vmx->nested.hv_evmcs but this shouldn't be a problem.
5232          */
5233         if (likely(!guest_cpuid_has_evmcs(vcpu) ||
5234                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5235                 if (vmptr == vmx->nested.current_vmptr)
5236                         nested_release_vmcs12(vcpu);
5237
5238                 kvm_vcpu_write_guest(vcpu,
5239                                      vmptr + offsetof(struct vmcs12,
5240                                                       launch_state),
5241                                      &zero, sizeof(zero));
5242         } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5243                 nested_release_evmcs(vcpu);
5244         }
5245
5246         return nested_vmx_succeed(vcpu);
5247 }
5248
5249 /* Emulate the VMLAUNCH instruction */
5250 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5251 {
5252         return nested_vmx_run(vcpu, true);
5253 }
5254
5255 /* Emulate the VMRESUME instruction */
5256 static int handle_vmresume(struct kvm_vcpu *vcpu)
5257 {
5258
5259         return nested_vmx_run(vcpu, false);
5260 }
5261
5262 static int handle_vmread(struct kvm_vcpu *vcpu)
5263 {
5264         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5265                                                     : get_vmcs12(vcpu);
5266         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5267         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5268         struct vcpu_vmx *vmx = to_vmx(vcpu);
5269         struct x86_exception e;
5270         unsigned long field;
5271         u64 value;
5272         gva_t gva = 0;
5273         short offset;
5274         int len, r;
5275
5276         if (!nested_vmx_check_permission(vcpu))
5277                 return 1;
5278
5279         /* Decode instruction info and find the field to read */
5280         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5281
5282         if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5283                 /*
5284                  * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5285                  * any VMREAD sets the ALU flags for VMfailInvalid.
5286                  */
5287                 if (vmx->nested.current_vmptr == INVALID_GPA ||
5288                     (is_guest_mode(vcpu) &&
5289                      get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5290                         return nested_vmx_failInvalid(vcpu);
5291
5292                 offset = get_vmcs12_field_offset(field);
5293                 if (offset < 0)
5294                         return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5295
5296                 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5297                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5298
5299                 /* Read the field, zero-extended to a u64 value */
5300                 value = vmcs12_read_any(vmcs12, field, offset);
5301         } else {
5302                 /*
5303                  * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5304                  * enlightened VMCS is active VMREAD/VMWRITE instructions are
5305                  * unsupported. Unfortunately, certain versions of Windows 11
5306                  * don't comply with this requirement which is not enforced in
5307                  * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5308                  * workaround, as misbehaving guests will panic on VM-Fail.
5309                  * Note, enlightened VMCS is incompatible with shadow VMCS so
5310                  * all VMREADs from L2 should go to L1.
5311                  */
5312                 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5313                         return nested_vmx_failInvalid(vcpu);
5314
5315                 offset = evmcs_field_offset(field, NULL);
5316                 if (offset < 0)
5317                         return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5318
5319                 /* Read the field, zero-extended to a u64 value */
5320                 value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5321         }
5322
5323         /*
5324          * Now copy part of this value to register or memory, as requested.
5325          * Note that the number of bits actually copied is 32 or 64 depending
5326          * on the guest's mode (32 or 64 bit), not on the given field's length.
5327          */
5328         if (instr_info & BIT(10)) {
5329                 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5330         } else {
5331                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5332                 if (get_vmx_mem_address(vcpu, exit_qualification,
5333                                         instr_info, true, len, &gva))
5334                         return 1;
5335                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5336                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5337                 if (r != X86EMUL_CONTINUE)
5338                         return kvm_handle_memory_failure(vcpu, r, &e);
5339         }
5340
5341         return nested_vmx_succeed(vcpu);
5342 }
5343
5344 static bool is_shadow_field_rw(unsigned long field)
5345 {
5346         switch (field) {
5347 #define SHADOW_FIELD_RW(x, y) case x:
5348 #include "vmcs_shadow_fields.h"
5349                 return true;
5350         default:
5351                 break;
5352         }
5353         return false;
5354 }
5355
5356 static bool is_shadow_field_ro(unsigned long field)
5357 {
5358         switch (field) {
5359 #define SHADOW_FIELD_RO(x, y) case x:
5360 #include "vmcs_shadow_fields.h"
5361                 return true;
5362         default:
5363                 break;
5364         }
5365         return false;
5366 }
5367
5368 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5369 {
5370         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5371                                                     : get_vmcs12(vcpu);
5372         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5373         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5374         struct vcpu_vmx *vmx = to_vmx(vcpu);
5375         struct x86_exception e;
5376         unsigned long field;
5377         short offset;
5378         gva_t gva;
5379         int len, r;
5380
5381         /*
5382          * The value to write might be 32 or 64 bits, depending on L1's long
5383          * mode, and eventually we need to write that into a field of several
5384          * possible lengths. The code below first zero-extends the value to 64
5385          * bit (value), and then copies only the appropriate number of
5386          * bits into the vmcs12 field.
5387          */
5388         u64 value = 0;
5389
5390         if (!nested_vmx_check_permission(vcpu))
5391                 return 1;
5392
5393         /*
5394          * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5395          * any VMWRITE sets the ALU flags for VMfailInvalid.
5396          */
5397         if (vmx->nested.current_vmptr == INVALID_GPA ||
5398             (is_guest_mode(vcpu) &&
5399              get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5400                 return nested_vmx_failInvalid(vcpu);
5401
5402         if (instr_info & BIT(10))
5403                 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5404         else {
5405                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5406                 if (get_vmx_mem_address(vcpu, exit_qualification,
5407                                         instr_info, false, len, &gva))
5408                         return 1;
5409                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5410                 if (r != X86EMUL_CONTINUE)
5411                         return kvm_handle_memory_failure(vcpu, r, &e);
5412         }
5413
5414         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5415
5416         offset = get_vmcs12_field_offset(field);
5417         if (offset < 0)
5418                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5419
5420         /*
5421          * If the vCPU supports "VMWRITE to any supported field in the
5422          * VMCS," then the "read-only" fields are actually read/write.
5423          */
5424         if (vmcs_field_readonly(field) &&
5425             !nested_cpu_has_vmwrite_any_field(vcpu))
5426                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5427
5428         /*
5429          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5430          * vmcs12, else we may crush a field or consume a stale value.
5431          */
5432         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5433                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5434
5435         /*
5436          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5437          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5438          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5439          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5440          * from L1 will return a different value than VMREAD from L2 (L1 sees
5441          * the stripped down value, L2 sees the full value as stored by KVM).
5442          */
5443         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5444                 value &= 0x1f0ff;
5445
5446         vmcs12_write_any(vmcs12, field, offset, value);
5447
5448         /*
5449          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5450          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5451          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5452          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5453          */
5454         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5455                 /*
5456                  * L1 can read these fields without exiting, ensure the
5457                  * shadow VMCS is up-to-date.
5458                  */
5459                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5460                         preempt_disable();
5461                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5462
5463                         __vmcs_writel(field, value);
5464
5465                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5466                         vmcs_load(vmx->loaded_vmcs->vmcs);
5467                         preempt_enable();
5468                 }
5469                 vmx->nested.dirty_vmcs12 = true;
5470         }
5471
5472         return nested_vmx_succeed(vcpu);
5473 }
5474
5475 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5476 {
5477         vmx->nested.current_vmptr = vmptr;
5478         if (enable_shadow_vmcs) {
5479                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5480                 vmcs_write64(VMCS_LINK_POINTER,
5481                              __pa(vmx->vmcs01.shadow_vmcs));
5482                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5483         }
5484         vmx->nested.dirty_vmcs12 = true;
5485         vmx->nested.force_msr_bitmap_recalc = true;
5486 }
5487
5488 /* Emulate the VMPTRLD instruction */
5489 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5490 {
5491         struct vcpu_vmx *vmx = to_vmx(vcpu);
5492         gpa_t vmptr;
5493         int r;
5494
5495         if (!nested_vmx_check_permission(vcpu))
5496                 return 1;
5497
5498         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5499                 return r;
5500
5501         if (!page_address_valid(vcpu, vmptr))
5502                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5503
5504         if (vmptr == vmx->nested.vmxon_ptr)
5505                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5506
5507         /* Forbid normal VMPTRLD if Enlightened version was used */
5508         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5509                 return 1;
5510
5511         if (vmx->nested.current_vmptr != vmptr) {
5512                 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5513                 struct vmcs_hdr hdr;
5514
5515                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5516                         /*
5517                          * Reads from an unbacked page return all 1s,
5518                          * which means that the 32 bits located at the
5519                          * given physical address won't match the required
5520                          * VMCS12_REVISION identifier.
5521                          */
5522                         return nested_vmx_fail(vcpu,
5523                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5524                 }
5525
5526                 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5527                                                  offsetof(struct vmcs12, hdr),
5528                                                  sizeof(hdr))) {
5529                         return nested_vmx_fail(vcpu,
5530                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5531                 }
5532
5533                 if (hdr.revision_id != VMCS12_REVISION ||
5534                     (hdr.shadow_vmcs &&
5535                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5536                         return nested_vmx_fail(vcpu,
5537                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5538                 }
5539
5540                 nested_release_vmcs12(vcpu);
5541
5542                 /*
5543                  * Load VMCS12 from guest memory since it is not already
5544                  * cached.
5545                  */
5546                 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5547                                           VMCS12_SIZE)) {
5548                         return nested_vmx_fail(vcpu,
5549                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5550                 }
5551
5552                 set_current_vmptr(vmx, vmptr);
5553         }
5554
5555         return nested_vmx_succeed(vcpu);
5556 }
5557
5558 /* Emulate the VMPTRST instruction */
5559 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5560 {
5561         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5562         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5563         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5564         struct x86_exception e;
5565         gva_t gva;
5566         int r;
5567
5568         if (!nested_vmx_check_permission(vcpu))
5569                 return 1;
5570
5571         if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5572                 return 1;
5573
5574         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5575                                 true, sizeof(gpa_t), &gva))
5576                 return 1;
5577         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5578         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5579                                         sizeof(gpa_t), &e);
5580         if (r != X86EMUL_CONTINUE)
5581                 return kvm_handle_memory_failure(vcpu, r, &e);
5582
5583         return nested_vmx_succeed(vcpu);
5584 }
5585
5586 /* Emulate the INVEPT instruction */
5587 static int handle_invept(struct kvm_vcpu *vcpu)
5588 {
5589         struct vcpu_vmx *vmx = to_vmx(vcpu);
5590         u32 vmx_instruction_info, types;
5591         unsigned long type, roots_to_free;
5592         struct kvm_mmu *mmu;
5593         gva_t gva;
5594         struct x86_exception e;
5595         struct {
5596                 u64 eptp, gpa;
5597         } operand;
5598         int i, r, gpr_index;
5599
5600         if (!(vmx->nested.msrs.secondary_ctls_high &
5601               SECONDARY_EXEC_ENABLE_EPT) ||
5602             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5603                 kvm_queue_exception(vcpu, UD_VECTOR);
5604                 return 1;
5605         }
5606
5607         if (!nested_vmx_check_permission(vcpu))
5608                 return 1;
5609
5610         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5611         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5612         type = kvm_register_read(vcpu, gpr_index);
5613
5614         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5615
5616         if (type >= 32 || !(types & (1 << type)))
5617                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5618
5619         /* According to the Intel VMX instruction reference, the memory
5620          * operand is read even if it isn't needed (e.g., for type==global)
5621          */
5622         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5623                         vmx_instruction_info, false, sizeof(operand), &gva))
5624                 return 1;
5625         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5626         if (r != X86EMUL_CONTINUE)
5627                 return kvm_handle_memory_failure(vcpu, r, &e);
5628
5629         /*
5630          * Nested EPT roots are always held through guest_mmu,
5631          * not root_mmu.
5632          */
5633         mmu = &vcpu->arch.guest_mmu;
5634
5635         switch (type) {
5636         case VMX_EPT_EXTENT_CONTEXT:
5637                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5638                         return nested_vmx_fail(vcpu,
5639                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5640
5641                 roots_to_free = 0;
5642                 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5643                                             operand.eptp))
5644                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5645
5646                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5647                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5648                                                     mmu->prev_roots[i].pgd,
5649                                                     operand.eptp))
5650                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5651                 }
5652                 break;
5653         case VMX_EPT_EXTENT_GLOBAL:
5654                 roots_to_free = KVM_MMU_ROOTS_ALL;
5655                 break;
5656         default:
5657                 BUG();
5658                 break;
5659         }
5660
5661         if (roots_to_free)
5662                 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5663
5664         return nested_vmx_succeed(vcpu);
5665 }
5666
5667 static int handle_invvpid(struct kvm_vcpu *vcpu)
5668 {
5669         struct vcpu_vmx *vmx = to_vmx(vcpu);
5670         u32 vmx_instruction_info;
5671         unsigned long type, types;
5672         gva_t gva;
5673         struct x86_exception e;
5674         struct {
5675                 u64 vpid;
5676                 u64 gla;
5677         } operand;
5678         u16 vpid02;
5679         int r, gpr_index;
5680
5681         if (!(vmx->nested.msrs.secondary_ctls_high &
5682               SECONDARY_EXEC_ENABLE_VPID) ||
5683                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5684                 kvm_queue_exception(vcpu, UD_VECTOR);
5685                 return 1;
5686         }
5687
5688         if (!nested_vmx_check_permission(vcpu))
5689                 return 1;
5690
5691         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5692         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5693         type = kvm_register_read(vcpu, gpr_index);
5694
5695         types = (vmx->nested.msrs.vpid_caps &
5696                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5697
5698         if (type >= 32 || !(types & (1 << type)))
5699                 return nested_vmx_fail(vcpu,
5700                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5701
5702         /* according to the intel vmx instruction reference, the memory
5703          * operand is read even if it isn't needed (e.g., for type==global)
5704          */
5705         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5706                         vmx_instruction_info, false, sizeof(operand), &gva))
5707                 return 1;
5708         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5709         if (r != X86EMUL_CONTINUE)
5710                 return kvm_handle_memory_failure(vcpu, r, &e);
5711
5712         if (operand.vpid >> 16)
5713                 return nested_vmx_fail(vcpu,
5714                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5715
5716         vpid02 = nested_get_vpid02(vcpu);
5717         switch (type) {
5718         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5719                 if (!operand.vpid ||
5720                     is_noncanonical_address(operand.gla, vcpu))
5721                         return nested_vmx_fail(vcpu,
5722                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5723                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5724                 break;
5725         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5726         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5727                 if (!operand.vpid)
5728                         return nested_vmx_fail(vcpu,
5729                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5730                 vpid_sync_context(vpid02);
5731                 break;
5732         case VMX_VPID_EXTENT_ALL_CONTEXT:
5733                 vpid_sync_context(vpid02);
5734                 break;
5735         default:
5736                 WARN_ON_ONCE(1);
5737                 return kvm_skip_emulated_instruction(vcpu);
5738         }
5739
5740         /*
5741          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5742          * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5743          * roots as VPIDs are not tracked in the MMU role.
5744          *
5745          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5746          * an MMU when EPT is disabled.
5747          *
5748          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5749          */
5750         if (!enable_ept)
5751                 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5752
5753         return nested_vmx_succeed(vcpu);
5754 }
5755
5756 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5757                                      struct vmcs12 *vmcs12)
5758 {
5759         u32 index = kvm_rcx_read(vcpu);
5760         u64 new_eptp;
5761
5762         if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5763                 return 1;
5764         if (index >= VMFUNC_EPTP_ENTRIES)
5765                 return 1;
5766
5767         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5768                                      &new_eptp, index * 8, 8))
5769                 return 1;
5770
5771         /*
5772          * If the (L2) guest does a vmfunc to the currently
5773          * active ept pointer, we don't have to do anything else
5774          */
5775         if (vmcs12->ept_pointer != new_eptp) {
5776                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5777                         return 1;
5778
5779                 vmcs12->ept_pointer = new_eptp;
5780                 nested_ept_new_eptp(vcpu);
5781
5782                 if (!nested_cpu_has_vpid(vmcs12))
5783                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5784         }
5785
5786         return 0;
5787 }
5788
5789 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5790 {
5791         struct vcpu_vmx *vmx = to_vmx(vcpu);
5792         struct vmcs12 *vmcs12;
5793         u32 function = kvm_rax_read(vcpu);
5794
5795         /*
5796          * VMFUNC is only supported for nested guests, but we always enable the
5797          * secondary control for simplicity; for non-nested mode, fake that we
5798          * didn't by injecting #UD.
5799          */
5800         if (!is_guest_mode(vcpu)) {
5801                 kvm_queue_exception(vcpu, UD_VECTOR);
5802                 return 1;
5803         }
5804
5805         vmcs12 = get_vmcs12(vcpu);
5806
5807         /*
5808          * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5809          * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5810          */
5811         if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5812                 kvm_queue_exception(vcpu, UD_VECTOR);
5813                 return 1;
5814         }
5815
5816         if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5817                 goto fail;
5818
5819         switch (function) {
5820         case 0:
5821                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5822                         goto fail;
5823                 break;
5824         default:
5825                 goto fail;
5826         }
5827         return kvm_skip_emulated_instruction(vcpu);
5828
5829 fail:
5830         /*
5831          * This is effectively a reflected VM-Exit, as opposed to a synthesized
5832          * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5833          * EXIT_REASON_VMFUNC as the exit reason.
5834          */
5835         nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5836                           vmx_get_intr_info(vcpu),
5837                           vmx_get_exit_qual(vcpu));
5838         return 1;
5839 }
5840
5841 /*
5842  * Return true if an IO instruction with the specified port and size should cause
5843  * a VM-exit into L1.
5844  */
5845 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5846                                  int size)
5847 {
5848         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5849         gpa_t bitmap, last_bitmap;
5850         u8 b;
5851
5852         last_bitmap = INVALID_GPA;
5853         b = -1;
5854
5855         while (size > 0) {
5856                 if (port < 0x8000)
5857                         bitmap = vmcs12->io_bitmap_a;
5858                 else if (port < 0x10000)
5859                         bitmap = vmcs12->io_bitmap_b;
5860                 else
5861                         return true;
5862                 bitmap += (port & 0x7fff) / 8;
5863
5864                 if (last_bitmap != bitmap)
5865                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5866                                 return true;
5867                 if (b & (1 << (port & 7)))
5868                         return true;
5869
5870                 port++;
5871                 size--;
5872                 last_bitmap = bitmap;
5873         }
5874
5875         return false;
5876 }
5877
5878 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5879                                        struct vmcs12 *vmcs12)
5880 {
5881         unsigned long exit_qualification;
5882         unsigned short port;
5883         int size;
5884
5885         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5886                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5887
5888         exit_qualification = vmx_get_exit_qual(vcpu);
5889
5890         port = exit_qualification >> 16;
5891         size = (exit_qualification & 7) + 1;
5892
5893         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5894 }
5895
5896 /*
5897  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5898  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5899  * disinterest in the current event (read or write a specific MSR) by using an
5900  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5901  */
5902 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5903                                         struct vmcs12 *vmcs12,
5904                                         union vmx_exit_reason exit_reason)
5905 {
5906         u32 msr_index = kvm_rcx_read(vcpu);
5907         gpa_t bitmap;
5908
5909         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5910                 return true;
5911
5912         /*
5913          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5914          * for the four combinations of read/write and low/high MSR numbers.
5915          * First we need to figure out which of the four to use:
5916          */
5917         bitmap = vmcs12->msr_bitmap;
5918         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5919                 bitmap += 2048;
5920         if (msr_index >= 0xc0000000) {
5921                 msr_index -= 0xc0000000;
5922                 bitmap += 1024;
5923         }
5924
5925         /* Then read the msr_index'th bit from this bitmap: */
5926         if (msr_index < 1024*8) {
5927                 unsigned char b;
5928                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5929                         return true;
5930                 return 1 & (b >> (msr_index & 7));
5931         } else
5932                 return true; /* let L1 handle the wrong parameter */
5933 }
5934
5935 /*
5936  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5937  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5938  * intercept (via guest_host_mask etc.) the current event.
5939  */
5940 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5941         struct vmcs12 *vmcs12)
5942 {
5943         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5944         int cr = exit_qualification & 15;
5945         int reg;
5946         unsigned long val;
5947
5948         switch ((exit_qualification >> 4) & 3) {
5949         case 0: /* mov to cr */
5950                 reg = (exit_qualification >> 8) & 15;
5951                 val = kvm_register_read(vcpu, reg);
5952                 switch (cr) {
5953                 case 0:
5954                         if (vmcs12->cr0_guest_host_mask &
5955                             (val ^ vmcs12->cr0_read_shadow))
5956                                 return true;
5957                         break;
5958                 case 3:
5959                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5960                                 return true;
5961                         break;
5962                 case 4:
5963                         if (vmcs12->cr4_guest_host_mask &
5964                             (vmcs12->cr4_read_shadow ^ val))
5965                                 return true;
5966                         break;
5967                 case 8:
5968                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5969                                 return true;
5970                         break;
5971                 }
5972                 break;
5973         case 2: /* clts */
5974                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5975                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5976                         return true;
5977                 break;
5978         case 1: /* mov from cr */
5979                 switch (cr) {
5980                 case 3:
5981                         if (vmcs12->cpu_based_vm_exec_control &
5982                             CPU_BASED_CR3_STORE_EXITING)
5983                                 return true;
5984                         break;
5985                 case 8:
5986                         if (vmcs12->cpu_based_vm_exec_control &
5987                             CPU_BASED_CR8_STORE_EXITING)
5988                                 return true;
5989                         break;
5990                 }
5991                 break;
5992         case 3: /* lmsw */
5993                 /*
5994                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5995                  * cr0. Other attempted changes are ignored, with no exit.
5996                  */
5997                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5998                 if (vmcs12->cr0_guest_host_mask & 0xe &
5999                     (val ^ vmcs12->cr0_read_shadow))
6000                         return true;
6001                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6002                     !(vmcs12->cr0_read_shadow & 0x1) &&
6003                     (val & 0x1))
6004                         return true;
6005                 break;
6006         }
6007         return false;
6008 }
6009
6010 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6011                                           struct vmcs12 *vmcs12)
6012 {
6013         u32 encls_leaf;
6014
6015         if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6016             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6017                 return false;
6018
6019         encls_leaf = kvm_rax_read(vcpu);
6020         if (encls_leaf > 62)
6021                 encls_leaf = 63;
6022         return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6023 }
6024
6025 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6026         struct vmcs12 *vmcs12, gpa_t bitmap)
6027 {
6028         u32 vmx_instruction_info;
6029         unsigned long field;
6030         u8 b;
6031
6032         if (!nested_cpu_has_shadow_vmcs(vmcs12))
6033                 return true;
6034
6035         /* Decode instruction info and find the field to access */
6036         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6037         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6038
6039         /* Out-of-range fields always cause a VM exit from L2 to L1 */
6040         if (field >> 15)
6041                 return true;
6042
6043         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6044                 return true;
6045
6046         return 1 & (b >> (field & 7));
6047 }
6048
6049 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6050 {
6051         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6052
6053         if (nested_cpu_has_mtf(vmcs12))
6054                 return true;
6055
6056         /*
6057          * An MTF VM-exit may be injected into the guest by setting the
6058          * interruption-type to 7 (other event) and the vector field to 0. Such
6059          * is the case regardless of the 'monitor trap flag' VM-execution
6060          * control.
6061          */
6062         return entry_intr_info == (INTR_INFO_VALID_MASK
6063                                    | INTR_TYPE_OTHER_EVENT);
6064 }
6065
6066 /*
6067  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6068  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
6069  */
6070 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6071                                      union vmx_exit_reason exit_reason)
6072 {
6073         u32 intr_info;
6074
6075         switch ((u16)exit_reason.basic) {
6076         case EXIT_REASON_EXCEPTION_NMI:
6077                 intr_info = vmx_get_intr_info(vcpu);
6078                 if (is_nmi(intr_info))
6079                         return true;
6080                 else if (is_page_fault(intr_info))
6081                         return vcpu->arch.apf.host_apf_flags ||
6082                                vmx_need_pf_intercept(vcpu);
6083                 else if (is_debug(intr_info) &&
6084                          vcpu->guest_debug &
6085                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6086                         return true;
6087                 else if (is_breakpoint(intr_info) &&
6088                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6089                         return true;
6090                 else if (is_alignment_check(intr_info) &&
6091                          !vmx_guest_inject_ac(vcpu))
6092                         return true;
6093                 return false;
6094         case EXIT_REASON_EXTERNAL_INTERRUPT:
6095                 return true;
6096         case EXIT_REASON_MCE_DURING_VMENTRY:
6097                 return true;
6098         case EXIT_REASON_EPT_VIOLATION:
6099                 /*
6100                  * L0 always deals with the EPT violation. If nested EPT is
6101                  * used, and the nested mmu code discovers that the address is
6102                  * missing in the guest EPT table (EPT12), the EPT violation
6103                  * will be injected with nested_ept_inject_page_fault()
6104                  */
6105                 return true;
6106         case EXIT_REASON_EPT_MISCONFIG:
6107                 /*
6108                  * L2 never uses directly L1's EPT, but rather L0's own EPT
6109                  * table (shadow on EPT) or a merged EPT table that L0 built
6110                  * (EPT on EPT). So any problems with the structure of the
6111                  * table is L0's fault.
6112                  */
6113                 return true;
6114         case EXIT_REASON_PREEMPTION_TIMER:
6115                 return true;
6116         case EXIT_REASON_PML_FULL:
6117                 /*
6118                  * PML is emulated for an L1 VMM and should never be enabled in
6119                  * vmcs02, always "handle" PML_FULL by exiting to userspace.
6120                  */
6121                 return true;
6122         case EXIT_REASON_VMFUNC:
6123                 /* VM functions are emulated through L2->L0 vmexits. */
6124                 return true;
6125         case EXIT_REASON_BUS_LOCK:
6126                 /*
6127                  * At present, bus lock VM exit is never exposed to L1.
6128                  * Handle L2's bus locks in L0 directly.
6129                  */
6130                 return true;
6131         default:
6132                 break;
6133         }
6134         return false;
6135 }
6136
6137 /*
6138  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6139  * is_guest_mode (L2).
6140  */
6141 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6142                                      union vmx_exit_reason exit_reason)
6143 {
6144         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6145         u32 intr_info;
6146
6147         switch ((u16)exit_reason.basic) {
6148         case EXIT_REASON_EXCEPTION_NMI:
6149                 intr_info = vmx_get_intr_info(vcpu);
6150                 if (is_nmi(intr_info))
6151                         return true;
6152                 else if (is_page_fault(intr_info))
6153                         return true;
6154                 return vmcs12->exception_bitmap &
6155                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6156         case EXIT_REASON_EXTERNAL_INTERRUPT:
6157                 return nested_exit_on_intr(vcpu);
6158         case EXIT_REASON_TRIPLE_FAULT:
6159                 return true;
6160         case EXIT_REASON_INTERRUPT_WINDOW:
6161                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6162         case EXIT_REASON_NMI_WINDOW:
6163                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6164         case EXIT_REASON_TASK_SWITCH:
6165                 return true;
6166         case EXIT_REASON_CPUID:
6167                 return true;
6168         case EXIT_REASON_HLT:
6169                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6170         case EXIT_REASON_INVD:
6171                 return true;
6172         case EXIT_REASON_INVLPG:
6173                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6174         case EXIT_REASON_RDPMC:
6175                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6176         case EXIT_REASON_RDRAND:
6177                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6178         case EXIT_REASON_RDSEED:
6179                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6180         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6181                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6182         case EXIT_REASON_VMREAD:
6183                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6184                         vmcs12->vmread_bitmap);
6185         case EXIT_REASON_VMWRITE:
6186                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6187                         vmcs12->vmwrite_bitmap);
6188         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6189         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6190         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6191         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6192         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6193                 /*
6194                  * VMX instructions trap unconditionally. This allows L1 to
6195                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6196                  */
6197                 return true;
6198         case EXIT_REASON_CR_ACCESS:
6199                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6200         case EXIT_REASON_DR_ACCESS:
6201                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6202         case EXIT_REASON_IO_INSTRUCTION:
6203                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6204         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6205                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6206         case EXIT_REASON_MSR_READ:
6207         case EXIT_REASON_MSR_WRITE:
6208                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6209         case EXIT_REASON_INVALID_STATE:
6210                 return true;
6211         case EXIT_REASON_MWAIT_INSTRUCTION:
6212                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6213         case EXIT_REASON_MONITOR_TRAP_FLAG:
6214                 return nested_vmx_exit_handled_mtf(vmcs12);
6215         case EXIT_REASON_MONITOR_INSTRUCTION:
6216                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6217         case EXIT_REASON_PAUSE_INSTRUCTION:
6218                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6219                         nested_cpu_has2(vmcs12,
6220                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6221         case EXIT_REASON_MCE_DURING_VMENTRY:
6222                 return true;
6223         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6224                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6225         case EXIT_REASON_APIC_ACCESS:
6226         case EXIT_REASON_APIC_WRITE:
6227         case EXIT_REASON_EOI_INDUCED:
6228                 /*
6229                  * The controls for "virtualize APIC accesses," "APIC-
6230                  * register virtualization," and "virtual-interrupt
6231                  * delivery" only come from vmcs12.
6232                  */
6233                 return true;
6234         case EXIT_REASON_INVPCID:
6235                 return
6236                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6237                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6238         case EXIT_REASON_WBINVD:
6239                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6240         case EXIT_REASON_XSETBV:
6241                 return true;
6242         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6243                 /*
6244                  * This should never happen, since it is not possible to
6245                  * set XSS to a non-zero value---neither in L1 nor in L2.
6246                  * If if it were, XSS would have to be checked against
6247                  * the XSS exit bitmap in vmcs12.
6248                  */
6249                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6250         case EXIT_REASON_UMWAIT:
6251         case EXIT_REASON_TPAUSE:
6252                 return nested_cpu_has2(vmcs12,
6253                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6254         case EXIT_REASON_ENCLS:
6255                 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6256         case EXIT_REASON_NOTIFY:
6257                 /* Notify VM exit is not exposed to L1 */
6258                 return false;
6259         default:
6260                 return true;
6261         }
6262 }
6263
6264 /*
6265  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6266  * reflected into L1.
6267  */
6268 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6269 {
6270         struct vcpu_vmx *vmx = to_vmx(vcpu);
6271         union vmx_exit_reason exit_reason = vmx->exit_reason;
6272         unsigned long exit_qual;
6273         u32 exit_intr_info;
6274
6275         WARN_ON_ONCE(vmx->nested.nested_run_pending);
6276
6277         /*
6278          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6279          * has already loaded L2's state.
6280          */
6281         if (unlikely(vmx->fail)) {
6282                 trace_kvm_nested_vmenter_failed(
6283                         "hardware VM-instruction error: ",
6284                         vmcs_read32(VM_INSTRUCTION_ERROR));
6285                 exit_intr_info = 0;
6286                 exit_qual = 0;
6287                 goto reflect_vmexit;
6288         }
6289
6290         trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6291
6292         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6293         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6294                 return false;
6295
6296         /* If L1 doesn't want the exit, handle it in L0. */
6297         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6298                 return false;
6299
6300         /*
6301          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6302          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6303          * need to be synthesized by querying the in-kernel LAPIC, but external
6304          * interrupts are never reflected to L1 so it's a non-issue.
6305          */
6306         exit_intr_info = vmx_get_intr_info(vcpu);
6307         if (is_exception_with_error_code(exit_intr_info)) {
6308                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6309
6310                 vmcs12->vm_exit_intr_error_code =
6311                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6312         }
6313         exit_qual = vmx_get_exit_qual(vcpu);
6314
6315 reflect_vmexit:
6316         nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6317         return true;
6318 }
6319
6320 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6321                                 struct kvm_nested_state __user *user_kvm_nested_state,
6322                                 u32 user_data_size)
6323 {
6324         struct vcpu_vmx *vmx;
6325         struct vmcs12 *vmcs12;
6326         struct kvm_nested_state kvm_state = {
6327                 .flags = 0,
6328                 .format = KVM_STATE_NESTED_FORMAT_VMX,
6329                 .size = sizeof(kvm_state),
6330                 .hdr.vmx.flags = 0,
6331                 .hdr.vmx.vmxon_pa = INVALID_GPA,
6332                 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6333                 .hdr.vmx.preemption_timer_deadline = 0,
6334         };
6335         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6336                 &user_kvm_nested_state->data.vmx[0];
6337
6338         if (!vcpu)
6339                 return kvm_state.size + sizeof(*user_vmx_nested_state);
6340
6341         vmx = to_vmx(vcpu);
6342         vmcs12 = get_vmcs12(vcpu);
6343
6344         if (nested_vmx_allowed(vcpu) &&
6345             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6346                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6347                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6348
6349                 if (vmx_has_valid_vmcs12(vcpu)) {
6350                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6351
6352                         /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6353                         if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6354                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6355
6356                         if (is_guest_mode(vcpu) &&
6357                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6358                             vmcs12->vmcs_link_pointer != INVALID_GPA)
6359                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6360                 }
6361
6362                 if (vmx->nested.smm.vmxon)
6363                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6364
6365                 if (vmx->nested.smm.guest_mode)
6366                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6367
6368                 if (is_guest_mode(vcpu)) {
6369                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6370
6371                         if (vmx->nested.nested_run_pending)
6372                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6373
6374                         if (vmx->nested.mtf_pending)
6375                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6376
6377                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6378                             vmx->nested.has_preemption_timer_deadline) {
6379                                 kvm_state.hdr.vmx.flags |=
6380                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6381                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6382                                         vmx->nested.preemption_timer_deadline;
6383                         }
6384                 }
6385         }
6386
6387         if (user_data_size < kvm_state.size)
6388                 goto out;
6389
6390         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6391                 return -EFAULT;
6392
6393         if (!vmx_has_valid_vmcs12(vcpu))
6394                 goto out;
6395
6396         /*
6397          * When running L2, the authoritative vmcs12 state is in the
6398          * vmcs02. When running L1, the authoritative vmcs12 state is
6399          * in the shadow or enlightened vmcs linked to vmcs01, unless
6400          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6401          * vmcs12 state is in the vmcs12 already.
6402          */
6403         if (is_guest_mode(vcpu)) {
6404                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6405                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6406         } else  {
6407                 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6408                 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6409                         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6410                                 /*
6411                                  * L1 hypervisor is not obliged to keep eVMCS
6412                                  * clean fields data always up-to-date while
6413                                  * not in guest mode, 'hv_clean_fields' is only
6414                                  * supposed to be actual upon vmentry so we need
6415                                  * to ignore it here and do full copy.
6416                                  */
6417                                 copy_enlightened_to_vmcs12(vmx, 0);
6418                         else if (enable_shadow_vmcs)
6419                                 copy_shadow_to_vmcs12(vmx);
6420                 }
6421         }
6422
6423         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6424         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6425
6426         /*
6427          * Copy over the full allocated size of vmcs12 rather than just the size
6428          * of the struct.
6429          */
6430         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6431                 return -EFAULT;
6432
6433         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6434             vmcs12->vmcs_link_pointer != INVALID_GPA) {
6435                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6436                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6437                         return -EFAULT;
6438         }
6439 out:
6440         return kvm_state.size;
6441 }
6442
6443 /*
6444  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6445  */
6446 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6447 {
6448         if (is_guest_mode(vcpu)) {
6449                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6450                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6451         }
6452         free_nested(vcpu);
6453 }
6454
6455 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6456                                 struct kvm_nested_state __user *user_kvm_nested_state,
6457                                 struct kvm_nested_state *kvm_state)
6458 {
6459         struct vcpu_vmx *vmx = to_vmx(vcpu);
6460         struct vmcs12 *vmcs12;
6461         enum vm_entry_failure_code ignored;
6462         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6463                 &user_kvm_nested_state->data.vmx[0];
6464         int ret;
6465
6466         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6467                 return -EINVAL;
6468
6469         if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6470                 if (kvm_state->hdr.vmx.smm.flags)
6471                         return -EINVAL;
6472
6473                 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6474                         return -EINVAL;
6475
6476                 /*
6477                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6478                  * enable eVMCS capability on vCPU. However, since then
6479                  * code was changed such that flag signals vmcs12 should
6480                  * be copied into eVMCS in guest memory.
6481                  *
6482                  * To preserve backwards compatability, allow user
6483                  * to set this flag even when there is no VMXON region.
6484                  */
6485                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6486                         return -EINVAL;
6487         } else {
6488                 if (!nested_vmx_allowed(vcpu))
6489                         return -EINVAL;
6490
6491                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6492                         return -EINVAL;
6493         }
6494
6495         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6496             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6497                 return -EINVAL;
6498
6499         if (kvm_state->hdr.vmx.smm.flags &
6500             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6501                 return -EINVAL;
6502
6503         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6504                 return -EINVAL;
6505
6506         /*
6507          * SMM temporarily disables VMX, so we cannot be in guest mode,
6508          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6509          * must be zero.
6510          */
6511         if (is_smm(vcpu) ?
6512                 (kvm_state->flags &
6513                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6514                 : kvm_state->hdr.vmx.smm.flags)
6515                 return -EINVAL;
6516
6517         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6518             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6519                 return -EINVAL;
6520
6521         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6522                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6523                         return -EINVAL;
6524
6525         vmx_leave_nested(vcpu);
6526
6527         if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6528                 return 0;
6529
6530         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6531         ret = enter_vmx_operation(vcpu);
6532         if (ret)
6533                 return ret;
6534
6535         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6536         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6537                 /* See vmx_has_valid_vmcs12.  */
6538                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6539                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6540                     (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6541                         return -EINVAL;
6542                 else
6543                         return 0;
6544         }
6545
6546         if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6547                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6548                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6549                         return -EINVAL;
6550
6551                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6552         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6553                 /*
6554                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6555                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6556                  * restored yet. EVMCS will be mapped from
6557                  * nested_get_vmcs12_pages().
6558                  */
6559                 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6560                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6561         } else {
6562                 return -EINVAL;
6563         }
6564
6565         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6566                 vmx->nested.smm.vmxon = true;
6567                 vmx->nested.vmxon = false;
6568
6569                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6570                         vmx->nested.smm.guest_mode = true;
6571         }
6572
6573         vmcs12 = get_vmcs12(vcpu);
6574         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6575                 return -EFAULT;
6576
6577         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6578                 return -EINVAL;
6579
6580         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6581                 return 0;
6582
6583         vmx->nested.nested_run_pending =
6584                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6585
6586         vmx->nested.mtf_pending =
6587                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6588
6589         ret = -EINVAL;
6590         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6591             vmcs12->vmcs_link_pointer != INVALID_GPA) {
6592                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6593
6594                 if (kvm_state->size <
6595                     sizeof(*kvm_state) +
6596                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6597                         goto error_guest_mode;
6598
6599                 if (copy_from_user(shadow_vmcs12,
6600                                    user_vmx_nested_state->shadow_vmcs12,
6601                                    sizeof(*shadow_vmcs12))) {
6602                         ret = -EFAULT;
6603                         goto error_guest_mode;
6604                 }
6605
6606                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6607                     !shadow_vmcs12->hdr.shadow_vmcs)
6608                         goto error_guest_mode;
6609         }
6610
6611         vmx->nested.has_preemption_timer_deadline = false;
6612         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6613                 vmx->nested.has_preemption_timer_deadline = true;
6614                 vmx->nested.preemption_timer_deadline =
6615                         kvm_state->hdr.vmx.preemption_timer_deadline;
6616         }
6617
6618         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6619             nested_vmx_check_host_state(vcpu, vmcs12) ||
6620             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6621                 goto error_guest_mode;
6622
6623         vmx->nested.dirty_vmcs12 = true;
6624         vmx->nested.force_msr_bitmap_recalc = true;
6625         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6626         if (ret)
6627                 goto error_guest_mode;
6628
6629         if (vmx->nested.mtf_pending)
6630                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6631
6632         return 0;
6633
6634 error_guest_mode:
6635         vmx->nested.nested_run_pending = 0;
6636         return ret;
6637 }
6638
6639 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6640 {
6641         if (enable_shadow_vmcs) {
6642                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6643                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6644         }
6645 }
6646
6647 /*
6648  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6649  * that madness to get the encoding for comparison.
6650  */
6651 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6652
6653 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6654 {
6655         /*
6656          * Note these are the so called "index" of the VMCS field encoding, not
6657          * the index into vmcs12.
6658          */
6659         unsigned int max_idx, idx;
6660         int i;
6661
6662         /*
6663          * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6664          * vmcs12, regardless of whether or not the associated feature is
6665          * exposed to L1.  Simply find the field with the highest index.
6666          */
6667         max_idx = 0;
6668         for (i = 0; i < nr_vmcs12_fields; i++) {
6669                 /* The vmcs12 table is very, very sparsely populated. */
6670                 if (!vmcs12_field_offsets[i])
6671                         continue;
6672
6673                 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6674                 if (idx > max_idx)
6675                         max_idx = idx;
6676         }
6677
6678         return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6679 }
6680
6681 /*
6682  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6683  * returned for the various VMX controls MSRs when nested VMX is enabled.
6684  * The same values should also be used to verify that vmcs12 control fields are
6685  * valid during nested entry from L1 to L2.
6686  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6687  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6688  * bit in the high half is on if the corresponding bit in the control field
6689  * may be on. See also vmx_control_verify().
6690  */
6691 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
6692 {
6693         struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
6694
6695         /*
6696          * Note that as a general rule, the high half of the MSRs (bits in
6697          * the control fields which may be 1) should be initialized by the
6698          * intersection of the underlying hardware's MSR (i.e., features which
6699          * can be supported) and the list of features we want to expose -
6700          * because they are known to be properly supported in our code.
6701          * Also, usually, the low half of the MSRs (bits which must be 1) can
6702          * be set to 0, meaning that L1 may turn off any of these bits. The
6703          * reason is that if one of these bits is necessary, it will appear
6704          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6705          * fields of vmcs01 and vmcs02, will turn these bits off - and
6706          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6707          * These rules have exceptions below.
6708          */
6709
6710         /* pin-based controls */
6711         msrs->pinbased_ctls_low =
6712                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6713
6714         msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6715         msrs->pinbased_ctls_high &=
6716                 PIN_BASED_EXT_INTR_MASK |
6717                 PIN_BASED_NMI_EXITING |
6718                 PIN_BASED_VIRTUAL_NMIS |
6719                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6720         msrs->pinbased_ctls_high |=
6721                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6722                 PIN_BASED_VMX_PREEMPTION_TIMER;
6723
6724         /* exit controls */
6725         msrs->exit_ctls_low =
6726                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6727
6728         msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6729         msrs->exit_ctls_high &=
6730 #ifdef CONFIG_X86_64
6731                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6732 #endif
6733                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6734                 VM_EXIT_CLEAR_BNDCFGS;
6735         msrs->exit_ctls_high |=
6736                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6737                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6738                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6739                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6740
6741         /* We support free control of debug control saving. */
6742         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6743
6744         /* entry controls */
6745         msrs->entry_ctls_low =
6746                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6747
6748         msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6749         msrs->entry_ctls_high &=
6750 #ifdef CONFIG_X86_64
6751                 VM_ENTRY_IA32E_MODE |
6752 #endif
6753                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6754         msrs->entry_ctls_high |=
6755                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6756                  VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6757
6758         /* We support free control of debug control loading. */
6759         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6760
6761         /* cpu-based controls */
6762         msrs->procbased_ctls_low =
6763                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6764
6765         msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6766         msrs->procbased_ctls_high &=
6767                 CPU_BASED_INTR_WINDOW_EXITING |
6768                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6769                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6770                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6771                 CPU_BASED_CR3_STORE_EXITING |
6772 #ifdef CONFIG_X86_64
6773                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6774 #endif
6775                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6776                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6777                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6778                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6779                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6780         /*
6781          * We can allow some features even when not supported by the
6782          * hardware. For example, L1 can specify an MSR bitmap - and we
6783          * can use it to avoid exits to L1 - even when L0 runs L2
6784          * without MSR bitmaps.
6785          */
6786         msrs->procbased_ctls_high |=
6787                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6788                 CPU_BASED_USE_MSR_BITMAPS;
6789
6790         /* We support free control of CR3 access interception. */
6791         msrs->procbased_ctls_low &=
6792                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6793
6794         /*
6795          * secondary cpu-based controls.  Do not include those that
6796          * depend on CPUID bits, they are added later by
6797          * vmx_vcpu_after_set_cpuid.
6798          */
6799         msrs->secondary_ctls_low = 0;
6800
6801         msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6802         msrs->secondary_ctls_high &=
6803                 SECONDARY_EXEC_DESC |
6804                 SECONDARY_EXEC_ENABLE_RDTSCP |
6805                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6806                 SECONDARY_EXEC_WBINVD_EXITING |
6807                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6808                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6809                 SECONDARY_EXEC_RDRAND_EXITING |
6810                 SECONDARY_EXEC_ENABLE_INVPCID |
6811                 SECONDARY_EXEC_RDSEED_EXITING |
6812                 SECONDARY_EXEC_XSAVES |
6813                 SECONDARY_EXEC_TSC_SCALING;
6814
6815         /*
6816          * We can emulate "VMCS shadowing," even if the hardware
6817          * doesn't support it.
6818          */
6819         msrs->secondary_ctls_high |=
6820                 SECONDARY_EXEC_SHADOW_VMCS;
6821
6822         if (enable_ept) {
6823                 /* nested EPT: emulate EPT also to L1 */
6824                 msrs->secondary_ctls_high |=
6825                         SECONDARY_EXEC_ENABLE_EPT;
6826                 msrs->ept_caps =
6827                         VMX_EPT_PAGE_WALK_4_BIT |
6828                         VMX_EPT_PAGE_WALK_5_BIT |
6829                         VMX_EPTP_WB_BIT |
6830                         VMX_EPT_INVEPT_BIT |
6831                         VMX_EPT_EXECUTE_ONLY_BIT;
6832
6833                 msrs->ept_caps &= ept_caps;
6834                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6835                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6836                         VMX_EPT_1GB_PAGE_BIT;
6837                 if (enable_ept_ad_bits) {
6838                         msrs->secondary_ctls_high |=
6839                                 SECONDARY_EXEC_ENABLE_PML;
6840                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6841                 }
6842         }
6843
6844         if (cpu_has_vmx_vmfunc()) {
6845                 msrs->secondary_ctls_high |=
6846                         SECONDARY_EXEC_ENABLE_VMFUNC;
6847                 /*
6848                  * Advertise EPTP switching unconditionally
6849                  * since we emulate it
6850                  */
6851                 if (enable_ept)
6852                         msrs->vmfunc_controls =
6853                                 VMX_VMFUNC_EPTP_SWITCHING;
6854         }
6855
6856         /*
6857          * Old versions of KVM use the single-context version without
6858          * checking for support, so declare that it is supported even
6859          * though it is treated as global context.  The alternative is
6860          * not failing the single-context invvpid, and it is worse.
6861          */
6862         if (enable_vpid) {
6863                 msrs->secondary_ctls_high |=
6864                         SECONDARY_EXEC_ENABLE_VPID;
6865                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6866                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6867         }
6868
6869         if (enable_unrestricted_guest)
6870                 msrs->secondary_ctls_high |=
6871                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6872
6873         if (flexpriority_enabled)
6874                 msrs->secondary_ctls_high |=
6875                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6876
6877         if (enable_sgx)
6878                 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6879
6880         /* miscellaneous data */
6881         msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
6882         msrs->misc_low |=
6883                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6884                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6885                 VMX_MISC_ACTIVITY_HLT |
6886                 VMX_MISC_ACTIVITY_WAIT_SIPI;
6887         msrs->misc_high = 0;
6888
6889         /*
6890          * This MSR reports some information about VMX support. We
6891          * should return information about the VMX we emulate for the
6892          * guest, and the VMCS structure we give it - not about the
6893          * VMX support of the underlying hardware.
6894          */
6895         msrs->basic =
6896                 VMCS12_REVISION |
6897                 VMX_BASIC_TRUE_CTLS |
6898                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6899                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6900
6901         if (cpu_has_vmx_basic_inout())
6902                 msrs->basic |= VMX_BASIC_INOUT;
6903
6904         /*
6905          * These MSRs specify bits which the guest must keep fixed on
6906          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6907          * We picked the standard core2 setting.
6908          */
6909 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6910 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6911         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6912         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6913
6914         /* These MSRs specify bits which the guest must keep fixed off. */
6915         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6916         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6917
6918         if (vmx_umip_emulated())
6919                 msrs->cr4_fixed1 |= X86_CR4_UMIP;
6920
6921         msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6922 }
6923
6924 void nested_vmx_hardware_unsetup(void)
6925 {
6926         int i;
6927
6928         if (enable_shadow_vmcs) {
6929                 for (i = 0; i < VMX_BITMAP_NR; i++)
6930                         free_page((unsigned long)vmx_bitmap[i]);
6931         }
6932 }
6933
6934 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6935 {
6936         int i;
6937
6938         if (!cpu_has_vmx_shadow_vmcs())
6939                 enable_shadow_vmcs = 0;
6940         if (enable_shadow_vmcs) {
6941                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6942                         /*
6943                          * The vmx_bitmap is not tied to a VM and so should
6944                          * not be charged to a memcg.
6945                          */
6946                         vmx_bitmap[i] = (unsigned long *)
6947                                 __get_free_page(GFP_KERNEL);
6948                         if (!vmx_bitmap[i]) {
6949                                 nested_vmx_hardware_unsetup();
6950                                 return -ENOMEM;
6951                         }
6952                 }
6953
6954                 init_vmcs_shadow_fields();
6955         }
6956
6957         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6958         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6959         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6960         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6961         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6962         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6963         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6964         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmxoff;
6965         exit_handlers[EXIT_REASON_VMON]         = handle_vmxon;
6966         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6967         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6968         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6969
6970         return 0;
6971 }
6972
6973 struct kvm_x86_nested_ops vmx_nested_ops = {
6974         .leave_nested = vmx_leave_nested,
6975         .is_exception_vmexit = nested_vmx_is_exception_vmexit,
6976         .check_events = vmx_check_nested_events,
6977         .has_events = vmx_has_nested_events,
6978         .triple_fault = nested_vmx_triple_fault,
6979         .get_state = vmx_get_nested_state,
6980         .set_state = vmx_set_nested_state,
6981         .get_nested_state_pages = vmx_get_nested_state_pages,
6982         .write_log_dirty = nested_vmx_write_pml_buffer,
6983         .enable_evmcs = nested_enable_evmcs,
6984         .get_evmcs_version = nested_get_evmcs_version,
6985 };