fb6d1f7b43f352e4bfaf48164ff096da13ee36e8
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 /*
23  * Hyper-V requires all of these, so mark them as supported even though
24  * they are just treated the same as all-context.
25  */
26 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
27         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
28         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
29         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
30         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31
32 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33
34 enum {
35         VMX_VMREAD_BITMAP,
36         VMX_VMWRITE_BITMAP,
37         VMX_BITMAP_NR
38 };
39 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40
41 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
42 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
43
44 static u16 shadow_read_only_fields[] = {
45 #define SHADOW_FIELD_RO(x) x,
46 #include "vmcs_shadow_fields.h"
47 };
48 static int max_shadow_read_only_fields =
49         ARRAY_SIZE(shadow_read_only_fields);
50
51 static u16 shadow_read_write_fields[] = {
52 #define SHADOW_FIELD_RW(x) x,
53 #include "vmcs_shadow_fields.h"
54 };
55 static int max_shadow_read_write_fields =
56         ARRAY_SIZE(shadow_read_write_fields);
57
58 static void init_vmcs_shadow_fields(void)
59 {
60         int i, j;
61
62         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
63         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
64
65         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
66                 u16 field = shadow_read_only_fields[i];
67
68                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
69                     (i + 1 == max_shadow_read_only_fields ||
70                      shadow_read_only_fields[i + 1] != field + 1))
71                         pr_err("Missing field from shadow_read_only_field %x\n",
72                                field + 1);
73
74                 clear_bit(field, vmx_vmread_bitmap);
75 #ifdef CONFIG_X86_64
76                 if (field & 1)
77                         continue;
78 #endif
79                 if (j < i)
80                         shadow_read_only_fields[j] = field;
81                 j++;
82         }
83         max_shadow_read_only_fields = j;
84
85         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
86                 u16 field = shadow_read_write_fields[i];
87
88                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
89                     (i + 1 == max_shadow_read_write_fields ||
90                      shadow_read_write_fields[i + 1] != field + 1))
91                         pr_err("Missing field from shadow_read_write_field %x\n",
92                                field + 1);
93
94                 /*
95                  * PML and the preemption timer can be emulated, but the
96                  * processor cannot vmwrite to fields that don't exist
97                  * on bare metal.
98                  */
99                 switch (field) {
100                 case GUEST_PML_INDEX:
101                         if (!cpu_has_vmx_pml())
102                                 continue;
103                         break;
104                 case VMX_PREEMPTION_TIMER_VALUE:
105                         if (!cpu_has_vmx_preemption_timer())
106                                 continue;
107                         break;
108                 case GUEST_INTR_STATUS:
109                         if (!cpu_has_vmx_apicv())
110                                 continue;
111                         break;
112                 default:
113                         break;
114                 }
115
116                 clear_bit(field, vmx_vmwrite_bitmap);
117                 clear_bit(field, vmx_vmread_bitmap);
118 #ifdef CONFIG_X86_64
119                 if (field & 1)
120                         continue;
121 #endif
122                 if (j < i)
123                         shadow_read_write_fields[j] = field;
124                 j++;
125         }
126         max_shadow_read_write_fields = j;
127 }
128
129 /*
130  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
131  * set the success or error code of an emulated VMX instruction (as specified
132  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
133  * instruction.
134  */
135 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
136 {
137         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
138                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
139                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
140         return kvm_skip_emulated_instruction(vcpu);
141 }
142
143 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
144 {
145         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
146                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
147                             X86_EFLAGS_SF | X86_EFLAGS_OF))
148                         | X86_EFLAGS_CF);
149         return kvm_skip_emulated_instruction(vcpu);
150 }
151
152 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
153                                 u32 vm_instruction_error)
154 {
155         struct vcpu_vmx *vmx = to_vmx(vcpu);
156
157         /*
158          * failValid writes the error number to the current VMCS, which
159          * can't be done if there isn't a current VMCS.
160          */
161         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
162                 return nested_vmx_failInvalid(vcpu);
163
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_ZF);
168         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
169         /*
170          * We don't need to force a shadow sync because
171          * VM_INSTRUCTION_ERROR is not shadowed
172          */
173         return kvm_skip_emulated_instruction(vcpu);
174 }
175
176 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
177 {
178         /* TODO: not to reset guest simply here. */
179         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
180         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
181 }
182
183 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
184 {
185         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
186         vmcs_write64(VMCS_LINK_POINTER, -1ull);
187 }
188
189 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
190 {
191         struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193         if (!vmx->nested.hv_evmcs)
194                 return;
195
196         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
197         vmx->nested.hv_evmcs_vmptr = -1ull;
198         vmx->nested.hv_evmcs = NULL;
199 }
200
201 /*
202  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
203  * just stops using VMX.
204  */
205 static void free_nested(struct kvm_vcpu *vcpu)
206 {
207         struct vcpu_vmx *vmx = to_vmx(vcpu);
208
209         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
210                 return;
211
212         vmx->nested.vmxon = false;
213         vmx->nested.smm.vmxon = false;
214         free_vpid(vmx->nested.vpid02);
215         vmx->nested.posted_intr_nv = -1;
216         vmx->nested.current_vmptr = -1ull;
217         if (enable_shadow_vmcs) {
218                 vmx_disable_shadow_vmcs(vmx);
219                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
220                 free_vmcs(vmx->vmcs01.shadow_vmcs);
221                 vmx->vmcs01.shadow_vmcs = NULL;
222         }
223         kfree(vmx->nested.cached_vmcs12);
224         kfree(vmx->nested.cached_shadow_vmcs12);
225         /* Unpin physical memory we referred to in the vmcs02 */
226         if (vmx->nested.apic_access_page) {
227                 kvm_release_page_dirty(vmx->nested.apic_access_page);
228                 vmx->nested.apic_access_page = NULL;
229         }
230         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
231         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
232         vmx->nested.pi_desc = NULL;
233
234         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
235
236         nested_release_evmcs(vcpu);
237
238         free_loaded_vmcs(&vmx->nested.vmcs02);
239 }
240
241 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
242 {
243         struct vcpu_vmx *vmx = to_vmx(vcpu);
244         int cpu;
245
246         if (vmx->loaded_vmcs == vmcs)
247                 return;
248
249         cpu = get_cpu();
250         vmx_vcpu_put(vcpu);
251         vmx->loaded_vmcs = vmcs;
252         vmx_vcpu_load(vcpu, cpu);
253         put_cpu();
254
255         vm_entry_controls_reset_shadow(vmx);
256         vm_exit_controls_reset_shadow(vmx);
257         vmx_segment_cache_clear(vmx);
258 }
259
260 /*
261  * Ensure that the current vmcs of the logical processor is the
262  * vmcs01 of the vcpu before calling free_nested().
263  */
264 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
265 {
266         vcpu_load(vcpu);
267         vmx_leave_nested(vcpu);
268         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
269         free_nested(vcpu);
270         vcpu_put(vcpu);
271 }
272
273 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
274                 struct x86_exception *fault)
275 {
276         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
277         struct vcpu_vmx *vmx = to_vmx(vcpu);
278         u32 exit_reason;
279         unsigned long exit_qualification = vcpu->arch.exit_qualification;
280
281         if (vmx->nested.pml_full) {
282                 exit_reason = EXIT_REASON_PML_FULL;
283                 vmx->nested.pml_full = false;
284                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
285         } else if (fault->error_code & PFERR_RSVD_MASK)
286                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
287         else
288                 exit_reason = EXIT_REASON_EPT_VIOLATION;
289
290         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
291         vmcs12->guest_physical_address = fault->address;
292 }
293
294 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
295 {
296         WARN_ON(mmu_is_nested(vcpu));
297
298         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
299         kvm_init_shadow_ept_mmu(vcpu,
300                         to_vmx(vcpu)->nested.msrs.ept_caps &
301                         VMX_EPT_EXECUTE_ONLY_BIT,
302                         nested_ept_ad_enabled(vcpu),
303                         nested_ept_get_cr3(vcpu));
304         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
305         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
306         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
307         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
308
309         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
310 }
311
312 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
313 {
314         vcpu->arch.mmu = &vcpu->arch.root_mmu;
315         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
316 }
317
318 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
319                                             u16 error_code)
320 {
321         bool inequality, bit;
322
323         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
324         inequality =
325                 (error_code & vmcs12->page_fault_error_code_mask) !=
326                  vmcs12->page_fault_error_code_match;
327         return inequality ^ bit;
328 }
329
330
331 /*
332  * KVM wants to inject page-faults which it got to the guest. This function
333  * checks whether in a nested guest, we need to inject them to L1 or L2.
334  */
335 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
336 {
337         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
338         unsigned int nr = vcpu->arch.exception.nr;
339         bool has_payload = vcpu->arch.exception.has_payload;
340         unsigned long payload = vcpu->arch.exception.payload;
341
342         if (nr == PF_VECTOR) {
343                 if (vcpu->arch.exception.nested_apf) {
344                         *exit_qual = vcpu->arch.apf.nested_apf_token;
345                         return 1;
346                 }
347                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
348                                                     vcpu->arch.exception.error_code)) {
349                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
350                         return 1;
351                 }
352         } else if (vmcs12->exception_bitmap & (1u << nr)) {
353                 if (nr == DB_VECTOR) {
354                         if (!has_payload) {
355                                 payload = vcpu->arch.dr6;
356                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
357                                 payload ^= DR6_RTM;
358                         }
359                         *exit_qual = payload;
360                 } else
361                         *exit_qual = 0;
362                 return 1;
363         }
364
365         return 0;
366 }
367
368
369 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
370                 struct x86_exception *fault)
371 {
372         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
373
374         WARN_ON(!is_guest_mode(vcpu));
375
376         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
377                 !to_vmx(vcpu)->nested.nested_run_pending) {
378                 vmcs12->vm_exit_intr_error_code = fault->error_code;
379                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
380                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
381                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
382                                   fault->address);
383         } else {
384                 kvm_inject_page_fault(vcpu, fault);
385         }
386 }
387
388 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
389 {
390         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
391 }
392
393 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
394                                                struct vmcs12 *vmcs12)
395 {
396         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
397                 return 0;
398
399         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
400             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
401                 return -EINVAL;
402
403         return 0;
404 }
405
406 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
407                                                 struct vmcs12 *vmcs12)
408 {
409         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
410                 return 0;
411
412         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
413                 return -EINVAL;
414
415         return 0;
416 }
417
418 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
419                                                 struct vmcs12 *vmcs12)
420 {
421         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
422                 return 0;
423
424         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
425                 return -EINVAL;
426
427         return 0;
428 }
429
430 /*
431  * Check if MSR is intercepted for L01 MSR bitmap.
432  */
433 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
434 {
435         unsigned long *msr_bitmap;
436         int f = sizeof(unsigned long);
437
438         if (!cpu_has_vmx_msr_bitmap())
439                 return true;
440
441         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
442
443         if (msr <= 0x1fff) {
444                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
445         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
446                 msr &= 0x1fff;
447                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
448         }
449
450         return true;
451 }
452
453 /*
454  * If a msr is allowed by L0, we should check whether it is allowed by L1.
455  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
456  */
457 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
458                                                unsigned long *msr_bitmap_nested,
459                                                u32 msr, int type)
460 {
461         int f = sizeof(unsigned long);
462
463         /*
464          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
465          * have the write-low and read-high bitmap offsets the wrong way round.
466          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
467          */
468         if (msr <= 0x1fff) {
469                 if (type & MSR_TYPE_R &&
470                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
471                         /* read-low */
472                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
473
474                 if (type & MSR_TYPE_W &&
475                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
476                         /* write-low */
477                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
478
479         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
480                 msr &= 0x1fff;
481                 if (type & MSR_TYPE_R &&
482                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
483                         /* read-high */
484                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
485
486                 if (type & MSR_TYPE_W &&
487                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
488                         /* write-high */
489                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
490
491         }
492 }
493
494 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
495         int msr;
496
497         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
498                 unsigned word = msr / BITS_PER_LONG;
499
500                 msr_bitmap[word] = ~0;
501                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
502         }
503 }
504
505 /*
506  * Merge L0's and L1's MSR bitmap, return false to indicate that
507  * we do not use the hardware.
508  */
509 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
510                                                  struct vmcs12 *vmcs12)
511 {
512         int msr;
513         unsigned long *msr_bitmap_l1;
514         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
515         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
516
517         /* Nothing to do if the MSR bitmap is not in use.  */
518         if (!cpu_has_vmx_msr_bitmap() ||
519             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
520                 return false;
521
522         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
523                 return false;
524
525         msr_bitmap_l1 = (unsigned long *)map->hva;
526
527         /*
528          * To keep the control flow simple, pay eight 8-byte writes (sixteen
529          * 4-byte writes on 32-bit systems) up front to enable intercepts for
530          * the x2APIC MSR range and selectively disable them below.
531          */
532         enable_x2apic_msr_intercepts(msr_bitmap_l0);
533
534         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
535                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
536                         /*
537                          * L0 need not intercept reads for MSRs between 0x800
538                          * and 0x8ff, it just lets the processor take the value
539                          * from the virtual-APIC page; take those 256 bits
540                          * directly from the L1 bitmap.
541                          */
542                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
543                                 unsigned word = msr / BITS_PER_LONG;
544
545                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
546                         }
547                 }
548
549                 nested_vmx_disable_intercept_for_msr(
550                         msr_bitmap_l1, msr_bitmap_l0,
551                         X2APIC_MSR(APIC_TASKPRI),
552                         MSR_TYPE_R | MSR_TYPE_W);
553
554                 if (nested_cpu_has_vid(vmcs12)) {
555                         nested_vmx_disable_intercept_for_msr(
556                                 msr_bitmap_l1, msr_bitmap_l0,
557                                 X2APIC_MSR(APIC_EOI),
558                                 MSR_TYPE_W);
559                         nested_vmx_disable_intercept_for_msr(
560                                 msr_bitmap_l1, msr_bitmap_l0,
561                                 X2APIC_MSR(APIC_SELF_IPI),
562                                 MSR_TYPE_W);
563                 }
564         }
565
566         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
567         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
568                                              MSR_FS_BASE, MSR_TYPE_RW);
569
570         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
571                                              MSR_GS_BASE, MSR_TYPE_RW);
572
573         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
574                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
575
576         /*
577          * Checking the L0->L1 bitmap is trying to verify two things:
578          *
579          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
580          *    ensures that we do not accidentally generate an L02 MSR bitmap
581          *    from the L12 MSR bitmap that is too permissive.
582          * 2. That L1 or L2s have actually used the MSR. This avoids
583          *    unnecessarily merging of the bitmap if the MSR is unused. This
584          *    works properly because we only update the L01 MSR bitmap lazily.
585          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
586          *    updated to reflect this when L1 (or its L2s) actually write to
587          *    the MSR.
588          */
589         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
590                 nested_vmx_disable_intercept_for_msr(
591                                         msr_bitmap_l1, msr_bitmap_l0,
592                                         MSR_IA32_SPEC_CTRL,
593                                         MSR_TYPE_R | MSR_TYPE_W);
594
595         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
596                 nested_vmx_disable_intercept_for_msr(
597                                         msr_bitmap_l1, msr_bitmap_l0,
598                                         MSR_IA32_PRED_CMD,
599                                         MSR_TYPE_W);
600
601         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
602
603         return true;
604 }
605
606 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
607                                        struct vmcs12 *vmcs12)
608 {
609         struct kvm_host_map map;
610         struct vmcs12 *shadow;
611
612         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
613             vmcs12->vmcs_link_pointer == -1ull)
614                 return;
615
616         shadow = get_shadow_vmcs12(vcpu);
617
618         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
619                 return;
620
621         memcpy(shadow, map.hva, VMCS12_SIZE);
622         kvm_vcpu_unmap(vcpu, &map, false);
623 }
624
625 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
626                                               struct vmcs12 *vmcs12)
627 {
628         struct vcpu_vmx *vmx = to_vmx(vcpu);
629
630         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
631             vmcs12->vmcs_link_pointer == -1ull)
632                 return;
633
634         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
635                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
636 }
637
638 /*
639  * In nested virtualization, check if L1 has set
640  * VM_EXIT_ACK_INTR_ON_EXIT
641  */
642 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
643 {
644         return get_vmcs12(vcpu)->vm_exit_controls &
645                 VM_EXIT_ACK_INTR_ON_EXIT;
646 }
647
648 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
649 {
650         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
651 }
652
653 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
654                                           struct vmcs12 *vmcs12)
655 {
656         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
657             !page_address_valid(vcpu, vmcs12->apic_access_addr))
658                 return -EINVAL;
659         else
660                 return 0;
661 }
662
663 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
664                                            struct vmcs12 *vmcs12)
665 {
666         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
667             !nested_cpu_has_apic_reg_virt(vmcs12) &&
668             !nested_cpu_has_vid(vmcs12) &&
669             !nested_cpu_has_posted_intr(vmcs12))
670                 return 0;
671
672         /*
673          * If virtualize x2apic mode is enabled,
674          * virtualize apic access must be disabled.
675          */
676         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
677             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
678                 return -EINVAL;
679
680         /*
681          * If virtual interrupt delivery is enabled,
682          * we must exit on external interrupts.
683          */
684         if (nested_cpu_has_vid(vmcs12) &&
685            !nested_exit_on_intr(vcpu))
686                 return -EINVAL;
687
688         /*
689          * bits 15:8 should be zero in posted_intr_nv,
690          * the descriptor address has been already checked
691          * in nested_get_vmcs12_pages.
692          *
693          * bits 5:0 of posted_intr_desc_addr should be zero.
694          */
695         if (nested_cpu_has_posted_intr(vmcs12) &&
696            (!nested_cpu_has_vid(vmcs12) ||
697             !nested_exit_intr_ack_set(vcpu) ||
698             (vmcs12->posted_intr_nv & 0xff00) ||
699             (vmcs12->posted_intr_desc_addr & 0x3f) ||
700             (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
701                 return -EINVAL;
702
703         /* tpr shadow is needed by all apicv features. */
704         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
705                 return -EINVAL;
706
707         return 0;
708 }
709
710 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
711                                        u32 count, u64 addr)
712 {
713         int maxphyaddr;
714
715         if (count == 0)
716                 return 0;
717         maxphyaddr = cpuid_maxphyaddr(vcpu);
718         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
719             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
720                 return -EINVAL;
721
722         return 0;
723 }
724
725 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
726                                                      struct vmcs12 *vmcs12)
727 {
728         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
729                                         vmcs12->vm_exit_msr_load_addr) ||
730             nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
731                                         vmcs12->vm_exit_msr_store_addr))
732                 return -EINVAL;
733
734         return 0;
735 }
736
737 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
738                                                       struct vmcs12 *vmcs12)
739 {
740         if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
741                                         vmcs12->vm_entry_msr_load_addr))
742                 return -EINVAL;
743
744         return 0;
745 }
746
747 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
748                                          struct vmcs12 *vmcs12)
749 {
750         if (!nested_cpu_has_pml(vmcs12))
751                 return 0;
752
753         if (!nested_cpu_has_ept(vmcs12) ||
754             !page_address_valid(vcpu, vmcs12->pml_address))
755                 return -EINVAL;
756
757         return 0;
758 }
759
760 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
761                                                         struct vmcs12 *vmcs12)
762 {
763         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
764             !nested_cpu_has_ept(vmcs12))
765                 return -EINVAL;
766         return 0;
767 }
768
769 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
770                                                          struct vmcs12 *vmcs12)
771 {
772         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
773             !nested_cpu_has_ept(vmcs12))
774                 return -EINVAL;
775         return 0;
776 }
777
778 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
779                                                  struct vmcs12 *vmcs12)
780 {
781         if (!nested_cpu_has_shadow_vmcs(vmcs12))
782                 return 0;
783
784         if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
785             !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
786                 return -EINVAL;
787
788         return 0;
789 }
790
791 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
792                                        struct vmx_msr_entry *e)
793 {
794         /* x2APIC MSR accesses are not allowed */
795         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
796                 return -EINVAL;
797         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
798             e->index == MSR_IA32_UCODE_REV)
799                 return -EINVAL;
800         if (e->reserved != 0)
801                 return -EINVAL;
802         return 0;
803 }
804
805 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
806                                      struct vmx_msr_entry *e)
807 {
808         if (e->index == MSR_FS_BASE ||
809             e->index == MSR_GS_BASE ||
810             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
811             nested_vmx_msr_check_common(vcpu, e))
812                 return -EINVAL;
813         return 0;
814 }
815
816 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
817                                       struct vmx_msr_entry *e)
818 {
819         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
820             nested_vmx_msr_check_common(vcpu, e))
821                 return -EINVAL;
822         return 0;
823 }
824
825 /*
826  * Load guest's/host's msr at nested entry/exit.
827  * return 0 for success, entry index for failure.
828  */
829 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
830 {
831         u32 i;
832         struct vmx_msr_entry e;
833         struct msr_data msr;
834
835         msr.host_initiated = false;
836         for (i = 0; i < count; i++) {
837                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
838                                         &e, sizeof(e))) {
839                         pr_debug_ratelimited(
840                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
841                                 __func__, i, gpa + i * sizeof(e));
842                         goto fail;
843                 }
844                 if (nested_vmx_load_msr_check(vcpu, &e)) {
845                         pr_debug_ratelimited(
846                                 "%s check failed (%u, 0x%x, 0x%x)\n",
847                                 __func__, i, e.index, e.reserved);
848                         goto fail;
849                 }
850                 msr.index = e.index;
851                 msr.data = e.value;
852                 if (kvm_set_msr(vcpu, &msr)) {
853                         pr_debug_ratelimited(
854                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
855                                 __func__, i, e.index, e.value);
856                         goto fail;
857                 }
858         }
859         return 0;
860 fail:
861         return i + 1;
862 }
863
864 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
865 {
866         u32 i;
867         struct vmx_msr_entry e;
868
869         for (i = 0; i < count; i++) {
870                 struct msr_data msr_info;
871                 if (kvm_vcpu_read_guest(vcpu,
872                                         gpa + i * sizeof(e),
873                                         &e, 2 * sizeof(u32))) {
874                         pr_debug_ratelimited(
875                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
876                                 __func__, i, gpa + i * sizeof(e));
877                         return -EINVAL;
878                 }
879                 if (nested_vmx_store_msr_check(vcpu, &e)) {
880                         pr_debug_ratelimited(
881                                 "%s check failed (%u, 0x%x, 0x%x)\n",
882                                 __func__, i, e.index, e.reserved);
883                         return -EINVAL;
884                 }
885                 msr_info.host_initiated = false;
886                 msr_info.index = e.index;
887                 if (kvm_get_msr(vcpu, &msr_info)) {
888                         pr_debug_ratelimited(
889                                 "%s cannot read MSR (%u, 0x%x)\n",
890                                 __func__, i, e.index);
891                         return -EINVAL;
892                 }
893                 if (kvm_vcpu_write_guest(vcpu,
894                                          gpa + i * sizeof(e) +
895                                              offsetof(struct vmx_msr_entry, value),
896                                          &msr_info.data, sizeof(msr_info.data))) {
897                         pr_debug_ratelimited(
898                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
899                                 __func__, i, e.index, msr_info.data);
900                         return -EINVAL;
901                 }
902         }
903         return 0;
904 }
905
906 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
907 {
908         unsigned long invalid_mask;
909
910         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
911         return (val & invalid_mask) == 0;
912 }
913
914 /*
915  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
916  * emulating VM entry into a guest with EPT enabled.
917  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
918  * is assigned to entry_failure_code on failure.
919  */
920 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
921                                u32 *entry_failure_code)
922 {
923         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
924                 if (!nested_cr3_valid(vcpu, cr3)) {
925                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
926                         return -EINVAL;
927                 }
928
929                 /*
930                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
931                  * must not be dereferenced.
932                  */
933                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
934                     !nested_ept) {
935                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
936                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
937                                 return -EINVAL;
938                         }
939                 }
940         }
941
942         if (!nested_ept)
943                 kvm_mmu_new_cr3(vcpu, cr3, false);
944
945         vcpu->arch.cr3 = cr3;
946         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
947
948         kvm_init_mmu(vcpu, false);
949
950         return 0;
951 }
952
953 /*
954  * Returns if KVM is able to config CPU to tag TLB entries
955  * populated by L2 differently than TLB entries populated
956  * by L1.
957  *
958  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
959  *
960  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
961  * with different VPID (L1 entries are tagged with vmx->vpid
962  * while L2 entries are tagged with vmx->nested.vpid02).
963  */
964 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
965 {
966         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
967
968         return nested_cpu_has_ept(vmcs12) ||
969                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
970 }
971
972 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
973 {
974         struct vcpu_vmx *vmx = to_vmx(vcpu);
975
976         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
977 }
978
979
980 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
981 {
982         return fixed_bits_valid(control, low, high);
983 }
984
985 static inline u64 vmx_control_msr(u32 low, u32 high)
986 {
987         return low | ((u64)high << 32);
988 }
989
990 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
991 {
992         superset &= mask;
993         subset &= mask;
994
995         return (superset | subset) == superset;
996 }
997
998 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
999 {
1000         const u64 feature_and_reserved =
1001                 /* feature (except bit 48; see below) */
1002                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1003                 /* reserved */
1004                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1005         u64 vmx_basic = vmx->nested.msrs.basic;
1006
1007         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1008                 return -EINVAL;
1009
1010         /*
1011          * KVM does not emulate a version of VMX that constrains physical
1012          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1013          */
1014         if (data & BIT_ULL(48))
1015                 return -EINVAL;
1016
1017         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1018             vmx_basic_vmcs_revision_id(data))
1019                 return -EINVAL;
1020
1021         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1022                 return -EINVAL;
1023
1024         vmx->nested.msrs.basic = data;
1025         return 0;
1026 }
1027
1028 static int
1029 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1030 {
1031         u64 supported;
1032         u32 *lowp, *highp;
1033
1034         switch (msr_index) {
1035         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1036                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1037                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1038                 break;
1039         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1040                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1041                 highp = &vmx->nested.msrs.procbased_ctls_high;
1042                 break;
1043         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1044                 lowp = &vmx->nested.msrs.exit_ctls_low;
1045                 highp = &vmx->nested.msrs.exit_ctls_high;
1046                 break;
1047         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1048                 lowp = &vmx->nested.msrs.entry_ctls_low;
1049                 highp = &vmx->nested.msrs.entry_ctls_high;
1050                 break;
1051         case MSR_IA32_VMX_PROCBASED_CTLS2:
1052                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1053                 highp = &vmx->nested.msrs.secondary_ctls_high;
1054                 break;
1055         default:
1056                 BUG();
1057         }
1058
1059         supported = vmx_control_msr(*lowp, *highp);
1060
1061         /* Check must-be-1 bits are still 1. */
1062         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1063                 return -EINVAL;
1064
1065         /* Check must-be-0 bits are still 0. */
1066         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1067                 return -EINVAL;
1068
1069         *lowp = data;
1070         *highp = data >> 32;
1071         return 0;
1072 }
1073
1074 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1075 {
1076         const u64 feature_and_reserved_bits =
1077                 /* feature */
1078                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1079                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1080                 /* reserved */
1081                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1082         u64 vmx_misc;
1083
1084         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1085                                    vmx->nested.msrs.misc_high);
1086
1087         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1088                 return -EINVAL;
1089
1090         if ((vmx->nested.msrs.pinbased_ctls_high &
1091              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1092             vmx_misc_preemption_timer_rate(data) !=
1093             vmx_misc_preemption_timer_rate(vmx_misc))
1094                 return -EINVAL;
1095
1096         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1097                 return -EINVAL;
1098
1099         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1100                 return -EINVAL;
1101
1102         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1103                 return -EINVAL;
1104
1105         vmx->nested.msrs.misc_low = data;
1106         vmx->nested.msrs.misc_high = data >> 32;
1107
1108         /*
1109          * If L1 has read-only VM-exit information fields, use the
1110          * less permissive vmx_vmwrite_bitmap to specify write
1111          * permissions for the shadow VMCS.
1112          */
1113         if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1114                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
1115
1116         return 0;
1117 }
1118
1119 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1120 {
1121         u64 vmx_ept_vpid_cap;
1122
1123         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1124                                            vmx->nested.msrs.vpid_caps);
1125
1126         /* Every bit is either reserved or a feature bit. */
1127         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1128                 return -EINVAL;
1129
1130         vmx->nested.msrs.ept_caps = data;
1131         vmx->nested.msrs.vpid_caps = data >> 32;
1132         return 0;
1133 }
1134
1135 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1136 {
1137         u64 *msr;
1138
1139         switch (msr_index) {
1140         case MSR_IA32_VMX_CR0_FIXED0:
1141                 msr = &vmx->nested.msrs.cr0_fixed0;
1142                 break;
1143         case MSR_IA32_VMX_CR4_FIXED0:
1144                 msr = &vmx->nested.msrs.cr4_fixed0;
1145                 break;
1146         default:
1147                 BUG();
1148         }
1149
1150         /*
1151          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1152          * must be 1 in the restored value.
1153          */
1154         if (!is_bitwise_subset(data, *msr, -1ULL))
1155                 return -EINVAL;
1156
1157         *msr = data;
1158         return 0;
1159 }
1160
1161 /*
1162  * Called when userspace is restoring VMX MSRs.
1163  *
1164  * Returns 0 on success, non-0 otherwise.
1165  */
1166 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1167 {
1168         struct vcpu_vmx *vmx = to_vmx(vcpu);
1169
1170         /*
1171          * Don't allow changes to the VMX capability MSRs while the vCPU
1172          * is in VMX operation.
1173          */
1174         if (vmx->nested.vmxon)
1175                 return -EBUSY;
1176
1177         switch (msr_index) {
1178         case MSR_IA32_VMX_BASIC:
1179                 return vmx_restore_vmx_basic(vmx, data);
1180         case MSR_IA32_VMX_PINBASED_CTLS:
1181         case MSR_IA32_VMX_PROCBASED_CTLS:
1182         case MSR_IA32_VMX_EXIT_CTLS:
1183         case MSR_IA32_VMX_ENTRY_CTLS:
1184                 /*
1185                  * The "non-true" VMX capability MSRs are generated from the
1186                  * "true" MSRs, so we do not support restoring them directly.
1187                  *
1188                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1189                  * should restore the "true" MSRs with the must-be-1 bits
1190                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1191                  * DEFAULT SETTINGS".
1192                  */
1193                 return -EINVAL;
1194         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1195         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1196         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1197         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1198         case MSR_IA32_VMX_PROCBASED_CTLS2:
1199                 return vmx_restore_control_msr(vmx, msr_index, data);
1200         case MSR_IA32_VMX_MISC:
1201                 return vmx_restore_vmx_misc(vmx, data);
1202         case MSR_IA32_VMX_CR0_FIXED0:
1203         case MSR_IA32_VMX_CR4_FIXED0:
1204                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1205         case MSR_IA32_VMX_CR0_FIXED1:
1206         case MSR_IA32_VMX_CR4_FIXED1:
1207                 /*
1208                  * These MSRs are generated based on the vCPU's CPUID, so we
1209                  * do not support restoring them directly.
1210                  */
1211                 return -EINVAL;
1212         case MSR_IA32_VMX_EPT_VPID_CAP:
1213                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1214         case MSR_IA32_VMX_VMCS_ENUM:
1215                 vmx->nested.msrs.vmcs_enum = data;
1216                 return 0;
1217         default:
1218                 /*
1219                  * The rest of the VMX capability MSRs do not support restore.
1220                  */
1221                 return -EINVAL;
1222         }
1223 }
1224
1225 /* Returns 0 on success, non-0 otherwise. */
1226 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1227 {
1228         switch (msr_index) {
1229         case MSR_IA32_VMX_BASIC:
1230                 *pdata = msrs->basic;
1231                 break;
1232         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1233         case MSR_IA32_VMX_PINBASED_CTLS:
1234                 *pdata = vmx_control_msr(
1235                         msrs->pinbased_ctls_low,
1236                         msrs->pinbased_ctls_high);
1237                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1238                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1239                 break;
1240         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1241         case MSR_IA32_VMX_PROCBASED_CTLS:
1242                 *pdata = vmx_control_msr(
1243                         msrs->procbased_ctls_low,
1244                         msrs->procbased_ctls_high);
1245                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1246                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1247                 break;
1248         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1249         case MSR_IA32_VMX_EXIT_CTLS:
1250                 *pdata = vmx_control_msr(
1251                         msrs->exit_ctls_low,
1252                         msrs->exit_ctls_high);
1253                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1254                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1255                 break;
1256         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1257         case MSR_IA32_VMX_ENTRY_CTLS:
1258                 *pdata = vmx_control_msr(
1259                         msrs->entry_ctls_low,
1260                         msrs->entry_ctls_high);
1261                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1262                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1263                 break;
1264         case MSR_IA32_VMX_MISC:
1265                 *pdata = vmx_control_msr(
1266                         msrs->misc_low,
1267                         msrs->misc_high);
1268                 break;
1269         case MSR_IA32_VMX_CR0_FIXED0:
1270                 *pdata = msrs->cr0_fixed0;
1271                 break;
1272         case MSR_IA32_VMX_CR0_FIXED1:
1273                 *pdata = msrs->cr0_fixed1;
1274                 break;
1275         case MSR_IA32_VMX_CR4_FIXED0:
1276                 *pdata = msrs->cr4_fixed0;
1277                 break;
1278         case MSR_IA32_VMX_CR4_FIXED1:
1279                 *pdata = msrs->cr4_fixed1;
1280                 break;
1281         case MSR_IA32_VMX_VMCS_ENUM:
1282                 *pdata = msrs->vmcs_enum;
1283                 break;
1284         case MSR_IA32_VMX_PROCBASED_CTLS2:
1285                 *pdata = vmx_control_msr(
1286                         msrs->secondary_ctls_low,
1287                         msrs->secondary_ctls_high);
1288                 break;
1289         case MSR_IA32_VMX_EPT_VPID_CAP:
1290                 *pdata = msrs->ept_caps |
1291                         ((u64)msrs->vpid_caps << 32);
1292                 break;
1293         case MSR_IA32_VMX_VMFUNC:
1294                 *pdata = msrs->vmfunc_controls;
1295                 break;
1296         default:
1297                 return 1;
1298         }
1299
1300         return 0;
1301 }
1302
1303 /*
1304  * Copy the writable VMCS shadow fields back to the VMCS12, in case
1305  * they have been modified by the L1 guest. Note that the "read-only"
1306  * VM-exit information fields are actually writable if the vCPU is
1307  * configured to support "VMWRITE to any supported field in the VMCS."
1308  */
1309 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1310 {
1311         const u16 *fields[] = {
1312                 shadow_read_write_fields,
1313                 shadow_read_only_fields
1314         };
1315         const int max_fields[] = {
1316                 max_shadow_read_write_fields,
1317                 max_shadow_read_only_fields
1318         };
1319         int i, q;
1320         unsigned long field;
1321         u64 field_value;
1322         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1323
1324         preempt_disable();
1325
1326         vmcs_load(shadow_vmcs);
1327
1328         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1329                 for (i = 0; i < max_fields[q]; i++) {
1330                         field = fields[q][i];
1331                         field_value = __vmcs_readl(field);
1332                         vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
1333                 }
1334                 /*
1335                  * Skip the VM-exit information fields if they are read-only.
1336                  */
1337                 if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1338                         break;
1339         }
1340
1341         vmcs_clear(shadow_vmcs);
1342         vmcs_load(vmx->loaded_vmcs->vmcs);
1343
1344         preempt_enable();
1345 }
1346
1347 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1348 {
1349         const u16 *fields[] = {
1350                 shadow_read_write_fields,
1351                 shadow_read_only_fields
1352         };
1353         const int max_fields[] = {
1354                 max_shadow_read_write_fields,
1355                 max_shadow_read_only_fields
1356         };
1357         int i, q;
1358         unsigned long field;
1359         u64 field_value = 0;
1360         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1361
1362         vmcs_load(shadow_vmcs);
1363
1364         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1365                 for (i = 0; i < max_fields[q]; i++) {
1366                         field = fields[q][i];
1367                         vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
1368                         __vmcs_writel(field, field_value);
1369                 }
1370         }
1371
1372         vmcs_clear(shadow_vmcs);
1373         vmcs_load(vmx->loaded_vmcs->vmcs);
1374 }
1375
1376 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1377 {
1378         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1379         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1380
1381         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1382         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1383         vmcs12->guest_rip = evmcs->guest_rip;
1384
1385         if (unlikely(!(evmcs->hv_clean_fields &
1386                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1387                 vmcs12->guest_rsp = evmcs->guest_rsp;
1388                 vmcs12->guest_rflags = evmcs->guest_rflags;
1389                 vmcs12->guest_interruptibility_info =
1390                         evmcs->guest_interruptibility_info;
1391         }
1392
1393         if (unlikely(!(evmcs->hv_clean_fields &
1394                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1395                 vmcs12->cpu_based_vm_exec_control =
1396                         evmcs->cpu_based_vm_exec_control;
1397         }
1398
1399         if (unlikely(!(evmcs->hv_clean_fields &
1400                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1401                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1402         }
1403
1404         if (unlikely(!(evmcs->hv_clean_fields &
1405                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1406                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1407         }
1408
1409         if (unlikely(!(evmcs->hv_clean_fields &
1410                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1411                 vmcs12->vm_entry_intr_info_field =
1412                         evmcs->vm_entry_intr_info_field;
1413                 vmcs12->vm_entry_exception_error_code =
1414                         evmcs->vm_entry_exception_error_code;
1415                 vmcs12->vm_entry_instruction_len =
1416                         evmcs->vm_entry_instruction_len;
1417         }
1418
1419         if (unlikely(!(evmcs->hv_clean_fields &
1420                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1421                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1422                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1423                 vmcs12->host_cr0 = evmcs->host_cr0;
1424                 vmcs12->host_cr3 = evmcs->host_cr3;
1425                 vmcs12->host_cr4 = evmcs->host_cr4;
1426                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1427                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1428                 vmcs12->host_rip = evmcs->host_rip;
1429                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1430                 vmcs12->host_es_selector = evmcs->host_es_selector;
1431                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1432                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1433                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1434                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1435                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1436                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1437         }
1438
1439         if (unlikely(!(evmcs->hv_clean_fields &
1440                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1441                 vmcs12->pin_based_vm_exec_control =
1442                         evmcs->pin_based_vm_exec_control;
1443                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1444                 vmcs12->secondary_vm_exec_control =
1445                         evmcs->secondary_vm_exec_control;
1446         }
1447
1448         if (unlikely(!(evmcs->hv_clean_fields &
1449                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1450                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1451                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1452         }
1453
1454         if (unlikely(!(evmcs->hv_clean_fields &
1455                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1456                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1457         }
1458
1459         if (unlikely(!(evmcs->hv_clean_fields &
1460                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1461                 vmcs12->guest_es_base = evmcs->guest_es_base;
1462                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1463                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1464                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1465                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1466                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1467                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1468                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1469                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1470                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1471                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1472                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1473                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1474                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1475                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1476                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1477                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1478                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1479                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1480                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1481                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1482                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1483                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1484                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1485                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1486                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1487                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1488                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1489                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1490                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1491                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1492                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1493                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1494                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1495                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1496                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1497         }
1498
1499         if (unlikely(!(evmcs->hv_clean_fields &
1500                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1501                 vmcs12->tsc_offset = evmcs->tsc_offset;
1502                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1503                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1504         }
1505
1506         if (unlikely(!(evmcs->hv_clean_fields &
1507                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1508                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1509                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1510                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1511                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1512                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1513                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1514                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1515                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1516         }
1517
1518         if (unlikely(!(evmcs->hv_clean_fields &
1519                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1520                 vmcs12->host_fs_base = evmcs->host_fs_base;
1521                 vmcs12->host_gs_base = evmcs->host_gs_base;
1522                 vmcs12->host_tr_base = evmcs->host_tr_base;
1523                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1524                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1525                 vmcs12->host_rsp = evmcs->host_rsp;
1526         }
1527
1528         if (unlikely(!(evmcs->hv_clean_fields &
1529                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1530                 vmcs12->ept_pointer = evmcs->ept_pointer;
1531                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1532         }
1533
1534         if (unlikely(!(evmcs->hv_clean_fields &
1535                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1536                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1537                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1538                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1539                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1540                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1541                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1542                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1543                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1544                 vmcs12->guest_pending_dbg_exceptions =
1545                         evmcs->guest_pending_dbg_exceptions;
1546                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1547                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1548                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1549                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1550                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1551         }
1552
1553         /*
1554          * Not used?
1555          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1556          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1557          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1558          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1559          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1560          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1561          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1562          * vmcs12->page_fault_error_code_mask =
1563          *              evmcs->page_fault_error_code_mask;
1564          * vmcs12->page_fault_error_code_match =
1565          *              evmcs->page_fault_error_code_match;
1566          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1567          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1568          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1569          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1570          */
1571
1572         /*
1573          * Read only fields:
1574          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1575          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1576          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1577          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1578          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1579          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1580          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1581          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1582          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1583          * vmcs12->exit_qualification = evmcs->exit_qualification;
1584          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1585          *
1586          * Not present in struct vmcs12:
1587          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1588          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1589          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1590          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1591          */
1592
1593         return 0;
1594 }
1595
1596 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1597 {
1598         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1599         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1600
1601         /*
1602          * Should not be changed by KVM:
1603          *
1604          * evmcs->host_es_selector = vmcs12->host_es_selector;
1605          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1606          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1607          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1608          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1609          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1610          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1611          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1612          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1613          * evmcs->host_cr0 = vmcs12->host_cr0;
1614          * evmcs->host_cr3 = vmcs12->host_cr3;
1615          * evmcs->host_cr4 = vmcs12->host_cr4;
1616          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1617          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1618          * evmcs->host_rip = vmcs12->host_rip;
1619          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1620          * evmcs->host_fs_base = vmcs12->host_fs_base;
1621          * evmcs->host_gs_base = vmcs12->host_gs_base;
1622          * evmcs->host_tr_base = vmcs12->host_tr_base;
1623          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1624          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1625          * evmcs->host_rsp = vmcs12->host_rsp;
1626          * sync_vmcs12() doesn't read these:
1627          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1628          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1629          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1630          * evmcs->ept_pointer = vmcs12->ept_pointer;
1631          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1632          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1633          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1634          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1635          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1636          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1637          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1638          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1639          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1640          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1641          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1642          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1643          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1644          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1645          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1646          * evmcs->page_fault_error_code_mask =
1647          *              vmcs12->page_fault_error_code_mask;
1648          * evmcs->page_fault_error_code_match =
1649          *              vmcs12->page_fault_error_code_match;
1650          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1651          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1652          * evmcs->tsc_offset = vmcs12->tsc_offset;
1653          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1654          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1655          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1656          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1657          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1658          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1659          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1660          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1661          *
1662          * Not present in struct vmcs12:
1663          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1664          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1665          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1666          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1667          */
1668
1669         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1670         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1671         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1672         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1673         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1674         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1675         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1676         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1677
1678         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1679         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1680         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1681         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1682         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1683         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1684         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1685         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1686         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1687         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1688
1689         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1690         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1691         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1692         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1693         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1694         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1695         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1696         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1697
1698         evmcs->guest_es_base = vmcs12->guest_es_base;
1699         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1700         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1701         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1702         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1703         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1704         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1705         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1706         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1707         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1708
1709         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1710         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1711
1712         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1713         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1714         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1715         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1716
1717         evmcs->guest_pending_dbg_exceptions =
1718                 vmcs12->guest_pending_dbg_exceptions;
1719         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1720         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1721
1722         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1723         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1724
1725         evmcs->guest_cr0 = vmcs12->guest_cr0;
1726         evmcs->guest_cr3 = vmcs12->guest_cr3;
1727         evmcs->guest_cr4 = vmcs12->guest_cr4;
1728         evmcs->guest_dr7 = vmcs12->guest_dr7;
1729
1730         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1731
1732         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1733         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1734         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1735         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1736         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1737         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1738         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1739         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1740
1741         evmcs->exit_qualification = vmcs12->exit_qualification;
1742
1743         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1744         evmcs->guest_rsp = vmcs12->guest_rsp;
1745         evmcs->guest_rflags = vmcs12->guest_rflags;
1746
1747         evmcs->guest_interruptibility_info =
1748                 vmcs12->guest_interruptibility_info;
1749         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1750         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1751         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1752         evmcs->vm_entry_exception_error_code =
1753                 vmcs12->vm_entry_exception_error_code;
1754         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1755
1756         evmcs->guest_rip = vmcs12->guest_rip;
1757
1758         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1759
1760         return 0;
1761 }
1762
1763 /*
1764  * This is an equivalent of the nested hypervisor executing the vmptrld
1765  * instruction.
1766  */
1767 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1768                                                  bool from_launch)
1769 {
1770         struct vcpu_vmx *vmx = to_vmx(vcpu);
1771         struct hv_vp_assist_page assist_page;
1772
1773         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1774                 return 1;
1775
1776         if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
1777                 return 1;
1778
1779         if (unlikely(!assist_page.enlighten_vmentry))
1780                 return 1;
1781
1782         if (unlikely(assist_page.current_nested_vmcs !=
1783                      vmx->nested.hv_evmcs_vmptr)) {
1784
1785                 if (!vmx->nested.hv_evmcs)
1786                         vmx->nested.current_vmptr = -1ull;
1787
1788                 nested_release_evmcs(vcpu);
1789
1790                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(assist_page.current_nested_vmcs),
1791                                  &vmx->nested.hv_evmcs_map))
1792                         return 0;
1793
1794                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1795
1796                 /*
1797                  * Currently, KVM only supports eVMCS version 1
1798                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1799                  * value to first u32 field of eVMCS which should specify eVMCS
1800                  * VersionNumber.
1801                  *
1802                  * Guest should be aware of supported eVMCS versions by host by
1803                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1804                  * expected to set this CPUID leaf according to the value
1805                  * returned in vmcs_version from nested_enable_evmcs().
1806                  *
1807                  * However, it turns out that Microsoft Hyper-V fails to comply
1808                  * to their own invented interface: When Hyper-V use eVMCS, it
1809                  * just sets first u32 field of eVMCS to revision_id specified
1810                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1811                  * which is one of the supported versions specified in
1812                  * CPUID.0x4000000A.EAX[0:15].
1813                  *
1814                  * To overcome Hyper-V bug, we accept here either a supported
1815                  * eVMCS version or VMCS12 revision_id as valid values for first
1816                  * u32 field of eVMCS.
1817                  */
1818                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1819                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1820                         nested_release_evmcs(vcpu);
1821                         return 0;
1822                 }
1823
1824                 vmx->nested.dirty_vmcs12 = true;
1825                 /*
1826                  * As we keep L2 state for one guest only 'hv_clean_fields' mask
1827                  * can't be used when we switch between them. Reset it here for
1828                  * simplicity.
1829                  */
1830                 vmx->nested.hv_evmcs->hv_clean_fields &=
1831                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1832                 vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
1833
1834                 /*
1835                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1836                  * reloaded from guest's memory (read only fields, fields not
1837                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1838                  * are no leftovers.
1839                  */
1840                 if (from_launch) {
1841                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1842                         memset(vmcs12, 0, sizeof(*vmcs12));
1843                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1844                 }
1845
1846         }
1847         return 1;
1848 }
1849
1850 void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
1851 {
1852         struct vcpu_vmx *vmx = to_vmx(vcpu);
1853
1854         /*
1855          * hv_evmcs may end up being not mapped after migration (when
1856          * L2 was running), map it here to make sure vmcs12 changes are
1857          * properly reflected.
1858          */
1859         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1860                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1861
1862         if (vmx->nested.hv_evmcs) {
1863                 copy_vmcs12_to_enlightened(vmx);
1864                 /* All fields are clean */
1865                 vmx->nested.hv_evmcs->hv_clean_fields |=
1866                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1867         } else {
1868                 copy_vmcs12_to_shadow(vmx);
1869         }
1870
1871         vmx->nested.need_vmcs12_sync = false;
1872 }
1873
1874 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1875 {
1876         struct vcpu_vmx *vmx =
1877                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1878
1879         vmx->nested.preemption_timer_expired = true;
1880         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1881         kvm_vcpu_kick(&vmx->vcpu);
1882
1883         return HRTIMER_NORESTART;
1884 }
1885
1886 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1887 {
1888         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1889         struct vcpu_vmx *vmx = to_vmx(vcpu);
1890
1891         /*
1892          * A timer value of zero is architecturally guaranteed to cause
1893          * a VMExit prior to executing any instructions in the guest.
1894          */
1895         if (preemption_timeout == 0) {
1896                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1897                 return;
1898         }
1899
1900         if (vcpu->arch.virtual_tsc_khz == 0)
1901                 return;
1902
1903         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1904         preemption_timeout *= 1000000;
1905         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1906         hrtimer_start(&vmx->nested.preemption_timer,
1907                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1908 }
1909
1910 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1911 {
1912         if (vmx->nested.nested_run_pending &&
1913             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1914                 return vmcs12->guest_ia32_efer;
1915         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1916                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1917         else
1918                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1919 }
1920
1921 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1922 {
1923         /*
1924          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1925          * according to L0's settings (vmcs12 is irrelevant here).  Host
1926          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1927          * will be set as needed prior to VMLAUNCH/VMRESUME.
1928          */
1929         if (vmx->nested.vmcs02_initialized)
1930                 return;
1931         vmx->nested.vmcs02_initialized = true;
1932
1933         /*
1934          * We don't care what the EPTP value is we just need to guarantee
1935          * it's valid so we don't get a false positive when doing early
1936          * consistency checks.
1937          */
1938         if (enable_ept && nested_early_check)
1939                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1940
1941         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1942         if (cpu_has_vmx_vmfunc())
1943                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1944
1945         if (cpu_has_vmx_posted_intr())
1946                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1947
1948         if (cpu_has_vmx_msr_bitmap())
1949                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1950
1951         if (enable_pml)
1952                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1953
1954         /*
1955          * Set the MSR load/store lists to match L0's settings.  Only the
1956          * addresses are constant (for vmcs02), the counts can change based
1957          * on L2's behavior, e.g. switching to/from long mode.
1958          */
1959         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1960         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1961         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1962
1963         vmx_set_constant_host_state(vmx);
1964 }
1965
1966 static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
1967                                       struct vmcs12 *vmcs12)
1968 {
1969         prepare_vmcs02_constant_state(vmx);
1970
1971         vmcs_write64(VMCS_LINK_POINTER, -1ull);
1972
1973         if (enable_vpid) {
1974                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
1975                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
1976                 else
1977                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1978         }
1979 }
1980
1981 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1982 {
1983         u32 exec_control, vmcs12_exec_ctrl;
1984         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
1985
1986         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
1987                 prepare_vmcs02_early_full(vmx, vmcs12);
1988
1989         /*
1990          * PIN CONTROLS
1991          */
1992         exec_control = vmcs12->pin_based_vm_exec_control;
1993
1994         /* Preemption timer setting is computed directly in vmx_vcpu_run.  */
1995         exec_control |= vmcs_config.pin_based_exec_ctrl;
1996         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
1997         vmx->loaded_vmcs->hv_timer_armed = false;
1998
1999         /* Posted interrupts setting is only taken from vmcs12.  */
2000         if (nested_cpu_has_posted_intr(vmcs12)) {
2001                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2002                 vmx->nested.pi_pending = false;
2003         } else {
2004                 exec_control &= ~PIN_BASED_POSTED_INTR;
2005         }
2006         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
2007
2008         /*
2009          * EXEC CONTROLS
2010          */
2011         exec_control = vmx_exec_control(vmx); /* L0's desires */
2012         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2013         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2014         exec_control &= ~CPU_BASED_TPR_SHADOW;
2015         exec_control |= vmcs12->cpu_based_vm_exec_control;
2016
2017         /*
2018          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
2019          * nested_get_vmcs12_pages can't fix it up, the illegal value
2020          * will result in a VM entry failure.
2021          */
2022         if (exec_control & CPU_BASED_TPR_SHADOW) {
2023                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2024                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2025         } else {
2026 #ifdef CONFIG_X86_64
2027                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2028                                 CPU_BASED_CR8_STORE_EXITING;
2029 #endif
2030         }
2031
2032         /*
2033          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2034          * for I/O port accesses.
2035          */
2036         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2037         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2038         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2039
2040         /*
2041          * SECONDARY EXEC CONTROLS
2042          */
2043         if (cpu_has_secondary_exec_ctrls()) {
2044                 exec_control = vmx->secondary_exec_control;
2045
2046                 /* Take the following fields only from vmcs12 */
2047                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2048                                   SECONDARY_EXEC_ENABLE_INVPCID |
2049                                   SECONDARY_EXEC_RDTSCP |
2050                                   SECONDARY_EXEC_XSAVES |
2051                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2052                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2053                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2054                 if (nested_cpu_has(vmcs12,
2055                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2056                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2057                                 ~SECONDARY_EXEC_ENABLE_PML;
2058                         exec_control |= vmcs12_exec_ctrl;
2059                 }
2060
2061                 /* VMCS shadowing for L2 is emulated for now */
2062                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2063
2064                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2065                         vmcs_write16(GUEST_INTR_STATUS,
2066                                 vmcs12->guest_intr_status);
2067
2068                 /*
2069                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
2070                  * nested_get_vmcs12_pages will either fix it up or
2071                  * remove the VM execution control.
2072                  */
2073                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
2074                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
2075
2076                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2077                         vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2078
2079                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2080         }
2081
2082         /*
2083          * ENTRY CONTROLS
2084          *
2085          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2086          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2087          * on the related bits (if supported by the CPU) in the hope that
2088          * we can avoid VMWrites during vmx_set_efer().
2089          */
2090         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2091                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2092         if (cpu_has_load_ia32_efer()) {
2093                 if (guest_efer & EFER_LMA)
2094                         exec_control |= VM_ENTRY_IA32E_MODE;
2095                 if (guest_efer != host_efer)
2096                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2097         }
2098         vm_entry_controls_init(vmx, exec_control);
2099
2100         /*
2101          * EXIT CONTROLS
2102          *
2103          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2104          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2105          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2106          */
2107         exec_control = vmx_vmexit_ctrl();
2108         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2109                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2110         vm_exit_controls_init(vmx, exec_control);
2111
2112         /*
2113          * Conceptually we want to copy the PML address and index from
2114          * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
2115          * since we always flush the log on each vmexit and never change
2116          * the PML address (once set), this happens to be equivalent to
2117          * simply resetting the index in vmcs02.
2118          */
2119         if (enable_pml)
2120                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2121
2122         /*
2123          * Interrupt/Exception Fields
2124          */
2125         if (vmx->nested.nested_run_pending) {
2126                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2127                              vmcs12->vm_entry_intr_info_field);
2128                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2129                              vmcs12->vm_entry_exception_error_code);
2130                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2131                              vmcs12->vm_entry_instruction_len);
2132                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2133                              vmcs12->guest_interruptibility_info);
2134                 vmx->loaded_vmcs->nmi_known_unmasked =
2135                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2136         } else {
2137                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2138         }
2139 }
2140
2141 static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2142 {
2143         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2144
2145         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2146                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2147                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2148                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2149                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2150                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2151                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2152                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2153                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2154                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2155                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2156                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2157                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2158                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2159                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2160                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2161                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2162                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2163                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2164                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2165                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2166                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2167                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2168                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2169                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2170                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2171                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2172                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2173                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2174                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2175                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2176                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2177                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2178                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2179                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2180                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2181         }
2182
2183         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2184                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2185                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2186                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2187                             vmcs12->guest_pending_dbg_exceptions);
2188                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2189                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2190
2191                 /*
2192                  * L1 may access the L2's PDPTR, so save them to construct
2193                  * vmcs12
2194                  */
2195                 if (enable_ept) {
2196                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2197                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2198                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2199                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2200                 }
2201         }
2202
2203         if (nested_cpu_has_xsaves(vmcs12))
2204                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2205
2206         /*
2207          * Whether page-faults are trapped is determined by a combination of
2208          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2209          * If enable_ept, L0 doesn't care about page faults and we should
2210          * set all of these to L1's desires. However, if !enable_ept, L0 does
2211          * care about (at least some) page faults, and because it is not easy
2212          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2213          * to exit on each and every L2 page fault. This is done by setting
2214          * MASK=MATCH=0 and (see below) EB.PF=1.
2215          * Note that below we don't need special code to set EB.PF beyond the
2216          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2217          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2218          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2219          */
2220         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2221                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2222         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2223                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2224
2225         if (cpu_has_vmx_apicv()) {
2226                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2227                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2228                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2229                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2230         }
2231
2232         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2233         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2234
2235         set_cr4_guest_host_mask(vmx);
2236
2237         if (kvm_mpx_supported()) {
2238                 if (vmx->nested.nested_run_pending &&
2239                         (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2240                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2241                 else
2242                         vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2243         }
2244 }
2245
2246 /*
2247  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2248  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2249  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2250  * guest in a way that will both be appropriate to L1's requests, and our
2251  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2252  * function also has additional necessary side-effects, like setting various
2253  * vcpu->arch fields.
2254  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2255  * is assigned to entry_failure_code on failure.
2256  */
2257 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2258                           u32 *entry_failure_code)
2259 {
2260         struct vcpu_vmx *vmx = to_vmx(vcpu);
2261         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2262
2263         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
2264                 prepare_vmcs02_full(vmx, vmcs12);
2265                 vmx->nested.dirty_vmcs12 = false;
2266         }
2267
2268         /*
2269          * First, the fields that are shadowed.  This must be kept in sync
2270          * with vmcs_shadow_fields.h.
2271          */
2272         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2273                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2274                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2275                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2276         }
2277
2278         if (vmx->nested.nested_run_pending &&
2279             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2280                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2281                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2282         } else {
2283                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2284                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2285         }
2286         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2287
2288         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2289          * bitwise-or of what L1 wants to trap for L2, and what we want to
2290          * trap. Note that CR0.TS also needs updating - we do this later.
2291          */
2292         update_exception_bitmap(vcpu);
2293         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2294         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2295
2296         if (vmx->nested.nested_run_pending &&
2297             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2298                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2299                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2300         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2301                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2302         }
2303
2304         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2305
2306         if (kvm_has_tsc_control)
2307                 decache_tsc_multiplier(vmx);
2308
2309         if (enable_vpid) {
2310                 /*
2311                  * There is no direct mapping between vpid02 and vpid12, the
2312                  * vpid02 is per-vCPU for L0 and reused while the value of
2313                  * vpid12 is changed w/ one invvpid during nested vmentry.
2314                  * The vpid12 is allocated by L1 for L2, so it will not
2315                  * influence global bitmap(for vpid01 and vpid02 allocation)
2316                  * even if spawn a lot of nested vCPUs.
2317                  */
2318                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2319                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2320                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2321                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2322                         }
2323                 } else {
2324                         /*
2325                          * If L1 use EPT, then L0 needs to execute INVEPT on
2326                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2327                          * flush until vmcs02->eptp is fully updated by
2328                          * KVM_REQ_LOAD_CR3. Note that this assumes
2329                          * KVM_REQ_TLB_FLUSH is evaluated after
2330                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2331                          */
2332                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2333                 }
2334         }
2335
2336         if (nested_cpu_has_ept(vmcs12))
2337                 nested_ept_init_mmu_context(vcpu);
2338         else if (nested_cpu_has2(vmcs12,
2339                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2340                 vmx_flush_tlb(vcpu, true);
2341
2342         /*
2343          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2344          * bits which we consider mandatory enabled.
2345          * The CR0_READ_SHADOW is what L2 should have expected to read given
2346          * the specifications by L1; It's not enough to take
2347          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2348          * have more bits than L1 expected.
2349          */
2350         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2351         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2352
2353         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2354         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2355
2356         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2357         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2358         vmx_set_efer(vcpu, vcpu->arch.efer);
2359
2360         /*
2361          * Guest state is invalid and unrestricted guest is disabled,
2362          * which means L1 attempted VMEntry to L2 with invalid state.
2363          * Fail the VMEntry.
2364          */
2365         if (vmx->emulation_required) {
2366                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2367                 return -EINVAL;
2368         }
2369
2370         /* Shadow page tables on either EPT or shadow page tables. */
2371         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2372                                 entry_failure_code))
2373                 return -EINVAL;
2374
2375         if (!enable_ept)
2376                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2377
2378         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2379         kvm_rip_write(vcpu, vmcs12->guest_rip);
2380         return 0;
2381 }
2382
2383 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2384 {
2385         if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2386             nested_cpu_has_virtual_nmis(vmcs12))
2387                 return -EINVAL;
2388
2389         if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2390             nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2391                 return -EINVAL;
2392
2393         return 0;
2394 }
2395
2396 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2397 {
2398         struct vcpu_vmx *vmx = to_vmx(vcpu);
2399         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2400
2401         /* Check for memory type validity */
2402         switch (address & VMX_EPTP_MT_MASK) {
2403         case VMX_EPTP_MT_UC:
2404                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2405                         return false;
2406                 break;
2407         case VMX_EPTP_MT_WB:
2408                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2409                         return false;
2410                 break;
2411         default:
2412                 return false;
2413         }
2414
2415         /* only 4 levels page-walk length are valid */
2416         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2417                 return false;
2418
2419         /* Reserved bits should not be set */
2420         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2421                 return false;
2422
2423         /* AD, if set, should be supported */
2424         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2425                 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2426                         return false;
2427         }
2428
2429         return true;
2430 }
2431
2432 /*
2433  * Checks related to VM-Execution Control Fields
2434  */
2435 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2436                                               struct vmcs12 *vmcs12)
2437 {
2438         struct vcpu_vmx *vmx = to_vmx(vcpu);
2439
2440         if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2441                                 vmx->nested.msrs.pinbased_ctls_low,
2442                                 vmx->nested.msrs.pinbased_ctls_high) ||
2443             !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2444                                 vmx->nested.msrs.procbased_ctls_low,
2445                                 vmx->nested.msrs.procbased_ctls_high))
2446                 return -EINVAL;
2447
2448         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2449             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2450                                  vmx->nested.msrs.secondary_ctls_low,
2451                                  vmx->nested.msrs.secondary_ctls_high))
2452                 return -EINVAL;
2453
2454         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2455             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2456             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2457             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2458             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2459             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2460             nested_vmx_check_nmi_controls(vmcs12) ||
2461             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2462             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2463             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2464             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2465             (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2466                 return -EINVAL;
2467
2468         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2469             nested_cpu_has_save_preemption_timer(vmcs12))
2470                 return -EINVAL;
2471
2472         if (nested_cpu_has_ept(vmcs12) &&
2473             !valid_ept_address(vcpu, vmcs12->ept_pointer))
2474                 return -EINVAL;
2475
2476         if (nested_cpu_has_vmfunc(vmcs12)) {
2477                 if (vmcs12->vm_function_control &
2478                     ~vmx->nested.msrs.vmfunc_controls)
2479                         return -EINVAL;
2480
2481                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2482                         if (!nested_cpu_has_ept(vmcs12) ||
2483                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
2484                                 return -EINVAL;
2485                 }
2486         }
2487
2488         return 0;
2489 }
2490
2491 /*
2492  * Checks related to VM-Exit Control Fields
2493  */
2494 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2495                                          struct vmcs12 *vmcs12)
2496 {
2497         struct vcpu_vmx *vmx = to_vmx(vcpu);
2498
2499         if (!vmx_control_verify(vmcs12->vm_exit_controls,
2500                                 vmx->nested.msrs.exit_ctls_low,
2501                                 vmx->nested.msrs.exit_ctls_high) ||
2502             nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2503                 return -EINVAL;
2504
2505         return 0;
2506 }
2507
2508 /*
2509  * Checks related to VM-Entry Control Fields
2510  */
2511 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2512                                           struct vmcs12 *vmcs12)
2513 {
2514         struct vcpu_vmx *vmx = to_vmx(vcpu);
2515
2516         if (!vmx_control_verify(vmcs12->vm_entry_controls,
2517                                 vmx->nested.msrs.entry_ctls_low,
2518                                 vmx->nested.msrs.entry_ctls_high))
2519                 return -EINVAL;
2520
2521         /*
2522          * From the Intel SDM, volume 3:
2523          * Fields relevant to VM-entry event injection must be set properly.
2524          * These fields are the VM-entry interruption-information field, the
2525          * VM-entry exception error code, and the VM-entry instruction length.
2526          */
2527         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2528                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2529                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2530                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2531                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2532                 bool should_have_error_code;
2533                 bool urg = nested_cpu_has2(vmcs12,
2534                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2535                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2536
2537                 /* VM-entry interruption-info field: interruption type */
2538                 if (intr_type == INTR_TYPE_RESERVED ||
2539                     (intr_type == INTR_TYPE_OTHER_EVENT &&
2540                      !nested_cpu_supports_monitor_trap_flag(vcpu)))
2541                         return -EINVAL;
2542
2543                 /* VM-entry interruption-info field: vector */
2544                 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2545                     (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2546                     (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2547                         return -EINVAL;
2548
2549                 /* VM-entry interruption-info field: deliver error code */
2550                 should_have_error_code =
2551                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2552                         x86_exception_has_error_code(vector);
2553                 if (has_error_code != should_have_error_code)
2554                         return -EINVAL;
2555
2556                 /* VM-entry exception error code */
2557                 if (has_error_code &&
2558                     vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2559                         return -EINVAL;
2560
2561                 /* VM-entry interruption-info field: reserved bits */
2562                 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2563                         return -EINVAL;
2564
2565                 /* VM-entry instruction length */
2566                 switch (intr_type) {
2567                 case INTR_TYPE_SOFT_EXCEPTION:
2568                 case INTR_TYPE_SOFT_INTR:
2569                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2570                         if ((vmcs12->vm_entry_instruction_len > 15) ||
2571                             (vmcs12->vm_entry_instruction_len == 0 &&
2572                              !nested_cpu_has_zero_length_injection(vcpu)))
2573                                 return -EINVAL;
2574                 }
2575         }
2576
2577         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2578                 return -EINVAL;
2579
2580         return 0;
2581 }
2582
2583 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2584                                      struct vmcs12 *vmcs12)
2585 {
2586         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2587             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2588             nested_check_vm_entry_controls(vcpu, vmcs12))
2589                 return -EINVAL;
2590
2591         return 0;
2592 }
2593
2594 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2595                                        struct vmcs12 *vmcs12)
2596 {
2597         bool ia32e;
2598
2599         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2600             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2601             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2602                 return -EINVAL;
2603
2604         if (is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu) ||
2605             is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu))
2606                 return -EINVAL;
2607
2608         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2609             !kvm_pat_valid(vmcs12->host_ia32_pat))
2610                 return -EINVAL;
2611
2612         /*
2613          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2614          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2615          * the values of the LMA and LME bits in the field must each be that of
2616          * the host address-space size VM-exit control.
2617          */
2618         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2619                 ia32e = (vmcs12->vm_exit_controls &
2620                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2621                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2622                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2623                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2624                         return -EINVAL;
2625         }
2626
2627         return 0;
2628 }
2629
2630 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2631                                           struct vmcs12 *vmcs12)
2632 {
2633         int r = 0;
2634         struct vmcs12 *shadow;
2635         struct kvm_host_map map;
2636
2637         if (vmcs12->vmcs_link_pointer == -1ull)
2638                 return 0;
2639
2640         if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2641                 return -EINVAL;
2642
2643         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
2644                 return -EINVAL;
2645
2646         shadow = map.hva;
2647
2648         if (shadow->hdr.revision_id != VMCS12_REVISION ||
2649             shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2650                 r = -EINVAL;
2651
2652         kvm_vcpu_unmap(vcpu, &map, false);
2653         return r;
2654 }
2655
2656 /*
2657  * Checks related to Guest Non-register State
2658  */
2659 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2660 {
2661         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2662             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
2663                 return -EINVAL;
2664
2665         return 0;
2666 }
2667
2668 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2669                                         struct vmcs12 *vmcs12,
2670                                         u32 *exit_qual)
2671 {
2672         bool ia32e;
2673
2674         *exit_qual = ENTRY_FAIL_DEFAULT;
2675
2676         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2677             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2678                 return -EINVAL;
2679
2680         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2681             !kvm_pat_valid(vmcs12->guest_ia32_pat))
2682                 return -EINVAL;
2683
2684         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2685                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2686                 return -EINVAL;
2687         }
2688
2689         /*
2690          * If the load IA32_EFER VM-entry control is 1, the following checks
2691          * are performed on the field for the IA32_EFER MSR:
2692          * - Bits reserved in the IA32_EFER MSR must be 0.
2693          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2694          *   the IA-32e mode guest VM-exit control. It must also be identical
2695          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2696          *   CR0.PG) is 1.
2697          */
2698         if (to_vmx(vcpu)->nested.nested_run_pending &&
2699             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2700                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2701                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2702                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2703                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2704                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2705                         return -EINVAL;
2706         }
2707
2708         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2709             (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2710              (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2711                 return -EINVAL;
2712
2713         if (nested_check_guest_non_reg_state(vmcs12))
2714                 return -EINVAL;
2715
2716         return 0;
2717 }
2718
2719 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2720 {
2721         struct vcpu_vmx *vmx = to_vmx(vcpu);
2722         unsigned long cr3, cr4;
2723         bool vm_fail;
2724
2725         if (!nested_early_check)
2726                 return 0;
2727
2728         if (vmx->msr_autoload.host.nr)
2729                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2730         if (vmx->msr_autoload.guest.nr)
2731                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2732
2733         preempt_disable();
2734
2735         vmx_prepare_switch_to_guest(vcpu);
2736
2737         /*
2738          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2739          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2740          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2741          * there is no need to preserve other bits or save/restore the field.
2742          */
2743         vmcs_writel(GUEST_RFLAGS, 0);
2744
2745         cr3 = __get_current_cr3_fast();
2746         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2747                 vmcs_writel(HOST_CR3, cr3);
2748                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2749         }
2750
2751         cr4 = cr4_read_shadow();
2752         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2753                 vmcs_writel(HOST_CR4, cr4);
2754                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2755         }
2756
2757         asm(
2758                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2759                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2760                 "je 1f \n\t"
2761                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2762                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2763                 "1: \n\t"
2764                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2765
2766                 /* Check if vmlaunch or vmresume is needed */
2767                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2768
2769                 /*
2770                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2771                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2772                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2773                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2774                  */
2775                 "call vmx_vmenter\n\t"
2776
2777                 CC_SET(be)
2778               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2779               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
2780                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
2781                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
2782                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2783                 [wordsize]"i"(sizeof(ulong))
2784               : "cc", "memory"
2785         );
2786
2787         if (vmx->msr_autoload.host.nr)
2788                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2789         if (vmx->msr_autoload.guest.nr)
2790                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2791
2792         if (vm_fail) {
2793                 preempt_enable();
2794                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2795                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2796                 return 1;
2797         }
2798
2799         /*
2800          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2801          */
2802         local_irq_enable();
2803         if (hw_breakpoint_active())
2804                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2805         preempt_enable();
2806
2807         /*
2808          * A non-failing VMEntry means we somehow entered guest mode with
2809          * an illegal RIP, and that's just the tip of the iceberg.  There
2810          * is no telling what memory has been modified or what state has
2811          * been exposed to unknown code.  Hitting this all but guarantees
2812          * a (very critical) hardware issue.
2813          */
2814         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2815                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2816
2817         return 0;
2818 }
2819
2820 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2821                                                  struct vmcs12 *vmcs12);
2822
2823 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2824 {
2825         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2826         struct vcpu_vmx *vmx = to_vmx(vcpu);
2827         struct kvm_host_map *map;
2828         struct page *page;
2829         u64 hpa;
2830
2831         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2832                 /*
2833                  * Translate L1 physical address to host physical
2834                  * address for vmcs02. Keep the page pinned, so this
2835                  * physical address remains valid. We keep a reference
2836                  * to it so we can release it later.
2837                  */
2838                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2839                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2840                         vmx->nested.apic_access_page = NULL;
2841                 }
2842                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2843                 /*
2844                  * If translation failed, no matter: This feature asks
2845                  * to exit when accessing the given address, and if it
2846                  * can never be accessed, this feature won't do
2847                  * anything anyway.
2848                  */
2849                 if (!is_error_page(page)) {
2850                         vmx->nested.apic_access_page = page;
2851                         hpa = page_to_phys(vmx->nested.apic_access_page);
2852                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2853                 } else {
2854                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2855                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2856                 }
2857         }
2858
2859         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2860                 map = &vmx->nested.virtual_apic_map;
2861
2862                 /*
2863                  * If translation failed, VM entry will fail because
2864                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
2865                  */
2866                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
2867                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
2868                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
2869                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
2870                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2871                         /*
2872                          * The processor will never use the TPR shadow, simply
2873                          * clear the bit from the execution control.  Such a
2874                          * configuration is useless, but it happens in tests.
2875                          * For any other configuration, failing the vm entry is
2876                          * _not_ what the processor does but it's basically the
2877                          * only possibility we have.
2878                          */
2879                         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
2880                                         CPU_BASED_TPR_SHADOW);
2881                 } else {
2882                         printk("bad virtual-APIC page address\n");
2883                         dump_vmcs();
2884                 }
2885         }
2886
2887         if (nested_cpu_has_posted_intr(vmcs12)) {
2888                 map = &vmx->nested.pi_desc_map;
2889
2890                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
2891                         vmx->nested.pi_desc =
2892                                 (struct pi_desc *)(((void *)map->hva) +
2893                                 offset_in_page(vmcs12->posted_intr_desc_addr));
2894                         vmcs_write64(POSTED_INTR_DESC_ADDR,
2895                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
2896                 }
2897         }
2898         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2899                 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
2900                               CPU_BASED_USE_MSR_BITMAPS);
2901         else
2902                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
2903                                 CPU_BASED_USE_MSR_BITMAPS);
2904 }
2905
2906 /*
2907  * Intel's VMX Instruction Reference specifies a common set of prerequisites
2908  * for running VMX instructions (except VMXON, whose prerequisites are
2909  * slightly different). It also specifies what exception to inject otherwise.
2910  * Note that many of these exceptions have priority over VM exits, so they
2911  * don't have to be checked again here.
2912  */
2913 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2914 {
2915         if (!to_vmx(vcpu)->nested.vmxon) {
2916                 kvm_queue_exception(vcpu, UD_VECTOR);
2917                 return 0;
2918         }
2919
2920         if (vmx_get_cpl(vcpu)) {
2921                 kvm_inject_gp(vcpu, 0);
2922                 return 0;
2923         }
2924
2925         return 1;
2926 }
2927
2928 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2929 {
2930         u8 rvi = vmx_get_rvi();
2931         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2932
2933         return ((rvi & 0xf0) > (vppr & 0xf0));
2934 }
2935
2936 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2937                                    struct vmcs12 *vmcs12);
2938
2939 /*
2940  * If from_vmentry is false, this is being called from state restore (either RSM
2941  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
2942 + *
2943 + * Returns:
2944 + *   0 - success, i.e. proceed with actual VMEnter
2945 + *   1 - consistency check VMExit
2946 + *  -1 - consistency check VMFail
2947  */
2948 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2949 {
2950         struct vcpu_vmx *vmx = to_vmx(vcpu);
2951         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2952         bool evaluate_pending_interrupts;
2953         u32 exit_reason = EXIT_REASON_INVALID_STATE;
2954         u32 exit_qual;
2955
2956         evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2957                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
2958         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
2959                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
2960
2961         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
2962                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
2963         if (kvm_mpx_supported() &&
2964                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2965                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
2966
2967         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
2968
2969         prepare_vmcs02_early(vmx, vmcs12);
2970
2971         if (from_vmentry) {
2972                 nested_get_vmcs12_pages(vcpu);
2973
2974                 if (nested_vmx_check_vmentry_hw(vcpu)) {
2975                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2976                         return -1;
2977                 }
2978
2979                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
2980                         goto vmentry_fail_vmexit;
2981         }
2982
2983         enter_guest_mode(vcpu);
2984         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
2985                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
2986
2987         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
2988                 goto vmentry_fail_vmexit_guest_mode;
2989
2990         if (from_vmentry) {
2991                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
2992                 exit_qual = nested_vmx_load_msr(vcpu,
2993                                                 vmcs12->vm_entry_msr_load_addr,
2994                                                 vmcs12->vm_entry_msr_load_count);
2995                 if (exit_qual)
2996                         goto vmentry_fail_vmexit_guest_mode;
2997         } else {
2998                 /*
2999                  * The MMU is not initialized to point at the right entities yet and
3000                  * "get pages" would need to read data from the guest (i.e. we will
3001                  * need to perform gpa to hpa translation). Request a call
3002                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3003                  * have already been set at vmentry time and should not be reset.
3004                  */
3005                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3006         }
3007
3008         /*
3009          * If L1 had a pending IRQ/NMI until it executed
3010          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3011          * disallowed (e.g. interrupts disabled), L0 needs to
3012          * evaluate if this pending event should cause an exit from L2
3013          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3014          * intercept EXTERNAL_INTERRUPT).
3015          *
3016          * Usually this would be handled by the processor noticing an
3017          * IRQ/NMI window request, or checking RVI during evaluation of
3018          * pending virtual interrupts.  However, this setting was done
3019          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3020          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3021          */
3022         if (unlikely(evaluate_pending_interrupts))
3023                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3024
3025         /*
3026          * Do not start the preemption timer hrtimer until after we know
3027          * we are successful, so that only nested_vmx_vmexit needs to cancel
3028          * the timer.
3029          */
3030         vmx->nested.preemption_timer_expired = false;
3031         if (nested_cpu_has_preemption_timer(vmcs12))
3032                 vmx_start_preemption_timer(vcpu);
3033
3034         /*
3035          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3036          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3037          * returned as far as L1 is concerned. It will only return (and set
3038          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3039          */
3040         return 0;
3041
3042         /*
3043          * A failed consistency check that leads to a VMExit during L1's
3044          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3045          * 26.7 "VM-entry failures during or after loading guest state".
3046          */
3047 vmentry_fail_vmexit_guest_mode:
3048         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3049                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3050         leave_guest_mode(vcpu);
3051
3052 vmentry_fail_vmexit:
3053         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3054
3055         if (!from_vmentry)
3056                 return 1;
3057
3058         load_vmcs12_host_state(vcpu, vmcs12);
3059         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3060         vmcs12->exit_qualification = exit_qual;
3061         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3062                 vmx->nested.need_vmcs12_sync = true;
3063         return 1;
3064 }
3065
3066 /*
3067  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3068  * for running an L2 nested guest.
3069  */
3070 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3071 {
3072         struct vmcs12 *vmcs12;
3073         struct vcpu_vmx *vmx = to_vmx(vcpu);
3074         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3075         int ret;
3076
3077         if (!nested_vmx_check_permission(vcpu))
3078                 return 1;
3079
3080         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
3081                 return 1;
3082
3083         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3084                 return nested_vmx_failInvalid(vcpu);
3085
3086         vmcs12 = get_vmcs12(vcpu);
3087
3088         /*
3089          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3090          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3091          * rather than RFLAGS.ZF, and no error number is stored to the
3092          * VM-instruction error field.
3093          */
3094         if (vmcs12->hdr.shadow_vmcs)
3095                 return nested_vmx_failInvalid(vcpu);
3096
3097         if (vmx->nested.hv_evmcs) {
3098                 copy_enlightened_to_vmcs12(vmx);
3099                 /* Enlightened VMCS doesn't have launch state */
3100                 vmcs12->launch_state = !launch;
3101         } else if (enable_shadow_vmcs) {
3102                 copy_shadow_to_vmcs12(vmx);
3103         }
3104
3105         /*
3106          * The nested entry process starts with enforcing various prerequisites
3107          * on vmcs12 as required by the Intel SDM, and act appropriately when
3108          * they fail: As the SDM explains, some conditions should cause the
3109          * instruction to fail, while others will cause the instruction to seem
3110          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3111          * To speed up the normal (success) code path, we should avoid checking
3112          * for misconfigurations which will anyway be caught by the processor
3113          * when using the merged vmcs02.
3114          */
3115         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3116                 return nested_vmx_failValid(vcpu,
3117                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3118
3119         if (vmcs12->launch_state == launch)
3120                 return nested_vmx_failValid(vcpu,
3121                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3122                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3123
3124         if (nested_vmx_check_controls(vcpu, vmcs12))
3125                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3126
3127         if (nested_vmx_check_host_state(vcpu, vmcs12))
3128                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3129
3130         /*
3131          * We're finally done with prerequisite checking, and can start with
3132          * the nested entry.
3133          */
3134         vmx->nested.nested_run_pending = 1;
3135         ret = nested_vmx_enter_non_root_mode(vcpu, true);
3136         vmx->nested.nested_run_pending = !ret;
3137         if (ret > 0)
3138                 return 1;
3139         else if (ret)
3140                 return nested_vmx_failValid(vcpu,
3141                         VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3142
3143         /* Hide L1D cache contents from the nested guest.  */
3144         vmx->vcpu.arch.l1tf_flush_l1d = true;
3145
3146         /*
3147          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3148          * also be used as part of restoring nVMX state for
3149          * snapshot restore (migration).
3150          *
3151          * In this flow, it is assumed that vmcs12 cache was
3152          * trasferred as part of captured nVMX state and should
3153          * therefore not be read from guest memory (which may not
3154          * exist on destination host yet).
3155          */
3156         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3157
3158         /*
3159          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3160          * awakened by event injection or by an NMI-window VM-exit or
3161          * by an interrupt-window VM-exit, halt the vcpu.
3162          */
3163         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3164             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3165             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3166             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3167               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3168                 vmx->nested.nested_run_pending = 0;
3169                 return kvm_vcpu_halt(vcpu);
3170         }
3171         return 1;
3172 }
3173
3174 /*
3175  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3176  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3177  * This function returns the new value we should put in vmcs12.guest_cr0.
3178  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3179  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3180  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3181  *     didn't trap the bit, because if L1 did, so would L0).
3182  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3183  *     been modified by L2, and L1 knows it. So just leave the old value of
3184  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3185  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3186  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3187  *     changed these bits, and therefore they need to be updated, but L0
3188  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3189  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3190  */
3191 static inline unsigned long
3192 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3193 {
3194         return
3195         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3196         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3197         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3198                         vcpu->arch.cr0_guest_owned_bits));
3199 }
3200
3201 static inline unsigned long
3202 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3203 {
3204         return
3205         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3206         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3207         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3208                         vcpu->arch.cr4_guest_owned_bits));
3209 }
3210
3211 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3212                                       struct vmcs12 *vmcs12)
3213 {
3214         u32 idt_vectoring;
3215         unsigned int nr;
3216
3217         if (vcpu->arch.exception.injected) {
3218                 nr = vcpu->arch.exception.nr;
3219                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3220
3221                 if (kvm_exception_is_soft(nr)) {
3222                         vmcs12->vm_exit_instruction_len =
3223                                 vcpu->arch.event_exit_inst_len;
3224                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3225                 } else
3226                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3227
3228                 if (vcpu->arch.exception.has_error_code) {
3229                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3230                         vmcs12->idt_vectoring_error_code =
3231                                 vcpu->arch.exception.error_code;
3232                 }
3233
3234                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3235         } else if (vcpu->arch.nmi_injected) {
3236                 vmcs12->idt_vectoring_info_field =
3237                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3238         } else if (vcpu->arch.interrupt.injected) {
3239                 nr = vcpu->arch.interrupt.nr;
3240                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3241
3242                 if (vcpu->arch.interrupt.soft) {
3243                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3244                         vmcs12->vm_entry_instruction_len =
3245                                 vcpu->arch.event_exit_inst_len;
3246                 } else
3247                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3248
3249                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3250         }
3251 }
3252
3253
3254 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3255 {
3256         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3257         gfn_t gfn;
3258
3259         /*
3260          * Don't need to mark the APIC access page dirty; it is never
3261          * written to by the CPU during APIC virtualization.
3262          */
3263
3264         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3265                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3266                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3267         }
3268
3269         if (nested_cpu_has_posted_intr(vmcs12)) {
3270                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3271                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3272         }
3273 }
3274
3275 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3276 {
3277         struct vcpu_vmx *vmx = to_vmx(vcpu);
3278         int max_irr;
3279         void *vapic_page;
3280         u16 status;
3281
3282         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3283                 return;
3284
3285         vmx->nested.pi_pending = false;
3286         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3287                 return;
3288
3289         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3290         if (max_irr != 256) {
3291                 vapic_page = vmx->nested.virtual_apic_map.hva;
3292                 if (!vapic_page)
3293                         return;
3294
3295                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3296                         vapic_page, &max_irr);
3297                 status = vmcs_read16(GUEST_INTR_STATUS);
3298                 if ((u8)max_irr > ((u8)status & 0xff)) {
3299                         status &= ~0xff;
3300                         status |= (u8)max_irr;
3301                         vmcs_write16(GUEST_INTR_STATUS, status);
3302                 }
3303         }
3304
3305         nested_mark_vmcs12_pages_dirty(vcpu);
3306 }
3307
3308 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3309                                                unsigned long exit_qual)
3310 {
3311         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3312         unsigned int nr = vcpu->arch.exception.nr;
3313         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3314
3315         if (vcpu->arch.exception.has_error_code) {
3316                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3317                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3318         }
3319
3320         if (kvm_exception_is_soft(nr))
3321                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3322         else
3323                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3324
3325         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3326             vmx_get_nmi_mask(vcpu))
3327                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3328
3329         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3330 }
3331
3332 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3333 {
3334         struct vcpu_vmx *vmx = to_vmx(vcpu);
3335         unsigned long exit_qual;
3336         bool block_nested_events =
3337             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3338
3339         if (vcpu->arch.exception.pending &&
3340                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3341                 if (block_nested_events)
3342                         return -EBUSY;
3343                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3344                 return 0;
3345         }
3346
3347         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3348             vmx->nested.preemption_timer_expired) {
3349                 if (block_nested_events)
3350                         return -EBUSY;
3351                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3352                 return 0;
3353         }
3354
3355         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3356                 if (block_nested_events)
3357                         return -EBUSY;
3358                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3359                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3360                                   INTR_INFO_VALID_MASK, 0);
3361                 /*
3362                  * The NMI-triggered VM exit counts as injection:
3363                  * clear this one and block further NMIs.
3364                  */
3365                 vcpu->arch.nmi_pending = 0;
3366                 vmx_set_nmi_mask(vcpu, true);
3367                 return 0;
3368         }
3369
3370         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3371             nested_exit_on_intr(vcpu)) {
3372                 if (block_nested_events)
3373                         return -EBUSY;
3374                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3375                 return 0;
3376         }
3377
3378         vmx_complete_nested_posted_interrupt(vcpu);
3379         return 0;
3380 }
3381
3382 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3383 {
3384         ktime_t remaining =
3385                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3386         u64 value;
3387
3388         if (ktime_to_ns(remaining) <= 0)
3389                 return 0;
3390
3391         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3392         do_div(value, 1000000);
3393         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3394 }
3395
3396 /*
3397  * Update the guest state fields of vmcs12 to reflect changes that
3398  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3399  * VM-entry controls is also updated, since this is really a guest
3400  * state bit.)
3401  */
3402 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3403 {
3404         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3405         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3406
3407         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3408         vmcs12->guest_rip = kvm_rip_read(vcpu);
3409         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3410
3411         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3412         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3413         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3414         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3415         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3416         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3417         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3418         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3419         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3420         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3421         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3422         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3423         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3424         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3425         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3426         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3427         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3428         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3429         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3430         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3431         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3432         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3433         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3434         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3435         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3436         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3437         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3438         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3439         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3440         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3441         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3442         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3443         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3444         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3445         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3446         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3447
3448         vmcs12->guest_interruptibility_info =
3449                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3450         vmcs12->guest_pending_dbg_exceptions =
3451                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3452         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3453                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3454         else
3455                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3456
3457         if (nested_cpu_has_preemption_timer(vmcs12) &&
3458             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3459                         vmcs12->vmx_preemption_timer_value =
3460                                 vmx_get_preemption_timer_value(vcpu);
3461
3462         /*
3463          * In some cases (usually, nested EPT), L2 is allowed to change its
3464          * own CR3 without exiting. If it has changed it, we must keep it.
3465          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3466          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3467          *
3468          * Additionally, restore L2's PDPTR to vmcs12.
3469          */
3470         if (enable_ept) {
3471                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3472                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3473                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3474                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3475                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3476         }
3477
3478         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3479
3480         if (nested_cpu_has_vid(vmcs12))
3481                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3482
3483         vmcs12->vm_entry_controls =
3484                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3485                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3486
3487         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
3488                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3489                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3490         }
3491
3492         /* TODO: These cannot have changed unless we have MSR bitmaps and
3493          * the relevant bit asks not to trap the change */
3494         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
3495                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
3496         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3497                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3498         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3499         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3500         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3501         if (kvm_mpx_supported())
3502                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3503 }
3504
3505 /*
3506  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3507  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3508  * and this function updates it to reflect the changes to the guest state while
3509  * L2 was running (and perhaps made some exits which were handled directly by L0
3510  * without going back to L1), and to reflect the exit reason.
3511  * Note that we do not have to copy here all VMCS fields, just those that
3512  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3513  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3514  * which already writes to vmcs12 directly.
3515  */
3516 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3517                            u32 exit_reason, u32 exit_intr_info,
3518                            unsigned long exit_qualification)
3519 {
3520         /* update guest state fields: */
3521         sync_vmcs12(vcpu, vmcs12);
3522
3523         /* update exit information fields: */
3524
3525         vmcs12->vm_exit_reason = exit_reason;
3526         vmcs12->exit_qualification = exit_qualification;
3527         vmcs12->vm_exit_intr_info = exit_intr_info;
3528
3529         vmcs12->idt_vectoring_info_field = 0;
3530         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3531         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3532
3533         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3534                 vmcs12->launch_state = 1;
3535
3536                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3537                  * instead of reading the real value. */
3538                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3539
3540                 /*
3541                  * Transfer the event that L0 or L1 may wanted to inject into
3542                  * L2 to IDT_VECTORING_INFO_FIELD.
3543                  */
3544                 vmcs12_save_pending_event(vcpu, vmcs12);
3545
3546                 /*
3547                  * According to spec, there's no need to store the guest's
3548                  * MSRs if the exit is due to a VM-entry failure that occurs
3549                  * during or after loading the guest state. Since this exit
3550                  * does not fall in that category, we need to save the MSRs.
3551                  */
3552                 if (nested_vmx_store_msr(vcpu,
3553                                          vmcs12->vm_exit_msr_store_addr,
3554                                          vmcs12->vm_exit_msr_store_count))
3555                         nested_vmx_abort(vcpu,
3556                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3557         }
3558
3559         /*
3560          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3561          * preserved above and would only end up incorrectly in L1.
3562          */
3563         vcpu->arch.nmi_injected = false;
3564         kvm_clear_exception_queue(vcpu);
3565         kvm_clear_interrupt_queue(vcpu);
3566 }
3567
3568 /*
3569  * A part of what we need to when the nested L2 guest exits and we want to
3570  * run its L1 parent, is to reset L1's guest state to the host state specified
3571  * in vmcs12.
3572  * This function is to be called not only on normal nested exit, but also on
3573  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3574  * Failures During or After Loading Guest State").
3575  * This function should be called when the active VMCS is L1's (vmcs01).
3576  */
3577 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3578                                    struct vmcs12 *vmcs12)
3579 {
3580         struct kvm_segment seg;
3581         u32 entry_failure_code;
3582
3583         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3584                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3585         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3586                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3587         else
3588                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3589         vmx_set_efer(vcpu, vcpu->arch.efer);
3590
3591         kvm_rsp_write(vcpu, vmcs12->host_rsp);
3592         kvm_rip_write(vcpu, vmcs12->host_rip);
3593         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3594         vmx_set_interrupt_shadow(vcpu, 0);
3595
3596         /*
3597          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3598          * actually changed, because vmx_set_cr0 refers to efer set above.
3599          *
3600          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3601          * (KVM doesn't change it);
3602          */
3603         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3604         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3605
3606         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3607         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3608         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3609
3610         nested_ept_uninit_mmu_context(vcpu);
3611
3612         /*
3613          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3614          * couldn't have changed.
3615          */
3616         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3617                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3618
3619         if (!enable_ept)
3620                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3621
3622         /*
3623          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3624          * VMEntry/VMExit. Thus, no need to flush TLB.
3625          *
3626          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3627          * flushed on every VMEntry/VMExit.
3628          *
3629          * Otherwise, we can preserve TLB entries as long as we are
3630          * able to tag L1 TLB entries differently than L2 TLB entries.
3631          *
3632          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3633          * and therefore we request the TLB flush to happen only after VMCS EPTP
3634          * has been set by KVM_REQ_LOAD_CR3.
3635          */
3636         if (enable_vpid &&
3637             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3638                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3639         }
3640
3641         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3642         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3643         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3644         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3645         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3646         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3647         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3648
3649         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3650         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3651                 vmcs_write64(GUEST_BNDCFGS, 0);
3652
3653         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3654                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3655                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3656         }
3657         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3658                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3659                         vmcs12->host_ia32_perf_global_ctrl);
3660
3661         /* Set L1 segment info according to Intel SDM
3662             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3663         seg = (struct kvm_segment) {
3664                 .base = 0,
3665                 .limit = 0xFFFFFFFF,
3666                 .selector = vmcs12->host_cs_selector,
3667                 .type = 11,
3668                 .present = 1,
3669                 .s = 1,
3670                 .g = 1
3671         };
3672         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3673                 seg.l = 1;
3674         else
3675                 seg.db = 1;
3676         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3677         seg = (struct kvm_segment) {
3678                 .base = 0,
3679                 .limit = 0xFFFFFFFF,
3680                 .type = 3,
3681                 .present = 1,
3682                 .s = 1,
3683                 .db = 1,
3684                 .g = 1
3685         };
3686         seg.selector = vmcs12->host_ds_selector;
3687         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3688         seg.selector = vmcs12->host_es_selector;
3689         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3690         seg.selector = vmcs12->host_ss_selector;
3691         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3692         seg.selector = vmcs12->host_fs_selector;
3693         seg.base = vmcs12->host_fs_base;
3694         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3695         seg.selector = vmcs12->host_gs_selector;
3696         seg.base = vmcs12->host_gs_base;
3697         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3698         seg = (struct kvm_segment) {
3699                 .base = vmcs12->host_tr_base,
3700                 .limit = 0x67,
3701                 .selector = vmcs12->host_tr_selector,
3702                 .type = 11,
3703                 .present = 1
3704         };
3705         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3706
3707         kvm_set_dr(vcpu, 7, 0x400);
3708         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3709
3710         if (cpu_has_vmx_msr_bitmap())
3711                 vmx_update_msr_bitmap(vcpu);
3712
3713         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3714                                 vmcs12->vm_exit_msr_load_count))
3715                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3716 }
3717
3718 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3719 {
3720         struct shared_msr_entry *efer_msr;
3721         unsigned int i;
3722
3723         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3724                 return vmcs_read64(GUEST_IA32_EFER);
3725
3726         if (cpu_has_load_ia32_efer())
3727                 return host_efer;
3728
3729         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3730                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3731                         return vmx->msr_autoload.guest.val[i].value;
3732         }
3733
3734         efer_msr = find_msr_entry(vmx, MSR_EFER);
3735         if (efer_msr)
3736                 return efer_msr->data;
3737
3738         return host_efer;
3739 }
3740
3741 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3742 {
3743         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3744         struct vcpu_vmx *vmx = to_vmx(vcpu);
3745         struct vmx_msr_entry g, h;
3746         struct msr_data msr;
3747         gpa_t gpa;
3748         u32 i, j;
3749
3750         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3751
3752         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3753                 /*
3754                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3755                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3756                  * and vcpu->arch.dr7 is not squirreled away before the
3757                  * nested VMENTER (not worth adding a variable in nested_vmx).
3758                  */
3759                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3760                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3761                 else
3762                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3763         }
3764
3765         /*
3766          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3767          * handle a variety of side effects to KVM's software model.
3768          */
3769         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3770
3771         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3772         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3773
3774         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3775         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3776
3777         nested_ept_uninit_mmu_context(vcpu);
3778
3779         /*
3780          * This is only valid if EPT is in use, otherwise the vmcs01 GUEST_CR3
3781          * points to shadow pages!  Fortunately we only get here after a WARN_ON
3782          * if EPT is disabled, so a VMabort is perfectly fine.
3783          */
3784         if (enable_ept) {
3785                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3786                 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3787         } else {
3788                 nested_vmx_abort(vcpu, VMX_ABORT_VMCS_CORRUPTED);
3789         }
3790
3791         /*
3792          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3793          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3794          * VMFail, like everything else we just need to ensure our
3795          * software model is up-to-date.
3796          */
3797         ept_save_pdptrs(vcpu);
3798
3799         kvm_mmu_reset_context(vcpu);
3800
3801         if (cpu_has_vmx_msr_bitmap())
3802                 vmx_update_msr_bitmap(vcpu);
3803
3804         /*
3805          * This nasty bit of open coding is a compromise between blindly
3806          * loading L1's MSRs using the exit load lists (incorrect emulation
3807          * of VMFail), leaving the nested VM's MSRs in the software model
3808          * (incorrect behavior) and snapshotting the modified MSRs (too
3809          * expensive since the lists are unbound by hardware).  For each
3810          * MSR that was (prematurely) loaded from the nested VMEntry load
3811          * list, reload it from the exit load list if it exists and differs
3812          * from the guest value.  The intent is to stuff host state as
3813          * silently as possible, not to fully process the exit load list.
3814          */
3815         msr.host_initiated = false;
3816         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3817                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3818                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3819                         pr_debug_ratelimited(
3820                                 "%s read MSR index failed (%u, 0x%08llx)\n",
3821                                 __func__, i, gpa);
3822                         goto vmabort;
3823                 }
3824
3825                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3826                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3827                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3828                                 pr_debug_ratelimited(
3829                                         "%s read MSR failed (%u, 0x%08llx)\n",
3830                                         __func__, j, gpa);
3831                                 goto vmabort;
3832                         }
3833                         if (h.index != g.index)
3834                                 continue;
3835                         if (h.value == g.value)
3836                                 break;
3837
3838                         if (nested_vmx_load_msr_check(vcpu, &h)) {
3839                                 pr_debug_ratelimited(
3840                                         "%s check failed (%u, 0x%x, 0x%x)\n",
3841                                         __func__, j, h.index, h.reserved);
3842                                 goto vmabort;
3843                         }
3844
3845                         msr.index = h.index;
3846                         msr.data = h.value;
3847                         if (kvm_set_msr(vcpu, &msr)) {
3848                                 pr_debug_ratelimited(
3849                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3850                                         __func__, j, h.index, h.value);
3851                                 goto vmabort;
3852                         }
3853                 }
3854         }
3855
3856         return;
3857
3858 vmabort:
3859         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3860 }
3861
3862 /*
3863  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
3864  * and modify vmcs12 to make it see what it would expect to see there if
3865  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
3866  */
3867 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
3868                        u32 exit_intr_info, unsigned long exit_qualification)
3869 {
3870         struct vcpu_vmx *vmx = to_vmx(vcpu);
3871         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3872
3873         /* trying to cancel vmlaunch/vmresume is a bug */
3874         WARN_ON_ONCE(vmx->nested.nested_run_pending);
3875
3876         leave_guest_mode(vcpu);
3877
3878         if (nested_cpu_has_preemption_timer(vmcs12))
3879                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
3880
3881         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3882                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3883
3884         if (likely(!vmx->fail)) {
3885                 if (exit_reason == -1)
3886                         sync_vmcs12(vcpu, vmcs12);
3887                 else
3888                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
3889                                        exit_qualification);
3890
3891                 /*
3892                  * Must happen outside of sync_vmcs12() as it will
3893                  * also be used to capture vmcs12 cache as part of
3894                  * capturing nVMX state for snapshot (migration).
3895                  *
3896                  * Otherwise, this flush will dirty guest memory at a
3897                  * point it is already assumed by user-space to be
3898                  * immutable.
3899                  */
3900                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
3901         } else {
3902                 /*
3903                  * The only expected VM-instruction error is "VM entry with
3904                  * invalid control field(s)." Anything else indicates a
3905                  * problem with L0.  And we should never get here with a
3906                  * VMFail of any type if early consistency checks are enabled.
3907                  */
3908                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
3909                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3910                 WARN_ON_ONCE(nested_early_check);
3911         }
3912
3913         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3914
3915         /* Update any VMCS fields that might have changed while L2 ran */
3916         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3917         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3918         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
3919
3920         if (kvm_has_tsc_control)
3921                 decache_tsc_multiplier(vmx);
3922
3923         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
3924                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
3925                 vmx_set_virtual_apic_mode(vcpu);
3926         } else if (!nested_cpu_has_ept(vmcs12) &&
3927                    nested_cpu_has2(vmcs12,
3928                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3929                 vmx_flush_tlb(vcpu, true);
3930         }
3931
3932         /* Unpin physical memory we referred to in vmcs02 */
3933         if (vmx->nested.apic_access_page) {
3934                 kvm_release_page_dirty(vmx->nested.apic_access_page);
3935                 vmx->nested.apic_access_page = NULL;
3936         }
3937         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
3938         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
3939         vmx->nested.pi_desc = NULL;
3940
3941         /*
3942          * We are now running in L2, mmu_notifier will force to reload the
3943          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
3944          */
3945         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
3946
3947         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
3948                 vmx->nested.need_vmcs12_sync = true;
3949
3950         /* in case we halted in L2 */
3951         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3952
3953         if (likely(!vmx->fail)) {
3954                 /*
3955                  * TODO: SDM says that with acknowledge interrupt on
3956                  * exit, bit 31 of the VM-exit interrupt information
3957                  * (valid interrupt) is always set to 1 on
3958                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
3959                  * need kvm_cpu_has_interrupt().  See the commit
3960                  * message for details.
3961                  */
3962                 if (nested_exit_intr_ack_set(vcpu) &&
3963                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
3964                     kvm_cpu_has_interrupt(vcpu)) {
3965                         int irq = kvm_cpu_get_interrupt(vcpu);
3966                         WARN_ON(irq < 0);
3967                         vmcs12->vm_exit_intr_info = irq |
3968                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
3969                 }
3970
3971                 if (exit_reason != -1)
3972                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
3973                                                        vmcs12->exit_qualification,
3974                                                        vmcs12->idt_vectoring_info_field,
3975                                                        vmcs12->vm_exit_intr_info,
3976                                                        vmcs12->vm_exit_intr_error_code,
3977                                                        KVM_ISA_VMX);
3978
3979                 load_vmcs12_host_state(vcpu, vmcs12);
3980
3981                 return;
3982         }
3983
3984         /*
3985          * After an early L2 VM-entry failure, we're now back
3986          * in L1 which thinks it just finished a VMLAUNCH or
3987          * VMRESUME instruction, so we need to set the failure
3988          * flag and the VM-instruction error field of the VMCS
3989          * accordingly, and skip the emulated instruction.
3990          */
3991         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3992
3993         /*
3994          * Restore L1's host state to KVM's software model.  We're here
3995          * because a consistency check was caught by hardware, which
3996          * means some amount of guest state has been propagated to KVM's
3997          * model and needs to be unwound to the host's state.
3998          */
3999         nested_vmx_restore_host_state(vcpu);
4000
4001         vmx->fail = 0;
4002 }
4003
4004 /*
4005  * Decode the memory-address operand of a vmx instruction, as recorded on an
4006  * exit caused by such an instruction (run by a guest hypervisor).
4007  * On success, returns 0. When the operand is invalid, returns 1 and throws
4008  * #UD or #GP.
4009  */
4010 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4011                         u32 vmx_instruction_info, bool wr, gva_t *ret)
4012 {
4013         gva_t off;
4014         bool exn;
4015         struct kvm_segment s;
4016
4017         /*
4018          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4019          * Execution", on an exit, vmx_instruction_info holds most of the
4020          * addressing components of the operand. Only the displacement part
4021          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4022          * For how an actual address is calculated from all these components,
4023          * refer to Vol. 1, "Operand Addressing".
4024          */
4025         int  scaling = vmx_instruction_info & 3;
4026         int  addr_size = (vmx_instruction_info >> 7) & 7;
4027         bool is_reg = vmx_instruction_info & (1u << 10);
4028         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4029         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4030         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4031         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4032         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4033
4034         if (is_reg) {
4035                 kvm_queue_exception(vcpu, UD_VECTOR);
4036                 return 1;
4037         }
4038
4039         /* Addr = segment_base + offset */
4040         /* offset = base + [index * scale] + displacement */
4041         off = exit_qualification; /* holds the displacement */
4042         if (addr_size == 1)
4043                 off = (gva_t)sign_extend64(off, 31);
4044         else if (addr_size == 0)
4045                 off = (gva_t)sign_extend64(off, 15);
4046         if (base_is_valid)
4047                 off += kvm_register_read(vcpu, base_reg);
4048         if (index_is_valid)
4049                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4050         vmx_get_segment(vcpu, &s, seg_reg);
4051
4052         /*
4053          * The effective address, i.e. @off, of a memory operand is truncated
4054          * based on the address size of the instruction.  Note that this is
4055          * the *effective address*, i.e. the address prior to accounting for
4056          * the segment's base.
4057          */
4058         if (addr_size == 1) /* 32 bit */
4059                 off &= 0xffffffff;
4060         else if (addr_size == 0) /* 16 bit */
4061                 off &= 0xffff;
4062
4063         /* Checks for #GP/#SS exceptions. */
4064         exn = false;
4065         if (is_long_mode(vcpu)) {
4066                 /*
4067                  * The virtual/linear address is never truncated in 64-bit
4068                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4069                  * address when using FS/GS with a non-zero base.
4070                  */
4071                 *ret = s.base + off;
4072
4073                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4074                  * non-canonical form. This is the only check on the memory
4075                  * destination for long mode!
4076                  */
4077                 exn = is_noncanonical_address(*ret, vcpu);
4078         } else {
4079                 /*
4080                  * When not in long mode, the virtual/linear address is
4081                  * unconditionally truncated to 32 bits regardless of the
4082                  * address size.
4083                  */
4084                 *ret = (s.base + off) & 0xffffffff;
4085
4086                 /* Protected mode: apply checks for segment validity in the
4087                  * following order:
4088                  * - segment type check (#GP(0) may be thrown)
4089                  * - usability check (#GP(0)/#SS(0))
4090                  * - limit check (#GP(0)/#SS(0))
4091                  */
4092                 if (wr)
4093                         /* #GP(0) if the destination operand is located in a
4094                          * read-only data segment or any code segment.
4095                          */
4096                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4097                 else
4098                         /* #GP(0) if the source operand is located in an
4099                          * execute-only code segment
4100                          */
4101                         exn = ((s.type & 0xa) == 8);
4102                 if (exn) {
4103                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4104                         return 1;
4105                 }
4106                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4107                  */
4108                 exn = (s.unusable != 0);
4109
4110                 /*
4111                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4112                  * outside the segment limit.  All CPUs that support VMX ignore
4113                  * limit checks for flat segments, i.e. segments with base==0,
4114                  * limit==0xffffffff and of type expand-up data or code.
4115                  */
4116                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4117                      ((s.type & 8) || !(s.type & 4))))
4118                         exn = exn || (off + sizeof(u64) > s.limit);
4119         }
4120         if (exn) {
4121                 kvm_queue_exception_e(vcpu,
4122                                       seg_reg == VCPU_SREG_SS ?
4123                                                 SS_VECTOR : GP_VECTOR,
4124                                       0);
4125                 return 1;
4126         }
4127
4128         return 0;
4129 }
4130
4131 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4132 {
4133         gva_t gva;
4134         struct x86_exception e;
4135
4136         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4137                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
4138                 return 1;
4139
4140         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4141                 kvm_inject_page_fault(vcpu, &e);
4142                 return 1;
4143         }
4144
4145         return 0;
4146 }
4147
4148 /*
4149  * Allocate a shadow VMCS and associate it with the currently loaded
4150  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4151  * VMCS is also VMCLEARed, so that it is ready for use.
4152  */
4153 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4154 {
4155         struct vcpu_vmx *vmx = to_vmx(vcpu);
4156         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4157
4158         /*
4159          * We should allocate a shadow vmcs for vmcs01 only when L1
4160          * executes VMXON and free it when L1 executes VMXOFF.
4161          * As it is invalid to execute VMXON twice, we shouldn't reach
4162          * here when vmcs01 already have an allocated shadow vmcs.
4163          */
4164         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4165
4166         if (!loaded_vmcs->shadow_vmcs) {
4167                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4168                 if (loaded_vmcs->shadow_vmcs)
4169                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4170         }
4171         return loaded_vmcs->shadow_vmcs;
4172 }
4173
4174 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4175 {
4176         struct vcpu_vmx *vmx = to_vmx(vcpu);
4177         int r;
4178
4179         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4180         if (r < 0)
4181                 goto out_vmcs02;
4182
4183         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4184         if (!vmx->nested.cached_vmcs12)
4185                 goto out_cached_vmcs12;
4186
4187         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4188         if (!vmx->nested.cached_shadow_vmcs12)
4189                 goto out_cached_shadow_vmcs12;
4190
4191         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4192                 goto out_shadow_vmcs;
4193
4194         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4195                      HRTIMER_MODE_REL_PINNED);
4196         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4197
4198         vmx->nested.vpid02 = allocate_vpid();
4199
4200         vmx->nested.vmcs02_initialized = false;
4201         vmx->nested.vmxon = true;
4202
4203         if (pt_mode == PT_MODE_HOST_GUEST) {
4204                 vmx->pt_desc.guest.ctl = 0;
4205                 pt_update_intercept_for_msr(vmx);
4206         }
4207
4208         return 0;
4209
4210 out_shadow_vmcs:
4211         kfree(vmx->nested.cached_shadow_vmcs12);
4212
4213 out_cached_shadow_vmcs12:
4214         kfree(vmx->nested.cached_vmcs12);
4215
4216 out_cached_vmcs12:
4217         free_loaded_vmcs(&vmx->nested.vmcs02);
4218
4219 out_vmcs02:
4220         return -ENOMEM;
4221 }
4222
4223 /*
4224  * Emulate the VMXON instruction.
4225  * Currently, we just remember that VMX is active, and do not save or even
4226  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4227  * do not currently need to store anything in that guest-allocated memory
4228  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4229  * argument is different from the VMXON pointer (which the spec says they do).
4230  */
4231 static int handle_vmon(struct kvm_vcpu *vcpu)
4232 {
4233         int ret;
4234         gpa_t vmptr;
4235         uint32_t revision;
4236         struct vcpu_vmx *vmx = to_vmx(vcpu);
4237         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4238                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4239
4240         /*
4241          * The Intel VMX Instruction Reference lists a bunch of bits that are
4242          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4243          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4244          * Otherwise, we should fail with #UD.  But most faulting conditions
4245          * have already been checked by hardware, prior to the VM-exit for
4246          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4247          * that bit set to 1 in non-root mode.
4248          */
4249         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4250                 kvm_queue_exception(vcpu, UD_VECTOR);
4251                 return 1;
4252         }
4253
4254         /* CPL=0 must be checked manually. */
4255         if (vmx_get_cpl(vcpu)) {
4256                 kvm_inject_gp(vcpu, 0);
4257                 return 1;
4258         }
4259
4260         if (vmx->nested.vmxon)
4261                 return nested_vmx_failValid(vcpu,
4262                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4263
4264         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4265                         != VMXON_NEEDED_FEATURES) {
4266                 kvm_inject_gp(vcpu, 0);
4267                 return 1;
4268         }
4269
4270         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4271                 return 1;
4272
4273         /*
4274          * SDM 3: 24.11.5
4275          * The first 4 bytes of VMXON region contain the supported
4276          * VMCS revision identifier
4277          *
4278          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4279          * which replaces physical address width with 32
4280          */
4281         if (!page_address_valid(vcpu, vmptr))
4282                 return nested_vmx_failInvalid(vcpu);
4283
4284         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4285             revision != VMCS12_REVISION)
4286                 return nested_vmx_failInvalid(vcpu);
4287
4288         vmx->nested.vmxon_ptr = vmptr;
4289         ret = enter_vmx_operation(vcpu);
4290         if (ret)
4291                 return ret;
4292
4293         return nested_vmx_succeed(vcpu);
4294 }
4295
4296 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4297 {
4298         struct vcpu_vmx *vmx = to_vmx(vcpu);
4299
4300         if (vmx->nested.current_vmptr == -1ull)
4301                 return;
4302
4303         if (enable_shadow_vmcs) {
4304                 /* copy to memory all shadowed fields in case
4305                    they were modified */
4306                 copy_shadow_to_vmcs12(vmx);
4307                 vmx->nested.need_vmcs12_sync = false;
4308                 vmx_disable_shadow_vmcs(vmx);
4309         }
4310         vmx->nested.posted_intr_nv = -1;
4311
4312         /* Flush VMCS12 to guest memory */
4313         kvm_vcpu_write_guest_page(vcpu,
4314                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4315                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4316
4317         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4318
4319         vmx->nested.current_vmptr = -1ull;
4320 }
4321
4322 /* Emulate the VMXOFF instruction */
4323 static int handle_vmoff(struct kvm_vcpu *vcpu)
4324 {
4325         if (!nested_vmx_check_permission(vcpu))
4326                 return 1;
4327         free_nested(vcpu);
4328         return nested_vmx_succeed(vcpu);
4329 }
4330
4331 /* Emulate the VMCLEAR instruction */
4332 static int handle_vmclear(struct kvm_vcpu *vcpu)
4333 {
4334         struct vcpu_vmx *vmx = to_vmx(vcpu);
4335         u32 zero = 0;
4336         gpa_t vmptr;
4337
4338         if (!nested_vmx_check_permission(vcpu))
4339                 return 1;
4340
4341         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4342                 return 1;
4343
4344         if (!page_address_valid(vcpu, vmptr))
4345                 return nested_vmx_failValid(vcpu,
4346                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4347
4348         if (vmptr == vmx->nested.vmxon_ptr)
4349                 return nested_vmx_failValid(vcpu,
4350                         VMXERR_VMCLEAR_VMXON_POINTER);
4351
4352         if (vmx->nested.hv_evmcs_map.hva) {
4353                 if (vmptr == vmx->nested.hv_evmcs_vmptr)
4354                         nested_release_evmcs(vcpu);
4355         } else {
4356                 if (vmptr == vmx->nested.current_vmptr)
4357                         nested_release_vmcs12(vcpu);
4358
4359                 kvm_vcpu_write_guest(vcpu,
4360                                      vmptr + offsetof(struct vmcs12,
4361                                                       launch_state),
4362                                      &zero, sizeof(zero));
4363         }
4364
4365         return nested_vmx_succeed(vcpu);
4366 }
4367
4368 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4369
4370 /* Emulate the VMLAUNCH instruction */
4371 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4372 {
4373         return nested_vmx_run(vcpu, true);
4374 }
4375
4376 /* Emulate the VMRESUME instruction */
4377 static int handle_vmresume(struct kvm_vcpu *vcpu)
4378 {
4379
4380         return nested_vmx_run(vcpu, false);
4381 }
4382
4383 static int handle_vmread(struct kvm_vcpu *vcpu)
4384 {
4385         unsigned long field;
4386         u64 field_value;
4387         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4388         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4389         gva_t gva = 0;
4390         struct vmcs12 *vmcs12;
4391
4392         if (!nested_vmx_check_permission(vcpu))
4393                 return 1;
4394
4395         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4396                 return nested_vmx_failInvalid(vcpu);
4397
4398         if (!is_guest_mode(vcpu))
4399                 vmcs12 = get_vmcs12(vcpu);
4400         else {
4401                 /*
4402                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4403                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4404                  */
4405                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4406                         return nested_vmx_failInvalid(vcpu);
4407                 vmcs12 = get_shadow_vmcs12(vcpu);
4408         }
4409
4410         /* Decode instruction info and find the field to read */
4411         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4412         /* Read the field, zero-extended to a u64 field_value */
4413         if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
4414                 return nested_vmx_failValid(vcpu,
4415                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4416
4417         /*
4418          * Now copy part of this value to register or memory, as requested.
4419          * Note that the number of bits actually copied is 32 or 64 depending
4420          * on the guest's mode (32 or 64 bit), not on the given field's length.
4421          */
4422         if (vmx_instruction_info & (1u << 10)) {
4423                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4424                         field_value);
4425         } else {
4426                 if (get_vmx_mem_address(vcpu, exit_qualification,
4427                                 vmx_instruction_info, true, &gva))
4428                         return 1;
4429                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4430                 kvm_write_guest_virt_system(vcpu, gva, &field_value,
4431                                             (is_long_mode(vcpu) ? 8 : 4), NULL);
4432         }
4433
4434         return nested_vmx_succeed(vcpu);
4435 }
4436
4437
4438 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4439 {
4440         unsigned long field;
4441         gva_t gva;
4442         struct vcpu_vmx *vmx = to_vmx(vcpu);
4443         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4444         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4445
4446         /* The value to write might be 32 or 64 bits, depending on L1's long
4447          * mode, and eventually we need to write that into a field of several
4448          * possible lengths. The code below first zero-extends the value to 64
4449          * bit (field_value), and then copies only the appropriate number of
4450          * bits into the vmcs12 field.
4451          */
4452         u64 field_value = 0;
4453         struct x86_exception e;
4454         struct vmcs12 *vmcs12;
4455
4456         if (!nested_vmx_check_permission(vcpu))
4457                 return 1;
4458
4459         if (vmx->nested.current_vmptr == -1ull)
4460                 return nested_vmx_failInvalid(vcpu);
4461
4462         if (vmx_instruction_info & (1u << 10))
4463                 field_value = kvm_register_readl(vcpu,
4464                         (((vmx_instruction_info) >> 3) & 0xf));
4465         else {
4466                 if (get_vmx_mem_address(vcpu, exit_qualification,
4467                                 vmx_instruction_info, false, &gva))
4468                         return 1;
4469                 if (kvm_read_guest_virt(vcpu, gva, &field_value,
4470                                         (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
4471                         kvm_inject_page_fault(vcpu, &e);
4472                         return 1;
4473                 }
4474         }
4475
4476
4477         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4478         /*
4479          * If the vCPU supports "VMWRITE to any supported field in the
4480          * VMCS," then the "read-only" fields are actually read/write.
4481          */
4482         if (vmcs_field_readonly(field) &&
4483             !nested_cpu_has_vmwrite_any_field(vcpu))
4484                 return nested_vmx_failValid(vcpu,
4485                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4486
4487         if (!is_guest_mode(vcpu))
4488                 vmcs12 = get_vmcs12(vcpu);
4489         else {
4490                 /*
4491                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4492                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4493                  */
4494                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4495                         return nested_vmx_failInvalid(vcpu);
4496                 vmcs12 = get_shadow_vmcs12(vcpu);
4497         }
4498
4499         if (vmcs12_write_any(vmcs12, field, field_value) < 0)
4500                 return nested_vmx_failValid(vcpu,
4501                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4502
4503         /*
4504          * Do not track vmcs12 dirty-state if in guest-mode
4505          * as we actually dirty shadow vmcs12 instead of vmcs12.
4506          */
4507         if (!is_guest_mode(vcpu)) {
4508                 switch (field) {
4509 #define SHADOW_FIELD_RW(x) case x:
4510 #include "vmcs_shadow_fields.h"
4511                         /*
4512                          * The fields that can be updated by L1 without a vmexit are
4513                          * always updated in the vmcs02, the others go down the slow
4514                          * path of prepare_vmcs02.
4515                          */
4516                         break;
4517                 default:
4518                         vmx->nested.dirty_vmcs12 = true;
4519                         break;
4520                 }
4521         }
4522
4523         return nested_vmx_succeed(vcpu);
4524 }
4525
4526 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4527 {
4528         vmx->nested.current_vmptr = vmptr;
4529         if (enable_shadow_vmcs) {
4530                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4531                               SECONDARY_EXEC_SHADOW_VMCS);
4532                 vmcs_write64(VMCS_LINK_POINTER,
4533                              __pa(vmx->vmcs01.shadow_vmcs));
4534                 vmx->nested.need_vmcs12_sync = true;
4535         }
4536         vmx->nested.dirty_vmcs12 = true;
4537 }
4538
4539 /* Emulate the VMPTRLD instruction */
4540 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4541 {
4542         struct vcpu_vmx *vmx = to_vmx(vcpu);
4543         gpa_t vmptr;
4544
4545         if (!nested_vmx_check_permission(vcpu))
4546                 return 1;
4547
4548         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4549                 return 1;
4550
4551         if (!page_address_valid(vcpu, vmptr))
4552                 return nested_vmx_failValid(vcpu,
4553                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4554
4555         if (vmptr == vmx->nested.vmxon_ptr)
4556                 return nested_vmx_failValid(vcpu,
4557                         VMXERR_VMPTRLD_VMXON_POINTER);
4558
4559         /* Forbid normal VMPTRLD if Enlightened version was used */
4560         if (vmx->nested.hv_evmcs)
4561                 return 1;
4562
4563         if (vmx->nested.current_vmptr != vmptr) {
4564                 struct kvm_host_map map;
4565                 struct vmcs12 *new_vmcs12;
4566
4567                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4568                         /*
4569                          * Reads from an unbacked page return all 1s,
4570                          * which means that the 32 bits located at the
4571                          * given physical address won't match the required
4572                          * VMCS12_REVISION identifier.
4573                          */
4574                         return nested_vmx_failValid(vcpu,
4575                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4576                 }
4577
4578                 new_vmcs12 = map.hva;
4579
4580                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4581                     (new_vmcs12->hdr.shadow_vmcs &&
4582                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4583                         kvm_vcpu_unmap(vcpu, &map, false);
4584                         return nested_vmx_failValid(vcpu,
4585                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4586                 }
4587
4588                 nested_release_vmcs12(vcpu);
4589
4590                 /*
4591                  * Load VMCS12 from guest memory since it is not already
4592                  * cached.
4593                  */
4594                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4595                 kvm_vcpu_unmap(vcpu, &map, false);
4596
4597                 set_current_vmptr(vmx, vmptr);
4598         }
4599
4600         return nested_vmx_succeed(vcpu);
4601 }
4602
4603 /* Emulate the VMPTRST instruction */
4604 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4605 {
4606         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4607         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4608         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4609         struct x86_exception e;
4610         gva_t gva;
4611
4612         if (!nested_vmx_check_permission(vcpu))
4613                 return 1;
4614
4615         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4616                 return 1;
4617
4618         if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
4619                 return 1;
4620         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4621         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4622                                         sizeof(gpa_t), &e)) {
4623                 kvm_inject_page_fault(vcpu, &e);
4624                 return 1;
4625         }
4626         return nested_vmx_succeed(vcpu);
4627 }
4628
4629 /* Emulate the INVEPT instruction */
4630 static int handle_invept(struct kvm_vcpu *vcpu)
4631 {
4632         struct vcpu_vmx *vmx = to_vmx(vcpu);
4633         u32 vmx_instruction_info, types;
4634         unsigned long type;
4635         gva_t gva;
4636         struct x86_exception e;
4637         struct {
4638                 u64 eptp, gpa;
4639         } operand;
4640
4641         if (!(vmx->nested.msrs.secondary_ctls_high &
4642               SECONDARY_EXEC_ENABLE_EPT) ||
4643             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4644                 kvm_queue_exception(vcpu, UD_VECTOR);
4645                 return 1;
4646         }
4647
4648         if (!nested_vmx_check_permission(vcpu))
4649                 return 1;
4650
4651         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4652         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4653
4654         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4655
4656         if (type >= 32 || !(types & (1 << type)))
4657                 return nested_vmx_failValid(vcpu,
4658                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4659
4660         /* According to the Intel VMX instruction reference, the memory
4661          * operand is read even if it isn't needed (e.g., for type==global)
4662          */
4663         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4664                         vmx_instruction_info, false, &gva))
4665                 return 1;
4666         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4667                 kvm_inject_page_fault(vcpu, &e);
4668                 return 1;
4669         }
4670
4671         switch (type) {
4672         case VMX_EPT_EXTENT_GLOBAL:
4673         /*
4674          * TODO: track mappings and invalidate
4675          * single context requests appropriately
4676          */
4677         case VMX_EPT_EXTENT_CONTEXT:
4678                 kvm_mmu_sync_roots(vcpu);
4679                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4680                 break;
4681         default:
4682                 BUG_ON(1);
4683                 break;
4684         }
4685
4686         return nested_vmx_succeed(vcpu);
4687 }
4688
4689 static int handle_invvpid(struct kvm_vcpu *vcpu)
4690 {
4691         struct vcpu_vmx *vmx = to_vmx(vcpu);
4692         u32 vmx_instruction_info;
4693         unsigned long type, types;
4694         gva_t gva;
4695         struct x86_exception e;
4696         struct {
4697                 u64 vpid;
4698                 u64 gla;
4699         } operand;
4700         u16 vpid02;
4701
4702         if (!(vmx->nested.msrs.secondary_ctls_high &
4703               SECONDARY_EXEC_ENABLE_VPID) ||
4704                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4705                 kvm_queue_exception(vcpu, UD_VECTOR);
4706                 return 1;
4707         }
4708
4709         if (!nested_vmx_check_permission(vcpu))
4710                 return 1;
4711
4712         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4713         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4714
4715         types = (vmx->nested.msrs.vpid_caps &
4716                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4717
4718         if (type >= 32 || !(types & (1 << type)))
4719                 return nested_vmx_failValid(vcpu,
4720                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4721
4722         /* according to the intel vmx instruction reference, the memory
4723          * operand is read even if it isn't needed (e.g., for type==global)
4724          */
4725         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4726                         vmx_instruction_info, false, &gva))
4727                 return 1;
4728         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4729                 kvm_inject_page_fault(vcpu, &e);
4730                 return 1;
4731         }
4732         if (operand.vpid >> 16)
4733                 return nested_vmx_failValid(vcpu,
4734                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4735
4736         vpid02 = nested_get_vpid02(vcpu);
4737         switch (type) {
4738         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4739                 if (!operand.vpid ||
4740                     is_noncanonical_address(operand.gla, vcpu))
4741                         return nested_vmx_failValid(vcpu,
4742                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4743                 if (cpu_has_vmx_invvpid_individual_addr()) {
4744                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4745                                 vpid02, operand.gla);
4746                 } else
4747                         __vmx_flush_tlb(vcpu, vpid02, false);
4748                 break;
4749         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4750         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4751                 if (!operand.vpid)
4752                         return nested_vmx_failValid(vcpu,
4753                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4754                 __vmx_flush_tlb(vcpu, vpid02, false);
4755                 break;
4756         case VMX_VPID_EXTENT_ALL_CONTEXT:
4757                 __vmx_flush_tlb(vcpu, vpid02, false);
4758                 break;
4759         default:
4760                 WARN_ON_ONCE(1);
4761                 return kvm_skip_emulated_instruction(vcpu);
4762         }
4763
4764         return nested_vmx_succeed(vcpu);
4765 }
4766
4767 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4768                                      struct vmcs12 *vmcs12)
4769 {
4770         u32 index = kvm_rcx_read(vcpu);
4771         u64 address;
4772         bool accessed_dirty;
4773         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4774
4775         if (!nested_cpu_has_eptp_switching(vmcs12) ||
4776             !nested_cpu_has_ept(vmcs12))
4777                 return 1;
4778
4779         if (index >= VMFUNC_EPTP_ENTRIES)
4780                 return 1;
4781
4782
4783         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4784                                      &address, index * 8, 8))
4785                 return 1;
4786
4787         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4788
4789         /*
4790          * If the (L2) guest does a vmfunc to the currently
4791          * active ept pointer, we don't have to do anything else
4792          */
4793         if (vmcs12->ept_pointer != address) {
4794                 if (!valid_ept_address(vcpu, address))
4795                         return 1;
4796
4797                 kvm_mmu_unload(vcpu);
4798                 mmu->ept_ad = accessed_dirty;
4799                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
4800                 vmcs12->ept_pointer = address;
4801                 /*
4802                  * TODO: Check what's the correct approach in case
4803                  * mmu reload fails. Currently, we just let the next
4804                  * reload potentially fail
4805                  */
4806                 kvm_mmu_reload(vcpu);
4807         }
4808
4809         return 0;
4810 }
4811
4812 static int handle_vmfunc(struct kvm_vcpu *vcpu)
4813 {
4814         struct vcpu_vmx *vmx = to_vmx(vcpu);
4815         struct vmcs12 *vmcs12;
4816         u32 function = kvm_rax_read(vcpu);
4817
4818         /*
4819          * VMFUNC is only supported for nested guests, but we always enable the
4820          * secondary control for simplicity; for non-nested mode, fake that we
4821          * didn't by injecting #UD.
4822          */
4823         if (!is_guest_mode(vcpu)) {
4824                 kvm_queue_exception(vcpu, UD_VECTOR);
4825                 return 1;
4826         }
4827
4828         vmcs12 = get_vmcs12(vcpu);
4829         if ((vmcs12->vm_function_control & (1 << function)) == 0)
4830                 goto fail;
4831
4832         switch (function) {
4833         case 0:
4834                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
4835                         goto fail;
4836                 break;
4837         default:
4838                 goto fail;
4839         }
4840         return kvm_skip_emulated_instruction(vcpu);
4841
4842 fail:
4843         nested_vmx_vmexit(vcpu, vmx->exit_reason,
4844                           vmcs_read32(VM_EXIT_INTR_INFO),
4845                           vmcs_readl(EXIT_QUALIFICATION));
4846         return 1;
4847 }
4848
4849
4850 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4851                                        struct vmcs12 *vmcs12)
4852 {
4853         unsigned long exit_qualification;
4854         gpa_t bitmap, last_bitmap;
4855         unsigned int port;
4856         int size;
4857         u8 b;
4858
4859         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4860                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4861
4862         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4863
4864         port = exit_qualification >> 16;
4865         size = (exit_qualification & 7) + 1;
4866
4867         last_bitmap = (gpa_t)-1;
4868         b = -1;
4869
4870         while (size > 0) {
4871                 if (port < 0x8000)
4872                         bitmap = vmcs12->io_bitmap_a;
4873                 else if (port < 0x10000)
4874                         bitmap = vmcs12->io_bitmap_b;
4875                 else
4876                         return true;
4877                 bitmap += (port & 0x7fff) / 8;
4878
4879                 if (last_bitmap != bitmap)
4880                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
4881                                 return true;
4882                 if (b & (1 << (port & 7)))
4883                         return true;
4884
4885                 port++;
4886                 size--;
4887                 last_bitmap = bitmap;
4888         }
4889
4890         return false;
4891 }
4892
4893 /*
4894  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
4895  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
4896  * disinterest in the current event (read or write a specific MSR) by using an
4897  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
4898  */
4899 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
4900         struct vmcs12 *vmcs12, u32 exit_reason)
4901 {
4902         u32 msr_index = kvm_rcx_read(vcpu);
4903         gpa_t bitmap;
4904
4905         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
4906                 return true;
4907
4908         /*
4909          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
4910          * for the four combinations of read/write and low/high MSR numbers.
4911          * First we need to figure out which of the four to use:
4912          */
4913         bitmap = vmcs12->msr_bitmap;
4914         if (exit_reason == EXIT_REASON_MSR_WRITE)
4915                 bitmap += 2048;
4916         if (msr_index >= 0xc0000000) {
4917                 msr_index -= 0xc0000000;
4918                 bitmap += 1024;
4919         }
4920
4921         /* Then read the msr_index'th bit from this bitmap: */
4922         if (msr_index < 1024*8) {
4923                 unsigned char b;
4924                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
4925                         return true;
4926                 return 1 & (b >> (msr_index & 7));
4927         } else
4928                 return true; /* let L1 handle the wrong parameter */
4929 }
4930
4931 /*
4932  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
4933  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
4934  * intercept (via guest_host_mask etc.) the current event.
4935  */
4936 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
4937         struct vmcs12 *vmcs12)
4938 {
4939         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4940         int cr = exit_qualification & 15;
4941         int reg;
4942         unsigned long val;
4943
4944         switch ((exit_qualification >> 4) & 3) {
4945         case 0: /* mov to cr */
4946                 reg = (exit_qualification >> 8) & 15;
4947                 val = kvm_register_readl(vcpu, reg);
4948                 switch (cr) {
4949                 case 0:
4950                         if (vmcs12->cr0_guest_host_mask &
4951                             (val ^ vmcs12->cr0_read_shadow))
4952                                 return true;
4953                         break;
4954                 case 3:
4955                         if ((vmcs12->cr3_target_count >= 1 &&
4956                                         vmcs12->cr3_target_value0 == val) ||
4957                                 (vmcs12->cr3_target_count >= 2 &&
4958                                         vmcs12->cr3_target_value1 == val) ||
4959                                 (vmcs12->cr3_target_count >= 3 &&
4960                                         vmcs12->cr3_target_value2 == val) ||
4961                                 (vmcs12->cr3_target_count >= 4 &&
4962                                         vmcs12->cr3_target_value3 == val))
4963                                 return false;
4964                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
4965                                 return true;
4966                         break;
4967                 case 4:
4968                         if (vmcs12->cr4_guest_host_mask &
4969                             (vmcs12->cr4_read_shadow ^ val))
4970                                 return true;
4971                         break;
4972                 case 8:
4973                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
4974                                 return true;
4975                         break;
4976                 }
4977                 break;
4978         case 2: /* clts */
4979                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
4980                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
4981                         return true;
4982                 break;
4983         case 1: /* mov from cr */
4984                 switch (cr) {
4985                 case 3:
4986                         if (vmcs12->cpu_based_vm_exec_control &
4987                             CPU_BASED_CR3_STORE_EXITING)
4988                                 return true;
4989                         break;
4990                 case 8:
4991                         if (vmcs12->cpu_based_vm_exec_control &
4992                             CPU_BASED_CR8_STORE_EXITING)
4993                                 return true;
4994                         break;
4995                 }
4996                 break;
4997         case 3: /* lmsw */
4998                 /*
4999                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5000                  * cr0. Other attempted changes are ignored, with no exit.
5001                  */
5002                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5003                 if (vmcs12->cr0_guest_host_mask & 0xe &
5004                     (val ^ vmcs12->cr0_read_shadow))
5005                         return true;
5006                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5007                     !(vmcs12->cr0_read_shadow & 0x1) &&
5008                     (val & 0x1))
5009                         return true;
5010                 break;
5011         }
5012         return false;
5013 }
5014
5015 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5016         struct vmcs12 *vmcs12, gpa_t bitmap)
5017 {
5018         u32 vmx_instruction_info;
5019         unsigned long field;
5020         u8 b;
5021
5022         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5023                 return true;
5024
5025         /* Decode instruction info and find the field to access */
5026         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5027         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5028
5029         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5030         if (field >> 15)
5031                 return true;
5032
5033         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5034                 return true;
5035
5036         return 1 & (b >> (field & 7));
5037 }
5038
5039 /*
5040  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5041  * should handle it ourselves in L0 (and then continue L2). Only call this
5042  * when in is_guest_mode (L2).
5043  */
5044 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5045 {
5046         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5047         struct vcpu_vmx *vmx = to_vmx(vcpu);
5048         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5049
5050         if (vmx->nested.nested_run_pending)
5051                 return false;
5052
5053         if (unlikely(vmx->fail)) {
5054                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5055                                     vmcs_read32(VM_INSTRUCTION_ERROR));
5056                 return true;
5057         }
5058
5059         /*
5060          * The host physical addresses of some pages of guest memory
5061          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5062          * Page). The CPU may write to these pages via their host
5063          * physical address while L2 is running, bypassing any
5064          * address-translation-based dirty tracking (e.g. EPT write
5065          * protection).
5066          *
5067          * Mark them dirty on every exit from L2 to prevent them from
5068          * getting out of sync with dirty tracking.
5069          */
5070         nested_mark_vmcs12_pages_dirty(vcpu);
5071
5072         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5073                                 vmcs_readl(EXIT_QUALIFICATION),
5074                                 vmx->idt_vectoring_info,
5075                                 intr_info,
5076                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5077                                 KVM_ISA_VMX);
5078
5079         switch (exit_reason) {
5080         case EXIT_REASON_EXCEPTION_NMI:
5081                 if (is_nmi(intr_info))
5082                         return false;
5083                 else if (is_page_fault(intr_info))
5084                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5085                 else if (is_debug(intr_info) &&
5086                          vcpu->guest_debug &
5087                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5088                         return false;
5089                 else if (is_breakpoint(intr_info) &&
5090                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5091                         return false;
5092                 return vmcs12->exception_bitmap &
5093                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5094         case EXIT_REASON_EXTERNAL_INTERRUPT:
5095                 return false;
5096         case EXIT_REASON_TRIPLE_FAULT:
5097                 return true;
5098         case EXIT_REASON_PENDING_INTERRUPT:
5099                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5100         case EXIT_REASON_NMI_WINDOW:
5101                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5102         case EXIT_REASON_TASK_SWITCH:
5103                 return true;
5104         case EXIT_REASON_CPUID:
5105                 return true;
5106         case EXIT_REASON_HLT:
5107                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5108         case EXIT_REASON_INVD:
5109                 return true;
5110         case EXIT_REASON_INVLPG:
5111                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5112         case EXIT_REASON_RDPMC:
5113                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5114         case EXIT_REASON_RDRAND:
5115                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5116         case EXIT_REASON_RDSEED:
5117                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5118         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5119                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5120         case EXIT_REASON_VMREAD:
5121                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5122                         vmcs12->vmread_bitmap);
5123         case EXIT_REASON_VMWRITE:
5124                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5125                         vmcs12->vmwrite_bitmap);
5126         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5127         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5128         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5129         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5130         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5131                 /*
5132                  * VMX instructions trap unconditionally. This allows L1 to
5133                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5134                  */
5135                 return true;
5136         case EXIT_REASON_CR_ACCESS:
5137                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5138         case EXIT_REASON_DR_ACCESS:
5139                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5140         case EXIT_REASON_IO_INSTRUCTION:
5141                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5142         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5143                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5144         case EXIT_REASON_MSR_READ:
5145         case EXIT_REASON_MSR_WRITE:
5146                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5147         case EXIT_REASON_INVALID_STATE:
5148                 return true;
5149         case EXIT_REASON_MWAIT_INSTRUCTION:
5150                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5151         case EXIT_REASON_MONITOR_TRAP_FLAG:
5152                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5153         case EXIT_REASON_MONITOR_INSTRUCTION:
5154                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5155         case EXIT_REASON_PAUSE_INSTRUCTION:
5156                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5157                         nested_cpu_has2(vmcs12,
5158                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5159         case EXIT_REASON_MCE_DURING_VMENTRY:
5160                 return false;
5161         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5162                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5163         case EXIT_REASON_APIC_ACCESS:
5164         case EXIT_REASON_APIC_WRITE:
5165         case EXIT_REASON_EOI_INDUCED:
5166                 /*
5167                  * The controls for "virtualize APIC accesses," "APIC-
5168                  * register virtualization," and "virtual-interrupt
5169                  * delivery" only come from vmcs12.
5170                  */
5171                 return true;
5172         case EXIT_REASON_EPT_VIOLATION:
5173                 /*
5174                  * L0 always deals with the EPT violation. If nested EPT is
5175                  * used, and the nested mmu code discovers that the address is
5176                  * missing in the guest EPT table (EPT12), the EPT violation
5177                  * will be injected with nested_ept_inject_page_fault()
5178                  */
5179                 return false;
5180         case EXIT_REASON_EPT_MISCONFIG:
5181                 /*
5182                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5183                  * table (shadow on EPT) or a merged EPT table that L0 built
5184                  * (EPT on EPT). So any problems with the structure of the
5185                  * table is L0's fault.
5186                  */
5187                 return false;
5188         case EXIT_REASON_INVPCID:
5189                 return
5190                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5191                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5192         case EXIT_REASON_WBINVD:
5193                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5194         case EXIT_REASON_XSETBV:
5195                 return true;
5196         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5197                 /*
5198                  * This should never happen, since it is not possible to
5199                  * set XSS to a non-zero value---neither in L1 nor in L2.
5200                  * If if it were, XSS would have to be checked against
5201                  * the XSS exit bitmap in vmcs12.
5202                  */
5203                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5204         case EXIT_REASON_PREEMPTION_TIMER:
5205                 return false;
5206         case EXIT_REASON_PML_FULL:
5207                 /* We emulate PML support to L1. */
5208                 return false;
5209         case EXIT_REASON_VMFUNC:
5210                 /* VM functions are emulated through L2->L0 vmexits. */
5211                 return false;
5212         case EXIT_REASON_ENCLS:
5213                 /* SGX is never exposed to L1 */
5214                 return false;
5215         default:
5216                 return true;
5217         }
5218 }
5219
5220
5221 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5222                                 struct kvm_nested_state __user *user_kvm_nested_state,
5223                                 u32 user_data_size)
5224 {
5225         struct vcpu_vmx *vmx;
5226         struct vmcs12 *vmcs12;
5227         struct kvm_nested_state kvm_state = {
5228                 .flags = 0,
5229                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5230                 .size = sizeof(kvm_state),
5231                 .hdr.vmx.vmxon_pa = -1ull,
5232                 .hdr.vmx.vmcs12_pa = -1ull,
5233         };
5234         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5235                 &user_kvm_nested_state->data.vmx[0];
5236
5237         if (!vcpu)
5238                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5239
5240         vmx = to_vmx(vcpu);
5241         vmcs12 = get_vmcs12(vcpu);
5242
5243         if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
5244                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5245
5246         if (nested_vmx_allowed(vcpu) &&
5247             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5248                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5249                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5250
5251                 if (vmx_has_valid_vmcs12(vcpu)) {
5252                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5253
5254                         if (is_guest_mode(vcpu) &&
5255                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5256                             vmcs12->vmcs_link_pointer != -1ull)
5257                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5258                 }
5259
5260                 if (vmx->nested.smm.vmxon)
5261                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5262
5263                 if (vmx->nested.smm.guest_mode)
5264                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5265
5266                 if (is_guest_mode(vcpu)) {
5267                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5268
5269                         if (vmx->nested.nested_run_pending)
5270                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5271                 }
5272         }
5273
5274         if (user_data_size < kvm_state.size)
5275                 goto out;
5276
5277         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5278                 return -EFAULT;
5279
5280         if (!vmx_has_valid_vmcs12(vcpu))
5281                 goto out;
5282
5283         /*
5284          * When running L2, the authoritative vmcs12 state is in the
5285          * vmcs02. When running L1, the authoritative vmcs12 state is
5286          * in the shadow or enlightened vmcs linked to vmcs01, unless
5287          * need_vmcs12_sync is set, in which case, the authoritative
5288          * vmcs12 state is in the vmcs12 already.
5289          */
5290         if (is_guest_mode(vcpu)) {
5291                 sync_vmcs12(vcpu, vmcs12);
5292         } else if (!vmx->nested.need_vmcs12_sync) {
5293                 if (vmx->nested.hv_evmcs)
5294                         copy_enlightened_to_vmcs12(vmx);
5295                 else if (enable_shadow_vmcs)
5296                         copy_shadow_to_vmcs12(vmx);
5297         }
5298
5299         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5300         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5301
5302         /*
5303          * Copy over the full allocated size of vmcs12 rather than just the size
5304          * of the struct.
5305          */
5306         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5307                 return -EFAULT;
5308
5309         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5310             vmcs12->vmcs_link_pointer != -1ull) {
5311                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5312                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5313                         return -EFAULT;
5314         }
5315
5316 out:
5317         return kvm_state.size;
5318 }
5319
5320 /*
5321  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5322  */
5323 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5324 {
5325         if (is_guest_mode(vcpu)) {
5326                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5327                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5328         }
5329         free_nested(vcpu);
5330 }
5331
5332 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5333                                 struct kvm_nested_state __user *user_kvm_nested_state,
5334                                 struct kvm_nested_state *kvm_state)
5335 {
5336         struct vcpu_vmx *vmx = to_vmx(vcpu);
5337         struct vmcs12 *vmcs12;
5338         u32 exit_qual;
5339         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5340                 &user_kvm_nested_state->data.vmx[0];
5341         int ret;
5342
5343         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5344                 return -EINVAL;
5345
5346         if (!nested_vmx_allowed(vcpu))
5347                 return kvm_state->hdr.vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
5348
5349         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5350                 if (kvm_state->hdr.vmx.smm.flags)
5351                         return -EINVAL;
5352
5353                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5354                         return -EINVAL;
5355
5356                 vmx_leave_nested(vcpu);
5357                 return 0;
5358         }
5359
5360         if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5361                 return -EINVAL;
5362
5363         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5364             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5365                 return -EINVAL;
5366
5367         if (kvm_state->hdr.vmx.smm.flags &
5368             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5369                 return -EINVAL;
5370
5371         /*
5372          * SMM temporarily disables VMX, so we cannot be in guest mode,
5373          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5374          * must be zero.
5375          */
5376         if (is_smm(vcpu) ? kvm_state->flags : kvm_state->hdr.vmx.smm.flags)
5377                 return -EINVAL;
5378
5379         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5380             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5381                 return -EINVAL;
5382
5383         vmx_leave_nested(vcpu);
5384         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5385                 return 0;
5386
5387         if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
5388                 nested_enable_evmcs(vcpu, NULL);
5389
5390         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5391         ret = enter_vmx_operation(vcpu);
5392         if (ret)
5393                 return ret;
5394
5395         /* Empty 'VMXON' state is permitted */
5396         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5397                 return 0;
5398
5399         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5400                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5401                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5402                         return -EINVAL;
5403
5404                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5405         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5406                 /*
5407                  * Sync eVMCS upon entry as we may not have
5408                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5409                  */
5410                 vmx->nested.need_vmcs12_sync = true;
5411         } else {
5412                 return -EINVAL;
5413         }
5414
5415         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5416                 vmx->nested.smm.vmxon = true;
5417                 vmx->nested.vmxon = false;
5418
5419                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5420                         vmx->nested.smm.guest_mode = true;
5421         }
5422
5423         vmcs12 = get_vmcs12(vcpu);
5424         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5425                 return -EFAULT;
5426
5427         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5428                 return -EINVAL;
5429
5430         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5431                 return 0;
5432
5433         vmx->nested.nested_run_pending =
5434                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5435
5436         ret = -EINVAL;
5437         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5438             vmcs12->vmcs_link_pointer != -1ull) {
5439                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5440
5441                 if (kvm_state->size <
5442                     sizeof(*kvm_state) +
5443                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5444                         goto error_guest_mode;
5445
5446                 if (copy_from_user(shadow_vmcs12,
5447                                    user_vmx_nested_state->shadow_vmcs12,
5448                                    sizeof(*shadow_vmcs12))) {
5449                         ret = -EFAULT;
5450                         goto error_guest_mode;
5451                 }
5452
5453                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5454                     !shadow_vmcs12->hdr.shadow_vmcs)
5455                         goto error_guest_mode;
5456         }
5457
5458         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5459             nested_vmx_check_host_state(vcpu, vmcs12) ||
5460             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5461                 goto error_guest_mode;
5462
5463         vmx->nested.dirty_vmcs12 = true;
5464         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5465         if (ret)
5466                 goto error_guest_mode;
5467
5468         return 0;
5469
5470 error_guest_mode:
5471         vmx->nested.nested_run_pending = 0;
5472         return ret;
5473 }
5474
5475 void nested_vmx_vcpu_setup(void)
5476 {
5477         if (enable_shadow_vmcs) {
5478                 /*
5479                  * At vCPU creation, "VMWRITE to any supported field
5480                  * in the VMCS" is supported, so use the more
5481                  * permissive vmx_vmread_bitmap to specify both read
5482                  * and write permissions for the shadow VMCS.
5483                  */
5484                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5485                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
5486         }
5487 }
5488
5489 /*
5490  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5491  * returned for the various VMX controls MSRs when nested VMX is enabled.
5492  * The same values should also be used to verify that vmcs12 control fields are
5493  * valid during nested entry from L1 to L2.
5494  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5495  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5496  * bit in the high half is on if the corresponding bit in the control field
5497  * may be on. See also vmx_control_verify().
5498  */
5499 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5500                                 bool apicv)
5501 {
5502         /*
5503          * Note that as a general rule, the high half of the MSRs (bits in
5504          * the control fields which may be 1) should be initialized by the
5505          * intersection of the underlying hardware's MSR (i.e., features which
5506          * can be supported) and the list of features we want to expose -
5507          * because they are known to be properly supported in our code.
5508          * Also, usually, the low half of the MSRs (bits which must be 1) can
5509          * be set to 0, meaning that L1 may turn off any of these bits. The
5510          * reason is that if one of these bits is necessary, it will appear
5511          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5512          * fields of vmcs01 and vmcs02, will turn these bits off - and
5513          * nested_vmx_exit_reflected() will not pass related exits to L1.
5514          * These rules have exceptions below.
5515          */
5516
5517         /* pin-based controls */
5518         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5519                 msrs->pinbased_ctls_low,
5520                 msrs->pinbased_ctls_high);
5521         msrs->pinbased_ctls_low |=
5522                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5523         msrs->pinbased_ctls_high &=
5524                 PIN_BASED_EXT_INTR_MASK |
5525                 PIN_BASED_NMI_EXITING |
5526                 PIN_BASED_VIRTUAL_NMIS |
5527                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5528         msrs->pinbased_ctls_high |=
5529                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5530                 PIN_BASED_VMX_PREEMPTION_TIMER;
5531
5532         /* exit controls */
5533         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5534                 msrs->exit_ctls_low,
5535                 msrs->exit_ctls_high);
5536         msrs->exit_ctls_low =
5537                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5538
5539         msrs->exit_ctls_high &=
5540 #ifdef CONFIG_X86_64
5541                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5542 #endif
5543                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5544         msrs->exit_ctls_high |=
5545                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5546                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5547                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5548
5549         /* We support free control of debug control saving. */
5550         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5551
5552         /* entry controls */
5553         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5554                 msrs->entry_ctls_low,
5555                 msrs->entry_ctls_high);
5556         msrs->entry_ctls_low =
5557                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5558         msrs->entry_ctls_high &=
5559 #ifdef CONFIG_X86_64
5560                 VM_ENTRY_IA32E_MODE |
5561 #endif
5562                 VM_ENTRY_LOAD_IA32_PAT;
5563         msrs->entry_ctls_high |=
5564                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5565
5566         /* We support free control of debug control loading. */
5567         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5568
5569         /* cpu-based controls */
5570         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5571                 msrs->procbased_ctls_low,
5572                 msrs->procbased_ctls_high);
5573         msrs->procbased_ctls_low =
5574                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5575         msrs->procbased_ctls_high &=
5576                 CPU_BASED_VIRTUAL_INTR_PENDING |
5577                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5578                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5579                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5580                 CPU_BASED_CR3_STORE_EXITING |
5581 #ifdef CONFIG_X86_64
5582                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5583 #endif
5584                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5585                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5586                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5587                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5588                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5589         /*
5590          * We can allow some features even when not supported by the
5591          * hardware. For example, L1 can specify an MSR bitmap - and we
5592          * can use it to avoid exits to L1 - even when L0 runs L2
5593          * without MSR bitmaps.
5594          */
5595         msrs->procbased_ctls_high |=
5596                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5597                 CPU_BASED_USE_MSR_BITMAPS;
5598
5599         /* We support free control of CR3 access interception. */
5600         msrs->procbased_ctls_low &=
5601                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5602
5603         /*
5604          * secondary cpu-based controls.  Do not include those that
5605          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5606          */
5607         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5608                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5609                       msrs->secondary_ctls_low,
5610                       msrs->secondary_ctls_high);
5611
5612         msrs->secondary_ctls_low = 0;
5613         msrs->secondary_ctls_high &=
5614                 SECONDARY_EXEC_DESC |
5615                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5616                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5617                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5618                 SECONDARY_EXEC_WBINVD_EXITING;
5619
5620         /*
5621          * We can emulate "VMCS shadowing," even if the hardware
5622          * doesn't support it.
5623          */
5624         msrs->secondary_ctls_high |=
5625                 SECONDARY_EXEC_SHADOW_VMCS;
5626
5627         if (enable_ept) {
5628                 /* nested EPT: emulate EPT also to L1 */
5629                 msrs->secondary_ctls_high |=
5630                         SECONDARY_EXEC_ENABLE_EPT;
5631                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5632                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5633                 if (cpu_has_vmx_ept_execute_only())
5634                         msrs->ept_caps |=
5635                                 VMX_EPT_EXECUTE_ONLY_BIT;
5636                 msrs->ept_caps &= ept_caps;
5637                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5638                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5639                         VMX_EPT_1GB_PAGE_BIT;
5640                 if (enable_ept_ad_bits) {
5641                         msrs->secondary_ctls_high |=
5642                                 SECONDARY_EXEC_ENABLE_PML;
5643                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5644                 }
5645         }
5646
5647         if (cpu_has_vmx_vmfunc()) {
5648                 msrs->secondary_ctls_high |=
5649                         SECONDARY_EXEC_ENABLE_VMFUNC;
5650                 /*
5651                  * Advertise EPTP switching unconditionally
5652                  * since we emulate it
5653                  */
5654                 if (enable_ept)
5655                         msrs->vmfunc_controls =
5656                                 VMX_VMFUNC_EPTP_SWITCHING;
5657         }
5658
5659         /*
5660          * Old versions of KVM use the single-context version without
5661          * checking for support, so declare that it is supported even
5662          * though it is treated as global context.  The alternative is
5663          * not failing the single-context invvpid, and it is worse.
5664          */
5665         if (enable_vpid) {
5666                 msrs->secondary_ctls_high |=
5667                         SECONDARY_EXEC_ENABLE_VPID;
5668                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5669                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5670         }
5671
5672         if (enable_unrestricted_guest)
5673                 msrs->secondary_ctls_high |=
5674                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5675
5676         if (flexpriority_enabled)
5677                 msrs->secondary_ctls_high |=
5678                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5679
5680         /* miscellaneous data */
5681         rdmsr(MSR_IA32_VMX_MISC,
5682                 msrs->misc_low,
5683                 msrs->misc_high);
5684         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5685         msrs->misc_low |=
5686                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5687                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5688                 VMX_MISC_ACTIVITY_HLT;
5689         msrs->misc_high = 0;
5690
5691         /*
5692          * This MSR reports some information about VMX support. We
5693          * should return information about the VMX we emulate for the
5694          * guest, and the VMCS structure we give it - not about the
5695          * VMX support of the underlying hardware.
5696          */
5697         msrs->basic =
5698                 VMCS12_REVISION |
5699                 VMX_BASIC_TRUE_CTLS |
5700                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5701                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5702
5703         if (cpu_has_vmx_basic_inout())
5704                 msrs->basic |= VMX_BASIC_INOUT;
5705
5706         /*
5707          * These MSRs specify bits which the guest must keep fixed on
5708          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5709          * We picked the standard core2 setting.
5710          */
5711 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5712 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5713         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5714         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5715
5716         /* These MSRs specify bits which the guest must keep fixed off. */
5717         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5718         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5719
5720         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
5721         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5722 }
5723
5724 void nested_vmx_hardware_unsetup(void)
5725 {
5726         int i;
5727
5728         if (enable_shadow_vmcs) {
5729                 for (i = 0; i < VMX_BITMAP_NR; i++)
5730                         free_page((unsigned long)vmx_bitmap[i]);
5731         }
5732 }
5733
5734 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5735 {
5736         int i;
5737
5738         /*
5739          * Without EPT it is not possible to restore L1's CR3 and PDPTR on
5740          * VMfail, because they are not available in vmcs01.  Just always
5741          * use hardware checks.
5742          */
5743         if (!enable_ept)
5744                 nested_early_check = 1;
5745
5746         if (!cpu_has_vmx_shadow_vmcs())
5747                 enable_shadow_vmcs = 0;
5748         if (enable_shadow_vmcs) {
5749                 for (i = 0; i < VMX_BITMAP_NR; i++) {
5750                         /*
5751                          * The vmx_bitmap is not tied to a VM and so should
5752                          * not be charged to a memcg.
5753                          */
5754                         vmx_bitmap[i] = (unsigned long *)
5755                                 __get_free_page(GFP_KERNEL);
5756                         if (!vmx_bitmap[i]) {
5757                                 nested_vmx_hardware_unsetup();
5758                                 return -ENOMEM;
5759                         }
5760                 }
5761
5762                 init_vmcs_shadow_fields();
5763         }
5764
5765         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
5766         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
5767         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
5768         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
5769         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
5770         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
5771         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
5772         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
5773         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
5774         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
5775         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
5776         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
5777
5778         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5779         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5780         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5781         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5782         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5783         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5784
5785         return 0;
5786 }