Merge tag 'docs-5.6-fixes' of git://git.lwn.net/linux
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "x86.h"
16
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
19
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
22
23 #define CC(consistency_check)                                           \
24 ({                                                                      \
25         bool failed = (consistency_check);                              \
26         if (failed)                                                     \
27                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
28         failed;                                                         \
29 })
30
31 /*
32  * Hyper-V requires all of these, so mark them as supported even though
33  * they are just treated the same as all-context.
34  */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
36         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
37         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
39         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42
43 enum {
44         VMX_VMREAD_BITMAP,
45         VMX_VMWRITE_BITMAP,
46         VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49
50 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
52
53 struct shadow_vmcs_field {
54         u16     encoding;
55         u16     offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62         ARRAY_SIZE(shadow_read_only_fields);
63
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69         ARRAY_SIZE(shadow_read_write_fields);
70
71 static void init_vmcs_shadow_fields(void)
72 {
73         int i, j;
74
75         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77
78         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80                 u16 field = entry.encoding;
81
82                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83                     (i + 1 == max_shadow_read_only_fields ||
84                      shadow_read_only_fields[i + 1].encoding != field + 1))
85                         pr_err("Missing field from shadow_read_only_field %x\n",
86                                field + 1);
87
88                 clear_bit(field, vmx_vmread_bitmap);
89                 if (field & 1)
90 #ifdef CONFIG_X86_64
91                         continue;
92 #else
93                         entry.offset += sizeof(u32);
94 #endif
95                 shadow_read_only_fields[j++] = entry;
96         }
97         max_shadow_read_only_fields = j;
98
99         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101                 u16 field = entry.encoding;
102
103                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104                     (i + 1 == max_shadow_read_write_fields ||
105                      shadow_read_write_fields[i + 1].encoding != field + 1))
106                         pr_err("Missing field from shadow_read_write_field %x\n",
107                                field + 1);
108
109                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110                           field <= GUEST_TR_AR_BYTES,
111                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112
113                 /*
114                  * PML and the preemption timer can be emulated, but the
115                  * processor cannot vmwrite to fields that don't exist
116                  * on bare metal.
117                  */
118                 switch (field) {
119                 case GUEST_PML_INDEX:
120                         if (!cpu_has_vmx_pml())
121                                 continue;
122                         break;
123                 case VMX_PREEMPTION_TIMER_VALUE:
124                         if (!cpu_has_vmx_preemption_timer())
125                                 continue;
126                         break;
127                 case GUEST_INTR_STATUS:
128                         if (!cpu_has_vmx_apicv())
129                                 continue;
130                         break;
131                 default:
132                         break;
133                 }
134
135                 clear_bit(field, vmx_vmwrite_bitmap);
136                 clear_bit(field, vmx_vmread_bitmap);
137                 if (field & 1)
138 #ifdef CONFIG_X86_64
139                         continue;
140 #else
141                         entry.offset += sizeof(u32);
142 #endif
143                 shadow_read_write_fields[j++] = entry;
144         }
145         max_shadow_read_write_fields = j;
146 }
147
148 /*
149  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150  * set the success or error code of an emulated VMX instruction (as specified
151  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152  * instruction.
153  */
154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159         return kvm_skip_emulated_instruction(vcpu);
160 }
161
162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_CF);
168         return kvm_skip_emulated_instruction(vcpu);
169 }
170
171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172                                 u32 vm_instruction_error)
173 {
174         struct vcpu_vmx *vmx = to_vmx(vcpu);
175
176         /*
177          * failValid writes the error number to the current VMCS, which
178          * can't be done if there isn't a current VMCS.
179          */
180         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
181                 return nested_vmx_failInvalid(vcpu);
182
183         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
184                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
185                             X86_EFLAGS_SF | X86_EFLAGS_OF))
186                         | X86_EFLAGS_ZF);
187         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
188         /*
189          * We don't need to force a shadow sync because
190          * VM_INSTRUCTION_ERROR is not shadowed
191          */
192         return kvm_skip_emulated_instruction(vcpu);
193 }
194
195 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
196 {
197         /* TODO: not to reset guest simply here. */
198         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
199         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
200 }
201
202 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
203 {
204         return fixed_bits_valid(control, low, high);
205 }
206
207 static inline u64 vmx_control_msr(u32 low, u32 high)
208 {
209         return low | ((u64)high << 32);
210 }
211
212 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
213 {
214         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
215         vmcs_write64(VMCS_LINK_POINTER, -1ull);
216         vmx->nested.need_vmcs12_to_shadow_sync = false;
217 }
218
219 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
220 {
221         struct vcpu_vmx *vmx = to_vmx(vcpu);
222
223         if (!vmx->nested.hv_evmcs)
224                 return;
225
226         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
227         vmx->nested.hv_evmcs_vmptr = -1ull;
228         vmx->nested.hv_evmcs = NULL;
229 }
230
231 /*
232  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
233  * just stops using VMX.
234  */
235 static void free_nested(struct kvm_vcpu *vcpu)
236 {
237         struct vcpu_vmx *vmx = to_vmx(vcpu);
238
239         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
240                 return;
241
242         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
243
244         vmx->nested.vmxon = false;
245         vmx->nested.smm.vmxon = false;
246         free_vpid(vmx->nested.vpid02);
247         vmx->nested.posted_intr_nv = -1;
248         vmx->nested.current_vmptr = -1ull;
249         if (enable_shadow_vmcs) {
250                 vmx_disable_shadow_vmcs(vmx);
251                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
252                 free_vmcs(vmx->vmcs01.shadow_vmcs);
253                 vmx->vmcs01.shadow_vmcs = NULL;
254         }
255         kfree(vmx->nested.cached_vmcs12);
256         vmx->nested.cached_vmcs12 = NULL;
257         kfree(vmx->nested.cached_shadow_vmcs12);
258         vmx->nested.cached_shadow_vmcs12 = NULL;
259         /* Unpin physical memory we referred to in the vmcs02 */
260         if (vmx->nested.apic_access_page) {
261                 kvm_release_page_clean(vmx->nested.apic_access_page);
262                 vmx->nested.apic_access_page = NULL;
263         }
264         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
265         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
266         vmx->nested.pi_desc = NULL;
267
268         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
269
270         nested_release_evmcs(vcpu);
271
272         free_loaded_vmcs(&vmx->nested.vmcs02);
273 }
274
275 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276                                      struct loaded_vmcs *prev)
277 {
278         struct vmcs_host_state *dest, *src;
279
280         if (unlikely(!vmx->guest_state_loaded))
281                 return;
282
283         src = &prev->host_state;
284         dest = &vmx->loaded_vmcs->host_state;
285
286         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
287         dest->ldt_sel = src->ldt_sel;
288 #ifdef CONFIG_X86_64
289         dest->ds_sel = src->ds_sel;
290         dest->es_sel = src->es_sel;
291 #endif
292 }
293
294 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
295 {
296         struct vcpu_vmx *vmx = to_vmx(vcpu);
297         struct loaded_vmcs *prev;
298         int cpu;
299
300         if (vmx->loaded_vmcs == vmcs)
301                 return;
302
303         cpu = get_cpu();
304         prev = vmx->loaded_vmcs;
305         vmx->loaded_vmcs = vmcs;
306         vmx_vcpu_load_vmcs(vcpu, cpu);
307         vmx_sync_vmcs_host_state(vmx, prev);
308         put_cpu();
309
310         vmx_segment_cache_clear(vmx);
311 }
312
313 /*
314  * Ensure that the current vmcs of the logical processor is the
315  * vmcs01 of the vcpu before calling free_nested().
316  */
317 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
318 {
319         vcpu_load(vcpu);
320         vmx_leave_nested(vcpu);
321         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
322         free_nested(vcpu);
323         vcpu_put(vcpu);
324 }
325
326 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
327                 struct x86_exception *fault)
328 {
329         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
330         struct vcpu_vmx *vmx = to_vmx(vcpu);
331         u32 exit_reason;
332         unsigned long exit_qualification = vcpu->arch.exit_qualification;
333
334         if (vmx->nested.pml_full) {
335                 exit_reason = EXIT_REASON_PML_FULL;
336                 vmx->nested.pml_full = false;
337                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
338         } else if (fault->error_code & PFERR_RSVD_MASK)
339                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
340         else
341                 exit_reason = EXIT_REASON_EPT_VIOLATION;
342
343         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
344         vmcs12->guest_physical_address = fault->address;
345 }
346
347 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
348 {
349         WARN_ON(mmu_is_nested(vcpu));
350
351         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
352         kvm_init_shadow_ept_mmu(vcpu,
353                         to_vmx(vcpu)->nested.msrs.ept_caps &
354                         VMX_EPT_EXECUTE_ONLY_BIT,
355                         nested_ept_ad_enabled(vcpu),
356                         nested_ept_get_cr3(vcpu));
357         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
358         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
359         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
360         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
361
362         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
363 }
364
365 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
366 {
367         vcpu->arch.mmu = &vcpu->arch.root_mmu;
368         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
369 }
370
371 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
372                                             u16 error_code)
373 {
374         bool inequality, bit;
375
376         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
377         inequality =
378                 (error_code & vmcs12->page_fault_error_code_mask) !=
379                  vmcs12->page_fault_error_code_match;
380         return inequality ^ bit;
381 }
382
383
384 /*
385  * KVM wants to inject page-faults which it got to the guest. This function
386  * checks whether in a nested guest, we need to inject them to L1 or L2.
387  */
388 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
389 {
390         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
391         unsigned int nr = vcpu->arch.exception.nr;
392         bool has_payload = vcpu->arch.exception.has_payload;
393         unsigned long payload = vcpu->arch.exception.payload;
394
395         if (nr == PF_VECTOR) {
396                 if (vcpu->arch.exception.nested_apf) {
397                         *exit_qual = vcpu->arch.apf.nested_apf_token;
398                         return 1;
399                 }
400                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
401                                                     vcpu->arch.exception.error_code)) {
402                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
403                         return 1;
404                 }
405         } else if (vmcs12->exception_bitmap & (1u << nr)) {
406                 if (nr == DB_VECTOR) {
407                         if (!has_payload) {
408                                 payload = vcpu->arch.dr6;
409                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
410                                 payload ^= DR6_RTM;
411                         }
412                         *exit_qual = payload;
413                 } else
414                         *exit_qual = 0;
415                 return 1;
416         }
417
418         return 0;
419 }
420
421
422 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
423                 struct x86_exception *fault)
424 {
425         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
426
427         WARN_ON(!is_guest_mode(vcpu));
428
429         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
430                 !to_vmx(vcpu)->nested.nested_run_pending) {
431                 vmcs12->vm_exit_intr_error_code = fault->error_code;
432                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
433                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
434                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
435                                   fault->address);
436         } else {
437                 kvm_inject_page_fault(vcpu, fault);
438         }
439 }
440
441 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
442 {
443         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
444 }
445
446 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
447                                                struct vmcs12 *vmcs12)
448 {
449         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
450                 return 0;
451
452         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
453             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
454                 return -EINVAL;
455
456         return 0;
457 }
458
459 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
460                                                 struct vmcs12 *vmcs12)
461 {
462         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
463                 return 0;
464
465         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
466                 return -EINVAL;
467
468         return 0;
469 }
470
471 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
472                                                 struct vmcs12 *vmcs12)
473 {
474         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
475                 return 0;
476
477         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
478                 return -EINVAL;
479
480         return 0;
481 }
482
483 /*
484  * Check if MSR is intercepted for L01 MSR bitmap.
485  */
486 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
487 {
488         unsigned long *msr_bitmap;
489         int f = sizeof(unsigned long);
490
491         if (!cpu_has_vmx_msr_bitmap())
492                 return true;
493
494         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
495
496         if (msr <= 0x1fff) {
497                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
498         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
499                 msr &= 0x1fff;
500                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
501         }
502
503         return true;
504 }
505
506 /*
507  * If a msr is allowed by L0, we should check whether it is allowed by L1.
508  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
509  */
510 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
511                                                unsigned long *msr_bitmap_nested,
512                                                u32 msr, int type)
513 {
514         int f = sizeof(unsigned long);
515
516         /*
517          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
518          * have the write-low and read-high bitmap offsets the wrong way round.
519          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
520          */
521         if (msr <= 0x1fff) {
522                 if (type & MSR_TYPE_R &&
523                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
524                         /* read-low */
525                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
526
527                 if (type & MSR_TYPE_W &&
528                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
529                         /* write-low */
530                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
531
532         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
533                 msr &= 0x1fff;
534                 if (type & MSR_TYPE_R &&
535                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
536                         /* read-high */
537                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
538
539                 if (type & MSR_TYPE_W &&
540                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
541                         /* write-high */
542                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
543
544         }
545 }
546
547 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
548 {
549         int msr;
550
551         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
552                 unsigned word = msr / BITS_PER_LONG;
553
554                 msr_bitmap[word] = ~0;
555                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
556         }
557 }
558
559 /*
560  * Merge L0's and L1's MSR bitmap, return false to indicate that
561  * we do not use the hardware.
562  */
563 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
564                                                  struct vmcs12 *vmcs12)
565 {
566         int msr;
567         unsigned long *msr_bitmap_l1;
568         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
569         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
570
571         /* Nothing to do if the MSR bitmap is not in use.  */
572         if (!cpu_has_vmx_msr_bitmap() ||
573             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
574                 return false;
575
576         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
577                 return false;
578
579         msr_bitmap_l1 = (unsigned long *)map->hva;
580
581         /*
582          * To keep the control flow simple, pay eight 8-byte writes (sixteen
583          * 4-byte writes on 32-bit systems) up front to enable intercepts for
584          * the x2APIC MSR range and selectively disable them below.
585          */
586         enable_x2apic_msr_intercepts(msr_bitmap_l0);
587
588         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
589                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
590                         /*
591                          * L0 need not intercept reads for MSRs between 0x800
592                          * and 0x8ff, it just lets the processor take the value
593                          * from the virtual-APIC page; take those 256 bits
594                          * directly from the L1 bitmap.
595                          */
596                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
597                                 unsigned word = msr / BITS_PER_LONG;
598
599                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
600                         }
601                 }
602
603                 nested_vmx_disable_intercept_for_msr(
604                         msr_bitmap_l1, msr_bitmap_l0,
605                         X2APIC_MSR(APIC_TASKPRI),
606                         MSR_TYPE_R | MSR_TYPE_W);
607
608                 if (nested_cpu_has_vid(vmcs12)) {
609                         nested_vmx_disable_intercept_for_msr(
610                                 msr_bitmap_l1, msr_bitmap_l0,
611                                 X2APIC_MSR(APIC_EOI),
612                                 MSR_TYPE_W);
613                         nested_vmx_disable_intercept_for_msr(
614                                 msr_bitmap_l1, msr_bitmap_l0,
615                                 X2APIC_MSR(APIC_SELF_IPI),
616                                 MSR_TYPE_W);
617                 }
618         }
619
620         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
621         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
622                                              MSR_FS_BASE, MSR_TYPE_RW);
623
624         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
625                                              MSR_GS_BASE, MSR_TYPE_RW);
626
627         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
628                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
629
630         /*
631          * Checking the L0->L1 bitmap is trying to verify two things:
632          *
633          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
634          *    ensures that we do not accidentally generate an L02 MSR bitmap
635          *    from the L12 MSR bitmap that is too permissive.
636          * 2. That L1 or L2s have actually used the MSR. This avoids
637          *    unnecessarily merging of the bitmap if the MSR is unused. This
638          *    works properly because we only update the L01 MSR bitmap lazily.
639          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
640          *    updated to reflect this when L1 (or its L2s) actually write to
641          *    the MSR.
642          */
643         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
644                 nested_vmx_disable_intercept_for_msr(
645                                         msr_bitmap_l1, msr_bitmap_l0,
646                                         MSR_IA32_SPEC_CTRL,
647                                         MSR_TYPE_R | MSR_TYPE_W);
648
649         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
650                 nested_vmx_disable_intercept_for_msr(
651                                         msr_bitmap_l1, msr_bitmap_l0,
652                                         MSR_IA32_PRED_CMD,
653                                         MSR_TYPE_W);
654
655         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
656
657         return true;
658 }
659
660 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
661                                        struct vmcs12 *vmcs12)
662 {
663         struct kvm_host_map map;
664         struct vmcs12 *shadow;
665
666         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
667             vmcs12->vmcs_link_pointer == -1ull)
668                 return;
669
670         shadow = get_shadow_vmcs12(vcpu);
671
672         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
673                 return;
674
675         memcpy(shadow, map.hva, VMCS12_SIZE);
676         kvm_vcpu_unmap(vcpu, &map, false);
677 }
678
679 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
680                                               struct vmcs12 *vmcs12)
681 {
682         struct vcpu_vmx *vmx = to_vmx(vcpu);
683
684         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
685             vmcs12->vmcs_link_pointer == -1ull)
686                 return;
687
688         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
689                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
690 }
691
692 /*
693  * In nested virtualization, check if L1 has set
694  * VM_EXIT_ACK_INTR_ON_EXIT
695  */
696 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
697 {
698         return get_vmcs12(vcpu)->vm_exit_controls &
699                 VM_EXIT_ACK_INTR_ON_EXIT;
700 }
701
702 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
703 {
704         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
705 }
706
707 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
708                                           struct vmcs12 *vmcs12)
709 {
710         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
711             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
712                 return -EINVAL;
713         else
714                 return 0;
715 }
716
717 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
718                                            struct vmcs12 *vmcs12)
719 {
720         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
721             !nested_cpu_has_apic_reg_virt(vmcs12) &&
722             !nested_cpu_has_vid(vmcs12) &&
723             !nested_cpu_has_posted_intr(vmcs12))
724                 return 0;
725
726         /*
727          * If virtualize x2apic mode is enabled,
728          * virtualize apic access must be disabled.
729          */
730         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
731                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
732                 return -EINVAL;
733
734         /*
735          * If virtual interrupt delivery is enabled,
736          * we must exit on external interrupts.
737          */
738         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
739                 return -EINVAL;
740
741         /*
742          * bits 15:8 should be zero in posted_intr_nv,
743          * the descriptor address has been already checked
744          * in nested_get_vmcs12_pages.
745          *
746          * bits 5:0 of posted_intr_desc_addr should be zero.
747          */
748         if (nested_cpu_has_posted_intr(vmcs12) &&
749            (CC(!nested_cpu_has_vid(vmcs12)) ||
750             CC(!nested_exit_intr_ack_set(vcpu)) ||
751             CC((vmcs12->posted_intr_nv & 0xff00)) ||
752             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
753             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
754                 return -EINVAL;
755
756         /* tpr shadow is needed by all apicv features. */
757         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
758                 return -EINVAL;
759
760         return 0;
761 }
762
763 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
764                                        u32 count, u64 addr)
765 {
766         int maxphyaddr;
767
768         if (count == 0)
769                 return 0;
770         maxphyaddr = cpuid_maxphyaddr(vcpu);
771         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
772             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
773                 return -EINVAL;
774
775         return 0;
776 }
777
778 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
779                                                      struct vmcs12 *vmcs12)
780 {
781         if (CC(nested_vmx_check_msr_switch(vcpu,
782                                            vmcs12->vm_exit_msr_load_count,
783                                            vmcs12->vm_exit_msr_load_addr)) ||
784             CC(nested_vmx_check_msr_switch(vcpu,
785                                            vmcs12->vm_exit_msr_store_count,
786                                            vmcs12->vm_exit_msr_store_addr)))
787                 return -EINVAL;
788
789         return 0;
790 }
791
792 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
793                                                       struct vmcs12 *vmcs12)
794 {
795         if (CC(nested_vmx_check_msr_switch(vcpu,
796                                            vmcs12->vm_entry_msr_load_count,
797                                            vmcs12->vm_entry_msr_load_addr)))
798                 return -EINVAL;
799
800         return 0;
801 }
802
803 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
804                                          struct vmcs12 *vmcs12)
805 {
806         if (!nested_cpu_has_pml(vmcs12))
807                 return 0;
808
809         if (CC(!nested_cpu_has_ept(vmcs12)) ||
810             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
811                 return -EINVAL;
812
813         return 0;
814 }
815
816 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
817                                                         struct vmcs12 *vmcs12)
818 {
819         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
820                !nested_cpu_has_ept(vmcs12)))
821                 return -EINVAL;
822         return 0;
823 }
824
825 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
826                                                          struct vmcs12 *vmcs12)
827 {
828         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
829                !nested_cpu_has_ept(vmcs12)))
830                 return -EINVAL;
831         return 0;
832 }
833
834 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
835                                                  struct vmcs12 *vmcs12)
836 {
837         if (!nested_cpu_has_shadow_vmcs(vmcs12))
838                 return 0;
839
840         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
841             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
842                 return -EINVAL;
843
844         return 0;
845 }
846
847 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
848                                        struct vmx_msr_entry *e)
849 {
850         /* x2APIC MSR accesses are not allowed */
851         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
852                 return -EINVAL;
853         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
854             CC(e->index == MSR_IA32_UCODE_REV))
855                 return -EINVAL;
856         if (CC(e->reserved != 0))
857                 return -EINVAL;
858         return 0;
859 }
860
861 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
862                                      struct vmx_msr_entry *e)
863 {
864         if (CC(e->index == MSR_FS_BASE) ||
865             CC(e->index == MSR_GS_BASE) ||
866             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
867             nested_vmx_msr_check_common(vcpu, e))
868                 return -EINVAL;
869         return 0;
870 }
871
872 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
873                                       struct vmx_msr_entry *e)
874 {
875         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
876             nested_vmx_msr_check_common(vcpu, e))
877                 return -EINVAL;
878         return 0;
879 }
880
881 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
882 {
883         struct vcpu_vmx *vmx = to_vmx(vcpu);
884         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
885                                        vmx->nested.msrs.misc_high);
886
887         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
888 }
889
890 /*
891  * Load guest's/host's msr at nested entry/exit.
892  * return 0 for success, entry index for failure.
893  *
894  * One of the failure modes for MSR load/store is when a list exceeds the
895  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
896  * as possible, process all valid entries before failing rather than precheck
897  * for a capacity violation.
898  */
899 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
900 {
901         u32 i;
902         struct vmx_msr_entry e;
903         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
904
905         for (i = 0; i < count; i++) {
906                 if (unlikely(i >= max_msr_list_size))
907                         goto fail;
908
909                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
910                                         &e, sizeof(e))) {
911                         pr_debug_ratelimited(
912                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
913                                 __func__, i, gpa + i * sizeof(e));
914                         goto fail;
915                 }
916                 if (nested_vmx_load_msr_check(vcpu, &e)) {
917                         pr_debug_ratelimited(
918                                 "%s check failed (%u, 0x%x, 0x%x)\n",
919                                 __func__, i, e.index, e.reserved);
920                         goto fail;
921                 }
922                 if (kvm_set_msr(vcpu, e.index, e.value)) {
923                         pr_debug_ratelimited(
924                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
925                                 __func__, i, e.index, e.value);
926                         goto fail;
927                 }
928         }
929         return 0;
930 fail:
931         return i + 1;
932 }
933
934 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
935                                             u32 msr_index,
936                                             u64 *data)
937 {
938         struct vcpu_vmx *vmx = to_vmx(vcpu);
939
940         /*
941          * If the L0 hypervisor stored a more accurate value for the TSC that
942          * does not include the time taken for emulation of the L2->L1
943          * VM-exit in L0, use the more accurate value.
944          */
945         if (msr_index == MSR_IA32_TSC) {
946                 int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
947                                                MSR_IA32_TSC);
948
949                 if (index >= 0) {
950                         u64 val = vmx->msr_autostore.guest.val[index].value;
951
952                         *data = kvm_read_l1_tsc(vcpu, val);
953                         return true;
954                 }
955         }
956
957         if (kvm_get_msr(vcpu, msr_index, data)) {
958                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
959                         msr_index);
960                 return false;
961         }
962         return true;
963 }
964
965 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
966                                      struct vmx_msr_entry *e)
967 {
968         if (kvm_vcpu_read_guest(vcpu,
969                                 gpa + i * sizeof(*e),
970                                 e, 2 * sizeof(u32))) {
971                 pr_debug_ratelimited(
972                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
973                         __func__, i, gpa + i * sizeof(*e));
974                 return false;
975         }
976         if (nested_vmx_store_msr_check(vcpu, e)) {
977                 pr_debug_ratelimited(
978                         "%s check failed (%u, 0x%x, 0x%x)\n",
979                         __func__, i, e->index, e->reserved);
980                 return false;
981         }
982         return true;
983 }
984
985 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
986 {
987         u64 data;
988         u32 i;
989         struct vmx_msr_entry e;
990         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
991
992         for (i = 0; i < count; i++) {
993                 if (unlikely(i >= max_msr_list_size))
994                         return -EINVAL;
995
996                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
997                         return -EINVAL;
998
999                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1000                         return -EINVAL;
1001
1002                 if (kvm_vcpu_write_guest(vcpu,
1003                                          gpa + i * sizeof(e) +
1004                                              offsetof(struct vmx_msr_entry, value),
1005                                          &data, sizeof(data))) {
1006                         pr_debug_ratelimited(
1007                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1008                                 __func__, i, e.index, data);
1009                         return -EINVAL;
1010                 }
1011         }
1012         return 0;
1013 }
1014
1015 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1016 {
1017         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1018         u32 count = vmcs12->vm_exit_msr_store_count;
1019         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1020         struct vmx_msr_entry e;
1021         u32 i;
1022
1023         for (i = 0; i < count; i++) {
1024                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1025                         return false;
1026
1027                 if (e.index == msr_index)
1028                         return true;
1029         }
1030         return false;
1031 }
1032
1033 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1034                                            u32 msr_index)
1035 {
1036         struct vcpu_vmx *vmx = to_vmx(vcpu);
1037         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1038         bool in_vmcs12_store_list;
1039         int msr_autostore_index;
1040         bool in_autostore_list;
1041         int last;
1042
1043         msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
1044         in_autostore_list = msr_autostore_index >= 0;
1045         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1046
1047         if (in_vmcs12_store_list && !in_autostore_list) {
1048                 if (autostore->nr == NR_LOADSTORE_MSRS) {
1049                         /*
1050                          * Emulated VMEntry does not fail here.  Instead a less
1051                          * accurate value will be returned by
1052                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1053                          * instead of reading the value from the vmcs02 VMExit
1054                          * MSR-store area.
1055                          */
1056                         pr_warn_ratelimited(
1057                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1058                                 msr_index);
1059                         return;
1060                 }
1061                 last = autostore->nr++;
1062                 autostore->val[last].index = msr_index;
1063         } else if (!in_vmcs12_store_list && in_autostore_list) {
1064                 last = --autostore->nr;
1065                 autostore->val[msr_autostore_index] = autostore->val[last];
1066         }
1067 }
1068
1069 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1070 {
1071         unsigned long invalid_mask;
1072
1073         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1074         return (val & invalid_mask) == 0;
1075 }
1076
1077 /*
1078  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1079  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1080  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1081  * @entry_failure_code.
1082  */
1083 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1084                                u32 *entry_failure_code)
1085 {
1086         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1087                 if (CC(!nested_cr3_valid(vcpu, cr3))) {
1088                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
1089                         return -EINVAL;
1090                 }
1091
1092                 /*
1093                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1094                  * must not be dereferenced.
1095                  */
1096                 if (is_pae_paging(vcpu) && !nested_ept) {
1097                         if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1098                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1099                                 return -EINVAL;
1100                         }
1101                 }
1102         }
1103
1104         if (!nested_ept)
1105                 kvm_mmu_new_cr3(vcpu, cr3, false);
1106
1107         vcpu->arch.cr3 = cr3;
1108         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1109
1110         kvm_init_mmu(vcpu, false);
1111
1112         return 0;
1113 }
1114
1115 /*
1116  * Returns if KVM is able to config CPU to tag TLB entries
1117  * populated by L2 differently than TLB entries populated
1118  * by L1.
1119  *
1120  * If L0 uses EPT, L1 and L2 run with different EPTP because
1121  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1122  * are tagged with different EPTP.
1123  *
1124  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1125  * with different VPID (L1 entries are tagged with vmx->vpid
1126  * while L2 entries are tagged with vmx->nested.vpid02).
1127  */
1128 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1129 {
1130         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1131
1132         return enable_ept ||
1133                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1134 }
1135
1136 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1137 {
1138         struct vcpu_vmx *vmx = to_vmx(vcpu);
1139
1140         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1141 }
1142
1143 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1144 {
1145         superset &= mask;
1146         subset &= mask;
1147
1148         return (superset | subset) == superset;
1149 }
1150
1151 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1152 {
1153         const u64 feature_and_reserved =
1154                 /* feature (except bit 48; see below) */
1155                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1156                 /* reserved */
1157                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1158         u64 vmx_basic = vmx->nested.msrs.basic;
1159
1160         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1161                 return -EINVAL;
1162
1163         /*
1164          * KVM does not emulate a version of VMX that constrains physical
1165          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1166          */
1167         if (data & BIT_ULL(48))
1168                 return -EINVAL;
1169
1170         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1171             vmx_basic_vmcs_revision_id(data))
1172                 return -EINVAL;
1173
1174         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1175                 return -EINVAL;
1176
1177         vmx->nested.msrs.basic = data;
1178         return 0;
1179 }
1180
1181 static int
1182 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1183 {
1184         u64 supported;
1185         u32 *lowp, *highp;
1186
1187         switch (msr_index) {
1188         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1189                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1190                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1191                 break;
1192         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1193                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1194                 highp = &vmx->nested.msrs.procbased_ctls_high;
1195                 break;
1196         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1197                 lowp = &vmx->nested.msrs.exit_ctls_low;
1198                 highp = &vmx->nested.msrs.exit_ctls_high;
1199                 break;
1200         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1201                 lowp = &vmx->nested.msrs.entry_ctls_low;
1202                 highp = &vmx->nested.msrs.entry_ctls_high;
1203                 break;
1204         case MSR_IA32_VMX_PROCBASED_CTLS2:
1205                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1206                 highp = &vmx->nested.msrs.secondary_ctls_high;
1207                 break;
1208         default:
1209                 BUG();
1210         }
1211
1212         supported = vmx_control_msr(*lowp, *highp);
1213
1214         /* Check must-be-1 bits are still 1. */
1215         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1216                 return -EINVAL;
1217
1218         /* Check must-be-0 bits are still 0. */
1219         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1220                 return -EINVAL;
1221
1222         *lowp = data;
1223         *highp = data >> 32;
1224         return 0;
1225 }
1226
1227 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1228 {
1229         const u64 feature_and_reserved_bits =
1230                 /* feature */
1231                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1232                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1233                 /* reserved */
1234                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1235         u64 vmx_misc;
1236
1237         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1238                                    vmx->nested.msrs.misc_high);
1239
1240         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1241                 return -EINVAL;
1242
1243         if ((vmx->nested.msrs.pinbased_ctls_high &
1244              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1245             vmx_misc_preemption_timer_rate(data) !=
1246             vmx_misc_preemption_timer_rate(vmx_misc))
1247                 return -EINVAL;
1248
1249         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1250                 return -EINVAL;
1251
1252         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1253                 return -EINVAL;
1254
1255         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1256                 return -EINVAL;
1257
1258         vmx->nested.msrs.misc_low = data;
1259         vmx->nested.msrs.misc_high = data >> 32;
1260
1261         return 0;
1262 }
1263
1264 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1265 {
1266         u64 vmx_ept_vpid_cap;
1267
1268         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1269                                            vmx->nested.msrs.vpid_caps);
1270
1271         /* Every bit is either reserved or a feature bit. */
1272         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1273                 return -EINVAL;
1274
1275         vmx->nested.msrs.ept_caps = data;
1276         vmx->nested.msrs.vpid_caps = data >> 32;
1277         return 0;
1278 }
1279
1280 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1281 {
1282         u64 *msr;
1283
1284         switch (msr_index) {
1285         case MSR_IA32_VMX_CR0_FIXED0:
1286                 msr = &vmx->nested.msrs.cr0_fixed0;
1287                 break;
1288         case MSR_IA32_VMX_CR4_FIXED0:
1289                 msr = &vmx->nested.msrs.cr4_fixed0;
1290                 break;
1291         default:
1292                 BUG();
1293         }
1294
1295         /*
1296          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1297          * must be 1 in the restored value.
1298          */
1299         if (!is_bitwise_subset(data, *msr, -1ULL))
1300                 return -EINVAL;
1301
1302         *msr = data;
1303         return 0;
1304 }
1305
1306 /*
1307  * Called when userspace is restoring VMX MSRs.
1308  *
1309  * Returns 0 on success, non-0 otherwise.
1310  */
1311 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1312 {
1313         struct vcpu_vmx *vmx = to_vmx(vcpu);
1314
1315         /*
1316          * Don't allow changes to the VMX capability MSRs while the vCPU
1317          * is in VMX operation.
1318          */
1319         if (vmx->nested.vmxon)
1320                 return -EBUSY;
1321
1322         switch (msr_index) {
1323         case MSR_IA32_VMX_BASIC:
1324                 return vmx_restore_vmx_basic(vmx, data);
1325         case MSR_IA32_VMX_PINBASED_CTLS:
1326         case MSR_IA32_VMX_PROCBASED_CTLS:
1327         case MSR_IA32_VMX_EXIT_CTLS:
1328         case MSR_IA32_VMX_ENTRY_CTLS:
1329                 /*
1330                  * The "non-true" VMX capability MSRs are generated from the
1331                  * "true" MSRs, so we do not support restoring them directly.
1332                  *
1333                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1334                  * should restore the "true" MSRs with the must-be-1 bits
1335                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1336                  * DEFAULT SETTINGS".
1337                  */
1338                 return -EINVAL;
1339         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1340         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1341         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1342         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1343         case MSR_IA32_VMX_PROCBASED_CTLS2:
1344                 return vmx_restore_control_msr(vmx, msr_index, data);
1345         case MSR_IA32_VMX_MISC:
1346                 return vmx_restore_vmx_misc(vmx, data);
1347         case MSR_IA32_VMX_CR0_FIXED0:
1348         case MSR_IA32_VMX_CR4_FIXED0:
1349                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1350         case MSR_IA32_VMX_CR0_FIXED1:
1351         case MSR_IA32_VMX_CR4_FIXED1:
1352                 /*
1353                  * These MSRs are generated based on the vCPU's CPUID, so we
1354                  * do not support restoring them directly.
1355                  */
1356                 return -EINVAL;
1357         case MSR_IA32_VMX_EPT_VPID_CAP:
1358                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1359         case MSR_IA32_VMX_VMCS_ENUM:
1360                 vmx->nested.msrs.vmcs_enum = data;
1361                 return 0;
1362         case MSR_IA32_VMX_VMFUNC:
1363                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1364                         return -EINVAL;
1365                 vmx->nested.msrs.vmfunc_controls = data;
1366                 return 0;
1367         default:
1368                 /*
1369                  * The rest of the VMX capability MSRs do not support restore.
1370                  */
1371                 return -EINVAL;
1372         }
1373 }
1374
1375 /* Returns 0 on success, non-0 otherwise. */
1376 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1377 {
1378         switch (msr_index) {
1379         case MSR_IA32_VMX_BASIC:
1380                 *pdata = msrs->basic;
1381                 break;
1382         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1383         case MSR_IA32_VMX_PINBASED_CTLS:
1384                 *pdata = vmx_control_msr(
1385                         msrs->pinbased_ctls_low,
1386                         msrs->pinbased_ctls_high);
1387                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1388                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1389                 break;
1390         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1391         case MSR_IA32_VMX_PROCBASED_CTLS:
1392                 *pdata = vmx_control_msr(
1393                         msrs->procbased_ctls_low,
1394                         msrs->procbased_ctls_high);
1395                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1396                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1397                 break;
1398         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1399         case MSR_IA32_VMX_EXIT_CTLS:
1400                 *pdata = vmx_control_msr(
1401                         msrs->exit_ctls_low,
1402                         msrs->exit_ctls_high);
1403                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1404                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1405                 break;
1406         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1407         case MSR_IA32_VMX_ENTRY_CTLS:
1408                 *pdata = vmx_control_msr(
1409                         msrs->entry_ctls_low,
1410                         msrs->entry_ctls_high);
1411                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1412                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1413                 break;
1414         case MSR_IA32_VMX_MISC:
1415                 *pdata = vmx_control_msr(
1416                         msrs->misc_low,
1417                         msrs->misc_high);
1418                 break;
1419         case MSR_IA32_VMX_CR0_FIXED0:
1420                 *pdata = msrs->cr0_fixed0;
1421                 break;
1422         case MSR_IA32_VMX_CR0_FIXED1:
1423                 *pdata = msrs->cr0_fixed1;
1424                 break;
1425         case MSR_IA32_VMX_CR4_FIXED0:
1426                 *pdata = msrs->cr4_fixed0;
1427                 break;
1428         case MSR_IA32_VMX_CR4_FIXED1:
1429                 *pdata = msrs->cr4_fixed1;
1430                 break;
1431         case MSR_IA32_VMX_VMCS_ENUM:
1432                 *pdata = msrs->vmcs_enum;
1433                 break;
1434         case MSR_IA32_VMX_PROCBASED_CTLS2:
1435                 *pdata = vmx_control_msr(
1436                         msrs->secondary_ctls_low,
1437                         msrs->secondary_ctls_high);
1438                 break;
1439         case MSR_IA32_VMX_EPT_VPID_CAP:
1440                 *pdata = msrs->ept_caps |
1441                         ((u64)msrs->vpid_caps << 32);
1442                 break;
1443         case MSR_IA32_VMX_VMFUNC:
1444                 *pdata = msrs->vmfunc_controls;
1445                 break;
1446         default:
1447                 return 1;
1448         }
1449
1450         return 0;
1451 }
1452
1453 /*
1454  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1455  * been modified by the L1 guest.  Note, "writable" in this context means
1456  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1457  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1458  * VM-exit information fields (which are actually writable if the vCPU is
1459  * configured to support "VMWRITE to any supported field in the VMCS").
1460  */
1461 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1462 {
1463         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1464         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1465         struct shadow_vmcs_field field;
1466         unsigned long val;
1467         int i;
1468
1469         if (WARN_ON(!shadow_vmcs))
1470                 return;
1471
1472         preempt_disable();
1473
1474         vmcs_load(shadow_vmcs);
1475
1476         for (i = 0; i < max_shadow_read_write_fields; i++) {
1477                 field = shadow_read_write_fields[i];
1478                 val = __vmcs_readl(field.encoding);
1479                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1480         }
1481
1482         vmcs_clear(shadow_vmcs);
1483         vmcs_load(vmx->loaded_vmcs->vmcs);
1484
1485         preempt_enable();
1486 }
1487
1488 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1489 {
1490         const struct shadow_vmcs_field *fields[] = {
1491                 shadow_read_write_fields,
1492                 shadow_read_only_fields
1493         };
1494         const int max_fields[] = {
1495                 max_shadow_read_write_fields,
1496                 max_shadow_read_only_fields
1497         };
1498         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1499         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1500         struct shadow_vmcs_field field;
1501         unsigned long val;
1502         int i, q;
1503
1504         if (WARN_ON(!shadow_vmcs))
1505                 return;
1506
1507         vmcs_load(shadow_vmcs);
1508
1509         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1510                 for (i = 0; i < max_fields[q]; i++) {
1511                         field = fields[q][i];
1512                         val = vmcs12_read_any(vmcs12, field.encoding,
1513                                               field.offset);
1514                         __vmcs_writel(field.encoding, val);
1515                 }
1516         }
1517
1518         vmcs_clear(shadow_vmcs);
1519         vmcs_load(vmx->loaded_vmcs->vmcs);
1520 }
1521
1522 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1523 {
1524         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1525         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1526
1527         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1528         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1529         vmcs12->guest_rip = evmcs->guest_rip;
1530
1531         if (unlikely(!(evmcs->hv_clean_fields &
1532                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1533                 vmcs12->guest_rsp = evmcs->guest_rsp;
1534                 vmcs12->guest_rflags = evmcs->guest_rflags;
1535                 vmcs12->guest_interruptibility_info =
1536                         evmcs->guest_interruptibility_info;
1537         }
1538
1539         if (unlikely(!(evmcs->hv_clean_fields &
1540                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1541                 vmcs12->cpu_based_vm_exec_control =
1542                         evmcs->cpu_based_vm_exec_control;
1543         }
1544
1545         if (unlikely(!(evmcs->hv_clean_fields &
1546                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1547                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1548         }
1549
1550         if (unlikely(!(evmcs->hv_clean_fields &
1551                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1552                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1553         }
1554
1555         if (unlikely(!(evmcs->hv_clean_fields &
1556                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1557                 vmcs12->vm_entry_intr_info_field =
1558                         evmcs->vm_entry_intr_info_field;
1559                 vmcs12->vm_entry_exception_error_code =
1560                         evmcs->vm_entry_exception_error_code;
1561                 vmcs12->vm_entry_instruction_len =
1562                         evmcs->vm_entry_instruction_len;
1563         }
1564
1565         if (unlikely(!(evmcs->hv_clean_fields &
1566                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1567                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1568                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1569                 vmcs12->host_cr0 = evmcs->host_cr0;
1570                 vmcs12->host_cr3 = evmcs->host_cr3;
1571                 vmcs12->host_cr4 = evmcs->host_cr4;
1572                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1573                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1574                 vmcs12->host_rip = evmcs->host_rip;
1575                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1576                 vmcs12->host_es_selector = evmcs->host_es_selector;
1577                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1578                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1579                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1580                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1581                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1582                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1583         }
1584
1585         if (unlikely(!(evmcs->hv_clean_fields &
1586                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1587                 vmcs12->pin_based_vm_exec_control =
1588                         evmcs->pin_based_vm_exec_control;
1589                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1590                 vmcs12->secondary_vm_exec_control =
1591                         evmcs->secondary_vm_exec_control;
1592         }
1593
1594         if (unlikely(!(evmcs->hv_clean_fields &
1595                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1596                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1597                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1598         }
1599
1600         if (unlikely(!(evmcs->hv_clean_fields &
1601                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1602                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1603         }
1604
1605         if (unlikely(!(evmcs->hv_clean_fields &
1606                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1607                 vmcs12->guest_es_base = evmcs->guest_es_base;
1608                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1609                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1610                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1611                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1612                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1613                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1614                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1615                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1616                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1617                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1618                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1619                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1620                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1621                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1622                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1623                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1624                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1625                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1626                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1627                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1628                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1629                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1630                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1631                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1632                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1633                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1634                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1635                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1636                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1637                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1638                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1639                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1640                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1641                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1642                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1643         }
1644
1645         if (unlikely(!(evmcs->hv_clean_fields &
1646                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1647                 vmcs12->tsc_offset = evmcs->tsc_offset;
1648                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1649                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1650         }
1651
1652         if (unlikely(!(evmcs->hv_clean_fields &
1653                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1654                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1655                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1656                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1657                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1658                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1659                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1660                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1661                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1662         }
1663
1664         if (unlikely(!(evmcs->hv_clean_fields &
1665                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1666                 vmcs12->host_fs_base = evmcs->host_fs_base;
1667                 vmcs12->host_gs_base = evmcs->host_gs_base;
1668                 vmcs12->host_tr_base = evmcs->host_tr_base;
1669                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1670                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1671                 vmcs12->host_rsp = evmcs->host_rsp;
1672         }
1673
1674         if (unlikely(!(evmcs->hv_clean_fields &
1675                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1676                 vmcs12->ept_pointer = evmcs->ept_pointer;
1677                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1678         }
1679
1680         if (unlikely(!(evmcs->hv_clean_fields &
1681                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1682                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1683                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1684                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1685                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1686                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1687                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1688                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1689                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1690                 vmcs12->guest_pending_dbg_exceptions =
1691                         evmcs->guest_pending_dbg_exceptions;
1692                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1693                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1694                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1695                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1696                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1697         }
1698
1699         /*
1700          * Not used?
1701          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1702          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1703          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1704          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1705          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1706          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1707          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1708          * vmcs12->page_fault_error_code_mask =
1709          *              evmcs->page_fault_error_code_mask;
1710          * vmcs12->page_fault_error_code_match =
1711          *              evmcs->page_fault_error_code_match;
1712          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1713          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1714          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1715          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1716          */
1717
1718         /*
1719          * Read only fields:
1720          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1721          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1722          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1723          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1724          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1725          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1726          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1727          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1728          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1729          * vmcs12->exit_qualification = evmcs->exit_qualification;
1730          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1731          *
1732          * Not present in struct vmcs12:
1733          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1734          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1735          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1736          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1737          */
1738
1739         return 0;
1740 }
1741
1742 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1743 {
1744         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1745         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1746
1747         /*
1748          * Should not be changed by KVM:
1749          *
1750          * evmcs->host_es_selector = vmcs12->host_es_selector;
1751          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1752          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1753          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1754          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1755          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1756          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1757          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1758          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1759          * evmcs->host_cr0 = vmcs12->host_cr0;
1760          * evmcs->host_cr3 = vmcs12->host_cr3;
1761          * evmcs->host_cr4 = vmcs12->host_cr4;
1762          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1763          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1764          * evmcs->host_rip = vmcs12->host_rip;
1765          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1766          * evmcs->host_fs_base = vmcs12->host_fs_base;
1767          * evmcs->host_gs_base = vmcs12->host_gs_base;
1768          * evmcs->host_tr_base = vmcs12->host_tr_base;
1769          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1770          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1771          * evmcs->host_rsp = vmcs12->host_rsp;
1772          * sync_vmcs02_to_vmcs12() doesn't read these:
1773          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1774          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1775          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1776          * evmcs->ept_pointer = vmcs12->ept_pointer;
1777          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1778          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1779          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1780          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1781          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1782          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1783          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1784          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1785          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1786          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1787          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1788          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1789          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1790          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1791          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1792          * evmcs->page_fault_error_code_mask =
1793          *              vmcs12->page_fault_error_code_mask;
1794          * evmcs->page_fault_error_code_match =
1795          *              vmcs12->page_fault_error_code_match;
1796          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1797          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1798          * evmcs->tsc_offset = vmcs12->tsc_offset;
1799          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1800          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1801          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1802          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1803          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1804          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1805          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1806          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1807          *
1808          * Not present in struct vmcs12:
1809          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1810          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1811          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1812          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1813          */
1814
1815         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1816         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1817         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1818         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1819         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1820         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1821         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1822         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1823
1824         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1825         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1826         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1827         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1828         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1829         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1830         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1831         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1832         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1833         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1834
1835         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1836         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1837         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1838         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1839         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1840         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1841         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1842         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1843
1844         evmcs->guest_es_base = vmcs12->guest_es_base;
1845         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1846         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1847         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1848         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1849         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1850         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1851         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1852         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1853         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1854
1855         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1856         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1857
1858         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1859         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1860         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1861         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1862
1863         evmcs->guest_pending_dbg_exceptions =
1864                 vmcs12->guest_pending_dbg_exceptions;
1865         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1866         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1867
1868         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1869         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1870
1871         evmcs->guest_cr0 = vmcs12->guest_cr0;
1872         evmcs->guest_cr3 = vmcs12->guest_cr3;
1873         evmcs->guest_cr4 = vmcs12->guest_cr4;
1874         evmcs->guest_dr7 = vmcs12->guest_dr7;
1875
1876         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1877
1878         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1879         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1880         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1881         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1882         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1883         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1884         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1885         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1886
1887         evmcs->exit_qualification = vmcs12->exit_qualification;
1888
1889         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1890         evmcs->guest_rsp = vmcs12->guest_rsp;
1891         evmcs->guest_rflags = vmcs12->guest_rflags;
1892
1893         evmcs->guest_interruptibility_info =
1894                 vmcs12->guest_interruptibility_info;
1895         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1896         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1897         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1898         evmcs->vm_entry_exception_error_code =
1899                 vmcs12->vm_entry_exception_error_code;
1900         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1901
1902         evmcs->guest_rip = vmcs12->guest_rip;
1903
1904         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1905
1906         return 0;
1907 }
1908
1909 /*
1910  * This is an equivalent of the nested hypervisor executing the vmptrld
1911  * instruction.
1912  */
1913 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1914                                                  bool from_launch)
1915 {
1916         struct vcpu_vmx *vmx = to_vmx(vcpu);
1917         bool evmcs_gpa_changed = false;
1918         u64 evmcs_gpa;
1919
1920         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1921                 return 1;
1922
1923         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1924                 return 1;
1925
1926         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1927                 if (!vmx->nested.hv_evmcs)
1928                         vmx->nested.current_vmptr = -1ull;
1929
1930                 nested_release_evmcs(vcpu);
1931
1932                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1933                                  &vmx->nested.hv_evmcs_map))
1934                         return 0;
1935
1936                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1937
1938                 /*
1939                  * Currently, KVM only supports eVMCS version 1
1940                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1941                  * value to first u32 field of eVMCS which should specify eVMCS
1942                  * VersionNumber.
1943                  *
1944                  * Guest should be aware of supported eVMCS versions by host by
1945                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1946                  * expected to set this CPUID leaf according to the value
1947                  * returned in vmcs_version from nested_enable_evmcs().
1948                  *
1949                  * However, it turns out that Microsoft Hyper-V fails to comply
1950                  * to their own invented interface: When Hyper-V use eVMCS, it
1951                  * just sets first u32 field of eVMCS to revision_id specified
1952                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1953                  * which is one of the supported versions specified in
1954                  * CPUID.0x4000000A.EAX[0:15].
1955                  *
1956                  * To overcome Hyper-V bug, we accept here either a supported
1957                  * eVMCS version or VMCS12 revision_id as valid values for first
1958                  * u32 field of eVMCS.
1959                  */
1960                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1961                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1962                         nested_release_evmcs(vcpu);
1963                         return 0;
1964                 }
1965
1966                 vmx->nested.dirty_vmcs12 = true;
1967                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1968
1969                 evmcs_gpa_changed = true;
1970                 /*
1971                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1972                  * reloaded from guest's memory (read only fields, fields not
1973                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1974                  * are no leftovers.
1975                  */
1976                 if (from_launch) {
1977                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1978                         memset(vmcs12, 0, sizeof(*vmcs12));
1979                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1980                 }
1981
1982         }
1983
1984         /*
1985          * Clean fields data can't be used on VMLAUNCH and when we switch
1986          * between different L2 guests as KVM keeps a single VMCS12 per L1.
1987          */
1988         if (from_launch || evmcs_gpa_changed)
1989                 vmx->nested.hv_evmcs->hv_clean_fields &=
1990                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1991
1992         return 1;
1993 }
1994
1995 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1996 {
1997         struct vcpu_vmx *vmx = to_vmx(vcpu);
1998
1999         /*
2000          * hv_evmcs may end up being not mapped after migration (when
2001          * L2 was running), map it here to make sure vmcs12 changes are
2002          * properly reflected.
2003          */
2004         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
2005                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
2006
2007         if (vmx->nested.hv_evmcs) {
2008                 copy_vmcs12_to_enlightened(vmx);
2009                 /* All fields are clean */
2010                 vmx->nested.hv_evmcs->hv_clean_fields |=
2011                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2012         } else {
2013                 copy_vmcs12_to_shadow(vmx);
2014         }
2015
2016         vmx->nested.need_vmcs12_to_shadow_sync = false;
2017 }
2018
2019 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2020 {
2021         struct vcpu_vmx *vmx =
2022                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2023
2024         vmx->nested.preemption_timer_expired = true;
2025         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2026         kvm_vcpu_kick(&vmx->vcpu);
2027
2028         return HRTIMER_NORESTART;
2029 }
2030
2031 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
2032 {
2033         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
2034         struct vcpu_vmx *vmx = to_vmx(vcpu);
2035
2036         /*
2037          * A timer value of zero is architecturally guaranteed to cause
2038          * a VMExit prior to executing any instructions in the guest.
2039          */
2040         if (preemption_timeout == 0) {
2041                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2042                 return;
2043         }
2044
2045         if (vcpu->arch.virtual_tsc_khz == 0)
2046                 return;
2047
2048         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2049         preemption_timeout *= 1000000;
2050         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2051         hrtimer_start(&vmx->nested.preemption_timer,
2052                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
2053 }
2054
2055 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2056 {
2057         if (vmx->nested.nested_run_pending &&
2058             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2059                 return vmcs12->guest_ia32_efer;
2060         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2061                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2062         else
2063                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2064 }
2065
2066 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2067 {
2068         /*
2069          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2070          * according to L0's settings (vmcs12 is irrelevant here).  Host
2071          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2072          * will be set as needed prior to VMLAUNCH/VMRESUME.
2073          */
2074         if (vmx->nested.vmcs02_initialized)
2075                 return;
2076         vmx->nested.vmcs02_initialized = true;
2077
2078         /*
2079          * We don't care what the EPTP value is we just need to guarantee
2080          * it's valid so we don't get a false positive when doing early
2081          * consistency checks.
2082          */
2083         if (enable_ept && nested_early_check)
2084                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
2085
2086         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2087         if (cpu_has_vmx_vmfunc())
2088                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2089
2090         if (cpu_has_vmx_posted_intr())
2091                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2092
2093         if (cpu_has_vmx_msr_bitmap())
2094                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2095
2096         /*
2097          * The PML address never changes, so it is constant in vmcs02.
2098          * Conceptually we want to copy the PML index from vmcs01 here,
2099          * and then back to vmcs01 on nested vmexit.  But since we flush
2100          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2101          * index is also effectively constant in vmcs02.
2102          */
2103         if (enable_pml) {
2104                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2105                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2106         }
2107
2108         if (cpu_has_vmx_encls_vmexit())
2109                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2110
2111         /*
2112          * Set the MSR load/store lists to match L0's settings.  Only the
2113          * addresses are constant (for vmcs02), the counts can change based
2114          * on L2's behavior, e.g. switching to/from long mode.
2115          */
2116         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2117         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2118         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2119
2120         vmx_set_constant_host_state(vmx);
2121 }
2122
2123 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2124                                       struct vmcs12 *vmcs12)
2125 {
2126         prepare_vmcs02_constant_state(vmx);
2127
2128         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2129
2130         if (enable_vpid) {
2131                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2132                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2133                 else
2134                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2135         }
2136 }
2137
2138 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2139 {
2140         u32 exec_control, vmcs12_exec_ctrl;
2141         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2142
2143         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2144                 prepare_vmcs02_early_rare(vmx, vmcs12);
2145
2146         /*
2147          * PIN CONTROLS
2148          */
2149         exec_control = vmx_pin_based_exec_ctrl(vmx);
2150         exec_control |= (vmcs12->pin_based_vm_exec_control &
2151                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2152
2153         /* Posted interrupts setting is only taken from vmcs12.  */
2154         if (nested_cpu_has_posted_intr(vmcs12)) {
2155                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2156                 vmx->nested.pi_pending = false;
2157         } else {
2158                 exec_control &= ~PIN_BASED_POSTED_INTR;
2159         }
2160         pin_controls_set(vmx, exec_control);
2161
2162         /*
2163          * EXEC CONTROLS
2164          */
2165         exec_control = vmx_exec_control(vmx); /* L0's desires */
2166         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2167         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2168         exec_control &= ~CPU_BASED_TPR_SHADOW;
2169         exec_control |= vmcs12->cpu_based_vm_exec_control;
2170
2171         vmx->nested.l1_tpr_threshold = -1;
2172         if (exec_control & CPU_BASED_TPR_SHADOW)
2173                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2174 #ifdef CONFIG_X86_64
2175         else
2176                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2177                                 CPU_BASED_CR8_STORE_EXITING;
2178 #endif
2179
2180         /*
2181          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2182          * for I/O port accesses.
2183          */
2184         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2185         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2186
2187         /*
2188          * This bit will be computed in nested_get_vmcs12_pages, because
2189          * we do not have access to L1's MSR bitmap yet.  For now, keep
2190          * the same bit as before, hoping to avoid multiple VMWRITEs that
2191          * only set/clear this bit.
2192          */
2193         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2194         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2195
2196         exec_controls_set(vmx, exec_control);
2197
2198         /*
2199          * SECONDARY EXEC CONTROLS
2200          */
2201         if (cpu_has_secondary_exec_ctrls()) {
2202                 exec_control = vmx->secondary_exec_control;
2203
2204                 /* Take the following fields only from vmcs12 */
2205                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2206                                   SECONDARY_EXEC_ENABLE_INVPCID |
2207                                   SECONDARY_EXEC_RDTSCP |
2208                                   SECONDARY_EXEC_XSAVES |
2209                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2210                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2211                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2212                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2213                 if (nested_cpu_has(vmcs12,
2214                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2215                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2216                                 ~SECONDARY_EXEC_ENABLE_PML;
2217                         exec_control |= vmcs12_exec_ctrl;
2218                 }
2219
2220                 /* VMCS shadowing for L2 is emulated for now */
2221                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2222
2223                 /*
2224                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2225                  * will not have to rewrite the controls just for this bit.
2226                  */
2227                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2228                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2229                         exec_control |= SECONDARY_EXEC_DESC;
2230
2231                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2232                         vmcs_write16(GUEST_INTR_STATUS,
2233                                 vmcs12->guest_intr_status);
2234
2235                 secondary_exec_controls_set(vmx, exec_control);
2236         }
2237
2238         /*
2239          * ENTRY CONTROLS
2240          *
2241          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2242          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2243          * on the related bits (if supported by the CPU) in the hope that
2244          * we can avoid VMWrites during vmx_set_efer().
2245          */
2246         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2247                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2248         if (cpu_has_load_ia32_efer()) {
2249                 if (guest_efer & EFER_LMA)
2250                         exec_control |= VM_ENTRY_IA32E_MODE;
2251                 if (guest_efer != host_efer)
2252                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2253         }
2254         vm_entry_controls_set(vmx, exec_control);
2255
2256         /*
2257          * EXIT CONTROLS
2258          *
2259          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2260          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2261          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2262          */
2263         exec_control = vmx_vmexit_ctrl();
2264         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2265                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2266         vm_exit_controls_set(vmx, exec_control);
2267
2268         /*
2269          * Interrupt/Exception Fields
2270          */
2271         if (vmx->nested.nested_run_pending) {
2272                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2273                              vmcs12->vm_entry_intr_info_field);
2274                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2275                              vmcs12->vm_entry_exception_error_code);
2276                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2277                              vmcs12->vm_entry_instruction_len);
2278                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2279                              vmcs12->guest_interruptibility_info);
2280                 vmx->loaded_vmcs->nmi_known_unmasked =
2281                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2282         } else {
2283                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2284         }
2285 }
2286
2287 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2288 {
2289         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2290
2291         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2292                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2293                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2294                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2295                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2296                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2297                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2298                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2299                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2300                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2301                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2302                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2303                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2304                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2305                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2306                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2307                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2308                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2309                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2310                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2311                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2312                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2313                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2314                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2315                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2316                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2317                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2318                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2319                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2320                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2321                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2322                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2323                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2324                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2325                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2326                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2327                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2328                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2329         }
2330
2331         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2332                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2333                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2334                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2335                             vmcs12->guest_pending_dbg_exceptions);
2336                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2337                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2338
2339                 /*
2340                  * L1 may access the L2's PDPTR, so save them to construct
2341                  * vmcs12
2342                  */
2343                 if (enable_ept) {
2344                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2345                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2346                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2347                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2348                 }
2349
2350                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2351                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2352                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2353         }
2354
2355         if (nested_cpu_has_xsaves(vmcs12))
2356                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2357
2358         /*
2359          * Whether page-faults are trapped is determined by a combination of
2360          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2361          * If enable_ept, L0 doesn't care about page faults and we should
2362          * set all of these to L1's desires. However, if !enable_ept, L0 does
2363          * care about (at least some) page faults, and because it is not easy
2364          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2365          * to exit on each and every L2 page fault. This is done by setting
2366          * MASK=MATCH=0 and (see below) EB.PF=1.
2367          * Note that below we don't need special code to set EB.PF beyond the
2368          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2369          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2370          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2371          */
2372         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2373                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2374         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2375                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2376
2377         if (cpu_has_vmx_apicv()) {
2378                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2379                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2380                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2381                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2382         }
2383
2384         /*
2385          * Make sure the msr_autostore list is up to date before we set the
2386          * count in the vmcs02.
2387          */
2388         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2389
2390         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2391         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2392         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2393
2394         set_cr4_guest_host_mask(vmx);
2395 }
2396
2397 /*
2398  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2399  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2400  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2401  * guest in a way that will both be appropriate to L1's requests, and our
2402  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2403  * function also has additional necessary side-effects, like setting various
2404  * vcpu->arch fields.
2405  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2406  * is assigned to entry_failure_code on failure.
2407  */
2408 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2409                           u32 *entry_failure_code)
2410 {
2411         struct vcpu_vmx *vmx = to_vmx(vcpu);
2412         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2413         bool load_guest_pdptrs_vmcs12 = false;
2414
2415         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2416                 prepare_vmcs02_rare(vmx, vmcs12);
2417                 vmx->nested.dirty_vmcs12 = false;
2418
2419                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2420                         !(hv_evmcs->hv_clean_fields &
2421                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2422         }
2423
2424         if (vmx->nested.nested_run_pending &&
2425             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2426                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2427                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2428         } else {
2429                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2430                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2431         }
2432         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2433             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2434                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2435         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2436
2437         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2438          * bitwise-or of what L1 wants to trap for L2, and what we want to
2439          * trap. Note that CR0.TS also needs updating - we do this later.
2440          */
2441         update_exception_bitmap(vcpu);
2442         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2443         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2444
2445         if (vmx->nested.nested_run_pending &&
2446             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2447                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2448                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2449         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2450                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2451         }
2452
2453         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2454
2455         if (kvm_has_tsc_control)
2456                 decache_tsc_multiplier(vmx);
2457
2458         if (enable_vpid) {
2459                 /*
2460                  * There is no direct mapping between vpid02 and vpid12, the
2461                  * vpid02 is per-vCPU for L0 and reused while the value of
2462                  * vpid12 is changed w/ one invvpid during nested vmentry.
2463                  * The vpid12 is allocated by L1 for L2, so it will not
2464                  * influence global bitmap(for vpid01 and vpid02 allocation)
2465                  * even if spawn a lot of nested vCPUs.
2466                  */
2467                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2468                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2469                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2470                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2471                         }
2472                 } else {
2473                         /*
2474                          * If L1 use EPT, then L0 needs to execute INVEPT on
2475                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2476                          * flush until vmcs02->eptp is fully updated by
2477                          * KVM_REQ_LOAD_CR3. Note that this assumes
2478                          * KVM_REQ_TLB_FLUSH is evaluated after
2479                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2480                          */
2481                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2482                 }
2483         }
2484
2485         if (nested_cpu_has_ept(vmcs12))
2486                 nested_ept_init_mmu_context(vcpu);
2487
2488         /*
2489          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2490          * bits which we consider mandatory enabled.
2491          * The CR0_READ_SHADOW is what L2 should have expected to read given
2492          * the specifications by L1; It's not enough to take
2493          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2494          * have more bits than L1 expected.
2495          */
2496         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2497         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2498
2499         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2500         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2501
2502         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2503         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2504         vmx_set_efer(vcpu, vcpu->arch.efer);
2505
2506         /*
2507          * Guest state is invalid and unrestricted guest is disabled,
2508          * which means L1 attempted VMEntry to L2 with invalid state.
2509          * Fail the VMEntry.
2510          */
2511         if (vmx->emulation_required) {
2512                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2513                 return -EINVAL;
2514         }
2515
2516         /* Shadow page tables on either EPT or shadow page tables. */
2517         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2518                                 entry_failure_code))
2519                 return -EINVAL;
2520
2521         /*
2522          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2523          * on nested VM-Exit, which can occur without actually running L2 and
2524          * thus without hitting vmx_set_cr3(), e.g. if L1 is entering L2 with
2525          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2526          * transition to HLT instead of running L2.
2527          */
2528         if (enable_ept)
2529                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2530
2531         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2532         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2533             is_pae_paging(vcpu)) {
2534                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2535                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2536                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2537                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2538         }
2539
2540         if (!enable_ept)
2541                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2542
2543         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2544             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2545                                      vmcs12->guest_ia32_perf_global_ctrl)))
2546                 return -EINVAL;
2547
2548         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2549         kvm_rip_write(vcpu, vmcs12->guest_rip);
2550         return 0;
2551 }
2552
2553 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2554 {
2555         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2556                nested_cpu_has_virtual_nmis(vmcs12)))
2557                 return -EINVAL;
2558
2559         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2560                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2561                 return -EINVAL;
2562
2563         return 0;
2564 }
2565
2566 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2567 {
2568         struct vcpu_vmx *vmx = to_vmx(vcpu);
2569         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2570
2571         /* Check for memory type validity */
2572         switch (address & VMX_EPTP_MT_MASK) {
2573         case VMX_EPTP_MT_UC:
2574                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2575                         return false;
2576                 break;
2577         case VMX_EPTP_MT_WB:
2578                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2579                         return false;
2580                 break;
2581         default:
2582                 return false;
2583         }
2584
2585         /* only 4 levels page-walk length are valid */
2586         if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2587                 return false;
2588
2589         /* Reserved bits should not be set */
2590         if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2591                 return false;
2592
2593         /* AD, if set, should be supported */
2594         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2595                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2596                         return false;
2597         }
2598
2599         return true;
2600 }
2601
2602 /*
2603  * Checks related to VM-Execution Control Fields
2604  */
2605 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2606                                               struct vmcs12 *vmcs12)
2607 {
2608         struct vcpu_vmx *vmx = to_vmx(vcpu);
2609
2610         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2611                                    vmx->nested.msrs.pinbased_ctls_low,
2612                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2613             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2614                                    vmx->nested.msrs.procbased_ctls_low,
2615                                    vmx->nested.msrs.procbased_ctls_high)))
2616                 return -EINVAL;
2617
2618         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2619             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2620                                    vmx->nested.msrs.secondary_ctls_low,
2621                                    vmx->nested.msrs.secondary_ctls_high)))
2622                 return -EINVAL;
2623
2624         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2625             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2626             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2627             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2628             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2629             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2630             nested_vmx_check_nmi_controls(vmcs12) ||
2631             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2632             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2633             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2634             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2635             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2636                 return -EINVAL;
2637
2638         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2639             nested_cpu_has_save_preemption_timer(vmcs12))
2640                 return -EINVAL;
2641
2642         if (nested_cpu_has_ept(vmcs12) &&
2643             CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2644                 return -EINVAL;
2645
2646         if (nested_cpu_has_vmfunc(vmcs12)) {
2647                 if (CC(vmcs12->vm_function_control &
2648                        ~vmx->nested.msrs.vmfunc_controls))
2649                         return -EINVAL;
2650
2651                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2652                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2653                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2654                                 return -EINVAL;
2655                 }
2656         }
2657
2658         return 0;
2659 }
2660
2661 /*
2662  * Checks related to VM-Exit Control Fields
2663  */
2664 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2665                                          struct vmcs12 *vmcs12)
2666 {
2667         struct vcpu_vmx *vmx = to_vmx(vcpu);
2668
2669         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2670                                     vmx->nested.msrs.exit_ctls_low,
2671                                     vmx->nested.msrs.exit_ctls_high)) ||
2672             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2673                 return -EINVAL;
2674
2675         return 0;
2676 }
2677
2678 /*
2679  * Checks related to VM-Entry Control Fields
2680  */
2681 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2682                                           struct vmcs12 *vmcs12)
2683 {
2684         struct vcpu_vmx *vmx = to_vmx(vcpu);
2685
2686         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2687                                     vmx->nested.msrs.entry_ctls_low,
2688                                     vmx->nested.msrs.entry_ctls_high)))
2689                 return -EINVAL;
2690
2691         /*
2692          * From the Intel SDM, volume 3:
2693          * Fields relevant to VM-entry event injection must be set properly.
2694          * These fields are the VM-entry interruption-information field, the
2695          * VM-entry exception error code, and the VM-entry instruction length.
2696          */
2697         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2698                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2699                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2700                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2701                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2702                 bool should_have_error_code;
2703                 bool urg = nested_cpu_has2(vmcs12,
2704                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2705                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2706
2707                 /* VM-entry interruption-info field: interruption type */
2708                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2709                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2710                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2711                         return -EINVAL;
2712
2713                 /* VM-entry interruption-info field: vector */
2714                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2715                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2716                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2717                         return -EINVAL;
2718
2719                 /* VM-entry interruption-info field: deliver error code */
2720                 should_have_error_code =
2721                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2722                         x86_exception_has_error_code(vector);
2723                 if (CC(has_error_code != should_have_error_code))
2724                         return -EINVAL;
2725
2726                 /* VM-entry exception error code */
2727                 if (CC(has_error_code &&
2728                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2729                         return -EINVAL;
2730
2731                 /* VM-entry interruption-info field: reserved bits */
2732                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2733                         return -EINVAL;
2734
2735                 /* VM-entry instruction length */
2736                 switch (intr_type) {
2737                 case INTR_TYPE_SOFT_EXCEPTION:
2738                 case INTR_TYPE_SOFT_INTR:
2739                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2740                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2741                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2742                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2743                                 return -EINVAL;
2744                 }
2745         }
2746
2747         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2748                 return -EINVAL;
2749
2750         return 0;
2751 }
2752
2753 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2754                                      struct vmcs12 *vmcs12)
2755 {
2756         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2757             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2758             nested_check_vm_entry_controls(vcpu, vmcs12))
2759                 return -EINVAL;
2760
2761         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2762                 return nested_evmcs_check_controls(vmcs12);
2763
2764         return 0;
2765 }
2766
2767 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2768                                        struct vmcs12 *vmcs12)
2769 {
2770         bool ia32e;
2771
2772         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2773             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2774             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2775                 return -EINVAL;
2776
2777         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2778             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2779                 return -EINVAL;
2780
2781         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2782             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2783                 return -EINVAL;
2784
2785         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2786             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2787                                            vmcs12->host_ia32_perf_global_ctrl)))
2788                 return -EINVAL;
2789
2790 #ifdef CONFIG_X86_64
2791         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2792 #else
2793         ia32e = false;
2794 #endif
2795
2796         if (ia32e) {
2797                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2798                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2799                         return -EINVAL;
2800         } else {
2801                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2802                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2803                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2804                     CC((vmcs12->host_rip) >> 32))
2805                         return -EINVAL;
2806         }
2807
2808         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2809             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2810             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2811             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2812             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2813             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2814             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2815             CC(vmcs12->host_cs_selector == 0) ||
2816             CC(vmcs12->host_tr_selector == 0) ||
2817             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2818                 return -EINVAL;
2819
2820         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2821             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2822             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2823             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2824             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2825             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2826                 return -EINVAL;
2827
2828         /*
2829          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2830          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2831          * the values of the LMA and LME bits in the field must each be that of
2832          * the host address-space size VM-exit control.
2833          */
2834         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2835                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2836                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2837                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2838                         return -EINVAL;
2839         }
2840
2841         return 0;
2842 }
2843
2844 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2845                                           struct vmcs12 *vmcs12)
2846 {
2847         int r = 0;
2848         struct vmcs12 *shadow;
2849         struct kvm_host_map map;
2850
2851         if (vmcs12->vmcs_link_pointer == -1ull)
2852                 return 0;
2853
2854         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2855                 return -EINVAL;
2856
2857         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2858                 return -EINVAL;
2859
2860         shadow = map.hva;
2861
2862         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2863             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2864                 r = -EINVAL;
2865
2866         kvm_vcpu_unmap(vcpu, &map, false);
2867         return r;
2868 }
2869
2870 /*
2871  * Checks related to Guest Non-register State
2872  */
2873 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2874 {
2875         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2876                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2877                 return -EINVAL;
2878
2879         return 0;
2880 }
2881
2882 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2883                                         struct vmcs12 *vmcs12,
2884                                         u32 *exit_qual)
2885 {
2886         bool ia32e;
2887
2888         *exit_qual = ENTRY_FAIL_DEFAULT;
2889
2890         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2891             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2892                 return -EINVAL;
2893
2894         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2895             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2896                 return -EINVAL;
2897
2898         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2899             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2900                 return -EINVAL;
2901
2902         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2903                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2904                 return -EINVAL;
2905         }
2906
2907         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2908             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2909                                            vmcs12->guest_ia32_perf_global_ctrl)))
2910                 return -EINVAL;
2911
2912         /*
2913          * If the load IA32_EFER VM-entry control is 1, the following checks
2914          * are performed on the field for the IA32_EFER MSR:
2915          * - Bits reserved in the IA32_EFER MSR must be 0.
2916          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2917          *   the IA-32e mode guest VM-exit control. It must also be identical
2918          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2919          *   CR0.PG) is 1.
2920          */
2921         if (to_vmx(vcpu)->nested.nested_run_pending &&
2922             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2923                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2924                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2925                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2926                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2927                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2928                         return -EINVAL;
2929         }
2930
2931         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2932             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2933              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2934                 return -EINVAL;
2935
2936         if (nested_check_guest_non_reg_state(vmcs12))
2937                 return -EINVAL;
2938
2939         return 0;
2940 }
2941
2942 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2943 {
2944         struct vcpu_vmx *vmx = to_vmx(vcpu);
2945         unsigned long cr3, cr4;
2946         bool vm_fail;
2947
2948         if (!nested_early_check)
2949                 return 0;
2950
2951         if (vmx->msr_autoload.host.nr)
2952                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2953         if (vmx->msr_autoload.guest.nr)
2954                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2955
2956         preempt_disable();
2957
2958         vmx_prepare_switch_to_guest(vcpu);
2959
2960         /*
2961          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2962          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2963          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2964          * there is no need to preserve other bits or save/restore the field.
2965          */
2966         vmcs_writel(GUEST_RFLAGS, 0);
2967
2968         cr3 = __get_current_cr3_fast();
2969         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2970                 vmcs_writel(HOST_CR3, cr3);
2971                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2972         }
2973
2974         cr4 = cr4_read_shadow();
2975         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2976                 vmcs_writel(HOST_CR4, cr4);
2977                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2978         }
2979
2980         asm(
2981                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2982                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2983                 "je 1f \n\t"
2984                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2985                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2986                 "1: \n\t"
2987                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2988
2989                 /* Check if vmlaunch or vmresume is needed */
2990                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2991
2992                 /*
2993                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2994                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2995                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2996                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2997                  */
2998                 "call vmx_vmenter\n\t"
2999
3000                 CC_SET(be)
3001               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3002               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
3003                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
3004                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
3005                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3006                 [wordsize]"i"(sizeof(ulong))
3007               : "memory"
3008         );
3009
3010         if (vmx->msr_autoload.host.nr)
3011                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3012         if (vmx->msr_autoload.guest.nr)
3013                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3014
3015         if (vm_fail) {
3016                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3017
3018                 preempt_enable();
3019
3020                 trace_kvm_nested_vmenter_failed(
3021                         "early hardware check VM-instruction error: ", error);
3022                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3023                 return 1;
3024         }
3025
3026         /*
3027          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3028          */
3029         local_irq_enable();
3030         if (hw_breakpoint_active())
3031                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3032         preempt_enable();
3033
3034         /*
3035          * A non-failing VMEntry means we somehow entered guest mode with
3036          * an illegal RIP, and that's just the tip of the iceberg.  There
3037          * is no telling what memory has been modified or what state has
3038          * been exposed to unknown code.  Hitting this all but guarantees
3039          * a (very critical) hardware issue.
3040          */
3041         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3042                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3043
3044         return 0;
3045 }
3046
3047 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3048 {
3049         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3050         struct vcpu_vmx *vmx = to_vmx(vcpu);
3051         struct kvm_host_map *map;
3052         struct page *page;
3053         u64 hpa;
3054
3055         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3056                 /*
3057                  * Translate L1 physical address to host physical
3058                  * address for vmcs02. Keep the page pinned, so this
3059                  * physical address remains valid. We keep a reference
3060                  * to it so we can release it later.
3061                  */
3062                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3063                         kvm_release_page_clean(vmx->nested.apic_access_page);
3064                         vmx->nested.apic_access_page = NULL;
3065                 }
3066                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3067                 if (!is_error_page(page)) {
3068                         vmx->nested.apic_access_page = page;
3069                         hpa = page_to_phys(vmx->nested.apic_access_page);
3070                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3071                 } else {
3072                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3073                                              __func__);
3074                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3075                         vcpu->run->internal.suberror =
3076                                 KVM_INTERNAL_ERROR_EMULATION;
3077                         vcpu->run->internal.ndata = 0;
3078                         return false;
3079                 }
3080         }
3081
3082         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3083                 map = &vmx->nested.virtual_apic_map;
3084
3085                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3086                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3087                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3088                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3089                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3090                         /*
3091                          * The processor will never use the TPR shadow, simply
3092                          * clear the bit from the execution control.  Such a
3093                          * configuration is useless, but it happens in tests.
3094                          * For any other configuration, failing the vm entry is
3095                          * _not_ what the processor does but it's basically the
3096                          * only possibility we have.
3097                          */
3098                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3099                 } else {
3100                         /*
3101                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3102                          * force VM-Entry to fail.
3103                          */
3104                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3105                 }
3106         }
3107
3108         if (nested_cpu_has_posted_intr(vmcs12)) {
3109                 map = &vmx->nested.pi_desc_map;
3110
3111                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3112                         vmx->nested.pi_desc =
3113                                 (struct pi_desc *)(((void *)map->hva) +
3114                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3115                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3116                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3117                 }
3118         }
3119         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3120                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3121         else
3122                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3123         return true;
3124 }
3125
3126 /*
3127  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3128  * for running VMX instructions (except VMXON, whose prerequisites are
3129  * slightly different). It also specifies what exception to inject otherwise.
3130  * Note that many of these exceptions have priority over VM exits, so they
3131  * don't have to be checked again here.
3132  */
3133 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3134 {
3135         if (!to_vmx(vcpu)->nested.vmxon) {
3136                 kvm_queue_exception(vcpu, UD_VECTOR);
3137                 return 0;
3138         }
3139
3140         if (vmx_get_cpl(vcpu)) {
3141                 kvm_inject_gp(vcpu, 0);
3142                 return 0;
3143         }
3144
3145         return 1;
3146 }
3147
3148 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3149 {
3150         u8 rvi = vmx_get_rvi();
3151         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3152
3153         return ((rvi & 0xf0) > (vppr & 0xf0));
3154 }
3155
3156 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3157                                    struct vmcs12 *vmcs12);
3158
3159 /*
3160  * If from_vmentry is false, this is being called from state restore (either RSM
3161  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3162  *
3163  * Returns:
3164  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3165  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3166  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3167  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3168  */
3169 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3170                                                         bool from_vmentry)
3171 {
3172         struct vcpu_vmx *vmx = to_vmx(vcpu);
3173         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3174         bool evaluate_pending_interrupts;
3175         u32 exit_reason = EXIT_REASON_INVALID_STATE;
3176         u32 exit_qual;
3177
3178         evaluate_pending_interrupts = exec_controls_get(vmx) &
3179                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3180         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3181                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3182
3183         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3184                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3185         if (kvm_mpx_supported() &&
3186                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3187                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3188
3189         /*
3190          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3191          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3192          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3193          * software model to the pre-VMEntry host state.  When EPT is disabled,
3194          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3195          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3196          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3197          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3198          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3199          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3200          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3201          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3202          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3203          * path would need to manually save/restore vmcs01.GUEST_CR3.
3204          */
3205         if (!enable_ept && !nested_early_check)
3206                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3207
3208         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3209
3210         prepare_vmcs02_early(vmx, vmcs12);
3211
3212         if (from_vmentry) {
3213                 if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3214                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3215
3216                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3217                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3218                         return NVMX_VMENTRY_VMFAIL;
3219                 }
3220
3221                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3222                         goto vmentry_fail_vmexit;
3223         }
3224
3225         enter_guest_mode(vcpu);
3226         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3227                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3228
3229         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3230                 goto vmentry_fail_vmexit_guest_mode;
3231
3232         if (from_vmentry) {
3233                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3234                 exit_qual = nested_vmx_load_msr(vcpu,
3235                                                 vmcs12->vm_entry_msr_load_addr,
3236                                                 vmcs12->vm_entry_msr_load_count);
3237                 if (exit_qual)
3238                         goto vmentry_fail_vmexit_guest_mode;
3239         } else {
3240                 /*
3241                  * The MMU is not initialized to point at the right entities yet and
3242                  * "get pages" would need to read data from the guest (i.e. we will
3243                  * need to perform gpa to hpa translation). Request a call
3244                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3245                  * have already been set at vmentry time and should not be reset.
3246                  */
3247                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3248         }
3249
3250         /*
3251          * If L1 had a pending IRQ/NMI until it executed
3252          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3253          * disallowed (e.g. interrupts disabled), L0 needs to
3254          * evaluate if this pending event should cause an exit from L2
3255          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3256          * intercept EXTERNAL_INTERRUPT).
3257          *
3258          * Usually this would be handled by the processor noticing an
3259          * IRQ/NMI window request, or checking RVI during evaluation of
3260          * pending virtual interrupts.  However, this setting was done
3261          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3262          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3263          */
3264         if (unlikely(evaluate_pending_interrupts))
3265                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3266
3267         /*
3268          * Do not start the preemption timer hrtimer until after we know
3269          * we are successful, so that only nested_vmx_vmexit needs to cancel
3270          * the timer.
3271          */
3272         vmx->nested.preemption_timer_expired = false;
3273         if (nested_cpu_has_preemption_timer(vmcs12))
3274                 vmx_start_preemption_timer(vcpu);
3275
3276         /*
3277          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3278          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3279          * returned as far as L1 is concerned. It will only return (and set
3280          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3281          */
3282         return NVMX_VMENTRY_SUCCESS;
3283
3284         /*
3285          * A failed consistency check that leads to a VMExit during L1's
3286          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3287          * 26.7 "VM-entry failures during or after loading guest state".
3288          */
3289 vmentry_fail_vmexit_guest_mode:
3290         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3291                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3292         leave_guest_mode(vcpu);
3293
3294 vmentry_fail_vmexit:
3295         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3296
3297         if (!from_vmentry)
3298                 return NVMX_VMENTRY_VMEXIT;
3299
3300         load_vmcs12_host_state(vcpu, vmcs12);
3301         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3302         vmcs12->exit_qualification = exit_qual;
3303         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3304                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3305         return NVMX_VMENTRY_VMEXIT;
3306 }
3307
3308 /*
3309  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3310  * for running an L2 nested guest.
3311  */
3312 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3313 {
3314         struct vmcs12 *vmcs12;
3315         enum nvmx_vmentry_status status;
3316         struct vcpu_vmx *vmx = to_vmx(vcpu);
3317         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3318
3319         if (!nested_vmx_check_permission(vcpu))
3320                 return 1;
3321
3322         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3323                 return 1;
3324
3325         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3326                 return nested_vmx_failInvalid(vcpu);
3327
3328         vmcs12 = get_vmcs12(vcpu);
3329
3330         /*
3331          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3332          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3333          * rather than RFLAGS.ZF, and no error number is stored to the
3334          * VM-instruction error field.
3335          */
3336         if (vmcs12->hdr.shadow_vmcs)
3337                 return nested_vmx_failInvalid(vcpu);
3338
3339         if (vmx->nested.hv_evmcs) {
3340                 copy_enlightened_to_vmcs12(vmx);
3341                 /* Enlightened VMCS doesn't have launch state */
3342                 vmcs12->launch_state = !launch;
3343         } else if (enable_shadow_vmcs) {
3344                 copy_shadow_to_vmcs12(vmx);
3345         }
3346
3347         /*
3348          * The nested entry process starts with enforcing various prerequisites
3349          * on vmcs12 as required by the Intel SDM, and act appropriately when
3350          * they fail: As the SDM explains, some conditions should cause the
3351          * instruction to fail, while others will cause the instruction to seem
3352          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3353          * To speed up the normal (success) code path, we should avoid checking
3354          * for misconfigurations which will anyway be caught by the processor
3355          * when using the merged vmcs02.
3356          */
3357         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3358                 return nested_vmx_failValid(vcpu,
3359                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3360
3361         if (vmcs12->launch_state == launch)
3362                 return nested_vmx_failValid(vcpu,
3363                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3364                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3365
3366         if (nested_vmx_check_controls(vcpu, vmcs12))
3367                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3368
3369         if (nested_vmx_check_host_state(vcpu, vmcs12))
3370                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3371
3372         /*
3373          * We're finally done with prerequisite checking, and can start with
3374          * the nested entry.
3375          */
3376         vmx->nested.nested_run_pending = 1;
3377         status = nested_vmx_enter_non_root_mode(vcpu, true);
3378         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3379                 goto vmentry_failed;
3380
3381         /* Hide L1D cache contents from the nested guest.  */
3382         vmx->vcpu.arch.l1tf_flush_l1d = true;
3383
3384         /*
3385          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3386          * also be used as part of restoring nVMX state for
3387          * snapshot restore (migration).
3388          *
3389          * In this flow, it is assumed that vmcs12 cache was
3390          * trasferred as part of captured nVMX state and should
3391          * therefore not be read from guest memory (which may not
3392          * exist on destination host yet).
3393          */
3394         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3395
3396         /*
3397          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3398          * awakened by event injection or by an NMI-window VM-exit or
3399          * by an interrupt-window VM-exit, halt the vcpu.
3400          */
3401         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3402             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3403             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3404             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3405               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3406                 vmx->nested.nested_run_pending = 0;
3407                 return kvm_vcpu_halt(vcpu);
3408         }
3409         return 1;
3410
3411 vmentry_failed:
3412         vmx->nested.nested_run_pending = 0;
3413         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3414                 return 0;
3415         if (status == NVMX_VMENTRY_VMEXIT)
3416                 return 1;
3417         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3418         return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3419 }
3420
3421 /*
3422  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3423  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3424  * This function returns the new value we should put in vmcs12.guest_cr0.
3425  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3426  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3427  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3428  *     didn't trap the bit, because if L1 did, so would L0).
3429  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3430  *     been modified by L2, and L1 knows it. So just leave the old value of
3431  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3432  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3433  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3434  *     changed these bits, and therefore they need to be updated, but L0
3435  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3436  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3437  */
3438 static inline unsigned long
3439 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3440 {
3441         return
3442         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3443         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3444         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3445                         vcpu->arch.cr0_guest_owned_bits));
3446 }
3447
3448 static inline unsigned long
3449 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3450 {
3451         return
3452         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3453         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3454         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3455                         vcpu->arch.cr4_guest_owned_bits));
3456 }
3457
3458 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3459                                       struct vmcs12 *vmcs12)
3460 {
3461         u32 idt_vectoring;
3462         unsigned int nr;
3463
3464         if (vcpu->arch.exception.injected) {
3465                 nr = vcpu->arch.exception.nr;
3466                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3467
3468                 if (kvm_exception_is_soft(nr)) {
3469                         vmcs12->vm_exit_instruction_len =
3470                                 vcpu->arch.event_exit_inst_len;
3471                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3472                 } else
3473                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3474
3475                 if (vcpu->arch.exception.has_error_code) {
3476                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3477                         vmcs12->idt_vectoring_error_code =
3478                                 vcpu->arch.exception.error_code;
3479                 }
3480
3481                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3482         } else if (vcpu->arch.nmi_injected) {
3483                 vmcs12->idt_vectoring_info_field =
3484                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3485         } else if (vcpu->arch.interrupt.injected) {
3486                 nr = vcpu->arch.interrupt.nr;
3487                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3488
3489                 if (vcpu->arch.interrupt.soft) {
3490                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3491                         vmcs12->vm_entry_instruction_len =
3492                                 vcpu->arch.event_exit_inst_len;
3493                 } else
3494                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3495
3496                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3497         }
3498 }
3499
3500
3501 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3502 {
3503         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3504         gfn_t gfn;
3505
3506         /*
3507          * Don't need to mark the APIC access page dirty; it is never
3508          * written to by the CPU during APIC virtualization.
3509          */
3510
3511         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3512                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3513                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3514         }
3515
3516         if (nested_cpu_has_posted_intr(vmcs12)) {
3517                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3518                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3519         }
3520 }
3521
3522 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3523 {
3524         struct vcpu_vmx *vmx = to_vmx(vcpu);
3525         int max_irr;
3526         void *vapic_page;
3527         u16 status;
3528
3529         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3530                 return;
3531
3532         vmx->nested.pi_pending = false;
3533         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3534                 return;
3535
3536         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3537         if (max_irr != 256) {
3538                 vapic_page = vmx->nested.virtual_apic_map.hva;
3539                 if (!vapic_page)
3540                         return;
3541
3542                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3543                         vapic_page, &max_irr);
3544                 status = vmcs_read16(GUEST_INTR_STATUS);
3545                 if ((u8)max_irr > ((u8)status & 0xff)) {
3546                         status &= ~0xff;
3547                         status |= (u8)max_irr;
3548                         vmcs_write16(GUEST_INTR_STATUS, status);
3549                 }
3550         }
3551
3552         nested_mark_vmcs12_pages_dirty(vcpu);
3553 }
3554
3555 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3556                                                unsigned long exit_qual)
3557 {
3558         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3559         unsigned int nr = vcpu->arch.exception.nr;
3560         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3561
3562         if (vcpu->arch.exception.has_error_code) {
3563                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3564                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3565         }
3566
3567         if (kvm_exception_is_soft(nr))
3568                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3569         else
3570                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3571
3572         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3573             vmx_get_nmi_mask(vcpu))
3574                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3575
3576         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3577 }
3578
3579 /*
3580  * Returns true if a debug trap is pending delivery.
3581  *
3582  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3583  * exception may be inferred from the presence of an exception payload.
3584  */
3585 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3586 {
3587         return vcpu->arch.exception.pending &&
3588                         vcpu->arch.exception.nr == DB_VECTOR &&
3589                         vcpu->arch.exception.payload;
3590 }
3591
3592 /*
3593  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3594  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3595  * represents these debug traps with a payload that is said to be compatible
3596  * with the 'pending debug exceptions' field, write the payload to the VMCS
3597  * field if a VM-exit is delivered before the debug trap.
3598  */
3599 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3600 {
3601         if (vmx_pending_dbg_trap(vcpu))
3602                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3603                             vcpu->arch.exception.payload);
3604 }
3605
3606 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3607 {
3608         struct vcpu_vmx *vmx = to_vmx(vcpu);
3609         unsigned long exit_qual;
3610         bool block_nested_events =
3611             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3612         bool mtf_pending = vmx->nested.mtf_pending;
3613         struct kvm_lapic *apic = vcpu->arch.apic;
3614
3615         /*
3616          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3617          * this state is discarded.
3618          */
3619         vmx->nested.mtf_pending = false;
3620
3621         if (lapic_in_kernel(vcpu) &&
3622                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3623                 if (block_nested_events)
3624                         return -EBUSY;
3625                 nested_vmx_update_pending_dbg(vcpu);
3626                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3627                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3628                 return 0;
3629         }
3630
3631         /*
3632          * Process any exceptions that are not debug traps before MTF.
3633          */
3634         if (vcpu->arch.exception.pending &&
3635             !vmx_pending_dbg_trap(vcpu) &&
3636             nested_vmx_check_exception(vcpu, &exit_qual)) {
3637                 if (block_nested_events)
3638                         return -EBUSY;
3639                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3640                 return 0;
3641         }
3642
3643         if (mtf_pending) {
3644                 if (block_nested_events)
3645                         return -EBUSY;
3646                 nested_vmx_update_pending_dbg(vcpu);
3647                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3648                 return 0;
3649         }
3650
3651         if (vcpu->arch.exception.pending &&
3652             nested_vmx_check_exception(vcpu, &exit_qual)) {
3653                 if (block_nested_events)
3654                         return -EBUSY;
3655                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3656                 return 0;
3657         }
3658
3659         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3660             vmx->nested.preemption_timer_expired) {
3661                 if (block_nested_events)
3662                         return -EBUSY;
3663                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3664                 return 0;
3665         }
3666
3667         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3668                 if (block_nested_events)
3669                         return -EBUSY;
3670                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3671                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3672                                   INTR_INFO_VALID_MASK, 0);
3673                 /*
3674                  * The NMI-triggered VM exit counts as injection:
3675                  * clear this one and block further NMIs.
3676                  */
3677                 vcpu->arch.nmi_pending = 0;
3678                 vmx_set_nmi_mask(vcpu, true);
3679                 return 0;
3680         }
3681
3682         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3683             nested_exit_on_intr(vcpu)) {
3684                 if (block_nested_events)
3685                         return -EBUSY;
3686                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3687                 return 0;
3688         }
3689
3690         vmx_complete_nested_posted_interrupt(vcpu);
3691         return 0;
3692 }
3693
3694 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3695 {
3696         ktime_t remaining =
3697                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3698         u64 value;
3699
3700         if (ktime_to_ns(remaining) <= 0)
3701                 return 0;
3702
3703         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3704         do_div(value, 1000000);
3705         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3706 }
3707
3708 static bool is_vmcs12_ext_field(unsigned long field)
3709 {
3710         switch (field) {
3711         case GUEST_ES_SELECTOR:
3712         case GUEST_CS_SELECTOR:
3713         case GUEST_SS_SELECTOR:
3714         case GUEST_DS_SELECTOR:
3715         case GUEST_FS_SELECTOR:
3716         case GUEST_GS_SELECTOR:
3717         case GUEST_LDTR_SELECTOR:
3718         case GUEST_TR_SELECTOR:
3719         case GUEST_ES_LIMIT:
3720         case GUEST_CS_LIMIT:
3721         case GUEST_SS_LIMIT:
3722         case GUEST_DS_LIMIT:
3723         case GUEST_FS_LIMIT:
3724         case GUEST_GS_LIMIT:
3725         case GUEST_LDTR_LIMIT:
3726         case GUEST_TR_LIMIT:
3727         case GUEST_GDTR_LIMIT:
3728         case GUEST_IDTR_LIMIT:
3729         case GUEST_ES_AR_BYTES:
3730         case GUEST_DS_AR_BYTES:
3731         case GUEST_FS_AR_BYTES:
3732         case GUEST_GS_AR_BYTES:
3733         case GUEST_LDTR_AR_BYTES:
3734         case GUEST_TR_AR_BYTES:
3735         case GUEST_ES_BASE:
3736         case GUEST_CS_BASE:
3737         case GUEST_SS_BASE:
3738         case GUEST_DS_BASE:
3739         case GUEST_FS_BASE:
3740         case GUEST_GS_BASE:
3741         case GUEST_LDTR_BASE:
3742         case GUEST_TR_BASE:
3743         case GUEST_GDTR_BASE:
3744         case GUEST_IDTR_BASE:
3745         case GUEST_PENDING_DBG_EXCEPTIONS:
3746         case GUEST_BNDCFGS:
3747                 return true;
3748         default:
3749                 break;
3750         }
3751
3752         return false;
3753 }
3754
3755 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3756                                        struct vmcs12 *vmcs12)
3757 {
3758         struct vcpu_vmx *vmx = to_vmx(vcpu);
3759
3760         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3761         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3762         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3763         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3764         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3765         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3766         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3767         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3768         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3769         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3770         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3771         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3772         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3773         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3774         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3775         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3776         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3777         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3778         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3779         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3780         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3781         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3782         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3783         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3784         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3785         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3786         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3787         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3788         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3789         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3790         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3791         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3792         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3793         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3794         vmcs12->guest_pending_dbg_exceptions =
3795                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3796         if (kvm_mpx_supported())
3797                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3798
3799         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3800 }
3801
3802 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3803                                        struct vmcs12 *vmcs12)
3804 {
3805         struct vcpu_vmx *vmx = to_vmx(vcpu);
3806         int cpu;
3807
3808         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3809                 return;
3810
3811
3812         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3813
3814         cpu = get_cpu();
3815         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3816         vmx_vcpu_load(&vmx->vcpu, cpu);
3817
3818         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3819
3820         vmx->loaded_vmcs = &vmx->vmcs01;
3821         vmx_vcpu_load(&vmx->vcpu, cpu);
3822         put_cpu();
3823 }
3824
3825 /*
3826  * Update the guest state fields of vmcs12 to reflect changes that
3827  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3828  * VM-entry controls is also updated, since this is really a guest
3829  * state bit.)
3830  */
3831 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3832 {
3833         struct vcpu_vmx *vmx = to_vmx(vcpu);
3834
3835         if (vmx->nested.hv_evmcs)
3836                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3837
3838         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3839
3840         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3841         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3842
3843         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3844         vmcs12->guest_rip = kvm_rip_read(vcpu);
3845         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3846
3847         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3848         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3849
3850         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3851         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3852         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3853
3854         vmcs12->guest_interruptibility_info =
3855                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3856
3857         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3858                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3859         else
3860                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3861
3862         if (nested_cpu_has_preemption_timer(vmcs12) &&
3863             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3864                         vmcs12->vmx_preemption_timer_value =
3865                                 vmx_get_preemption_timer_value(vcpu);
3866
3867         /*
3868          * In some cases (usually, nested EPT), L2 is allowed to change its
3869          * own CR3 without exiting. If it has changed it, we must keep it.
3870          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3871          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3872          *
3873          * Additionally, restore L2's PDPTR to vmcs12.
3874          */
3875         if (enable_ept) {
3876                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3877                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3878                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3879                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3880                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3881                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3882                 }
3883         }
3884
3885         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3886
3887         if (nested_cpu_has_vid(vmcs12))
3888                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3889
3890         vmcs12->vm_entry_controls =
3891                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3892                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3893
3894         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3895                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3896
3897         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3898                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3899 }
3900
3901 /*
3902  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3903  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3904  * and this function updates it to reflect the changes to the guest state while
3905  * L2 was running (and perhaps made some exits which were handled directly by L0
3906  * without going back to L1), and to reflect the exit reason.
3907  * Note that we do not have to copy here all VMCS fields, just those that
3908  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3909  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3910  * which already writes to vmcs12 directly.
3911  */
3912 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3913                            u32 exit_reason, u32 exit_intr_info,
3914                            unsigned long exit_qualification)
3915 {
3916         /* update exit information fields: */
3917         vmcs12->vm_exit_reason = exit_reason;
3918         vmcs12->exit_qualification = exit_qualification;
3919         vmcs12->vm_exit_intr_info = exit_intr_info;
3920
3921         vmcs12->idt_vectoring_info_field = 0;
3922         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3923         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3924
3925         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3926                 vmcs12->launch_state = 1;
3927
3928                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3929                  * instead of reading the real value. */
3930                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3931
3932                 /*
3933                  * Transfer the event that L0 or L1 may wanted to inject into
3934                  * L2 to IDT_VECTORING_INFO_FIELD.
3935                  */
3936                 vmcs12_save_pending_event(vcpu, vmcs12);
3937
3938                 /*
3939                  * According to spec, there's no need to store the guest's
3940                  * MSRs if the exit is due to a VM-entry failure that occurs
3941                  * during or after loading the guest state. Since this exit
3942                  * does not fall in that category, we need to save the MSRs.
3943                  */
3944                 if (nested_vmx_store_msr(vcpu,
3945                                          vmcs12->vm_exit_msr_store_addr,
3946                                          vmcs12->vm_exit_msr_store_count))
3947                         nested_vmx_abort(vcpu,
3948                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3949         }
3950
3951         /*
3952          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3953          * preserved above and would only end up incorrectly in L1.
3954          */
3955         vcpu->arch.nmi_injected = false;
3956         kvm_clear_exception_queue(vcpu);
3957         kvm_clear_interrupt_queue(vcpu);
3958 }
3959
3960 /*
3961  * A part of what we need to when the nested L2 guest exits and we want to
3962  * run its L1 parent, is to reset L1's guest state to the host state specified
3963  * in vmcs12.
3964  * This function is to be called not only on normal nested exit, but also on
3965  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3966  * Failures During or After Loading Guest State").
3967  * This function should be called when the active VMCS is L1's (vmcs01).
3968  */
3969 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3970                                    struct vmcs12 *vmcs12)
3971 {
3972         struct kvm_segment seg;
3973         u32 entry_failure_code;
3974
3975         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3976                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3977         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3978                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3979         else
3980                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3981         vmx_set_efer(vcpu, vcpu->arch.efer);
3982
3983         kvm_rsp_write(vcpu, vmcs12->host_rsp);
3984         kvm_rip_write(vcpu, vmcs12->host_rip);
3985         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3986         vmx_set_interrupt_shadow(vcpu, 0);
3987
3988         /*
3989          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3990          * actually changed, because vmx_set_cr0 refers to efer set above.
3991          *
3992          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3993          * (KVM doesn't change it);
3994          */
3995         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3996         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3997
3998         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3999         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4000         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4001
4002         nested_ept_uninit_mmu_context(vcpu);
4003
4004         /*
4005          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4006          * couldn't have changed.
4007          */
4008         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
4009                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4010
4011         if (!enable_ept)
4012                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4013
4014         /*
4015          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
4016          * VMEntry/VMExit. Thus, no need to flush TLB.
4017          *
4018          * If vmcs12 doesn't use VPID, L1 expects TLB to be
4019          * flushed on every VMEntry/VMExit.
4020          *
4021          * Otherwise, we can preserve TLB entries as long as we are
4022          * able to tag L1 TLB entries differently than L2 TLB entries.
4023          *
4024          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
4025          * and therefore we request the TLB flush to happen only after VMCS EPTP
4026          * has been set by KVM_REQ_LOAD_CR3.
4027          */
4028         if (enable_vpid &&
4029             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
4030                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4031         }
4032
4033         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4034         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4035         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4036         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4037         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4038         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4039         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4040
4041         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4042         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4043                 vmcs_write64(GUEST_BNDCFGS, 0);
4044
4045         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4046                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4047                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4048         }
4049         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4050                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4051                                          vmcs12->host_ia32_perf_global_ctrl));
4052
4053         /* Set L1 segment info according to Intel SDM
4054             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4055         seg = (struct kvm_segment) {
4056                 .base = 0,
4057                 .limit = 0xFFFFFFFF,
4058                 .selector = vmcs12->host_cs_selector,
4059                 .type = 11,
4060                 .present = 1,
4061                 .s = 1,
4062                 .g = 1
4063         };
4064         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4065                 seg.l = 1;
4066         else
4067                 seg.db = 1;
4068         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4069         seg = (struct kvm_segment) {
4070                 .base = 0,
4071                 .limit = 0xFFFFFFFF,
4072                 .type = 3,
4073                 .present = 1,
4074                 .s = 1,
4075                 .db = 1,
4076                 .g = 1
4077         };
4078         seg.selector = vmcs12->host_ds_selector;
4079         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4080         seg.selector = vmcs12->host_es_selector;
4081         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4082         seg.selector = vmcs12->host_ss_selector;
4083         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4084         seg.selector = vmcs12->host_fs_selector;
4085         seg.base = vmcs12->host_fs_base;
4086         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4087         seg.selector = vmcs12->host_gs_selector;
4088         seg.base = vmcs12->host_gs_base;
4089         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4090         seg = (struct kvm_segment) {
4091                 .base = vmcs12->host_tr_base,
4092                 .limit = 0x67,
4093                 .selector = vmcs12->host_tr_selector,
4094                 .type = 11,
4095                 .present = 1
4096         };
4097         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4098
4099         kvm_set_dr(vcpu, 7, 0x400);
4100         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4101
4102         if (cpu_has_vmx_msr_bitmap())
4103                 vmx_update_msr_bitmap(vcpu);
4104
4105         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4106                                 vmcs12->vm_exit_msr_load_count))
4107                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4108 }
4109
4110 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4111 {
4112         struct shared_msr_entry *efer_msr;
4113         unsigned int i;
4114
4115         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4116                 return vmcs_read64(GUEST_IA32_EFER);
4117
4118         if (cpu_has_load_ia32_efer())
4119                 return host_efer;
4120
4121         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4122                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4123                         return vmx->msr_autoload.guest.val[i].value;
4124         }
4125
4126         efer_msr = find_msr_entry(vmx, MSR_EFER);
4127         if (efer_msr)
4128                 return efer_msr->data;
4129
4130         return host_efer;
4131 }
4132
4133 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4134 {
4135         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4136         struct vcpu_vmx *vmx = to_vmx(vcpu);
4137         struct vmx_msr_entry g, h;
4138         gpa_t gpa;
4139         u32 i, j;
4140
4141         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4142
4143         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4144                 /*
4145                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4146                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4147                  * and vcpu->arch.dr7 is not squirreled away before the
4148                  * nested VMENTER (not worth adding a variable in nested_vmx).
4149                  */
4150                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4151                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4152                 else
4153                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4154         }
4155
4156         /*
4157          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4158          * handle a variety of side effects to KVM's software model.
4159          */
4160         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4161
4162         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4163         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4164
4165         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4166         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4167
4168         nested_ept_uninit_mmu_context(vcpu);
4169         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4170         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4171
4172         /*
4173          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4174          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4175          * VMFail, like everything else we just need to ensure our
4176          * software model is up-to-date.
4177          */
4178         if (enable_ept)
4179                 ept_save_pdptrs(vcpu);
4180
4181         kvm_mmu_reset_context(vcpu);
4182
4183         if (cpu_has_vmx_msr_bitmap())
4184                 vmx_update_msr_bitmap(vcpu);
4185
4186         /*
4187          * This nasty bit of open coding is a compromise between blindly
4188          * loading L1's MSRs using the exit load lists (incorrect emulation
4189          * of VMFail), leaving the nested VM's MSRs in the software model
4190          * (incorrect behavior) and snapshotting the modified MSRs (too
4191          * expensive since the lists are unbound by hardware).  For each
4192          * MSR that was (prematurely) loaded from the nested VMEntry load
4193          * list, reload it from the exit load list if it exists and differs
4194          * from the guest value.  The intent is to stuff host state as
4195          * silently as possible, not to fully process the exit load list.
4196          */
4197         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4198                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4199                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4200                         pr_debug_ratelimited(
4201                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4202                                 __func__, i, gpa);
4203                         goto vmabort;
4204                 }
4205
4206                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4207                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4208                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4209                                 pr_debug_ratelimited(
4210                                         "%s read MSR failed (%u, 0x%08llx)\n",
4211                                         __func__, j, gpa);
4212                                 goto vmabort;
4213                         }
4214                         if (h.index != g.index)
4215                                 continue;
4216                         if (h.value == g.value)
4217                                 break;
4218
4219                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4220                                 pr_debug_ratelimited(
4221                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4222                                         __func__, j, h.index, h.reserved);
4223                                 goto vmabort;
4224                         }
4225
4226                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4227                                 pr_debug_ratelimited(
4228                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4229                                         __func__, j, h.index, h.value);
4230                                 goto vmabort;
4231                         }
4232                 }
4233         }
4234
4235         return;
4236
4237 vmabort:
4238         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4239 }
4240
4241 /*
4242  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4243  * and modify vmcs12 to make it see what it would expect to see there if
4244  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4245  */
4246 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4247                        u32 exit_intr_info, unsigned long exit_qualification)
4248 {
4249         struct vcpu_vmx *vmx = to_vmx(vcpu);
4250         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4251
4252         /* trying to cancel vmlaunch/vmresume is a bug */
4253         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4254
4255         leave_guest_mode(vcpu);
4256
4257         if (nested_cpu_has_preemption_timer(vmcs12))
4258                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4259
4260         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4261                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4262
4263         if (likely(!vmx->fail)) {
4264                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4265
4266                 if (exit_reason != -1)
4267                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4268                                        exit_qualification);
4269
4270                 /*
4271                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4272                  * also be used to capture vmcs12 cache as part of
4273                  * capturing nVMX state for snapshot (migration).
4274                  *
4275                  * Otherwise, this flush will dirty guest memory at a
4276                  * point it is already assumed by user-space to be
4277                  * immutable.
4278                  */
4279                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4280         } else {
4281                 /*
4282                  * The only expected VM-instruction error is "VM entry with
4283                  * invalid control field(s)." Anything else indicates a
4284                  * problem with L0.  And we should never get here with a
4285                  * VMFail of any type if early consistency checks are enabled.
4286                  */
4287                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4288                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4289                 WARN_ON_ONCE(nested_early_check);
4290         }
4291
4292         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4293
4294         /* Update any VMCS fields that might have changed while L2 ran */
4295         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4296         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4297         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4298         if (vmx->nested.l1_tpr_threshold != -1)
4299                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4300
4301         if (kvm_has_tsc_control)
4302                 decache_tsc_multiplier(vmx);
4303
4304         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4305                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4306                 vmx_set_virtual_apic_mode(vcpu);
4307         }
4308
4309         /* Unpin physical memory we referred to in vmcs02 */
4310         if (vmx->nested.apic_access_page) {
4311                 kvm_release_page_clean(vmx->nested.apic_access_page);
4312                 vmx->nested.apic_access_page = NULL;
4313         }
4314         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4315         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4316         vmx->nested.pi_desc = NULL;
4317
4318         /*
4319          * We are now running in L2, mmu_notifier will force to reload the
4320          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4321          */
4322         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4323
4324         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4325                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4326
4327         /* in case we halted in L2 */
4328         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4329
4330         if (likely(!vmx->fail)) {
4331                 /*
4332                  * TODO: SDM says that with acknowledge interrupt on
4333                  * exit, bit 31 of the VM-exit interrupt information
4334                  * (valid interrupt) is always set to 1 on
4335                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4336                  * need kvm_cpu_has_interrupt().  See the commit
4337                  * message for details.
4338                  */
4339                 if (nested_exit_intr_ack_set(vcpu) &&
4340                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4341                     kvm_cpu_has_interrupt(vcpu)) {
4342                         int irq = kvm_cpu_get_interrupt(vcpu);
4343                         WARN_ON(irq < 0);
4344                         vmcs12->vm_exit_intr_info = irq |
4345                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4346                 }
4347
4348                 if (exit_reason != -1)
4349                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4350                                                        vmcs12->exit_qualification,
4351                                                        vmcs12->idt_vectoring_info_field,
4352                                                        vmcs12->vm_exit_intr_info,
4353                                                        vmcs12->vm_exit_intr_error_code,
4354                                                        KVM_ISA_VMX);
4355
4356                 load_vmcs12_host_state(vcpu, vmcs12);
4357
4358                 return;
4359         }
4360
4361         /*
4362          * After an early L2 VM-entry failure, we're now back
4363          * in L1 which thinks it just finished a VMLAUNCH or
4364          * VMRESUME instruction, so we need to set the failure
4365          * flag and the VM-instruction error field of the VMCS
4366          * accordingly, and skip the emulated instruction.
4367          */
4368         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4369
4370         /*
4371          * Restore L1's host state to KVM's software model.  We're here
4372          * because a consistency check was caught by hardware, which
4373          * means some amount of guest state has been propagated to KVM's
4374          * model and needs to be unwound to the host's state.
4375          */
4376         nested_vmx_restore_host_state(vcpu);
4377
4378         vmx->fail = 0;
4379 }
4380
4381 /*
4382  * Decode the memory-address operand of a vmx instruction, as recorded on an
4383  * exit caused by such an instruction (run by a guest hypervisor).
4384  * On success, returns 0. When the operand is invalid, returns 1 and throws
4385  * #UD or #GP.
4386  */
4387 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4388                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4389 {
4390         gva_t off;
4391         bool exn;
4392         struct kvm_segment s;
4393
4394         /*
4395          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4396          * Execution", on an exit, vmx_instruction_info holds most of the
4397          * addressing components of the operand. Only the displacement part
4398          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4399          * For how an actual address is calculated from all these components,
4400          * refer to Vol. 1, "Operand Addressing".
4401          */
4402         int  scaling = vmx_instruction_info & 3;
4403         int  addr_size = (vmx_instruction_info >> 7) & 7;
4404         bool is_reg = vmx_instruction_info & (1u << 10);
4405         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4406         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4407         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4408         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4409         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4410
4411         if (is_reg) {
4412                 kvm_queue_exception(vcpu, UD_VECTOR);
4413                 return 1;
4414         }
4415
4416         /* Addr = segment_base + offset */
4417         /* offset = base + [index * scale] + displacement */
4418         off = exit_qualification; /* holds the displacement */
4419         if (addr_size == 1)
4420                 off = (gva_t)sign_extend64(off, 31);
4421         else if (addr_size == 0)
4422                 off = (gva_t)sign_extend64(off, 15);
4423         if (base_is_valid)
4424                 off += kvm_register_read(vcpu, base_reg);
4425         if (index_is_valid)
4426                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4427         vmx_get_segment(vcpu, &s, seg_reg);
4428
4429         /*
4430          * The effective address, i.e. @off, of a memory operand is truncated
4431          * based on the address size of the instruction.  Note that this is
4432          * the *effective address*, i.e. the address prior to accounting for
4433          * the segment's base.
4434          */
4435         if (addr_size == 1) /* 32 bit */
4436                 off &= 0xffffffff;
4437         else if (addr_size == 0) /* 16 bit */
4438                 off &= 0xffff;
4439
4440         /* Checks for #GP/#SS exceptions. */
4441         exn = false;
4442         if (is_long_mode(vcpu)) {
4443                 /*
4444                  * The virtual/linear address is never truncated in 64-bit
4445                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4446                  * address when using FS/GS with a non-zero base.
4447                  */
4448                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4449                         *ret = s.base + off;
4450                 else
4451                         *ret = off;
4452
4453                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4454                  * non-canonical form. This is the only check on the memory
4455                  * destination for long mode!
4456                  */
4457                 exn = is_noncanonical_address(*ret, vcpu);
4458         } else {
4459                 /*
4460                  * When not in long mode, the virtual/linear address is
4461                  * unconditionally truncated to 32 bits regardless of the
4462                  * address size.
4463                  */
4464                 *ret = (s.base + off) & 0xffffffff;
4465
4466                 /* Protected mode: apply checks for segment validity in the
4467                  * following order:
4468                  * - segment type check (#GP(0) may be thrown)
4469                  * - usability check (#GP(0)/#SS(0))
4470                  * - limit check (#GP(0)/#SS(0))
4471                  */
4472                 if (wr)
4473                         /* #GP(0) if the destination operand is located in a
4474                          * read-only data segment or any code segment.
4475                          */
4476                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4477                 else
4478                         /* #GP(0) if the source operand is located in an
4479                          * execute-only code segment
4480                          */
4481                         exn = ((s.type & 0xa) == 8);
4482                 if (exn) {
4483                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4484                         return 1;
4485                 }
4486                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4487                  */
4488                 exn = (s.unusable != 0);
4489
4490                 /*
4491                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4492                  * outside the segment limit.  All CPUs that support VMX ignore
4493                  * limit checks for flat segments, i.e. segments with base==0,
4494                  * limit==0xffffffff and of type expand-up data or code.
4495                  */
4496                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4497                      ((s.type & 8) || !(s.type & 4))))
4498                         exn = exn || ((u64)off + len - 1 > s.limit);
4499         }
4500         if (exn) {
4501                 kvm_queue_exception_e(vcpu,
4502                                       seg_reg == VCPU_SREG_SS ?
4503                                                 SS_VECTOR : GP_VECTOR,
4504                                       0);
4505                 return 1;
4506         }
4507
4508         return 0;
4509 }
4510
4511 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4512 {
4513         struct vcpu_vmx *vmx;
4514
4515         if (!nested_vmx_allowed(vcpu))
4516                 return;
4517
4518         vmx = to_vmx(vcpu);
4519         if (kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4520                 vmx->nested.msrs.entry_ctls_high |=
4521                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4522                 vmx->nested.msrs.exit_ctls_high |=
4523                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4524         } else {
4525                 vmx->nested.msrs.entry_ctls_high &=
4526                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4527                 vmx->nested.msrs.exit_ctls_high &=
4528                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4529         }
4530 }
4531
4532 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4533 {
4534         gva_t gva;
4535         struct x86_exception e;
4536
4537         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4538                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4539                                 sizeof(*vmpointer), &gva))
4540                 return 1;
4541
4542         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4543                 kvm_inject_page_fault(vcpu, &e);
4544                 return 1;
4545         }
4546
4547         return 0;
4548 }
4549
4550 /*
4551  * Allocate a shadow VMCS and associate it with the currently loaded
4552  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4553  * VMCS is also VMCLEARed, so that it is ready for use.
4554  */
4555 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4556 {
4557         struct vcpu_vmx *vmx = to_vmx(vcpu);
4558         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4559
4560         /*
4561          * We should allocate a shadow vmcs for vmcs01 only when L1
4562          * executes VMXON and free it when L1 executes VMXOFF.
4563          * As it is invalid to execute VMXON twice, we shouldn't reach
4564          * here when vmcs01 already have an allocated shadow vmcs.
4565          */
4566         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4567
4568         if (!loaded_vmcs->shadow_vmcs) {
4569                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4570                 if (loaded_vmcs->shadow_vmcs)
4571                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4572         }
4573         return loaded_vmcs->shadow_vmcs;
4574 }
4575
4576 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4577 {
4578         struct vcpu_vmx *vmx = to_vmx(vcpu);
4579         int r;
4580
4581         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4582         if (r < 0)
4583                 goto out_vmcs02;
4584
4585         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4586         if (!vmx->nested.cached_vmcs12)
4587                 goto out_cached_vmcs12;
4588
4589         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4590         if (!vmx->nested.cached_shadow_vmcs12)
4591                 goto out_cached_shadow_vmcs12;
4592
4593         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4594                 goto out_shadow_vmcs;
4595
4596         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4597                      HRTIMER_MODE_REL_PINNED);
4598         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4599
4600         vmx->nested.vpid02 = allocate_vpid();
4601
4602         vmx->nested.vmcs02_initialized = false;
4603         vmx->nested.vmxon = true;
4604
4605         if (pt_mode == PT_MODE_HOST_GUEST) {
4606                 vmx->pt_desc.guest.ctl = 0;
4607                 pt_update_intercept_for_msr(vmx);
4608         }
4609
4610         return 0;
4611
4612 out_shadow_vmcs:
4613         kfree(vmx->nested.cached_shadow_vmcs12);
4614
4615 out_cached_shadow_vmcs12:
4616         kfree(vmx->nested.cached_vmcs12);
4617
4618 out_cached_vmcs12:
4619         free_loaded_vmcs(&vmx->nested.vmcs02);
4620
4621 out_vmcs02:
4622         return -ENOMEM;
4623 }
4624
4625 /*
4626  * Emulate the VMXON instruction.
4627  * Currently, we just remember that VMX is active, and do not save or even
4628  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4629  * do not currently need to store anything in that guest-allocated memory
4630  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4631  * argument is different from the VMXON pointer (which the spec says they do).
4632  */
4633 static int handle_vmon(struct kvm_vcpu *vcpu)
4634 {
4635         int ret;
4636         gpa_t vmptr;
4637         uint32_t revision;
4638         struct vcpu_vmx *vmx = to_vmx(vcpu);
4639         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4640                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4641
4642         /*
4643          * The Intel VMX Instruction Reference lists a bunch of bits that are
4644          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4645          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4646          * Otherwise, we should fail with #UD.  But most faulting conditions
4647          * have already been checked by hardware, prior to the VM-exit for
4648          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4649          * that bit set to 1 in non-root mode.
4650          */
4651         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4652                 kvm_queue_exception(vcpu, UD_VECTOR);
4653                 return 1;
4654         }
4655
4656         /* CPL=0 must be checked manually. */
4657         if (vmx_get_cpl(vcpu)) {
4658                 kvm_inject_gp(vcpu, 0);
4659                 return 1;
4660         }
4661
4662         if (vmx->nested.vmxon)
4663                 return nested_vmx_failValid(vcpu,
4664                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4665
4666         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4667                         != VMXON_NEEDED_FEATURES) {
4668                 kvm_inject_gp(vcpu, 0);
4669                 return 1;
4670         }
4671
4672         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4673                 return 1;
4674
4675         /*
4676          * SDM 3: 24.11.5
4677          * The first 4 bytes of VMXON region contain the supported
4678          * VMCS revision identifier
4679          *
4680          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4681          * which replaces physical address width with 32
4682          */
4683         if (!page_address_valid(vcpu, vmptr))
4684                 return nested_vmx_failInvalid(vcpu);
4685
4686         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4687             revision != VMCS12_REVISION)
4688                 return nested_vmx_failInvalid(vcpu);
4689
4690         vmx->nested.vmxon_ptr = vmptr;
4691         ret = enter_vmx_operation(vcpu);
4692         if (ret)
4693                 return ret;
4694
4695         return nested_vmx_succeed(vcpu);
4696 }
4697
4698 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4699 {
4700         struct vcpu_vmx *vmx = to_vmx(vcpu);
4701
4702         if (vmx->nested.current_vmptr == -1ull)
4703                 return;
4704
4705         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4706
4707         if (enable_shadow_vmcs) {
4708                 /* copy to memory all shadowed fields in case
4709                    they were modified */
4710                 copy_shadow_to_vmcs12(vmx);
4711                 vmx_disable_shadow_vmcs(vmx);
4712         }
4713         vmx->nested.posted_intr_nv = -1;
4714
4715         /* Flush VMCS12 to guest memory */
4716         kvm_vcpu_write_guest_page(vcpu,
4717                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4718                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4719
4720         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4721
4722         vmx->nested.current_vmptr = -1ull;
4723 }
4724
4725 /* Emulate the VMXOFF instruction */
4726 static int handle_vmoff(struct kvm_vcpu *vcpu)
4727 {
4728         if (!nested_vmx_check_permission(vcpu))
4729                 return 1;
4730
4731         free_nested(vcpu);
4732
4733         /* Process a latched INIT during time CPU was in VMX operation */
4734         kvm_make_request(KVM_REQ_EVENT, vcpu);
4735
4736         return nested_vmx_succeed(vcpu);
4737 }
4738
4739 /* Emulate the VMCLEAR instruction */
4740 static int handle_vmclear(struct kvm_vcpu *vcpu)
4741 {
4742         struct vcpu_vmx *vmx = to_vmx(vcpu);
4743         u32 zero = 0;
4744         gpa_t vmptr;
4745         u64 evmcs_gpa;
4746
4747         if (!nested_vmx_check_permission(vcpu))
4748                 return 1;
4749
4750         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4751                 return 1;
4752
4753         if (!page_address_valid(vcpu, vmptr))
4754                 return nested_vmx_failValid(vcpu,
4755                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4756
4757         if (vmptr == vmx->nested.vmxon_ptr)
4758                 return nested_vmx_failValid(vcpu,
4759                         VMXERR_VMCLEAR_VMXON_POINTER);
4760
4761         /*
4762          * When Enlightened VMEntry is enabled on the calling CPU we treat
4763          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4764          * way to distinguish it from VMCS12) and we must not corrupt it by
4765          * writing to the non-existent 'launch_state' field. The area doesn't
4766          * have to be the currently active EVMCS on the calling CPU and there's
4767          * nothing KVM has to do to transition it from 'active' to 'non-active'
4768          * state. It is possible that the area will stay mapped as
4769          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4770          */
4771         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4772                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4773                 if (vmptr == vmx->nested.current_vmptr)
4774                         nested_release_vmcs12(vcpu);
4775
4776                 kvm_vcpu_write_guest(vcpu,
4777                                      vmptr + offsetof(struct vmcs12,
4778                                                       launch_state),
4779                                      &zero, sizeof(zero));
4780         }
4781
4782         return nested_vmx_succeed(vcpu);
4783 }
4784
4785 /* Emulate the VMLAUNCH instruction */
4786 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4787 {
4788         return nested_vmx_run(vcpu, true);
4789 }
4790
4791 /* Emulate the VMRESUME instruction */
4792 static int handle_vmresume(struct kvm_vcpu *vcpu)
4793 {
4794
4795         return nested_vmx_run(vcpu, false);
4796 }
4797
4798 static int handle_vmread(struct kvm_vcpu *vcpu)
4799 {
4800         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4801                                                     : get_vmcs12(vcpu);
4802         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4803         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4804         struct vcpu_vmx *vmx = to_vmx(vcpu);
4805         struct x86_exception e;
4806         unsigned long field;
4807         u64 value;
4808         gva_t gva = 0;
4809         short offset;
4810         int len;
4811
4812         if (!nested_vmx_check_permission(vcpu))
4813                 return 1;
4814
4815         /*
4816          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4817          * any VMREAD sets the ALU flags for VMfailInvalid.
4818          */
4819         if (vmx->nested.current_vmptr == -1ull ||
4820             (is_guest_mode(vcpu) &&
4821              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4822                 return nested_vmx_failInvalid(vcpu);
4823
4824         /* Decode instruction info and find the field to read */
4825         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4826
4827         offset = vmcs_field_to_offset(field);
4828         if (offset < 0)
4829                 return nested_vmx_failValid(vcpu,
4830                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4831
4832         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4833                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4834
4835         /* Read the field, zero-extended to a u64 value */
4836         value = vmcs12_read_any(vmcs12, field, offset);
4837
4838         /*
4839          * Now copy part of this value to register or memory, as requested.
4840          * Note that the number of bits actually copied is 32 or 64 depending
4841          * on the guest's mode (32 or 64 bit), not on the given field's length.
4842          */
4843         if (instr_info & BIT(10)) {
4844                 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
4845         } else {
4846                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4847                 if (get_vmx_mem_address(vcpu, exit_qualification,
4848                                         instr_info, true, len, &gva))
4849                         return 1;
4850                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4851                 if (kvm_write_guest_virt_system(vcpu, gva, &value, len, &e)) {
4852                         kvm_inject_page_fault(vcpu, &e);
4853                         return 1;
4854                 }
4855         }
4856
4857         return nested_vmx_succeed(vcpu);
4858 }
4859
4860 static bool is_shadow_field_rw(unsigned long field)
4861 {
4862         switch (field) {
4863 #define SHADOW_FIELD_RW(x, y) case x:
4864 #include "vmcs_shadow_fields.h"
4865                 return true;
4866         default:
4867                 break;
4868         }
4869         return false;
4870 }
4871
4872 static bool is_shadow_field_ro(unsigned long field)
4873 {
4874         switch (field) {
4875 #define SHADOW_FIELD_RO(x, y) case x:
4876 #include "vmcs_shadow_fields.h"
4877                 return true;
4878         default:
4879                 break;
4880         }
4881         return false;
4882 }
4883
4884 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4885 {
4886         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4887                                                     : get_vmcs12(vcpu);
4888         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4889         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4890         struct vcpu_vmx *vmx = to_vmx(vcpu);
4891         struct x86_exception e;
4892         unsigned long field;
4893         short offset;
4894         gva_t gva;
4895         int len;
4896
4897         /*
4898          * The value to write might be 32 or 64 bits, depending on L1's long
4899          * mode, and eventually we need to write that into a field of several
4900          * possible lengths. The code below first zero-extends the value to 64
4901          * bit (value), and then copies only the appropriate number of
4902          * bits into the vmcs12 field.
4903          */
4904         u64 value = 0;
4905
4906         if (!nested_vmx_check_permission(vcpu))
4907                 return 1;
4908
4909         /*
4910          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4911          * any VMWRITE sets the ALU flags for VMfailInvalid.
4912          */
4913         if (vmx->nested.current_vmptr == -1ull ||
4914             (is_guest_mode(vcpu) &&
4915              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4916                 return nested_vmx_failInvalid(vcpu);
4917
4918         if (instr_info & BIT(10))
4919                 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
4920         else {
4921                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4922                 if (get_vmx_mem_address(vcpu, exit_qualification,
4923                                         instr_info, false, len, &gva))
4924                         return 1;
4925                 if (kvm_read_guest_virt(vcpu, gva, &value, len, &e)) {
4926                         kvm_inject_page_fault(vcpu, &e);
4927                         return 1;
4928                 }
4929         }
4930
4931         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4932
4933         offset = vmcs_field_to_offset(field);
4934         if (offset < 0)
4935                 return nested_vmx_failValid(vcpu,
4936                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4937
4938         /*
4939          * If the vCPU supports "VMWRITE to any supported field in the
4940          * VMCS," then the "read-only" fields are actually read/write.
4941          */
4942         if (vmcs_field_readonly(field) &&
4943             !nested_cpu_has_vmwrite_any_field(vcpu))
4944                 return nested_vmx_failValid(vcpu,
4945                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4946
4947         /*
4948          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4949          * vmcs12, else we may crush a field or consume a stale value.
4950          */
4951         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
4952                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4953
4954         /*
4955          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4956          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4957          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4958          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4959          * from L1 will return a different value than VMREAD from L2 (L1 sees
4960          * the stripped down value, L2 sees the full value as stored by KVM).
4961          */
4962         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4963                 value &= 0x1f0ff;
4964
4965         vmcs12_write_any(vmcs12, field, offset, value);
4966
4967         /*
4968          * Do not track vmcs12 dirty-state if in guest-mode as we actually
4969          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4970          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4971          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4972          */
4973         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4974                 /*
4975                  * L1 can read these fields without exiting, ensure the
4976                  * shadow VMCS is up-to-date.
4977                  */
4978                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4979                         preempt_disable();
4980                         vmcs_load(vmx->vmcs01.shadow_vmcs);
4981
4982                         __vmcs_writel(field, value);
4983
4984                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
4985                         vmcs_load(vmx->loaded_vmcs->vmcs);
4986                         preempt_enable();
4987                 }
4988                 vmx->nested.dirty_vmcs12 = true;
4989         }
4990
4991         return nested_vmx_succeed(vcpu);
4992 }
4993
4994 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4995 {
4996         vmx->nested.current_vmptr = vmptr;
4997         if (enable_shadow_vmcs) {
4998                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4999                 vmcs_write64(VMCS_LINK_POINTER,
5000                              __pa(vmx->vmcs01.shadow_vmcs));
5001                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5002         }
5003         vmx->nested.dirty_vmcs12 = true;
5004 }
5005
5006 /* Emulate the VMPTRLD instruction */
5007 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5008 {
5009         struct vcpu_vmx *vmx = to_vmx(vcpu);
5010         gpa_t vmptr;
5011
5012         if (!nested_vmx_check_permission(vcpu))
5013                 return 1;
5014
5015         if (nested_vmx_get_vmptr(vcpu, &vmptr))
5016                 return 1;
5017
5018         if (!page_address_valid(vcpu, vmptr))
5019                 return nested_vmx_failValid(vcpu,
5020                         VMXERR_VMPTRLD_INVALID_ADDRESS);
5021
5022         if (vmptr == vmx->nested.vmxon_ptr)
5023                 return nested_vmx_failValid(vcpu,
5024                         VMXERR_VMPTRLD_VMXON_POINTER);
5025
5026         /* Forbid normal VMPTRLD if Enlightened version was used */
5027         if (vmx->nested.hv_evmcs)
5028                 return 1;
5029
5030         if (vmx->nested.current_vmptr != vmptr) {
5031                 struct kvm_host_map map;
5032                 struct vmcs12 *new_vmcs12;
5033
5034                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5035                         /*
5036                          * Reads from an unbacked page return all 1s,
5037                          * which means that the 32 bits located at the
5038                          * given physical address won't match the required
5039                          * VMCS12_REVISION identifier.
5040                          */
5041                         return nested_vmx_failValid(vcpu,
5042                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5043                 }
5044
5045                 new_vmcs12 = map.hva;
5046
5047                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5048                     (new_vmcs12->hdr.shadow_vmcs &&
5049                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5050                         kvm_vcpu_unmap(vcpu, &map, false);
5051                         return nested_vmx_failValid(vcpu,
5052                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5053                 }
5054
5055                 nested_release_vmcs12(vcpu);
5056
5057                 /*
5058                  * Load VMCS12 from guest memory since it is not already
5059                  * cached.
5060                  */
5061                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5062                 kvm_vcpu_unmap(vcpu, &map, false);
5063
5064                 set_current_vmptr(vmx, vmptr);
5065         }
5066
5067         return nested_vmx_succeed(vcpu);
5068 }
5069
5070 /* Emulate the VMPTRST instruction */
5071 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5072 {
5073         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
5074         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5075         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5076         struct x86_exception e;
5077         gva_t gva;
5078
5079         if (!nested_vmx_check_permission(vcpu))
5080                 return 1;
5081
5082         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5083                 return 1;
5084
5085         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5086                                 true, sizeof(gpa_t), &gva))
5087                 return 1;
5088         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5089         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5090                                         sizeof(gpa_t), &e)) {
5091                 kvm_inject_page_fault(vcpu, &e);
5092                 return 1;
5093         }
5094         return nested_vmx_succeed(vcpu);
5095 }
5096
5097 /* Emulate the INVEPT instruction */
5098 static int handle_invept(struct kvm_vcpu *vcpu)
5099 {
5100         struct vcpu_vmx *vmx = to_vmx(vcpu);
5101         u32 vmx_instruction_info, types;
5102         unsigned long type;
5103         gva_t gva;
5104         struct x86_exception e;
5105         struct {
5106                 u64 eptp, gpa;
5107         } operand;
5108
5109         if (!(vmx->nested.msrs.secondary_ctls_high &
5110               SECONDARY_EXEC_ENABLE_EPT) ||
5111             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5112                 kvm_queue_exception(vcpu, UD_VECTOR);
5113                 return 1;
5114         }
5115
5116         if (!nested_vmx_check_permission(vcpu))
5117                 return 1;
5118
5119         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5120         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5121
5122         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5123
5124         if (type >= 32 || !(types & (1 << type)))
5125                 return nested_vmx_failValid(vcpu,
5126                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5127
5128         /* According to the Intel VMX instruction reference, the memory
5129          * operand is read even if it isn't needed (e.g., for type==global)
5130          */
5131         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5132                         vmx_instruction_info, false, sizeof(operand), &gva))
5133                 return 1;
5134         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5135                 kvm_inject_page_fault(vcpu, &e);
5136                 return 1;
5137         }
5138
5139         switch (type) {
5140         case VMX_EPT_EXTENT_GLOBAL:
5141         case VMX_EPT_EXTENT_CONTEXT:
5142         /*
5143          * TODO: Sync the necessary shadow EPT roots here, rather than
5144          * at the next emulated VM-entry.
5145          */
5146                 break;
5147         default:
5148                 BUG_ON(1);
5149                 break;
5150         }
5151
5152         return nested_vmx_succeed(vcpu);
5153 }
5154
5155 static int handle_invvpid(struct kvm_vcpu *vcpu)
5156 {
5157         struct vcpu_vmx *vmx = to_vmx(vcpu);
5158         u32 vmx_instruction_info;
5159         unsigned long type, types;
5160         gva_t gva;
5161         struct x86_exception e;
5162         struct {
5163                 u64 vpid;
5164                 u64 gla;
5165         } operand;
5166         u16 vpid02;
5167
5168         if (!(vmx->nested.msrs.secondary_ctls_high &
5169               SECONDARY_EXEC_ENABLE_VPID) ||
5170                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5171                 kvm_queue_exception(vcpu, UD_VECTOR);
5172                 return 1;
5173         }
5174
5175         if (!nested_vmx_check_permission(vcpu))
5176                 return 1;
5177
5178         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5179         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5180
5181         types = (vmx->nested.msrs.vpid_caps &
5182                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5183
5184         if (type >= 32 || !(types & (1 << type)))
5185                 return nested_vmx_failValid(vcpu,
5186                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5187
5188         /* according to the intel vmx instruction reference, the memory
5189          * operand is read even if it isn't needed (e.g., for type==global)
5190          */
5191         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5192                         vmx_instruction_info, false, sizeof(operand), &gva))
5193                 return 1;
5194         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5195                 kvm_inject_page_fault(vcpu, &e);
5196                 return 1;
5197         }
5198         if (operand.vpid >> 16)
5199                 return nested_vmx_failValid(vcpu,
5200                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5201
5202         vpid02 = nested_get_vpid02(vcpu);
5203         switch (type) {
5204         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5205                 if (!operand.vpid ||
5206                     is_noncanonical_address(operand.gla, vcpu))
5207                         return nested_vmx_failValid(vcpu,
5208                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5209                 if (cpu_has_vmx_invvpid_individual_addr()) {
5210                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5211                                 vpid02, operand.gla);
5212                 } else
5213                         __vmx_flush_tlb(vcpu, vpid02, false);
5214                 break;
5215         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5216         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5217                 if (!operand.vpid)
5218                         return nested_vmx_failValid(vcpu,
5219                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5220                 __vmx_flush_tlb(vcpu, vpid02, false);
5221                 break;
5222         case VMX_VPID_EXTENT_ALL_CONTEXT:
5223                 __vmx_flush_tlb(vcpu, vpid02, false);
5224                 break;
5225         default:
5226                 WARN_ON_ONCE(1);
5227                 return kvm_skip_emulated_instruction(vcpu);
5228         }
5229
5230         return nested_vmx_succeed(vcpu);
5231 }
5232
5233 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5234                                      struct vmcs12 *vmcs12)
5235 {
5236         u32 index = kvm_rcx_read(vcpu);
5237         u64 address;
5238         bool accessed_dirty;
5239         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5240
5241         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5242             !nested_cpu_has_ept(vmcs12))
5243                 return 1;
5244
5245         if (index >= VMFUNC_EPTP_ENTRIES)
5246                 return 1;
5247
5248
5249         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5250                                      &address, index * 8, 8))
5251                 return 1;
5252
5253         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5254
5255         /*
5256          * If the (L2) guest does a vmfunc to the currently
5257          * active ept pointer, we don't have to do anything else
5258          */
5259         if (vmcs12->ept_pointer != address) {
5260                 if (!valid_ept_address(vcpu, address))
5261                         return 1;
5262
5263                 kvm_mmu_unload(vcpu);
5264                 mmu->ept_ad = accessed_dirty;
5265                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5266                 vmcs12->ept_pointer = address;
5267                 /*
5268                  * TODO: Check what's the correct approach in case
5269                  * mmu reload fails. Currently, we just let the next
5270                  * reload potentially fail
5271                  */
5272                 kvm_mmu_reload(vcpu);
5273         }
5274
5275         return 0;
5276 }
5277
5278 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5279 {
5280         struct vcpu_vmx *vmx = to_vmx(vcpu);
5281         struct vmcs12 *vmcs12;
5282         u32 function = kvm_rax_read(vcpu);
5283
5284         /*
5285          * VMFUNC is only supported for nested guests, but we always enable the
5286          * secondary control for simplicity; for non-nested mode, fake that we
5287          * didn't by injecting #UD.
5288          */
5289         if (!is_guest_mode(vcpu)) {
5290                 kvm_queue_exception(vcpu, UD_VECTOR);
5291                 return 1;
5292         }
5293
5294         vmcs12 = get_vmcs12(vcpu);
5295         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5296                 goto fail;
5297
5298         switch (function) {
5299         case 0:
5300                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5301                         goto fail;
5302                 break;
5303         default:
5304                 goto fail;
5305         }
5306         return kvm_skip_emulated_instruction(vcpu);
5307
5308 fail:
5309         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5310                           vmcs_read32(VM_EXIT_INTR_INFO),
5311                           vmcs_readl(EXIT_QUALIFICATION));
5312         return 1;
5313 }
5314
5315 /*
5316  * Return true if an IO instruction with the specified port and size should cause
5317  * a VM-exit into L1.
5318  */
5319 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5320                                  int size)
5321 {
5322         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5323         gpa_t bitmap, last_bitmap;
5324         u8 b;
5325
5326         last_bitmap = (gpa_t)-1;
5327         b = -1;
5328
5329         while (size > 0) {
5330                 if (port < 0x8000)
5331                         bitmap = vmcs12->io_bitmap_a;
5332                 else if (port < 0x10000)
5333                         bitmap = vmcs12->io_bitmap_b;
5334                 else
5335                         return true;
5336                 bitmap += (port & 0x7fff) / 8;
5337
5338                 if (last_bitmap != bitmap)
5339                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5340                                 return true;
5341                 if (b & (1 << (port & 7)))
5342                         return true;
5343
5344                 port++;
5345                 size--;
5346                 last_bitmap = bitmap;
5347         }
5348
5349         return false;
5350 }
5351
5352 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5353                                        struct vmcs12 *vmcs12)
5354 {
5355         unsigned long exit_qualification;
5356         unsigned short port;
5357         int size;
5358
5359         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5360                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5361
5362         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5363
5364         port = exit_qualification >> 16;
5365         size = (exit_qualification & 7) + 1;
5366
5367         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5368 }
5369
5370 /*
5371  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5372  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5373  * disinterest in the current event (read or write a specific MSR) by using an
5374  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5375  */
5376 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5377         struct vmcs12 *vmcs12, u32 exit_reason)
5378 {
5379         u32 msr_index = kvm_rcx_read(vcpu);
5380         gpa_t bitmap;
5381
5382         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5383                 return true;
5384
5385         /*
5386          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5387          * for the four combinations of read/write and low/high MSR numbers.
5388          * First we need to figure out which of the four to use:
5389          */
5390         bitmap = vmcs12->msr_bitmap;
5391         if (exit_reason == EXIT_REASON_MSR_WRITE)
5392                 bitmap += 2048;
5393         if (msr_index >= 0xc0000000) {
5394                 msr_index -= 0xc0000000;
5395                 bitmap += 1024;
5396         }
5397
5398         /* Then read the msr_index'th bit from this bitmap: */
5399         if (msr_index < 1024*8) {
5400                 unsigned char b;
5401                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5402                         return true;
5403                 return 1 & (b >> (msr_index & 7));
5404         } else
5405                 return true; /* let L1 handle the wrong parameter */
5406 }
5407
5408 /*
5409  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5410  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5411  * intercept (via guest_host_mask etc.) the current event.
5412  */
5413 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5414         struct vmcs12 *vmcs12)
5415 {
5416         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5417         int cr = exit_qualification & 15;
5418         int reg;
5419         unsigned long val;
5420
5421         switch ((exit_qualification >> 4) & 3) {
5422         case 0: /* mov to cr */
5423                 reg = (exit_qualification >> 8) & 15;
5424                 val = kvm_register_readl(vcpu, reg);
5425                 switch (cr) {
5426                 case 0:
5427                         if (vmcs12->cr0_guest_host_mask &
5428                             (val ^ vmcs12->cr0_read_shadow))
5429                                 return true;
5430                         break;
5431                 case 3:
5432                         if ((vmcs12->cr3_target_count >= 1 &&
5433                                         vmcs12->cr3_target_value0 == val) ||
5434                                 (vmcs12->cr3_target_count >= 2 &&
5435                                         vmcs12->cr3_target_value1 == val) ||
5436                                 (vmcs12->cr3_target_count >= 3 &&
5437                                         vmcs12->cr3_target_value2 == val) ||
5438                                 (vmcs12->cr3_target_count >= 4 &&
5439                                         vmcs12->cr3_target_value3 == val))
5440                                 return false;
5441                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5442                                 return true;
5443                         break;
5444                 case 4:
5445                         if (vmcs12->cr4_guest_host_mask &
5446                             (vmcs12->cr4_read_shadow ^ val))
5447                                 return true;
5448                         break;
5449                 case 8:
5450                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5451                                 return true;
5452                         break;
5453                 }
5454                 break;
5455         case 2: /* clts */
5456                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5457                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5458                         return true;
5459                 break;
5460         case 1: /* mov from cr */
5461                 switch (cr) {
5462                 case 3:
5463                         if (vmcs12->cpu_based_vm_exec_control &
5464                             CPU_BASED_CR3_STORE_EXITING)
5465                                 return true;
5466                         break;
5467                 case 8:
5468                         if (vmcs12->cpu_based_vm_exec_control &
5469                             CPU_BASED_CR8_STORE_EXITING)
5470                                 return true;
5471                         break;
5472                 }
5473                 break;
5474         case 3: /* lmsw */
5475                 /*
5476                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5477                  * cr0. Other attempted changes are ignored, with no exit.
5478                  */
5479                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5480                 if (vmcs12->cr0_guest_host_mask & 0xe &
5481                     (val ^ vmcs12->cr0_read_shadow))
5482                         return true;
5483                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5484                     !(vmcs12->cr0_read_shadow & 0x1) &&
5485                     (val & 0x1))
5486                         return true;
5487                 break;
5488         }
5489         return false;
5490 }
5491
5492 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5493         struct vmcs12 *vmcs12, gpa_t bitmap)
5494 {
5495         u32 vmx_instruction_info;
5496         unsigned long field;
5497         u8 b;
5498
5499         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5500                 return true;
5501
5502         /* Decode instruction info and find the field to access */
5503         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5504         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5505
5506         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5507         if (field >> 15)
5508                 return true;
5509
5510         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5511                 return true;
5512
5513         return 1 & (b >> (field & 7));
5514 }
5515
5516 /*
5517  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5518  * should handle it ourselves in L0 (and then continue L2). Only call this
5519  * when in is_guest_mode (L2).
5520  */
5521 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5522 {
5523         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5524         struct vcpu_vmx *vmx = to_vmx(vcpu);
5525         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5526
5527         if (vmx->nested.nested_run_pending)
5528                 return false;
5529
5530         if (unlikely(vmx->fail)) {
5531                 trace_kvm_nested_vmenter_failed(
5532                         "hardware VM-instruction error: ",
5533                         vmcs_read32(VM_INSTRUCTION_ERROR));
5534                 return true;
5535         }
5536
5537         /*
5538          * The host physical addresses of some pages of guest memory
5539          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5540          * Page). The CPU may write to these pages via their host
5541          * physical address while L2 is running, bypassing any
5542          * address-translation-based dirty tracking (e.g. EPT write
5543          * protection).
5544          *
5545          * Mark them dirty on every exit from L2 to prevent them from
5546          * getting out of sync with dirty tracking.
5547          */
5548         nested_mark_vmcs12_pages_dirty(vcpu);
5549
5550         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5551                                 vmcs_readl(EXIT_QUALIFICATION),
5552                                 vmx->idt_vectoring_info,
5553                                 intr_info,
5554                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5555                                 KVM_ISA_VMX);
5556
5557         switch (exit_reason) {
5558         case EXIT_REASON_EXCEPTION_NMI:
5559                 if (is_nmi(intr_info))
5560                         return false;
5561                 else if (is_page_fault(intr_info))
5562                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5563                 else if (is_debug(intr_info) &&
5564                          vcpu->guest_debug &
5565                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5566                         return false;
5567                 else if (is_breakpoint(intr_info) &&
5568                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5569                         return false;
5570                 return vmcs12->exception_bitmap &
5571                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5572         case EXIT_REASON_EXTERNAL_INTERRUPT:
5573                 return false;
5574         case EXIT_REASON_TRIPLE_FAULT:
5575                 return true;
5576         case EXIT_REASON_INTERRUPT_WINDOW:
5577                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5578         case EXIT_REASON_NMI_WINDOW:
5579                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5580         case EXIT_REASON_TASK_SWITCH:
5581                 return true;
5582         case EXIT_REASON_CPUID:
5583                 return true;
5584         case EXIT_REASON_HLT:
5585                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5586         case EXIT_REASON_INVD:
5587                 return true;
5588         case EXIT_REASON_INVLPG:
5589                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5590         case EXIT_REASON_RDPMC:
5591                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5592         case EXIT_REASON_RDRAND:
5593                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5594         case EXIT_REASON_RDSEED:
5595                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5596         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5597                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5598         case EXIT_REASON_VMREAD:
5599                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5600                         vmcs12->vmread_bitmap);
5601         case EXIT_REASON_VMWRITE:
5602                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5603                         vmcs12->vmwrite_bitmap);
5604         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5605         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5606         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5607         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5608         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5609                 /*
5610                  * VMX instructions trap unconditionally. This allows L1 to
5611                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5612                  */
5613                 return true;
5614         case EXIT_REASON_CR_ACCESS:
5615                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5616         case EXIT_REASON_DR_ACCESS:
5617                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5618         case EXIT_REASON_IO_INSTRUCTION:
5619                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5620         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5621                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5622         case EXIT_REASON_MSR_READ:
5623         case EXIT_REASON_MSR_WRITE:
5624                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5625         case EXIT_REASON_INVALID_STATE:
5626                 return true;
5627         case EXIT_REASON_MWAIT_INSTRUCTION:
5628                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5629         case EXIT_REASON_MONITOR_TRAP_FLAG:
5630                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5631         case EXIT_REASON_MONITOR_INSTRUCTION:
5632                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5633         case EXIT_REASON_PAUSE_INSTRUCTION:
5634                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5635                         nested_cpu_has2(vmcs12,
5636                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5637         case EXIT_REASON_MCE_DURING_VMENTRY:
5638                 return false;
5639         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5640                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5641         case EXIT_REASON_APIC_ACCESS:
5642         case EXIT_REASON_APIC_WRITE:
5643         case EXIT_REASON_EOI_INDUCED:
5644                 /*
5645                  * The controls for "virtualize APIC accesses," "APIC-
5646                  * register virtualization," and "virtual-interrupt
5647                  * delivery" only come from vmcs12.
5648                  */
5649                 return true;
5650         case EXIT_REASON_EPT_VIOLATION:
5651                 /*
5652                  * L0 always deals with the EPT violation. If nested EPT is
5653                  * used, and the nested mmu code discovers that the address is
5654                  * missing in the guest EPT table (EPT12), the EPT violation
5655                  * will be injected with nested_ept_inject_page_fault()
5656                  */
5657                 return false;
5658         case EXIT_REASON_EPT_MISCONFIG:
5659                 /*
5660                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5661                  * table (shadow on EPT) or a merged EPT table that L0 built
5662                  * (EPT on EPT). So any problems with the structure of the
5663                  * table is L0's fault.
5664                  */
5665                 return false;
5666         case EXIT_REASON_INVPCID:
5667                 return
5668                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5669                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5670         case EXIT_REASON_WBINVD:
5671                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5672         case EXIT_REASON_XSETBV:
5673                 return true;
5674         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5675                 /*
5676                  * This should never happen, since it is not possible to
5677                  * set XSS to a non-zero value---neither in L1 nor in L2.
5678                  * If if it were, XSS would have to be checked against
5679                  * the XSS exit bitmap in vmcs12.
5680                  */
5681                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5682         case EXIT_REASON_PREEMPTION_TIMER:
5683                 return false;
5684         case EXIT_REASON_PML_FULL:
5685                 /* We emulate PML support to L1. */
5686                 return false;
5687         case EXIT_REASON_VMFUNC:
5688                 /* VM functions are emulated through L2->L0 vmexits. */
5689                 return false;
5690         case EXIT_REASON_ENCLS:
5691                 /* SGX is never exposed to L1 */
5692                 return false;
5693         case EXIT_REASON_UMWAIT:
5694         case EXIT_REASON_TPAUSE:
5695                 return nested_cpu_has2(vmcs12,
5696                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5697         default:
5698                 return true;
5699         }
5700 }
5701
5702
5703 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5704                                 struct kvm_nested_state __user *user_kvm_nested_state,
5705                                 u32 user_data_size)
5706 {
5707         struct vcpu_vmx *vmx;
5708         struct vmcs12 *vmcs12;
5709         struct kvm_nested_state kvm_state = {
5710                 .flags = 0,
5711                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5712                 .size = sizeof(kvm_state),
5713                 .hdr.vmx.vmxon_pa = -1ull,
5714                 .hdr.vmx.vmcs12_pa = -1ull,
5715         };
5716         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5717                 &user_kvm_nested_state->data.vmx[0];
5718
5719         if (!vcpu)
5720                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5721
5722         vmx = to_vmx(vcpu);
5723         vmcs12 = get_vmcs12(vcpu);
5724
5725         if (nested_vmx_allowed(vcpu) &&
5726             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5727                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5728                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5729
5730                 if (vmx_has_valid_vmcs12(vcpu)) {
5731                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5732
5733                         if (vmx->nested.hv_evmcs)
5734                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5735
5736                         if (is_guest_mode(vcpu) &&
5737                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5738                             vmcs12->vmcs_link_pointer != -1ull)
5739                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5740                 }
5741
5742                 if (vmx->nested.smm.vmxon)
5743                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5744
5745                 if (vmx->nested.smm.guest_mode)
5746                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5747
5748                 if (is_guest_mode(vcpu)) {
5749                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5750
5751                         if (vmx->nested.nested_run_pending)
5752                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5753
5754                         if (vmx->nested.mtf_pending)
5755                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
5756                 }
5757         }
5758
5759         if (user_data_size < kvm_state.size)
5760                 goto out;
5761
5762         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5763                 return -EFAULT;
5764
5765         if (!vmx_has_valid_vmcs12(vcpu))
5766                 goto out;
5767
5768         /*
5769          * When running L2, the authoritative vmcs12 state is in the
5770          * vmcs02. When running L1, the authoritative vmcs12 state is
5771          * in the shadow or enlightened vmcs linked to vmcs01, unless
5772          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5773          * vmcs12 state is in the vmcs12 already.
5774          */
5775         if (is_guest_mode(vcpu)) {
5776                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5777                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5778         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5779                 if (vmx->nested.hv_evmcs)
5780                         copy_enlightened_to_vmcs12(vmx);
5781                 else if (enable_shadow_vmcs)
5782                         copy_shadow_to_vmcs12(vmx);
5783         }
5784
5785         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5786         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5787
5788         /*
5789          * Copy over the full allocated size of vmcs12 rather than just the size
5790          * of the struct.
5791          */
5792         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5793                 return -EFAULT;
5794
5795         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5796             vmcs12->vmcs_link_pointer != -1ull) {
5797                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5798                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5799                         return -EFAULT;
5800         }
5801
5802 out:
5803         return kvm_state.size;
5804 }
5805
5806 /*
5807  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5808  */
5809 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5810 {
5811         if (is_guest_mode(vcpu)) {
5812                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5813                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5814         }
5815         free_nested(vcpu);
5816 }
5817
5818 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5819                                 struct kvm_nested_state __user *user_kvm_nested_state,
5820                                 struct kvm_nested_state *kvm_state)
5821 {
5822         struct vcpu_vmx *vmx = to_vmx(vcpu);
5823         struct vmcs12 *vmcs12;
5824         u32 exit_qual;
5825         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5826                 &user_kvm_nested_state->data.vmx[0];
5827         int ret;
5828
5829         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5830                 return -EINVAL;
5831
5832         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5833                 if (kvm_state->hdr.vmx.smm.flags)
5834                         return -EINVAL;
5835
5836                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5837                         return -EINVAL;
5838
5839                 /*
5840                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5841                  * enable eVMCS capability on vCPU. However, since then
5842                  * code was changed such that flag signals vmcs12 should
5843                  * be copied into eVMCS in guest memory.
5844                  *
5845                  * To preserve backwards compatability, allow user
5846                  * to set this flag even when there is no VMXON region.
5847                  */
5848                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5849                         return -EINVAL;
5850         } else {
5851                 if (!nested_vmx_allowed(vcpu))
5852                         return -EINVAL;
5853
5854                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5855                         return -EINVAL;
5856         }
5857
5858         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5859             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5860                 return -EINVAL;
5861
5862         if (kvm_state->hdr.vmx.smm.flags &
5863             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5864                 return -EINVAL;
5865
5866         /*
5867          * SMM temporarily disables VMX, so we cannot be in guest mode,
5868          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5869          * must be zero.
5870          */
5871         if (is_smm(vcpu) ?
5872                 (kvm_state->flags &
5873                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5874                 : kvm_state->hdr.vmx.smm.flags)
5875                 return -EINVAL;
5876
5877         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5878             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5879                 return -EINVAL;
5880
5881         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5882                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5883                         return -EINVAL;
5884
5885         vmx_leave_nested(vcpu);
5886
5887         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5888                 return 0;
5889
5890         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5891         ret = enter_vmx_operation(vcpu);
5892         if (ret)
5893                 return ret;
5894
5895         /* Empty 'VMXON' state is permitted */
5896         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5897                 return 0;
5898
5899         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5900                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5901                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5902                         return -EINVAL;
5903
5904                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5905         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5906                 /*
5907                  * Sync eVMCS upon entry as we may not have
5908                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5909                  */
5910                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5911         } else {
5912                 return -EINVAL;
5913         }
5914
5915         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5916                 vmx->nested.smm.vmxon = true;
5917                 vmx->nested.vmxon = false;
5918
5919                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5920                         vmx->nested.smm.guest_mode = true;
5921         }
5922
5923         vmcs12 = get_vmcs12(vcpu);
5924         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5925                 return -EFAULT;
5926
5927         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5928                 return -EINVAL;
5929
5930         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5931                 return 0;
5932
5933         vmx->nested.nested_run_pending =
5934                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5935
5936         vmx->nested.mtf_pending =
5937                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
5938
5939         ret = -EINVAL;
5940         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5941             vmcs12->vmcs_link_pointer != -1ull) {
5942                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5943
5944                 if (kvm_state->size <
5945                     sizeof(*kvm_state) +
5946                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5947                         goto error_guest_mode;
5948
5949                 if (copy_from_user(shadow_vmcs12,
5950                                    user_vmx_nested_state->shadow_vmcs12,
5951                                    sizeof(*shadow_vmcs12))) {
5952                         ret = -EFAULT;
5953                         goto error_guest_mode;
5954                 }
5955
5956                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5957                     !shadow_vmcs12->hdr.shadow_vmcs)
5958                         goto error_guest_mode;
5959         }
5960
5961         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5962             nested_vmx_check_host_state(vcpu, vmcs12) ||
5963             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5964                 goto error_guest_mode;
5965
5966         vmx->nested.dirty_vmcs12 = true;
5967         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5968         if (ret)
5969                 goto error_guest_mode;
5970
5971         return 0;
5972
5973 error_guest_mode:
5974         vmx->nested.nested_run_pending = 0;
5975         return ret;
5976 }
5977
5978 void nested_vmx_set_vmcs_shadowing_bitmap(void)
5979 {
5980         if (enable_shadow_vmcs) {
5981                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5982                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5983         }
5984 }
5985
5986 /*
5987  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5988  * returned for the various VMX controls MSRs when nested VMX is enabled.
5989  * The same values should also be used to verify that vmcs12 control fields are
5990  * valid during nested entry from L1 to L2.
5991  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5992  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5993  * bit in the high half is on if the corresponding bit in the control field
5994  * may be on. See also vmx_control_verify().
5995  */
5996 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
5997 {
5998         /*
5999          * Note that as a general rule, the high half of the MSRs (bits in
6000          * the control fields which may be 1) should be initialized by the
6001          * intersection of the underlying hardware's MSR (i.e., features which
6002          * can be supported) and the list of features we want to expose -
6003          * because they are known to be properly supported in our code.
6004          * Also, usually, the low half of the MSRs (bits which must be 1) can
6005          * be set to 0, meaning that L1 may turn off any of these bits. The
6006          * reason is that if one of these bits is necessary, it will appear
6007          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6008          * fields of vmcs01 and vmcs02, will turn these bits off - and
6009          * nested_vmx_exit_reflected() will not pass related exits to L1.
6010          * These rules have exceptions below.
6011          */
6012
6013         /* pin-based controls */
6014         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6015                 msrs->pinbased_ctls_low,
6016                 msrs->pinbased_ctls_high);
6017         msrs->pinbased_ctls_low |=
6018                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6019         msrs->pinbased_ctls_high &=
6020                 PIN_BASED_EXT_INTR_MASK |
6021                 PIN_BASED_NMI_EXITING |
6022                 PIN_BASED_VIRTUAL_NMIS |
6023                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6024         msrs->pinbased_ctls_high |=
6025                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6026                 PIN_BASED_VMX_PREEMPTION_TIMER;
6027
6028         /* exit controls */
6029         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6030                 msrs->exit_ctls_low,
6031                 msrs->exit_ctls_high);
6032         msrs->exit_ctls_low =
6033                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6034
6035         msrs->exit_ctls_high &=
6036 #ifdef CONFIG_X86_64
6037                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6038 #endif
6039                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
6040         msrs->exit_ctls_high |=
6041                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6042                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6043                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6044
6045         /* We support free control of debug control saving. */
6046         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6047
6048         /* entry controls */
6049         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6050                 msrs->entry_ctls_low,
6051                 msrs->entry_ctls_high);
6052         msrs->entry_ctls_low =
6053                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6054         msrs->entry_ctls_high &=
6055 #ifdef CONFIG_X86_64
6056                 VM_ENTRY_IA32E_MODE |
6057 #endif
6058                 VM_ENTRY_LOAD_IA32_PAT;
6059         msrs->entry_ctls_high |=
6060                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6061
6062         /* We support free control of debug control loading. */
6063         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6064
6065         /* cpu-based controls */
6066         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6067                 msrs->procbased_ctls_low,
6068                 msrs->procbased_ctls_high);
6069         msrs->procbased_ctls_low =
6070                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6071         msrs->procbased_ctls_high &=
6072                 CPU_BASED_INTR_WINDOW_EXITING |
6073                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6074                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6075                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6076                 CPU_BASED_CR3_STORE_EXITING |
6077 #ifdef CONFIG_X86_64
6078                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6079 #endif
6080                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6081                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6082                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6083                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6084                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6085         /*
6086          * We can allow some features even when not supported by the
6087          * hardware. For example, L1 can specify an MSR bitmap - and we
6088          * can use it to avoid exits to L1 - even when L0 runs L2
6089          * without MSR bitmaps.
6090          */
6091         msrs->procbased_ctls_high |=
6092                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6093                 CPU_BASED_USE_MSR_BITMAPS;
6094
6095         /* We support free control of CR3 access interception. */
6096         msrs->procbased_ctls_low &=
6097                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6098
6099         /*
6100          * secondary cpu-based controls.  Do not include those that
6101          * depend on CPUID bits, they are added later by vmx_cpuid_update.
6102          */
6103         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6104                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6105                       msrs->secondary_ctls_low,
6106                       msrs->secondary_ctls_high);
6107
6108         msrs->secondary_ctls_low = 0;
6109         msrs->secondary_ctls_high &=
6110                 SECONDARY_EXEC_DESC |
6111                 SECONDARY_EXEC_RDTSCP |
6112                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6113                 SECONDARY_EXEC_WBINVD_EXITING |
6114                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6115                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6116                 SECONDARY_EXEC_RDRAND_EXITING |
6117                 SECONDARY_EXEC_ENABLE_INVPCID |
6118                 SECONDARY_EXEC_RDSEED_EXITING |
6119                 SECONDARY_EXEC_XSAVES;
6120
6121         /*
6122          * We can emulate "VMCS shadowing," even if the hardware
6123          * doesn't support it.
6124          */
6125         msrs->secondary_ctls_high |=
6126                 SECONDARY_EXEC_SHADOW_VMCS;
6127
6128         if (enable_ept) {
6129                 /* nested EPT: emulate EPT also to L1 */
6130                 msrs->secondary_ctls_high |=
6131                         SECONDARY_EXEC_ENABLE_EPT;
6132                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
6133                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
6134                 if (cpu_has_vmx_ept_execute_only())
6135                         msrs->ept_caps |=
6136                                 VMX_EPT_EXECUTE_ONLY_BIT;
6137                 msrs->ept_caps &= ept_caps;
6138                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6139                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6140                         VMX_EPT_1GB_PAGE_BIT;
6141                 if (enable_ept_ad_bits) {
6142                         msrs->secondary_ctls_high |=
6143                                 SECONDARY_EXEC_ENABLE_PML;
6144                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6145                 }
6146         }
6147
6148         if (cpu_has_vmx_vmfunc()) {
6149                 msrs->secondary_ctls_high |=
6150                         SECONDARY_EXEC_ENABLE_VMFUNC;
6151                 /*
6152                  * Advertise EPTP switching unconditionally
6153                  * since we emulate it
6154                  */
6155                 if (enable_ept)
6156                         msrs->vmfunc_controls =
6157                                 VMX_VMFUNC_EPTP_SWITCHING;
6158         }
6159
6160         /*
6161          * Old versions of KVM use the single-context version without
6162          * checking for support, so declare that it is supported even
6163          * though it is treated as global context.  The alternative is
6164          * not failing the single-context invvpid, and it is worse.
6165          */
6166         if (enable_vpid) {
6167                 msrs->secondary_ctls_high |=
6168                         SECONDARY_EXEC_ENABLE_VPID;
6169                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6170                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6171         }
6172
6173         if (enable_unrestricted_guest)
6174                 msrs->secondary_ctls_high |=
6175                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6176
6177         if (flexpriority_enabled)
6178                 msrs->secondary_ctls_high |=
6179                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6180
6181         /* miscellaneous data */
6182         rdmsr(MSR_IA32_VMX_MISC,
6183                 msrs->misc_low,
6184                 msrs->misc_high);
6185         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6186         msrs->misc_low |=
6187                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6188                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6189                 VMX_MISC_ACTIVITY_HLT;
6190         msrs->misc_high = 0;
6191
6192         /*
6193          * This MSR reports some information about VMX support. We
6194          * should return information about the VMX we emulate for the
6195          * guest, and the VMCS structure we give it - not about the
6196          * VMX support of the underlying hardware.
6197          */
6198         msrs->basic =
6199                 VMCS12_REVISION |
6200                 VMX_BASIC_TRUE_CTLS |
6201                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6202                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6203
6204         if (cpu_has_vmx_basic_inout())
6205                 msrs->basic |= VMX_BASIC_INOUT;
6206
6207         /*
6208          * These MSRs specify bits which the guest must keep fixed on
6209          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6210          * We picked the standard core2 setting.
6211          */
6212 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6213 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6214         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6215         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6216
6217         /* These MSRs specify bits which the guest must keep fixed off. */
6218         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6219         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6220
6221         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6222         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6223 }
6224
6225 void nested_vmx_hardware_unsetup(void)
6226 {
6227         int i;
6228
6229         if (enable_shadow_vmcs) {
6230                 for (i = 0; i < VMX_BITMAP_NR; i++)
6231                         free_page((unsigned long)vmx_bitmap[i]);
6232         }
6233 }
6234
6235 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6236 {
6237         int i;
6238
6239         if (!cpu_has_vmx_shadow_vmcs())
6240                 enable_shadow_vmcs = 0;
6241         if (enable_shadow_vmcs) {
6242                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6243                         /*
6244                          * The vmx_bitmap is not tied to a VM and so should
6245                          * not be charged to a memcg.
6246                          */
6247                         vmx_bitmap[i] = (unsigned long *)
6248                                 __get_free_page(GFP_KERNEL);
6249                         if (!vmx_bitmap[i]) {
6250                                 nested_vmx_hardware_unsetup();
6251                                 return -ENOMEM;
6252                         }
6253                 }
6254
6255                 init_vmcs_shadow_fields();
6256         }
6257
6258         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6259         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6260         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6261         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6262         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6263         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6264         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6265         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6266         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6267         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6268         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6269         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6270
6271         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6272         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6273         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6274         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages;
6275         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6276         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6277
6278         return 0;
6279 }