c12f95004a724984c85ba60829b5e599a4f695b1
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "evmcs.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "sgx.h"
16 #include "trace.h"
17 #include "vmx.h"
18 #include "x86.h"
19
20 static bool __read_mostly enable_shadow_vmcs = 1;
21 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
22
23 static bool __read_mostly nested_early_check = 0;
24 module_param(nested_early_check, bool, S_IRUGO);
25
26 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
27
28 /*
29  * Hyper-V requires all of these, so mark them as supported even though
30  * they are just treated the same as all-context.
31  */
32 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
33         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
34         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
35         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
36         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
37
38 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
39
40 enum {
41         VMX_VMREAD_BITMAP,
42         VMX_VMWRITE_BITMAP,
43         VMX_BITMAP_NR
44 };
45 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
46
47 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
48 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
49
50 struct shadow_vmcs_field {
51         u16     encoding;
52         u16     offset;
53 };
54 static struct shadow_vmcs_field shadow_read_only_fields[] = {
55 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
56 #include "vmcs_shadow_fields.h"
57 };
58 static int max_shadow_read_only_fields =
59         ARRAY_SIZE(shadow_read_only_fields);
60
61 static struct shadow_vmcs_field shadow_read_write_fields[] = {
62 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
63 #include "vmcs_shadow_fields.h"
64 };
65 static int max_shadow_read_write_fields =
66         ARRAY_SIZE(shadow_read_write_fields);
67
68 static void init_vmcs_shadow_fields(void)
69 {
70         int i, j;
71
72         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
73         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
74
75         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
76                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
77                 u16 field = entry.encoding;
78
79                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
80                     (i + 1 == max_shadow_read_only_fields ||
81                      shadow_read_only_fields[i + 1].encoding != field + 1))
82                         pr_err("Missing field from shadow_read_only_field %x\n",
83                                field + 1);
84
85                 clear_bit(field, vmx_vmread_bitmap);
86                 if (field & 1)
87 #ifdef CONFIG_X86_64
88                         continue;
89 #else
90                         entry.offset += sizeof(u32);
91 #endif
92                 shadow_read_only_fields[j++] = entry;
93         }
94         max_shadow_read_only_fields = j;
95
96         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
97                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
98                 u16 field = entry.encoding;
99
100                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
101                     (i + 1 == max_shadow_read_write_fields ||
102                      shadow_read_write_fields[i + 1].encoding != field + 1))
103                         pr_err("Missing field from shadow_read_write_field %x\n",
104                                field + 1);
105
106                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
107                           field <= GUEST_TR_AR_BYTES,
108                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
109
110                 /*
111                  * PML and the preemption timer can be emulated, but the
112                  * processor cannot vmwrite to fields that don't exist
113                  * on bare metal.
114                  */
115                 switch (field) {
116                 case GUEST_PML_INDEX:
117                         if (!cpu_has_vmx_pml())
118                                 continue;
119                         break;
120                 case VMX_PREEMPTION_TIMER_VALUE:
121                         if (!cpu_has_vmx_preemption_timer())
122                                 continue;
123                         break;
124                 case GUEST_INTR_STATUS:
125                         if (!cpu_has_vmx_apicv())
126                                 continue;
127                         break;
128                 default:
129                         break;
130                 }
131
132                 clear_bit(field, vmx_vmwrite_bitmap);
133                 clear_bit(field, vmx_vmread_bitmap);
134                 if (field & 1)
135 #ifdef CONFIG_X86_64
136                         continue;
137 #else
138                         entry.offset += sizeof(u32);
139 #endif
140                 shadow_read_write_fields[j++] = entry;
141         }
142         max_shadow_read_write_fields = j;
143 }
144
145 /*
146  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
147  * set the success or error code of an emulated VMX instruction (as specified
148  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
149  * instruction.
150  */
151 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
152 {
153         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
154                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
155                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
156         return kvm_skip_emulated_instruction(vcpu);
157 }
158
159 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
160 {
161         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
162                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
163                             X86_EFLAGS_SF | X86_EFLAGS_OF))
164                         | X86_EFLAGS_CF);
165         return kvm_skip_emulated_instruction(vcpu);
166 }
167
168 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
169                                 u32 vm_instruction_error)
170 {
171         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
172                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
173                             X86_EFLAGS_SF | X86_EFLAGS_OF))
174                         | X86_EFLAGS_ZF);
175         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
176         /*
177          * We don't need to force sync to shadow VMCS because
178          * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
179          * fields and thus must be synced.
180          */
181         if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
182                 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
183
184         return kvm_skip_emulated_instruction(vcpu);
185 }
186
187 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 {
189         struct vcpu_vmx *vmx = to_vmx(vcpu);
190
191         /*
192          * failValid writes the error number to the current VMCS, which
193          * can't be done if there isn't a current VMCS.
194          */
195         if (vmx->nested.current_vmptr == INVALID_GPA &&
196             !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
197                 return nested_vmx_failInvalid(vcpu);
198
199         return nested_vmx_failValid(vcpu, vm_instruction_error);
200 }
201
202 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
203 {
204         /* TODO: not to reset guest simply here. */
205         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
206         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
207 }
208
209 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
210 {
211         return fixed_bits_valid(control, low, high);
212 }
213
214 static inline u64 vmx_control_msr(u32 low, u32 high)
215 {
216         return low | ((u64)high << 32);
217 }
218
219 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
220 {
221         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
222         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
223         vmx->nested.need_vmcs12_to_shadow_sync = false;
224 }
225
226 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
227 {
228         struct vcpu_vmx *vmx = to_vmx(vcpu);
229
230         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
231                 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
232                 vmx->nested.hv_evmcs = NULL;
233         }
234
235         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
236 }
237
238 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
239                                      struct loaded_vmcs *prev)
240 {
241         struct vmcs_host_state *dest, *src;
242
243         if (unlikely(!vmx->guest_state_loaded))
244                 return;
245
246         src = &prev->host_state;
247         dest = &vmx->loaded_vmcs->host_state;
248
249         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
250         dest->ldt_sel = src->ldt_sel;
251 #ifdef CONFIG_X86_64
252         dest->ds_sel = src->ds_sel;
253         dest->es_sel = src->es_sel;
254 #endif
255 }
256
257 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
258 {
259         struct vcpu_vmx *vmx = to_vmx(vcpu);
260         struct loaded_vmcs *prev;
261         int cpu;
262
263         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
264                 return;
265
266         cpu = get_cpu();
267         prev = vmx->loaded_vmcs;
268         vmx->loaded_vmcs = vmcs;
269         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
270         vmx_sync_vmcs_host_state(vmx, prev);
271         put_cpu();
272
273         vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
274
275         /*
276          * All lazily updated registers will be reloaded from VMCS12 on both
277          * vmentry and vmexit.
278          */
279         vcpu->arch.regs_dirty = 0;
280 }
281
282 /*
283  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
284  * just stops using VMX.
285  */
286 static void free_nested(struct kvm_vcpu *vcpu)
287 {
288         struct vcpu_vmx *vmx = to_vmx(vcpu);
289
290         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
291                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
292
293         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
294                 return;
295
296         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
297
298         vmx->nested.vmxon = false;
299         vmx->nested.smm.vmxon = false;
300         vmx->nested.vmxon_ptr = INVALID_GPA;
301         free_vpid(vmx->nested.vpid02);
302         vmx->nested.posted_intr_nv = -1;
303         vmx->nested.current_vmptr = INVALID_GPA;
304         if (enable_shadow_vmcs) {
305                 vmx_disable_shadow_vmcs(vmx);
306                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
307                 free_vmcs(vmx->vmcs01.shadow_vmcs);
308                 vmx->vmcs01.shadow_vmcs = NULL;
309         }
310         kfree(vmx->nested.cached_vmcs12);
311         vmx->nested.cached_vmcs12 = NULL;
312         kfree(vmx->nested.cached_shadow_vmcs12);
313         vmx->nested.cached_shadow_vmcs12 = NULL;
314         /* Unpin physical memory we referred to in the vmcs02 */
315         if (vmx->nested.apic_access_page) {
316                 kvm_release_page_clean(vmx->nested.apic_access_page);
317                 vmx->nested.apic_access_page = NULL;
318         }
319         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
320         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
321         vmx->nested.pi_desc = NULL;
322
323         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
324
325         nested_release_evmcs(vcpu);
326
327         free_loaded_vmcs(&vmx->nested.vmcs02);
328 }
329
330 /*
331  * Ensure that the current vmcs of the logical processor is the
332  * vmcs01 of the vcpu before calling free_nested().
333  */
334 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
335 {
336         vcpu_load(vcpu);
337         vmx_leave_nested(vcpu);
338         vcpu_put(vcpu);
339 }
340
341 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
342
343 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
344 {
345         return VALID_PAGE(root_hpa) &&
346                ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
347 }
348
349 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
350                                        gpa_t addr)
351 {
352         uint i;
353         struct kvm_mmu_root_info *cached_root;
354
355         WARN_ON_ONCE(!mmu_is_nested(vcpu));
356
357         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
358                 cached_root = &vcpu->arch.mmu->prev_roots[i];
359
360                 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
361                                             eptp))
362                         vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
363         }
364 }
365
366 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
367                 struct x86_exception *fault)
368 {
369         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
370         struct vcpu_vmx *vmx = to_vmx(vcpu);
371         u32 vm_exit_reason;
372         unsigned long exit_qualification = vcpu->arch.exit_qualification;
373
374         if (vmx->nested.pml_full) {
375                 vm_exit_reason = EXIT_REASON_PML_FULL;
376                 vmx->nested.pml_full = false;
377                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
378         } else {
379                 if (fault->error_code & PFERR_RSVD_MASK)
380                         vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
381                 else
382                         vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
383
384                 /*
385                  * Although the caller (kvm_inject_emulated_page_fault) would
386                  * have already synced the faulting address in the shadow EPT
387                  * tables for the current EPTP12, we also need to sync it for
388                  * any other cached EPTP02s based on the same EP4TA, since the
389                  * TLB associates mappings to the EP4TA rather than the full EPTP.
390                  */
391                 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
392                                            fault->address);
393         }
394
395         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
396         vmcs12->guest_physical_address = fault->address;
397 }
398
399 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
400 {
401         struct vcpu_vmx *vmx = to_vmx(vcpu);
402         bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
403         int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
404
405         kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
406                                 nested_ept_ad_enabled(vcpu),
407                                 nested_ept_get_eptp(vcpu));
408 }
409
410 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
411 {
412         WARN_ON(mmu_is_nested(vcpu));
413
414         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
415         nested_ept_new_eptp(vcpu);
416         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
417         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
418         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
419
420         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
421 }
422
423 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
424 {
425         vcpu->arch.mmu = &vcpu->arch.root_mmu;
426         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
427 }
428
429 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
430                                             u16 error_code)
431 {
432         bool inequality, bit;
433
434         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
435         inequality =
436                 (error_code & vmcs12->page_fault_error_code_mask) !=
437                  vmcs12->page_fault_error_code_match;
438         return inequality ^ bit;
439 }
440
441
442 /*
443  * KVM wants to inject page-faults which it got to the guest. This function
444  * checks whether in a nested guest, we need to inject them to L1 or L2.
445  */
446 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
447 {
448         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
449         unsigned int nr = vcpu->arch.exception.nr;
450         bool has_payload = vcpu->arch.exception.has_payload;
451         unsigned long payload = vcpu->arch.exception.payload;
452
453         if (nr == PF_VECTOR) {
454                 if (vcpu->arch.exception.nested_apf) {
455                         *exit_qual = vcpu->arch.apf.nested_apf_token;
456                         return 1;
457                 }
458                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
459                                                     vcpu->arch.exception.error_code)) {
460                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
461                         return 1;
462                 }
463         } else if (vmcs12->exception_bitmap & (1u << nr)) {
464                 if (nr == DB_VECTOR) {
465                         if (!has_payload) {
466                                 payload = vcpu->arch.dr6;
467                                 payload &= ~DR6_BT;
468                                 payload ^= DR6_ACTIVE_LOW;
469                         }
470                         *exit_qual = payload;
471                 } else
472                         *exit_qual = 0;
473                 return 1;
474         }
475
476         return 0;
477 }
478
479
480 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
481                 struct x86_exception *fault)
482 {
483         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
484
485         WARN_ON(!is_guest_mode(vcpu));
486
487         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
488                 !to_vmx(vcpu)->nested.nested_run_pending) {
489                 vmcs12->vm_exit_intr_error_code = fault->error_code;
490                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
491                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
492                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
493                                   fault->address);
494         } else {
495                 kvm_inject_page_fault(vcpu, fault);
496         }
497 }
498
499 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
500                                                struct vmcs12 *vmcs12)
501 {
502         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
503                 return 0;
504
505         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
506             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
507                 return -EINVAL;
508
509         return 0;
510 }
511
512 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
513                                                 struct vmcs12 *vmcs12)
514 {
515         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
516                 return 0;
517
518         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
519                 return -EINVAL;
520
521         return 0;
522 }
523
524 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
525                                                 struct vmcs12 *vmcs12)
526 {
527         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
528                 return 0;
529
530         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
531                 return -EINVAL;
532
533         return 0;
534 }
535
536 /*
537  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
538  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
539  * only the "disable intercept" case needs to be handled.
540  */
541 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
542                                                         unsigned long *msr_bitmap_l0,
543                                                         u32 msr, int type)
544 {
545         if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
546                 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
547
548         if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
549                 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
550 }
551
552 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
553 {
554         int msr;
555
556         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
557                 unsigned word = msr / BITS_PER_LONG;
558
559                 msr_bitmap[word] = ~0;
560                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
561         }
562 }
563
564 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)                                     \
565 static inline                                                                   \
566 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,                  \
567                                          unsigned long *msr_bitmap_l1,          \
568                                          unsigned long *msr_bitmap_l0, u32 msr) \
569 {                                                                               \
570         if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||            \
571             vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))                       \
572                 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);                    \
573         else                                                                    \
574                 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);                  \
575 }
576 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
577 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
578
579 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
580                                                     unsigned long *msr_bitmap_l1,
581                                                     unsigned long *msr_bitmap_l0,
582                                                     u32 msr, int types)
583 {
584         if (types & MSR_TYPE_R)
585                 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
586                                                   msr_bitmap_l0, msr);
587         if (types & MSR_TYPE_W)
588                 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
589                                                    msr_bitmap_l0, msr);
590 }
591
592 /*
593  * Merge L0's and L1's MSR bitmap, return false to indicate that
594  * we do not use the hardware.
595  */
596 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
597                                                  struct vmcs12 *vmcs12)
598 {
599         struct vcpu_vmx *vmx = to_vmx(vcpu);
600         int msr;
601         unsigned long *msr_bitmap_l1;
602         unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
603         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
604         struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
605
606         /* Nothing to do if the MSR bitmap is not in use.  */
607         if (!cpu_has_vmx_msr_bitmap() ||
608             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
609                 return false;
610
611         /*
612          * MSR bitmap update can be skipped when:
613          * - MSR bitmap for L1 hasn't changed.
614          * - Nested hypervisor (L1) is attempting to launch the same L2 as
615          *   before.
616          * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
617          *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
618          */
619         if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
620             evmcs->hv_enlightenments_control.msr_bitmap &&
621             evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
622                 return true;
623
624         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
625                 return false;
626
627         msr_bitmap_l1 = (unsigned long *)map->hva;
628
629         /*
630          * To keep the control flow simple, pay eight 8-byte writes (sixteen
631          * 4-byte writes on 32-bit systems) up front to enable intercepts for
632          * the x2APIC MSR range and selectively toggle those relevant to L2.
633          */
634         enable_x2apic_msr_intercepts(msr_bitmap_l0);
635
636         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
637                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
638                         /*
639                          * L0 need not intercept reads for MSRs between 0x800
640                          * and 0x8ff, it just lets the processor take the value
641                          * from the virtual-APIC page; take those 256 bits
642                          * directly from the L1 bitmap.
643                          */
644                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
645                                 unsigned word = msr / BITS_PER_LONG;
646
647                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
648                         }
649                 }
650
651                 nested_vmx_disable_intercept_for_x2apic_msr(
652                         msr_bitmap_l1, msr_bitmap_l0,
653                         X2APIC_MSR(APIC_TASKPRI),
654                         MSR_TYPE_R | MSR_TYPE_W);
655
656                 if (nested_cpu_has_vid(vmcs12)) {
657                         nested_vmx_disable_intercept_for_x2apic_msr(
658                                 msr_bitmap_l1, msr_bitmap_l0,
659                                 X2APIC_MSR(APIC_EOI),
660                                 MSR_TYPE_W);
661                         nested_vmx_disable_intercept_for_x2apic_msr(
662                                 msr_bitmap_l1, msr_bitmap_l0,
663                                 X2APIC_MSR(APIC_SELF_IPI),
664                                 MSR_TYPE_W);
665                 }
666         }
667
668         /*
669          * Always check vmcs01's bitmap to honor userspace MSR filters and any
670          * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
671          */
672 #ifdef CONFIG_X86_64
673         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
674                                          MSR_FS_BASE, MSR_TYPE_RW);
675
676         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
677                                          MSR_GS_BASE, MSR_TYPE_RW);
678
679         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
680                                          MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
681 #endif
682         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
683                                          MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
684
685         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
686                                          MSR_IA32_PRED_CMD, MSR_TYPE_W);
687
688         kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
689
690         vmx->nested.force_msr_bitmap_recalc = false;
691
692         return true;
693 }
694
695 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
696                                        struct vmcs12 *vmcs12)
697 {
698         struct vcpu_vmx *vmx = to_vmx(vcpu);
699         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
700
701         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
702             vmcs12->vmcs_link_pointer == INVALID_GPA)
703                 return;
704
705         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
706             kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
707                                       vmcs12->vmcs_link_pointer, VMCS12_SIZE))
708                 return;
709
710         kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
711                               VMCS12_SIZE);
712 }
713
714 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
715                                               struct vmcs12 *vmcs12)
716 {
717         struct vcpu_vmx *vmx = to_vmx(vcpu);
718         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
719
720         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
721             vmcs12->vmcs_link_pointer == INVALID_GPA)
722                 return;
723
724         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
725             kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
726                                       vmcs12->vmcs_link_pointer, VMCS12_SIZE))
727                 return;
728
729         kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
730                                VMCS12_SIZE);
731 }
732
733 /*
734  * In nested virtualization, check if L1 has set
735  * VM_EXIT_ACK_INTR_ON_EXIT
736  */
737 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
738 {
739         return get_vmcs12(vcpu)->vm_exit_controls &
740                 VM_EXIT_ACK_INTR_ON_EXIT;
741 }
742
743 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
744                                           struct vmcs12 *vmcs12)
745 {
746         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
747             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
748                 return -EINVAL;
749         else
750                 return 0;
751 }
752
753 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
754                                            struct vmcs12 *vmcs12)
755 {
756         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
757             !nested_cpu_has_apic_reg_virt(vmcs12) &&
758             !nested_cpu_has_vid(vmcs12) &&
759             !nested_cpu_has_posted_intr(vmcs12))
760                 return 0;
761
762         /*
763          * If virtualize x2apic mode is enabled,
764          * virtualize apic access must be disabled.
765          */
766         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
767                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
768                 return -EINVAL;
769
770         /*
771          * If virtual interrupt delivery is enabled,
772          * we must exit on external interrupts.
773          */
774         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
775                 return -EINVAL;
776
777         /*
778          * bits 15:8 should be zero in posted_intr_nv,
779          * the descriptor address has been already checked
780          * in nested_get_vmcs12_pages.
781          *
782          * bits 5:0 of posted_intr_desc_addr should be zero.
783          */
784         if (nested_cpu_has_posted_intr(vmcs12) &&
785            (CC(!nested_cpu_has_vid(vmcs12)) ||
786             CC(!nested_exit_intr_ack_set(vcpu)) ||
787             CC((vmcs12->posted_intr_nv & 0xff00)) ||
788             CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
789                 return -EINVAL;
790
791         /* tpr shadow is needed by all apicv features. */
792         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
793                 return -EINVAL;
794
795         return 0;
796 }
797
798 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
799                                        u32 count, u64 addr)
800 {
801         if (count == 0)
802                 return 0;
803
804         if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
805             !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
806                 return -EINVAL;
807
808         return 0;
809 }
810
811 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
812                                                      struct vmcs12 *vmcs12)
813 {
814         if (CC(nested_vmx_check_msr_switch(vcpu,
815                                            vmcs12->vm_exit_msr_load_count,
816                                            vmcs12->vm_exit_msr_load_addr)) ||
817             CC(nested_vmx_check_msr_switch(vcpu,
818                                            vmcs12->vm_exit_msr_store_count,
819                                            vmcs12->vm_exit_msr_store_addr)))
820                 return -EINVAL;
821
822         return 0;
823 }
824
825 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
826                                                       struct vmcs12 *vmcs12)
827 {
828         if (CC(nested_vmx_check_msr_switch(vcpu,
829                                            vmcs12->vm_entry_msr_load_count,
830                                            vmcs12->vm_entry_msr_load_addr)))
831                 return -EINVAL;
832
833         return 0;
834 }
835
836 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
837                                          struct vmcs12 *vmcs12)
838 {
839         if (!nested_cpu_has_pml(vmcs12))
840                 return 0;
841
842         if (CC(!nested_cpu_has_ept(vmcs12)) ||
843             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
844                 return -EINVAL;
845
846         return 0;
847 }
848
849 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
850                                                         struct vmcs12 *vmcs12)
851 {
852         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
853                !nested_cpu_has_ept(vmcs12)))
854                 return -EINVAL;
855         return 0;
856 }
857
858 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
859                                                          struct vmcs12 *vmcs12)
860 {
861         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
862                !nested_cpu_has_ept(vmcs12)))
863                 return -EINVAL;
864         return 0;
865 }
866
867 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
868                                                  struct vmcs12 *vmcs12)
869 {
870         if (!nested_cpu_has_shadow_vmcs(vmcs12))
871                 return 0;
872
873         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
874             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
875                 return -EINVAL;
876
877         return 0;
878 }
879
880 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
881                                        struct vmx_msr_entry *e)
882 {
883         /* x2APIC MSR accesses are not allowed */
884         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
885                 return -EINVAL;
886         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
887             CC(e->index == MSR_IA32_UCODE_REV))
888                 return -EINVAL;
889         if (CC(e->reserved != 0))
890                 return -EINVAL;
891         return 0;
892 }
893
894 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
895                                      struct vmx_msr_entry *e)
896 {
897         if (CC(e->index == MSR_FS_BASE) ||
898             CC(e->index == MSR_GS_BASE) ||
899             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
900             nested_vmx_msr_check_common(vcpu, e))
901                 return -EINVAL;
902         return 0;
903 }
904
905 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
906                                       struct vmx_msr_entry *e)
907 {
908         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
909             nested_vmx_msr_check_common(vcpu, e))
910                 return -EINVAL;
911         return 0;
912 }
913
914 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
915 {
916         struct vcpu_vmx *vmx = to_vmx(vcpu);
917         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
918                                        vmx->nested.msrs.misc_high);
919
920         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
921 }
922
923 /*
924  * Load guest's/host's msr at nested entry/exit.
925  * return 0 for success, entry index for failure.
926  *
927  * One of the failure modes for MSR load/store is when a list exceeds the
928  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
929  * as possible, process all valid entries before failing rather than precheck
930  * for a capacity violation.
931  */
932 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
933 {
934         u32 i;
935         struct vmx_msr_entry e;
936         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
937
938         for (i = 0; i < count; i++) {
939                 if (unlikely(i >= max_msr_list_size))
940                         goto fail;
941
942                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
943                                         &e, sizeof(e))) {
944                         pr_debug_ratelimited(
945                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
946                                 __func__, i, gpa + i * sizeof(e));
947                         goto fail;
948                 }
949                 if (nested_vmx_load_msr_check(vcpu, &e)) {
950                         pr_debug_ratelimited(
951                                 "%s check failed (%u, 0x%x, 0x%x)\n",
952                                 __func__, i, e.index, e.reserved);
953                         goto fail;
954                 }
955                 if (kvm_set_msr(vcpu, e.index, e.value)) {
956                         pr_debug_ratelimited(
957                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
958                                 __func__, i, e.index, e.value);
959                         goto fail;
960                 }
961         }
962         return 0;
963 fail:
964         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
965         return i + 1;
966 }
967
968 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
969                                             u32 msr_index,
970                                             u64 *data)
971 {
972         struct vcpu_vmx *vmx = to_vmx(vcpu);
973
974         /*
975          * If the L0 hypervisor stored a more accurate value for the TSC that
976          * does not include the time taken for emulation of the L2->L1
977          * VM-exit in L0, use the more accurate value.
978          */
979         if (msr_index == MSR_IA32_TSC) {
980                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
981                                                     MSR_IA32_TSC);
982
983                 if (i >= 0) {
984                         u64 val = vmx->msr_autostore.guest.val[i].value;
985
986                         *data = kvm_read_l1_tsc(vcpu, val);
987                         return true;
988                 }
989         }
990
991         if (kvm_get_msr(vcpu, msr_index, data)) {
992                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
993                         msr_index);
994                 return false;
995         }
996         return true;
997 }
998
999 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1000                                      struct vmx_msr_entry *e)
1001 {
1002         if (kvm_vcpu_read_guest(vcpu,
1003                                 gpa + i * sizeof(*e),
1004                                 e, 2 * sizeof(u32))) {
1005                 pr_debug_ratelimited(
1006                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
1007                         __func__, i, gpa + i * sizeof(*e));
1008                 return false;
1009         }
1010         if (nested_vmx_store_msr_check(vcpu, e)) {
1011                 pr_debug_ratelimited(
1012                         "%s check failed (%u, 0x%x, 0x%x)\n",
1013                         __func__, i, e->index, e->reserved);
1014                 return false;
1015         }
1016         return true;
1017 }
1018
1019 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1020 {
1021         u64 data;
1022         u32 i;
1023         struct vmx_msr_entry e;
1024         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1025
1026         for (i = 0; i < count; i++) {
1027                 if (unlikely(i >= max_msr_list_size))
1028                         return -EINVAL;
1029
1030                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1031                         return -EINVAL;
1032
1033                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1034                         return -EINVAL;
1035
1036                 if (kvm_vcpu_write_guest(vcpu,
1037                                          gpa + i * sizeof(e) +
1038                                              offsetof(struct vmx_msr_entry, value),
1039                                          &data, sizeof(data))) {
1040                         pr_debug_ratelimited(
1041                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1042                                 __func__, i, e.index, data);
1043                         return -EINVAL;
1044                 }
1045         }
1046         return 0;
1047 }
1048
1049 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1050 {
1051         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1052         u32 count = vmcs12->vm_exit_msr_store_count;
1053         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1054         struct vmx_msr_entry e;
1055         u32 i;
1056
1057         for (i = 0; i < count; i++) {
1058                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1059                         return false;
1060
1061                 if (e.index == msr_index)
1062                         return true;
1063         }
1064         return false;
1065 }
1066
1067 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1068                                            u32 msr_index)
1069 {
1070         struct vcpu_vmx *vmx = to_vmx(vcpu);
1071         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1072         bool in_vmcs12_store_list;
1073         int msr_autostore_slot;
1074         bool in_autostore_list;
1075         int last;
1076
1077         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1078         in_autostore_list = msr_autostore_slot >= 0;
1079         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1080
1081         if (in_vmcs12_store_list && !in_autostore_list) {
1082                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1083                         /*
1084                          * Emulated VMEntry does not fail here.  Instead a less
1085                          * accurate value will be returned by
1086                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1087                          * instead of reading the value from the vmcs02 VMExit
1088                          * MSR-store area.
1089                          */
1090                         pr_warn_ratelimited(
1091                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1092                                 msr_index);
1093                         return;
1094                 }
1095                 last = autostore->nr++;
1096                 autostore->val[last].index = msr_index;
1097         } else if (!in_vmcs12_store_list && in_autostore_list) {
1098                 last = --autostore->nr;
1099                 autostore->val[msr_autostore_slot] = autostore->val[last];
1100         }
1101 }
1102
1103 /*
1104  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1105  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1106  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1107  * @entry_failure_code.
1108  */
1109 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1110                                bool nested_ept, bool reload_pdptrs,
1111                                enum vm_entry_failure_code *entry_failure_code)
1112 {
1113         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1114                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1115                 return -EINVAL;
1116         }
1117
1118         /*
1119          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1120          * must not be dereferenced.
1121          */
1122         if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1123             CC(!load_pdptrs(vcpu, cr3))) {
1124                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1125                 return -EINVAL;
1126         }
1127
1128         if (!nested_ept)
1129                 kvm_mmu_new_pgd(vcpu, cr3);
1130
1131         vcpu->arch.cr3 = cr3;
1132         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1133
1134         /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1135         kvm_init_mmu(vcpu);
1136
1137         return 0;
1138 }
1139
1140 /*
1141  * Returns if KVM is able to config CPU to tag TLB entries
1142  * populated by L2 differently than TLB entries populated
1143  * by L1.
1144  *
1145  * If L0 uses EPT, L1 and L2 run with different EPTP because
1146  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1147  * are tagged with different EPTP.
1148  *
1149  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1150  * with different VPID (L1 entries are tagged with vmx->vpid
1151  * while L2 entries are tagged with vmx->nested.vpid02).
1152  */
1153 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1154 {
1155         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1156
1157         return enable_ept ||
1158                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1159 }
1160
1161 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1162                                             struct vmcs12 *vmcs12,
1163                                             bool is_vmenter)
1164 {
1165         struct vcpu_vmx *vmx = to_vmx(vcpu);
1166
1167         /*
1168          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1169          * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1170          * full TLB flush from the guest's perspective.  This is required even
1171          * if VPID is disabled in the host as KVM may need to synchronize the
1172          * MMU in response to the guest TLB flush.
1173          *
1174          * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1175          * EPT is a special snowflake, as guest-physical mappings aren't
1176          * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1177          * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1178          * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1179          * those mappings.
1180          */
1181         if (!nested_cpu_has_vpid(vmcs12)) {
1182                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1183                 return;
1184         }
1185
1186         /* L2 should never have a VPID if VPID is disabled. */
1187         WARN_ON(!enable_vpid);
1188
1189         /*
1190          * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1191          * emulate a guest TLB flush as KVM does not track vpid12 history nor
1192          * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1193          * that the new vpid12 has never been used and thus represents a new
1194          * guest ASID that cannot have entries in the TLB.
1195          */
1196         if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1197                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1198                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1199                 return;
1200         }
1201
1202         /*
1203          * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1204          * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1205          * KVM was unable to allocate a VPID for L2, flush the current context
1206          * as the effective ASID is common to both L1 and L2.
1207          */
1208         if (!nested_has_guest_tlb_tag(vcpu))
1209                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1210 }
1211
1212 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1213 {
1214         superset &= mask;
1215         subset &= mask;
1216
1217         return (superset | subset) == superset;
1218 }
1219
1220 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1221 {
1222         const u64 feature_and_reserved =
1223                 /* feature (except bit 48; see below) */
1224                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1225                 /* reserved */
1226                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1227         u64 vmx_basic = vmx->nested.msrs.basic;
1228
1229         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1230                 return -EINVAL;
1231
1232         /*
1233          * KVM does not emulate a version of VMX that constrains physical
1234          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1235          */
1236         if (data & BIT_ULL(48))
1237                 return -EINVAL;
1238
1239         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1240             vmx_basic_vmcs_revision_id(data))
1241                 return -EINVAL;
1242
1243         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1244                 return -EINVAL;
1245
1246         vmx->nested.msrs.basic = data;
1247         return 0;
1248 }
1249
1250 static int
1251 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1252 {
1253         u64 supported;
1254         u32 *lowp, *highp;
1255
1256         switch (msr_index) {
1257         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1258                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1259                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1260                 break;
1261         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1262                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1263                 highp = &vmx->nested.msrs.procbased_ctls_high;
1264                 break;
1265         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1266                 lowp = &vmx->nested.msrs.exit_ctls_low;
1267                 highp = &vmx->nested.msrs.exit_ctls_high;
1268                 break;
1269         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1270                 lowp = &vmx->nested.msrs.entry_ctls_low;
1271                 highp = &vmx->nested.msrs.entry_ctls_high;
1272                 break;
1273         case MSR_IA32_VMX_PROCBASED_CTLS2:
1274                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1275                 highp = &vmx->nested.msrs.secondary_ctls_high;
1276                 break;
1277         default:
1278                 BUG();
1279         }
1280
1281         supported = vmx_control_msr(*lowp, *highp);
1282
1283         /* Check must-be-1 bits are still 1. */
1284         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1285                 return -EINVAL;
1286
1287         /* Check must-be-0 bits are still 0. */
1288         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1289                 return -EINVAL;
1290
1291         *lowp = data;
1292         *highp = data >> 32;
1293         return 0;
1294 }
1295
1296 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1297 {
1298         const u64 feature_and_reserved_bits =
1299                 /* feature */
1300                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1301                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1302                 /* reserved */
1303                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1304         u64 vmx_misc;
1305
1306         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1307                                    vmx->nested.msrs.misc_high);
1308
1309         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1310                 return -EINVAL;
1311
1312         if ((vmx->nested.msrs.pinbased_ctls_high &
1313              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1314             vmx_misc_preemption_timer_rate(data) !=
1315             vmx_misc_preemption_timer_rate(vmx_misc))
1316                 return -EINVAL;
1317
1318         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1319                 return -EINVAL;
1320
1321         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1322                 return -EINVAL;
1323
1324         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1325                 return -EINVAL;
1326
1327         vmx->nested.msrs.misc_low = data;
1328         vmx->nested.msrs.misc_high = data >> 32;
1329
1330         return 0;
1331 }
1332
1333 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1334 {
1335         u64 vmx_ept_vpid_cap;
1336
1337         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1338                                            vmx->nested.msrs.vpid_caps);
1339
1340         /* Every bit is either reserved or a feature bit. */
1341         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1342                 return -EINVAL;
1343
1344         vmx->nested.msrs.ept_caps = data;
1345         vmx->nested.msrs.vpid_caps = data >> 32;
1346         return 0;
1347 }
1348
1349 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1350 {
1351         u64 *msr;
1352
1353         switch (msr_index) {
1354         case MSR_IA32_VMX_CR0_FIXED0:
1355                 msr = &vmx->nested.msrs.cr0_fixed0;
1356                 break;
1357         case MSR_IA32_VMX_CR4_FIXED0:
1358                 msr = &vmx->nested.msrs.cr4_fixed0;
1359                 break;
1360         default:
1361                 BUG();
1362         }
1363
1364         /*
1365          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1366          * must be 1 in the restored value.
1367          */
1368         if (!is_bitwise_subset(data, *msr, -1ULL))
1369                 return -EINVAL;
1370
1371         *msr = data;
1372         return 0;
1373 }
1374
1375 /*
1376  * Called when userspace is restoring VMX MSRs.
1377  *
1378  * Returns 0 on success, non-0 otherwise.
1379  */
1380 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1381 {
1382         struct vcpu_vmx *vmx = to_vmx(vcpu);
1383
1384         /*
1385          * Don't allow changes to the VMX capability MSRs while the vCPU
1386          * is in VMX operation.
1387          */
1388         if (vmx->nested.vmxon)
1389                 return -EBUSY;
1390
1391         switch (msr_index) {
1392         case MSR_IA32_VMX_BASIC:
1393                 return vmx_restore_vmx_basic(vmx, data);
1394         case MSR_IA32_VMX_PINBASED_CTLS:
1395         case MSR_IA32_VMX_PROCBASED_CTLS:
1396         case MSR_IA32_VMX_EXIT_CTLS:
1397         case MSR_IA32_VMX_ENTRY_CTLS:
1398                 /*
1399                  * The "non-true" VMX capability MSRs are generated from the
1400                  * "true" MSRs, so we do not support restoring them directly.
1401                  *
1402                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1403                  * should restore the "true" MSRs with the must-be-1 bits
1404                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1405                  * DEFAULT SETTINGS".
1406                  */
1407                 return -EINVAL;
1408         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1409         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1410         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1411         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1412         case MSR_IA32_VMX_PROCBASED_CTLS2:
1413                 return vmx_restore_control_msr(vmx, msr_index, data);
1414         case MSR_IA32_VMX_MISC:
1415                 return vmx_restore_vmx_misc(vmx, data);
1416         case MSR_IA32_VMX_CR0_FIXED0:
1417         case MSR_IA32_VMX_CR4_FIXED0:
1418                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1419         case MSR_IA32_VMX_CR0_FIXED1:
1420         case MSR_IA32_VMX_CR4_FIXED1:
1421                 /*
1422                  * These MSRs are generated based on the vCPU's CPUID, so we
1423                  * do not support restoring them directly.
1424                  */
1425                 return -EINVAL;
1426         case MSR_IA32_VMX_EPT_VPID_CAP:
1427                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1428         case MSR_IA32_VMX_VMCS_ENUM:
1429                 vmx->nested.msrs.vmcs_enum = data;
1430                 return 0;
1431         case MSR_IA32_VMX_VMFUNC:
1432                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1433                         return -EINVAL;
1434                 vmx->nested.msrs.vmfunc_controls = data;
1435                 return 0;
1436         default:
1437                 /*
1438                  * The rest of the VMX capability MSRs do not support restore.
1439                  */
1440                 return -EINVAL;
1441         }
1442 }
1443
1444 /* Returns 0 on success, non-0 otherwise. */
1445 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1446 {
1447         switch (msr_index) {
1448         case MSR_IA32_VMX_BASIC:
1449                 *pdata = msrs->basic;
1450                 break;
1451         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1452         case MSR_IA32_VMX_PINBASED_CTLS:
1453                 *pdata = vmx_control_msr(
1454                         msrs->pinbased_ctls_low,
1455                         msrs->pinbased_ctls_high);
1456                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1457                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1458                 break;
1459         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1460         case MSR_IA32_VMX_PROCBASED_CTLS:
1461                 *pdata = vmx_control_msr(
1462                         msrs->procbased_ctls_low,
1463                         msrs->procbased_ctls_high);
1464                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1465                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1466                 break;
1467         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1468         case MSR_IA32_VMX_EXIT_CTLS:
1469                 *pdata = vmx_control_msr(
1470                         msrs->exit_ctls_low,
1471                         msrs->exit_ctls_high);
1472                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1473                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1474                 break;
1475         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1476         case MSR_IA32_VMX_ENTRY_CTLS:
1477                 *pdata = vmx_control_msr(
1478                         msrs->entry_ctls_low,
1479                         msrs->entry_ctls_high);
1480                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1481                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1482                 break;
1483         case MSR_IA32_VMX_MISC:
1484                 *pdata = vmx_control_msr(
1485                         msrs->misc_low,
1486                         msrs->misc_high);
1487                 break;
1488         case MSR_IA32_VMX_CR0_FIXED0:
1489                 *pdata = msrs->cr0_fixed0;
1490                 break;
1491         case MSR_IA32_VMX_CR0_FIXED1:
1492                 *pdata = msrs->cr0_fixed1;
1493                 break;
1494         case MSR_IA32_VMX_CR4_FIXED0:
1495                 *pdata = msrs->cr4_fixed0;
1496                 break;
1497         case MSR_IA32_VMX_CR4_FIXED1:
1498                 *pdata = msrs->cr4_fixed1;
1499                 break;
1500         case MSR_IA32_VMX_VMCS_ENUM:
1501                 *pdata = msrs->vmcs_enum;
1502                 break;
1503         case MSR_IA32_VMX_PROCBASED_CTLS2:
1504                 *pdata = vmx_control_msr(
1505                         msrs->secondary_ctls_low,
1506                         msrs->secondary_ctls_high);
1507                 break;
1508         case MSR_IA32_VMX_EPT_VPID_CAP:
1509                 *pdata = msrs->ept_caps |
1510                         ((u64)msrs->vpid_caps << 32);
1511                 break;
1512         case MSR_IA32_VMX_VMFUNC:
1513                 *pdata = msrs->vmfunc_controls;
1514                 break;
1515         default:
1516                 return 1;
1517         }
1518
1519         return 0;
1520 }
1521
1522 /*
1523  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1524  * been modified by the L1 guest.  Note, "writable" in this context means
1525  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1526  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1527  * VM-exit information fields (which are actually writable if the vCPU is
1528  * configured to support "VMWRITE to any supported field in the VMCS").
1529  */
1530 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1531 {
1532         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1533         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1534         struct shadow_vmcs_field field;
1535         unsigned long val;
1536         int i;
1537
1538         if (WARN_ON(!shadow_vmcs))
1539                 return;
1540
1541         preempt_disable();
1542
1543         vmcs_load(shadow_vmcs);
1544
1545         for (i = 0; i < max_shadow_read_write_fields; i++) {
1546                 field = shadow_read_write_fields[i];
1547                 val = __vmcs_readl(field.encoding);
1548                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1549         }
1550
1551         vmcs_clear(shadow_vmcs);
1552         vmcs_load(vmx->loaded_vmcs->vmcs);
1553
1554         preempt_enable();
1555 }
1556
1557 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1558 {
1559         const struct shadow_vmcs_field *fields[] = {
1560                 shadow_read_write_fields,
1561                 shadow_read_only_fields
1562         };
1563         const int max_fields[] = {
1564                 max_shadow_read_write_fields,
1565                 max_shadow_read_only_fields
1566         };
1567         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1568         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1569         struct shadow_vmcs_field field;
1570         unsigned long val;
1571         int i, q;
1572
1573         if (WARN_ON(!shadow_vmcs))
1574                 return;
1575
1576         vmcs_load(shadow_vmcs);
1577
1578         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1579                 for (i = 0; i < max_fields[q]; i++) {
1580                         field = fields[q][i];
1581                         val = vmcs12_read_any(vmcs12, field.encoding,
1582                                               field.offset);
1583                         __vmcs_writel(field.encoding, val);
1584                 }
1585         }
1586
1587         vmcs_clear(shadow_vmcs);
1588         vmcs_load(vmx->loaded_vmcs->vmcs);
1589 }
1590
1591 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1592 {
1593         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1594         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1595
1596         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1597         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1598         vmcs12->guest_rip = evmcs->guest_rip;
1599
1600         if (unlikely(!(hv_clean_fields &
1601                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1602                 vmcs12->guest_rsp = evmcs->guest_rsp;
1603                 vmcs12->guest_rflags = evmcs->guest_rflags;
1604                 vmcs12->guest_interruptibility_info =
1605                         evmcs->guest_interruptibility_info;
1606         }
1607
1608         if (unlikely(!(hv_clean_fields &
1609                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1610                 vmcs12->cpu_based_vm_exec_control =
1611                         evmcs->cpu_based_vm_exec_control;
1612         }
1613
1614         if (unlikely(!(hv_clean_fields &
1615                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1616                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1617         }
1618
1619         if (unlikely(!(hv_clean_fields &
1620                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1621                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1622         }
1623
1624         if (unlikely(!(hv_clean_fields &
1625                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1626                 vmcs12->vm_entry_intr_info_field =
1627                         evmcs->vm_entry_intr_info_field;
1628                 vmcs12->vm_entry_exception_error_code =
1629                         evmcs->vm_entry_exception_error_code;
1630                 vmcs12->vm_entry_instruction_len =
1631                         evmcs->vm_entry_instruction_len;
1632         }
1633
1634         if (unlikely(!(hv_clean_fields &
1635                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1636                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1637                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1638                 vmcs12->host_cr0 = evmcs->host_cr0;
1639                 vmcs12->host_cr3 = evmcs->host_cr3;
1640                 vmcs12->host_cr4 = evmcs->host_cr4;
1641                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1642                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1643                 vmcs12->host_rip = evmcs->host_rip;
1644                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1645                 vmcs12->host_es_selector = evmcs->host_es_selector;
1646                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1647                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1648                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1649                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1650                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1651                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1652         }
1653
1654         if (unlikely(!(hv_clean_fields &
1655                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1656                 vmcs12->pin_based_vm_exec_control =
1657                         evmcs->pin_based_vm_exec_control;
1658                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1659                 vmcs12->secondary_vm_exec_control =
1660                         evmcs->secondary_vm_exec_control;
1661         }
1662
1663         if (unlikely(!(hv_clean_fields &
1664                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1665                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1666                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1667         }
1668
1669         if (unlikely(!(hv_clean_fields &
1670                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1671                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1672         }
1673
1674         if (unlikely(!(hv_clean_fields &
1675                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1676                 vmcs12->guest_es_base = evmcs->guest_es_base;
1677                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1678                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1679                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1680                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1681                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1682                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1683                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1684                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1685                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1686                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1687                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1688                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1689                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1690                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1691                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1692                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1693                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1694                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1695                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1696                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1697                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1698                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1699                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1700                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1701                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1702                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1703                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1704                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1705                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1706                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1707                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1708                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1709                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1710                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1711                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1712         }
1713
1714         if (unlikely(!(hv_clean_fields &
1715                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1716                 vmcs12->tsc_offset = evmcs->tsc_offset;
1717                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1718                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1719         }
1720
1721         if (unlikely(!(hv_clean_fields &
1722                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1723                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1724                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1725                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1726                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1727                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1728                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1729                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1730                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1731         }
1732
1733         if (unlikely(!(hv_clean_fields &
1734                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1735                 vmcs12->host_fs_base = evmcs->host_fs_base;
1736                 vmcs12->host_gs_base = evmcs->host_gs_base;
1737                 vmcs12->host_tr_base = evmcs->host_tr_base;
1738                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1739                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1740                 vmcs12->host_rsp = evmcs->host_rsp;
1741         }
1742
1743         if (unlikely(!(hv_clean_fields &
1744                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1745                 vmcs12->ept_pointer = evmcs->ept_pointer;
1746                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1747         }
1748
1749         if (unlikely(!(hv_clean_fields &
1750                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1751                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1752                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1753                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1754                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1755                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1756                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1757                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1758                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1759                 vmcs12->guest_pending_dbg_exceptions =
1760                         evmcs->guest_pending_dbg_exceptions;
1761                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1762                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1763                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1764                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1765                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1766         }
1767
1768         /*
1769          * Not used?
1770          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1771          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1772          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1773          * vmcs12->page_fault_error_code_mask =
1774          *              evmcs->page_fault_error_code_mask;
1775          * vmcs12->page_fault_error_code_match =
1776          *              evmcs->page_fault_error_code_match;
1777          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1778          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1779          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1780          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1781          */
1782
1783         /*
1784          * Read only fields:
1785          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1786          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1787          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1788          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1789          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1790          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1791          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1792          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1793          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1794          * vmcs12->exit_qualification = evmcs->exit_qualification;
1795          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1796          *
1797          * Not present in struct vmcs12:
1798          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1799          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1800          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1801          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1802          */
1803
1804         return;
1805 }
1806
1807 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1808 {
1809         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1810         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1811
1812         /*
1813          * Should not be changed by KVM:
1814          *
1815          * evmcs->host_es_selector = vmcs12->host_es_selector;
1816          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1817          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1818          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1819          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1820          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1821          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1822          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1823          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1824          * evmcs->host_cr0 = vmcs12->host_cr0;
1825          * evmcs->host_cr3 = vmcs12->host_cr3;
1826          * evmcs->host_cr4 = vmcs12->host_cr4;
1827          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1828          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1829          * evmcs->host_rip = vmcs12->host_rip;
1830          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1831          * evmcs->host_fs_base = vmcs12->host_fs_base;
1832          * evmcs->host_gs_base = vmcs12->host_gs_base;
1833          * evmcs->host_tr_base = vmcs12->host_tr_base;
1834          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1835          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1836          * evmcs->host_rsp = vmcs12->host_rsp;
1837          * sync_vmcs02_to_vmcs12() doesn't read these:
1838          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1839          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1840          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1841          * evmcs->ept_pointer = vmcs12->ept_pointer;
1842          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1843          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1844          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1845          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1846          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1847          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1848          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1849          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1850          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1851          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1852          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1853          * evmcs->page_fault_error_code_mask =
1854          *              vmcs12->page_fault_error_code_mask;
1855          * evmcs->page_fault_error_code_match =
1856          *              vmcs12->page_fault_error_code_match;
1857          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1858          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1859          * evmcs->tsc_offset = vmcs12->tsc_offset;
1860          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1861          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1862          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1863          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1864          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1865          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1866          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1867          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1868          *
1869          * Not present in struct vmcs12:
1870          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1871          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1872          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1873          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1874          */
1875
1876         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1877         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1878         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1879         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1880         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1881         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1882         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1883         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1884
1885         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1886         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1887         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1888         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1889         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1890         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1891         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1892         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1893         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1894         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1895
1896         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1897         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1898         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1899         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1900         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1901         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1902         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1903         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1904
1905         evmcs->guest_es_base = vmcs12->guest_es_base;
1906         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1907         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1908         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1909         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1910         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1911         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1912         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1913         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1914         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1915
1916         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1917         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1918
1919         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1920         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1921         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1922         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1923
1924         evmcs->guest_pending_dbg_exceptions =
1925                 vmcs12->guest_pending_dbg_exceptions;
1926         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1927         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1928
1929         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1930         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1931
1932         evmcs->guest_cr0 = vmcs12->guest_cr0;
1933         evmcs->guest_cr3 = vmcs12->guest_cr3;
1934         evmcs->guest_cr4 = vmcs12->guest_cr4;
1935         evmcs->guest_dr7 = vmcs12->guest_dr7;
1936
1937         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1938
1939         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1940         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1941         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1942         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1943         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1944         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1945         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1946         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1947
1948         evmcs->exit_qualification = vmcs12->exit_qualification;
1949
1950         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1951         evmcs->guest_rsp = vmcs12->guest_rsp;
1952         evmcs->guest_rflags = vmcs12->guest_rflags;
1953
1954         evmcs->guest_interruptibility_info =
1955                 vmcs12->guest_interruptibility_info;
1956         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1957         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1958         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1959         evmcs->vm_entry_exception_error_code =
1960                 vmcs12->vm_entry_exception_error_code;
1961         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1962
1963         evmcs->guest_rip = vmcs12->guest_rip;
1964
1965         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1966
1967         return;
1968 }
1969
1970 /*
1971  * This is an equivalent of the nested hypervisor executing the vmptrld
1972  * instruction.
1973  */
1974 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1975         struct kvm_vcpu *vcpu, bool from_launch)
1976 {
1977         struct vcpu_vmx *vmx = to_vmx(vcpu);
1978         bool evmcs_gpa_changed = false;
1979         u64 evmcs_gpa;
1980
1981         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1982                 return EVMPTRLD_DISABLED;
1983
1984         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1985                 nested_release_evmcs(vcpu);
1986                 return EVMPTRLD_DISABLED;
1987         }
1988
1989         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1990                 vmx->nested.current_vmptr = INVALID_GPA;
1991
1992                 nested_release_evmcs(vcpu);
1993
1994                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1995                                  &vmx->nested.hv_evmcs_map))
1996                         return EVMPTRLD_ERROR;
1997
1998                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1999
2000                 /*
2001                  * Currently, KVM only supports eVMCS version 1
2002                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2003                  * value to first u32 field of eVMCS which should specify eVMCS
2004                  * VersionNumber.
2005                  *
2006                  * Guest should be aware of supported eVMCS versions by host by
2007                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2008                  * expected to set this CPUID leaf according to the value
2009                  * returned in vmcs_version from nested_enable_evmcs().
2010                  *
2011                  * However, it turns out that Microsoft Hyper-V fails to comply
2012                  * to their own invented interface: When Hyper-V use eVMCS, it
2013                  * just sets first u32 field of eVMCS to revision_id specified
2014                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2015                  * which is one of the supported versions specified in
2016                  * CPUID.0x4000000A.EAX[0:15].
2017                  *
2018                  * To overcome Hyper-V bug, we accept here either a supported
2019                  * eVMCS version or VMCS12 revision_id as valid values for first
2020                  * u32 field of eVMCS.
2021                  */
2022                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2023                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2024                         nested_release_evmcs(vcpu);
2025                         return EVMPTRLD_VMFAIL;
2026                 }
2027
2028                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2029
2030                 evmcs_gpa_changed = true;
2031                 /*
2032                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2033                  * reloaded from guest's memory (read only fields, fields not
2034                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2035                  * are no leftovers.
2036                  */
2037                 if (from_launch) {
2038                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2039                         memset(vmcs12, 0, sizeof(*vmcs12));
2040                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2041                 }
2042
2043         }
2044
2045         /*
2046          * Clean fields data can't be used on VMLAUNCH and when we switch
2047          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2048          */
2049         if (from_launch || evmcs_gpa_changed) {
2050                 vmx->nested.hv_evmcs->hv_clean_fields &=
2051                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2052
2053                 vmx->nested.force_msr_bitmap_recalc = true;
2054         }
2055
2056         return EVMPTRLD_SUCCEEDED;
2057 }
2058
2059 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2060 {
2061         struct vcpu_vmx *vmx = to_vmx(vcpu);
2062
2063         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2064                 copy_vmcs12_to_enlightened(vmx);
2065         else
2066                 copy_vmcs12_to_shadow(vmx);
2067
2068         vmx->nested.need_vmcs12_to_shadow_sync = false;
2069 }
2070
2071 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2072 {
2073         struct vcpu_vmx *vmx =
2074                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2075
2076         vmx->nested.preemption_timer_expired = true;
2077         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2078         kvm_vcpu_kick(&vmx->vcpu);
2079
2080         return HRTIMER_NORESTART;
2081 }
2082
2083 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2084 {
2085         struct vcpu_vmx *vmx = to_vmx(vcpu);
2086         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2087
2088         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2089                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2090
2091         if (!vmx->nested.has_preemption_timer_deadline) {
2092                 vmx->nested.preemption_timer_deadline =
2093                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2094                 vmx->nested.has_preemption_timer_deadline = true;
2095         }
2096         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2097 }
2098
2099 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2100                                         u64 preemption_timeout)
2101 {
2102         struct vcpu_vmx *vmx = to_vmx(vcpu);
2103
2104         /*
2105          * A timer value of zero is architecturally guaranteed to cause
2106          * a VMExit prior to executing any instructions in the guest.
2107          */
2108         if (preemption_timeout == 0) {
2109                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2110                 return;
2111         }
2112
2113         if (vcpu->arch.virtual_tsc_khz == 0)
2114                 return;
2115
2116         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2117         preemption_timeout *= 1000000;
2118         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2119         hrtimer_start(&vmx->nested.preemption_timer,
2120                       ktime_add_ns(ktime_get(), preemption_timeout),
2121                       HRTIMER_MODE_ABS_PINNED);
2122 }
2123
2124 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2125 {
2126         if (vmx->nested.nested_run_pending &&
2127             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2128                 return vmcs12->guest_ia32_efer;
2129         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2130                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2131         else
2132                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2133 }
2134
2135 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2136 {
2137         /*
2138          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2139          * according to L0's settings (vmcs12 is irrelevant here).  Host
2140          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2141          * will be set as needed prior to VMLAUNCH/VMRESUME.
2142          */
2143         if (vmx->nested.vmcs02_initialized)
2144                 return;
2145         vmx->nested.vmcs02_initialized = true;
2146
2147         /*
2148          * We don't care what the EPTP value is we just need to guarantee
2149          * it's valid so we don't get a false positive when doing early
2150          * consistency checks.
2151          */
2152         if (enable_ept && nested_early_check)
2153                 vmcs_write64(EPT_POINTER,
2154                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2155
2156         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2157         if (cpu_has_vmx_vmfunc())
2158                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2159
2160         if (cpu_has_vmx_posted_intr())
2161                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2162
2163         if (cpu_has_vmx_msr_bitmap())
2164                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2165
2166         /*
2167          * PML is emulated for L2, but never enabled in hardware as the MMU
2168          * handles A/D emulation.  Disabling PML for L2 also avoids having to
2169          * deal with filtering out L2 GPAs from the buffer.
2170          */
2171         if (enable_pml) {
2172                 vmcs_write64(PML_ADDRESS, 0);
2173                 vmcs_write16(GUEST_PML_INDEX, -1);
2174         }
2175
2176         if (cpu_has_vmx_encls_vmexit())
2177                 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2178
2179         /*
2180          * Set the MSR load/store lists to match L0's settings.  Only the
2181          * addresses are constant (for vmcs02), the counts can change based
2182          * on L2's behavior, e.g. switching to/from long mode.
2183          */
2184         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2185         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2186         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2187
2188         vmx_set_constant_host_state(vmx);
2189 }
2190
2191 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2192                                       struct vmcs12 *vmcs12)
2193 {
2194         prepare_vmcs02_constant_state(vmx);
2195
2196         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2197
2198         if (enable_vpid) {
2199                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2200                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2201                 else
2202                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2203         }
2204 }
2205
2206 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2207                                  struct vmcs12 *vmcs12)
2208 {
2209         u32 exec_control;
2210         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2211
2212         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2213                 prepare_vmcs02_early_rare(vmx, vmcs12);
2214
2215         /*
2216          * PIN CONTROLS
2217          */
2218         exec_control = __pin_controls_get(vmcs01);
2219         exec_control |= (vmcs12->pin_based_vm_exec_control &
2220                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2221
2222         /* Posted interrupts setting is only taken from vmcs12.  */
2223         vmx->nested.pi_pending = false;
2224         if (nested_cpu_has_posted_intr(vmcs12))
2225                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2226         else
2227                 exec_control &= ~PIN_BASED_POSTED_INTR;
2228         pin_controls_set(vmx, exec_control);
2229
2230         /*
2231          * EXEC CONTROLS
2232          */
2233         exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2234         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2235         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2236         exec_control &= ~CPU_BASED_TPR_SHADOW;
2237         exec_control |= vmcs12->cpu_based_vm_exec_control;
2238
2239         vmx->nested.l1_tpr_threshold = -1;
2240         if (exec_control & CPU_BASED_TPR_SHADOW)
2241                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2242 #ifdef CONFIG_X86_64
2243         else
2244                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2245                                 CPU_BASED_CR8_STORE_EXITING;
2246 #endif
2247
2248         /*
2249          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2250          * for I/O port accesses.
2251          */
2252         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2253         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2254
2255         /*
2256          * This bit will be computed in nested_get_vmcs12_pages, because
2257          * we do not have access to L1's MSR bitmap yet.  For now, keep
2258          * the same bit as before, hoping to avoid multiple VMWRITEs that
2259          * only set/clear this bit.
2260          */
2261         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2262         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2263
2264         exec_controls_set(vmx, exec_control);
2265
2266         /*
2267          * SECONDARY EXEC CONTROLS
2268          */
2269         if (cpu_has_secondary_exec_ctrls()) {
2270                 exec_control = __secondary_exec_controls_get(vmcs01);
2271
2272                 /* Take the following fields only from vmcs12 */
2273                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2274                                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2275                                   SECONDARY_EXEC_ENABLE_INVPCID |
2276                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2277                                   SECONDARY_EXEC_XSAVES |
2278                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2279                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2280                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2281                                   SECONDARY_EXEC_ENABLE_VMFUNC |
2282                                   SECONDARY_EXEC_TSC_SCALING |
2283                                   SECONDARY_EXEC_DESC);
2284
2285                 if (nested_cpu_has(vmcs12,
2286                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2287                         exec_control |= vmcs12->secondary_vm_exec_control;
2288
2289                 /* PML is emulated and never enabled in hardware for L2. */
2290                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2291
2292                 /* VMCS shadowing for L2 is emulated for now */
2293                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2294
2295                 /*
2296                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2297                  * will not have to rewrite the controls just for this bit.
2298                  */
2299                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2300                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2301                         exec_control |= SECONDARY_EXEC_DESC;
2302
2303                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2304                         vmcs_write16(GUEST_INTR_STATUS,
2305                                 vmcs12->guest_intr_status);
2306
2307                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2308                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2309
2310                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2311                         vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2312
2313                 secondary_exec_controls_set(vmx, exec_control);
2314         }
2315
2316         /*
2317          * ENTRY CONTROLS
2318          *
2319          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2320          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2321          * on the related bits (if supported by the CPU) in the hope that
2322          * we can avoid VMWrites during vmx_set_efer().
2323          */
2324         exec_control = __vm_entry_controls_get(vmcs01);
2325         exec_control |= vmcs12->vm_entry_controls;
2326         exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2327         if (cpu_has_load_ia32_efer()) {
2328                 if (guest_efer & EFER_LMA)
2329                         exec_control |= VM_ENTRY_IA32E_MODE;
2330                 if (guest_efer != host_efer)
2331                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2332         }
2333         vm_entry_controls_set(vmx, exec_control);
2334
2335         /*
2336          * EXIT CONTROLS
2337          *
2338          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2339          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2340          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2341          */
2342         exec_control = __vm_exit_controls_get(vmcs01);
2343         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2344                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2345         else
2346                 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2347         vm_exit_controls_set(vmx, exec_control);
2348
2349         /*
2350          * Interrupt/Exception Fields
2351          */
2352         if (vmx->nested.nested_run_pending) {
2353                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2354                              vmcs12->vm_entry_intr_info_field);
2355                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2356                              vmcs12->vm_entry_exception_error_code);
2357                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2358                              vmcs12->vm_entry_instruction_len);
2359                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2360                              vmcs12->guest_interruptibility_info);
2361                 vmx->loaded_vmcs->nmi_known_unmasked =
2362                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2363         } else {
2364                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2365         }
2366 }
2367
2368 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2369 {
2370         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2371
2372         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2373                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2374                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2375                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2376                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2377                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2378                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2379                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2380                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2381                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2382                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2383                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2384                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2385                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2386                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2387                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2388                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2389                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2390                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2391                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2392                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2393                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2394                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2395                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2396                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2397                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2398                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2399                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2400                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2401                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2402                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2403                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2404                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2405                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2406                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2407                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2408                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2409                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2410
2411                 vmx->segment_cache.bitmask = 0;
2412         }
2413
2414         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2415                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2416                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2417                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2418                             vmcs12->guest_pending_dbg_exceptions);
2419                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2420                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2421
2422                 /*
2423                  * L1 may access the L2's PDPTR, so save them to construct
2424                  * vmcs12
2425                  */
2426                 if (enable_ept) {
2427                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2428                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2429                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2430                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2431                 }
2432
2433                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2434                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2435                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2436         }
2437
2438         if (nested_cpu_has_xsaves(vmcs12))
2439                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2440
2441         /*
2442          * Whether page-faults are trapped is determined by a combination of
2443          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2444          * doesn't care about page faults then we should set all of these to
2445          * L1's desires. However, if L0 does care about (some) page faults, it
2446          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2447          * simply ask to exit on each and every L2 page fault. This is done by
2448          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2449          * Note that below we don't need special code to set EB.PF beyond the
2450          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2451          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2452          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2453          */
2454         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2455                 /*
2456                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2457                  * go ahead and use it?
2458                  */
2459                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2460                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2461         } else {
2462                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2463                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2464         }
2465
2466         if (cpu_has_vmx_apicv()) {
2467                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2468                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2469                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2470                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2471         }
2472
2473         /*
2474          * Make sure the msr_autostore list is up to date before we set the
2475          * count in the vmcs02.
2476          */
2477         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2478
2479         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2480         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2481         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2482
2483         set_cr4_guest_host_mask(vmx);
2484 }
2485
2486 /*
2487  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2488  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2489  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2490  * guest in a way that will both be appropriate to L1's requests, and our
2491  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2492  * function also has additional necessary side-effects, like setting various
2493  * vcpu->arch fields.
2494  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2495  * is assigned to entry_failure_code on failure.
2496  */
2497 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2498                           bool from_vmentry,
2499                           enum vm_entry_failure_code *entry_failure_code)
2500 {
2501         struct vcpu_vmx *vmx = to_vmx(vcpu);
2502         bool load_guest_pdptrs_vmcs12 = false;
2503
2504         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2505                 prepare_vmcs02_rare(vmx, vmcs12);
2506                 vmx->nested.dirty_vmcs12 = false;
2507
2508                 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2509                         !(vmx->nested.hv_evmcs->hv_clean_fields &
2510                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2511         }
2512
2513         if (vmx->nested.nested_run_pending &&
2514             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2515                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2516                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2517         } else {
2518                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2519                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2520         }
2521         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2522             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2523                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2524         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2525
2526         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2527          * bitwise-or of what L1 wants to trap for L2, and what we want to
2528          * trap. Note that CR0.TS also needs updating - we do this later.
2529          */
2530         vmx_update_exception_bitmap(vcpu);
2531         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2532         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2533
2534         if (vmx->nested.nested_run_pending &&
2535             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2536                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2537                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2538         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2539                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2540         }
2541
2542         vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2543                         vcpu->arch.l1_tsc_offset,
2544                         vmx_get_l2_tsc_offset(vcpu),
2545                         vmx_get_l2_tsc_multiplier(vcpu));
2546
2547         vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2548                         vcpu->arch.l1_tsc_scaling_ratio,
2549                         vmx_get_l2_tsc_multiplier(vcpu));
2550
2551         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2552         if (kvm_has_tsc_control)
2553                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2554
2555         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2556
2557         if (nested_cpu_has_ept(vmcs12))
2558                 nested_ept_init_mmu_context(vcpu);
2559
2560         /*
2561          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2562          * bits which we consider mandatory enabled.
2563          * The CR0_READ_SHADOW is what L2 should have expected to read given
2564          * the specifications by L1; It's not enough to take
2565          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2566          * have more bits than L1 expected.
2567          */
2568         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2569         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2570
2571         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2572         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2573
2574         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2575         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2576         vmx_set_efer(vcpu, vcpu->arch.efer);
2577
2578         /*
2579          * Guest state is invalid and unrestricted guest is disabled,
2580          * which means L1 attempted VMEntry to L2 with invalid state.
2581          * Fail the VMEntry.
2582          *
2583          * However when force loading the guest state (SMM exit or
2584          * loading nested state after migration, it is possible to
2585          * have invalid guest state now, which will be later fixed by
2586          * restoring L2 register state
2587          */
2588         if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2589                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2590                 return -EINVAL;
2591         }
2592
2593         /* Shadow page tables on either EPT or shadow page tables. */
2594         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2595                                 from_vmentry, entry_failure_code))
2596                 return -EINVAL;
2597
2598         /*
2599          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2600          * on nested VM-Exit, which can occur without actually running L2 and
2601          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2602          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2603          * transition to HLT instead of running L2.
2604          */
2605         if (enable_ept)
2606                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2607
2608         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2609         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2610             is_pae_paging(vcpu)) {
2611                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2612                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2613                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2614                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2615         }
2616
2617         if (!enable_ept)
2618                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2619
2620         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2621             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2622                                      vmcs12->guest_ia32_perf_global_ctrl))) {
2623                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2624                 return -EINVAL;
2625         }
2626
2627         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2628         kvm_rip_write(vcpu, vmcs12->guest_rip);
2629
2630         /*
2631          * It was observed that genuine Hyper-V running in L1 doesn't reset
2632          * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2633          * bits when it changes a field in eVMCS. Mark all fields as clean
2634          * here.
2635          */
2636         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2637                 vmx->nested.hv_evmcs->hv_clean_fields |=
2638                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2639
2640         return 0;
2641 }
2642
2643 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2644 {
2645         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2646                nested_cpu_has_virtual_nmis(vmcs12)))
2647                 return -EINVAL;
2648
2649         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2650                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2651                 return -EINVAL;
2652
2653         return 0;
2654 }
2655
2656 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2657 {
2658         struct vcpu_vmx *vmx = to_vmx(vcpu);
2659
2660         /* Check for memory type validity */
2661         switch (new_eptp & VMX_EPTP_MT_MASK) {
2662         case VMX_EPTP_MT_UC:
2663                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2664                         return false;
2665                 break;
2666         case VMX_EPTP_MT_WB:
2667                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2668                         return false;
2669                 break;
2670         default:
2671                 return false;
2672         }
2673
2674         /* Page-walk levels validity. */
2675         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2676         case VMX_EPTP_PWL_5:
2677                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2678                         return false;
2679                 break;
2680         case VMX_EPTP_PWL_4:
2681                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2682                         return false;
2683                 break;
2684         default:
2685                 return false;
2686         }
2687
2688         /* Reserved bits should not be set */
2689         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2690                 return false;
2691
2692         /* AD, if set, should be supported */
2693         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2694                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2695                         return false;
2696         }
2697
2698         return true;
2699 }
2700
2701 /*
2702  * Checks related to VM-Execution Control Fields
2703  */
2704 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2705                                               struct vmcs12 *vmcs12)
2706 {
2707         struct vcpu_vmx *vmx = to_vmx(vcpu);
2708
2709         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2710                                    vmx->nested.msrs.pinbased_ctls_low,
2711                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2712             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2713                                    vmx->nested.msrs.procbased_ctls_low,
2714                                    vmx->nested.msrs.procbased_ctls_high)))
2715                 return -EINVAL;
2716
2717         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2718             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2719                                    vmx->nested.msrs.secondary_ctls_low,
2720                                    vmx->nested.msrs.secondary_ctls_high)))
2721                 return -EINVAL;
2722
2723         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2724             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2725             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2726             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2727             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2728             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2729             nested_vmx_check_nmi_controls(vmcs12) ||
2730             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2731             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2732             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2733             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2734             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2735                 return -EINVAL;
2736
2737         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2738             nested_cpu_has_save_preemption_timer(vmcs12))
2739                 return -EINVAL;
2740
2741         if (nested_cpu_has_ept(vmcs12) &&
2742             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2743                 return -EINVAL;
2744
2745         if (nested_cpu_has_vmfunc(vmcs12)) {
2746                 if (CC(vmcs12->vm_function_control &
2747                        ~vmx->nested.msrs.vmfunc_controls))
2748                         return -EINVAL;
2749
2750                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2751                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2752                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2753                                 return -EINVAL;
2754                 }
2755         }
2756
2757         return 0;
2758 }
2759
2760 /*
2761  * Checks related to VM-Exit Control Fields
2762  */
2763 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2764                                          struct vmcs12 *vmcs12)
2765 {
2766         struct vcpu_vmx *vmx = to_vmx(vcpu);
2767
2768         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2769                                     vmx->nested.msrs.exit_ctls_low,
2770                                     vmx->nested.msrs.exit_ctls_high)) ||
2771             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2772                 return -EINVAL;
2773
2774         return 0;
2775 }
2776
2777 /*
2778  * Checks related to VM-Entry Control Fields
2779  */
2780 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2781                                           struct vmcs12 *vmcs12)
2782 {
2783         struct vcpu_vmx *vmx = to_vmx(vcpu);
2784
2785         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2786                                     vmx->nested.msrs.entry_ctls_low,
2787                                     vmx->nested.msrs.entry_ctls_high)))
2788                 return -EINVAL;
2789
2790         /*
2791          * From the Intel SDM, volume 3:
2792          * Fields relevant to VM-entry event injection must be set properly.
2793          * These fields are the VM-entry interruption-information field, the
2794          * VM-entry exception error code, and the VM-entry instruction length.
2795          */
2796         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2797                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2798                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2799                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2800                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2801                 bool should_have_error_code;
2802                 bool urg = nested_cpu_has2(vmcs12,
2803                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2804                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2805
2806                 /* VM-entry interruption-info field: interruption type */
2807                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2808                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2809                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2810                         return -EINVAL;
2811
2812                 /* VM-entry interruption-info field: vector */
2813                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2814                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2815                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2816                         return -EINVAL;
2817
2818                 /* VM-entry interruption-info field: deliver error code */
2819                 should_have_error_code =
2820                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2821                         x86_exception_has_error_code(vector);
2822                 if (CC(has_error_code != should_have_error_code))
2823                         return -EINVAL;
2824
2825                 /* VM-entry exception error code */
2826                 if (CC(has_error_code &&
2827                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2828                         return -EINVAL;
2829
2830                 /* VM-entry interruption-info field: reserved bits */
2831                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2832                         return -EINVAL;
2833
2834                 /* VM-entry instruction length */
2835                 switch (intr_type) {
2836                 case INTR_TYPE_SOFT_EXCEPTION:
2837                 case INTR_TYPE_SOFT_INTR:
2838                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2839                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2840                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2841                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2842                                 return -EINVAL;
2843                 }
2844         }
2845
2846         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2847                 return -EINVAL;
2848
2849         return 0;
2850 }
2851
2852 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2853                                      struct vmcs12 *vmcs12)
2854 {
2855         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2856             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2857             nested_check_vm_entry_controls(vcpu, vmcs12))
2858                 return -EINVAL;
2859
2860         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2861                 return nested_evmcs_check_controls(vmcs12);
2862
2863         return 0;
2864 }
2865
2866 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2867                                        struct vmcs12 *vmcs12)
2868 {
2869 #ifdef CONFIG_X86_64
2870         if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2871                 !!(vcpu->arch.efer & EFER_LMA)))
2872                 return -EINVAL;
2873 #endif
2874         return 0;
2875 }
2876
2877 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2878                                        struct vmcs12 *vmcs12)
2879 {
2880         bool ia32e;
2881
2882         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2883             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2884             CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2885                 return -EINVAL;
2886
2887         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2888             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2889                 return -EINVAL;
2890
2891         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2892             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2893                 return -EINVAL;
2894
2895         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2896             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2897                                            vmcs12->host_ia32_perf_global_ctrl)))
2898                 return -EINVAL;
2899
2900 #ifdef CONFIG_X86_64
2901         ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2902 #else
2903         ia32e = false;
2904 #endif
2905
2906         if (ia32e) {
2907                 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2908                         return -EINVAL;
2909         } else {
2910                 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2911                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2912                     CC((vmcs12->host_rip) >> 32))
2913                         return -EINVAL;
2914         }
2915
2916         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2917             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2918             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2919             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2920             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2921             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2922             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2923             CC(vmcs12->host_cs_selector == 0) ||
2924             CC(vmcs12->host_tr_selector == 0) ||
2925             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2926                 return -EINVAL;
2927
2928         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2929             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2930             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2931             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2932             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2933             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2934                 return -EINVAL;
2935
2936         /*
2937          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2938          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2939          * the values of the LMA and LME bits in the field must each be that of
2940          * the host address-space size VM-exit control.
2941          */
2942         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2943                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2944                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2945                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2946                         return -EINVAL;
2947         }
2948
2949         return 0;
2950 }
2951
2952 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2953                                           struct vmcs12 *vmcs12)
2954 {
2955         struct vcpu_vmx *vmx = to_vmx(vcpu);
2956         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2957         struct vmcs_hdr hdr;
2958
2959         if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2960                 return 0;
2961
2962         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2963                 return -EINVAL;
2964
2965         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2966             CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2967                                          vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2968                 return -EINVAL;
2969
2970         if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2971                                             offsetof(struct vmcs12, hdr),
2972                                             sizeof(hdr))))
2973                 return -EINVAL;
2974
2975         if (CC(hdr.revision_id != VMCS12_REVISION) ||
2976             CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2977                 return -EINVAL;
2978
2979         return 0;
2980 }
2981
2982 /*
2983  * Checks related to Guest Non-register State
2984  */
2985 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2986 {
2987         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2988                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2989                vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2990                 return -EINVAL;
2991
2992         return 0;
2993 }
2994
2995 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2996                                         struct vmcs12 *vmcs12,
2997                                         enum vm_entry_failure_code *entry_failure_code)
2998 {
2999         bool ia32e;
3000
3001         *entry_failure_code = ENTRY_FAIL_DEFAULT;
3002
3003         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3004             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3005                 return -EINVAL;
3006
3007         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3008             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3009                 return -EINVAL;
3010
3011         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3012             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3013                 return -EINVAL;
3014
3015         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3016                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3017                 return -EINVAL;
3018         }
3019
3020         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3021             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3022                                            vmcs12->guest_ia32_perf_global_ctrl)))
3023                 return -EINVAL;
3024
3025         /*
3026          * If the load IA32_EFER VM-entry control is 1, the following checks
3027          * are performed on the field for the IA32_EFER MSR:
3028          * - Bits reserved in the IA32_EFER MSR must be 0.
3029          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3030          *   the IA-32e mode guest VM-exit control. It must also be identical
3031          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3032          *   CR0.PG) is 1.
3033          */
3034         if (to_vmx(vcpu)->nested.nested_run_pending &&
3035             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3036                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3037                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3038                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3039                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3040                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3041                         return -EINVAL;
3042         }
3043
3044         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3045             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3046              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3047                 return -EINVAL;
3048
3049         if (nested_check_guest_non_reg_state(vmcs12))
3050                 return -EINVAL;
3051
3052         return 0;
3053 }
3054
3055 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3056 {
3057         struct vcpu_vmx *vmx = to_vmx(vcpu);
3058         unsigned long cr4;
3059         bool vm_fail;
3060
3061         if (!nested_early_check)
3062                 return 0;
3063
3064         if (vmx->msr_autoload.host.nr)
3065                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3066         if (vmx->msr_autoload.guest.nr)
3067                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3068
3069         preempt_disable();
3070
3071         vmx_prepare_switch_to_guest(vcpu);
3072
3073         /*
3074          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3075          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3076          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3077          * there is no need to preserve other bits or save/restore the field.
3078          */
3079         vmcs_writel(GUEST_RFLAGS, 0);
3080
3081         cr4 = cr4_read_shadow();
3082         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3083                 vmcs_writel(HOST_CR4, cr4);
3084                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3085         }
3086
3087         vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3088                                  vmx->loaded_vmcs->launched);
3089
3090         if (vmx->msr_autoload.host.nr)
3091                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3092         if (vmx->msr_autoload.guest.nr)
3093                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3094
3095         if (vm_fail) {
3096                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3097
3098                 preempt_enable();
3099
3100                 trace_kvm_nested_vmenter_failed(
3101                         "early hardware check VM-instruction error: ", error);
3102                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3103                 return 1;
3104         }
3105
3106         /*
3107          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3108          */
3109         if (hw_breakpoint_active())
3110                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3111         local_irq_enable();
3112         preempt_enable();
3113
3114         /*
3115          * A non-failing VMEntry means we somehow entered guest mode with
3116          * an illegal RIP, and that's just the tip of the iceberg.  There
3117          * is no telling what memory has been modified or what state has
3118          * been exposed to unknown code.  Hitting this all but guarantees
3119          * a (very critical) hardware issue.
3120          */
3121         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3122                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3123
3124         return 0;
3125 }
3126
3127 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3128 {
3129         struct vcpu_vmx *vmx = to_vmx(vcpu);
3130
3131         /*
3132          * hv_evmcs may end up being not mapped after migration (when
3133          * L2 was running), map it here to make sure vmcs12 changes are
3134          * properly reflected.
3135          */
3136         if (vmx->nested.enlightened_vmcs_enabled &&
3137             vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3138                 enum nested_evmptrld_status evmptrld_status =
3139                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3140
3141                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3142                     evmptrld_status == EVMPTRLD_ERROR)
3143                         return false;
3144
3145                 /*
3146                  * Post migration VMCS12 always provides the most actual
3147                  * information, copy it to eVMCS upon entry.
3148                  */
3149                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3150         }
3151
3152         return true;
3153 }
3154
3155 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3156 {
3157         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3158         struct vcpu_vmx *vmx = to_vmx(vcpu);
3159         struct kvm_host_map *map;
3160         struct page *page;
3161         u64 hpa;
3162
3163         if (!vcpu->arch.pdptrs_from_userspace &&
3164             !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3165                 /*
3166                  * Reload the guest's PDPTRs since after a migration
3167                  * the guest CR3 might be restored prior to setting the nested
3168                  * state which can lead to a load of wrong PDPTRs.
3169                  */
3170                 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3171                         return false;
3172         }
3173
3174
3175         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3176                 /*
3177                  * Translate L1 physical address to host physical
3178                  * address for vmcs02. Keep the page pinned, so this
3179                  * physical address remains valid. We keep a reference
3180                  * to it so we can release it later.
3181                  */
3182                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3183                         kvm_release_page_clean(vmx->nested.apic_access_page);
3184                         vmx->nested.apic_access_page = NULL;
3185                 }
3186                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3187                 if (!is_error_page(page)) {
3188                         vmx->nested.apic_access_page = page;
3189                         hpa = page_to_phys(vmx->nested.apic_access_page);
3190                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3191                 } else {
3192                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3193                                              __func__);
3194                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3195                         vcpu->run->internal.suberror =
3196                                 KVM_INTERNAL_ERROR_EMULATION;
3197                         vcpu->run->internal.ndata = 0;
3198                         return false;
3199                 }
3200         }
3201
3202         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3203                 map = &vmx->nested.virtual_apic_map;
3204
3205                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3206                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3207                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3208                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3209                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3210                         /*
3211                          * The processor will never use the TPR shadow, simply
3212                          * clear the bit from the execution control.  Such a
3213                          * configuration is useless, but it happens in tests.
3214                          * For any other configuration, failing the vm entry is
3215                          * _not_ what the processor does but it's basically the
3216                          * only possibility we have.
3217                          */
3218                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3219                 } else {
3220                         /*
3221                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3222                          * force VM-Entry to fail.
3223                          */
3224                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3225                 }
3226         }
3227
3228         if (nested_cpu_has_posted_intr(vmcs12)) {
3229                 map = &vmx->nested.pi_desc_map;
3230
3231                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3232                         vmx->nested.pi_desc =
3233                                 (struct pi_desc *)(((void *)map->hva) +
3234                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3235                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3236                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3237                 } else {
3238                         /*
3239                          * Defer the KVM_INTERNAL_EXIT until KVM tries to
3240                          * access the contents of the VMCS12 posted interrupt
3241                          * descriptor. (Note that KVM may do this when it
3242                          * should not, per the architectural specification.)
3243                          */
3244                         vmx->nested.pi_desc = NULL;
3245                         pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3246                 }
3247         }
3248         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3249                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3250         else
3251                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3252
3253         return true;
3254 }
3255
3256 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3257 {
3258         if (!nested_get_evmcs_page(vcpu)) {
3259                 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3260                                      __func__);
3261                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3262                 vcpu->run->internal.suberror =
3263                         KVM_INTERNAL_ERROR_EMULATION;
3264                 vcpu->run->internal.ndata = 0;
3265
3266                 return false;
3267         }
3268
3269         if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3270                 return false;
3271
3272         return true;
3273 }
3274
3275 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3276 {
3277         struct vmcs12 *vmcs12;
3278         struct vcpu_vmx *vmx = to_vmx(vcpu);
3279         gpa_t dst;
3280
3281         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3282                 return 0;
3283
3284         if (WARN_ON_ONCE(vmx->nested.pml_full))
3285                 return 1;
3286
3287         /*
3288          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3289          * set is already checked as part of A/D emulation.
3290          */
3291         vmcs12 = get_vmcs12(vcpu);
3292         if (!nested_cpu_has_pml(vmcs12))
3293                 return 0;
3294
3295         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3296                 vmx->nested.pml_full = true;
3297                 return 1;
3298         }
3299
3300         gpa &= ~0xFFFull;
3301         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3302
3303         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3304                                  offset_in_page(dst), sizeof(gpa)))
3305                 return 0;
3306
3307         vmcs12->guest_pml_index--;
3308
3309         return 0;
3310 }
3311
3312 /*
3313  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3314  * for running VMX instructions (except VMXON, whose prerequisites are
3315  * slightly different). It also specifies what exception to inject otherwise.
3316  * Note that many of these exceptions have priority over VM exits, so they
3317  * don't have to be checked again here.
3318  */
3319 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3320 {
3321         if (!to_vmx(vcpu)->nested.vmxon) {
3322                 kvm_queue_exception(vcpu, UD_VECTOR);
3323                 return 0;
3324         }
3325
3326         if (vmx_get_cpl(vcpu)) {
3327                 kvm_inject_gp(vcpu, 0);
3328                 return 0;
3329         }
3330
3331         return 1;
3332 }
3333
3334 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3335 {
3336         u8 rvi = vmx_get_rvi();
3337         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3338
3339         return ((rvi & 0xf0) > (vppr & 0xf0));
3340 }
3341
3342 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3343                                    struct vmcs12 *vmcs12);
3344
3345 /*
3346  * If from_vmentry is false, this is being called from state restore (either RSM
3347  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3348  *
3349  * Returns:
3350  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3351  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3352  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3353  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3354  */
3355 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3356                                                         bool from_vmentry)
3357 {
3358         struct vcpu_vmx *vmx = to_vmx(vcpu);
3359         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3360         enum vm_entry_failure_code entry_failure_code;
3361         bool evaluate_pending_interrupts;
3362         union vmx_exit_reason exit_reason = {
3363                 .basic = EXIT_REASON_INVALID_STATE,
3364                 .failed_vmentry = 1,
3365         };
3366         u32 failed_index;
3367
3368         kvm_service_local_tlb_flush_requests(vcpu);
3369
3370         evaluate_pending_interrupts = exec_controls_get(vmx) &
3371                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3372         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3373                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3374
3375         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3376                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3377         if (kvm_mpx_supported() &&
3378                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3379                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3380
3381         /*
3382          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3383          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3384          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3385          * software model to the pre-VMEntry host state.  When EPT is disabled,
3386          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3387          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3388          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3389          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3390          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3391          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3392          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3393          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3394          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3395          * path would need to manually save/restore vmcs01.GUEST_CR3.
3396          */
3397         if (!enable_ept && !nested_early_check)
3398                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3399
3400         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3401
3402         prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3403
3404         if (from_vmentry) {
3405                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3406                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3407                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3408                 }
3409
3410                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3411                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3412                         return NVMX_VMENTRY_VMFAIL;
3413                 }
3414
3415                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3416                                                  &entry_failure_code)) {
3417                         exit_reason.basic = EXIT_REASON_INVALID_STATE;
3418                         vmcs12->exit_qualification = entry_failure_code;
3419                         goto vmentry_fail_vmexit;
3420                 }
3421         }
3422
3423         enter_guest_mode(vcpu);
3424
3425         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3426                 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3427                 vmcs12->exit_qualification = entry_failure_code;
3428                 goto vmentry_fail_vmexit_guest_mode;
3429         }
3430
3431         if (from_vmentry) {
3432                 failed_index = nested_vmx_load_msr(vcpu,
3433                                                    vmcs12->vm_entry_msr_load_addr,
3434                                                    vmcs12->vm_entry_msr_load_count);
3435                 if (failed_index) {
3436                         exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3437                         vmcs12->exit_qualification = failed_index;
3438                         goto vmentry_fail_vmexit_guest_mode;
3439                 }
3440         } else {
3441                 /*
3442                  * The MMU is not initialized to point at the right entities yet and
3443                  * "get pages" would need to read data from the guest (i.e. we will
3444                  * need to perform gpa to hpa translation). Request a call
3445                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3446                  * have already been set at vmentry time and should not be reset.
3447                  */
3448                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3449         }
3450
3451         /*
3452          * If L1 had a pending IRQ/NMI until it executed
3453          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3454          * disallowed (e.g. interrupts disabled), L0 needs to
3455          * evaluate if this pending event should cause an exit from L2
3456          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3457          * intercept EXTERNAL_INTERRUPT).
3458          *
3459          * Usually this would be handled by the processor noticing an
3460          * IRQ/NMI window request, or checking RVI during evaluation of
3461          * pending virtual interrupts.  However, this setting was done
3462          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3463          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3464          */
3465         if (unlikely(evaluate_pending_interrupts))
3466                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3467
3468         /*
3469          * Do not start the preemption timer hrtimer until after we know
3470          * we are successful, so that only nested_vmx_vmexit needs to cancel
3471          * the timer.
3472          */
3473         vmx->nested.preemption_timer_expired = false;
3474         if (nested_cpu_has_preemption_timer(vmcs12)) {
3475                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3476                 vmx_start_preemption_timer(vcpu, timer_value);
3477         }
3478
3479         /*
3480          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3481          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3482          * returned as far as L1 is concerned. It will only return (and set
3483          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3484          */
3485         return NVMX_VMENTRY_SUCCESS;
3486
3487         /*
3488          * A failed consistency check that leads to a VMExit during L1's
3489          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3490          * 26.7 "VM-entry failures during or after loading guest state".
3491          */
3492 vmentry_fail_vmexit_guest_mode:
3493         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3494                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3495         leave_guest_mode(vcpu);
3496
3497 vmentry_fail_vmexit:
3498         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3499
3500         if (!from_vmentry)
3501                 return NVMX_VMENTRY_VMEXIT;
3502
3503         load_vmcs12_host_state(vcpu, vmcs12);
3504         vmcs12->vm_exit_reason = exit_reason.full;
3505         if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3506                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3507         return NVMX_VMENTRY_VMEXIT;
3508 }
3509
3510 /*
3511  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3512  * for running an L2 nested guest.
3513  */
3514 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3515 {
3516         struct vmcs12 *vmcs12;
3517         enum nvmx_vmentry_status status;
3518         struct vcpu_vmx *vmx = to_vmx(vcpu);
3519         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3520         enum nested_evmptrld_status evmptrld_status;
3521
3522         if (!nested_vmx_check_permission(vcpu))
3523                 return 1;
3524
3525         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3526         if (evmptrld_status == EVMPTRLD_ERROR) {
3527                 kvm_queue_exception(vcpu, UD_VECTOR);
3528                 return 1;
3529         }
3530
3531         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3532
3533         if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3534                 return nested_vmx_failInvalid(vcpu);
3535
3536         if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3537                vmx->nested.current_vmptr == INVALID_GPA))
3538                 return nested_vmx_failInvalid(vcpu);
3539
3540         vmcs12 = get_vmcs12(vcpu);
3541
3542         /*
3543          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3544          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3545          * rather than RFLAGS.ZF, and no error number is stored to the
3546          * VM-instruction error field.
3547          */
3548         if (CC(vmcs12->hdr.shadow_vmcs))
3549                 return nested_vmx_failInvalid(vcpu);
3550
3551         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3552                 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3553                 /* Enlightened VMCS doesn't have launch state */
3554                 vmcs12->launch_state = !launch;
3555         } else if (enable_shadow_vmcs) {
3556                 copy_shadow_to_vmcs12(vmx);
3557         }
3558
3559         /*
3560          * The nested entry process starts with enforcing various prerequisites
3561          * on vmcs12 as required by the Intel SDM, and act appropriately when
3562          * they fail: As the SDM explains, some conditions should cause the
3563          * instruction to fail, while others will cause the instruction to seem
3564          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3565          * To speed up the normal (success) code path, we should avoid checking
3566          * for misconfigurations which will anyway be caught by the processor
3567          * when using the merged vmcs02.
3568          */
3569         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3570                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3571
3572         if (CC(vmcs12->launch_state == launch))
3573                 return nested_vmx_fail(vcpu,
3574                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3575                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3576
3577         if (nested_vmx_check_controls(vcpu, vmcs12))
3578                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3579
3580         if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3581                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3582
3583         if (nested_vmx_check_host_state(vcpu, vmcs12))
3584                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3585
3586         /*
3587          * We're finally done with prerequisite checking, and can start with
3588          * the nested entry.
3589          */
3590         vmx->nested.nested_run_pending = 1;
3591         vmx->nested.has_preemption_timer_deadline = false;
3592         status = nested_vmx_enter_non_root_mode(vcpu, true);
3593         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3594                 goto vmentry_failed;
3595
3596         /* Emulate processing of posted interrupts on VM-Enter. */
3597         if (nested_cpu_has_posted_intr(vmcs12) &&
3598             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3599                 vmx->nested.pi_pending = true;
3600                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3601                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3602         }
3603
3604         /* Hide L1D cache contents from the nested guest.  */
3605         vmx->vcpu.arch.l1tf_flush_l1d = true;
3606
3607         /*
3608          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3609          * also be used as part of restoring nVMX state for
3610          * snapshot restore (migration).
3611          *
3612          * In this flow, it is assumed that vmcs12 cache was
3613          * transferred as part of captured nVMX state and should
3614          * therefore not be read from guest memory (which may not
3615          * exist on destination host yet).
3616          */
3617         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3618
3619         switch (vmcs12->guest_activity_state) {
3620         case GUEST_ACTIVITY_HLT:
3621                 /*
3622                  * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3623                  * awakened by event injection or by an NMI-window VM-exit or
3624                  * by an interrupt-window VM-exit, halt the vcpu.
3625                  */
3626                 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3627                     !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3628                     !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3629                       (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3630                         vmx->nested.nested_run_pending = 0;
3631                         return kvm_emulate_halt_noskip(vcpu);
3632                 }
3633                 break;
3634         case GUEST_ACTIVITY_WAIT_SIPI:
3635                 vmx->nested.nested_run_pending = 0;
3636                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3637                 break;
3638         default:
3639                 break;
3640         }
3641
3642         return 1;
3643
3644 vmentry_failed:
3645         vmx->nested.nested_run_pending = 0;
3646         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3647                 return 0;
3648         if (status == NVMX_VMENTRY_VMEXIT)
3649                 return 1;
3650         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3651         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3652 }
3653
3654 /*
3655  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3656  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3657  * This function returns the new value we should put in vmcs12.guest_cr0.
3658  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3659  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3660  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3661  *     didn't trap the bit, because if L1 did, so would L0).
3662  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3663  *     been modified by L2, and L1 knows it. So just leave the old value of
3664  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3665  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3666  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3667  *     changed these bits, and therefore they need to be updated, but L0
3668  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3669  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3670  */
3671 static inline unsigned long
3672 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3673 {
3674         return
3675         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3676         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3677         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3678                         vcpu->arch.cr0_guest_owned_bits));
3679 }
3680
3681 static inline unsigned long
3682 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3683 {
3684         return
3685         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3686         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3687         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3688                         vcpu->arch.cr4_guest_owned_bits));
3689 }
3690
3691 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3692                                       struct vmcs12 *vmcs12)
3693 {
3694         u32 idt_vectoring;
3695         unsigned int nr;
3696
3697         if (vcpu->arch.exception.injected) {
3698                 nr = vcpu->arch.exception.nr;
3699                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3700
3701                 if (kvm_exception_is_soft(nr)) {
3702                         vmcs12->vm_exit_instruction_len =
3703                                 vcpu->arch.event_exit_inst_len;
3704                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3705                 } else
3706                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3707
3708                 if (vcpu->arch.exception.has_error_code) {
3709                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3710                         vmcs12->idt_vectoring_error_code =
3711                                 vcpu->arch.exception.error_code;
3712                 }
3713
3714                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3715         } else if (vcpu->arch.nmi_injected) {
3716                 vmcs12->idt_vectoring_info_field =
3717                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3718         } else if (vcpu->arch.interrupt.injected) {
3719                 nr = vcpu->arch.interrupt.nr;
3720                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3721
3722                 if (vcpu->arch.interrupt.soft) {
3723                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3724                         vmcs12->vm_entry_instruction_len =
3725                                 vcpu->arch.event_exit_inst_len;
3726                 } else
3727                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3728
3729                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3730         }
3731 }
3732
3733
3734 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3735 {
3736         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3737         gfn_t gfn;
3738
3739         /*
3740          * Don't need to mark the APIC access page dirty; it is never
3741          * written to by the CPU during APIC virtualization.
3742          */
3743
3744         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3745                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3746                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3747         }
3748
3749         if (nested_cpu_has_posted_intr(vmcs12)) {
3750                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3751                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3752         }
3753 }
3754
3755 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3756 {
3757         struct vcpu_vmx *vmx = to_vmx(vcpu);
3758         int max_irr;
3759         void *vapic_page;
3760         u16 status;
3761
3762         if (!vmx->nested.pi_pending)
3763                 return 0;
3764
3765         if (!vmx->nested.pi_desc)
3766                 goto mmio_needed;
3767
3768         vmx->nested.pi_pending = false;
3769
3770         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3771                 return 0;
3772
3773         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3774         if (max_irr != 256) {
3775                 vapic_page = vmx->nested.virtual_apic_map.hva;
3776                 if (!vapic_page)
3777                         goto mmio_needed;
3778
3779                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3780                         vapic_page, &max_irr);
3781                 status = vmcs_read16(GUEST_INTR_STATUS);
3782                 if ((u8)max_irr > ((u8)status & 0xff)) {
3783                         status &= ~0xff;
3784                         status |= (u8)max_irr;
3785                         vmcs_write16(GUEST_INTR_STATUS, status);
3786                 }
3787         }
3788
3789         nested_mark_vmcs12_pages_dirty(vcpu);
3790         return 0;
3791
3792 mmio_needed:
3793         kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3794         return -ENXIO;
3795 }
3796
3797 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3798                                                unsigned long exit_qual)
3799 {
3800         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3801         unsigned int nr = vcpu->arch.exception.nr;
3802         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3803
3804         if (vcpu->arch.exception.has_error_code) {
3805                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3806                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3807         }
3808
3809         if (kvm_exception_is_soft(nr))
3810                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3811         else
3812                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3813
3814         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3815             vmx_get_nmi_mask(vcpu))
3816                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3817
3818         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3819 }
3820
3821 /*
3822  * Returns true if a debug trap is pending delivery.
3823  *
3824  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3825  * exception may be inferred from the presence of an exception payload.
3826  */
3827 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3828 {
3829         return vcpu->arch.exception.pending &&
3830                         vcpu->arch.exception.nr == DB_VECTOR &&
3831                         vcpu->arch.exception.payload;
3832 }
3833
3834 /*
3835  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3836  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3837  * represents these debug traps with a payload that is said to be compatible
3838  * with the 'pending debug exceptions' field, write the payload to the VMCS
3839  * field if a VM-exit is delivered before the debug trap.
3840  */
3841 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3842 {
3843         if (vmx_pending_dbg_trap(vcpu))
3844                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3845                             vcpu->arch.exception.payload);
3846 }
3847
3848 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3849 {
3850         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3851                to_vmx(vcpu)->nested.preemption_timer_expired;
3852 }
3853
3854 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3855 {
3856         struct vcpu_vmx *vmx = to_vmx(vcpu);
3857         unsigned long exit_qual;
3858         bool block_nested_events =
3859             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3860         bool mtf_pending = vmx->nested.mtf_pending;
3861         struct kvm_lapic *apic = vcpu->arch.apic;
3862
3863         /*
3864          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3865          * this state is discarded.
3866          */
3867         if (!block_nested_events)
3868                 vmx->nested.mtf_pending = false;
3869
3870         if (lapic_in_kernel(vcpu) &&
3871                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3872                 if (block_nested_events)
3873                         return -EBUSY;
3874                 nested_vmx_update_pending_dbg(vcpu);
3875                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3876                 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3877                         nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3878                 return 0;
3879         }
3880
3881         if (lapic_in_kernel(vcpu) &&
3882             test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3883                 if (block_nested_events)
3884                         return -EBUSY;
3885
3886                 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3887                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3888                         nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3889                                                 apic->sipi_vector & 0xFFUL);
3890                 return 0;
3891         }
3892
3893         /*
3894          * Process any exceptions that are not debug traps before MTF.
3895          *
3896          * Note that only a pending nested run can block a pending exception.
3897          * Otherwise an injected NMI/interrupt should either be
3898          * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3899          * while delivering the pending exception.
3900          */
3901
3902         if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3903                 if (vmx->nested.nested_run_pending)
3904                         return -EBUSY;
3905                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3906                         goto no_vmexit;
3907                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3908                 return 0;
3909         }
3910
3911         if (mtf_pending) {
3912                 if (block_nested_events)
3913                         return -EBUSY;
3914                 nested_vmx_update_pending_dbg(vcpu);
3915                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3916                 return 0;
3917         }
3918
3919         if (vcpu->arch.exception.pending) {
3920                 if (vmx->nested.nested_run_pending)
3921                         return -EBUSY;
3922                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3923                         goto no_vmexit;
3924                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3925                 return 0;
3926         }
3927
3928         if (nested_vmx_preemption_timer_pending(vcpu)) {
3929                 if (block_nested_events)
3930                         return -EBUSY;
3931                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3932                 return 0;
3933         }
3934
3935         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3936                 if (block_nested_events)
3937                         return -EBUSY;
3938                 goto no_vmexit;
3939         }
3940
3941         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3942                 if (block_nested_events)
3943                         return -EBUSY;
3944                 if (!nested_exit_on_nmi(vcpu))
3945                         goto no_vmexit;
3946
3947                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3948                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3949                                   INTR_INFO_VALID_MASK, 0);
3950                 /*
3951                  * The NMI-triggered VM exit counts as injection:
3952                  * clear this one and block further NMIs.
3953                  */
3954                 vcpu->arch.nmi_pending = 0;
3955                 vmx_set_nmi_mask(vcpu, true);
3956                 return 0;
3957         }
3958
3959         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3960                 if (block_nested_events)
3961                         return -EBUSY;
3962                 if (!nested_exit_on_intr(vcpu))
3963                         goto no_vmexit;
3964                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3965                 return 0;
3966         }
3967
3968 no_vmexit:
3969         return vmx_complete_nested_posted_interrupt(vcpu);
3970 }
3971
3972 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3973 {
3974         ktime_t remaining =
3975                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3976         u64 value;
3977
3978         if (ktime_to_ns(remaining) <= 0)
3979                 return 0;
3980
3981         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3982         do_div(value, 1000000);
3983         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3984 }
3985
3986 static bool is_vmcs12_ext_field(unsigned long field)
3987 {
3988         switch (field) {
3989         case GUEST_ES_SELECTOR:
3990         case GUEST_CS_SELECTOR:
3991         case GUEST_SS_SELECTOR:
3992         case GUEST_DS_SELECTOR:
3993         case GUEST_FS_SELECTOR:
3994         case GUEST_GS_SELECTOR:
3995         case GUEST_LDTR_SELECTOR:
3996         case GUEST_TR_SELECTOR:
3997         case GUEST_ES_LIMIT:
3998         case GUEST_CS_LIMIT:
3999         case GUEST_SS_LIMIT:
4000         case GUEST_DS_LIMIT:
4001         case GUEST_FS_LIMIT:
4002         case GUEST_GS_LIMIT:
4003         case GUEST_LDTR_LIMIT:
4004         case GUEST_TR_LIMIT:
4005         case GUEST_GDTR_LIMIT:
4006         case GUEST_IDTR_LIMIT:
4007         case GUEST_ES_AR_BYTES:
4008         case GUEST_DS_AR_BYTES:
4009         case GUEST_FS_AR_BYTES:
4010         case GUEST_GS_AR_BYTES:
4011         case GUEST_LDTR_AR_BYTES:
4012         case GUEST_TR_AR_BYTES:
4013         case GUEST_ES_BASE:
4014         case GUEST_CS_BASE:
4015         case GUEST_SS_BASE:
4016         case GUEST_DS_BASE:
4017         case GUEST_FS_BASE:
4018         case GUEST_GS_BASE:
4019         case GUEST_LDTR_BASE:
4020         case GUEST_TR_BASE:
4021         case GUEST_GDTR_BASE:
4022         case GUEST_IDTR_BASE:
4023         case GUEST_PENDING_DBG_EXCEPTIONS:
4024         case GUEST_BNDCFGS:
4025                 return true;
4026         default:
4027                 break;
4028         }
4029
4030         return false;
4031 }
4032
4033 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4034                                        struct vmcs12 *vmcs12)
4035 {
4036         struct vcpu_vmx *vmx = to_vmx(vcpu);
4037
4038         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4039         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4040         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4041         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4042         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4043         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4044         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4045         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4046         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4047         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4048         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4049         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4050         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4051         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4052         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4053         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4054         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4055         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4056         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4057         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4058         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4059         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4060         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4061         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4062         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4063         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4064         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4065         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4066         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4067         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4068         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4069         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4070         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4071         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4072         vmcs12->guest_pending_dbg_exceptions =
4073                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4074         if (kvm_mpx_supported())
4075                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4076
4077         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4078 }
4079
4080 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4081                                        struct vmcs12 *vmcs12)
4082 {
4083         struct vcpu_vmx *vmx = to_vmx(vcpu);
4084         int cpu;
4085
4086         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4087                 return;
4088
4089
4090         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4091
4092         cpu = get_cpu();
4093         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4094         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4095
4096         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4097
4098         vmx->loaded_vmcs = &vmx->vmcs01;
4099         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4100         put_cpu();
4101 }
4102
4103 /*
4104  * Update the guest state fields of vmcs12 to reflect changes that
4105  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4106  * VM-entry controls is also updated, since this is really a guest
4107  * state bit.)
4108  */
4109 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4110 {
4111         struct vcpu_vmx *vmx = to_vmx(vcpu);
4112
4113         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4114                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4115
4116         vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4117                 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4118
4119         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4120         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4121
4122         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4123         vmcs12->guest_rip = kvm_rip_read(vcpu);
4124         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4125
4126         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4127         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4128
4129         vmcs12->guest_interruptibility_info =
4130                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4131
4132         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4133                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4134         else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4135                 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4136         else
4137                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4138
4139         if (nested_cpu_has_preemption_timer(vmcs12) &&
4140             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4141             !vmx->nested.nested_run_pending)
4142                 vmcs12->vmx_preemption_timer_value =
4143                         vmx_get_preemption_timer_value(vcpu);
4144
4145         /*
4146          * In some cases (usually, nested EPT), L2 is allowed to change its
4147          * own CR3 without exiting. If it has changed it, we must keep it.
4148          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4149          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4150          *
4151          * Additionally, restore L2's PDPTR to vmcs12.
4152          */
4153         if (enable_ept) {
4154                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4155                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4156                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4157                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4158                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4159                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4160                 }
4161         }
4162
4163         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4164
4165         if (nested_cpu_has_vid(vmcs12))
4166                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4167
4168         vmcs12->vm_entry_controls =
4169                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4170                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4171
4172         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4173                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4174
4175         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4176                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4177 }
4178
4179 /*
4180  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4181  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4182  * and this function updates it to reflect the changes to the guest state while
4183  * L2 was running (and perhaps made some exits which were handled directly by L0
4184  * without going back to L1), and to reflect the exit reason.
4185  * Note that we do not have to copy here all VMCS fields, just those that
4186  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4187  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4188  * which already writes to vmcs12 directly.
4189  */
4190 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4191                            u32 vm_exit_reason, u32 exit_intr_info,
4192                            unsigned long exit_qualification)
4193 {
4194         /* update exit information fields: */
4195         vmcs12->vm_exit_reason = vm_exit_reason;
4196         if (to_vmx(vcpu)->exit_reason.enclave_mode)
4197                 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4198         vmcs12->exit_qualification = exit_qualification;
4199         vmcs12->vm_exit_intr_info = exit_intr_info;
4200
4201         vmcs12->idt_vectoring_info_field = 0;
4202         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4203         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4204
4205         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4206                 vmcs12->launch_state = 1;
4207
4208                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4209                  * instead of reading the real value. */
4210                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4211
4212                 /*
4213                  * Transfer the event that L0 or L1 may wanted to inject into
4214                  * L2 to IDT_VECTORING_INFO_FIELD.
4215                  */
4216                 vmcs12_save_pending_event(vcpu, vmcs12);
4217
4218                 /*
4219                  * According to spec, there's no need to store the guest's
4220                  * MSRs if the exit is due to a VM-entry failure that occurs
4221                  * during or after loading the guest state. Since this exit
4222                  * does not fall in that category, we need to save the MSRs.
4223                  */
4224                 if (nested_vmx_store_msr(vcpu,
4225                                          vmcs12->vm_exit_msr_store_addr,
4226                                          vmcs12->vm_exit_msr_store_count))
4227                         nested_vmx_abort(vcpu,
4228                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4229         }
4230
4231         /*
4232          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4233          * preserved above and would only end up incorrectly in L1.
4234          */
4235         vcpu->arch.nmi_injected = false;
4236         kvm_clear_exception_queue(vcpu);
4237         kvm_clear_interrupt_queue(vcpu);
4238 }
4239
4240 /*
4241  * A part of what we need to when the nested L2 guest exits and we want to
4242  * run its L1 parent, is to reset L1's guest state to the host state specified
4243  * in vmcs12.
4244  * This function is to be called not only on normal nested exit, but also on
4245  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4246  * Failures During or After Loading Guest State").
4247  * This function should be called when the active VMCS is L1's (vmcs01).
4248  */
4249 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4250                                    struct vmcs12 *vmcs12)
4251 {
4252         enum vm_entry_failure_code ignored;
4253         struct kvm_segment seg;
4254
4255         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4256                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4257         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4258                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4259         else
4260                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4261         vmx_set_efer(vcpu, vcpu->arch.efer);
4262
4263         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4264         kvm_rip_write(vcpu, vmcs12->host_rip);
4265         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4266         vmx_set_interrupt_shadow(vcpu, 0);
4267
4268         /*
4269          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4270          * actually changed, because vmx_set_cr0 refers to efer set above.
4271          *
4272          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4273          * (KVM doesn't change it);
4274          */
4275         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4276         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4277
4278         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4279         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4280         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4281
4282         nested_ept_uninit_mmu_context(vcpu);
4283
4284         /*
4285          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4286          * couldn't have changed.
4287          */
4288         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4289                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4290
4291         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4292
4293         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4294         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4295         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4296         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4297         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4298         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4299         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4300
4301         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4302         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4303                 vmcs_write64(GUEST_BNDCFGS, 0);
4304
4305         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4306                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4307                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4308         }
4309         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4310                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4311                                          vmcs12->host_ia32_perf_global_ctrl));
4312
4313         /* Set L1 segment info according to Intel SDM
4314             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4315         seg = (struct kvm_segment) {
4316                 .base = 0,
4317                 .limit = 0xFFFFFFFF,
4318                 .selector = vmcs12->host_cs_selector,
4319                 .type = 11,
4320                 .present = 1,
4321                 .s = 1,
4322                 .g = 1
4323         };
4324         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4325                 seg.l = 1;
4326         else
4327                 seg.db = 1;
4328         __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4329         seg = (struct kvm_segment) {
4330                 .base = 0,
4331                 .limit = 0xFFFFFFFF,
4332                 .type = 3,
4333                 .present = 1,
4334                 .s = 1,
4335                 .db = 1,
4336                 .g = 1
4337         };
4338         seg.selector = vmcs12->host_ds_selector;
4339         __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4340         seg.selector = vmcs12->host_es_selector;
4341         __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4342         seg.selector = vmcs12->host_ss_selector;
4343         __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4344         seg.selector = vmcs12->host_fs_selector;
4345         seg.base = vmcs12->host_fs_base;
4346         __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4347         seg.selector = vmcs12->host_gs_selector;
4348         seg.base = vmcs12->host_gs_base;
4349         __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4350         seg = (struct kvm_segment) {
4351                 .base = vmcs12->host_tr_base,
4352                 .limit = 0x67,
4353                 .selector = vmcs12->host_tr_selector,
4354                 .type = 11,
4355                 .present = 1
4356         };
4357         __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4358
4359         memset(&seg, 0, sizeof(seg));
4360         seg.unusable = 1;
4361         __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4362
4363         kvm_set_dr(vcpu, 7, 0x400);
4364         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4365
4366         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4367                                 vmcs12->vm_exit_msr_load_count))
4368                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4369
4370         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4371 }
4372
4373 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4374 {
4375         struct vmx_uret_msr *efer_msr;
4376         unsigned int i;
4377
4378         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4379                 return vmcs_read64(GUEST_IA32_EFER);
4380
4381         if (cpu_has_load_ia32_efer())
4382                 return host_efer;
4383
4384         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4385                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4386                         return vmx->msr_autoload.guest.val[i].value;
4387         }
4388
4389         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4390         if (efer_msr)
4391                 return efer_msr->data;
4392
4393         return host_efer;
4394 }
4395
4396 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4397 {
4398         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4399         struct vcpu_vmx *vmx = to_vmx(vcpu);
4400         struct vmx_msr_entry g, h;
4401         gpa_t gpa;
4402         u32 i, j;
4403
4404         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4405
4406         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4407                 /*
4408                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4409                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4410                  * and vcpu->arch.dr7 is not squirreled away before the
4411                  * nested VMENTER (not worth adding a variable in nested_vmx).
4412                  */
4413                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4414                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4415                 else
4416                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4417         }
4418
4419         /*
4420          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4421          * handle a variety of side effects to KVM's software model.
4422          */
4423         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4424
4425         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4426         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4427
4428         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4429         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4430
4431         nested_ept_uninit_mmu_context(vcpu);
4432         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4433         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4434
4435         /*
4436          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4437          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4438          * VMFail, like everything else we just need to ensure our
4439          * software model is up-to-date.
4440          */
4441         if (enable_ept && is_pae_paging(vcpu))
4442                 ept_save_pdptrs(vcpu);
4443
4444         kvm_mmu_reset_context(vcpu);
4445
4446         /*
4447          * This nasty bit of open coding is a compromise between blindly
4448          * loading L1's MSRs using the exit load lists (incorrect emulation
4449          * of VMFail), leaving the nested VM's MSRs in the software model
4450          * (incorrect behavior) and snapshotting the modified MSRs (too
4451          * expensive since the lists are unbound by hardware).  For each
4452          * MSR that was (prematurely) loaded from the nested VMEntry load
4453          * list, reload it from the exit load list if it exists and differs
4454          * from the guest value.  The intent is to stuff host state as
4455          * silently as possible, not to fully process the exit load list.
4456          */
4457         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4458                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4459                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4460                         pr_debug_ratelimited(
4461                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4462                                 __func__, i, gpa);
4463                         goto vmabort;
4464                 }
4465
4466                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4467                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4468                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4469                                 pr_debug_ratelimited(
4470                                         "%s read MSR failed (%u, 0x%08llx)\n",
4471                                         __func__, j, gpa);
4472                                 goto vmabort;
4473                         }
4474                         if (h.index != g.index)
4475                                 continue;
4476                         if (h.value == g.value)
4477                                 break;
4478
4479                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4480                                 pr_debug_ratelimited(
4481                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4482                                         __func__, j, h.index, h.reserved);
4483                                 goto vmabort;
4484                         }
4485
4486                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4487                                 pr_debug_ratelimited(
4488                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4489                                         __func__, j, h.index, h.value);
4490                                 goto vmabort;
4491                         }
4492                 }
4493         }
4494
4495         return;
4496
4497 vmabort:
4498         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4499 }
4500
4501 /*
4502  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4503  * and modify vmcs12 to make it see what it would expect to see there if
4504  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4505  */
4506 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4507                        u32 exit_intr_info, unsigned long exit_qualification)
4508 {
4509         struct vcpu_vmx *vmx = to_vmx(vcpu);
4510         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4511
4512         /* trying to cancel vmlaunch/vmresume is a bug */
4513         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4514
4515         /* Similarly, triple faults in L2 should never escape. */
4516         WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4517
4518         if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4519                 /*
4520                  * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4521                  * Enlightened VMCS after migration and we still need to
4522                  * do that when something is forcing L2->L1 exit prior to
4523                  * the first L2 run.
4524                  */
4525                 (void)nested_get_evmcs_page(vcpu);
4526         }
4527
4528         /* Service pending TLB flush requests for L2 before switching to L1. */
4529         kvm_service_local_tlb_flush_requests(vcpu);
4530
4531         /*
4532          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4533          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4534          * up-to-date before switching to L1.
4535          */
4536         if (enable_ept && is_pae_paging(vcpu))
4537                 vmx_ept_load_pdptrs(vcpu);
4538
4539         leave_guest_mode(vcpu);
4540
4541         if (nested_cpu_has_preemption_timer(vmcs12))
4542                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4543
4544         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4545                 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4546                 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4547                         vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4548         }
4549
4550         if (likely(!vmx->fail)) {
4551                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4552
4553                 if (vm_exit_reason != -1)
4554                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4555                                        exit_intr_info, exit_qualification);
4556
4557                 /*
4558                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4559                  * also be used to capture vmcs12 cache as part of
4560                  * capturing nVMX state for snapshot (migration).
4561                  *
4562                  * Otherwise, this flush will dirty guest memory at a
4563                  * point it is already assumed by user-space to be
4564                  * immutable.
4565                  */
4566                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4567         } else {
4568                 /*
4569                  * The only expected VM-instruction error is "VM entry with
4570                  * invalid control field(s)." Anything else indicates a
4571                  * problem with L0.  And we should never get here with a
4572                  * VMFail of any type if early consistency checks are enabled.
4573                  */
4574                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4575                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4576                 WARN_ON_ONCE(nested_early_check);
4577         }
4578
4579         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4580
4581         /* Update any VMCS fields that might have changed while L2 ran */
4582         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4583         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4584         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4585         if (kvm_has_tsc_control)
4586                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4587
4588         if (vmx->nested.l1_tpr_threshold != -1)
4589                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4590
4591         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4592                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4593                 vmx_set_virtual_apic_mode(vcpu);
4594         }
4595
4596         if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4597                 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4598                 vmx_update_cpu_dirty_logging(vcpu);
4599         }
4600
4601         /* Unpin physical memory we referred to in vmcs02 */
4602         if (vmx->nested.apic_access_page) {
4603                 kvm_release_page_clean(vmx->nested.apic_access_page);
4604                 vmx->nested.apic_access_page = NULL;
4605         }
4606         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4607         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4608         vmx->nested.pi_desc = NULL;
4609
4610         if (vmx->nested.reload_vmcs01_apic_access_page) {
4611                 vmx->nested.reload_vmcs01_apic_access_page = false;
4612                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4613         }
4614
4615         if ((vm_exit_reason != -1) &&
4616             (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4617                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4618
4619         /* in case we halted in L2 */
4620         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4621
4622         if (likely(!vmx->fail)) {
4623                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4624                     nested_exit_intr_ack_set(vcpu)) {
4625                         int irq = kvm_cpu_get_interrupt(vcpu);
4626                         WARN_ON(irq < 0);
4627                         vmcs12->vm_exit_intr_info = irq |
4628                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4629                 }
4630
4631                 if (vm_exit_reason != -1)
4632                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4633                                                        vmcs12->exit_qualification,
4634                                                        vmcs12->idt_vectoring_info_field,
4635                                                        vmcs12->vm_exit_intr_info,
4636                                                        vmcs12->vm_exit_intr_error_code,
4637                                                        KVM_ISA_VMX);
4638
4639                 load_vmcs12_host_state(vcpu, vmcs12);
4640
4641                 return;
4642         }
4643
4644         /*
4645          * After an early L2 VM-entry failure, we're now back
4646          * in L1 which thinks it just finished a VMLAUNCH or
4647          * VMRESUME instruction, so we need to set the failure
4648          * flag and the VM-instruction error field of the VMCS
4649          * accordingly, and skip the emulated instruction.
4650          */
4651         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4652
4653         /*
4654          * Restore L1's host state to KVM's software model.  We're here
4655          * because a consistency check was caught by hardware, which
4656          * means some amount of guest state has been propagated to KVM's
4657          * model and needs to be unwound to the host's state.
4658          */
4659         nested_vmx_restore_host_state(vcpu);
4660
4661         vmx->fail = 0;
4662 }
4663
4664 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4665 {
4666         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4667 }
4668
4669 /*
4670  * Decode the memory-address operand of a vmx instruction, as recorded on an
4671  * exit caused by such an instruction (run by a guest hypervisor).
4672  * On success, returns 0. When the operand is invalid, returns 1 and throws
4673  * #UD, #GP, or #SS.
4674  */
4675 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4676                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4677 {
4678         gva_t off;
4679         bool exn;
4680         struct kvm_segment s;
4681
4682         /*
4683          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4684          * Execution", on an exit, vmx_instruction_info holds most of the
4685          * addressing components of the operand. Only the displacement part
4686          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4687          * For how an actual address is calculated from all these components,
4688          * refer to Vol. 1, "Operand Addressing".
4689          */
4690         int  scaling = vmx_instruction_info & 3;
4691         int  addr_size = (vmx_instruction_info >> 7) & 7;
4692         bool is_reg = vmx_instruction_info & (1u << 10);
4693         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4694         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4695         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4696         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4697         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4698
4699         if (is_reg) {
4700                 kvm_queue_exception(vcpu, UD_VECTOR);
4701                 return 1;
4702         }
4703
4704         /* Addr = segment_base + offset */
4705         /* offset = base + [index * scale] + displacement */
4706         off = exit_qualification; /* holds the displacement */
4707         if (addr_size == 1)
4708                 off = (gva_t)sign_extend64(off, 31);
4709         else if (addr_size == 0)
4710                 off = (gva_t)sign_extend64(off, 15);
4711         if (base_is_valid)
4712                 off += kvm_register_read(vcpu, base_reg);
4713         if (index_is_valid)
4714                 off += kvm_register_read(vcpu, index_reg) << scaling;
4715         vmx_get_segment(vcpu, &s, seg_reg);
4716
4717         /*
4718          * The effective address, i.e. @off, of a memory operand is truncated
4719          * based on the address size of the instruction.  Note that this is
4720          * the *effective address*, i.e. the address prior to accounting for
4721          * the segment's base.
4722          */
4723         if (addr_size == 1) /* 32 bit */
4724                 off &= 0xffffffff;
4725         else if (addr_size == 0) /* 16 bit */
4726                 off &= 0xffff;
4727
4728         /* Checks for #GP/#SS exceptions. */
4729         exn = false;
4730         if (is_long_mode(vcpu)) {
4731                 /*
4732                  * The virtual/linear address is never truncated in 64-bit
4733                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4734                  * address when using FS/GS with a non-zero base.
4735                  */
4736                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4737                         *ret = s.base + off;
4738                 else
4739                         *ret = off;
4740
4741                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4742                  * non-canonical form. This is the only check on the memory
4743                  * destination for long mode!
4744                  */
4745                 exn = is_noncanonical_address(*ret, vcpu);
4746         } else {
4747                 /*
4748                  * When not in long mode, the virtual/linear address is
4749                  * unconditionally truncated to 32 bits regardless of the
4750                  * address size.
4751                  */
4752                 *ret = (s.base + off) & 0xffffffff;
4753
4754                 /* Protected mode: apply checks for segment validity in the
4755                  * following order:
4756                  * - segment type check (#GP(0) may be thrown)
4757                  * - usability check (#GP(0)/#SS(0))
4758                  * - limit check (#GP(0)/#SS(0))
4759                  */
4760                 if (wr)
4761                         /* #GP(0) if the destination operand is located in a
4762                          * read-only data segment or any code segment.
4763                          */
4764                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4765                 else
4766                         /* #GP(0) if the source operand is located in an
4767                          * execute-only code segment
4768                          */
4769                         exn = ((s.type & 0xa) == 8);
4770                 if (exn) {
4771                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4772                         return 1;
4773                 }
4774                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4775                  */
4776                 exn = (s.unusable != 0);
4777
4778                 /*
4779                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4780                  * outside the segment limit.  All CPUs that support VMX ignore
4781                  * limit checks for flat segments, i.e. segments with base==0,
4782                  * limit==0xffffffff and of type expand-up data or code.
4783                  */
4784                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4785                      ((s.type & 8) || !(s.type & 4))))
4786                         exn = exn || ((u64)off + len - 1 > s.limit);
4787         }
4788         if (exn) {
4789                 kvm_queue_exception_e(vcpu,
4790                                       seg_reg == VCPU_SREG_SS ?
4791                                                 SS_VECTOR : GP_VECTOR,
4792                                       0);
4793                 return 1;
4794         }
4795
4796         return 0;
4797 }
4798
4799 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4800 {
4801         struct vcpu_vmx *vmx;
4802
4803         if (!nested_vmx_allowed(vcpu))
4804                 return;
4805
4806         vmx = to_vmx(vcpu);
4807         if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4808                 vmx->nested.msrs.entry_ctls_high |=
4809                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4810                 vmx->nested.msrs.exit_ctls_high |=
4811                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4812         } else {
4813                 vmx->nested.msrs.entry_ctls_high &=
4814                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4815                 vmx->nested.msrs.exit_ctls_high &=
4816                                 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4817         }
4818 }
4819
4820 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4821                                 int *ret)
4822 {
4823         gva_t gva;
4824         struct x86_exception e;
4825         int r;
4826
4827         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4828                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4829                                 sizeof(*vmpointer), &gva)) {
4830                 *ret = 1;
4831                 return -EINVAL;
4832         }
4833
4834         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4835         if (r != X86EMUL_CONTINUE) {
4836                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4837                 return -EINVAL;
4838         }
4839
4840         return 0;
4841 }
4842
4843 /*
4844  * Allocate a shadow VMCS and associate it with the currently loaded
4845  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4846  * VMCS is also VMCLEARed, so that it is ready for use.
4847  */
4848 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4849 {
4850         struct vcpu_vmx *vmx = to_vmx(vcpu);
4851         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4852
4853         /*
4854          * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
4855          * when L1 executes VMXOFF or the vCPU is forced out of nested
4856          * operation.  VMXON faults if the CPU is already post-VMXON, so it
4857          * should be impossible to already have an allocated shadow VMCS.  KVM
4858          * doesn't support virtualization of VMCS shadowing, so vmcs01 should
4859          * always be the loaded VMCS.
4860          */
4861         if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
4862                 return loaded_vmcs->shadow_vmcs;
4863
4864         loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4865         if (loaded_vmcs->shadow_vmcs)
4866                 vmcs_clear(loaded_vmcs->shadow_vmcs);
4867
4868         return loaded_vmcs->shadow_vmcs;
4869 }
4870
4871 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4872 {
4873         struct vcpu_vmx *vmx = to_vmx(vcpu);
4874         int r;
4875
4876         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4877         if (r < 0)
4878                 goto out_vmcs02;
4879
4880         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4881         if (!vmx->nested.cached_vmcs12)
4882                 goto out_cached_vmcs12;
4883
4884         vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
4885         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4886         if (!vmx->nested.cached_shadow_vmcs12)
4887                 goto out_cached_shadow_vmcs12;
4888
4889         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4890                 goto out_shadow_vmcs;
4891
4892         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4893                      HRTIMER_MODE_ABS_PINNED);
4894         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4895
4896         vmx->nested.vpid02 = allocate_vpid();
4897
4898         vmx->nested.vmcs02_initialized = false;
4899         vmx->nested.vmxon = true;
4900
4901         if (vmx_pt_mode_is_host_guest()) {
4902                 vmx->pt_desc.guest.ctl = 0;
4903                 pt_update_intercept_for_msr(vcpu);
4904         }
4905
4906         return 0;
4907
4908 out_shadow_vmcs:
4909         kfree(vmx->nested.cached_shadow_vmcs12);
4910
4911 out_cached_shadow_vmcs12:
4912         kfree(vmx->nested.cached_vmcs12);
4913
4914 out_cached_vmcs12:
4915         free_loaded_vmcs(&vmx->nested.vmcs02);
4916
4917 out_vmcs02:
4918         return -ENOMEM;
4919 }
4920
4921 /* Emulate the VMXON instruction. */
4922 static int handle_vmon(struct kvm_vcpu *vcpu)
4923 {
4924         int ret;
4925         gpa_t vmptr;
4926         uint32_t revision;
4927         struct vcpu_vmx *vmx = to_vmx(vcpu);
4928         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4929                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4930
4931         /*
4932          * The Intel VMX Instruction Reference lists a bunch of bits that are
4933          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4934          * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4935          * Otherwise, we should fail with #UD.  But most faulting conditions
4936          * have already been checked by hardware, prior to the VM-exit for
4937          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4938          * that bit set to 1 in non-root mode.
4939          */
4940         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4941                 kvm_queue_exception(vcpu, UD_VECTOR);
4942                 return 1;
4943         }
4944
4945         /* CPL=0 must be checked manually. */
4946         if (vmx_get_cpl(vcpu)) {
4947                 kvm_inject_gp(vcpu, 0);
4948                 return 1;
4949         }
4950
4951         if (vmx->nested.vmxon)
4952                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4953
4954         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4955                         != VMXON_NEEDED_FEATURES) {
4956                 kvm_inject_gp(vcpu, 0);
4957                 return 1;
4958         }
4959
4960         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4961                 return ret;
4962
4963         /*
4964          * SDM 3: 24.11.5
4965          * The first 4 bytes of VMXON region contain the supported
4966          * VMCS revision identifier
4967          *
4968          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4969          * which replaces physical address width with 32
4970          */
4971         if (!page_address_valid(vcpu, vmptr))
4972                 return nested_vmx_failInvalid(vcpu);
4973
4974         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4975             revision != VMCS12_REVISION)
4976                 return nested_vmx_failInvalid(vcpu);
4977
4978         vmx->nested.vmxon_ptr = vmptr;
4979         ret = enter_vmx_operation(vcpu);
4980         if (ret)
4981                 return ret;
4982
4983         return nested_vmx_succeed(vcpu);
4984 }
4985
4986 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4987 {
4988         struct vcpu_vmx *vmx = to_vmx(vcpu);
4989
4990         if (vmx->nested.current_vmptr == INVALID_GPA)
4991                 return;
4992
4993         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4994
4995         if (enable_shadow_vmcs) {
4996                 /* copy to memory all shadowed fields in case
4997                    they were modified */
4998                 copy_shadow_to_vmcs12(vmx);
4999                 vmx_disable_shadow_vmcs(vmx);
5000         }
5001         vmx->nested.posted_intr_nv = -1;
5002
5003         /* Flush VMCS12 to guest memory */
5004         kvm_vcpu_write_guest_page(vcpu,
5005                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
5006                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5007
5008         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5009
5010         vmx->nested.current_vmptr = INVALID_GPA;
5011 }
5012
5013 /* Emulate the VMXOFF instruction */
5014 static int handle_vmoff(struct kvm_vcpu *vcpu)
5015 {
5016         if (!nested_vmx_check_permission(vcpu))
5017                 return 1;
5018
5019         free_nested(vcpu);
5020
5021         /* Process a latched INIT during time CPU was in VMX operation */
5022         kvm_make_request(KVM_REQ_EVENT, vcpu);
5023
5024         return nested_vmx_succeed(vcpu);
5025 }
5026
5027 /* Emulate the VMCLEAR instruction */
5028 static int handle_vmclear(struct kvm_vcpu *vcpu)
5029 {
5030         struct vcpu_vmx *vmx = to_vmx(vcpu);
5031         u32 zero = 0;
5032         gpa_t vmptr;
5033         u64 evmcs_gpa;
5034         int r;
5035
5036         if (!nested_vmx_check_permission(vcpu))
5037                 return 1;
5038
5039         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5040                 return r;
5041
5042         if (!page_address_valid(vcpu, vmptr))
5043                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5044
5045         if (vmptr == vmx->nested.vmxon_ptr)
5046                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5047
5048         /*
5049          * When Enlightened VMEntry is enabled on the calling CPU we treat
5050          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5051          * way to distinguish it from VMCS12) and we must not corrupt it by
5052          * writing to the non-existent 'launch_state' field. The area doesn't
5053          * have to be the currently active EVMCS on the calling CPU and there's
5054          * nothing KVM has to do to transition it from 'active' to 'non-active'
5055          * state. It is possible that the area will stay mapped as
5056          * vmx->nested.hv_evmcs but this shouldn't be a problem.
5057          */
5058         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5059                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5060                 if (vmptr == vmx->nested.current_vmptr)
5061                         nested_release_vmcs12(vcpu);
5062
5063                 kvm_vcpu_write_guest(vcpu,
5064                                      vmptr + offsetof(struct vmcs12,
5065                                                       launch_state),
5066                                      &zero, sizeof(zero));
5067         } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5068                 nested_release_evmcs(vcpu);
5069         }
5070
5071         return nested_vmx_succeed(vcpu);
5072 }
5073
5074 /* Emulate the VMLAUNCH instruction */
5075 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5076 {
5077         return nested_vmx_run(vcpu, true);
5078 }
5079
5080 /* Emulate the VMRESUME instruction */
5081 static int handle_vmresume(struct kvm_vcpu *vcpu)
5082 {
5083
5084         return nested_vmx_run(vcpu, false);
5085 }
5086
5087 static int handle_vmread(struct kvm_vcpu *vcpu)
5088 {
5089         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5090                                                     : get_vmcs12(vcpu);
5091         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5092         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5093         struct vcpu_vmx *vmx = to_vmx(vcpu);
5094         struct x86_exception e;
5095         unsigned long field;
5096         u64 value;
5097         gva_t gva = 0;
5098         short offset;
5099         int len, r;
5100
5101         if (!nested_vmx_check_permission(vcpu))
5102                 return 1;
5103
5104         /* Decode instruction info and find the field to read */
5105         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5106
5107         if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5108                 /*
5109                  * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5110                  * any VMREAD sets the ALU flags for VMfailInvalid.
5111                  */
5112                 if (vmx->nested.current_vmptr == INVALID_GPA ||
5113                     (is_guest_mode(vcpu) &&
5114                      get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5115                         return nested_vmx_failInvalid(vcpu);
5116
5117                 offset = get_vmcs12_field_offset(field);
5118                 if (offset < 0)
5119                         return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5120
5121                 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5122                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5123
5124                 /* Read the field, zero-extended to a u64 value */
5125                 value = vmcs12_read_any(vmcs12, field, offset);
5126         } else {
5127                 /*
5128                  * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5129                  * enlightened VMCS is active VMREAD/VMWRITE instructions are
5130                  * unsupported. Unfortunately, certain versions of Windows 11
5131                  * don't comply with this requirement which is not enforced in
5132                  * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5133                  * workaround, as misbehaving guests will panic on VM-Fail.
5134                  * Note, enlightened VMCS is incompatible with shadow VMCS so
5135                  * all VMREADs from L2 should go to L1.
5136                  */
5137                 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5138                         return nested_vmx_failInvalid(vcpu);
5139
5140                 offset = evmcs_field_offset(field, NULL);
5141                 if (offset < 0)
5142                         return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5143
5144                 /* Read the field, zero-extended to a u64 value */
5145                 value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5146         }
5147
5148         /*
5149          * Now copy part of this value to register or memory, as requested.
5150          * Note that the number of bits actually copied is 32 or 64 depending
5151          * on the guest's mode (32 or 64 bit), not on the given field's length.
5152          */
5153         if (instr_info & BIT(10)) {
5154                 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5155         } else {
5156                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5157                 if (get_vmx_mem_address(vcpu, exit_qualification,
5158                                         instr_info, true, len, &gva))
5159                         return 1;
5160                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5161                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5162                 if (r != X86EMUL_CONTINUE)
5163                         return kvm_handle_memory_failure(vcpu, r, &e);
5164         }
5165
5166         return nested_vmx_succeed(vcpu);
5167 }
5168
5169 static bool is_shadow_field_rw(unsigned long field)
5170 {
5171         switch (field) {
5172 #define SHADOW_FIELD_RW(x, y) case x:
5173 #include "vmcs_shadow_fields.h"
5174                 return true;
5175         default:
5176                 break;
5177         }
5178         return false;
5179 }
5180
5181 static bool is_shadow_field_ro(unsigned long field)
5182 {
5183         switch (field) {
5184 #define SHADOW_FIELD_RO(x, y) case x:
5185 #include "vmcs_shadow_fields.h"
5186                 return true;
5187         default:
5188                 break;
5189         }
5190         return false;
5191 }
5192
5193 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5194 {
5195         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5196                                                     : get_vmcs12(vcpu);
5197         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5198         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5199         struct vcpu_vmx *vmx = to_vmx(vcpu);
5200         struct x86_exception e;
5201         unsigned long field;
5202         short offset;
5203         gva_t gva;
5204         int len, r;
5205
5206         /*
5207          * The value to write might be 32 or 64 bits, depending on L1's long
5208          * mode, and eventually we need to write that into a field of several
5209          * possible lengths. The code below first zero-extends the value to 64
5210          * bit (value), and then copies only the appropriate number of
5211          * bits into the vmcs12 field.
5212          */
5213         u64 value = 0;
5214
5215         if (!nested_vmx_check_permission(vcpu))
5216                 return 1;
5217
5218         /*
5219          * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5220          * any VMWRITE sets the ALU flags for VMfailInvalid.
5221          */
5222         if (vmx->nested.current_vmptr == INVALID_GPA ||
5223             (is_guest_mode(vcpu) &&
5224              get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5225                 return nested_vmx_failInvalid(vcpu);
5226
5227         if (instr_info & BIT(10))
5228                 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5229         else {
5230                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5231                 if (get_vmx_mem_address(vcpu, exit_qualification,
5232                                         instr_info, false, len, &gva))
5233                         return 1;
5234                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5235                 if (r != X86EMUL_CONTINUE)
5236                         return kvm_handle_memory_failure(vcpu, r, &e);
5237         }
5238
5239         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5240
5241         offset = get_vmcs12_field_offset(field);
5242         if (offset < 0)
5243                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5244
5245         /*
5246          * If the vCPU supports "VMWRITE to any supported field in the
5247          * VMCS," then the "read-only" fields are actually read/write.
5248          */
5249         if (vmcs_field_readonly(field) &&
5250             !nested_cpu_has_vmwrite_any_field(vcpu))
5251                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5252
5253         /*
5254          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5255          * vmcs12, else we may crush a field or consume a stale value.
5256          */
5257         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5258                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5259
5260         /*
5261          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5262          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5263          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5264          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5265          * from L1 will return a different value than VMREAD from L2 (L1 sees
5266          * the stripped down value, L2 sees the full value as stored by KVM).
5267          */
5268         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5269                 value &= 0x1f0ff;
5270
5271         vmcs12_write_any(vmcs12, field, offset, value);
5272
5273         /*
5274          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5275          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5276          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5277          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5278          */
5279         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5280                 /*
5281                  * L1 can read these fields without exiting, ensure the
5282                  * shadow VMCS is up-to-date.
5283                  */
5284                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5285                         preempt_disable();
5286                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5287
5288                         __vmcs_writel(field, value);
5289
5290                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5291                         vmcs_load(vmx->loaded_vmcs->vmcs);
5292                         preempt_enable();
5293                 }
5294                 vmx->nested.dirty_vmcs12 = true;
5295         }
5296
5297         return nested_vmx_succeed(vcpu);
5298 }
5299
5300 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5301 {
5302         vmx->nested.current_vmptr = vmptr;
5303         if (enable_shadow_vmcs) {
5304                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5305                 vmcs_write64(VMCS_LINK_POINTER,
5306                              __pa(vmx->vmcs01.shadow_vmcs));
5307                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5308         }
5309         vmx->nested.dirty_vmcs12 = true;
5310         vmx->nested.force_msr_bitmap_recalc = true;
5311 }
5312
5313 /* Emulate the VMPTRLD instruction */
5314 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5315 {
5316         struct vcpu_vmx *vmx = to_vmx(vcpu);
5317         gpa_t vmptr;
5318         int r;
5319
5320         if (!nested_vmx_check_permission(vcpu))
5321                 return 1;
5322
5323         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5324                 return r;
5325
5326         if (!page_address_valid(vcpu, vmptr))
5327                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5328
5329         if (vmptr == vmx->nested.vmxon_ptr)
5330                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5331
5332         /* Forbid normal VMPTRLD if Enlightened version was used */
5333         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5334                 return 1;
5335
5336         if (vmx->nested.current_vmptr != vmptr) {
5337                 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5338                 struct vmcs_hdr hdr;
5339
5340                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5341                         /*
5342                          * Reads from an unbacked page return all 1s,
5343                          * which means that the 32 bits located at the
5344                          * given physical address won't match the required
5345                          * VMCS12_REVISION identifier.
5346                          */
5347                         return nested_vmx_fail(vcpu,
5348                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5349                 }
5350
5351                 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5352                                                  offsetof(struct vmcs12, hdr),
5353                                                  sizeof(hdr))) {
5354                         return nested_vmx_fail(vcpu,
5355                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5356                 }
5357
5358                 if (hdr.revision_id != VMCS12_REVISION ||
5359                     (hdr.shadow_vmcs &&
5360                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5361                         return nested_vmx_fail(vcpu,
5362                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5363                 }
5364
5365                 nested_release_vmcs12(vcpu);
5366
5367                 /*
5368                  * Load VMCS12 from guest memory since it is not already
5369                  * cached.
5370                  */
5371                 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5372                                           VMCS12_SIZE)) {
5373                         return nested_vmx_fail(vcpu,
5374                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5375                 }
5376
5377                 set_current_vmptr(vmx, vmptr);
5378         }
5379
5380         return nested_vmx_succeed(vcpu);
5381 }
5382
5383 /* Emulate the VMPTRST instruction */
5384 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5385 {
5386         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5387         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5388         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5389         struct x86_exception e;
5390         gva_t gva;
5391         int r;
5392
5393         if (!nested_vmx_check_permission(vcpu))
5394                 return 1;
5395
5396         if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5397                 return 1;
5398
5399         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5400                                 true, sizeof(gpa_t), &gva))
5401                 return 1;
5402         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5403         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5404                                         sizeof(gpa_t), &e);
5405         if (r != X86EMUL_CONTINUE)
5406                 return kvm_handle_memory_failure(vcpu, r, &e);
5407
5408         return nested_vmx_succeed(vcpu);
5409 }
5410
5411 /* Emulate the INVEPT instruction */
5412 static int handle_invept(struct kvm_vcpu *vcpu)
5413 {
5414         struct vcpu_vmx *vmx = to_vmx(vcpu);
5415         u32 vmx_instruction_info, types;
5416         unsigned long type, roots_to_free;
5417         struct kvm_mmu *mmu;
5418         gva_t gva;
5419         struct x86_exception e;
5420         struct {
5421                 u64 eptp, gpa;
5422         } operand;
5423         int i, r, gpr_index;
5424
5425         if (!(vmx->nested.msrs.secondary_ctls_high &
5426               SECONDARY_EXEC_ENABLE_EPT) ||
5427             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5428                 kvm_queue_exception(vcpu, UD_VECTOR);
5429                 return 1;
5430         }
5431
5432         if (!nested_vmx_check_permission(vcpu))
5433                 return 1;
5434
5435         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5436         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5437         type = kvm_register_read(vcpu, gpr_index);
5438
5439         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5440
5441         if (type >= 32 || !(types & (1 << type)))
5442                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5443
5444         /* According to the Intel VMX instruction reference, the memory
5445          * operand is read even if it isn't needed (e.g., for type==global)
5446          */
5447         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5448                         vmx_instruction_info, false, sizeof(operand), &gva))
5449                 return 1;
5450         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5451         if (r != X86EMUL_CONTINUE)
5452                 return kvm_handle_memory_failure(vcpu, r, &e);
5453
5454         /*
5455          * Nested EPT roots are always held through guest_mmu,
5456          * not root_mmu.
5457          */
5458         mmu = &vcpu->arch.guest_mmu;
5459
5460         switch (type) {
5461         case VMX_EPT_EXTENT_CONTEXT:
5462                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5463                         return nested_vmx_fail(vcpu,
5464                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5465
5466                 roots_to_free = 0;
5467                 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5468                                             operand.eptp))
5469                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5470
5471                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5472                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5473                                                     mmu->prev_roots[i].pgd,
5474                                                     operand.eptp))
5475                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5476                 }
5477                 break;
5478         case VMX_EPT_EXTENT_GLOBAL:
5479                 roots_to_free = KVM_MMU_ROOTS_ALL;
5480                 break;
5481         default:
5482                 BUG();
5483                 break;
5484         }
5485
5486         if (roots_to_free)
5487                 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5488
5489         return nested_vmx_succeed(vcpu);
5490 }
5491
5492 static int handle_invvpid(struct kvm_vcpu *vcpu)
5493 {
5494         struct vcpu_vmx *vmx = to_vmx(vcpu);
5495         u32 vmx_instruction_info;
5496         unsigned long type, types;
5497         gva_t gva;
5498         struct x86_exception e;
5499         struct {
5500                 u64 vpid;
5501                 u64 gla;
5502         } operand;
5503         u16 vpid02;
5504         int r, gpr_index;
5505
5506         if (!(vmx->nested.msrs.secondary_ctls_high &
5507               SECONDARY_EXEC_ENABLE_VPID) ||
5508                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5509                 kvm_queue_exception(vcpu, UD_VECTOR);
5510                 return 1;
5511         }
5512
5513         if (!nested_vmx_check_permission(vcpu))
5514                 return 1;
5515
5516         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5517         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5518         type = kvm_register_read(vcpu, gpr_index);
5519
5520         types = (vmx->nested.msrs.vpid_caps &
5521                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5522
5523         if (type >= 32 || !(types & (1 << type)))
5524                 return nested_vmx_fail(vcpu,
5525                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5526
5527         /* according to the intel vmx instruction reference, the memory
5528          * operand is read even if it isn't needed (e.g., for type==global)
5529          */
5530         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5531                         vmx_instruction_info, false, sizeof(operand), &gva))
5532                 return 1;
5533         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5534         if (r != X86EMUL_CONTINUE)
5535                 return kvm_handle_memory_failure(vcpu, r, &e);
5536
5537         if (operand.vpid >> 16)
5538                 return nested_vmx_fail(vcpu,
5539                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5540
5541         vpid02 = nested_get_vpid02(vcpu);
5542         switch (type) {
5543         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5544                 if (!operand.vpid ||
5545                     is_noncanonical_address(operand.gla, vcpu))
5546                         return nested_vmx_fail(vcpu,
5547                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5548                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5549                 break;
5550         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5551         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5552                 if (!operand.vpid)
5553                         return nested_vmx_fail(vcpu,
5554                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5555                 vpid_sync_context(vpid02);
5556                 break;
5557         case VMX_VPID_EXTENT_ALL_CONTEXT:
5558                 vpid_sync_context(vpid02);
5559                 break;
5560         default:
5561                 WARN_ON_ONCE(1);
5562                 return kvm_skip_emulated_instruction(vcpu);
5563         }
5564
5565         /*
5566          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5567          * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5568          * roots as VPIDs are not tracked in the MMU role.
5569          *
5570          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5571          * an MMU when EPT is disabled.
5572          *
5573          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5574          */
5575         if (!enable_ept)
5576                 kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5577
5578         return nested_vmx_succeed(vcpu);
5579 }
5580
5581 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5582                                      struct vmcs12 *vmcs12)
5583 {
5584         u32 index = kvm_rcx_read(vcpu);
5585         u64 new_eptp;
5586
5587         if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5588                 return 1;
5589         if (index >= VMFUNC_EPTP_ENTRIES)
5590                 return 1;
5591
5592         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5593                                      &new_eptp, index * 8, 8))
5594                 return 1;
5595
5596         /*
5597          * If the (L2) guest does a vmfunc to the currently
5598          * active ept pointer, we don't have to do anything else
5599          */
5600         if (vmcs12->ept_pointer != new_eptp) {
5601                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5602                         return 1;
5603
5604                 vmcs12->ept_pointer = new_eptp;
5605                 nested_ept_new_eptp(vcpu);
5606
5607                 if (!nested_cpu_has_vpid(vmcs12))
5608                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5609         }
5610
5611         return 0;
5612 }
5613
5614 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5615 {
5616         struct vcpu_vmx *vmx = to_vmx(vcpu);
5617         struct vmcs12 *vmcs12;
5618         u32 function = kvm_rax_read(vcpu);
5619
5620         /*
5621          * VMFUNC is only supported for nested guests, but we always enable the
5622          * secondary control for simplicity; for non-nested mode, fake that we
5623          * didn't by injecting #UD.
5624          */
5625         if (!is_guest_mode(vcpu)) {
5626                 kvm_queue_exception(vcpu, UD_VECTOR);
5627                 return 1;
5628         }
5629
5630         vmcs12 = get_vmcs12(vcpu);
5631
5632         /*
5633          * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5634          * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5635          */
5636         if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5637                 kvm_queue_exception(vcpu, UD_VECTOR);
5638                 return 1;
5639         }
5640
5641         if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5642                 goto fail;
5643
5644         switch (function) {
5645         case 0:
5646                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5647                         goto fail;
5648                 break;
5649         default:
5650                 goto fail;
5651         }
5652         return kvm_skip_emulated_instruction(vcpu);
5653
5654 fail:
5655         /*
5656          * This is effectively a reflected VM-Exit, as opposed to a synthesized
5657          * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5658          * EXIT_REASON_VMFUNC as the exit reason.
5659          */
5660         nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5661                           vmx_get_intr_info(vcpu),
5662                           vmx_get_exit_qual(vcpu));
5663         return 1;
5664 }
5665
5666 /*
5667  * Return true if an IO instruction with the specified port and size should cause
5668  * a VM-exit into L1.
5669  */
5670 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5671                                  int size)
5672 {
5673         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5674         gpa_t bitmap, last_bitmap;
5675         u8 b;
5676
5677         last_bitmap = INVALID_GPA;
5678         b = -1;
5679
5680         while (size > 0) {
5681                 if (port < 0x8000)
5682                         bitmap = vmcs12->io_bitmap_a;
5683                 else if (port < 0x10000)
5684                         bitmap = vmcs12->io_bitmap_b;
5685                 else
5686                         return true;
5687                 bitmap += (port & 0x7fff) / 8;
5688
5689                 if (last_bitmap != bitmap)
5690                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5691                                 return true;
5692                 if (b & (1 << (port & 7)))
5693                         return true;
5694
5695                 port++;
5696                 size--;
5697                 last_bitmap = bitmap;
5698         }
5699
5700         return false;
5701 }
5702
5703 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5704                                        struct vmcs12 *vmcs12)
5705 {
5706         unsigned long exit_qualification;
5707         unsigned short port;
5708         int size;
5709
5710         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5711                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5712
5713         exit_qualification = vmx_get_exit_qual(vcpu);
5714
5715         port = exit_qualification >> 16;
5716         size = (exit_qualification & 7) + 1;
5717
5718         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5719 }
5720
5721 /*
5722  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5723  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5724  * disinterest in the current event (read or write a specific MSR) by using an
5725  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5726  */
5727 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5728                                         struct vmcs12 *vmcs12,
5729                                         union vmx_exit_reason exit_reason)
5730 {
5731         u32 msr_index = kvm_rcx_read(vcpu);
5732         gpa_t bitmap;
5733
5734         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5735                 return true;
5736
5737         /*
5738          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5739          * for the four combinations of read/write and low/high MSR numbers.
5740          * First we need to figure out which of the four to use:
5741          */
5742         bitmap = vmcs12->msr_bitmap;
5743         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5744                 bitmap += 2048;
5745         if (msr_index >= 0xc0000000) {
5746                 msr_index -= 0xc0000000;
5747                 bitmap += 1024;
5748         }
5749
5750         /* Then read the msr_index'th bit from this bitmap: */
5751         if (msr_index < 1024*8) {
5752                 unsigned char b;
5753                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5754                         return true;
5755                 return 1 & (b >> (msr_index & 7));
5756         } else
5757                 return true; /* let L1 handle the wrong parameter */
5758 }
5759
5760 /*
5761  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5762  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5763  * intercept (via guest_host_mask etc.) the current event.
5764  */
5765 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5766         struct vmcs12 *vmcs12)
5767 {
5768         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5769         int cr = exit_qualification & 15;
5770         int reg;
5771         unsigned long val;
5772
5773         switch ((exit_qualification >> 4) & 3) {
5774         case 0: /* mov to cr */
5775                 reg = (exit_qualification >> 8) & 15;
5776                 val = kvm_register_read(vcpu, reg);
5777                 switch (cr) {
5778                 case 0:
5779                         if (vmcs12->cr0_guest_host_mask &
5780                             (val ^ vmcs12->cr0_read_shadow))
5781                                 return true;
5782                         break;
5783                 case 3:
5784                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5785                                 return true;
5786                         break;
5787                 case 4:
5788                         if (vmcs12->cr4_guest_host_mask &
5789                             (vmcs12->cr4_read_shadow ^ val))
5790                                 return true;
5791                         break;
5792                 case 8:
5793                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5794                                 return true;
5795                         break;
5796                 }
5797                 break;
5798         case 2: /* clts */
5799                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5800                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5801                         return true;
5802                 break;
5803         case 1: /* mov from cr */
5804                 switch (cr) {
5805                 case 3:
5806                         if (vmcs12->cpu_based_vm_exec_control &
5807                             CPU_BASED_CR3_STORE_EXITING)
5808                                 return true;
5809                         break;
5810                 case 8:
5811                         if (vmcs12->cpu_based_vm_exec_control &
5812                             CPU_BASED_CR8_STORE_EXITING)
5813                                 return true;
5814                         break;
5815                 }
5816                 break;
5817         case 3: /* lmsw */
5818                 /*
5819                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5820                  * cr0. Other attempted changes are ignored, with no exit.
5821                  */
5822                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5823                 if (vmcs12->cr0_guest_host_mask & 0xe &
5824                     (val ^ vmcs12->cr0_read_shadow))
5825                         return true;
5826                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5827                     !(vmcs12->cr0_read_shadow & 0x1) &&
5828                     (val & 0x1))
5829                         return true;
5830                 break;
5831         }
5832         return false;
5833 }
5834
5835 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5836                                           struct vmcs12 *vmcs12)
5837 {
5838         u32 encls_leaf;
5839
5840         if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5841             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5842                 return false;
5843
5844         encls_leaf = kvm_rax_read(vcpu);
5845         if (encls_leaf > 62)
5846                 encls_leaf = 63;
5847         return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5848 }
5849
5850 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5851         struct vmcs12 *vmcs12, gpa_t bitmap)
5852 {
5853         u32 vmx_instruction_info;
5854         unsigned long field;
5855         u8 b;
5856
5857         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5858                 return true;
5859
5860         /* Decode instruction info and find the field to access */
5861         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5862         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5863
5864         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5865         if (field >> 15)
5866                 return true;
5867
5868         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5869                 return true;
5870
5871         return 1 & (b >> (field & 7));
5872 }
5873
5874 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5875 {
5876         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5877
5878         if (nested_cpu_has_mtf(vmcs12))
5879                 return true;
5880
5881         /*
5882          * An MTF VM-exit may be injected into the guest by setting the
5883          * interruption-type to 7 (other event) and the vector field to 0. Such
5884          * is the case regardless of the 'monitor trap flag' VM-execution
5885          * control.
5886          */
5887         return entry_intr_info == (INTR_INFO_VALID_MASK
5888                                    | INTR_TYPE_OTHER_EVENT);
5889 }
5890
5891 /*
5892  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5893  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5894  */
5895 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5896                                      union vmx_exit_reason exit_reason)
5897 {
5898         u32 intr_info;
5899
5900         switch ((u16)exit_reason.basic) {
5901         case EXIT_REASON_EXCEPTION_NMI:
5902                 intr_info = vmx_get_intr_info(vcpu);
5903                 if (is_nmi(intr_info))
5904                         return true;
5905                 else if (is_page_fault(intr_info))
5906                         return vcpu->arch.apf.host_apf_flags ||
5907                                vmx_need_pf_intercept(vcpu);
5908                 else if (is_debug(intr_info) &&
5909                          vcpu->guest_debug &
5910                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5911                         return true;
5912                 else if (is_breakpoint(intr_info) &&
5913                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5914                         return true;
5915                 else if (is_alignment_check(intr_info) &&
5916                          !vmx_guest_inject_ac(vcpu))
5917                         return true;
5918                 return false;
5919         case EXIT_REASON_EXTERNAL_INTERRUPT:
5920                 return true;
5921         case EXIT_REASON_MCE_DURING_VMENTRY:
5922                 return true;
5923         case EXIT_REASON_EPT_VIOLATION:
5924                 /*
5925                  * L0 always deals with the EPT violation. If nested EPT is
5926                  * used, and the nested mmu code discovers that the address is
5927                  * missing in the guest EPT table (EPT12), the EPT violation
5928                  * will be injected with nested_ept_inject_page_fault()
5929                  */
5930                 return true;
5931         case EXIT_REASON_EPT_MISCONFIG:
5932                 /*
5933                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5934                  * table (shadow on EPT) or a merged EPT table that L0 built
5935                  * (EPT on EPT). So any problems with the structure of the
5936                  * table is L0's fault.
5937                  */
5938                 return true;
5939         case EXIT_REASON_PREEMPTION_TIMER:
5940                 return true;
5941         case EXIT_REASON_PML_FULL:
5942                 /*
5943                  * PML is emulated for an L1 VMM and should never be enabled in
5944                  * vmcs02, always "handle" PML_FULL by exiting to userspace.
5945                  */
5946                 return true;
5947         case EXIT_REASON_VMFUNC:
5948                 /* VM functions are emulated through L2->L0 vmexits. */
5949                 return true;
5950         case EXIT_REASON_BUS_LOCK:
5951                 /*
5952                  * At present, bus lock VM exit is never exposed to L1.
5953                  * Handle L2's bus locks in L0 directly.
5954                  */
5955                 return true;
5956         default:
5957                 break;
5958         }
5959         return false;
5960 }
5961
5962 /*
5963  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5964  * is_guest_mode (L2).
5965  */
5966 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5967                                      union vmx_exit_reason exit_reason)
5968 {
5969         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5970         u32 intr_info;
5971
5972         switch ((u16)exit_reason.basic) {
5973         case EXIT_REASON_EXCEPTION_NMI:
5974                 intr_info = vmx_get_intr_info(vcpu);
5975                 if (is_nmi(intr_info))
5976                         return true;
5977                 else if (is_page_fault(intr_info))
5978                         return true;
5979                 return vmcs12->exception_bitmap &
5980                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5981         case EXIT_REASON_EXTERNAL_INTERRUPT:
5982                 return nested_exit_on_intr(vcpu);
5983         case EXIT_REASON_TRIPLE_FAULT:
5984                 return true;
5985         case EXIT_REASON_INTERRUPT_WINDOW:
5986                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5987         case EXIT_REASON_NMI_WINDOW:
5988                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5989         case EXIT_REASON_TASK_SWITCH:
5990                 return true;
5991         case EXIT_REASON_CPUID:
5992                 return true;
5993         case EXIT_REASON_HLT:
5994                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5995         case EXIT_REASON_INVD:
5996                 return true;
5997         case EXIT_REASON_INVLPG:
5998                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5999         case EXIT_REASON_RDPMC:
6000                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6001         case EXIT_REASON_RDRAND:
6002                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6003         case EXIT_REASON_RDSEED:
6004                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6005         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6006                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6007         case EXIT_REASON_VMREAD:
6008                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6009                         vmcs12->vmread_bitmap);
6010         case EXIT_REASON_VMWRITE:
6011                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6012                         vmcs12->vmwrite_bitmap);
6013         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6014         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6015         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6016         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6017         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6018                 /*
6019                  * VMX instructions trap unconditionally. This allows L1 to
6020                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6021                  */
6022                 return true;
6023         case EXIT_REASON_CR_ACCESS:
6024                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6025         case EXIT_REASON_DR_ACCESS:
6026                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6027         case EXIT_REASON_IO_INSTRUCTION:
6028                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6029         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6030                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6031         case EXIT_REASON_MSR_READ:
6032         case EXIT_REASON_MSR_WRITE:
6033                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6034         case EXIT_REASON_INVALID_STATE:
6035                 return true;
6036         case EXIT_REASON_MWAIT_INSTRUCTION:
6037                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6038         case EXIT_REASON_MONITOR_TRAP_FLAG:
6039                 return nested_vmx_exit_handled_mtf(vmcs12);
6040         case EXIT_REASON_MONITOR_INSTRUCTION:
6041                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6042         case EXIT_REASON_PAUSE_INSTRUCTION:
6043                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6044                         nested_cpu_has2(vmcs12,
6045                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6046         case EXIT_REASON_MCE_DURING_VMENTRY:
6047                 return true;
6048         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6049                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6050         case EXIT_REASON_APIC_ACCESS:
6051         case EXIT_REASON_APIC_WRITE:
6052         case EXIT_REASON_EOI_INDUCED:
6053                 /*
6054                  * The controls for "virtualize APIC accesses," "APIC-
6055                  * register virtualization," and "virtual-interrupt
6056                  * delivery" only come from vmcs12.
6057                  */
6058                 return true;
6059         case EXIT_REASON_INVPCID:
6060                 return
6061                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6062                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6063         case EXIT_REASON_WBINVD:
6064                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6065         case EXIT_REASON_XSETBV:
6066                 return true;
6067         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6068                 /*
6069                  * This should never happen, since it is not possible to
6070                  * set XSS to a non-zero value---neither in L1 nor in L2.
6071                  * If if it were, XSS would have to be checked against
6072                  * the XSS exit bitmap in vmcs12.
6073                  */
6074                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6075         case EXIT_REASON_UMWAIT:
6076         case EXIT_REASON_TPAUSE:
6077                 return nested_cpu_has2(vmcs12,
6078                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6079         case EXIT_REASON_ENCLS:
6080                 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6081         default:
6082                 return true;
6083         }
6084 }
6085
6086 /*
6087  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6088  * reflected into L1.
6089  */
6090 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6091 {
6092         struct vcpu_vmx *vmx = to_vmx(vcpu);
6093         union vmx_exit_reason exit_reason = vmx->exit_reason;
6094         unsigned long exit_qual;
6095         u32 exit_intr_info;
6096
6097         WARN_ON_ONCE(vmx->nested.nested_run_pending);
6098
6099         /*
6100          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6101          * has already loaded L2's state.
6102          */
6103         if (unlikely(vmx->fail)) {
6104                 trace_kvm_nested_vmenter_failed(
6105                         "hardware VM-instruction error: ",
6106                         vmcs_read32(VM_INSTRUCTION_ERROR));
6107                 exit_intr_info = 0;
6108                 exit_qual = 0;
6109                 goto reflect_vmexit;
6110         }
6111
6112         trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6113
6114         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6115         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6116                 return false;
6117
6118         /* If L1 doesn't want the exit, handle it in L0. */
6119         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6120                 return false;
6121
6122         /*
6123          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6124          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6125          * need to be synthesized by querying the in-kernel LAPIC, but external
6126          * interrupts are never reflected to L1 so it's a non-issue.
6127          */
6128         exit_intr_info = vmx_get_intr_info(vcpu);
6129         if (is_exception_with_error_code(exit_intr_info)) {
6130                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6131
6132                 vmcs12->vm_exit_intr_error_code =
6133                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6134         }
6135         exit_qual = vmx_get_exit_qual(vcpu);
6136
6137 reflect_vmexit:
6138         nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6139         return true;
6140 }
6141
6142 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6143                                 struct kvm_nested_state __user *user_kvm_nested_state,
6144                                 u32 user_data_size)
6145 {
6146         struct vcpu_vmx *vmx;
6147         struct vmcs12 *vmcs12;
6148         struct kvm_nested_state kvm_state = {
6149                 .flags = 0,
6150                 .format = KVM_STATE_NESTED_FORMAT_VMX,
6151                 .size = sizeof(kvm_state),
6152                 .hdr.vmx.flags = 0,
6153                 .hdr.vmx.vmxon_pa = INVALID_GPA,
6154                 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6155                 .hdr.vmx.preemption_timer_deadline = 0,
6156         };
6157         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6158                 &user_kvm_nested_state->data.vmx[0];
6159
6160         if (!vcpu)
6161                 return kvm_state.size + sizeof(*user_vmx_nested_state);
6162
6163         vmx = to_vmx(vcpu);
6164         vmcs12 = get_vmcs12(vcpu);
6165
6166         if (nested_vmx_allowed(vcpu) &&
6167             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6168                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6169                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6170
6171                 if (vmx_has_valid_vmcs12(vcpu)) {
6172                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6173
6174                         /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6175                         if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6176                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6177
6178                         if (is_guest_mode(vcpu) &&
6179                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6180                             vmcs12->vmcs_link_pointer != INVALID_GPA)
6181                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6182                 }
6183
6184                 if (vmx->nested.smm.vmxon)
6185                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6186
6187                 if (vmx->nested.smm.guest_mode)
6188                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6189
6190                 if (is_guest_mode(vcpu)) {
6191                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6192
6193                         if (vmx->nested.nested_run_pending)
6194                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6195
6196                         if (vmx->nested.mtf_pending)
6197                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6198
6199                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6200                             vmx->nested.has_preemption_timer_deadline) {
6201                                 kvm_state.hdr.vmx.flags |=
6202                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6203                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6204                                         vmx->nested.preemption_timer_deadline;
6205                         }
6206                 }
6207         }
6208
6209         if (user_data_size < kvm_state.size)
6210                 goto out;
6211
6212         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6213                 return -EFAULT;
6214
6215         if (!vmx_has_valid_vmcs12(vcpu))
6216                 goto out;
6217
6218         /*
6219          * When running L2, the authoritative vmcs12 state is in the
6220          * vmcs02. When running L1, the authoritative vmcs12 state is
6221          * in the shadow or enlightened vmcs linked to vmcs01, unless
6222          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6223          * vmcs12 state is in the vmcs12 already.
6224          */
6225         if (is_guest_mode(vcpu)) {
6226                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6227                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6228         } else  {
6229                 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6230                 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6231                         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6232                                 /*
6233                                  * L1 hypervisor is not obliged to keep eVMCS
6234                                  * clean fields data always up-to-date while
6235                                  * not in guest mode, 'hv_clean_fields' is only
6236                                  * supposed to be actual upon vmentry so we need
6237                                  * to ignore it here and do full copy.
6238                                  */
6239                                 copy_enlightened_to_vmcs12(vmx, 0);
6240                         else if (enable_shadow_vmcs)
6241                                 copy_shadow_to_vmcs12(vmx);
6242                 }
6243         }
6244
6245         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6246         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6247
6248         /*
6249          * Copy over the full allocated size of vmcs12 rather than just the size
6250          * of the struct.
6251          */
6252         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6253                 return -EFAULT;
6254
6255         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6256             vmcs12->vmcs_link_pointer != INVALID_GPA) {
6257                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6258                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6259                         return -EFAULT;
6260         }
6261 out:
6262         return kvm_state.size;
6263 }
6264
6265 /*
6266  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6267  */
6268 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6269 {
6270         if (is_guest_mode(vcpu)) {
6271                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6272                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6273         }
6274         free_nested(vcpu);
6275 }
6276
6277 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6278                                 struct kvm_nested_state __user *user_kvm_nested_state,
6279                                 struct kvm_nested_state *kvm_state)
6280 {
6281         struct vcpu_vmx *vmx = to_vmx(vcpu);
6282         struct vmcs12 *vmcs12;
6283         enum vm_entry_failure_code ignored;
6284         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6285                 &user_kvm_nested_state->data.vmx[0];
6286         int ret;
6287
6288         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6289                 return -EINVAL;
6290
6291         if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6292                 if (kvm_state->hdr.vmx.smm.flags)
6293                         return -EINVAL;
6294
6295                 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6296                         return -EINVAL;
6297
6298                 /*
6299                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6300                  * enable eVMCS capability on vCPU. However, since then
6301                  * code was changed such that flag signals vmcs12 should
6302                  * be copied into eVMCS in guest memory.
6303                  *
6304                  * To preserve backwards compatability, allow user
6305                  * to set this flag even when there is no VMXON region.
6306                  */
6307                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6308                         return -EINVAL;
6309         } else {
6310                 if (!nested_vmx_allowed(vcpu))
6311                         return -EINVAL;
6312
6313                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6314                         return -EINVAL;
6315         }
6316
6317         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6318             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6319                 return -EINVAL;
6320
6321         if (kvm_state->hdr.vmx.smm.flags &
6322             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6323                 return -EINVAL;
6324
6325         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6326                 return -EINVAL;
6327
6328         /*
6329          * SMM temporarily disables VMX, so we cannot be in guest mode,
6330          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6331          * must be zero.
6332          */
6333         if (is_smm(vcpu) ?
6334                 (kvm_state->flags &
6335                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6336                 : kvm_state->hdr.vmx.smm.flags)
6337                 return -EINVAL;
6338
6339         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6340             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6341                 return -EINVAL;
6342
6343         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6344                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6345                         return -EINVAL;
6346
6347         vmx_leave_nested(vcpu);
6348
6349         if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6350                 return 0;
6351
6352         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6353         ret = enter_vmx_operation(vcpu);
6354         if (ret)
6355                 return ret;
6356
6357         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6358         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6359                 /* See vmx_has_valid_vmcs12.  */
6360                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6361                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6362                     (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6363                         return -EINVAL;
6364                 else
6365                         return 0;
6366         }
6367
6368         if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6369                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6370                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6371                         return -EINVAL;
6372
6373                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6374         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6375                 /*
6376                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6377                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6378                  * restored yet. EVMCS will be mapped from
6379                  * nested_get_vmcs12_pages().
6380                  */
6381                 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6382                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6383         } else {
6384                 return -EINVAL;
6385         }
6386
6387         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6388                 vmx->nested.smm.vmxon = true;
6389                 vmx->nested.vmxon = false;
6390
6391                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6392                         vmx->nested.smm.guest_mode = true;
6393         }
6394
6395         vmcs12 = get_vmcs12(vcpu);
6396         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6397                 return -EFAULT;
6398
6399         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6400                 return -EINVAL;
6401
6402         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6403                 return 0;
6404
6405         vmx->nested.nested_run_pending =
6406                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6407
6408         vmx->nested.mtf_pending =
6409                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6410
6411         ret = -EINVAL;
6412         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6413             vmcs12->vmcs_link_pointer != INVALID_GPA) {
6414                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6415
6416                 if (kvm_state->size <
6417                     sizeof(*kvm_state) +
6418                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6419                         goto error_guest_mode;
6420
6421                 if (copy_from_user(shadow_vmcs12,
6422                                    user_vmx_nested_state->shadow_vmcs12,
6423                                    sizeof(*shadow_vmcs12))) {
6424                         ret = -EFAULT;
6425                         goto error_guest_mode;
6426                 }
6427
6428                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6429                     !shadow_vmcs12->hdr.shadow_vmcs)
6430                         goto error_guest_mode;
6431         }
6432
6433         vmx->nested.has_preemption_timer_deadline = false;
6434         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6435                 vmx->nested.has_preemption_timer_deadline = true;
6436                 vmx->nested.preemption_timer_deadline =
6437                         kvm_state->hdr.vmx.preemption_timer_deadline;
6438         }
6439
6440         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6441             nested_vmx_check_host_state(vcpu, vmcs12) ||
6442             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6443                 goto error_guest_mode;
6444
6445         vmx->nested.dirty_vmcs12 = true;
6446         vmx->nested.force_msr_bitmap_recalc = true;
6447         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6448         if (ret)
6449                 goto error_guest_mode;
6450
6451         return 0;
6452
6453 error_guest_mode:
6454         vmx->nested.nested_run_pending = 0;
6455         return ret;
6456 }
6457
6458 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6459 {
6460         if (enable_shadow_vmcs) {
6461                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6462                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6463         }
6464 }
6465
6466 /*
6467  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6468  * that madness to get the encoding for comparison.
6469  */
6470 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6471
6472 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6473 {
6474         /*
6475          * Note these are the so called "index" of the VMCS field encoding, not
6476          * the index into vmcs12.
6477          */
6478         unsigned int max_idx, idx;
6479         int i;
6480
6481         /*
6482          * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6483          * vmcs12, regardless of whether or not the associated feature is
6484          * exposed to L1.  Simply find the field with the highest index.
6485          */
6486         max_idx = 0;
6487         for (i = 0; i < nr_vmcs12_fields; i++) {
6488                 /* The vmcs12 table is very, very sparsely populated. */
6489                 if (!vmcs12_field_offsets[i])
6490                         continue;
6491
6492                 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6493                 if (idx > max_idx)
6494                         max_idx = idx;
6495         }
6496
6497         return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6498 }
6499
6500 /*
6501  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6502  * returned for the various VMX controls MSRs when nested VMX is enabled.
6503  * The same values should also be used to verify that vmcs12 control fields are
6504  * valid during nested entry from L1 to L2.
6505  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6506  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6507  * bit in the high half is on if the corresponding bit in the control field
6508  * may be on. See also vmx_control_verify().
6509  */
6510 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6511 {
6512         /*
6513          * Note that as a general rule, the high half of the MSRs (bits in
6514          * the control fields which may be 1) should be initialized by the
6515          * intersection of the underlying hardware's MSR (i.e., features which
6516          * can be supported) and the list of features we want to expose -
6517          * because they are known to be properly supported in our code.
6518          * Also, usually, the low half of the MSRs (bits which must be 1) can
6519          * be set to 0, meaning that L1 may turn off any of these bits. The
6520          * reason is that if one of these bits is necessary, it will appear
6521          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6522          * fields of vmcs01 and vmcs02, will turn these bits off - and
6523          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6524          * These rules have exceptions below.
6525          */
6526
6527         /* pin-based controls */
6528         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6529                 msrs->pinbased_ctls_low,
6530                 msrs->pinbased_ctls_high);
6531         msrs->pinbased_ctls_low |=
6532                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6533         msrs->pinbased_ctls_high &=
6534                 PIN_BASED_EXT_INTR_MASK |
6535                 PIN_BASED_NMI_EXITING |
6536                 PIN_BASED_VIRTUAL_NMIS |
6537                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6538         msrs->pinbased_ctls_high |=
6539                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6540                 PIN_BASED_VMX_PREEMPTION_TIMER;
6541
6542         /* exit controls */
6543         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6544                 msrs->exit_ctls_low,
6545                 msrs->exit_ctls_high);
6546         msrs->exit_ctls_low =
6547                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6548
6549         msrs->exit_ctls_high &=
6550 #ifdef CONFIG_X86_64
6551                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6552 #endif
6553                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6554                 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6555         msrs->exit_ctls_high |=
6556                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6557                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6558                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6559
6560         /* We support free control of debug control saving. */
6561         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6562
6563         /* entry controls */
6564         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6565                 msrs->entry_ctls_low,
6566                 msrs->entry_ctls_high);
6567         msrs->entry_ctls_low =
6568                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6569         msrs->entry_ctls_high &=
6570 #ifdef CONFIG_X86_64
6571                 VM_ENTRY_IA32E_MODE |
6572 #endif
6573                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6574                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6575         msrs->entry_ctls_high |=
6576                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6577
6578         /* We support free control of debug control loading. */
6579         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6580
6581         /* cpu-based controls */
6582         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6583                 msrs->procbased_ctls_low,
6584                 msrs->procbased_ctls_high);
6585         msrs->procbased_ctls_low =
6586                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6587         msrs->procbased_ctls_high &=
6588                 CPU_BASED_INTR_WINDOW_EXITING |
6589                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6590                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6591                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6592                 CPU_BASED_CR3_STORE_EXITING |
6593 #ifdef CONFIG_X86_64
6594                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6595 #endif
6596                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6597                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6598                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6599                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6600                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6601         /*
6602          * We can allow some features even when not supported by the
6603          * hardware. For example, L1 can specify an MSR bitmap - and we
6604          * can use it to avoid exits to L1 - even when L0 runs L2
6605          * without MSR bitmaps.
6606          */
6607         msrs->procbased_ctls_high |=
6608                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6609                 CPU_BASED_USE_MSR_BITMAPS;
6610
6611         /* We support free control of CR3 access interception. */
6612         msrs->procbased_ctls_low &=
6613                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6614
6615         /*
6616          * secondary cpu-based controls.  Do not include those that
6617          * depend on CPUID bits, they are added later by
6618          * vmx_vcpu_after_set_cpuid.
6619          */
6620         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6621                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6622                       msrs->secondary_ctls_low,
6623                       msrs->secondary_ctls_high);
6624
6625         msrs->secondary_ctls_low = 0;
6626         msrs->secondary_ctls_high &=
6627                 SECONDARY_EXEC_DESC |
6628                 SECONDARY_EXEC_ENABLE_RDTSCP |
6629                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6630                 SECONDARY_EXEC_WBINVD_EXITING |
6631                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6632                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6633                 SECONDARY_EXEC_RDRAND_EXITING |
6634                 SECONDARY_EXEC_ENABLE_INVPCID |
6635                 SECONDARY_EXEC_RDSEED_EXITING |
6636                 SECONDARY_EXEC_XSAVES |
6637                 SECONDARY_EXEC_TSC_SCALING;
6638
6639         /*
6640          * We can emulate "VMCS shadowing," even if the hardware
6641          * doesn't support it.
6642          */
6643         msrs->secondary_ctls_high |=
6644                 SECONDARY_EXEC_SHADOW_VMCS;
6645
6646         if (enable_ept) {
6647                 /* nested EPT: emulate EPT also to L1 */
6648                 msrs->secondary_ctls_high |=
6649                         SECONDARY_EXEC_ENABLE_EPT;
6650                 msrs->ept_caps =
6651                         VMX_EPT_PAGE_WALK_4_BIT |
6652                         VMX_EPT_PAGE_WALK_5_BIT |
6653                         VMX_EPTP_WB_BIT |
6654                         VMX_EPT_INVEPT_BIT |
6655                         VMX_EPT_EXECUTE_ONLY_BIT;
6656
6657                 msrs->ept_caps &= ept_caps;
6658                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6659                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6660                         VMX_EPT_1GB_PAGE_BIT;
6661                 if (enable_ept_ad_bits) {
6662                         msrs->secondary_ctls_high |=
6663                                 SECONDARY_EXEC_ENABLE_PML;
6664                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6665                 }
6666         }
6667
6668         if (cpu_has_vmx_vmfunc()) {
6669                 msrs->secondary_ctls_high |=
6670                         SECONDARY_EXEC_ENABLE_VMFUNC;
6671                 /*
6672                  * Advertise EPTP switching unconditionally
6673                  * since we emulate it
6674                  */
6675                 if (enable_ept)
6676                         msrs->vmfunc_controls =
6677                                 VMX_VMFUNC_EPTP_SWITCHING;
6678         }
6679
6680         /*
6681          * Old versions of KVM use the single-context version without
6682          * checking for support, so declare that it is supported even
6683          * though it is treated as global context.  The alternative is
6684          * not failing the single-context invvpid, and it is worse.
6685          */
6686         if (enable_vpid) {
6687                 msrs->secondary_ctls_high |=
6688                         SECONDARY_EXEC_ENABLE_VPID;
6689                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6690                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6691         }
6692
6693         if (enable_unrestricted_guest)
6694                 msrs->secondary_ctls_high |=
6695                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6696
6697         if (flexpriority_enabled)
6698                 msrs->secondary_ctls_high |=
6699                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6700
6701         if (enable_sgx)
6702                 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6703
6704         /* miscellaneous data */
6705         rdmsr(MSR_IA32_VMX_MISC,
6706                 msrs->misc_low,
6707                 msrs->misc_high);
6708         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6709         msrs->misc_low |=
6710                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6711                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6712                 VMX_MISC_ACTIVITY_HLT |
6713                 VMX_MISC_ACTIVITY_WAIT_SIPI;
6714         msrs->misc_high = 0;
6715
6716         /*
6717          * This MSR reports some information about VMX support. We
6718          * should return information about the VMX we emulate for the
6719          * guest, and the VMCS structure we give it - not about the
6720          * VMX support of the underlying hardware.
6721          */
6722         msrs->basic =
6723                 VMCS12_REVISION |
6724                 VMX_BASIC_TRUE_CTLS |
6725                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6726                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6727
6728         if (cpu_has_vmx_basic_inout())
6729                 msrs->basic |= VMX_BASIC_INOUT;
6730
6731         /*
6732          * These MSRs specify bits which the guest must keep fixed on
6733          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6734          * We picked the standard core2 setting.
6735          */
6736 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6737 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6738         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6739         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6740
6741         /* These MSRs specify bits which the guest must keep fixed off. */
6742         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6743         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6744
6745         msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6746 }
6747
6748 void nested_vmx_hardware_unsetup(void)
6749 {
6750         int i;
6751
6752         if (enable_shadow_vmcs) {
6753                 for (i = 0; i < VMX_BITMAP_NR; i++)
6754                         free_page((unsigned long)vmx_bitmap[i]);
6755         }
6756 }
6757
6758 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6759 {
6760         int i;
6761
6762         if (!cpu_has_vmx_shadow_vmcs())
6763                 enable_shadow_vmcs = 0;
6764         if (enable_shadow_vmcs) {
6765                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6766                         /*
6767                          * The vmx_bitmap is not tied to a VM and so should
6768                          * not be charged to a memcg.
6769                          */
6770                         vmx_bitmap[i] = (unsigned long *)
6771                                 __get_free_page(GFP_KERNEL);
6772                         if (!vmx_bitmap[i]) {
6773                                 nested_vmx_hardware_unsetup();
6774                                 return -ENOMEM;
6775                         }
6776                 }
6777
6778                 init_vmcs_shadow_fields();
6779         }
6780
6781         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6782         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6783         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6784         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6785         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6786         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6787         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6788         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6789         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6790         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6791         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6792         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6793
6794         return 0;
6795 }
6796
6797 struct kvm_x86_nested_ops vmx_nested_ops = {
6798         .leave_nested = vmx_leave_nested,
6799         .check_events = vmx_check_nested_events,
6800         .hv_timer_pending = nested_vmx_preemption_timer_pending,
6801         .triple_fault = nested_vmx_triple_fault,
6802         .get_state = vmx_get_nested_state,
6803         .set_state = vmx_set_nested_state,
6804         .get_nested_state_pages = vmx_get_nested_state_pages,
6805         .write_log_dirty = nested_vmx_write_pml_buffer,
6806         .enable_evmcs = nested_enable_evmcs,
6807         .get_evmcs_version = nested_get_evmcs_version,
6808 };