89af692deb7ef34bff7f9bd1f5bb3bebe09ef77d
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "x86.h"
16
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
19
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
22
23 #define CC(consistency_check)                                           \
24 ({                                                                      \
25         bool failed = (consistency_check);                              \
26         if (failed)                                                     \
27                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
28         failed;                                                         \
29 })
30
31 /*
32  * Hyper-V requires all of these, so mark them as supported even though
33  * they are just treated the same as all-context.
34  */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
36         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
37         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
39         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42
43 enum {
44         VMX_VMREAD_BITMAP,
45         VMX_VMWRITE_BITMAP,
46         VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49
50 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
52
53 struct shadow_vmcs_field {
54         u16     encoding;
55         u16     offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62         ARRAY_SIZE(shadow_read_only_fields);
63
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69         ARRAY_SIZE(shadow_read_write_fields);
70
71 static void init_vmcs_shadow_fields(void)
72 {
73         int i, j;
74
75         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77
78         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80                 u16 field = entry.encoding;
81
82                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83                     (i + 1 == max_shadow_read_only_fields ||
84                      shadow_read_only_fields[i + 1].encoding != field + 1))
85                         pr_err("Missing field from shadow_read_only_field %x\n",
86                                field + 1);
87
88                 clear_bit(field, vmx_vmread_bitmap);
89                 if (field & 1)
90 #ifdef CONFIG_X86_64
91                         continue;
92 #else
93                         entry.offset += sizeof(u32);
94 #endif
95                 shadow_read_only_fields[j++] = entry;
96         }
97         max_shadow_read_only_fields = j;
98
99         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101                 u16 field = entry.encoding;
102
103                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104                     (i + 1 == max_shadow_read_write_fields ||
105                      shadow_read_write_fields[i + 1].encoding != field + 1))
106                         pr_err("Missing field from shadow_read_write_field %x\n",
107                                field + 1);
108
109                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110                           field <= GUEST_TR_AR_BYTES,
111                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112
113                 /*
114                  * PML and the preemption timer can be emulated, but the
115                  * processor cannot vmwrite to fields that don't exist
116                  * on bare metal.
117                  */
118                 switch (field) {
119                 case GUEST_PML_INDEX:
120                         if (!cpu_has_vmx_pml())
121                                 continue;
122                         break;
123                 case VMX_PREEMPTION_TIMER_VALUE:
124                         if (!cpu_has_vmx_preemption_timer())
125                                 continue;
126                         break;
127                 case GUEST_INTR_STATUS:
128                         if (!cpu_has_vmx_apicv())
129                                 continue;
130                         break;
131                 default:
132                         break;
133                 }
134
135                 clear_bit(field, vmx_vmwrite_bitmap);
136                 clear_bit(field, vmx_vmread_bitmap);
137                 if (field & 1)
138 #ifdef CONFIG_X86_64
139                         continue;
140 #else
141                         entry.offset += sizeof(u32);
142 #endif
143                 shadow_read_write_fields[j++] = entry;
144         }
145         max_shadow_read_write_fields = j;
146 }
147
148 /*
149  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150  * set the success or error code of an emulated VMX instruction (as specified
151  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152  * instruction.
153  */
154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159         return kvm_skip_emulated_instruction(vcpu);
160 }
161
162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_CF);
168         return kvm_skip_emulated_instruction(vcpu);
169 }
170
171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172                                 u32 vm_instruction_error)
173 {
174         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
175                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
176                             X86_EFLAGS_SF | X86_EFLAGS_OF))
177                         | X86_EFLAGS_ZF);
178         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
179         /*
180          * We don't need to force a shadow sync because
181          * VM_INSTRUCTION_ERROR is not shadowed
182          */
183         return kvm_skip_emulated_instruction(vcpu);
184 }
185
186 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
187 {
188         struct vcpu_vmx *vmx = to_vmx(vcpu);
189
190         /*
191          * failValid writes the error number to the current VMCS, which
192          * can't be done if there isn't a current VMCS.
193          */
194         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
195                 return nested_vmx_failInvalid(vcpu);
196
197         return nested_vmx_failValid(vcpu, vm_instruction_error);
198 }
199
200 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
201 {
202         /* TODO: not to reset guest simply here. */
203         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
204         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
205 }
206
207 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
208 {
209         return fixed_bits_valid(control, low, high);
210 }
211
212 static inline u64 vmx_control_msr(u32 low, u32 high)
213 {
214         return low | ((u64)high << 32);
215 }
216
217 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
218 {
219         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
220         vmcs_write64(VMCS_LINK_POINTER, -1ull);
221         vmx->nested.need_vmcs12_to_shadow_sync = false;
222 }
223
224 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
225 {
226         struct vcpu_vmx *vmx = to_vmx(vcpu);
227
228         if (!vmx->nested.hv_evmcs)
229                 return;
230
231         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
232         vmx->nested.hv_evmcs_vmptr = 0;
233         vmx->nested.hv_evmcs = NULL;
234 }
235
236 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
237                                      struct loaded_vmcs *prev)
238 {
239         struct vmcs_host_state *dest, *src;
240
241         if (unlikely(!vmx->guest_state_loaded))
242                 return;
243
244         src = &prev->host_state;
245         dest = &vmx->loaded_vmcs->host_state;
246
247         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
248         dest->ldt_sel = src->ldt_sel;
249 #ifdef CONFIG_X86_64
250         dest->ds_sel = src->ds_sel;
251         dest->es_sel = src->es_sel;
252 #endif
253 }
254
255 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
256 {
257         struct vcpu_vmx *vmx = to_vmx(vcpu);
258         struct loaded_vmcs *prev;
259         int cpu;
260
261         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
262                 return;
263
264         cpu = get_cpu();
265         prev = vmx->loaded_vmcs;
266         vmx->loaded_vmcs = vmcs;
267         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
268         vmx_sync_vmcs_host_state(vmx, prev);
269         put_cpu();
270
271         vmx_register_cache_reset(vcpu);
272 }
273
274 /*
275  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
276  * just stops using VMX.
277  */
278 static void free_nested(struct kvm_vcpu *vcpu)
279 {
280         struct vcpu_vmx *vmx = to_vmx(vcpu);
281
282         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
283                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
284
285         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
286                 return;
287
288         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
289
290         vmx->nested.vmxon = false;
291         vmx->nested.smm.vmxon = false;
292         free_vpid(vmx->nested.vpid02);
293         vmx->nested.posted_intr_nv = -1;
294         vmx->nested.current_vmptr = -1ull;
295         if (enable_shadow_vmcs) {
296                 vmx_disable_shadow_vmcs(vmx);
297                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
298                 free_vmcs(vmx->vmcs01.shadow_vmcs);
299                 vmx->vmcs01.shadow_vmcs = NULL;
300         }
301         kfree(vmx->nested.cached_vmcs12);
302         vmx->nested.cached_vmcs12 = NULL;
303         kfree(vmx->nested.cached_shadow_vmcs12);
304         vmx->nested.cached_shadow_vmcs12 = NULL;
305         /* Unpin physical memory we referred to in the vmcs02 */
306         if (vmx->nested.apic_access_page) {
307                 kvm_release_page_clean(vmx->nested.apic_access_page);
308                 vmx->nested.apic_access_page = NULL;
309         }
310         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
311         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
312         vmx->nested.pi_desc = NULL;
313
314         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
315
316         nested_release_evmcs(vcpu);
317
318         free_loaded_vmcs(&vmx->nested.vmcs02);
319 }
320
321 /*
322  * Ensure that the current vmcs of the logical processor is the
323  * vmcs01 of the vcpu before calling free_nested().
324  */
325 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
326 {
327         vcpu_load(vcpu);
328         vmx_leave_nested(vcpu);
329         vcpu_put(vcpu);
330 }
331
332 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
333                 struct x86_exception *fault)
334 {
335         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
336         struct vcpu_vmx *vmx = to_vmx(vcpu);
337         u32 vm_exit_reason;
338         unsigned long exit_qualification = vcpu->arch.exit_qualification;
339
340         if (vmx->nested.pml_full) {
341                 vm_exit_reason = EXIT_REASON_PML_FULL;
342                 vmx->nested.pml_full = false;
343                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
344         } else if (fault->error_code & PFERR_RSVD_MASK)
345                 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
346         else
347                 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
348
349         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
350         vmcs12->guest_physical_address = fault->address;
351 }
352
353 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
354 {
355         WARN_ON(mmu_is_nested(vcpu));
356
357         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
358         kvm_init_shadow_ept_mmu(vcpu,
359                         to_vmx(vcpu)->nested.msrs.ept_caps &
360                         VMX_EPT_EXECUTE_ONLY_BIT,
361                         nested_ept_ad_enabled(vcpu),
362                         nested_ept_get_eptp(vcpu));
363         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
364         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
365         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
366
367         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
368 }
369
370 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
371 {
372         vcpu->arch.mmu = &vcpu->arch.root_mmu;
373         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
374 }
375
376 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
377                                             u16 error_code)
378 {
379         bool inequality, bit;
380
381         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
382         inequality =
383                 (error_code & vmcs12->page_fault_error_code_mask) !=
384                  vmcs12->page_fault_error_code_match;
385         return inequality ^ bit;
386 }
387
388
389 /*
390  * KVM wants to inject page-faults which it got to the guest. This function
391  * checks whether in a nested guest, we need to inject them to L1 or L2.
392  */
393 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
394 {
395         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
396         unsigned int nr = vcpu->arch.exception.nr;
397         bool has_payload = vcpu->arch.exception.has_payload;
398         unsigned long payload = vcpu->arch.exception.payload;
399
400         if (nr == PF_VECTOR) {
401                 if (vcpu->arch.exception.nested_apf) {
402                         *exit_qual = vcpu->arch.apf.nested_apf_token;
403                         return 1;
404                 }
405                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
406                                                     vcpu->arch.exception.error_code)) {
407                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
408                         return 1;
409                 }
410         } else if (vmcs12->exception_bitmap & (1u << nr)) {
411                 if (nr == DB_VECTOR) {
412                         if (!has_payload) {
413                                 payload = vcpu->arch.dr6;
414                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
415                                 payload ^= DR6_RTM;
416                         }
417                         *exit_qual = payload;
418                 } else
419                         *exit_qual = 0;
420                 return 1;
421         }
422
423         return 0;
424 }
425
426
427 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
428                 struct x86_exception *fault)
429 {
430         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
431
432         WARN_ON(!is_guest_mode(vcpu));
433
434         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
435                 !to_vmx(vcpu)->nested.nested_run_pending) {
436                 vmcs12->vm_exit_intr_error_code = fault->error_code;
437                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
438                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
439                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
440                                   fault->address);
441         } else {
442                 kvm_inject_page_fault(vcpu, fault);
443         }
444 }
445
446 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
447                                                struct vmcs12 *vmcs12)
448 {
449         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
450                 return 0;
451
452         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
453             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
454                 return -EINVAL;
455
456         return 0;
457 }
458
459 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
460                                                 struct vmcs12 *vmcs12)
461 {
462         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
463                 return 0;
464
465         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
466                 return -EINVAL;
467
468         return 0;
469 }
470
471 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
472                                                 struct vmcs12 *vmcs12)
473 {
474         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
475                 return 0;
476
477         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
478                 return -EINVAL;
479
480         return 0;
481 }
482
483 /*
484  * Check if MSR is intercepted for L01 MSR bitmap.
485  */
486 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
487 {
488         unsigned long *msr_bitmap;
489         int f = sizeof(unsigned long);
490
491         if (!cpu_has_vmx_msr_bitmap())
492                 return true;
493
494         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
495
496         if (msr <= 0x1fff) {
497                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
498         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
499                 msr &= 0x1fff;
500                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
501         }
502
503         return true;
504 }
505
506 /*
507  * If a msr is allowed by L0, we should check whether it is allowed by L1.
508  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
509  */
510 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
511                                                unsigned long *msr_bitmap_nested,
512                                                u32 msr, int type)
513 {
514         int f = sizeof(unsigned long);
515
516         /*
517          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
518          * have the write-low and read-high bitmap offsets the wrong way round.
519          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
520          */
521         if (msr <= 0x1fff) {
522                 if (type & MSR_TYPE_R &&
523                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
524                         /* read-low */
525                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
526
527                 if (type & MSR_TYPE_W &&
528                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
529                         /* write-low */
530                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
531
532         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
533                 msr &= 0x1fff;
534                 if (type & MSR_TYPE_R &&
535                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
536                         /* read-high */
537                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
538
539                 if (type & MSR_TYPE_W &&
540                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
541                         /* write-high */
542                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
543
544         }
545 }
546
547 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
548 {
549         int msr;
550
551         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
552                 unsigned word = msr / BITS_PER_LONG;
553
554                 msr_bitmap[word] = ~0;
555                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
556         }
557 }
558
559 /*
560  * Merge L0's and L1's MSR bitmap, return false to indicate that
561  * we do not use the hardware.
562  */
563 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
564                                                  struct vmcs12 *vmcs12)
565 {
566         int msr;
567         unsigned long *msr_bitmap_l1;
568         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
569         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
570
571         /* Nothing to do if the MSR bitmap is not in use.  */
572         if (!cpu_has_vmx_msr_bitmap() ||
573             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
574                 return false;
575
576         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
577                 return false;
578
579         msr_bitmap_l1 = (unsigned long *)map->hva;
580
581         /*
582          * To keep the control flow simple, pay eight 8-byte writes (sixteen
583          * 4-byte writes on 32-bit systems) up front to enable intercepts for
584          * the x2APIC MSR range and selectively disable them below.
585          */
586         enable_x2apic_msr_intercepts(msr_bitmap_l0);
587
588         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
589                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
590                         /*
591                          * L0 need not intercept reads for MSRs between 0x800
592                          * and 0x8ff, it just lets the processor take the value
593                          * from the virtual-APIC page; take those 256 bits
594                          * directly from the L1 bitmap.
595                          */
596                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
597                                 unsigned word = msr / BITS_PER_LONG;
598
599                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
600                         }
601                 }
602
603                 nested_vmx_disable_intercept_for_msr(
604                         msr_bitmap_l1, msr_bitmap_l0,
605                         X2APIC_MSR(APIC_TASKPRI),
606                         MSR_TYPE_R | MSR_TYPE_W);
607
608                 if (nested_cpu_has_vid(vmcs12)) {
609                         nested_vmx_disable_intercept_for_msr(
610                                 msr_bitmap_l1, msr_bitmap_l0,
611                                 X2APIC_MSR(APIC_EOI),
612                                 MSR_TYPE_W);
613                         nested_vmx_disable_intercept_for_msr(
614                                 msr_bitmap_l1, msr_bitmap_l0,
615                                 X2APIC_MSR(APIC_SELF_IPI),
616                                 MSR_TYPE_W);
617                 }
618         }
619
620         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
621         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
622                                              MSR_FS_BASE, MSR_TYPE_RW);
623
624         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
625                                              MSR_GS_BASE, MSR_TYPE_RW);
626
627         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
628                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
629
630         /*
631          * Checking the L0->L1 bitmap is trying to verify two things:
632          *
633          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
634          *    ensures that we do not accidentally generate an L02 MSR bitmap
635          *    from the L12 MSR bitmap that is too permissive.
636          * 2. That L1 or L2s have actually used the MSR. This avoids
637          *    unnecessarily merging of the bitmap if the MSR is unused. This
638          *    works properly because we only update the L01 MSR bitmap lazily.
639          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
640          *    updated to reflect this when L1 (or its L2s) actually write to
641          *    the MSR.
642          */
643         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
644                 nested_vmx_disable_intercept_for_msr(
645                                         msr_bitmap_l1, msr_bitmap_l0,
646                                         MSR_IA32_SPEC_CTRL,
647                                         MSR_TYPE_R | MSR_TYPE_W);
648
649         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
650                 nested_vmx_disable_intercept_for_msr(
651                                         msr_bitmap_l1, msr_bitmap_l0,
652                                         MSR_IA32_PRED_CMD,
653                                         MSR_TYPE_W);
654
655         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
656
657         return true;
658 }
659
660 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
661                                        struct vmcs12 *vmcs12)
662 {
663         struct kvm_host_map map;
664         struct vmcs12 *shadow;
665
666         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
667             vmcs12->vmcs_link_pointer == -1ull)
668                 return;
669
670         shadow = get_shadow_vmcs12(vcpu);
671
672         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
673                 return;
674
675         memcpy(shadow, map.hva, VMCS12_SIZE);
676         kvm_vcpu_unmap(vcpu, &map, false);
677 }
678
679 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
680                                               struct vmcs12 *vmcs12)
681 {
682         struct vcpu_vmx *vmx = to_vmx(vcpu);
683
684         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
685             vmcs12->vmcs_link_pointer == -1ull)
686                 return;
687
688         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
689                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
690 }
691
692 /*
693  * In nested virtualization, check if L1 has set
694  * VM_EXIT_ACK_INTR_ON_EXIT
695  */
696 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
697 {
698         return get_vmcs12(vcpu)->vm_exit_controls &
699                 VM_EXIT_ACK_INTR_ON_EXIT;
700 }
701
702 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
703                                           struct vmcs12 *vmcs12)
704 {
705         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
706             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
707                 return -EINVAL;
708         else
709                 return 0;
710 }
711
712 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
713                                            struct vmcs12 *vmcs12)
714 {
715         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
716             !nested_cpu_has_apic_reg_virt(vmcs12) &&
717             !nested_cpu_has_vid(vmcs12) &&
718             !nested_cpu_has_posted_intr(vmcs12))
719                 return 0;
720
721         /*
722          * If virtualize x2apic mode is enabled,
723          * virtualize apic access must be disabled.
724          */
725         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
726                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
727                 return -EINVAL;
728
729         /*
730          * If virtual interrupt delivery is enabled,
731          * we must exit on external interrupts.
732          */
733         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
734                 return -EINVAL;
735
736         /*
737          * bits 15:8 should be zero in posted_intr_nv,
738          * the descriptor address has been already checked
739          * in nested_get_vmcs12_pages.
740          *
741          * bits 5:0 of posted_intr_desc_addr should be zero.
742          */
743         if (nested_cpu_has_posted_intr(vmcs12) &&
744            (CC(!nested_cpu_has_vid(vmcs12)) ||
745             CC(!nested_exit_intr_ack_set(vcpu)) ||
746             CC((vmcs12->posted_intr_nv & 0xff00)) ||
747             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
748             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
749                 return -EINVAL;
750
751         /* tpr shadow is needed by all apicv features. */
752         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
753                 return -EINVAL;
754
755         return 0;
756 }
757
758 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
759                                        u32 count, u64 addr)
760 {
761         int maxphyaddr;
762
763         if (count == 0)
764                 return 0;
765         maxphyaddr = cpuid_maxphyaddr(vcpu);
766         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
767             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
768                 return -EINVAL;
769
770         return 0;
771 }
772
773 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
774                                                      struct vmcs12 *vmcs12)
775 {
776         if (CC(nested_vmx_check_msr_switch(vcpu,
777                                            vmcs12->vm_exit_msr_load_count,
778                                            vmcs12->vm_exit_msr_load_addr)) ||
779             CC(nested_vmx_check_msr_switch(vcpu,
780                                            vmcs12->vm_exit_msr_store_count,
781                                            vmcs12->vm_exit_msr_store_addr)))
782                 return -EINVAL;
783
784         return 0;
785 }
786
787 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
788                                                       struct vmcs12 *vmcs12)
789 {
790         if (CC(nested_vmx_check_msr_switch(vcpu,
791                                            vmcs12->vm_entry_msr_load_count,
792                                            vmcs12->vm_entry_msr_load_addr)))
793                 return -EINVAL;
794
795         return 0;
796 }
797
798 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
799                                          struct vmcs12 *vmcs12)
800 {
801         if (!nested_cpu_has_pml(vmcs12))
802                 return 0;
803
804         if (CC(!nested_cpu_has_ept(vmcs12)) ||
805             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
806                 return -EINVAL;
807
808         return 0;
809 }
810
811 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
812                                                         struct vmcs12 *vmcs12)
813 {
814         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
815                !nested_cpu_has_ept(vmcs12)))
816                 return -EINVAL;
817         return 0;
818 }
819
820 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
821                                                          struct vmcs12 *vmcs12)
822 {
823         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
824                !nested_cpu_has_ept(vmcs12)))
825                 return -EINVAL;
826         return 0;
827 }
828
829 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
830                                                  struct vmcs12 *vmcs12)
831 {
832         if (!nested_cpu_has_shadow_vmcs(vmcs12))
833                 return 0;
834
835         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
836             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
837                 return -EINVAL;
838
839         return 0;
840 }
841
842 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
843                                        struct vmx_msr_entry *e)
844 {
845         /* x2APIC MSR accesses are not allowed */
846         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
847                 return -EINVAL;
848         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
849             CC(e->index == MSR_IA32_UCODE_REV))
850                 return -EINVAL;
851         if (CC(e->reserved != 0))
852                 return -EINVAL;
853         return 0;
854 }
855
856 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
857                                      struct vmx_msr_entry *e)
858 {
859         if (CC(e->index == MSR_FS_BASE) ||
860             CC(e->index == MSR_GS_BASE) ||
861             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
862             nested_vmx_msr_check_common(vcpu, e))
863                 return -EINVAL;
864         return 0;
865 }
866
867 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
868                                       struct vmx_msr_entry *e)
869 {
870         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
871             nested_vmx_msr_check_common(vcpu, e))
872                 return -EINVAL;
873         return 0;
874 }
875
876 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
877 {
878         struct vcpu_vmx *vmx = to_vmx(vcpu);
879         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
880                                        vmx->nested.msrs.misc_high);
881
882         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
883 }
884
885 /*
886  * Load guest's/host's msr at nested entry/exit.
887  * return 0 for success, entry index for failure.
888  *
889  * One of the failure modes for MSR load/store is when a list exceeds the
890  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
891  * as possible, process all valid entries before failing rather than precheck
892  * for a capacity violation.
893  */
894 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
895 {
896         u32 i;
897         struct vmx_msr_entry e;
898         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
899
900         for (i = 0; i < count; i++) {
901                 if (unlikely(i >= max_msr_list_size))
902                         goto fail;
903
904                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
905                                         &e, sizeof(e))) {
906                         pr_debug_ratelimited(
907                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
908                                 __func__, i, gpa + i * sizeof(e));
909                         goto fail;
910                 }
911                 if (nested_vmx_load_msr_check(vcpu, &e)) {
912                         pr_debug_ratelimited(
913                                 "%s check failed (%u, 0x%x, 0x%x)\n",
914                                 __func__, i, e.index, e.reserved);
915                         goto fail;
916                 }
917                 if (kvm_set_msr(vcpu, e.index, e.value)) {
918                         pr_debug_ratelimited(
919                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
920                                 __func__, i, e.index, e.value);
921                         goto fail;
922                 }
923         }
924         return 0;
925 fail:
926         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
927         return i + 1;
928 }
929
930 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
931                                             u32 msr_index,
932                                             u64 *data)
933 {
934         struct vcpu_vmx *vmx = to_vmx(vcpu);
935
936         /*
937          * If the L0 hypervisor stored a more accurate value for the TSC that
938          * does not include the time taken for emulation of the L2->L1
939          * VM-exit in L0, use the more accurate value.
940          */
941         if (msr_index == MSR_IA32_TSC) {
942                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
943                                                     MSR_IA32_TSC);
944
945                 if (i >= 0) {
946                         u64 val = vmx->msr_autostore.guest.val[i].value;
947
948                         *data = kvm_read_l1_tsc(vcpu, val);
949                         return true;
950                 }
951         }
952
953         if (kvm_get_msr(vcpu, msr_index, data)) {
954                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
955                         msr_index);
956                 return false;
957         }
958         return true;
959 }
960
961 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
962                                      struct vmx_msr_entry *e)
963 {
964         if (kvm_vcpu_read_guest(vcpu,
965                                 gpa + i * sizeof(*e),
966                                 e, 2 * sizeof(u32))) {
967                 pr_debug_ratelimited(
968                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
969                         __func__, i, gpa + i * sizeof(*e));
970                 return false;
971         }
972         if (nested_vmx_store_msr_check(vcpu, e)) {
973                 pr_debug_ratelimited(
974                         "%s check failed (%u, 0x%x, 0x%x)\n",
975                         __func__, i, e->index, e->reserved);
976                 return false;
977         }
978         return true;
979 }
980
981 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
982 {
983         u64 data;
984         u32 i;
985         struct vmx_msr_entry e;
986         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
987
988         for (i = 0; i < count; i++) {
989                 if (unlikely(i >= max_msr_list_size))
990                         return -EINVAL;
991
992                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
993                         return -EINVAL;
994
995                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
996                         return -EINVAL;
997
998                 if (kvm_vcpu_write_guest(vcpu,
999                                          gpa + i * sizeof(e) +
1000                                              offsetof(struct vmx_msr_entry, value),
1001                                          &data, sizeof(data))) {
1002                         pr_debug_ratelimited(
1003                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1004                                 __func__, i, e.index, data);
1005                         return -EINVAL;
1006                 }
1007         }
1008         return 0;
1009 }
1010
1011 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1012 {
1013         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1014         u32 count = vmcs12->vm_exit_msr_store_count;
1015         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1016         struct vmx_msr_entry e;
1017         u32 i;
1018
1019         for (i = 0; i < count; i++) {
1020                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1021                         return false;
1022
1023                 if (e.index == msr_index)
1024                         return true;
1025         }
1026         return false;
1027 }
1028
1029 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1030                                            u32 msr_index)
1031 {
1032         struct vcpu_vmx *vmx = to_vmx(vcpu);
1033         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1034         bool in_vmcs12_store_list;
1035         int msr_autostore_slot;
1036         bool in_autostore_list;
1037         int last;
1038
1039         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1040         in_autostore_list = msr_autostore_slot >= 0;
1041         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1042
1043         if (in_vmcs12_store_list && !in_autostore_list) {
1044                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1045                         /*
1046                          * Emulated VMEntry does not fail here.  Instead a less
1047                          * accurate value will be returned by
1048                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1049                          * instead of reading the value from the vmcs02 VMExit
1050                          * MSR-store area.
1051                          */
1052                         pr_warn_ratelimited(
1053                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1054                                 msr_index);
1055                         return;
1056                 }
1057                 last = autostore->nr++;
1058                 autostore->val[last].index = msr_index;
1059         } else if (!in_vmcs12_store_list && in_autostore_list) {
1060                 last = --autostore->nr;
1061                 autostore->val[msr_autostore_slot] = autostore->val[last];
1062         }
1063 }
1064
1065 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1066 {
1067         unsigned long invalid_mask;
1068
1069         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1070         return (val & invalid_mask) == 0;
1071 }
1072
1073 /*
1074  * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1075  * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1076  * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1077  * Here's why.
1078  *
1079  * If EPT is enabled by L0 a sync is never needed:
1080  * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1081  *   cannot be unsync'd SPTEs for either L1 or L2.
1082  *
1083  * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1084  *   VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1085  *   (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1086  *   stale guest-physical mappings for L2 from the TLB.  And as above, L0 isn't
1087  *   shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1088  *
1089  * If EPT is disabled by L0:
1090  * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1091  *   enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1092  *   required to invalidate linear mappings (EPT is disabled so there are
1093  *   no combined or guest-physical mappings), i.e. L1 can't rely on the
1094  *   (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1095  *
1096  * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1097  *   linear mappings (EPT is disabled so there are no combined or guest-physical
1098  *   mappings) to be invalidated on both VM-Enter and VM-Exit.
1099  *
1100  * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1101  * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1102  * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1103  * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1104  * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1105  * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1106  * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1107  * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1108  * stale TLB entries, at which point L0 will sync L2's MMU.
1109  */
1110 static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1111 {
1112         return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1113 }
1114
1115 /*
1116  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1117  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1118  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1119  * @entry_failure_code.
1120  */
1121 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1122                                enum vm_entry_failure_code *entry_failure_code)
1123 {
1124         if (CC(!nested_cr3_valid(vcpu, cr3))) {
1125                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1126                 return -EINVAL;
1127         }
1128
1129         /*
1130          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1131          * must not be dereferenced.
1132          */
1133         if (!nested_ept && is_pae_paging(vcpu) &&
1134             (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1135                 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1136                         *entry_failure_code = ENTRY_FAIL_PDPTE;
1137                         return -EINVAL;
1138                 }
1139         }
1140
1141         /*
1142          * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1143          * flushes are handled by nested_vmx_transition_tlb_flush().  See
1144          * nested_vmx_transition_mmu_sync for details on skipping the MMU sync.
1145          */
1146         if (!nested_ept)
1147                 kvm_mmu_new_pgd(vcpu, cr3, true,
1148                                 !nested_vmx_transition_mmu_sync(vcpu));
1149
1150         vcpu->arch.cr3 = cr3;
1151         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1152
1153         kvm_init_mmu(vcpu, false);
1154
1155         return 0;
1156 }
1157
1158 /*
1159  * Returns if KVM is able to config CPU to tag TLB entries
1160  * populated by L2 differently than TLB entries populated
1161  * by L1.
1162  *
1163  * If L0 uses EPT, L1 and L2 run with different EPTP because
1164  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1165  * are tagged with different EPTP.
1166  *
1167  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1168  * with different VPID (L1 entries are tagged with vmx->vpid
1169  * while L2 entries are tagged with vmx->nested.vpid02).
1170  */
1171 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1172 {
1173         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1174
1175         return enable_ept ||
1176                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1177 }
1178
1179 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1180                                             struct vmcs12 *vmcs12,
1181                                             bool is_vmenter)
1182 {
1183         struct vcpu_vmx *vmx = to_vmx(vcpu);
1184
1185         /*
1186          * If VPID is disabled, linear and combined mappings are flushed on
1187          * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1188          * their associated EPTP.
1189          */
1190         if (!enable_vpid)
1191                 return;
1192
1193         /*
1194          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1195          * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1196          *
1197          * If VPID is enabled and used by vmc12, but L2 does not have a unique
1198          * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1199          * a VPID for L2, flush the current context as the effective ASID is
1200          * common to both L1 and L2.
1201          *
1202          * Defer the flush so that it runs after vmcs02.EPTP has been set by
1203          * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1204          * redundant flushes further down the nested pipeline.
1205          *
1206          * If a TLB flush isn't required due to any of the above, and vpid12 is
1207          * changing then the new "virtual" VPID (vpid12) will reuse the same
1208          * "real" VPID (vpid02), and so needs to be sync'd.  There is no direct
1209          * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1210          * all nested vCPUs.
1211          */
1212         if (!nested_cpu_has_vpid(vmcs12)) {
1213                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1214         } else if (!nested_has_guest_tlb_tag(vcpu)) {
1215                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1216         } else if (is_vmenter &&
1217                    vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1218                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1219                 vpid_sync_context(nested_get_vpid02(vcpu));
1220         }
1221 }
1222
1223 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1224 {
1225         superset &= mask;
1226         subset &= mask;
1227
1228         return (superset | subset) == superset;
1229 }
1230
1231 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1232 {
1233         const u64 feature_and_reserved =
1234                 /* feature (except bit 48; see below) */
1235                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1236                 /* reserved */
1237                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1238         u64 vmx_basic = vmx->nested.msrs.basic;
1239
1240         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1241                 return -EINVAL;
1242
1243         /*
1244          * KVM does not emulate a version of VMX that constrains physical
1245          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1246          */
1247         if (data & BIT_ULL(48))
1248                 return -EINVAL;
1249
1250         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1251             vmx_basic_vmcs_revision_id(data))
1252                 return -EINVAL;
1253
1254         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1255                 return -EINVAL;
1256
1257         vmx->nested.msrs.basic = data;
1258         return 0;
1259 }
1260
1261 static int
1262 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1263 {
1264         u64 supported;
1265         u32 *lowp, *highp;
1266
1267         switch (msr_index) {
1268         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1269                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1270                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1271                 break;
1272         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1273                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1274                 highp = &vmx->nested.msrs.procbased_ctls_high;
1275                 break;
1276         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1277                 lowp = &vmx->nested.msrs.exit_ctls_low;
1278                 highp = &vmx->nested.msrs.exit_ctls_high;
1279                 break;
1280         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1281                 lowp = &vmx->nested.msrs.entry_ctls_low;
1282                 highp = &vmx->nested.msrs.entry_ctls_high;
1283                 break;
1284         case MSR_IA32_VMX_PROCBASED_CTLS2:
1285                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1286                 highp = &vmx->nested.msrs.secondary_ctls_high;
1287                 break;
1288         default:
1289                 BUG();
1290         }
1291
1292         supported = vmx_control_msr(*lowp, *highp);
1293
1294         /* Check must-be-1 bits are still 1. */
1295         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1296                 return -EINVAL;
1297
1298         /* Check must-be-0 bits are still 0. */
1299         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1300                 return -EINVAL;
1301
1302         *lowp = data;
1303         *highp = data >> 32;
1304         return 0;
1305 }
1306
1307 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1308 {
1309         const u64 feature_and_reserved_bits =
1310                 /* feature */
1311                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1312                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1313                 /* reserved */
1314                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1315         u64 vmx_misc;
1316
1317         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1318                                    vmx->nested.msrs.misc_high);
1319
1320         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1321                 return -EINVAL;
1322
1323         if ((vmx->nested.msrs.pinbased_ctls_high &
1324              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1325             vmx_misc_preemption_timer_rate(data) !=
1326             vmx_misc_preemption_timer_rate(vmx_misc))
1327                 return -EINVAL;
1328
1329         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1330                 return -EINVAL;
1331
1332         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1333                 return -EINVAL;
1334
1335         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1336                 return -EINVAL;
1337
1338         vmx->nested.msrs.misc_low = data;
1339         vmx->nested.msrs.misc_high = data >> 32;
1340
1341         return 0;
1342 }
1343
1344 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1345 {
1346         u64 vmx_ept_vpid_cap;
1347
1348         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1349                                            vmx->nested.msrs.vpid_caps);
1350
1351         /* Every bit is either reserved or a feature bit. */
1352         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1353                 return -EINVAL;
1354
1355         vmx->nested.msrs.ept_caps = data;
1356         vmx->nested.msrs.vpid_caps = data >> 32;
1357         return 0;
1358 }
1359
1360 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1361 {
1362         u64 *msr;
1363
1364         switch (msr_index) {
1365         case MSR_IA32_VMX_CR0_FIXED0:
1366                 msr = &vmx->nested.msrs.cr0_fixed0;
1367                 break;
1368         case MSR_IA32_VMX_CR4_FIXED0:
1369                 msr = &vmx->nested.msrs.cr4_fixed0;
1370                 break;
1371         default:
1372                 BUG();
1373         }
1374
1375         /*
1376          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1377          * must be 1 in the restored value.
1378          */
1379         if (!is_bitwise_subset(data, *msr, -1ULL))
1380                 return -EINVAL;
1381
1382         *msr = data;
1383         return 0;
1384 }
1385
1386 /*
1387  * Called when userspace is restoring VMX MSRs.
1388  *
1389  * Returns 0 on success, non-0 otherwise.
1390  */
1391 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1392 {
1393         struct vcpu_vmx *vmx = to_vmx(vcpu);
1394
1395         /*
1396          * Don't allow changes to the VMX capability MSRs while the vCPU
1397          * is in VMX operation.
1398          */
1399         if (vmx->nested.vmxon)
1400                 return -EBUSY;
1401
1402         switch (msr_index) {
1403         case MSR_IA32_VMX_BASIC:
1404                 return vmx_restore_vmx_basic(vmx, data);
1405         case MSR_IA32_VMX_PINBASED_CTLS:
1406         case MSR_IA32_VMX_PROCBASED_CTLS:
1407         case MSR_IA32_VMX_EXIT_CTLS:
1408         case MSR_IA32_VMX_ENTRY_CTLS:
1409                 /*
1410                  * The "non-true" VMX capability MSRs are generated from the
1411                  * "true" MSRs, so we do not support restoring them directly.
1412                  *
1413                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1414                  * should restore the "true" MSRs with the must-be-1 bits
1415                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1416                  * DEFAULT SETTINGS".
1417                  */
1418                 return -EINVAL;
1419         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1420         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1421         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1422         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1423         case MSR_IA32_VMX_PROCBASED_CTLS2:
1424                 return vmx_restore_control_msr(vmx, msr_index, data);
1425         case MSR_IA32_VMX_MISC:
1426                 return vmx_restore_vmx_misc(vmx, data);
1427         case MSR_IA32_VMX_CR0_FIXED0:
1428         case MSR_IA32_VMX_CR4_FIXED0:
1429                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1430         case MSR_IA32_VMX_CR0_FIXED1:
1431         case MSR_IA32_VMX_CR4_FIXED1:
1432                 /*
1433                  * These MSRs are generated based on the vCPU's CPUID, so we
1434                  * do not support restoring them directly.
1435                  */
1436                 return -EINVAL;
1437         case MSR_IA32_VMX_EPT_VPID_CAP:
1438                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1439         case MSR_IA32_VMX_VMCS_ENUM:
1440                 vmx->nested.msrs.vmcs_enum = data;
1441                 return 0;
1442         case MSR_IA32_VMX_VMFUNC:
1443                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1444                         return -EINVAL;
1445                 vmx->nested.msrs.vmfunc_controls = data;
1446                 return 0;
1447         default:
1448                 /*
1449                  * The rest of the VMX capability MSRs do not support restore.
1450                  */
1451                 return -EINVAL;
1452         }
1453 }
1454
1455 /* Returns 0 on success, non-0 otherwise. */
1456 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1457 {
1458         switch (msr_index) {
1459         case MSR_IA32_VMX_BASIC:
1460                 *pdata = msrs->basic;
1461                 break;
1462         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1463         case MSR_IA32_VMX_PINBASED_CTLS:
1464                 *pdata = vmx_control_msr(
1465                         msrs->pinbased_ctls_low,
1466                         msrs->pinbased_ctls_high);
1467                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1468                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1469                 break;
1470         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1471         case MSR_IA32_VMX_PROCBASED_CTLS:
1472                 *pdata = vmx_control_msr(
1473                         msrs->procbased_ctls_low,
1474                         msrs->procbased_ctls_high);
1475                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1476                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1477                 break;
1478         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1479         case MSR_IA32_VMX_EXIT_CTLS:
1480                 *pdata = vmx_control_msr(
1481                         msrs->exit_ctls_low,
1482                         msrs->exit_ctls_high);
1483                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1484                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1485                 break;
1486         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1487         case MSR_IA32_VMX_ENTRY_CTLS:
1488                 *pdata = vmx_control_msr(
1489                         msrs->entry_ctls_low,
1490                         msrs->entry_ctls_high);
1491                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1492                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1493                 break;
1494         case MSR_IA32_VMX_MISC:
1495                 *pdata = vmx_control_msr(
1496                         msrs->misc_low,
1497                         msrs->misc_high);
1498                 break;
1499         case MSR_IA32_VMX_CR0_FIXED0:
1500                 *pdata = msrs->cr0_fixed0;
1501                 break;
1502         case MSR_IA32_VMX_CR0_FIXED1:
1503                 *pdata = msrs->cr0_fixed1;
1504                 break;
1505         case MSR_IA32_VMX_CR4_FIXED0:
1506                 *pdata = msrs->cr4_fixed0;
1507                 break;
1508         case MSR_IA32_VMX_CR4_FIXED1:
1509                 *pdata = msrs->cr4_fixed1;
1510                 break;
1511         case MSR_IA32_VMX_VMCS_ENUM:
1512                 *pdata = msrs->vmcs_enum;
1513                 break;
1514         case MSR_IA32_VMX_PROCBASED_CTLS2:
1515                 *pdata = vmx_control_msr(
1516                         msrs->secondary_ctls_low,
1517                         msrs->secondary_ctls_high);
1518                 break;
1519         case MSR_IA32_VMX_EPT_VPID_CAP:
1520                 *pdata = msrs->ept_caps |
1521                         ((u64)msrs->vpid_caps << 32);
1522                 break;
1523         case MSR_IA32_VMX_VMFUNC:
1524                 *pdata = msrs->vmfunc_controls;
1525                 break;
1526         default:
1527                 return 1;
1528         }
1529
1530         return 0;
1531 }
1532
1533 /*
1534  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1535  * been modified by the L1 guest.  Note, "writable" in this context means
1536  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1537  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1538  * VM-exit information fields (which are actually writable if the vCPU is
1539  * configured to support "VMWRITE to any supported field in the VMCS").
1540  */
1541 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1542 {
1543         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1544         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1545         struct shadow_vmcs_field field;
1546         unsigned long val;
1547         int i;
1548
1549         if (WARN_ON(!shadow_vmcs))
1550                 return;
1551
1552         preempt_disable();
1553
1554         vmcs_load(shadow_vmcs);
1555
1556         for (i = 0; i < max_shadow_read_write_fields; i++) {
1557                 field = shadow_read_write_fields[i];
1558                 val = __vmcs_readl(field.encoding);
1559                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1560         }
1561
1562         vmcs_clear(shadow_vmcs);
1563         vmcs_load(vmx->loaded_vmcs->vmcs);
1564
1565         preempt_enable();
1566 }
1567
1568 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1569 {
1570         const struct shadow_vmcs_field *fields[] = {
1571                 shadow_read_write_fields,
1572                 shadow_read_only_fields
1573         };
1574         const int max_fields[] = {
1575                 max_shadow_read_write_fields,
1576                 max_shadow_read_only_fields
1577         };
1578         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1579         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1580         struct shadow_vmcs_field field;
1581         unsigned long val;
1582         int i, q;
1583
1584         if (WARN_ON(!shadow_vmcs))
1585                 return;
1586
1587         vmcs_load(shadow_vmcs);
1588
1589         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1590                 for (i = 0; i < max_fields[q]; i++) {
1591                         field = fields[q][i];
1592                         val = vmcs12_read_any(vmcs12, field.encoding,
1593                                               field.offset);
1594                         __vmcs_writel(field.encoding, val);
1595                 }
1596         }
1597
1598         vmcs_clear(shadow_vmcs);
1599         vmcs_load(vmx->loaded_vmcs->vmcs);
1600 }
1601
1602 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1603 {
1604         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1605         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1606
1607         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1608         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1609         vmcs12->guest_rip = evmcs->guest_rip;
1610
1611         if (unlikely(!(evmcs->hv_clean_fields &
1612                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1613                 vmcs12->guest_rsp = evmcs->guest_rsp;
1614                 vmcs12->guest_rflags = evmcs->guest_rflags;
1615                 vmcs12->guest_interruptibility_info =
1616                         evmcs->guest_interruptibility_info;
1617         }
1618
1619         if (unlikely(!(evmcs->hv_clean_fields &
1620                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1621                 vmcs12->cpu_based_vm_exec_control =
1622                         evmcs->cpu_based_vm_exec_control;
1623         }
1624
1625         if (unlikely(!(evmcs->hv_clean_fields &
1626                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1627                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1628         }
1629
1630         if (unlikely(!(evmcs->hv_clean_fields &
1631                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1632                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1633         }
1634
1635         if (unlikely(!(evmcs->hv_clean_fields &
1636                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1637                 vmcs12->vm_entry_intr_info_field =
1638                         evmcs->vm_entry_intr_info_field;
1639                 vmcs12->vm_entry_exception_error_code =
1640                         evmcs->vm_entry_exception_error_code;
1641                 vmcs12->vm_entry_instruction_len =
1642                         evmcs->vm_entry_instruction_len;
1643         }
1644
1645         if (unlikely(!(evmcs->hv_clean_fields &
1646                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1647                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1648                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1649                 vmcs12->host_cr0 = evmcs->host_cr0;
1650                 vmcs12->host_cr3 = evmcs->host_cr3;
1651                 vmcs12->host_cr4 = evmcs->host_cr4;
1652                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1653                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1654                 vmcs12->host_rip = evmcs->host_rip;
1655                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1656                 vmcs12->host_es_selector = evmcs->host_es_selector;
1657                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1658                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1659                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1660                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1661                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1662                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1663         }
1664
1665         if (unlikely(!(evmcs->hv_clean_fields &
1666                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1667                 vmcs12->pin_based_vm_exec_control =
1668                         evmcs->pin_based_vm_exec_control;
1669                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1670                 vmcs12->secondary_vm_exec_control =
1671                         evmcs->secondary_vm_exec_control;
1672         }
1673
1674         if (unlikely(!(evmcs->hv_clean_fields &
1675                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1676                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1677                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1678         }
1679
1680         if (unlikely(!(evmcs->hv_clean_fields &
1681                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1682                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1683         }
1684
1685         if (unlikely(!(evmcs->hv_clean_fields &
1686                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1687                 vmcs12->guest_es_base = evmcs->guest_es_base;
1688                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1689                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1690                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1691                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1692                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1693                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1694                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1695                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1696                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1697                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1698                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1699                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1700                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1701                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1702                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1703                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1704                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1705                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1706                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1707                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1708                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1709                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1710                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1711                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1712                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1713                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1714                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1715                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1716                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1717                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1718                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1719                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1720                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1721                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1722                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1723         }
1724
1725         if (unlikely(!(evmcs->hv_clean_fields &
1726                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1727                 vmcs12->tsc_offset = evmcs->tsc_offset;
1728                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1729                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1730         }
1731
1732         if (unlikely(!(evmcs->hv_clean_fields &
1733                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1734                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1735                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1736                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1737                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1738                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1739                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1740                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1741                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1742         }
1743
1744         if (unlikely(!(evmcs->hv_clean_fields &
1745                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1746                 vmcs12->host_fs_base = evmcs->host_fs_base;
1747                 vmcs12->host_gs_base = evmcs->host_gs_base;
1748                 vmcs12->host_tr_base = evmcs->host_tr_base;
1749                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1750                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1751                 vmcs12->host_rsp = evmcs->host_rsp;
1752         }
1753
1754         if (unlikely(!(evmcs->hv_clean_fields &
1755                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1756                 vmcs12->ept_pointer = evmcs->ept_pointer;
1757                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1758         }
1759
1760         if (unlikely(!(evmcs->hv_clean_fields &
1761                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1762                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1763                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1764                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1765                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1766                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1767                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1768                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1769                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1770                 vmcs12->guest_pending_dbg_exceptions =
1771                         evmcs->guest_pending_dbg_exceptions;
1772                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1773                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1774                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1775                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1776                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1777         }
1778
1779         /*
1780          * Not used?
1781          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1782          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1783          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1784          * vmcs12->page_fault_error_code_mask =
1785          *              evmcs->page_fault_error_code_mask;
1786          * vmcs12->page_fault_error_code_match =
1787          *              evmcs->page_fault_error_code_match;
1788          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1789          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1790          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1791          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1792          */
1793
1794         /*
1795          * Read only fields:
1796          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1797          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1798          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1799          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1800          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1801          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1802          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1803          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1804          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1805          * vmcs12->exit_qualification = evmcs->exit_qualification;
1806          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1807          *
1808          * Not present in struct vmcs12:
1809          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1810          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1811          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1812          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1813          */
1814
1815         return 0;
1816 }
1817
1818 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1819 {
1820         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1821         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1822
1823         /*
1824          * Should not be changed by KVM:
1825          *
1826          * evmcs->host_es_selector = vmcs12->host_es_selector;
1827          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1828          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1829          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1830          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1831          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1832          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1833          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1834          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1835          * evmcs->host_cr0 = vmcs12->host_cr0;
1836          * evmcs->host_cr3 = vmcs12->host_cr3;
1837          * evmcs->host_cr4 = vmcs12->host_cr4;
1838          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1839          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1840          * evmcs->host_rip = vmcs12->host_rip;
1841          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1842          * evmcs->host_fs_base = vmcs12->host_fs_base;
1843          * evmcs->host_gs_base = vmcs12->host_gs_base;
1844          * evmcs->host_tr_base = vmcs12->host_tr_base;
1845          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1846          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1847          * evmcs->host_rsp = vmcs12->host_rsp;
1848          * sync_vmcs02_to_vmcs12() doesn't read these:
1849          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1850          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1851          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1852          * evmcs->ept_pointer = vmcs12->ept_pointer;
1853          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1854          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1855          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1856          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1857          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1858          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1859          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1860          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1861          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1862          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1863          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1864          * evmcs->page_fault_error_code_mask =
1865          *              vmcs12->page_fault_error_code_mask;
1866          * evmcs->page_fault_error_code_match =
1867          *              vmcs12->page_fault_error_code_match;
1868          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1869          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1870          * evmcs->tsc_offset = vmcs12->tsc_offset;
1871          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1872          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1873          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1874          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1875          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1876          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1877          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1878          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1879          *
1880          * Not present in struct vmcs12:
1881          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1882          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1883          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1884          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1885          */
1886
1887         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1888         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1889         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1890         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1891         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1892         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1893         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1894         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1895
1896         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1897         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1898         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1899         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1900         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1901         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1902         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1903         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1904         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1905         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1906
1907         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1908         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1909         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1910         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1911         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1912         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1913         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1914         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1915
1916         evmcs->guest_es_base = vmcs12->guest_es_base;
1917         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1918         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1919         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1920         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1921         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1922         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1923         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1924         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1925         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1926
1927         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1928         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1929
1930         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1931         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1932         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1933         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1934
1935         evmcs->guest_pending_dbg_exceptions =
1936                 vmcs12->guest_pending_dbg_exceptions;
1937         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1938         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1939
1940         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1941         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1942
1943         evmcs->guest_cr0 = vmcs12->guest_cr0;
1944         evmcs->guest_cr3 = vmcs12->guest_cr3;
1945         evmcs->guest_cr4 = vmcs12->guest_cr4;
1946         evmcs->guest_dr7 = vmcs12->guest_dr7;
1947
1948         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1949
1950         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1951         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1952         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1953         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1954         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1955         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1956         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1957         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1958
1959         evmcs->exit_qualification = vmcs12->exit_qualification;
1960
1961         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1962         evmcs->guest_rsp = vmcs12->guest_rsp;
1963         evmcs->guest_rflags = vmcs12->guest_rflags;
1964
1965         evmcs->guest_interruptibility_info =
1966                 vmcs12->guest_interruptibility_info;
1967         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1968         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1969         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1970         evmcs->vm_entry_exception_error_code =
1971                 vmcs12->vm_entry_exception_error_code;
1972         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1973
1974         evmcs->guest_rip = vmcs12->guest_rip;
1975
1976         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1977
1978         return 0;
1979 }
1980
1981 /*
1982  * This is an equivalent of the nested hypervisor executing the vmptrld
1983  * instruction.
1984  */
1985 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1986         struct kvm_vcpu *vcpu, bool from_launch)
1987 {
1988         struct vcpu_vmx *vmx = to_vmx(vcpu);
1989         bool evmcs_gpa_changed = false;
1990         u64 evmcs_gpa;
1991
1992         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1993                 return EVMPTRLD_DISABLED;
1994
1995         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1996                 return EVMPTRLD_DISABLED;
1997
1998         if (unlikely(!vmx->nested.hv_evmcs ||
1999                      evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2000                 if (!vmx->nested.hv_evmcs)
2001                         vmx->nested.current_vmptr = -1ull;
2002
2003                 nested_release_evmcs(vcpu);
2004
2005                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2006                                  &vmx->nested.hv_evmcs_map))
2007                         return EVMPTRLD_ERROR;
2008
2009                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2010
2011                 /*
2012                  * Currently, KVM only supports eVMCS version 1
2013                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2014                  * value to first u32 field of eVMCS which should specify eVMCS
2015                  * VersionNumber.
2016                  *
2017                  * Guest should be aware of supported eVMCS versions by host by
2018                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2019                  * expected to set this CPUID leaf according to the value
2020                  * returned in vmcs_version from nested_enable_evmcs().
2021                  *
2022                  * However, it turns out that Microsoft Hyper-V fails to comply
2023                  * to their own invented interface: When Hyper-V use eVMCS, it
2024                  * just sets first u32 field of eVMCS to revision_id specified
2025                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2026                  * which is one of the supported versions specified in
2027                  * CPUID.0x4000000A.EAX[0:15].
2028                  *
2029                  * To overcome Hyper-V bug, we accept here either a supported
2030                  * eVMCS version or VMCS12 revision_id as valid values for first
2031                  * u32 field of eVMCS.
2032                  */
2033                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2034                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2035                         nested_release_evmcs(vcpu);
2036                         return EVMPTRLD_VMFAIL;
2037                 }
2038
2039                 vmx->nested.dirty_vmcs12 = true;
2040                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2041
2042                 evmcs_gpa_changed = true;
2043                 /*
2044                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2045                  * reloaded from guest's memory (read only fields, fields not
2046                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2047                  * are no leftovers.
2048                  */
2049                 if (from_launch) {
2050                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2051                         memset(vmcs12, 0, sizeof(*vmcs12));
2052                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2053                 }
2054
2055         }
2056
2057         /*
2058          * Clean fields data can't be used on VMLAUNCH and when we switch
2059          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2060          */
2061         if (from_launch || evmcs_gpa_changed)
2062                 vmx->nested.hv_evmcs->hv_clean_fields &=
2063                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2064
2065         return EVMPTRLD_SUCCEEDED;
2066 }
2067
2068 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2069 {
2070         struct vcpu_vmx *vmx = to_vmx(vcpu);
2071
2072         if (vmx->nested.hv_evmcs) {
2073                 copy_vmcs12_to_enlightened(vmx);
2074                 /* All fields are clean */
2075                 vmx->nested.hv_evmcs->hv_clean_fields |=
2076                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2077         } else {
2078                 copy_vmcs12_to_shadow(vmx);
2079         }
2080
2081         vmx->nested.need_vmcs12_to_shadow_sync = false;
2082 }
2083
2084 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2085 {
2086         struct vcpu_vmx *vmx =
2087                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2088
2089         vmx->nested.preemption_timer_expired = true;
2090         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2091         kvm_vcpu_kick(&vmx->vcpu);
2092
2093         return HRTIMER_NORESTART;
2094 }
2095
2096 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2097 {
2098         struct vcpu_vmx *vmx = to_vmx(vcpu);
2099         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2100
2101         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2102                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2103
2104         if (!vmx->nested.has_preemption_timer_deadline) {
2105                 vmx->nested.preemption_timer_deadline =
2106                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2107                 vmx->nested.has_preemption_timer_deadline = true;
2108         }
2109         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2110 }
2111
2112 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2113                                         u64 preemption_timeout)
2114 {
2115         struct vcpu_vmx *vmx = to_vmx(vcpu);
2116
2117         /*
2118          * A timer value of zero is architecturally guaranteed to cause
2119          * a VMExit prior to executing any instructions in the guest.
2120          */
2121         if (preemption_timeout == 0) {
2122                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2123                 return;
2124         }
2125
2126         if (vcpu->arch.virtual_tsc_khz == 0)
2127                 return;
2128
2129         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2130         preemption_timeout *= 1000000;
2131         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2132         hrtimer_start(&vmx->nested.preemption_timer,
2133                       ktime_add_ns(ktime_get(), preemption_timeout),
2134                       HRTIMER_MODE_ABS_PINNED);
2135 }
2136
2137 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2138 {
2139         if (vmx->nested.nested_run_pending &&
2140             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2141                 return vmcs12->guest_ia32_efer;
2142         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2143                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2144         else
2145                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2146 }
2147
2148 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2149 {
2150         /*
2151          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2152          * according to L0's settings (vmcs12 is irrelevant here).  Host
2153          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2154          * will be set as needed prior to VMLAUNCH/VMRESUME.
2155          */
2156         if (vmx->nested.vmcs02_initialized)
2157                 return;
2158         vmx->nested.vmcs02_initialized = true;
2159
2160         /*
2161          * We don't care what the EPTP value is we just need to guarantee
2162          * it's valid so we don't get a false positive when doing early
2163          * consistency checks.
2164          */
2165         if (enable_ept && nested_early_check)
2166                 vmcs_write64(EPT_POINTER,
2167                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2168
2169         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2170         if (cpu_has_vmx_vmfunc())
2171                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2172
2173         if (cpu_has_vmx_posted_intr())
2174                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2175
2176         if (cpu_has_vmx_msr_bitmap())
2177                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2178
2179         /*
2180          * The PML address never changes, so it is constant in vmcs02.
2181          * Conceptually we want to copy the PML index from vmcs01 here,
2182          * and then back to vmcs01 on nested vmexit.  But since we flush
2183          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2184          * index is also effectively constant in vmcs02.
2185          */
2186         if (enable_pml) {
2187                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2188                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2189         }
2190
2191         if (cpu_has_vmx_encls_vmexit())
2192                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2193
2194         /*
2195          * Set the MSR load/store lists to match L0's settings.  Only the
2196          * addresses are constant (for vmcs02), the counts can change based
2197          * on L2's behavior, e.g. switching to/from long mode.
2198          */
2199         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2200         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2201         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2202
2203         vmx_set_constant_host_state(vmx);
2204 }
2205
2206 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2207                                       struct vmcs12 *vmcs12)
2208 {
2209         prepare_vmcs02_constant_state(vmx);
2210
2211         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2212
2213         if (enable_vpid) {
2214                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2215                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2216                 else
2217                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2218         }
2219 }
2220
2221 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2222 {
2223         u32 exec_control, vmcs12_exec_ctrl;
2224         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2225
2226         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2227                 prepare_vmcs02_early_rare(vmx, vmcs12);
2228
2229         /*
2230          * PIN CONTROLS
2231          */
2232         exec_control = vmx_pin_based_exec_ctrl(vmx);
2233         exec_control |= (vmcs12->pin_based_vm_exec_control &
2234                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2235
2236         /* Posted interrupts setting is only taken from vmcs12.  */
2237         if (nested_cpu_has_posted_intr(vmcs12)) {
2238                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2239                 vmx->nested.pi_pending = false;
2240         } else {
2241                 exec_control &= ~PIN_BASED_POSTED_INTR;
2242         }
2243         pin_controls_set(vmx, exec_control);
2244
2245         /*
2246          * EXEC CONTROLS
2247          */
2248         exec_control = vmx_exec_control(vmx); /* L0's desires */
2249         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2250         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2251         exec_control &= ~CPU_BASED_TPR_SHADOW;
2252         exec_control |= vmcs12->cpu_based_vm_exec_control;
2253
2254         vmx->nested.l1_tpr_threshold = -1;
2255         if (exec_control & CPU_BASED_TPR_SHADOW)
2256                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2257 #ifdef CONFIG_X86_64
2258         else
2259                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2260                                 CPU_BASED_CR8_STORE_EXITING;
2261 #endif
2262
2263         /*
2264          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2265          * for I/O port accesses.
2266          */
2267         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2268         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2269
2270         /*
2271          * This bit will be computed in nested_get_vmcs12_pages, because
2272          * we do not have access to L1's MSR bitmap yet.  For now, keep
2273          * the same bit as before, hoping to avoid multiple VMWRITEs that
2274          * only set/clear this bit.
2275          */
2276         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2277         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2278
2279         exec_controls_set(vmx, exec_control);
2280
2281         /*
2282          * SECONDARY EXEC CONTROLS
2283          */
2284         if (cpu_has_secondary_exec_ctrls()) {
2285                 exec_control = vmx->secondary_exec_control;
2286
2287                 /* Take the following fields only from vmcs12 */
2288                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2289                                   SECONDARY_EXEC_ENABLE_INVPCID |
2290                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2291                                   SECONDARY_EXEC_XSAVES |
2292                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2293                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2294                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2295                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2296                 if (nested_cpu_has(vmcs12,
2297                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2298                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2299                                 ~SECONDARY_EXEC_ENABLE_PML;
2300                         exec_control |= vmcs12_exec_ctrl;
2301                 }
2302
2303                 /* VMCS shadowing for L2 is emulated for now */
2304                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2305
2306                 /*
2307                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2308                  * will not have to rewrite the controls just for this bit.
2309                  */
2310                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2311                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2312                         exec_control |= SECONDARY_EXEC_DESC;
2313
2314                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2315                         vmcs_write16(GUEST_INTR_STATUS,
2316                                 vmcs12->guest_intr_status);
2317
2318                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2319                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2320
2321                 secondary_exec_controls_set(vmx, exec_control);
2322         }
2323
2324         /*
2325          * ENTRY CONTROLS
2326          *
2327          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2328          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2329          * on the related bits (if supported by the CPU) in the hope that
2330          * we can avoid VMWrites during vmx_set_efer().
2331          */
2332         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2333                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2334         if (cpu_has_load_ia32_efer()) {
2335                 if (guest_efer & EFER_LMA)
2336                         exec_control |= VM_ENTRY_IA32E_MODE;
2337                 if (guest_efer != host_efer)
2338                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2339         }
2340         vm_entry_controls_set(vmx, exec_control);
2341
2342         /*
2343          * EXIT CONTROLS
2344          *
2345          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2346          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2347          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2348          */
2349         exec_control = vmx_vmexit_ctrl();
2350         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2351                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2352         vm_exit_controls_set(vmx, exec_control);
2353
2354         /*
2355          * Interrupt/Exception Fields
2356          */
2357         if (vmx->nested.nested_run_pending) {
2358                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2359                              vmcs12->vm_entry_intr_info_field);
2360                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2361                              vmcs12->vm_entry_exception_error_code);
2362                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2363                              vmcs12->vm_entry_instruction_len);
2364                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2365                              vmcs12->guest_interruptibility_info);
2366                 vmx->loaded_vmcs->nmi_known_unmasked =
2367                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2368         } else {
2369                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2370         }
2371 }
2372
2373 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2374 {
2375         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2376
2377         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2378                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2379                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2380                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2381                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2382                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2383                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2384                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2385                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2386                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2387                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2388                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2389                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2390                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2391                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2392                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2393                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2394                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2395                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2396                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2397                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2398                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2399                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2400                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2401                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2402                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2403                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2404                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2405                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2406                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2407                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2408                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2409                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2410                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2411                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2412                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2413                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2414                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2415
2416                 vmx->segment_cache.bitmask = 0;
2417         }
2418
2419         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2420                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2421                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2422                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2423                             vmcs12->guest_pending_dbg_exceptions);
2424                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2425                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2426
2427                 /*
2428                  * L1 may access the L2's PDPTR, so save them to construct
2429                  * vmcs12
2430                  */
2431                 if (enable_ept) {
2432                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2433                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2434                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2435                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2436                 }
2437
2438                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2439                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2440                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2441         }
2442
2443         if (nested_cpu_has_xsaves(vmcs12))
2444                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2445
2446         /*
2447          * Whether page-faults are trapped is determined by a combination of
2448          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2449          * doesn't care about page faults then we should set all of these to
2450          * L1's desires. However, if L0 does care about (some) page faults, it
2451          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2452          * simply ask to exit on each and every L2 page fault. This is done by
2453          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2454          * Note that below we don't need special code to set EB.PF beyond the
2455          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2456          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2457          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2458          */
2459         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2460                 /*
2461                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2462                  * go ahead and use it?
2463                  */
2464                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2465                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2466         } else {
2467                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2468                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2469         }
2470
2471         if (cpu_has_vmx_apicv()) {
2472                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2473                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2474                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2475                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2476         }
2477
2478         /*
2479          * Make sure the msr_autostore list is up to date before we set the
2480          * count in the vmcs02.
2481          */
2482         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2483
2484         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2485         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2486         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2487
2488         set_cr4_guest_host_mask(vmx);
2489 }
2490
2491 /*
2492  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2493  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2494  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2495  * guest in a way that will both be appropriate to L1's requests, and our
2496  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2497  * function also has additional necessary side-effects, like setting various
2498  * vcpu->arch fields.
2499  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2500  * is assigned to entry_failure_code on failure.
2501  */
2502 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2503                           enum vm_entry_failure_code *entry_failure_code)
2504 {
2505         struct vcpu_vmx *vmx = to_vmx(vcpu);
2506         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2507         bool load_guest_pdptrs_vmcs12 = false;
2508
2509         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2510                 prepare_vmcs02_rare(vmx, vmcs12);
2511                 vmx->nested.dirty_vmcs12 = false;
2512
2513                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2514                         !(hv_evmcs->hv_clean_fields &
2515                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2516         }
2517
2518         if (vmx->nested.nested_run_pending &&
2519             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2520                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2521                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2522         } else {
2523                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2524                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2525         }
2526         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2527             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2528                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2529         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2530
2531         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2532          * bitwise-or of what L1 wants to trap for L2, and what we want to
2533          * trap. Note that CR0.TS also needs updating - we do this later.
2534          */
2535         update_exception_bitmap(vcpu);
2536         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2537         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2538
2539         if (vmx->nested.nested_run_pending &&
2540             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2541                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2542                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2543         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2544                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2545         }
2546
2547         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2548
2549         if (kvm_has_tsc_control)
2550                 decache_tsc_multiplier(vmx);
2551
2552         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2553
2554         if (nested_cpu_has_ept(vmcs12))
2555                 nested_ept_init_mmu_context(vcpu);
2556
2557         /*
2558          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2559          * bits which we consider mandatory enabled.
2560          * The CR0_READ_SHADOW is what L2 should have expected to read given
2561          * the specifications by L1; It's not enough to take
2562          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2563          * have more bits than L1 expected.
2564          */
2565         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2566         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2567
2568         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2569         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2570
2571         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2572         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2573         vmx_set_efer(vcpu, vcpu->arch.efer);
2574
2575         /*
2576          * Guest state is invalid and unrestricted guest is disabled,
2577          * which means L1 attempted VMEntry to L2 with invalid state.
2578          * Fail the VMEntry.
2579          */
2580         if (CC(!vmx_guest_state_valid(vcpu))) {
2581                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2582                 return -EINVAL;
2583         }
2584
2585         /* Shadow page tables on either EPT or shadow page tables. */
2586         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2587                                 entry_failure_code))
2588                 return -EINVAL;
2589
2590         /*
2591          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2592          * on nested VM-Exit, which can occur without actually running L2 and
2593          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2594          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2595          * transition to HLT instead of running L2.
2596          */
2597         if (enable_ept)
2598                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2599
2600         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2601         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2602             is_pae_paging(vcpu)) {
2603                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2604                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2605                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2606                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2607         }
2608
2609         if (!enable_ept)
2610                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2611
2612         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2613             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2614                                      vmcs12->guest_ia32_perf_global_ctrl)))
2615                 return -EINVAL;
2616
2617         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2618         kvm_rip_write(vcpu, vmcs12->guest_rip);
2619         return 0;
2620 }
2621
2622 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2623 {
2624         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2625                nested_cpu_has_virtual_nmis(vmcs12)))
2626                 return -EINVAL;
2627
2628         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2629                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2630                 return -EINVAL;
2631
2632         return 0;
2633 }
2634
2635 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2636 {
2637         struct vcpu_vmx *vmx = to_vmx(vcpu);
2638         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2639
2640         /* Check for memory type validity */
2641         switch (new_eptp & VMX_EPTP_MT_MASK) {
2642         case VMX_EPTP_MT_UC:
2643                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2644                         return false;
2645                 break;
2646         case VMX_EPTP_MT_WB:
2647                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2648                         return false;
2649                 break;
2650         default:
2651                 return false;
2652         }
2653
2654         /* Page-walk levels validity. */
2655         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2656         case VMX_EPTP_PWL_5:
2657                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2658                         return false;
2659                 break;
2660         case VMX_EPTP_PWL_4:
2661                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2662                         return false;
2663                 break;
2664         default:
2665                 return false;
2666         }
2667
2668         /* Reserved bits should not be set */
2669         if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2670                 return false;
2671
2672         /* AD, if set, should be supported */
2673         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2674                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2675                         return false;
2676         }
2677
2678         return true;
2679 }
2680
2681 /*
2682  * Checks related to VM-Execution Control Fields
2683  */
2684 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2685                                               struct vmcs12 *vmcs12)
2686 {
2687         struct vcpu_vmx *vmx = to_vmx(vcpu);
2688
2689         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2690                                    vmx->nested.msrs.pinbased_ctls_low,
2691                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2692             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2693                                    vmx->nested.msrs.procbased_ctls_low,
2694                                    vmx->nested.msrs.procbased_ctls_high)))
2695                 return -EINVAL;
2696
2697         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2698             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2699                                    vmx->nested.msrs.secondary_ctls_low,
2700                                    vmx->nested.msrs.secondary_ctls_high)))
2701                 return -EINVAL;
2702
2703         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2704             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2705             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2706             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2707             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2708             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2709             nested_vmx_check_nmi_controls(vmcs12) ||
2710             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2711             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2712             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2713             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2714             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2715                 return -EINVAL;
2716
2717         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2718             nested_cpu_has_save_preemption_timer(vmcs12))
2719                 return -EINVAL;
2720
2721         if (nested_cpu_has_ept(vmcs12) &&
2722             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2723                 return -EINVAL;
2724
2725         if (nested_cpu_has_vmfunc(vmcs12)) {
2726                 if (CC(vmcs12->vm_function_control &
2727                        ~vmx->nested.msrs.vmfunc_controls))
2728                         return -EINVAL;
2729
2730                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2731                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2732                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2733                                 return -EINVAL;
2734                 }
2735         }
2736
2737         return 0;
2738 }
2739
2740 /*
2741  * Checks related to VM-Exit Control Fields
2742  */
2743 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2744                                          struct vmcs12 *vmcs12)
2745 {
2746         struct vcpu_vmx *vmx = to_vmx(vcpu);
2747
2748         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2749                                     vmx->nested.msrs.exit_ctls_low,
2750                                     vmx->nested.msrs.exit_ctls_high)) ||
2751             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2752                 return -EINVAL;
2753
2754         return 0;
2755 }
2756
2757 /*
2758  * Checks related to VM-Entry Control Fields
2759  */
2760 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2761                                           struct vmcs12 *vmcs12)
2762 {
2763         struct vcpu_vmx *vmx = to_vmx(vcpu);
2764
2765         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2766                                     vmx->nested.msrs.entry_ctls_low,
2767                                     vmx->nested.msrs.entry_ctls_high)))
2768                 return -EINVAL;
2769
2770         /*
2771          * From the Intel SDM, volume 3:
2772          * Fields relevant to VM-entry event injection must be set properly.
2773          * These fields are the VM-entry interruption-information field, the
2774          * VM-entry exception error code, and the VM-entry instruction length.
2775          */
2776         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2777                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2778                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2779                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2780                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2781                 bool should_have_error_code;
2782                 bool urg = nested_cpu_has2(vmcs12,
2783                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2784                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2785
2786                 /* VM-entry interruption-info field: interruption type */
2787                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2788                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2789                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2790                         return -EINVAL;
2791
2792                 /* VM-entry interruption-info field: vector */
2793                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2794                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2795                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2796                         return -EINVAL;
2797
2798                 /* VM-entry interruption-info field: deliver error code */
2799                 should_have_error_code =
2800                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2801                         x86_exception_has_error_code(vector);
2802                 if (CC(has_error_code != should_have_error_code))
2803                         return -EINVAL;
2804
2805                 /* VM-entry exception error code */
2806                 if (CC(has_error_code &&
2807                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2808                         return -EINVAL;
2809
2810                 /* VM-entry interruption-info field: reserved bits */
2811                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2812                         return -EINVAL;
2813
2814                 /* VM-entry instruction length */
2815                 switch (intr_type) {
2816                 case INTR_TYPE_SOFT_EXCEPTION:
2817                 case INTR_TYPE_SOFT_INTR:
2818                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2819                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2820                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2821                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2822                                 return -EINVAL;
2823                 }
2824         }
2825
2826         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2827                 return -EINVAL;
2828
2829         return 0;
2830 }
2831
2832 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2833                                      struct vmcs12 *vmcs12)
2834 {
2835         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2836             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2837             nested_check_vm_entry_controls(vcpu, vmcs12))
2838                 return -EINVAL;
2839
2840         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2841                 return nested_evmcs_check_controls(vmcs12);
2842
2843         return 0;
2844 }
2845
2846 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2847                                        struct vmcs12 *vmcs12)
2848 {
2849         bool ia32e;
2850
2851         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2852             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2853             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2854                 return -EINVAL;
2855
2856         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2857             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2858                 return -EINVAL;
2859
2860         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2861             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2862                 return -EINVAL;
2863
2864         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2865             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2866                                            vmcs12->host_ia32_perf_global_ctrl)))
2867                 return -EINVAL;
2868
2869 #ifdef CONFIG_X86_64
2870         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2871 #else
2872         ia32e = false;
2873 #endif
2874
2875         if (ia32e) {
2876                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2877                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2878                         return -EINVAL;
2879         } else {
2880                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2881                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2882                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2883                     CC((vmcs12->host_rip) >> 32))
2884                         return -EINVAL;
2885         }
2886
2887         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2888             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2889             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2890             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2891             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2892             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2893             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2894             CC(vmcs12->host_cs_selector == 0) ||
2895             CC(vmcs12->host_tr_selector == 0) ||
2896             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2897                 return -EINVAL;
2898
2899         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2900             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2901             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2902             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2903             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2904             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2905                 return -EINVAL;
2906
2907         /*
2908          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2909          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2910          * the values of the LMA and LME bits in the field must each be that of
2911          * the host address-space size VM-exit control.
2912          */
2913         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2914                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2915                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2916                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2917                         return -EINVAL;
2918         }
2919
2920         return 0;
2921 }
2922
2923 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2924                                           struct vmcs12 *vmcs12)
2925 {
2926         int r = 0;
2927         struct vmcs12 *shadow;
2928         struct kvm_host_map map;
2929
2930         if (vmcs12->vmcs_link_pointer == -1ull)
2931                 return 0;
2932
2933         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2934                 return -EINVAL;
2935
2936         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2937                 return -EINVAL;
2938
2939         shadow = map.hva;
2940
2941         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2942             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2943                 r = -EINVAL;
2944
2945         kvm_vcpu_unmap(vcpu, &map, false);
2946         return r;
2947 }
2948
2949 /*
2950  * Checks related to Guest Non-register State
2951  */
2952 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2953 {
2954         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2955                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2956                 return -EINVAL;
2957
2958         return 0;
2959 }
2960
2961 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2962                                         struct vmcs12 *vmcs12,
2963                                         enum vm_entry_failure_code *entry_failure_code)
2964 {
2965         bool ia32e;
2966
2967         *entry_failure_code = ENTRY_FAIL_DEFAULT;
2968
2969         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2970             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2971                 return -EINVAL;
2972
2973         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2974             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2975                 return -EINVAL;
2976
2977         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2978             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2979                 return -EINVAL;
2980
2981         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2982                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2983                 return -EINVAL;
2984         }
2985
2986         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2987             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2988                                            vmcs12->guest_ia32_perf_global_ctrl)))
2989                 return -EINVAL;
2990
2991         /*
2992          * If the load IA32_EFER VM-entry control is 1, the following checks
2993          * are performed on the field for the IA32_EFER MSR:
2994          * - Bits reserved in the IA32_EFER MSR must be 0.
2995          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2996          *   the IA-32e mode guest VM-exit control. It must also be identical
2997          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2998          *   CR0.PG) is 1.
2999          */
3000         if (to_vmx(vcpu)->nested.nested_run_pending &&
3001             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3002                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3003                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3004                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3005                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3006                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3007                         return -EINVAL;
3008         }
3009
3010         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3011             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3012              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3013                 return -EINVAL;
3014
3015         if (nested_check_guest_non_reg_state(vmcs12))
3016                 return -EINVAL;
3017
3018         return 0;
3019 }
3020
3021 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3022 {
3023         struct vcpu_vmx *vmx = to_vmx(vcpu);
3024         unsigned long cr3, cr4;
3025         bool vm_fail;
3026
3027         if (!nested_early_check)
3028                 return 0;
3029
3030         if (vmx->msr_autoload.host.nr)
3031                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3032         if (vmx->msr_autoload.guest.nr)
3033                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3034
3035         preempt_disable();
3036
3037         vmx_prepare_switch_to_guest(vcpu);
3038
3039         /*
3040          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3041          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3042          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3043          * there is no need to preserve other bits or save/restore the field.
3044          */
3045         vmcs_writel(GUEST_RFLAGS, 0);
3046
3047         cr3 = __get_current_cr3_fast();
3048         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3049                 vmcs_writel(HOST_CR3, cr3);
3050                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3051         }
3052
3053         cr4 = cr4_read_shadow();
3054         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3055                 vmcs_writel(HOST_CR4, cr4);
3056                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3057         }
3058
3059         asm(
3060                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
3061                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3062                 "je 1f \n\t"
3063                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
3064                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3065                 "1: \n\t"
3066                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
3067
3068                 /* Check if vmlaunch or vmresume is needed */
3069                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
3070
3071                 /*
3072                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
3073                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
3074                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
3075                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
3076                  */
3077                 "call vmx_vmenter\n\t"
3078
3079                 CC_SET(be)
3080               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3081               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
3082                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
3083                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
3084                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3085                 [wordsize]"i"(sizeof(ulong))
3086               : "memory"
3087         );
3088
3089         if (vmx->msr_autoload.host.nr)
3090                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3091         if (vmx->msr_autoload.guest.nr)
3092                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3093
3094         if (vm_fail) {
3095                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3096
3097                 preempt_enable();
3098
3099                 trace_kvm_nested_vmenter_failed(
3100                         "early hardware check VM-instruction error: ", error);
3101                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3102                 return 1;
3103         }
3104
3105         /*
3106          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3107          */
3108         if (hw_breakpoint_active())
3109                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3110         local_irq_enable();
3111         preempt_enable();
3112
3113         /*
3114          * A non-failing VMEntry means we somehow entered guest mode with
3115          * an illegal RIP, and that's just the tip of the iceberg.  There
3116          * is no telling what memory has been modified or what state has
3117          * been exposed to unknown code.  Hitting this all but guarantees
3118          * a (very critical) hardware issue.
3119          */
3120         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3121                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3122
3123         return 0;
3124 }
3125
3126 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3127 {
3128         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3129         struct vcpu_vmx *vmx = to_vmx(vcpu);
3130         struct kvm_host_map *map;
3131         struct page *page;
3132         u64 hpa;
3133
3134         /*
3135          * hv_evmcs may end up being not mapped after migration (when
3136          * L2 was running), map it here to make sure vmcs12 changes are
3137          * properly reflected.
3138          */
3139         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3140                 enum nested_evmptrld_status evmptrld_status =
3141                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3142
3143                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3144                     evmptrld_status == EVMPTRLD_ERROR) {
3145                         pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3146                                              __func__);
3147                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3148                         vcpu->run->internal.suberror =
3149                                 KVM_INTERNAL_ERROR_EMULATION;
3150                         vcpu->run->internal.ndata = 0;
3151                         return false;
3152                 }
3153         }
3154
3155         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3156                 /*
3157                  * Translate L1 physical address to host physical
3158                  * address for vmcs02. Keep the page pinned, so this
3159                  * physical address remains valid. We keep a reference
3160                  * to it so we can release it later.
3161                  */
3162                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3163                         kvm_release_page_clean(vmx->nested.apic_access_page);
3164                         vmx->nested.apic_access_page = NULL;
3165                 }
3166                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3167                 if (!is_error_page(page)) {
3168                         vmx->nested.apic_access_page = page;
3169                         hpa = page_to_phys(vmx->nested.apic_access_page);
3170                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3171                 } else {
3172                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3173                                              __func__);
3174                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3175                         vcpu->run->internal.suberror =
3176                                 KVM_INTERNAL_ERROR_EMULATION;
3177                         vcpu->run->internal.ndata = 0;
3178                         return false;
3179                 }
3180         }
3181
3182         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3183                 map = &vmx->nested.virtual_apic_map;
3184
3185                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3186                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3187                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3188                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3189                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3190                         /*
3191                          * The processor will never use the TPR shadow, simply
3192                          * clear the bit from the execution control.  Such a
3193                          * configuration is useless, but it happens in tests.
3194                          * For any other configuration, failing the vm entry is
3195                          * _not_ what the processor does but it's basically the
3196                          * only possibility we have.
3197                          */
3198                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3199                 } else {
3200                         /*
3201                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3202                          * force VM-Entry to fail.
3203                          */
3204                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3205                 }
3206         }
3207
3208         if (nested_cpu_has_posted_intr(vmcs12)) {
3209                 map = &vmx->nested.pi_desc_map;
3210
3211                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3212                         vmx->nested.pi_desc =
3213                                 (struct pi_desc *)(((void *)map->hva) +
3214                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3215                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3216                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3217                 }
3218         }
3219         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3220                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3221         else
3222                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3223         return true;
3224 }
3225
3226 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3227 {
3228         struct vmcs12 *vmcs12;
3229         struct vcpu_vmx *vmx = to_vmx(vcpu);
3230         gpa_t dst;
3231
3232         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3233                 return 0;
3234
3235         if (WARN_ON_ONCE(vmx->nested.pml_full))
3236                 return 1;
3237
3238         /*
3239          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3240          * set is already checked as part of A/D emulation.
3241          */
3242         vmcs12 = get_vmcs12(vcpu);
3243         if (!nested_cpu_has_pml(vmcs12))
3244                 return 0;
3245
3246         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3247                 vmx->nested.pml_full = true;
3248                 return 1;
3249         }
3250
3251         gpa &= ~0xFFFull;
3252         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3253
3254         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3255                                  offset_in_page(dst), sizeof(gpa)))
3256                 return 0;
3257
3258         vmcs12->guest_pml_index--;
3259
3260         return 0;
3261 }
3262
3263 /*
3264  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3265  * for running VMX instructions (except VMXON, whose prerequisites are
3266  * slightly different). It also specifies what exception to inject otherwise.
3267  * Note that many of these exceptions have priority over VM exits, so they
3268  * don't have to be checked again here.
3269  */
3270 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3271 {
3272         if (!to_vmx(vcpu)->nested.vmxon) {
3273                 kvm_queue_exception(vcpu, UD_VECTOR);
3274                 return 0;
3275         }
3276
3277         if (vmx_get_cpl(vcpu)) {
3278                 kvm_inject_gp(vcpu, 0);
3279                 return 0;
3280         }
3281
3282         return 1;
3283 }
3284
3285 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3286 {
3287         u8 rvi = vmx_get_rvi();
3288         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3289
3290         return ((rvi & 0xf0) > (vppr & 0xf0));
3291 }
3292
3293 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3294                                    struct vmcs12 *vmcs12);
3295
3296 /*
3297  * If from_vmentry is false, this is being called from state restore (either RSM
3298  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3299  *
3300  * Returns:
3301  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3302  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3303  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3304  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3305  */
3306 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3307                                                         bool from_vmentry)
3308 {
3309         struct vcpu_vmx *vmx = to_vmx(vcpu);
3310         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3311         enum vm_entry_failure_code entry_failure_code;
3312         bool evaluate_pending_interrupts;
3313         u32 exit_reason, failed_index;
3314
3315         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3316                 kvm_vcpu_flush_tlb_current(vcpu);
3317
3318         evaluate_pending_interrupts = exec_controls_get(vmx) &
3319                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3320         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3321                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3322
3323         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3324                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3325         if (kvm_mpx_supported() &&
3326                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3327                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3328
3329         /*
3330          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3331          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3332          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3333          * software model to the pre-VMEntry host state.  When EPT is disabled,
3334          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3335          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3336          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3337          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3338          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3339          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3340          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3341          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3342          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3343          * path would need to manually save/restore vmcs01.GUEST_CR3.
3344          */
3345         if (!enable_ept && !nested_early_check)
3346                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3347
3348         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3349
3350         prepare_vmcs02_early(vmx, vmcs12);
3351
3352         if (from_vmentry) {
3353                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3354                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3355                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3356                 }
3357
3358                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3359                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3360                         return NVMX_VMENTRY_VMFAIL;
3361                 }
3362
3363                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3364                                                  &entry_failure_code)) {
3365                         exit_reason = EXIT_REASON_INVALID_STATE;
3366                         vmcs12->exit_qualification = entry_failure_code;
3367                         goto vmentry_fail_vmexit;
3368                 }
3369         }
3370
3371         enter_guest_mode(vcpu);
3372         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3373                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3374
3375         if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3376                 exit_reason = EXIT_REASON_INVALID_STATE;
3377                 vmcs12->exit_qualification = entry_failure_code;
3378                 goto vmentry_fail_vmexit_guest_mode;
3379         }
3380
3381         if (from_vmentry) {
3382                 failed_index = nested_vmx_load_msr(vcpu,
3383                                                    vmcs12->vm_entry_msr_load_addr,
3384                                                    vmcs12->vm_entry_msr_load_count);
3385                 if (failed_index) {
3386                         exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3387                         vmcs12->exit_qualification = failed_index;
3388                         goto vmentry_fail_vmexit_guest_mode;
3389                 }
3390         } else {
3391                 /*
3392                  * The MMU is not initialized to point at the right entities yet and
3393                  * "get pages" would need to read data from the guest (i.e. we will
3394                  * need to perform gpa to hpa translation). Request a call
3395                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3396                  * have already been set at vmentry time and should not be reset.
3397                  */
3398                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3399         }
3400
3401         /*
3402          * If L1 had a pending IRQ/NMI until it executed
3403          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3404          * disallowed (e.g. interrupts disabled), L0 needs to
3405          * evaluate if this pending event should cause an exit from L2
3406          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3407          * intercept EXTERNAL_INTERRUPT).
3408          *
3409          * Usually this would be handled by the processor noticing an
3410          * IRQ/NMI window request, or checking RVI during evaluation of
3411          * pending virtual interrupts.  However, this setting was done
3412          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3413          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3414          */
3415         if (unlikely(evaluate_pending_interrupts))
3416                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3417
3418         /*
3419          * Do not start the preemption timer hrtimer until after we know
3420          * we are successful, so that only nested_vmx_vmexit needs to cancel
3421          * the timer.
3422          */
3423         vmx->nested.preemption_timer_expired = false;
3424         if (nested_cpu_has_preemption_timer(vmcs12)) {
3425                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3426                 vmx_start_preemption_timer(vcpu, timer_value);
3427         }
3428
3429         /*
3430          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3431          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3432          * returned as far as L1 is concerned. It will only return (and set
3433          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3434          */
3435         return NVMX_VMENTRY_SUCCESS;
3436
3437         /*
3438          * A failed consistency check that leads to a VMExit during L1's
3439          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3440          * 26.7 "VM-entry failures during or after loading guest state".
3441          */
3442 vmentry_fail_vmexit_guest_mode:
3443         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3444                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3445         leave_guest_mode(vcpu);
3446
3447 vmentry_fail_vmexit:
3448         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3449
3450         if (!from_vmentry)
3451                 return NVMX_VMENTRY_VMEXIT;
3452
3453         load_vmcs12_host_state(vcpu, vmcs12);
3454         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3455         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3456                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3457         return NVMX_VMENTRY_VMEXIT;
3458 }
3459
3460 /*
3461  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3462  * for running an L2 nested guest.
3463  */
3464 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3465 {
3466         struct vmcs12 *vmcs12;
3467         enum nvmx_vmentry_status status;
3468         struct vcpu_vmx *vmx = to_vmx(vcpu);
3469         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3470         enum nested_evmptrld_status evmptrld_status;
3471
3472         if (!nested_vmx_check_permission(vcpu))
3473                 return 1;
3474
3475         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3476         if (evmptrld_status == EVMPTRLD_ERROR) {
3477                 kvm_queue_exception(vcpu, UD_VECTOR);
3478                 return 1;
3479         } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3480                 return nested_vmx_failInvalid(vcpu);
3481         }
3482
3483         if (CC(!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull))
3484                 return nested_vmx_failInvalid(vcpu);
3485
3486         vmcs12 = get_vmcs12(vcpu);
3487
3488         /*
3489          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3490          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3491          * rather than RFLAGS.ZF, and no error number is stored to the
3492          * VM-instruction error field.
3493          */
3494         if (CC(vmcs12->hdr.shadow_vmcs))
3495                 return nested_vmx_failInvalid(vcpu);
3496
3497         if (vmx->nested.hv_evmcs) {
3498                 copy_enlightened_to_vmcs12(vmx);
3499                 /* Enlightened VMCS doesn't have launch state */
3500                 vmcs12->launch_state = !launch;
3501         } else if (enable_shadow_vmcs) {
3502                 copy_shadow_to_vmcs12(vmx);
3503         }
3504
3505         /*
3506          * The nested entry process starts with enforcing various prerequisites
3507          * on vmcs12 as required by the Intel SDM, and act appropriately when
3508          * they fail: As the SDM explains, some conditions should cause the
3509          * instruction to fail, while others will cause the instruction to seem
3510          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3511          * To speed up the normal (success) code path, we should avoid checking
3512          * for misconfigurations which will anyway be caught by the processor
3513          * when using the merged vmcs02.
3514          */
3515         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3516                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3517
3518         if (CC(vmcs12->launch_state == launch))
3519                 return nested_vmx_fail(vcpu,
3520                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3521                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3522
3523         if (nested_vmx_check_controls(vcpu, vmcs12))
3524                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3525
3526         if (nested_vmx_check_host_state(vcpu, vmcs12))
3527                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3528
3529         /*
3530          * We're finally done with prerequisite checking, and can start with
3531          * the nested entry.
3532          */
3533         vmx->nested.nested_run_pending = 1;
3534         vmx->nested.has_preemption_timer_deadline = false;
3535         status = nested_vmx_enter_non_root_mode(vcpu, true);
3536         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3537                 goto vmentry_failed;
3538
3539         /* Emulate processing of posted interrupts on VM-Enter. */
3540         if (nested_cpu_has_posted_intr(vmcs12) &&
3541             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3542                 vmx->nested.pi_pending = true;
3543                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3544                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3545         }
3546
3547         /* Hide L1D cache contents from the nested guest.  */
3548         vmx->vcpu.arch.l1tf_flush_l1d = true;
3549
3550         /*
3551          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3552          * also be used as part of restoring nVMX state for
3553          * snapshot restore (migration).
3554          *
3555          * In this flow, it is assumed that vmcs12 cache was
3556          * trasferred as part of captured nVMX state and should
3557          * therefore not be read from guest memory (which may not
3558          * exist on destination host yet).
3559          */
3560         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3561
3562         /*
3563          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3564          * awakened by event injection or by an NMI-window VM-exit or
3565          * by an interrupt-window VM-exit, halt the vcpu.
3566          */
3567         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3568             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3569             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3570             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3571               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3572                 vmx->nested.nested_run_pending = 0;
3573                 return kvm_vcpu_halt(vcpu);
3574         }
3575         return 1;
3576
3577 vmentry_failed:
3578         vmx->nested.nested_run_pending = 0;
3579         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3580                 return 0;
3581         if (status == NVMX_VMENTRY_VMEXIT)
3582                 return 1;
3583         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3584         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3585 }
3586
3587 /*
3588  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3589  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3590  * This function returns the new value we should put in vmcs12.guest_cr0.
3591  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3592  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3593  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3594  *     didn't trap the bit, because if L1 did, so would L0).
3595  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3596  *     been modified by L2, and L1 knows it. So just leave the old value of
3597  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3598  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3599  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3600  *     changed these bits, and therefore they need to be updated, but L0
3601  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3602  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3603  */
3604 static inline unsigned long
3605 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3606 {
3607         return
3608         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3609         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3610         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3611                         vcpu->arch.cr0_guest_owned_bits));
3612 }
3613
3614 static inline unsigned long
3615 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3616 {
3617         return
3618         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3619         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3620         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3621                         vcpu->arch.cr4_guest_owned_bits));
3622 }
3623
3624 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3625                                       struct vmcs12 *vmcs12)
3626 {
3627         u32 idt_vectoring;
3628         unsigned int nr;
3629
3630         if (vcpu->arch.exception.injected) {
3631                 nr = vcpu->arch.exception.nr;
3632                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3633
3634                 if (kvm_exception_is_soft(nr)) {
3635                         vmcs12->vm_exit_instruction_len =
3636                                 vcpu->arch.event_exit_inst_len;
3637                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3638                 } else
3639                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3640
3641                 if (vcpu->arch.exception.has_error_code) {
3642                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3643                         vmcs12->idt_vectoring_error_code =
3644                                 vcpu->arch.exception.error_code;
3645                 }
3646
3647                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3648         } else if (vcpu->arch.nmi_injected) {
3649                 vmcs12->idt_vectoring_info_field =
3650                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3651         } else if (vcpu->arch.interrupt.injected) {
3652                 nr = vcpu->arch.interrupt.nr;
3653                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3654
3655                 if (vcpu->arch.interrupt.soft) {
3656                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3657                         vmcs12->vm_entry_instruction_len =
3658                                 vcpu->arch.event_exit_inst_len;
3659                 } else
3660                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3661
3662                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3663         }
3664 }
3665
3666
3667 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3668 {
3669         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3670         gfn_t gfn;
3671
3672         /*
3673          * Don't need to mark the APIC access page dirty; it is never
3674          * written to by the CPU during APIC virtualization.
3675          */
3676
3677         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3678                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3679                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3680         }
3681
3682         if (nested_cpu_has_posted_intr(vmcs12)) {
3683                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3684                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3685         }
3686 }
3687
3688 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3689 {
3690         struct vcpu_vmx *vmx = to_vmx(vcpu);
3691         int max_irr;
3692         void *vapic_page;
3693         u16 status;
3694
3695         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3696                 return;
3697
3698         vmx->nested.pi_pending = false;
3699         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3700                 return;
3701
3702         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3703         if (max_irr != 256) {
3704                 vapic_page = vmx->nested.virtual_apic_map.hva;
3705                 if (!vapic_page)
3706                         return;
3707
3708                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3709                         vapic_page, &max_irr);
3710                 status = vmcs_read16(GUEST_INTR_STATUS);
3711                 if ((u8)max_irr > ((u8)status & 0xff)) {
3712                         status &= ~0xff;
3713                         status |= (u8)max_irr;
3714                         vmcs_write16(GUEST_INTR_STATUS, status);
3715                 }
3716         }
3717
3718         nested_mark_vmcs12_pages_dirty(vcpu);
3719 }
3720
3721 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3722                                                unsigned long exit_qual)
3723 {
3724         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3725         unsigned int nr = vcpu->arch.exception.nr;
3726         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3727
3728         if (vcpu->arch.exception.has_error_code) {
3729                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3730                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3731         }
3732
3733         if (kvm_exception_is_soft(nr))
3734                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3735         else
3736                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3737
3738         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3739             vmx_get_nmi_mask(vcpu))
3740                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3741
3742         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3743 }
3744
3745 /*
3746  * Returns true if a debug trap is pending delivery.
3747  *
3748  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3749  * exception may be inferred from the presence of an exception payload.
3750  */
3751 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3752 {
3753         return vcpu->arch.exception.pending &&
3754                         vcpu->arch.exception.nr == DB_VECTOR &&
3755                         vcpu->arch.exception.payload;
3756 }
3757
3758 /*
3759  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3760  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3761  * represents these debug traps with a payload that is said to be compatible
3762  * with the 'pending debug exceptions' field, write the payload to the VMCS
3763  * field if a VM-exit is delivered before the debug trap.
3764  */
3765 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3766 {
3767         if (vmx_pending_dbg_trap(vcpu))
3768                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3769                             vcpu->arch.exception.payload);
3770 }
3771
3772 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3773 {
3774         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3775                to_vmx(vcpu)->nested.preemption_timer_expired;
3776 }
3777
3778 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3779 {
3780         struct vcpu_vmx *vmx = to_vmx(vcpu);
3781         unsigned long exit_qual;
3782         bool block_nested_events =
3783             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3784         bool mtf_pending = vmx->nested.mtf_pending;
3785         struct kvm_lapic *apic = vcpu->arch.apic;
3786
3787         /*
3788          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3789          * this state is discarded.
3790          */
3791         if (!block_nested_events)
3792                 vmx->nested.mtf_pending = false;
3793
3794         if (lapic_in_kernel(vcpu) &&
3795                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3796                 if (block_nested_events)
3797                         return -EBUSY;
3798                 nested_vmx_update_pending_dbg(vcpu);
3799                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3800                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3801                 return 0;
3802         }
3803
3804         /*
3805          * Process any exceptions that are not debug traps before MTF.
3806          */
3807         if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3808                 if (block_nested_events)
3809                         return -EBUSY;
3810                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3811                         goto no_vmexit;
3812                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3813                 return 0;
3814         }
3815
3816         if (mtf_pending) {
3817                 if (block_nested_events)
3818                         return -EBUSY;
3819                 nested_vmx_update_pending_dbg(vcpu);
3820                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3821                 return 0;
3822         }
3823
3824         if (vcpu->arch.exception.pending) {
3825                 if (block_nested_events)
3826                         return -EBUSY;
3827                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3828                         goto no_vmexit;
3829                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3830                 return 0;
3831         }
3832
3833         if (nested_vmx_preemption_timer_pending(vcpu)) {
3834                 if (block_nested_events)
3835                         return -EBUSY;
3836                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3837                 return 0;
3838         }
3839
3840         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3841                 if (block_nested_events)
3842                         return -EBUSY;
3843                 goto no_vmexit;
3844         }
3845
3846         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3847                 if (block_nested_events)
3848                         return -EBUSY;
3849                 if (!nested_exit_on_nmi(vcpu))
3850                         goto no_vmexit;
3851
3852                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3853                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3854                                   INTR_INFO_VALID_MASK, 0);
3855                 /*
3856                  * The NMI-triggered VM exit counts as injection:
3857                  * clear this one and block further NMIs.
3858                  */
3859                 vcpu->arch.nmi_pending = 0;
3860                 vmx_set_nmi_mask(vcpu, true);
3861                 return 0;
3862         }
3863
3864         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3865                 if (block_nested_events)
3866                         return -EBUSY;
3867                 if (!nested_exit_on_intr(vcpu))
3868                         goto no_vmexit;
3869                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3870                 return 0;
3871         }
3872
3873 no_vmexit:
3874         vmx_complete_nested_posted_interrupt(vcpu);
3875         return 0;
3876 }
3877
3878 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3879 {
3880         ktime_t remaining =
3881                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3882         u64 value;
3883
3884         if (ktime_to_ns(remaining) <= 0)
3885                 return 0;
3886
3887         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3888         do_div(value, 1000000);
3889         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3890 }
3891
3892 static bool is_vmcs12_ext_field(unsigned long field)
3893 {
3894         switch (field) {
3895         case GUEST_ES_SELECTOR:
3896         case GUEST_CS_SELECTOR:
3897         case GUEST_SS_SELECTOR:
3898         case GUEST_DS_SELECTOR:
3899         case GUEST_FS_SELECTOR:
3900         case GUEST_GS_SELECTOR:
3901         case GUEST_LDTR_SELECTOR:
3902         case GUEST_TR_SELECTOR:
3903         case GUEST_ES_LIMIT:
3904         case GUEST_CS_LIMIT:
3905         case GUEST_SS_LIMIT:
3906         case GUEST_DS_LIMIT:
3907         case GUEST_FS_LIMIT:
3908         case GUEST_GS_LIMIT:
3909         case GUEST_LDTR_LIMIT:
3910         case GUEST_TR_LIMIT:
3911         case GUEST_GDTR_LIMIT:
3912         case GUEST_IDTR_LIMIT:
3913         case GUEST_ES_AR_BYTES:
3914         case GUEST_DS_AR_BYTES:
3915         case GUEST_FS_AR_BYTES:
3916         case GUEST_GS_AR_BYTES:
3917         case GUEST_LDTR_AR_BYTES:
3918         case GUEST_TR_AR_BYTES:
3919         case GUEST_ES_BASE:
3920         case GUEST_CS_BASE:
3921         case GUEST_SS_BASE:
3922         case GUEST_DS_BASE:
3923         case GUEST_FS_BASE:
3924         case GUEST_GS_BASE:
3925         case GUEST_LDTR_BASE:
3926         case GUEST_TR_BASE:
3927         case GUEST_GDTR_BASE:
3928         case GUEST_IDTR_BASE:
3929         case GUEST_PENDING_DBG_EXCEPTIONS:
3930         case GUEST_BNDCFGS:
3931                 return true;
3932         default:
3933                 break;
3934         }
3935
3936         return false;
3937 }
3938
3939 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3940                                        struct vmcs12 *vmcs12)
3941 {
3942         struct vcpu_vmx *vmx = to_vmx(vcpu);
3943
3944         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3945         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3946         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3947         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3948         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3949         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3950         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3951         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3952         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3953         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3954         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3955         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3956         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3957         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3958         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3959         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3960         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3961         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3962         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3963         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3964         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3965         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3966         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3967         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3968         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3969         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3970         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3971         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3972         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3973         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3974         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3975         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3976         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3977         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3978         vmcs12->guest_pending_dbg_exceptions =
3979                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3980         if (kvm_mpx_supported())
3981                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3982
3983         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3984 }
3985
3986 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3987                                        struct vmcs12 *vmcs12)
3988 {
3989         struct vcpu_vmx *vmx = to_vmx(vcpu);
3990         int cpu;
3991
3992         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3993                 return;
3994
3995
3996         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3997
3998         cpu = get_cpu();
3999         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4000         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4001
4002         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4003
4004         vmx->loaded_vmcs = &vmx->vmcs01;
4005         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4006         put_cpu();
4007 }
4008
4009 /*
4010  * Update the guest state fields of vmcs12 to reflect changes that
4011  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4012  * VM-entry controls is also updated, since this is really a guest
4013  * state bit.)
4014  */
4015 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4016 {
4017         struct vcpu_vmx *vmx = to_vmx(vcpu);
4018
4019         if (vmx->nested.hv_evmcs)
4020                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4021
4022         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
4023
4024         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4025         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4026
4027         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4028         vmcs12->guest_rip = kvm_rip_read(vcpu);
4029         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4030
4031         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4032         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4033
4034         vmcs12->guest_interruptibility_info =
4035                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4036
4037         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4038                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4039         else
4040                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4041
4042         if (nested_cpu_has_preemption_timer(vmcs12) &&
4043             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4044             !vmx->nested.nested_run_pending)
4045                 vmcs12->vmx_preemption_timer_value =
4046                         vmx_get_preemption_timer_value(vcpu);
4047
4048         /*
4049          * In some cases (usually, nested EPT), L2 is allowed to change its
4050          * own CR3 without exiting. If it has changed it, we must keep it.
4051          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4052          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4053          *
4054          * Additionally, restore L2's PDPTR to vmcs12.
4055          */
4056         if (enable_ept) {
4057                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4058                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4059                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4060                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4061                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4062                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4063                 }
4064         }
4065
4066         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4067
4068         if (nested_cpu_has_vid(vmcs12))
4069                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4070
4071         vmcs12->vm_entry_controls =
4072                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4073                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4074
4075         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4076                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4077
4078         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4079                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4080 }
4081
4082 /*
4083  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4084  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4085  * and this function updates it to reflect the changes to the guest state while
4086  * L2 was running (and perhaps made some exits which were handled directly by L0
4087  * without going back to L1), and to reflect the exit reason.
4088  * Note that we do not have to copy here all VMCS fields, just those that
4089  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4090  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4091  * which already writes to vmcs12 directly.
4092  */
4093 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4094                            u32 vm_exit_reason, u32 exit_intr_info,
4095                            unsigned long exit_qualification)
4096 {
4097         /* update exit information fields: */
4098         vmcs12->vm_exit_reason = vm_exit_reason;
4099         vmcs12->exit_qualification = exit_qualification;
4100         vmcs12->vm_exit_intr_info = exit_intr_info;
4101
4102         vmcs12->idt_vectoring_info_field = 0;
4103         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4104         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4105
4106         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4107                 vmcs12->launch_state = 1;
4108
4109                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4110                  * instead of reading the real value. */
4111                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4112
4113                 /*
4114                  * Transfer the event that L0 or L1 may wanted to inject into
4115                  * L2 to IDT_VECTORING_INFO_FIELD.
4116                  */
4117                 vmcs12_save_pending_event(vcpu, vmcs12);
4118
4119                 /*
4120                  * According to spec, there's no need to store the guest's
4121                  * MSRs if the exit is due to a VM-entry failure that occurs
4122                  * during or after loading the guest state. Since this exit
4123                  * does not fall in that category, we need to save the MSRs.
4124                  */
4125                 if (nested_vmx_store_msr(vcpu,
4126                                          vmcs12->vm_exit_msr_store_addr,
4127                                          vmcs12->vm_exit_msr_store_count))
4128                         nested_vmx_abort(vcpu,
4129                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4130         }
4131
4132         /*
4133          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4134          * preserved above and would only end up incorrectly in L1.
4135          */
4136         vcpu->arch.nmi_injected = false;
4137         kvm_clear_exception_queue(vcpu);
4138         kvm_clear_interrupt_queue(vcpu);
4139 }
4140
4141 /*
4142  * A part of what we need to when the nested L2 guest exits and we want to
4143  * run its L1 parent, is to reset L1's guest state to the host state specified
4144  * in vmcs12.
4145  * This function is to be called not only on normal nested exit, but also on
4146  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4147  * Failures During or After Loading Guest State").
4148  * This function should be called when the active VMCS is L1's (vmcs01).
4149  */
4150 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4151                                    struct vmcs12 *vmcs12)
4152 {
4153         enum vm_entry_failure_code ignored;
4154         struct kvm_segment seg;
4155
4156         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4157                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4158         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4159                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4160         else
4161                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4162         vmx_set_efer(vcpu, vcpu->arch.efer);
4163
4164         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4165         kvm_rip_write(vcpu, vmcs12->host_rip);
4166         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4167         vmx_set_interrupt_shadow(vcpu, 0);
4168
4169         /*
4170          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4171          * actually changed, because vmx_set_cr0 refers to efer set above.
4172          *
4173          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4174          * (KVM doesn't change it);
4175          */
4176         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4177         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4178
4179         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4180         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4181         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4182
4183         nested_ept_uninit_mmu_context(vcpu);
4184
4185         /*
4186          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4187          * couldn't have changed.
4188          */
4189         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4190                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4191
4192         if (!enable_ept)
4193                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4194
4195         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4196
4197         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4198         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4199         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4200         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4201         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4202         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4203         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4204
4205         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4206         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4207                 vmcs_write64(GUEST_BNDCFGS, 0);
4208
4209         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4210                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4211                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4212         }
4213         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4214                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4215                                          vmcs12->host_ia32_perf_global_ctrl));
4216
4217         /* Set L1 segment info according to Intel SDM
4218             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4219         seg = (struct kvm_segment) {
4220                 .base = 0,
4221                 .limit = 0xFFFFFFFF,
4222                 .selector = vmcs12->host_cs_selector,
4223                 .type = 11,
4224                 .present = 1,
4225                 .s = 1,
4226                 .g = 1
4227         };
4228         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4229                 seg.l = 1;
4230         else
4231                 seg.db = 1;
4232         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4233         seg = (struct kvm_segment) {
4234                 .base = 0,
4235                 .limit = 0xFFFFFFFF,
4236                 .type = 3,
4237                 .present = 1,
4238                 .s = 1,
4239                 .db = 1,
4240                 .g = 1
4241         };
4242         seg.selector = vmcs12->host_ds_selector;
4243         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4244         seg.selector = vmcs12->host_es_selector;
4245         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4246         seg.selector = vmcs12->host_ss_selector;
4247         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4248         seg.selector = vmcs12->host_fs_selector;
4249         seg.base = vmcs12->host_fs_base;
4250         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4251         seg.selector = vmcs12->host_gs_selector;
4252         seg.base = vmcs12->host_gs_base;
4253         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4254         seg = (struct kvm_segment) {
4255                 .base = vmcs12->host_tr_base,
4256                 .limit = 0x67,
4257                 .selector = vmcs12->host_tr_selector,
4258                 .type = 11,
4259                 .present = 1
4260         };
4261         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4262
4263         kvm_set_dr(vcpu, 7, 0x400);
4264         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4265
4266         if (cpu_has_vmx_msr_bitmap())
4267                 vmx_update_msr_bitmap(vcpu);
4268
4269         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4270                                 vmcs12->vm_exit_msr_load_count))
4271                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4272 }
4273
4274 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4275 {
4276         struct vmx_uret_msr *efer_msr;
4277         unsigned int i;
4278
4279         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4280                 return vmcs_read64(GUEST_IA32_EFER);
4281
4282         if (cpu_has_load_ia32_efer())
4283                 return host_efer;
4284
4285         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4286                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4287                         return vmx->msr_autoload.guest.val[i].value;
4288         }
4289
4290         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4291         if (efer_msr)
4292                 return efer_msr->data;
4293
4294         return host_efer;
4295 }
4296
4297 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4298 {
4299         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4300         struct vcpu_vmx *vmx = to_vmx(vcpu);
4301         struct vmx_msr_entry g, h;
4302         gpa_t gpa;
4303         u32 i, j;
4304
4305         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4306
4307         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4308                 /*
4309                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4310                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4311                  * and vcpu->arch.dr7 is not squirreled away before the
4312                  * nested VMENTER (not worth adding a variable in nested_vmx).
4313                  */
4314                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4315                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4316                 else
4317                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4318         }
4319
4320         /*
4321          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4322          * handle a variety of side effects to KVM's software model.
4323          */
4324         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4325
4326         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4327         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4328
4329         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4330         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4331
4332         nested_ept_uninit_mmu_context(vcpu);
4333         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4334         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4335
4336         /*
4337          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4338          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4339          * VMFail, like everything else we just need to ensure our
4340          * software model is up-to-date.
4341          */
4342         if (enable_ept && is_pae_paging(vcpu))
4343                 ept_save_pdptrs(vcpu);
4344
4345         kvm_mmu_reset_context(vcpu);
4346
4347         if (cpu_has_vmx_msr_bitmap())
4348                 vmx_update_msr_bitmap(vcpu);
4349
4350         /*
4351          * This nasty bit of open coding is a compromise between blindly
4352          * loading L1's MSRs using the exit load lists (incorrect emulation
4353          * of VMFail), leaving the nested VM's MSRs in the software model
4354          * (incorrect behavior) and snapshotting the modified MSRs (too
4355          * expensive since the lists are unbound by hardware).  For each
4356          * MSR that was (prematurely) loaded from the nested VMEntry load
4357          * list, reload it from the exit load list if it exists and differs
4358          * from the guest value.  The intent is to stuff host state as
4359          * silently as possible, not to fully process the exit load list.
4360          */
4361         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4362                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4363                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4364                         pr_debug_ratelimited(
4365                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4366                                 __func__, i, gpa);
4367                         goto vmabort;
4368                 }
4369
4370                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4371                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4372                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4373                                 pr_debug_ratelimited(
4374                                         "%s read MSR failed (%u, 0x%08llx)\n",
4375                                         __func__, j, gpa);
4376                                 goto vmabort;
4377                         }
4378                         if (h.index != g.index)
4379                                 continue;
4380                         if (h.value == g.value)
4381                                 break;
4382
4383                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4384                                 pr_debug_ratelimited(
4385                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4386                                         __func__, j, h.index, h.reserved);
4387                                 goto vmabort;
4388                         }
4389
4390                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4391                                 pr_debug_ratelimited(
4392                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4393                                         __func__, j, h.index, h.value);
4394                                 goto vmabort;
4395                         }
4396                 }
4397         }
4398
4399         return;
4400
4401 vmabort:
4402         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4403 }
4404
4405 /*
4406  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4407  * and modify vmcs12 to make it see what it would expect to see there if
4408  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4409  */
4410 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4411                        u32 exit_intr_info, unsigned long exit_qualification)
4412 {
4413         struct vcpu_vmx *vmx = to_vmx(vcpu);
4414         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4415
4416         /* trying to cancel vmlaunch/vmresume is a bug */
4417         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4418
4419         /* Service the TLB flush request for L2 before switching to L1. */
4420         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4421                 kvm_vcpu_flush_tlb_current(vcpu);
4422
4423         /*
4424          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4425          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4426          * up-to-date before switching to L1.
4427          */
4428         if (enable_ept && is_pae_paging(vcpu))
4429                 vmx_ept_load_pdptrs(vcpu);
4430
4431         leave_guest_mode(vcpu);
4432
4433         if (nested_cpu_has_preemption_timer(vmcs12))
4434                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4435
4436         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4437                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4438
4439         if (likely(!vmx->fail)) {
4440                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4441
4442                 if (vm_exit_reason != -1)
4443                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4444                                        exit_intr_info, exit_qualification);
4445
4446                 /*
4447                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4448                  * also be used to capture vmcs12 cache as part of
4449                  * capturing nVMX state for snapshot (migration).
4450                  *
4451                  * Otherwise, this flush will dirty guest memory at a
4452                  * point it is already assumed by user-space to be
4453                  * immutable.
4454                  */
4455                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4456         } else {
4457                 /*
4458                  * The only expected VM-instruction error is "VM entry with
4459                  * invalid control field(s)." Anything else indicates a
4460                  * problem with L0.  And we should never get here with a
4461                  * VMFail of any type if early consistency checks are enabled.
4462                  */
4463                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4464                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4465                 WARN_ON_ONCE(nested_early_check);
4466         }
4467
4468         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4469
4470         /* Update any VMCS fields that might have changed while L2 ran */
4471         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4472         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4473         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4474         if (vmx->nested.l1_tpr_threshold != -1)
4475                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4476
4477         if (kvm_has_tsc_control)
4478                 decache_tsc_multiplier(vmx);
4479
4480         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4481                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4482                 vmx_set_virtual_apic_mode(vcpu);
4483         }
4484
4485         /* Unpin physical memory we referred to in vmcs02 */
4486         if (vmx->nested.apic_access_page) {
4487                 kvm_release_page_clean(vmx->nested.apic_access_page);
4488                 vmx->nested.apic_access_page = NULL;
4489         }
4490         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4491         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4492         vmx->nested.pi_desc = NULL;
4493
4494         if (vmx->nested.reload_vmcs01_apic_access_page) {
4495                 vmx->nested.reload_vmcs01_apic_access_page = false;
4496                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4497         }
4498
4499         if ((vm_exit_reason != -1) &&
4500             (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4501                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4502
4503         /* in case we halted in L2 */
4504         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4505
4506         if (likely(!vmx->fail)) {
4507                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4508                     nested_exit_intr_ack_set(vcpu)) {
4509                         int irq = kvm_cpu_get_interrupt(vcpu);
4510                         WARN_ON(irq < 0);
4511                         vmcs12->vm_exit_intr_info = irq |
4512                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4513                 }
4514
4515                 if (vm_exit_reason != -1)
4516                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4517                                                        vmcs12->exit_qualification,
4518                                                        vmcs12->idt_vectoring_info_field,
4519                                                        vmcs12->vm_exit_intr_info,
4520                                                        vmcs12->vm_exit_intr_error_code,
4521                                                        KVM_ISA_VMX);
4522
4523                 load_vmcs12_host_state(vcpu, vmcs12);
4524
4525                 return;
4526         }
4527
4528         /*
4529          * After an early L2 VM-entry failure, we're now back
4530          * in L1 which thinks it just finished a VMLAUNCH or
4531          * VMRESUME instruction, so we need to set the failure
4532          * flag and the VM-instruction error field of the VMCS
4533          * accordingly, and skip the emulated instruction.
4534          */
4535         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4536
4537         /*
4538          * Restore L1's host state to KVM's software model.  We're here
4539          * because a consistency check was caught by hardware, which
4540          * means some amount of guest state has been propagated to KVM's
4541          * model and needs to be unwound to the host's state.
4542          */
4543         nested_vmx_restore_host_state(vcpu);
4544
4545         vmx->fail = 0;
4546 }
4547
4548 /*
4549  * Decode the memory-address operand of a vmx instruction, as recorded on an
4550  * exit caused by such an instruction (run by a guest hypervisor).
4551  * On success, returns 0. When the operand is invalid, returns 1 and throws
4552  * #UD, #GP, or #SS.
4553  */
4554 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4555                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4556 {
4557         gva_t off;
4558         bool exn;
4559         struct kvm_segment s;
4560
4561         /*
4562          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4563          * Execution", on an exit, vmx_instruction_info holds most of the
4564          * addressing components of the operand. Only the displacement part
4565          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4566          * For how an actual address is calculated from all these components,
4567          * refer to Vol. 1, "Operand Addressing".
4568          */
4569         int  scaling = vmx_instruction_info & 3;
4570         int  addr_size = (vmx_instruction_info >> 7) & 7;
4571         bool is_reg = vmx_instruction_info & (1u << 10);
4572         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4573         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4574         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4575         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4576         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4577
4578         if (is_reg) {
4579                 kvm_queue_exception(vcpu, UD_VECTOR);
4580                 return 1;
4581         }
4582
4583         /* Addr = segment_base + offset */
4584         /* offset = base + [index * scale] + displacement */
4585         off = exit_qualification; /* holds the displacement */
4586         if (addr_size == 1)
4587                 off = (gva_t)sign_extend64(off, 31);
4588         else if (addr_size == 0)
4589                 off = (gva_t)sign_extend64(off, 15);
4590         if (base_is_valid)
4591                 off += kvm_register_read(vcpu, base_reg);
4592         if (index_is_valid)
4593                 off += kvm_register_read(vcpu, index_reg) << scaling;
4594         vmx_get_segment(vcpu, &s, seg_reg);
4595
4596         /*
4597          * The effective address, i.e. @off, of a memory operand is truncated
4598          * based on the address size of the instruction.  Note that this is
4599          * the *effective address*, i.e. the address prior to accounting for
4600          * the segment's base.
4601          */
4602         if (addr_size == 1) /* 32 bit */
4603                 off &= 0xffffffff;
4604         else if (addr_size == 0) /* 16 bit */
4605                 off &= 0xffff;
4606
4607         /* Checks for #GP/#SS exceptions. */
4608         exn = false;
4609         if (is_long_mode(vcpu)) {
4610                 /*
4611                  * The virtual/linear address is never truncated in 64-bit
4612                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4613                  * address when using FS/GS with a non-zero base.
4614                  */
4615                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4616                         *ret = s.base + off;
4617                 else
4618                         *ret = off;
4619
4620                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4621                  * non-canonical form. This is the only check on the memory
4622                  * destination for long mode!
4623                  */
4624                 exn = is_noncanonical_address(*ret, vcpu);
4625         } else {
4626                 /*
4627                  * When not in long mode, the virtual/linear address is
4628                  * unconditionally truncated to 32 bits regardless of the
4629                  * address size.
4630                  */
4631                 *ret = (s.base + off) & 0xffffffff;
4632
4633                 /* Protected mode: apply checks for segment validity in the
4634                  * following order:
4635                  * - segment type check (#GP(0) may be thrown)
4636                  * - usability check (#GP(0)/#SS(0))
4637                  * - limit check (#GP(0)/#SS(0))
4638                  */
4639                 if (wr)
4640                         /* #GP(0) if the destination operand is located in a
4641                          * read-only data segment or any code segment.
4642                          */
4643                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4644                 else
4645                         /* #GP(0) if the source operand is located in an
4646                          * execute-only code segment
4647                          */
4648                         exn = ((s.type & 0xa) == 8);
4649                 if (exn) {
4650                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4651                         return 1;
4652                 }
4653                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4654                  */
4655                 exn = (s.unusable != 0);
4656
4657                 /*
4658                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4659                  * outside the segment limit.  All CPUs that support VMX ignore
4660                  * limit checks for flat segments, i.e. segments with base==0,
4661                  * limit==0xffffffff and of type expand-up data or code.
4662                  */
4663                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4664                      ((s.type & 8) || !(s.type & 4))))
4665                         exn = exn || ((u64)off + len - 1 > s.limit);
4666         }
4667         if (exn) {
4668                 kvm_queue_exception_e(vcpu,
4669                                       seg_reg == VCPU_SREG_SS ?
4670                                                 SS_VECTOR : GP_VECTOR,
4671                                       0);
4672                 return 1;
4673         }
4674
4675         return 0;
4676 }
4677
4678 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4679 {
4680         struct vcpu_vmx *vmx;
4681
4682         if (!nested_vmx_allowed(vcpu))
4683                 return;
4684
4685         vmx = to_vmx(vcpu);
4686         if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4687                 vmx->nested.msrs.entry_ctls_high |=
4688                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4689                 vmx->nested.msrs.exit_ctls_high |=
4690                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4691         } else {
4692                 vmx->nested.msrs.entry_ctls_high &=
4693                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4694                 vmx->nested.msrs.exit_ctls_high &=
4695                                 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4696         }
4697 }
4698
4699 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4700                                 int *ret)
4701 {
4702         gva_t gva;
4703         struct x86_exception e;
4704         int r;
4705
4706         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4707                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4708                                 sizeof(*vmpointer), &gva)) {
4709                 *ret = 1;
4710                 return -EINVAL;
4711         }
4712
4713         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4714         if (r != X86EMUL_CONTINUE) {
4715                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4716                 return -EINVAL;
4717         }
4718
4719         return 0;
4720 }
4721
4722 /*
4723  * Allocate a shadow VMCS and associate it with the currently loaded
4724  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4725  * VMCS is also VMCLEARed, so that it is ready for use.
4726  */
4727 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4728 {
4729         struct vcpu_vmx *vmx = to_vmx(vcpu);
4730         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4731
4732         /*
4733          * We should allocate a shadow vmcs for vmcs01 only when L1
4734          * executes VMXON and free it when L1 executes VMXOFF.
4735          * As it is invalid to execute VMXON twice, we shouldn't reach
4736          * here when vmcs01 already have an allocated shadow vmcs.
4737          */
4738         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4739
4740         if (!loaded_vmcs->shadow_vmcs) {
4741                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4742                 if (loaded_vmcs->shadow_vmcs)
4743                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4744         }
4745         return loaded_vmcs->shadow_vmcs;
4746 }
4747
4748 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4749 {
4750         struct vcpu_vmx *vmx = to_vmx(vcpu);
4751         int r;
4752
4753         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4754         if (r < 0)
4755                 goto out_vmcs02;
4756
4757         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4758         if (!vmx->nested.cached_vmcs12)
4759                 goto out_cached_vmcs12;
4760
4761         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4762         if (!vmx->nested.cached_shadow_vmcs12)
4763                 goto out_cached_shadow_vmcs12;
4764
4765         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4766                 goto out_shadow_vmcs;
4767
4768         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4769                      HRTIMER_MODE_ABS_PINNED);
4770         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4771
4772         vmx->nested.vpid02 = allocate_vpid();
4773
4774         vmx->nested.vmcs02_initialized = false;
4775         vmx->nested.vmxon = true;
4776
4777         if (vmx_pt_mode_is_host_guest()) {
4778                 vmx->pt_desc.guest.ctl = 0;
4779                 pt_update_intercept_for_msr(vcpu);
4780         }
4781
4782         return 0;
4783
4784 out_shadow_vmcs:
4785         kfree(vmx->nested.cached_shadow_vmcs12);
4786
4787 out_cached_shadow_vmcs12:
4788         kfree(vmx->nested.cached_vmcs12);
4789
4790 out_cached_vmcs12:
4791         free_loaded_vmcs(&vmx->nested.vmcs02);
4792
4793 out_vmcs02:
4794         return -ENOMEM;
4795 }
4796
4797 /*
4798  * Emulate the VMXON instruction.
4799  * Currently, we just remember that VMX is active, and do not save or even
4800  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4801  * do not currently need to store anything in that guest-allocated memory
4802  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4803  * argument is different from the VMXON pointer (which the spec says they do).
4804  */
4805 static int handle_vmon(struct kvm_vcpu *vcpu)
4806 {
4807         int ret;
4808         gpa_t vmptr;
4809         uint32_t revision;
4810         struct vcpu_vmx *vmx = to_vmx(vcpu);
4811         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4812                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4813
4814         /*
4815          * The Intel VMX Instruction Reference lists a bunch of bits that are
4816          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4817          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4818          * Otherwise, we should fail with #UD.  But most faulting conditions
4819          * have already been checked by hardware, prior to the VM-exit for
4820          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4821          * that bit set to 1 in non-root mode.
4822          */
4823         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4824                 kvm_queue_exception(vcpu, UD_VECTOR);
4825                 return 1;
4826         }
4827
4828         /* CPL=0 must be checked manually. */
4829         if (vmx_get_cpl(vcpu)) {
4830                 kvm_inject_gp(vcpu, 0);
4831                 return 1;
4832         }
4833
4834         if (vmx->nested.vmxon)
4835                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4836
4837         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4838                         != VMXON_NEEDED_FEATURES) {
4839                 kvm_inject_gp(vcpu, 0);
4840                 return 1;
4841         }
4842
4843         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4844                 return ret;
4845
4846         /*
4847          * SDM 3: 24.11.5
4848          * The first 4 bytes of VMXON region contain the supported
4849          * VMCS revision identifier
4850          *
4851          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4852          * which replaces physical address width with 32
4853          */
4854         if (!page_address_valid(vcpu, vmptr))
4855                 return nested_vmx_failInvalid(vcpu);
4856
4857         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4858             revision != VMCS12_REVISION)
4859                 return nested_vmx_failInvalid(vcpu);
4860
4861         vmx->nested.vmxon_ptr = vmptr;
4862         ret = enter_vmx_operation(vcpu);
4863         if (ret)
4864                 return ret;
4865
4866         return nested_vmx_succeed(vcpu);
4867 }
4868
4869 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4870 {
4871         struct vcpu_vmx *vmx = to_vmx(vcpu);
4872
4873         if (vmx->nested.current_vmptr == -1ull)
4874                 return;
4875
4876         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4877
4878         if (enable_shadow_vmcs) {
4879                 /* copy to memory all shadowed fields in case
4880                    they were modified */
4881                 copy_shadow_to_vmcs12(vmx);
4882                 vmx_disable_shadow_vmcs(vmx);
4883         }
4884         vmx->nested.posted_intr_nv = -1;
4885
4886         /* Flush VMCS12 to guest memory */
4887         kvm_vcpu_write_guest_page(vcpu,
4888                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4889                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4890
4891         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4892
4893         vmx->nested.current_vmptr = -1ull;
4894 }
4895
4896 /* Emulate the VMXOFF instruction */
4897 static int handle_vmoff(struct kvm_vcpu *vcpu)
4898 {
4899         if (!nested_vmx_check_permission(vcpu))
4900                 return 1;
4901
4902         free_nested(vcpu);
4903
4904         /* Process a latched INIT during time CPU was in VMX operation */
4905         kvm_make_request(KVM_REQ_EVENT, vcpu);
4906
4907         return nested_vmx_succeed(vcpu);
4908 }
4909
4910 /* Emulate the VMCLEAR instruction */
4911 static int handle_vmclear(struct kvm_vcpu *vcpu)
4912 {
4913         struct vcpu_vmx *vmx = to_vmx(vcpu);
4914         u32 zero = 0;
4915         gpa_t vmptr;
4916         u64 evmcs_gpa;
4917         int r;
4918
4919         if (!nested_vmx_check_permission(vcpu))
4920                 return 1;
4921
4922         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
4923                 return r;
4924
4925         if (!page_address_valid(vcpu, vmptr))
4926                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
4927
4928         if (vmptr == vmx->nested.vmxon_ptr)
4929                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
4930
4931         /*
4932          * When Enlightened VMEntry is enabled on the calling CPU we treat
4933          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4934          * way to distinguish it from VMCS12) and we must not corrupt it by
4935          * writing to the non-existent 'launch_state' field. The area doesn't
4936          * have to be the currently active EVMCS on the calling CPU and there's
4937          * nothing KVM has to do to transition it from 'active' to 'non-active'
4938          * state. It is possible that the area will stay mapped as
4939          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4940          */
4941         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4942                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4943                 if (vmptr == vmx->nested.current_vmptr)
4944                         nested_release_vmcs12(vcpu);
4945
4946                 kvm_vcpu_write_guest(vcpu,
4947                                      vmptr + offsetof(struct vmcs12,
4948                                                       launch_state),
4949                                      &zero, sizeof(zero));
4950         }
4951
4952         return nested_vmx_succeed(vcpu);
4953 }
4954
4955 /* Emulate the VMLAUNCH instruction */
4956 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4957 {
4958         return nested_vmx_run(vcpu, true);
4959 }
4960
4961 /* Emulate the VMRESUME instruction */
4962 static int handle_vmresume(struct kvm_vcpu *vcpu)
4963 {
4964
4965         return nested_vmx_run(vcpu, false);
4966 }
4967
4968 static int handle_vmread(struct kvm_vcpu *vcpu)
4969 {
4970         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4971                                                     : get_vmcs12(vcpu);
4972         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
4973         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4974         struct vcpu_vmx *vmx = to_vmx(vcpu);
4975         struct x86_exception e;
4976         unsigned long field;
4977         u64 value;
4978         gva_t gva = 0;
4979         short offset;
4980         int len, r;
4981
4982         if (!nested_vmx_check_permission(vcpu))
4983                 return 1;
4984
4985         /*
4986          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4987          * any VMREAD sets the ALU flags for VMfailInvalid.
4988          */
4989         if (vmx->nested.current_vmptr == -1ull ||
4990             (is_guest_mode(vcpu) &&
4991              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4992                 return nested_vmx_failInvalid(vcpu);
4993
4994         /* Decode instruction info and find the field to read */
4995         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4996
4997         offset = vmcs_field_to_offset(field);
4998         if (offset < 0)
4999                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5000
5001         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5002                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5003
5004         /* Read the field, zero-extended to a u64 value */
5005         value = vmcs12_read_any(vmcs12, field, offset);
5006
5007         /*
5008          * Now copy part of this value to register or memory, as requested.
5009          * Note that the number of bits actually copied is 32 or 64 depending
5010          * on the guest's mode (32 or 64 bit), not on the given field's length.
5011          */
5012         if (instr_info & BIT(10)) {
5013                 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
5014         } else {
5015                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5016                 if (get_vmx_mem_address(vcpu, exit_qualification,
5017                                         instr_info, true, len, &gva))
5018                         return 1;
5019                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5020                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5021                 if (r != X86EMUL_CONTINUE)
5022                         return kvm_handle_memory_failure(vcpu, r, &e);
5023         }
5024
5025         return nested_vmx_succeed(vcpu);
5026 }
5027
5028 static bool is_shadow_field_rw(unsigned long field)
5029 {
5030         switch (field) {
5031 #define SHADOW_FIELD_RW(x, y) case x:
5032 #include "vmcs_shadow_fields.h"
5033                 return true;
5034         default:
5035                 break;
5036         }
5037         return false;
5038 }
5039
5040 static bool is_shadow_field_ro(unsigned long field)
5041 {
5042         switch (field) {
5043 #define SHADOW_FIELD_RO(x, y) case x:
5044 #include "vmcs_shadow_fields.h"
5045                 return true;
5046         default:
5047                 break;
5048         }
5049         return false;
5050 }
5051
5052 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5053 {
5054         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5055                                                     : get_vmcs12(vcpu);
5056         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5057         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5058         struct vcpu_vmx *vmx = to_vmx(vcpu);
5059         struct x86_exception e;
5060         unsigned long field;
5061         short offset;
5062         gva_t gva;
5063         int len, r;
5064
5065         /*
5066          * The value to write might be 32 or 64 bits, depending on L1's long
5067          * mode, and eventually we need to write that into a field of several
5068          * possible lengths. The code below first zero-extends the value to 64
5069          * bit (value), and then copies only the appropriate number of
5070          * bits into the vmcs12 field.
5071          */
5072         u64 value = 0;
5073
5074         if (!nested_vmx_check_permission(vcpu))
5075                 return 1;
5076
5077         /*
5078          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5079          * any VMWRITE sets the ALU flags for VMfailInvalid.
5080          */
5081         if (vmx->nested.current_vmptr == -1ull ||
5082             (is_guest_mode(vcpu) &&
5083              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5084                 return nested_vmx_failInvalid(vcpu);
5085
5086         if (instr_info & BIT(10))
5087                 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
5088         else {
5089                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5090                 if (get_vmx_mem_address(vcpu, exit_qualification,
5091                                         instr_info, false, len, &gva))
5092                         return 1;
5093                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5094                 if (r != X86EMUL_CONTINUE)
5095                         return kvm_handle_memory_failure(vcpu, r, &e);
5096         }
5097
5098         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5099
5100         offset = vmcs_field_to_offset(field);
5101         if (offset < 0)
5102                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5103
5104         /*
5105          * If the vCPU supports "VMWRITE to any supported field in the
5106          * VMCS," then the "read-only" fields are actually read/write.
5107          */
5108         if (vmcs_field_readonly(field) &&
5109             !nested_cpu_has_vmwrite_any_field(vcpu))
5110                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5111
5112         /*
5113          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5114          * vmcs12, else we may crush a field or consume a stale value.
5115          */
5116         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5117                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5118
5119         /*
5120          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5121          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5122          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5123          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5124          * from L1 will return a different value than VMREAD from L2 (L1 sees
5125          * the stripped down value, L2 sees the full value as stored by KVM).
5126          */
5127         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5128                 value &= 0x1f0ff;
5129
5130         vmcs12_write_any(vmcs12, field, offset, value);
5131
5132         /*
5133          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5134          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5135          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5136          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5137          */
5138         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5139                 /*
5140                  * L1 can read these fields without exiting, ensure the
5141                  * shadow VMCS is up-to-date.
5142                  */
5143                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5144                         preempt_disable();
5145                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5146
5147                         __vmcs_writel(field, value);
5148
5149                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5150                         vmcs_load(vmx->loaded_vmcs->vmcs);
5151                         preempt_enable();
5152                 }
5153                 vmx->nested.dirty_vmcs12 = true;
5154         }
5155
5156         return nested_vmx_succeed(vcpu);
5157 }
5158
5159 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5160 {
5161         vmx->nested.current_vmptr = vmptr;
5162         if (enable_shadow_vmcs) {
5163                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5164                 vmcs_write64(VMCS_LINK_POINTER,
5165                              __pa(vmx->vmcs01.shadow_vmcs));
5166                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5167         }
5168         vmx->nested.dirty_vmcs12 = true;
5169 }
5170
5171 /* Emulate the VMPTRLD instruction */
5172 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5173 {
5174         struct vcpu_vmx *vmx = to_vmx(vcpu);
5175         gpa_t vmptr;
5176         int r;
5177
5178         if (!nested_vmx_check_permission(vcpu))
5179                 return 1;
5180
5181         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5182                 return r;
5183
5184         if (!page_address_valid(vcpu, vmptr))
5185                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5186
5187         if (vmptr == vmx->nested.vmxon_ptr)
5188                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5189
5190         /* Forbid normal VMPTRLD if Enlightened version was used */
5191         if (vmx->nested.hv_evmcs)
5192                 return 1;
5193
5194         if (vmx->nested.current_vmptr != vmptr) {
5195                 struct kvm_host_map map;
5196                 struct vmcs12 *new_vmcs12;
5197
5198                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5199                         /*
5200                          * Reads from an unbacked page return all 1s,
5201                          * which means that the 32 bits located at the
5202                          * given physical address won't match the required
5203                          * VMCS12_REVISION identifier.
5204                          */
5205                         return nested_vmx_fail(vcpu,
5206                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5207                 }
5208
5209                 new_vmcs12 = map.hva;
5210
5211                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5212                     (new_vmcs12->hdr.shadow_vmcs &&
5213                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5214                         kvm_vcpu_unmap(vcpu, &map, false);
5215                         return nested_vmx_fail(vcpu,
5216                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5217                 }
5218
5219                 nested_release_vmcs12(vcpu);
5220
5221                 /*
5222                  * Load VMCS12 from guest memory since it is not already
5223                  * cached.
5224                  */
5225                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5226                 kvm_vcpu_unmap(vcpu, &map, false);
5227
5228                 set_current_vmptr(vmx, vmptr);
5229         }
5230
5231         return nested_vmx_succeed(vcpu);
5232 }
5233
5234 /* Emulate the VMPTRST instruction */
5235 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5236 {
5237         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5238         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5239         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5240         struct x86_exception e;
5241         gva_t gva;
5242         int r;
5243
5244         if (!nested_vmx_check_permission(vcpu))
5245                 return 1;
5246
5247         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5248                 return 1;
5249
5250         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5251                                 true, sizeof(gpa_t), &gva))
5252                 return 1;
5253         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5254         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5255                                         sizeof(gpa_t), &e);
5256         if (r != X86EMUL_CONTINUE)
5257                 return kvm_handle_memory_failure(vcpu, r, &e);
5258
5259         return nested_vmx_succeed(vcpu);
5260 }
5261
5262 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
5263
5264 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5265 {
5266         return VALID_PAGE(root_hpa) &&
5267                 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5268 }
5269
5270 /* Emulate the INVEPT instruction */
5271 static int handle_invept(struct kvm_vcpu *vcpu)
5272 {
5273         struct vcpu_vmx *vmx = to_vmx(vcpu);
5274         u32 vmx_instruction_info, types;
5275         unsigned long type, roots_to_free;
5276         struct kvm_mmu *mmu;
5277         gva_t gva;
5278         struct x86_exception e;
5279         struct {
5280                 u64 eptp, gpa;
5281         } operand;
5282         int i, r;
5283
5284         if (!(vmx->nested.msrs.secondary_ctls_high &
5285               SECONDARY_EXEC_ENABLE_EPT) ||
5286             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5287                 kvm_queue_exception(vcpu, UD_VECTOR);
5288                 return 1;
5289         }
5290
5291         if (!nested_vmx_check_permission(vcpu))
5292                 return 1;
5293
5294         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5295         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5296
5297         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5298
5299         if (type >= 32 || !(types & (1 << type)))
5300                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5301
5302         /* According to the Intel VMX instruction reference, the memory
5303          * operand is read even if it isn't needed (e.g., for type==global)
5304          */
5305         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5306                         vmx_instruction_info, false, sizeof(operand), &gva))
5307                 return 1;
5308         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5309         if (r != X86EMUL_CONTINUE)
5310                 return kvm_handle_memory_failure(vcpu, r, &e);
5311
5312         /*
5313          * Nested EPT roots are always held through guest_mmu,
5314          * not root_mmu.
5315          */
5316         mmu = &vcpu->arch.guest_mmu;
5317
5318         switch (type) {
5319         case VMX_EPT_EXTENT_CONTEXT:
5320                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5321                         return nested_vmx_fail(vcpu,
5322                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5323
5324                 roots_to_free = 0;
5325                 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5326                                             operand.eptp))
5327                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5328
5329                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5330                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5331                                                     mmu->prev_roots[i].pgd,
5332                                                     operand.eptp))
5333                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5334                 }
5335                 break;
5336         case VMX_EPT_EXTENT_GLOBAL:
5337                 roots_to_free = KVM_MMU_ROOTS_ALL;
5338                 break;
5339         default:
5340                 BUG();
5341                 break;
5342         }
5343
5344         if (roots_to_free)
5345                 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5346
5347         return nested_vmx_succeed(vcpu);
5348 }
5349
5350 static int handle_invvpid(struct kvm_vcpu *vcpu)
5351 {
5352         struct vcpu_vmx *vmx = to_vmx(vcpu);
5353         u32 vmx_instruction_info;
5354         unsigned long type, types;
5355         gva_t gva;
5356         struct x86_exception e;
5357         struct {
5358                 u64 vpid;
5359                 u64 gla;
5360         } operand;
5361         u16 vpid02;
5362         int r;
5363
5364         if (!(vmx->nested.msrs.secondary_ctls_high &
5365               SECONDARY_EXEC_ENABLE_VPID) ||
5366                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5367                 kvm_queue_exception(vcpu, UD_VECTOR);
5368                 return 1;
5369         }
5370
5371         if (!nested_vmx_check_permission(vcpu))
5372                 return 1;
5373
5374         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5375         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5376
5377         types = (vmx->nested.msrs.vpid_caps &
5378                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5379
5380         if (type >= 32 || !(types & (1 << type)))
5381                 return nested_vmx_fail(vcpu,
5382                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5383
5384         /* according to the intel vmx instruction reference, the memory
5385          * operand is read even if it isn't needed (e.g., for type==global)
5386          */
5387         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5388                         vmx_instruction_info, false, sizeof(operand), &gva))
5389                 return 1;
5390         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5391         if (r != X86EMUL_CONTINUE)
5392                 return kvm_handle_memory_failure(vcpu, r, &e);
5393
5394         if (operand.vpid >> 16)
5395                 return nested_vmx_fail(vcpu,
5396                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5397
5398         vpid02 = nested_get_vpid02(vcpu);
5399         switch (type) {
5400         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5401                 if (!operand.vpid ||
5402                     is_noncanonical_address(operand.gla, vcpu))
5403                         return nested_vmx_fail(vcpu,
5404                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5405                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5406                 break;
5407         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5408         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5409                 if (!operand.vpid)
5410                         return nested_vmx_fail(vcpu,
5411                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5412                 vpid_sync_context(vpid02);
5413                 break;
5414         case VMX_VPID_EXTENT_ALL_CONTEXT:
5415                 vpid_sync_context(vpid02);
5416                 break;
5417         default:
5418                 WARN_ON_ONCE(1);
5419                 return kvm_skip_emulated_instruction(vcpu);
5420         }
5421
5422         /*
5423          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5424          * linear mappings for L2 (tagged with L2's VPID).  Free all roots as
5425          * VPIDs are not tracked in the MMU role.
5426          *
5427          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5428          * an MMU when EPT is disabled.
5429          *
5430          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5431          */
5432         if (!enable_ept)
5433                 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5434                                    KVM_MMU_ROOTS_ALL);
5435
5436         return nested_vmx_succeed(vcpu);
5437 }
5438
5439 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5440                                      struct vmcs12 *vmcs12)
5441 {
5442         u32 index = kvm_rcx_read(vcpu);
5443         u64 new_eptp;
5444         bool accessed_dirty;
5445         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5446
5447         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5448             !nested_cpu_has_ept(vmcs12))
5449                 return 1;
5450
5451         if (index >= VMFUNC_EPTP_ENTRIES)
5452                 return 1;
5453
5454
5455         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5456                                      &new_eptp, index * 8, 8))
5457                 return 1;
5458
5459         accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
5460
5461         /*
5462          * If the (L2) guest does a vmfunc to the currently
5463          * active ept pointer, we don't have to do anything else
5464          */
5465         if (vmcs12->ept_pointer != new_eptp) {
5466                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5467                         return 1;
5468
5469                 kvm_mmu_unload(vcpu);
5470                 mmu->ept_ad = accessed_dirty;
5471                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5472                 vmcs12->ept_pointer = new_eptp;
5473                 /*
5474                  * TODO: Check what's the correct approach in case
5475                  * mmu reload fails. Currently, we just let the next
5476                  * reload potentially fail
5477                  */
5478                 kvm_mmu_reload(vcpu);
5479         }
5480
5481         return 0;
5482 }
5483
5484 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5485 {
5486         struct vcpu_vmx *vmx = to_vmx(vcpu);
5487         struct vmcs12 *vmcs12;
5488         u32 function = kvm_rax_read(vcpu);
5489
5490         /*
5491          * VMFUNC is only supported for nested guests, but we always enable the
5492          * secondary control for simplicity; for non-nested mode, fake that we
5493          * didn't by injecting #UD.
5494          */
5495         if (!is_guest_mode(vcpu)) {
5496                 kvm_queue_exception(vcpu, UD_VECTOR);
5497                 return 1;
5498         }
5499
5500         vmcs12 = get_vmcs12(vcpu);
5501         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5502                 goto fail;
5503
5504         switch (function) {
5505         case 0:
5506                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5507                         goto fail;
5508                 break;
5509         default:
5510                 goto fail;
5511         }
5512         return kvm_skip_emulated_instruction(vcpu);
5513
5514 fail:
5515         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5516                           vmx_get_intr_info(vcpu),
5517                           vmx_get_exit_qual(vcpu));
5518         return 1;
5519 }
5520
5521 /*
5522  * Return true if an IO instruction with the specified port and size should cause
5523  * a VM-exit into L1.
5524  */
5525 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5526                                  int size)
5527 {
5528         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5529         gpa_t bitmap, last_bitmap;
5530         u8 b;
5531
5532         last_bitmap = (gpa_t)-1;
5533         b = -1;
5534
5535         while (size > 0) {
5536                 if (port < 0x8000)
5537                         bitmap = vmcs12->io_bitmap_a;
5538                 else if (port < 0x10000)
5539                         bitmap = vmcs12->io_bitmap_b;
5540                 else
5541                         return true;
5542                 bitmap += (port & 0x7fff) / 8;
5543
5544                 if (last_bitmap != bitmap)
5545                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5546                                 return true;
5547                 if (b & (1 << (port & 7)))
5548                         return true;
5549
5550                 port++;
5551                 size--;
5552                 last_bitmap = bitmap;
5553         }
5554
5555         return false;
5556 }
5557
5558 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5559                                        struct vmcs12 *vmcs12)
5560 {
5561         unsigned long exit_qualification;
5562         unsigned short port;
5563         int size;
5564
5565         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5566                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5567
5568         exit_qualification = vmx_get_exit_qual(vcpu);
5569
5570         port = exit_qualification >> 16;
5571         size = (exit_qualification & 7) + 1;
5572
5573         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5574 }
5575
5576 /*
5577  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5578  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5579  * disinterest in the current event (read or write a specific MSR) by using an
5580  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5581  */
5582 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5583         struct vmcs12 *vmcs12, u32 exit_reason)
5584 {
5585         u32 msr_index = kvm_rcx_read(vcpu);
5586         gpa_t bitmap;
5587
5588         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5589                 return true;
5590
5591         /*
5592          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5593          * for the four combinations of read/write and low/high MSR numbers.
5594          * First we need to figure out which of the four to use:
5595          */
5596         bitmap = vmcs12->msr_bitmap;
5597         if (exit_reason == EXIT_REASON_MSR_WRITE)
5598                 bitmap += 2048;
5599         if (msr_index >= 0xc0000000) {
5600                 msr_index -= 0xc0000000;
5601                 bitmap += 1024;
5602         }
5603
5604         /* Then read the msr_index'th bit from this bitmap: */
5605         if (msr_index < 1024*8) {
5606                 unsigned char b;
5607                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5608                         return true;
5609                 return 1 & (b >> (msr_index & 7));
5610         } else
5611                 return true; /* let L1 handle the wrong parameter */
5612 }
5613
5614 /*
5615  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5616  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5617  * intercept (via guest_host_mask etc.) the current event.
5618  */
5619 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5620         struct vmcs12 *vmcs12)
5621 {
5622         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5623         int cr = exit_qualification & 15;
5624         int reg;
5625         unsigned long val;
5626
5627         switch ((exit_qualification >> 4) & 3) {
5628         case 0: /* mov to cr */
5629                 reg = (exit_qualification >> 8) & 15;
5630                 val = kvm_register_readl(vcpu, reg);
5631                 switch (cr) {
5632                 case 0:
5633                         if (vmcs12->cr0_guest_host_mask &
5634                             (val ^ vmcs12->cr0_read_shadow))
5635                                 return true;
5636                         break;
5637                 case 3:
5638                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5639                                 return true;
5640                         break;
5641                 case 4:
5642                         if (vmcs12->cr4_guest_host_mask &
5643                             (vmcs12->cr4_read_shadow ^ val))
5644                                 return true;
5645                         break;
5646                 case 8:
5647                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5648                                 return true;
5649                         break;
5650                 }
5651                 break;
5652         case 2: /* clts */
5653                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5654                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5655                         return true;
5656                 break;
5657         case 1: /* mov from cr */
5658                 switch (cr) {
5659                 case 3:
5660                         if (vmcs12->cpu_based_vm_exec_control &
5661                             CPU_BASED_CR3_STORE_EXITING)
5662                                 return true;
5663                         break;
5664                 case 8:
5665                         if (vmcs12->cpu_based_vm_exec_control &
5666                             CPU_BASED_CR8_STORE_EXITING)
5667                                 return true;
5668                         break;
5669                 }
5670                 break;
5671         case 3: /* lmsw */
5672                 /*
5673                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5674                  * cr0. Other attempted changes are ignored, with no exit.
5675                  */
5676                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5677                 if (vmcs12->cr0_guest_host_mask & 0xe &
5678                     (val ^ vmcs12->cr0_read_shadow))
5679                         return true;
5680                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5681                     !(vmcs12->cr0_read_shadow & 0x1) &&
5682                     (val & 0x1))
5683                         return true;
5684                 break;
5685         }
5686         return false;
5687 }
5688
5689 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5690         struct vmcs12 *vmcs12, gpa_t bitmap)
5691 {
5692         u32 vmx_instruction_info;
5693         unsigned long field;
5694         u8 b;
5695
5696         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5697                 return true;
5698
5699         /* Decode instruction info and find the field to access */
5700         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5701         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5702
5703         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5704         if (field >> 15)
5705                 return true;
5706
5707         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5708                 return true;
5709
5710         return 1 & (b >> (field & 7));
5711 }
5712
5713 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5714 {
5715         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5716
5717         if (nested_cpu_has_mtf(vmcs12))
5718                 return true;
5719
5720         /*
5721          * An MTF VM-exit may be injected into the guest by setting the
5722          * interruption-type to 7 (other event) and the vector field to 0. Such
5723          * is the case regardless of the 'monitor trap flag' VM-execution
5724          * control.
5725          */
5726         return entry_intr_info == (INTR_INFO_VALID_MASK
5727                                    | INTR_TYPE_OTHER_EVENT);
5728 }
5729
5730 /*
5731  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5732  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5733  */
5734 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5735 {
5736         u32 intr_info;
5737
5738         switch ((u16)exit_reason) {
5739         case EXIT_REASON_EXCEPTION_NMI:
5740                 intr_info = vmx_get_intr_info(vcpu);
5741                 if (is_nmi(intr_info))
5742                         return true;
5743                 else if (is_page_fault(intr_info))
5744                         return vcpu->arch.apf.host_apf_flags || !enable_ept;
5745                 else if (is_debug(intr_info) &&
5746                          vcpu->guest_debug &
5747                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5748                         return true;
5749                 else if (is_breakpoint(intr_info) &&
5750                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5751                         return true;
5752                 return false;
5753         case EXIT_REASON_EXTERNAL_INTERRUPT:
5754                 return true;
5755         case EXIT_REASON_MCE_DURING_VMENTRY:
5756                 return true;
5757         case EXIT_REASON_EPT_VIOLATION:
5758                 /*
5759                  * L0 always deals with the EPT violation. If nested EPT is
5760                  * used, and the nested mmu code discovers that the address is
5761                  * missing in the guest EPT table (EPT12), the EPT violation
5762                  * will be injected with nested_ept_inject_page_fault()
5763                  */
5764                 return true;
5765         case EXIT_REASON_EPT_MISCONFIG:
5766                 /*
5767                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5768                  * table (shadow on EPT) or a merged EPT table that L0 built
5769                  * (EPT on EPT). So any problems with the structure of the
5770                  * table is L0's fault.
5771                  */
5772                 return true;
5773         case EXIT_REASON_PREEMPTION_TIMER:
5774                 return true;
5775         case EXIT_REASON_PML_FULL:
5776                 /* We emulate PML support to L1. */
5777                 return true;
5778         case EXIT_REASON_VMFUNC:
5779                 /* VM functions are emulated through L2->L0 vmexits. */
5780                 return true;
5781         case EXIT_REASON_ENCLS:
5782                 /* SGX is never exposed to L1 */
5783                 return true;
5784         default:
5785                 break;
5786         }
5787         return false;
5788 }
5789
5790 /*
5791  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5792  * is_guest_mode (L2).
5793  */
5794 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5795 {
5796         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5797         u32 intr_info;
5798
5799         switch ((u16)exit_reason) {
5800         case EXIT_REASON_EXCEPTION_NMI:
5801                 intr_info = vmx_get_intr_info(vcpu);
5802                 if (is_nmi(intr_info))
5803                         return true;
5804                 else if (is_page_fault(intr_info))
5805                         return true;
5806                 return vmcs12->exception_bitmap &
5807                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5808         case EXIT_REASON_EXTERNAL_INTERRUPT:
5809                 return nested_exit_on_intr(vcpu);
5810         case EXIT_REASON_TRIPLE_FAULT:
5811                 return true;
5812         case EXIT_REASON_INTERRUPT_WINDOW:
5813                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5814         case EXIT_REASON_NMI_WINDOW:
5815                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5816         case EXIT_REASON_TASK_SWITCH:
5817                 return true;
5818         case EXIT_REASON_CPUID:
5819                 return true;
5820         case EXIT_REASON_HLT:
5821                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5822         case EXIT_REASON_INVD:
5823                 return true;
5824         case EXIT_REASON_INVLPG:
5825                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5826         case EXIT_REASON_RDPMC:
5827                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5828         case EXIT_REASON_RDRAND:
5829                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5830         case EXIT_REASON_RDSEED:
5831                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5832         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5833                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5834         case EXIT_REASON_VMREAD:
5835                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5836                         vmcs12->vmread_bitmap);
5837         case EXIT_REASON_VMWRITE:
5838                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5839                         vmcs12->vmwrite_bitmap);
5840         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5841         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5842         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5843         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5844         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5845                 /*
5846                  * VMX instructions trap unconditionally. This allows L1 to
5847                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5848                  */
5849                 return true;
5850         case EXIT_REASON_CR_ACCESS:
5851                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5852         case EXIT_REASON_DR_ACCESS:
5853                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5854         case EXIT_REASON_IO_INSTRUCTION:
5855                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5856         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5857                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5858         case EXIT_REASON_MSR_READ:
5859         case EXIT_REASON_MSR_WRITE:
5860                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5861         case EXIT_REASON_INVALID_STATE:
5862                 return true;
5863         case EXIT_REASON_MWAIT_INSTRUCTION:
5864                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5865         case EXIT_REASON_MONITOR_TRAP_FLAG:
5866                 return nested_vmx_exit_handled_mtf(vmcs12);
5867         case EXIT_REASON_MONITOR_INSTRUCTION:
5868                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5869         case EXIT_REASON_PAUSE_INSTRUCTION:
5870                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5871                         nested_cpu_has2(vmcs12,
5872                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5873         case EXIT_REASON_MCE_DURING_VMENTRY:
5874                 return true;
5875         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5876                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5877         case EXIT_REASON_APIC_ACCESS:
5878         case EXIT_REASON_APIC_WRITE:
5879         case EXIT_REASON_EOI_INDUCED:
5880                 /*
5881                  * The controls for "virtualize APIC accesses," "APIC-
5882                  * register virtualization," and "virtual-interrupt
5883                  * delivery" only come from vmcs12.
5884                  */
5885                 return true;
5886         case EXIT_REASON_INVPCID:
5887                 return
5888                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5889                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5890         case EXIT_REASON_WBINVD:
5891                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5892         case EXIT_REASON_XSETBV:
5893                 return true;
5894         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5895                 /*
5896                  * This should never happen, since it is not possible to
5897                  * set XSS to a non-zero value---neither in L1 nor in L2.
5898                  * If if it were, XSS would have to be checked against
5899                  * the XSS exit bitmap in vmcs12.
5900                  */
5901                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5902         case EXIT_REASON_UMWAIT:
5903         case EXIT_REASON_TPAUSE:
5904                 return nested_cpu_has2(vmcs12,
5905                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5906         default:
5907                 return true;
5908         }
5909 }
5910
5911 /*
5912  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
5913  * reflected into L1.
5914  */
5915 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
5916 {
5917         struct vcpu_vmx *vmx = to_vmx(vcpu);
5918         u32 exit_reason = vmx->exit_reason;
5919         unsigned long exit_qual;
5920         u32 exit_intr_info;
5921
5922         WARN_ON_ONCE(vmx->nested.nested_run_pending);
5923
5924         /*
5925          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
5926          * has already loaded L2's state.
5927          */
5928         if (unlikely(vmx->fail)) {
5929                 trace_kvm_nested_vmenter_failed(
5930                         "hardware VM-instruction error: ",
5931                         vmcs_read32(VM_INSTRUCTION_ERROR));
5932                 exit_intr_info = 0;
5933                 exit_qual = 0;
5934                 goto reflect_vmexit;
5935         }
5936
5937         trace_kvm_nested_vmexit(exit_reason, vcpu, KVM_ISA_VMX);
5938
5939         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
5940         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
5941                 return false;
5942
5943         /* If L1 doesn't want the exit, handle it in L0. */
5944         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
5945                 return false;
5946
5947         /*
5948          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
5949          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
5950          * need to be synthesized by querying the in-kernel LAPIC, but external
5951          * interrupts are never reflected to L1 so it's a non-issue.
5952          */
5953         exit_intr_info = vmx_get_intr_info(vcpu);
5954         if (is_exception_with_error_code(exit_intr_info)) {
5955                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5956
5957                 vmcs12->vm_exit_intr_error_code =
5958                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5959         }
5960         exit_qual = vmx_get_exit_qual(vcpu);
5961
5962 reflect_vmexit:
5963         nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, exit_qual);
5964         return true;
5965 }
5966
5967 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5968                                 struct kvm_nested_state __user *user_kvm_nested_state,
5969                                 u32 user_data_size)
5970 {
5971         struct vcpu_vmx *vmx;
5972         struct vmcs12 *vmcs12;
5973         struct kvm_nested_state kvm_state = {
5974                 .flags = 0,
5975                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5976                 .size = sizeof(kvm_state),
5977                 .hdr.vmx.flags = 0,
5978                 .hdr.vmx.vmxon_pa = -1ull,
5979                 .hdr.vmx.vmcs12_pa = -1ull,
5980                 .hdr.vmx.preemption_timer_deadline = 0,
5981         };
5982         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5983                 &user_kvm_nested_state->data.vmx[0];
5984
5985         if (!vcpu)
5986                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5987
5988         vmx = to_vmx(vcpu);
5989         vmcs12 = get_vmcs12(vcpu);
5990
5991         if (nested_vmx_allowed(vcpu) &&
5992             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5993                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5994                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5995
5996                 if (vmx_has_valid_vmcs12(vcpu)) {
5997                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5998
5999                         if (vmx->nested.hv_evmcs)
6000                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6001
6002                         if (is_guest_mode(vcpu) &&
6003                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6004                             vmcs12->vmcs_link_pointer != -1ull)
6005                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6006                 }
6007
6008                 if (vmx->nested.smm.vmxon)
6009                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6010
6011                 if (vmx->nested.smm.guest_mode)
6012                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6013
6014                 if (is_guest_mode(vcpu)) {
6015                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6016
6017                         if (vmx->nested.nested_run_pending)
6018                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6019
6020                         if (vmx->nested.mtf_pending)
6021                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6022
6023                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6024                             vmx->nested.has_preemption_timer_deadline) {
6025                                 kvm_state.hdr.vmx.flags |=
6026                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6027                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6028                                         vmx->nested.preemption_timer_deadline;
6029                         }
6030                 }
6031         }
6032
6033         if (user_data_size < kvm_state.size)
6034                 goto out;
6035
6036         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6037                 return -EFAULT;
6038
6039         if (!vmx_has_valid_vmcs12(vcpu))
6040                 goto out;
6041
6042         /*
6043          * When running L2, the authoritative vmcs12 state is in the
6044          * vmcs02. When running L1, the authoritative vmcs12 state is
6045          * in the shadow or enlightened vmcs linked to vmcs01, unless
6046          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6047          * vmcs12 state is in the vmcs12 already.
6048          */
6049         if (is_guest_mode(vcpu)) {
6050                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6051                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6052         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6053                 if (vmx->nested.hv_evmcs)
6054                         copy_enlightened_to_vmcs12(vmx);
6055                 else if (enable_shadow_vmcs)
6056                         copy_shadow_to_vmcs12(vmx);
6057         }
6058
6059         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6060         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6061
6062         /*
6063          * Copy over the full allocated size of vmcs12 rather than just the size
6064          * of the struct.
6065          */
6066         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6067                 return -EFAULT;
6068
6069         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6070             vmcs12->vmcs_link_pointer != -1ull) {
6071                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6072                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6073                         return -EFAULT;
6074         }
6075 out:
6076         return kvm_state.size;
6077 }
6078
6079 /*
6080  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6081  */
6082 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6083 {
6084         if (is_guest_mode(vcpu)) {
6085                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6086                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6087         }
6088         free_nested(vcpu);
6089 }
6090
6091 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6092                                 struct kvm_nested_state __user *user_kvm_nested_state,
6093                                 struct kvm_nested_state *kvm_state)
6094 {
6095         struct vcpu_vmx *vmx = to_vmx(vcpu);
6096         struct vmcs12 *vmcs12;
6097         enum vm_entry_failure_code ignored;
6098         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6099                 &user_kvm_nested_state->data.vmx[0];
6100         int ret;
6101
6102         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6103                 return -EINVAL;
6104
6105         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6106                 if (kvm_state->hdr.vmx.smm.flags)
6107                         return -EINVAL;
6108
6109                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6110                         return -EINVAL;
6111
6112                 /*
6113                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6114                  * enable eVMCS capability on vCPU. However, since then
6115                  * code was changed such that flag signals vmcs12 should
6116                  * be copied into eVMCS in guest memory.
6117                  *
6118                  * To preserve backwards compatability, allow user
6119                  * to set this flag even when there is no VMXON region.
6120                  */
6121                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6122                         return -EINVAL;
6123         } else {
6124                 if (!nested_vmx_allowed(vcpu))
6125                         return -EINVAL;
6126
6127                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6128                         return -EINVAL;
6129         }
6130
6131         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6132             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6133                 return -EINVAL;
6134
6135         if (kvm_state->hdr.vmx.smm.flags &
6136             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6137                 return -EINVAL;
6138
6139         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6140                 return -EINVAL;
6141
6142         /*
6143          * SMM temporarily disables VMX, so we cannot be in guest mode,
6144          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6145          * must be zero.
6146          */
6147         if (is_smm(vcpu) ?
6148                 (kvm_state->flags &
6149                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6150                 : kvm_state->hdr.vmx.smm.flags)
6151                 return -EINVAL;
6152
6153         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6154             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6155                 return -EINVAL;
6156
6157         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6158                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6159                         return -EINVAL;
6160
6161         vmx_leave_nested(vcpu);
6162
6163         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6164                 return 0;
6165
6166         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6167         ret = enter_vmx_operation(vcpu);
6168         if (ret)
6169                 return ret;
6170
6171         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6172         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6173                 /* See vmx_has_valid_vmcs12.  */
6174                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6175                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6176                     (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6177                         return -EINVAL;
6178                 else
6179                         return 0;
6180         }
6181
6182         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6183                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6184                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6185                         return -EINVAL;
6186
6187                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6188         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6189                 /*
6190                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6191                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6192                  * restored yet. EVMCS will be mapped from
6193                  * nested_get_vmcs12_pages().
6194                  */
6195                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6196         } else {
6197                 return -EINVAL;
6198         }
6199
6200         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6201                 vmx->nested.smm.vmxon = true;
6202                 vmx->nested.vmxon = false;
6203
6204                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6205                         vmx->nested.smm.guest_mode = true;
6206         }
6207
6208         vmcs12 = get_vmcs12(vcpu);
6209         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6210                 return -EFAULT;
6211
6212         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6213                 return -EINVAL;
6214
6215         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6216                 return 0;
6217
6218         vmx->nested.nested_run_pending =
6219                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6220
6221         vmx->nested.mtf_pending =
6222                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6223
6224         ret = -EINVAL;
6225         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6226             vmcs12->vmcs_link_pointer != -1ull) {
6227                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6228
6229                 if (kvm_state->size <
6230                     sizeof(*kvm_state) +
6231                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6232                         goto error_guest_mode;
6233
6234                 if (copy_from_user(shadow_vmcs12,
6235                                    user_vmx_nested_state->shadow_vmcs12,
6236                                    sizeof(*shadow_vmcs12))) {
6237                         ret = -EFAULT;
6238                         goto error_guest_mode;
6239                 }
6240
6241                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6242                     !shadow_vmcs12->hdr.shadow_vmcs)
6243                         goto error_guest_mode;
6244         }
6245
6246         vmx->nested.has_preemption_timer_deadline = false;
6247         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6248                 vmx->nested.has_preemption_timer_deadline = true;
6249                 vmx->nested.preemption_timer_deadline =
6250                         kvm_state->hdr.vmx.preemption_timer_deadline;
6251         }
6252
6253         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6254             nested_vmx_check_host_state(vcpu, vmcs12) ||
6255             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6256                 goto error_guest_mode;
6257
6258         vmx->nested.dirty_vmcs12 = true;
6259         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6260         if (ret)
6261                 goto error_guest_mode;
6262
6263         return 0;
6264
6265 error_guest_mode:
6266         vmx->nested.nested_run_pending = 0;
6267         return ret;
6268 }
6269
6270 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6271 {
6272         if (enable_shadow_vmcs) {
6273                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6274                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6275         }
6276 }
6277
6278 /*
6279  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6280  * returned for the various VMX controls MSRs when nested VMX is enabled.
6281  * The same values should also be used to verify that vmcs12 control fields are
6282  * valid during nested entry from L1 to L2.
6283  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6284  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6285  * bit in the high half is on if the corresponding bit in the control field
6286  * may be on. See also vmx_control_verify().
6287  */
6288 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6289 {
6290         /*
6291          * Note that as a general rule, the high half of the MSRs (bits in
6292          * the control fields which may be 1) should be initialized by the
6293          * intersection of the underlying hardware's MSR (i.e., features which
6294          * can be supported) and the list of features we want to expose -
6295          * because they are known to be properly supported in our code.
6296          * Also, usually, the low half of the MSRs (bits which must be 1) can
6297          * be set to 0, meaning that L1 may turn off any of these bits. The
6298          * reason is that if one of these bits is necessary, it will appear
6299          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6300          * fields of vmcs01 and vmcs02, will turn these bits off - and
6301          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6302          * These rules have exceptions below.
6303          */
6304
6305         /* pin-based controls */
6306         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6307                 msrs->pinbased_ctls_low,
6308                 msrs->pinbased_ctls_high);
6309         msrs->pinbased_ctls_low |=
6310                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6311         msrs->pinbased_ctls_high &=
6312                 PIN_BASED_EXT_INTR_MASK |
6313                 PIN_BASED_NMI_EXITING |
6314                 PIN_BASED_VIRTUAL_NMIS |
6315                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6316         msrs->pinbased_ctls_high |=
6317                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6318                 PIN_BASED_VMX_PREEMPTION_TIMER;
6319
6320         /* exit controls */
6321         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6322                 msrs->exit_ctls_low,
6323                 msrs->exit_ctls_high);
6324         msrs->exit_ctls_low =
6325                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6326
6327         msrs->exit_ctls_high &=
6328 #ifdef CONFIG_X86_64
6329                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6330 #endif
6331                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6332                 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6333         msrs->exit_ctls_high |=
6334                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6335                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6336                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6337
6338         /* We support free control of debug control saving. */
6339         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6340
6341         /* entry controls */
6342         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6343                 msrs->entry_ctls_low,
6344                 msrs->entry_ctls_high);
6345         msrs->entry_ctls_low =
6346                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6347         msrs->entry_ctls_high &=
6348 #ifdef CONFIG_X86_64
6349                 VM_ENTRY_IA32E_MODE |
6350 #endif
6351                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6352                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6353         msrs->entry_ctls_high |=
6354                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6355
6356         /* We support free control of debug control loading. */
6357         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6358
6359         /* cpu-based controls */
6360         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6361                 msrs->procbased_ctls_low,
6362                 msrs->procbased_ctls_high);
6363         msrs->procbased_ctls_low =
6364                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6365         msrs->procbased_ctls_high &=
6366                 CPU_BASED_INTR_WINDOW_EXITING |
6367                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6368                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6369                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6370                 CPU_BASED_CR3_STORE_EXITING |
6371 #ifdef CONFIG_X86_64
6372                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6373 #endif
6374                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6375                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6376                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6377                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6378                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6379         /*
6380          * We can allow some features even when not supported by the
6381          * hardware. For example, L1 can specify an MSR bitmap - and we
6382          * can use it to avoid exits to L1 - even when L0 runs L2
6383          * without MSR bitmaps.
6384          */
6385         msrs->procbased_ctls_high |=
6386                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6387                 CPU_BASED_USE_MSR_BITMAPS;
6388
6389         /* We support free control of CR3 access interception. */
6390         msrs->procbased_ctls_low &=
6391                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6392
6393         /*
6394          * secondary cpu-based controls.  Do not include those that
6395          * depend on CPUID bits, they are added later by
6396          * vmx_vcpu_after_set_cpuid.
6397          */
6398         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6399                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6400                       msrs->secondary_ctls_low,
6401                       msrs->secondary_ctls_high);
6402
6403         msrs->secondary_ctls_low = 0;
6404         msrs->secondary_ctls_high &=
6405                 SECONDARY_EXEC_DESC |
6406                 SECONDARY_EXEC_ENABLE_RDTSCP |
6407                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6408                 SECONDARY_EXEC_WBINVD_EXITING |
6409                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6410                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6411                 SECONDARY_EXEC_RDRAND_EXITING |
6412                 SECONDARY_EXEC_ENABLE_INVPCID |
6413                 SECONDARY_EXEC_RDSEED_EXITING |
6414                 SECONDARY_EXEC_XSAVES;
6415
6416         /*
6417          * We can emulate "VMCS shadowing," even if the hardware
6418          * doesn't support it.
6419          */
6420         msrs->secondary_ctls_high |=
6421                 SECONDARY_EXEC_SHADOW_VMCS;
6422
6423         if (enable_ept) {
6424                 /* nested EPT: emulate EPT also to L1 */
6425                 msrs->secondary_ctls_high |=
6426                         SECONDARY_EXEC_ENABLE_EPT;
6427                 msrs->ept_caps =
6428                         VMX_EPT_PAGE_WALK_4_BIT |
6429                         VMX_EPT_PAGE_WALK_5_BIT |
6430                         VMX_EPTP_WB_BIT |
6431                         VMX_EPT_INVEPT_BIT |
6432                         VMX_EPT_EXECUTE_ONLY_BIT;
6433
6434                 msrs->ept_caps &= ept_caps;
6435                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6436                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6437                         VMX_EPT_1GB_PAGE_BIT;
6438                 if (enable_ept_ad_bits) {
6439                         msrs->secondary_ctls_high |=
6440                                 SECONDARY_EXEC_ENABLE_PML;
6441                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6442                 }
6443         }
6444
6445         if (cpu_has_vmx_vmfunc()) {
6446                 msrs->secondary_ctls_high |=
6447                         SECONDARY_EXEC_ENABLE_VMFUNC;
6448                 /*
6449                  * Advertise EPTP switching unconditionally
6450                  * since we emulate it
6451                  */
6452                 if (enable_ept)
6453                         msrs->vmfunc_controls =
6454                                 VMX_VMFUNC_EPTP_SWITCHING;
6455         }
6456
6457         /*
6458          * Old versions of KVM use the single-context version without
6459          * checking for support, so declare that it is supported even
6460          * though it is treated as global context.  The alternative is
6461          * not failing the single-context invvpid, and it is worse.
6462          */
6463         if (enable_vpid) {
6464                 msrs->secondary_ctls_high |=
6465                         SECONDARY_EXEC_ENABLE_VPID;
6466                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6467                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6468         }
6469
6470         if (enable_unrestricted_guest)
6471                 msrs->secondary_ctls_high |=
6472                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6473
6474         if (flexpriority_enabled)
6475                 msrs->secondary_ctls_high |=
6476                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6477
6478         /* miscellaneous data */
6479         rdmsr(MSR_IA32_VMX_MISC,
6480                 msrs->misc_low,
6481                 msrs->misc_high);
6482         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6483         msrs->misc_low |=
6484                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6485                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6486                 VMX_MISC_ACTIVITY_HLT;
6487         msrs->misc_high = 0;
6488
6489         /*
6490          * This MSR reports some information about VMX support. We
6491          * should return information about the VMX we emulate for the
6492          * guest, and the VMCS structure we give it - not about the
6493          * VMX support of the underlying hardware.
6494          */
6495         msrs->basic =
6496                 VMCS12_REVISION |
6497                 VMX_BASIC_TRUE_CTLS |
6498                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6499                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6500
6501         if (cpu_has_vmx_basic_inout())
6502                 msrs->basic |= VMX_BASIC_INOUT;
6503
6504         /*
6505          * These MSRs specify bits which the guest must keep fixed on
6506          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6507          * We picked the standard core2 setting.
6508          */
6509 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6510 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6511         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6512         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6513
6514         /* These MSRs specify bits which the guest must keep fixed off. */
6515         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6516         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6517
6518         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6519         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6520 }
6521
6522 void nested_vmx_hardware_unsetup(void)
6523 {
6524         int i;
6525
6526         if (enable_shadow_vmcs) {
6527                 for (i = 0; i < VMX_BITMAP_NR; i++)
6528                         free_page((unsigned long)vmx_bitmap[i]);
6529         }
6530 }
6531
6532 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6533 {
6534         int i;
6535
6536         if (!cpu_has_vmx_shadow_vmcs())
6537                 enable_shadow_vmcs = 0;
6538         if (enable_shadow_vmcs) {
6539                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6540                         /*
6541                          * The vmx_bitmap is not tied to a VM and so should
6542                          * not be charged to a memcg.
6543                          */
6544                         vmx_bitmap[i] = (unsigned long *)
6545                                 __get_free_page(GFP_KERNEL);
6546                         if (!vmx_bitmap[i]) {
6547                                 nested_vmx_hardware_unsetup();
6548                                 return -ENOMEM;
6549                         }
6550                 }
6551
6552                 init_vmcs_shadow_fields();
6553         }
6554
6555         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6556         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6557         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6558         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6559         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6560         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6561         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6562         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6563         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6564         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6565         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6566         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6567
6568         return 0;
6569 }
6570
6571 struct kvm_x86_nested_ops vmx_nested_ops = {
6572         .check_events = vmx_check_nested_events,
6573         .hv_timer_pending = nested_vmx_preemption_timer_pending,
6574         .get_state = vmx_get_nested_state,
6575         .set_state = vmx_set_nested_state,
6576         .get_nested_state_pages = nested_get_vmcs12_pages,
6577         .write_log_dirty = nested_vmx_write_pml_buffer,
6578         .enable_evmcs = nested_enable_evmcs,
6579         .get_evmcs_version = nested_get_evmcs_version,
6580 };