KVM: nVMX: Sync unsync'd vmcs02 state to vmcs12 on migration
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "x86.h"
16
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
19
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
22
23 #define CC(consistency_check)                                           \
24 ({                                                                      \
25         bool failed = (consistency_check);                              \
26         if (failed)                                                     \
27                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
28         failed;                                                         \
29 })
30
31 /*
32  * Hyper-V requires all of these, so mark them as supported even though
33  * they are just treated the same as all-context.
34  */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
36         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
37         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
39         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42
43 enum {
44         VMX_VMREAD_BITMAP,
45         VMX_VMWRITE_BITMAP,
46         VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49
50 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
52
53 struct shadow_vmcs_field {
54         u16     encoding;
55         u16     offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62         ARRAY_SIZE(shadow_read_only_fields);
63
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69         ARRAY_SIZE(shadow_read_write_fields);
70
71 static void init_vmcs_shadow_fields(void)
72 {
73         int i, j;
74
75         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77
78         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80                 u16 field = entry.encoding;
81
82                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83                     (i + 1 == max_shadow_read_only_fields ||
84                      shadow_read_only_fields[i + 1].encoding != field + 1))
85                         pr_err("Missing field from shadow_read_only_field %x\n",
86                                field + 1);
87
88                 clear_bit(field, vmx_vmread_bitmap);
89                 if (field & 1)
90 #ifdef CONFIG_X86_64
91                         continue;
92 #else
93                         entry.offset += sizeof(u32);
94 #endif
95                 shadow_read_only_fields[j++] = entry;
96         }
97         max_shadow_read_only_fields = j;
98
99         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101                 u16 field = entry.encoding;
102
103                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104                     (i + 1 == max_shadow_read_write_fields ||
105                      shadow_read_write_fields[i + 1].encoding != field + 1))
106                         pr_err("Missing field from shadow_read_write_field %x\n",
107                                field + 1);
108
109                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110                           field <= GUEST_TR_AR_BYTES,
111                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112
113                 /*
114                  * PML and the preemption timer can be emulated, but the
115                  * processor cannot vmwrite to fields that don't exist
116                  * on bare metal.
117                  */
118                 switch (field) {
119                 case GUEST_PML_INDEX:
120                         if (!cpu_has_vmx_pml())
121                                 continue;
122                         break;
123                 case VMX_PREEMPTION_TIMER_VALUE:
124                         if (!cpu_has_vmx_preemption_timer())
125                                 continue;
126                         break;
127                 case GUEST_INTR_STATUS:
128                         if (!cpu_has_vmx_apicv())
129                                 continue;
130                         break;
131                 default:
132                         break;
133                 }
134
135                 clear_bit(field, vmx_vmwrite_bitmap);
136                 clear_bit(field, vmx_vmread_bitmap);
137                 if (field & 1)
138 #ifdef CONFIG_X86_64
139                         continue;
140 #else
141                         entry.offset += sizeof(u32);
142 #endif
143                 shadow_read_write_fields[j++] = entry;
144         }
145         max_shadow_read_write_fields = j;
146 }
147
148 /*
149  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150  * set the success or error code of an emulated VMX instruction (as specified
151  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152  * instruction.
153  */
154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159         return kvm_skip_emulated_instruction(vcpu);
160 }
161
162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_CF);
168         return kvm_skip_emulated_instruction(vcpu);
169 }
170
171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172                                 u32 vm_instruction_error)
173 {
174         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
175                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
176                             X86_EFLAGS_SF | X86_EFLAGS_OF))
177                         | X86_EFLAGS_ZF);
178         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
179         /*
180          * We don't need to force a shadow sync because
181          * VM_INSTRUCTION_ERROR is not shadowed
182          */
183         return kvm_skip_emulated_instruction(vcpu);
184 }
185
186 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
187 {
188         struct vcpu_vmx *vmx = to_vmx(vcpu);
189
190         /*
191          * failValid writes the error number to the current VMCS, which
192          * can't be done if there isn't a current VMCS.
193          */
194         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
195                 return nested_vmx_failInvalid(vcpu);
196
197         return nested_vmx_failValid(vcpu, vm_instruction_error);
198 }
199
200 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
201 {
202         /* TODO: not to reset guest simply here. */
203         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
204         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
205 }
206
207 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
208 {
209         return fixed_bits_valid(control, low, high);
210 }
211
212 static inline u64 vmx_control_msr(u32 low, u32 high)
213 {
214         return low | ((u64)high << 32);
215 }
216
217 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
218 {
219         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
220         vmcs_write64(VMCS_LINK_POINTER, -1ull);
221         vmx->nested.need_vmcs12_to_shadow_sync = false;
222 }
223
224 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
225 {
226         struct vcpu_vmx *vmx = to_vmx(vcpu);
227
228         if (!vmx->nested.hv_evmcs)
229                 return;
230
231         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
232         vmx->nested.hv_evmcs_vmptr = 0;
233         vmx->nested.hv_evmcs = NULL;
234 }
235
236 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
237                                      struct loaded_vmcs *prev)
238 {
239         struct vmcs_host_state *dest, *src;
240
241         if (unlikely(!vmx->guest_state_loaded))
242                 return;
243
244         src = &prev->host_state;
245         dest = &vmx->loaded_vmcs->host_state;
246
247         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
248         dest->ldt_sel = src->ldt_sel;
249 #ifdef CONFIG_X86_64
250         dest->ds_sel = src->ds_sel;
251         dest->es_sel = src->es_sel;
252 #endif
253 }
254
255 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
256 {
257         struct vcpu_vmx *vmx = to_vmx(vcpu);
258         struct loaded_vmcs *prev;
259         int cpu;
260
261         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
262                 return;
263
264         cpu = get_cpu();
265         prev = vmx->loaded_vmcs;
266         vmx->loaded_vmcs = vmcs;
267         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
268         vmx_sync_vmcs_host_state(vmx, prev);
269         put_cpu();
270
271         vmx_register_cache_reset(vcpu);
272 }
273
274 /*
275  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
276  * just stops using VMX.
277  */
278 static void free_nested(struct kvm_vcpu *vcpu)
279 {
280         struct vcpu_vmx *vmx = to_vmx(vcpu);
281
282         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
283                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
284
285         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
286                 return;
287
288         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
289
290         vmx->nested.vmxon = false;
291         vmx->nested.smm.vmxon = false;
292         free_vpid(vmx->nested.vpid02);
293         vmx->nested.posted_intr_nv = -1;
294         vmx->nested.current_vmptr = -1ull;
295         if (enable_shadow_vmcs) {
296                 vmx_disable_shadow_vmcs(vmx);
297                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
298                 free_vmcs(vmx->vmcs01.shadow_vmcs);
299                 vmx->vmcs01.shadow_vmcs = NULL;
300         }
301         kfree(vmx->nested.cached_vmcs12);
302         vmx->nested.cached_vmcs12 = NULL;
303         kfree(vmx->nested.cached_shadow_vmcs12);
304         vmx->nested.cached_shadow_vmcs12 = NULL;
305         /* Unpin physical memory we referred to in the vmcs02 */
306         if (vmx->nested.apic_access_page) {
307                 kvm_release_page_clean(vmx->nested.apic_access_page);
308                 vmx->nested.apic_access_page = NULL;
309         }
310         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
311         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
312         vmx->nested.pi_desc = NULL;
313
314         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
315
316         nested_release_evmcs(vcpu);
317
318         free_loaded_vmcs(&vmx->nested.vmcs02);
319 }
320
321 /*
322  * Ensure that the current vmcs of the logical processor is the
323  * vmcs01 of the vcpu before calling free_nested().
324  */
325 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
326 {
327         vcpu_load(vcpu);
328         vmx_leave_nested(vcpu);
329         vcpu_put(vcpu);
330 }
331
332 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
333                 struct x86_exception *fault)
334 {
335         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
336         struct vcpu_vmx *vmx = to_vmx(vcpu);
337         u32 vm_exit_reason;
338         unsigned long exit_qualification = vcpu->arch.exit_qualification;
339
340         if (vmx->nested.pml_full) {
341                 vm_exit_reason = EXIT_REASON_PML_FULL;
342                 vmx->nested.pml_full = false;
343                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
344         } else if (fault->error_code & PFERR_RSVD_MASK)
345                 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
346         else
347                 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
348
349         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
350         vmcs12->guest_physical_address = fault->address;
351 }
352
353 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
354 {
355         WARN_ON(mmu_is_nested(vcpu));
356
357         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
358         kvm_init_shadow_ept_mmu(vcpu,
359                         to_vmx(vcpu)->nested.msrs.ept_caps &
360                         VMX_EPT_EXECUTE_ONLY_BIT,
361                         nested_ept_ad_enabled(vcpu),
362                         nested_ept_get_eptp(vcpu));
363         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
364         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
365         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
366
367         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
368 }
369
370 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
371 {
372         vcpu->arch.mmu = &vcpu->arch.root_mmu;
373         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
374 }
375
376 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
377                                             u16 error_code)
378 {
379         bool inequality, bit;
380
381         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
382         inequality =
383                 (error_code & vmcs12->page_fault_error_code_mask) !=
384                  vmcs12->page_fault_error_code_match;
385         return inequality ^ bit;
386 }
387
388
389 /*
390  * KVM wants to inject page-faults which it got to the guest. This function
391  * checks whether in a nested guest, we need to inject them to L1 or L2.
392  */
393 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
394 {
395         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
396         unsigned int nr = vcpu->arch.exception.nr;
397         bool has_payload = vcpu->arch.exception.has_payload;
398         unsigned long payload = vcpu->arch.exception.payload;
399
400         if (nr == PF_VECTOR) {
401                 if (vcpu->arch.exception.nested_apf) {
402                         *exit_qual = vcpu->arch.apf.nested_apf_token;
403                         return 1;
404                 }
405                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
406                                                     vcpu->arch.exception.error_code)) {
407                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
408                         return 1;
409                 }
410         } else if (vmcs12->exception_bitmap & (1u << nr)) {
411                 if (nr == DB_VECTOR) {
412                         if (!has_payload) {
413                                 payload = vcpu->arch.dr6;
414                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
415                                 payload ^= DR6_RTM;
416                         }
417                         *exit_qual = payload;
418                 } else
419                         *exit_qual = 0;
420                 return 1;
421         }
422
423         return 0;
424 }
425
426
427 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
428                 struct x86_exception *fault)
429 {
430         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
431
432         WARN_ON(!is_guest_mode(vcpu));
433
434         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
435                 !to_vmx(vcpu)->nested.nested_run_pending) {
436                 vmcs12->vm_exit_intr_error_code = fault->error_code;
437                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
438                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
439                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
440                                   fault->address);
441         } else {
442                 kvm_inject_page_fault(vcpu, fault);
443         }
444 }
445
446 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
447                                                struct vmcs12 *vmcs12)
448 {
449         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
450                 return 0;
451
452         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
453             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
454                 return -EINVAL;
455
456         return 0;
457 }
458
459 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
460                                                 struct vmcs12 *vmcs12)
461 {
462         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
463                 return 0;
464
465         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
466                 return -EINVAL;
467
468         return 0;
469 }
470
471 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
472                                                 struct vmcs12 *vmcs12)
473 {
474         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
475                 return 0;
476
477         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
478                 return -EINVAL;
479
480         return 0;
481 }
482
483 /*
484  * Check if MSR is intercepted for L01 MSR bitmap.
485  */
486 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
487 {
488         unsigned long *msr_bitmap;
489         int f = sizeof(unsigned long);
490
491         if (!cpu_has_vmx_msr_bitmap())
492                 return true;
493
494         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
495
496         if (msr <= 0x1fff) {
497                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
498         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
499                 msr &= 0x1fff;
500                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
501         }
502
503         return true;
504 }
505
506 /*
507  * If a msr is allowed by L0, we should check whether it is allowed by L1.
508  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
509  */
510 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
511                                                unsigned long *msr_bitmap_nested,
512                                                u32 msr, int type)
513 {
514         int f = sizeof(unsigned long);
515
516         /*
517          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
518          * have the write-low and read-high bitmap offsets the wrong way round.
519          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
520          */
521         if (msr <= 0x1fff) {
522                 if (type & MSR_TYPE_R &&
523                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
524                         /* read-low */
525                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
526
527                 if (type & MSR_TYPE_W &&
528                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
529                         /* write-low */
530                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
531
532         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
533                 msr &= 0x1fff;
534                 if (type & MSR_TYPE_R &&
535                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
536                         /* read-high */
537                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
538
539                 if (type & MSR_TYPE_W &&
540                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
541                         /* write-high */
542                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
543
544         }
545 }
546
547 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
548 {
549         int msr;
550
551         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
552                 unsigned word = msr / BITS_PER_LONG;
553
554                 msr_bitmap[word] = ~0;
555                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
556         }
557 }
558
559 /*
560  * Merge L0's and L1's MSR bitmap, return false to indicate that
561  * we do not use the hardware.
562  */
563 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
564                                                  struct vmcs12 *vmcs12)
565 {
566         int msr;
567         unsigned long *msr_bitmap_l1;
568         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
569         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
570
571         /* Nothing to do if the MSR bitmap is not in use.  */
572         if (!cpu_has_vmx_msr_bitmap() ||
573             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
574                 return false;
575
576         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
577                 return false;
578
579         msr_bitmap_l1 = (unsigned long *)map->hva;
580
581         /*
582          * To keep the control flow simple, pay eight 8-byte writes (sixteen
583          * 4-byte writes on 32-bit systems) up front to enable intercepts for
584          * the x2APIC MSR range and selectively disable them below.
585          */
586         enable_x2apic_msr_intercepts(msr_bitmap_l0);
587
588         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
589                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
590                         /*
591                          * L0 need not intercept reads for MSRs between 0x800
592                          * and 0x8ff, it just lets the processor take the value
593                          * from the virtual-APIC page; take those 256 bits
594                          * directly from the L1 bitmap.
595                          */
596                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
597                                 unsigned word = msr / BITS_PER_LONG;
598
599                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
600                         }
601                 }
602
603                 nested_vmx_disable_intercept_for_msr(
604                         msr_bitmap_l1, msr_bitmap_l0,
605                         X2APIC_MSR(APIC_TASKPRI),
606                         MSR_TYPE_R | MSR_TYPE_W);
607
608                 if (nested_cpu_has_vid(vmcs12)) {
609                         nested_vmx_disable_intercept_for_msr(
610                                 msr_bitmap_l1, msr_bitmap_l0,
611                                 X2APIC_MSR(APIC_EOI),
612                                 MSR_TYPE_W);
613                         nested_vmx_disable_intercept_for_msr(
614                                 msr_bitmap_l1, msr_bitmap_l0,
615                                 X2APIC_MSR(APIC_SELF_IPI),
616                                 MSR_TYPE_W);
617                 }
618         }
619
620         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
621         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
622                                              MSR_FS_BASE, MSR_TYPE_RW);
623
624         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
625                                              MSR_GS_BASE, MSR_TYPE_RW);
626
627         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
628                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
629
630         /*
631          * Checking the L0->L1 bitmap is trying to verify two things:
632          *
633          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
634          *    ensures that we do not accidentally generate an L02 MSR bitmap
635          *    from the L12 MSR bitmap that is too permissive.
636          * 2. That L1 or L2s have actually used the MSR. This avoids
637          *    unnecessarily merging of the bitmap if the MSR is unused. This
638          *    works properly because we only update the L01 MSR bitmap lazily.
639          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
640          *    updated to reflect this when L1 (or its L2s) actually write to
641          *    the MSR.
642          */
643         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
644                 nested_vmx_disable_intercept_for_msr(
645                                         msr_bitmap_l1, msr_bitmap_l0,
646                                         MSR_IA32_SPEC_CTRL,
647                                         MSR_TYPE_R | MSR_TYPE_W);
648
649         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
650                 nested_vmx_disable_intercept_for_msr(
651                                         msr_bitmap_l1, msr_bitmap_l0,
652                                         MSR_IA32_PRED_CMD,
653                                         MSR_TYPE_W);
654
655         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
656
657         return true;
658 }
659
660 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
661                                        struct vmcs12 *vmcs12)
662 {
663         struct kvm_host_map map;
664         struct vmcs12 *shadow;
665
666         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
667             vmcs12->vmcs_link_pointer == -1ull)
668                 return;
669
670         shadow = get_shadow_vmcs12(vcpu);
671
672         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
673                 return;
674
675         memcpy(shadow, map.hva, VMCS12_SIZE);
676         kvm_vcpu_unmap(vcpu, &map, false);
677 }
678
679 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
680                                               struct vmcs12 *vmcs12)
681 {
682         struct vcpu_vmx *vmx = to_vmx(vcpu);
683
684         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
685             vmcs12->vmcs_link_pointer == -1ull)
686                 return;
687
688         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
689                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
690 }
691
692 /*
693  * In nested virtualization, check if L1 has set
694  * VM_EXIT_ACK_INTR_ON_EXIT
695  */
696 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
697 {
698         return get_vmcs12(vcpu)->vm_exit_controls &
699                 VM_EXIT_ACK_INTR_ON_EXIT;
700 }
701
702 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
703                                           struct vmcs12 *vmcs12)
704 {
705         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
706             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
707                 return -EINVAL;
708         else
709                 return 0;
710 }
711
712 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
713                                            struct vmcs12 *vmcs12)
714 {
715         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
716             !nested_cpu_has_apic_reg_virt(vmcs12) &&
717             !nested_cpu_has_vid(vmcs12) &&
718             !nested_cpu_has_posted_intr(vmcs12))
719                 return 0;
720
721         /*
722          * If virtualize x2apic mode is enabled,
723          * virtualize apic access must be disabled.
724          */
725         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
726                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
727                 return -EINVAL;
728
729         /*
730          * If virtual interrupt delivery is enabled,
731          * we must exit on external interrupts.
732          */
733         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
734                 return -EINVAL;
735
736         /*
737          * bits 15:8 should be zero in posted_intr_nv,
738          * the descriptor address has been already checked
739          * in nested_get_vmcs12_pages.
740          *
741          * bits 5:0 of posted_intr_desc_addr should be zero.
742          */
743         if (nested_cpu_has_posted_intr(vmcs12) &&
744            (CC(!nested_cpu_has_vid(vmcs12)) ||
745             CC(!nested_exit_intr_ack_set(vcpu)) ||
746             CC((vmcs12->posted_intr_nv & 0xff00)) ||
747             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
748             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
749                 return -EINVAL;
750
751         /* tpr shadow is needed by all apicv features. */
752         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
753                 return -EINVAL;
754
755         return 0;
756 }
757
758 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
759                                        u32 count, u64 addr)
760 {
761         int maxphyaddr;
762
763         if (count == 0)
764                 return 0;
765         maxphyaddr = cpuid_maxphyaddr(vcpu);
766         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
767             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
768                 return -EINVAL;
769
770         return 0;
771 }
772
773 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
774                                                      struct vmcs12 *vmcs12)
775 {
776         if (CC(nested_vmx_check_msr_switch(vcpu,
777                                            vmcs12->vm_exit_msr_load_count,
778                                            vmcs12->vm_exit_msr_load_addr)) ||
779             CC(nested_vmx_check_msr_switch(vcpu,
780                                            vmcs12->vm_exit_msr_store_count,
781                                            vmcs12->vm_exit_msr_store_addr)))
782                 return -EINVAL;
783
784         return 0;
785 }
786
787 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
788                                                       struct vmcs12 *vmcs12)
789 {
790         if (CC(nested_vmx_check_msr_switch(vcpu,
791                                            vmcs12->vm_entry_msr_load_count,
792                                            vmcs12->vm_entry_msr_load_addr)))
793                 return -EINVAL;
794
795         return 0;
796 }
797
798 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
799                                          struct vmcs12 *vmcs12)
800 {
801         if (!nested_cpu_has_pml(vmcs12))
802                 return 0;
803
804         if (CC(!nested_cpu_has_ept(vmcs12)) ||
805             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
806                 return -EINVAL;
807
808         return 0;
809 }
810
811 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
812                                                         struct vmcs12 *vmcs12)
813 {
814         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
815                !nested_cpu_has_ept(vmcs12)))
816                 return -EINVAL;
817         return 0;
818 }
819
820 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
821                                                          struct vmcs12 *vmcs12)
822 {
823         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
824                !nested_cpu_has_ept(vmcs12)))
825                 return -EINVAL;
826         return 0;
827 }
828
829 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
830                                                  struct vmcs12 *vmcs12)
831 {
832         if (!nested_cpu_has_shadow_vmcs(vmcs12))
833                 return 0;
834
835         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
836             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
837                 return -EINVAL;
838
839         return 0;
840 }
841
842 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
843                                        struct vmx_msr_entry *e)
844 {
845         /* x2APIC MSR accesses are not allowed */
846         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
847                 return -EINVAL;
848         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
849             CC(e->index == MSR_IA32_UCODE_REV))
850                 return -EINVAL;
851         if (CC(e->reserved != 0))
852                 return -EINVAL;
853         return 0;
854 }
855
856 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
857                                      struct vmx_msr_entry *e)
858 {
859         if (CC(e->index == MSR_FS_BASE) ||
860             CC(e->index == MSR_GS_BASE) ||
861             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
862             nested_vmx_msr_check_common(vcpu, e))
863                 return -EINVAL;
864         return 0;
865 }
866
867 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
868                                       struct vmx_msr_entry *e)
869 {
870         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
871             nested_vmx_msr_check_common(vcpu, e))
872                 return -EINVAL;
873         return 0;
874 }
875
876 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
877 {
878         struct vcpu_vmx *vmx = to_vmx(vcpu);
879         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
880                                        vmx->nested.msrs.misc_high);
881
882         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
883 }
884
885 /*
886  * Load guest's/host's msr at nested entry/exit.
887  * return 0 for success, entry index for failure.
888  *
889  * One of the failure modes for MSR load/store is when a list exceeds the
890  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
891  * as possible, process all valid entries before failing rather than precheck
892  * for a capacity violation.
893  */
894 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
895 {
896         u32 i;
897         struct vmx_msr_entry e;
898         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
899
900         for (i = 0; i < count; i++) {
901                 if (unlikely(i >= max_msr_list_size))
902                         goto fail;
903
904                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
905                                         &e, sizeof(e))) {
906                         pr_debug_ratelimited(
907                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
908                                 __func__, i, gpa + i * sizeof(e));
909                         goto fail;
910                 }
911                 if (nested_vmx_load_msr_check(vcpu, &e)) {
912                         pr_debug_ratelimited(
913                                 "%s check failed (%u, 0x%x, 0x%x)\n",
914                                 __func__, i, e.index, e.reserved);
915                         goto fail;
916                 }
917                 if (kvm_set_msr(vcpu, e.index, e.value)) {
918                         pr_debug_ratelimited(
919                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
920                                 __func__, i, e.index, e.value);
921                         goto fail;
922                 }
923         }
924         return 0;
925 fail:
926         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
927         return i + 1;
928 }
929
930 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
931                                             u32 msr_index,
932                                             u64 *data)
933 {
934         struct vcpu_vmx *vmx = to_vmx(vcpu);
935
936         /*
937          * If the L0 hypervisor stored a more accurate value for the TSC that
938          * does not include the time taken for emulation of the L2->L1
939          * VM-exit in L0, use the more accurate value.
940          */
941         if (msr_index == MSR_IA32_TSC) {
942                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
943                                                     MSR_IA32_TSC);
944
945                 if (i >= 0) {
946                         u64 val = vmx->msr_autostore.guest.val[i].value;
947
948                         *data = kvm_read_l1_tsc(vcpu, val);
949                         return true;
950                 }
951         }
952
953         if (kvm_get_msr(vcpu, msr_index, data)) {
954                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
955                         msr_index);
956                 return false;
957         }
958         return true;
959 }
960
961 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
962                                      struct vmx_msr_entry *e)
963 {
964         if (kvm_vcpu_read_guest(vcpu,
965                                 gpa + i * sizeof(*e),
966                                 e, 2 * sizeof(u32))) {
967                 pr_debug_ratelimited(
968                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
969                         __func__, i, gpa + i * sizeof(*e));
970                 return false;
971         }
972         if (nested_vmx_store_msr_check(vcpu, e)) {
973                 pr_debug_ratelimited(
974                         "%s check failed (%u, 0x%x, 0x%x)\n",
975                         __func__, i, e->index, e->reserved);
976                 return false;
977         }
978         return true;
979 }
980
981 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
982 {
983         u64 data;
984         u32 i;
985         struct vmx_msr_entry e;
986         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
987
988         for (i = 0; i < count; i++) {
989                 if (unlikely(i >= max_msr_list_size))
990                         return -EINVAL;
991
992                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
993                         return -EINVAL;
994
995                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
996                         return -EINVAL;
997
998                 if (kvm_vcpu_write_guest(vcpu,
999                                          gpa + i * sizeof(e) +
1000                                              offsetof(struct vmx_msr_entry, value),
1001                                          &data, sizeof(data))) {
1002                         pr_debug_ratelimited(
1003                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1004                                 __func__, i, e.index, data);
1005                         return -EINVAL;
1006                 }
1007         }
1008         return 0;
1009 }
1010
1011 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1012 {
1013         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1014         u32 count = vmcs12->vm_exit_msr_store_count;
1015         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1016         struct vmx_msr_entry e;
1017         u32 i;
1018
1019         for (i = 0; i < count; i++) {
1020                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1021                         return false;
1022
1023                 if (e.index == msr_index)
1024                         return true;
1025         }
1026         return false;
1027 }
1028
1029 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1030                                            u32 msr_index)
1031 {
1032         struct vcpu_vmx *vmx = to_vmx(vcpu);
1033         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1034         bool in_vmcs12_store_list;
1035         int msr_autostore_slot;
1036         bool in_autostore_list;
1037         int last;
1038
1039         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1040         in_autostore_list = msr_autostore_slot >= 0;
1041         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1042
1043         if (in_vmcs12_store_list && !in_autostore_list) {
1044                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1045                         /*
1046                          * Emulated VMEntry does not fail here.  Instead a less
1047                          * accurate value will be returned by
1048                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1049                          * instead of reading the value from the vmcs02 VMExit
1050                          * MSR-store area.
1051                          */
1052                         pr_warn_ratelimited(
1053                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1054                                 msr_index);
1055                         return;
1056                 }
1057                 last = autostore->nr++;
1058                 autostore->val[last].index = msr_index;
1059         } else if (!in_vmcs12_store_list && in_autostore_list) {
1060                 last = --autostore->nr;
1061                 autostore->val[msr_autostore_slot] = autostore->val[last];
1062         }
1063 }
1064
1065 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1066 {
1067         unsigned long invalid_mask;
1068
1069         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1070         return (val & invalid_mask) == 0;
1071 }
1072
1073 /*
1074  * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1075  * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1076  * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1077  * Here's why.
1078  *
1079  * If EPT is enabled by L0 a sync is never needed:
1080  * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1081  *   cannot be unsync'd SPTEs for either L1 or L2.
1082  *
1083  * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1084  *   VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1085  *   (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1086  *   stale guest-physical mappings for L2 from the TLB.  And as above, L0 isn't
1087  *   shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1088  *
1089  * If EPT is disabled by L0:
1090  * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1091  *   enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1092  *   required to invalidate linear mappings (EPT is disabled so there are
1093  *   no combined or guest-physical mappings), i.e. L1 can't rely on the
1094  *   (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1095  *
1096  * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1097  *   linear mappings (EPT is disabled so there are no combined or guest-physical
1098  *   mappings) to be invalidated on both VM-Enter and VM-Exit.
1099  *
1100  * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1101  * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1102  * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1103  * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1104  * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1105  * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1106  * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1107  * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1108  * stale TLB entries, at which point L0 will sync L2's MMU.
1109  */
1110 static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1111 {
1112         return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1113 }
1114
1115 /*
1116  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1117  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1118  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1119  * @entry_failure_code.
1120  */
1121 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1122                                enum vm_entry_failure_code *entry_failure_code)
1123 {
1124         if (CC(!nested_cr3_valid(vcpu, cr3))) {
1125                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1126                 return -EINVAL;
1127         }
1128
1129         /*
1130          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1131          * must not be dereferenced.
1132          */
1133         if (!nested_ept && is_pae_paging(vcpu) &&
1134             (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1135                 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1136                         *entry_failure_code = ENTRY_FAIL_PDPTE;
1137                         return -EINVAL;
1138                 }
1139         }
1140
1141         /*
1142          * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1143          * flushes are handled by nested_vmx_transition_tlb_flush().  See
1144          * nested_vmx_transition_mmu_sync for details on skipping the MMU sync.
1145          */
1146         if (!nested_ept)
1147                 kvm_mmu_new_pgd(vcpu, cr3, true,
1148                                 !nested_vmx_transition_mmu_sync(vcpu));
1149
1150         vcpu->arch.cr3 = cr3;
1151         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1152
1153         kvm_init_mmu(vcpu, false);
1154
1155         return 0;
1156 }
1157
1158 /*
1159  * Returns if KVM is able to config CPU to tag TLB entries
1160  * populated by L2 differently than TLB entries populated
1161  * by L1.
1162  *
1163  * If L0 uses EPT, L1 and L2 run with different EPTP because
1164  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1165  * are tagged with different EPTP.
1166  *
1167  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1168  * with different VPID (L1 entries are tagged with vmx->vpid
1169  * while L2 entries are tagged with vmx->nested.vpid02).
1170  */
1171 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1172 {
1173         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1174
1175         return enable_ept ||
1176                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1177 }
1178
1179 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1180                                             struct vmcs12 *vmcs12,
1181                                             bool is_vmenter)
1182 {
1183         struct vcpu_vmx *vmx = to_vmx(vcpu);
1184
1185         /*
1186          * If VPID is disabled, linear and combined mappings are flushed on
1187          * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1188          * their associated EPTP.
1189          */
1190         if (!enable_vpid)
1191                 return;
1192
1193         /*
1194          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1195          * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1196          *
1197          * If VPID is enabled and used by vmc12, but L2 does not have a unique
1198          * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1199          * a VPID for L2, flush the current context as the effective ASID is
1200          * common to both L1 and L2.
1201          *
1202          * Defer the flush so that it runs after vmcs02.EPTP has been set by
1203          * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1204          * redundant flushes further down the nested pipeline.
1205          *
1206          * If a TLB flush isn't required due to any of the above, and vpid12 is
1207          * changing then the new "virtual" VPID (vpid12) will reuse the same
1208          * "real" VPID (vpid02), and so needs to be sync'd.  There is no direct
1209          * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1210          * all nested vCPUs.
1211          */
1212         if (!nested_cpu_has_vpid(vmcs12)) {
1213                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1214         } else if (!nested_has_guest_tlb_tag(vcpu)) {
1215                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1216         } else if (is_vmenter &&
1217                    vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1218                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1219                 vpid_sync_context(nested_get_vpid02(vcpu));
1220         }
1221 }
1222
1223 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1224 {
1225         superset &= mask;
1226         subset &= mask;
1227
1228         return (superset | subset) == superset;
1229 }
1230
1231 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1232 {
1233         const u64 feature_and_reserved =
1234                 /* feature (except bit 48; see below) */
1235                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1236                 /* reserved */
1237                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1238         u64 vmx_basic = vmx->nested.msrs.basic;
1239
1240         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1241                 return -EINVAL;
1242
1243         /*
1244          * KVM does not emulate a version of VMX that constrains physical
1245          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1246          */
1247         if (data & BIT_ULL(48))
1248                 return -EINVAL;
1249
1250         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1251             vmx_basic_vmcs_revision_id(data))
1252                 return -EINVAL;
1253
1254         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1255                 return -EINVAL;
1256
1257         vmx->nested.msrs.basic = data;
1258         return 0;
1259 }
1260
1261 static int
1262 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1263 {
1264         u64 supported;
1265         u32 *lowp, *highp;
1266
1267         switch (msr_index) {
1268         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1269                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1270                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1271                 break;
1272         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1273                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1274                 highp = &vmx->nested.msrs.procbased_ctls_high;
1275                 break;
1276         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1277                 lowp = &vmx->nested.msrs.exit_ctls_low;
1278                 highp = &vmx->nested.msrs.exit_ctls_high;
1279                 break;
1280         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1281                 lowp = &vmx->nested.msrs.entry_ctls_low;
1282                 highp = &vmx->nested.msrs.entry_ctls_high;
1283                 break;
1284         case MSR_IA32_VMX_PROCBASED_CTLS2:
1285                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1286                 highp = &vmx->nested.msrs.secondary_ctls_high;
1287                 break;
1288         default:
1289                 BUG();
1290         }
1291
1292         supported = vmx_control_msr(*lowp, *highp);
1293
1294         /* Check must-be-1 bits are still 1. */
1295         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1296                 return -EINVAL;
1297
1298         /* Check must-be-0 bits are still 0. */
1299         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1300                 return -EINVAL;
1301
1302         *lowp = data;
1303         *highp = data >> 32;
1304         return 0;
1305 }
1306
1307 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1308 {
1309         const u64 feature_and_reserved_bits =
1310                 /* feature */
1311                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1312                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1313                 /* reserved */
1314                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1315         u64 vmx_misc;
1316
1317         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1318                                    vmx->nested.msrs.misc_high);
1319
1320         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1321                 return -EINVAL;
1322
1323         if ((vmx->nested.msrs.pinbased_ctls_high &
1324              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1325             vmx_misc_preemption_timer_rate(data) !=
1326             vmx_misc_preemption_timer_rate(vmx_misc))
1327                 return -EINVAL;
1328
1329         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1330                 return -EINVAL;
1331
1332         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1333                 return -EINVAL;
1334
1335         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1336                 return -EINVAL;
1337
1338         vmx->nested.msrs.misc_low = data;
1339         vmx->nested.msrs.misc_high = data >> 32;
1340
1341         return 0;
1342 }
1343
1344 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1345 {
1346         u64 vmx_ept_vpid_cap;
1347
1348         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1349                                            vmx->nested.msrs.vpid_caps);
1350
1351         /* Every bit is either reserved or a feature bit. */
1352         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1353                 return -EINVAL;
1354
1355         vmx->nested.msrs.ept_caps = data;
1356         vmx->nested.msrs.vpid_caps = data >> 32;
1357         return 0;
1358 }
1359
1360 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1361 {
1362         u64 *msr;
1363
1364         switch (msr_index) {
1365         case MSR_IA32_VMX_CR0_FIXED0:
1366                 msr = &vmx->nested.msrs.cr0_fixed0;
1367                 break;
1368         case MSR_IA32_VMX_CR4_FIXED0:
1369                 msr = &vmx->nested.msrs.cr4_fixed0;
1370                 break;
1371         default:
1372                 BUG();
1373         }
1374
1375         /*
1376          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1377          * must be 1 in the restored value.
1378          */
1379         if (!is_bitwise_subset(data, *msr, -1ULL))
1380                 return -EINVAL;
1381
1382         *msr = data;
1383         return 0;
1384 }
1385
1386 /*
1387  * Called when userspace is restoring VMX MSRs.
1388  *
1389  * Returns 0 on success, non-0 otherwise.
1390  */
1391 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1392 {
1393         struct vcpu_vmx *vmx = to_vmx(vcpu);
1394
1395         /*
1396          * Don't allow changes to the VMX capability MSRs while the vCPU
1397          * is in VMX operation.
1398          */
1399         if (vmx->nested.vmxon)
1400                 return -EBUSY;
1401
1402         switch (msr_index) {
1403         case MSR_IA32_VMX_BASIC:
1404                 return vmx_restore_vmx_basic(vmx, data);
1405         case MSR_IA32_VMX_PINBASED_CTLS:
1406         case MSR_IA32_VMX_PROCBASED_CTLS:
1407         case MSR_IA32_VMX_EXIT_CTLS:
1408         case MSR_IA32_VMX_ENTRY_CTLS:
1409                 /*
1410                  * The "non-true" VMX capability MSRs are generated from the
1411                  * "true" MSRs, so we do not support restoring them directly.
1412                  *
1413                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1414                  * should restore the "true" MSRs with the must-be-1 bits
1415                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1416                  * DEFAULT SETTINGS".
1417                  */
1418                 return -EINVAL;
1419         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1420         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1421         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1422         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1423         case MSR_IA32_VMX_PROCBASED_CTLS2:
1424                 return vmx_restore_control_msr(vmx, msr_index, data);
1425         case MSR_IA32_VMX_MISC:
1426                 return vmx_restore_vmx_misc(vmx, data);
1427         case MSR_IA32_VMX_CR0_FIXED0:
1428         case MSR_IA32_VMX_CR4_FIXED0:
1429                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1430         case MSR_IA32_VMX_CR0_FIXED1:
1431         case MSR_IA32_VMX_CR4_FIXED1:
1432                 /*
1433                  * These MSRs are generated based on the vCPU's CPUID, so we
1434                  * do not support restoring them directly.
1435                  */
1436                 return -EINVAL;
1437         case MSR_IA32_VMX_EPT_VPID_CAP:
1438                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1439         case MSR_IA32_VMX_VMCS_ENUM:
1440                 vmx->nested.msrs.vmcs_enum = data;
1441                 return 0;
1442         case MSR_IA32_VMX_VMFUNC:
1443                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1444                         return -EINVAL;
1445                 vmx->nested.msrs.vmfunc_controls = data;
1446                 return 0;
1447         default:
1448                 /*
1449                  * The rest of the VMX capability MSRs do not support restore.
1450                  */
1451                 return -EINVAL;
1452         }
1453 }
1454
1455 /* Returns 0 on success, non-0 otherwise. */
1456 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1457 {
1458         switch (msr_index) {
1459         case MSR_IA32_VMX_BASIC:
1460                 *pdata = msrs->basic;
1461                 break;
1462         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1463         case MSR_IA32_VMX_PINBASED_CTLS:
1464                 *pdata = vmx_control_msr(
1465                         msrs->pinbased_ctls_low,
1466                         msrs->pinbased_ctls_high);
1467                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1468                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1469                 break;
1470         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1471         case MSR_IA32_VMX_PROCBASED_CTLS:
1472                 *pdata = vmx_control_msr(
1473                         msrs->procbased_ctls_low,
1474                         msrs->procbased_ctls_high);
1475                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1476                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1477                 break;
1478         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1479         case MSR_IA32_VMX_EXIT_CTLS:
1480                 *pdata = vmx_control_msr(
1481                         msrs->exit_ctls_low,
1482                         msrs->exit_ctls_high);
1483                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1484                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1485                 break;
1486         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1487         case MSR_IA32_VMX_ENTRY_CTLS:
1488                 *pdata = vmx_control_msr(
1489                         msrs->entry_ctls_low,
1490                         msrs->entry_ctls_high);
1491                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1492                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1493                 break;
1494         case MSR_IA32_VMX_MISC:
1495                 *pdata = vmx_control_msr(
1496                         msrs->misc_low,
1497                         msrs->misc_high);
1498                 break;
1499         case MSR_IA32_VMX_CR0_FIXED0:
1500                 *pdata = msrs->cr0_fixed0;
1501                 break;
1502         case MSR_IA32_VMX_CR0_FIXED1:
1503                 *pdata = msrs->cr0_fixed1;
1504                 break;
1505         case MSR_IA32_VMX_CR4_FIXED0:
1506                 *pdata = msrs->cr4_fixed0;
1507                 break;
1508         case MSR_IA32_VMX_CR4_FIXED1:
1509                 *pdata = msrs->cr4_fixed1;
1510                 break;
1511         case MSR_IA32_VMX_VMCS_ENUM:
1512                 *pdata = msrs->vmcs_enum;
1513                 break;
1514         case MSR_IA32_VMX_PROCBASED_CTLS2:
1515                 *pdata = vmx_control_msr(
1516                         msrs->secondary_ctls_low,
1517                         msrs->secondary_ctls_high);
1518                 break;
1519         case MSR_IA32_VMX_EPT_VPID_CAP:
1520                 *pdata = msrs->ept_caps |
1521                         ((u64)msrs->vpid_caps << 32);
1522                 break;
1523         case MSR_IA32_VMX_VMFUNC:
1524                 *pdata = msrs->vmfunc_controls;
1525                 break;
1526         default:
1527                 return 1;
1528         }
1529
1530         return 0;
1531 }
1532
1533 /*
1534  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1535  * been modified by the L1 guest.  Note, "writable" in this context means
1536  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1537  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1538  * VM-exit information fields (which are actually writable if the vCPU is
1539  * configured to support "VMWRITE to any supported field in the VMCS").
1540  */
1541 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1542 {
1543         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1544         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1545         struct shadow_vmcs_field field;
1546         unsigned long val;
1547         int i;
1548
1549         if (WARN_ON(!shadow_vmcs))
1550                 return;
1551
1552         preempt_disable();
1553
1554         vmcs_load(shadow_vmcs);
1555
1556         for (i = 0; i < max_shadow_read_write_fields; i++) {
1557                 field = shadow_read_write_fields[i];
1558                 val = __vmcs_readl(field.encoding);
1559                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1560         }
1561
1562         vmcs_clear(shadow_vmcs);
1563         vmcs_load(vmx->loaded_vmcs->vmcs);
1564
1565         preempt_enable();
1566 }
1567
1568 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1569 {
1570         const struct shadow_vmcs_field *fields[] = {
1571                 shadow_read_write_fields,
1572                 shadow_read_only_fields
1573         };
1574         const int max_fields[] = {
1575                 max_shadow_read_write_fields,
1576                 max_shadow_read_only_fields
1577         };
1578         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1579         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1580         struct shadow_vmcs_field field;
1581         unsigned long val;
1582         int i, q;
1583
1584         if (WARN_ON(!shadow_vmcs))
1585                 return;
1586
1587         vmcs_load(shadow_vmcs);
1588
1589         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1590                 for (i = 0; i < max_fields[q]; i++) {
1591                         field = fields[q][i];
1592                         val = vmcs12_read_any(vmcs12, field.encoding,
1593                                               field.offset);
1594                         __vmcs_writel(field.encoding, val);
1595                 }
1596         }
1597
1598         vmcs_clear(shadow_vmcs);
1599         vmcs_load(vmx->loaded_vmcs->vmcs);
1600 }
1601
1602 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1603 {
1604         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1605         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1606
1607         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1608         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1609         vmcs12->guest_rip = evmcs->guest_rip;
1610
1611         if (unlikely(!(evmcs->hv_clean_fields &
1612                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1613                 vmcs12->guest_rsp = evmcs->guest_rsp;
1614                 vmcs12->guest_rflags = evmcs->guest_rflags;
1615                 vmcs12->guest_interruptibility_info =
1616                         evmcs->guest_interruptibility_info;
1617         }
1618
1619         if (unlikely(!(evmcs->hv_clean_fields &
1620                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1621                 vmcs12->cpu_based_vm_exec_control =
1622                         evmcs->cpu_based_vm_exec_control;
1623         }
1624
1625         if (unlikely(!(evmcs->hv_clean_fields &
1626                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1627                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1628         }
1629
1630         if (unlikely(!(evmcs->hv_clean_fields &
1631                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1632                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1633         }
1634
1635         if (unlikely(!(evmcs->hv_clean_fields &
1636                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1637                 vmcs12->vm_entry_intr_info_field =
1638                         evmcs->vm_entry_intr_info_field;
1639                 vmcs12->vm_entry_exception_error_code =
1640                         evmcs->vm_entry_exception_error_code;
1641                 vmcs12->vm_entry_instruction_len =
1642                         evmcs->vm_entry_instruction_len;
1643         }
1644
1645         if (unlikely(!(evmcs->hv_clean_fields &
1646                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1647                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1648                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1649                 vmcs12->host_cr0 = evmcs->host_cr0;
1650                 vmcs12->host_cr3 = evmcs->host_cr3;
1651                 vmcs12->host_cr4 = evmcs->host_cr4;
1652                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1653                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1654                 vmcs12->host_rip = evmcs->host_rip;
1655                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1656                 vmcs12->host_es_selector = evmcs->host_es_selector;
1657                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1658                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1659                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1660                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1661                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1662                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1663         }
1664
1665         if (unlikely(!(evmcs->hv_clean_fields &
1666                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1667                 vmcs12->pin_based_vm_exec_control =
1668                         evmcs->pin_based_vm_exec_control;
1669                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1670                 vmcs12->secondary_vm_exec_control =
1671                         evmcs->secondary_vm_exec_control;
1672         }
1673
1674         if (unlikely(!(evmcs->hv_clean_fields &
1675                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1676                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1677                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1678         }
1679
1680         if (unlikely(!(evmcs->hv_clean_fields &
1681                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1682                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1683         }
1684
1685         if (unlikely(!(evmcs->hv_clean_fields &
1686                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1687                 vmcs12->guest_es_base = evmcs->guest_es_base;
1688                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1689                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1690                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1691                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1692                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1693                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1694                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1695                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1696                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1697                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1698                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1699                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1700                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1701                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1702                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1703                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1704                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1705                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1706                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1707                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1708                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1709                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1710                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1711                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1712                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1713                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1714                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1715                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1716                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1717                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1718                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1719                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1720                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1721                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1722                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1723         }
1724
1725         if (unlikely(!(evmcs->hv_clean_fields &
1726                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1727                 vmcs12->tsc_offset = evmcs->tsc_offset;
1728                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1729                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1730         }
1731
1732         if (unlikely(!(evmcs->hv_clean_fields &
1733                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1734                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1735                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1736                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1737                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1738                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1739                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1740                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1741                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1742         }
1743
1744         if (unlikely(!(evmcs->hv_clean_fields &
1745                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1746                 vmcs12->host_fs_base = evmcs->host_fs_base;
1747                 vmcs12->host_gs_base = evmcs->host_gs_base;
1748                 vmcs12->host_tr_base = evmcs->host_tr_base;
1749                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1750                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1751                 vmcs12->host_rsp = evmcs->host_rsp;
1752         }
1753
1754         if (unlikely(!(evmcs->hv_clean_fields &
1755                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1756                 vmcs12->ept_pointer = evmcs->ept_pointer;
1757                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1758         }
1759
1760         if (unlikely(!(evmcs->hv_clean_fields &
1761                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1762                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1763                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1764                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1765                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1766                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1767                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1768                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1769                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1770                 vmcs12->guest_pending_dbg_exceptions =
1771                         evmcs->guest_pending_dbg_exceptions;
1772                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1773                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1774                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1775                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1776                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1777         }
1778
1779         /*
1780          * Not used?
1781          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1782          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1783          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1784          * vmcs12->page_fault_error_code_mask =
1785          *              evmcs->page_fault_error_code_mask;
1786          * vmcs12->page_fault_error_code_match =
1787          *              evmcs->page_fault_error_code_match;
1788          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1789          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1790          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1791          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1792          */
1793
1794         /*
1795          * Read only fields:
1796          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1797          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1798          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1799          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1800          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1801          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1802          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1803          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1804          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1805          * vmcs12->exit_qualification = evmcs->exit_qualification;
1806          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1807          *
1808          * Not present in struct vmcs12:
1809          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1810          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1811          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1812          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1813          */
1814
1815         return 0;
1816 }
1817
1818 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1819 {
1820         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1821         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1822
1823         /*
1824          * Should not be changed by KVM:
1825          *
1826          * evmcs->host_es_selector = vmcs12->host_es_selector;
1827          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1828          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1829          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1830          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1831          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1832          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1833          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1834          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1835          * evmcs->host_cr0 = vmcs12->host_cr0;
1836          * evmcs->host_cr3 = vmcs12->host_cr3;
1837          * evmcs->host_cr4 = vmcs12->host_cr4;
1838          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1839          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1840          * evmcs->host_rip = vmcs12->host_rip;
1841          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1842          * evmcs->host_fs_base = vmcs12->host_fs_base;
1843          * evmcs->host_gs_base = vmcs12->host_gs_base;
1844          * evmcs->host_tr_base = vmcs12->host_tr_base;
1845          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1846          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1847          * evmcs->host_rsp = vmcs12->host_rsp;
1848          * sync_vmcs02_to_vmcs12() doesn't read these:
1849          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1850          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1851          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1852          * evmcs->ept_pointer = vmcs12->ept_pointer;
1853          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1854          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1855          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1856          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1857          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1858          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1859          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1860          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1861          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1862          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1863          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1864          * evmcs->page_fault_error_code_mask =
1865          *              vmcs12->page_fault_error_code_mask;
1866          * evmcs->page_fault_error_code_match =
1867          *              vmcs12->page_fault_error_code_match;
1868          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1869          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1870          * evmcs->tsc_offset = vmcs12->tsc_offset;
1871          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1872          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1873          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1874          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1875          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1876          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1877          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1878          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1879          *
1880          * Not present in struct vmcs12:
1881          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1882          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1883          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1884          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1885          */
1886
1887         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1888         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1889         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1890         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1891         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1892         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1893         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1894         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1895
1896         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1897         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1898         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1899         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1900         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1901         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1902         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1903         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1904         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1905         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1906
1907         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1908         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1909         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1910         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1911         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1912         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1913         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1914         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1915
1916         evmcs->guest_es_base = vmcs12->guest_es_base;
1917         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1918         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1919         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1920         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1921         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1922         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1923         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1924         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1925         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1926
1927         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1928         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1929
1930         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1931         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1932         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1933         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1934
1935         evmcs->guest_pending_dbg_exceptions =
1936                 vmcs12->guest_pending_dbg_exceptions;
1937         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1938         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1939
1940         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1941         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1942
1943         evmcs->guest_cr0 = vmcs12->guest_cr0;
1944         evmcs->guest_cr3 = vmcs12->guest_cr3;
1945         evmcs->guest_cr4 = vmcs12->guest_cr4;
1946         evmcs->guest_dr7 = vmcs12->guest_dr7;
1947
1948         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1949
1950         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1951         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1952         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1953         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1954         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1955         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1956         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1957         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1958
1959         evmcs->exit_qualification = vmcs12->exit_qualification;
1960
1961         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1962         evmcs->guest_rsp = vmcs12->guest_rsp;
1963         evmcs->guest_rflags = vmcs12->guest_rflags;
1964
1965         evmcs->guest_interruptibility_info =
1966                 vmcs12->guest_interruptibility_info;
1967         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1968         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1969         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1970         evmcs->vm_entry_exception_error_code =
1971                 vmcs12->vm_entry_exception_error_code;
1972         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1973
1974         evmcs->guest_rip = vmcs12->guest_rip;
1975
1976         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1977
1978         return 0;
1979 }
1980
1981 /*
1982  * This is an equivalent of the nested hypervisor executing the vmptrld
1983  * instruction.
1984  */
1985 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1986         struct kvm_vcpu *vcpu, bool from_launch)
1987 {
1988         struct vcpu_vmx *vmx = to_vmx(vcpu);
1989         bool evmcs_gpa_changed = false;
1990         u64 evmcs_gpa;
1991
1992         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1993                 return EVMPTRLD_DISABLED;
1994
1995         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1996                 return EVMPTRLD_DISABLED;
1997
1998         if (unlikely(!vmx->nested.hv_evmcs ||
1999                      evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2000                 if (!vmx->nested.hv_evmcs)
2001                         vmx->nested.current_vmptr = -1ull;
2002
2003                 nested_release_evmcs(vcpu);
2004
2005                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2006                                  &vmx->nested.hv_evmcs_map))
2007                         return EVMPTRLD_ERROR;
2008
2009                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2010
2011                 /*
2012                  * Currently, KVM only supports eVMCS version 1
2013                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2014                  * value to first u32 field of eVMCS which should specify eVMCS
2015                  * VersionNumber.
2016                  *
2017                  * Guest should be aware of supported eVMCS versions by host by
2018                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2019                  * expected to set this CPUID leaf according to the value
2020                  * returned in vmcs_version from nested_enable_evmcs().
2021                  *
2022                  * However, it turns out that Microsoft Hyper-V fails to comply
2023                  * to their own invented interface: When Hyper-V use eVMCS, it
2024                  * just sets first u32 field of eVMCS to revision_id specified
2025                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2026                  * which is one of the supported versions specified in
2027                  * CPUID.0x4000000A.EAX[0:15].
2028                  *
2029                  * To overcome Hyper-V bug, we accept here either a supported
2030                  * eVMCS version or VMCS12 revision_id as valid values for first
2031                  * u32 field of eVMCS.
2032                  */
2033                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2034                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2035                         nested_release_evmcs(vcpu);
2036                         return EVMPTRLD_VMFAIL;
2037                 }
2038
2039                 vmx->nested.dirty_vmcs12 = true;
2040                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2041
2042                 evmcs_gpa_changed = true;
2043                 /*
2044                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2045                  * reloaded from guest's memory (read only fields, fields not
2046                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2047                  * are no leftovers.
2048                  */
2049                 if (from_launch) {
2050                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2051                         memset(vmcs12, 0, sizeof(*vmcs12));
2052                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2053                 }
2054
2055         }
2056
2057         /*
2058          * Clean fields data can't be used on VMLAUNCH and when we switch
2059          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2060          */
2061         if (from_launch || evmcs_gpa_changed)
2062                 vmx->nested.hv_evmcs->hv_clean_fields &=
2063                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2064
2065         return EVMPTRLD_SUCCEEDED;
2066 }
2067
2068 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2069 {
2070         struct vcpu_vmx *vmx = to_vmx(vcpu);
2071
2072         if (vmx->nested.hv_evmcs) {
2073                 copy_vmcs12_to_enlightened(vmx);
2074                 /* All fields are clean */
2075                 vmx->nested.hv_evmcs->hv_clean_fields |=
2076                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2077         } else {
2078                 copy_vmcs12_to_shadow(vmx);
2079         }
2080
2081         vmx->nested.need_vmcs12_to_shadow_sync = false;
2082 }
2083
2084 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2085 {
2086         struct vcpu_vmx *vmx =
2087                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2088
2089         vmx->nested.preemption_timer_expired = true;
2090         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2091         kvm_vcpu_kick(&vmx->vcpu);
2092
2093         return HRTIMER_NORESTART;
2094 }
2095
2096 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2097 {
2098         struct vcpu_vmx *vmx = to_vmx(vcpu);
2099         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2100
2101         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2102                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2103
2104         if (!vmx->nested.has_preemption_timer_deadline) {
2105                 vmx->nested.preemption_timer_deadline =
2106                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2107                 vmx->nested.has_preemption_timer_deadline = true;
2108         }
2109         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2110 }
2111
2112 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2113                                         u64 preemption_timeout)
2114 {
2115         struct vcpu_vmx *vmx = to_vmx(vcpu);
2116
2117         /*
2118          * A timer value of zero is architecturally guaranteed to cause
2119          * a VMExit prior to executing any instructions in the guest.
2120          */
2121         if (preemption_timeout == 0) {
2122                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2123                 return;
2124         }
2125
2126         if (vcpu->arch.virtual_tsc_khz == 0)
2127                 return;
2128
2129         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2130         preemption_timeout *= 1000000;
2131         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2132         hrtimer_start(&vmx->nested.preemption_timer,
2133                       ktime_add_ns(ktime_get(), preemption_timeout),
2134                       HRTIMER_MODE_ABS_PINNED);
2135 }
2136
2137 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2138 {
2139         if (vmx->nested.nested_run_pending &&
2140             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2141                 return vmcs12->guest_ia32_efer;
2142         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2143                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2144         else
2145                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2146 }
2147
2148 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2149 {
2150         /*
2151          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2152          * according to L0's settings (vmcs12 is irrelevant here).  Host
2153          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2154          * will be set as needed prior to VMLAUNCH/VMRESUME.
2155          */
2156         if (vmx->nested.vmcs02_initialized)
2157                 return;
2158         vmx->nested.vmcs02_initialized = true;
2159
2160         /*
2161          * We don't care what the EPTP value is we just need to guarantee
2162          * it's valid so we don't get a false positive when doing early
2163          * consistency checks.
2164          */
2165         if (enable_ept && nested_early_check)
2166                 vmcs_write64(EPT_POINTER,
2167                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2168
2169         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2170         if (cpu_has_vmx_vmfunc())
2171                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2172
2173         if (cpu_has_vmx_posted_intr())
2174                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2175
2176         if (cpu_has_vmx_msr_bitmap())
2177                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2178
2179         /*
2180          * The PML address never changes, so it is constant in vmcs02.
2181          * Conceptually we want to copy the PML index from vmcs01 here,
2182          * and then back to vmcs01 on nested vmexit.  But since we flush
2183          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2184          * index is also effectively constant in vmcs02.
2185          */
2186         if (enable_pml) {
2187                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2188                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2189         }
2190
2191         if (cpu_has_vmx_encls_vmexit())
2192                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2193
2194         /*
2195          * Set the MSR load/store lists to match L0's settings.  Only the
2196          * addresses are constant (for vmcs02), the counts can change based
2197          * on L2's behavior, e.g. switching to/from long mode.
2198          */
2199         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2200         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2201         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2202
2203         vmx_set_constant_host_state(vmx);
2204 }
2205
2206 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2207                                       struct vmcs12 *vmcs12)
2208 {
2209         prepare_vmcs02_constant_state(vmx);
2210
2211         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2212
2213         if (enable_vpid) {
2214                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2215                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2216                 else
2217                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2218         }
2219 }
2220
2221 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2222 {
2223         u32 exec_control, vmcs12_exec_ctrl;
2224         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2225
2226         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2227                 prepare_vmcs02_early_rare(vmx, vmcs12);
2228
2229         /*
2230          * PIN CONTROLS
2231          */
2232         exec_control = vmx_pin_based_exec_ctrl(vmx);
2233         exec_control |= (vmcs12->pin_based_vm_exec_control &
2234                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2235
2236         /* Posted interrupts setting is only taken from vmcs12.  */
2237         if (nested_cpu_has_posted_intr(vmcs12)) {
2238                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2239                 vmx->nested.pi_pending = false;
2240         } else {
2241                 exec_control &= ~PIN_BASED_POSTED_INTR;
2242         }
2243         pin_controls_set(vmx, exec_control);
2244
2245         /*
2246          * EXEC CONTROLS
2247          */
2248         exec_control = vmx_exec_control(vmx); /* L0's desires */
2249         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2250         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2251         exec_control &= ~CPU_BASED_TPR_SHADOW;
2252         exec_control |= vmcs12->cpu_based_vm_exec_control;
2253
2254         vmx->nested.l1_tpr_threshold = -1;
2255         if (exec_control & CPU_BASED_TPR_SHADOW)
2256                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2257 #ifdef CONFIG_X86_64
2258         else
2259                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2260                                 CPU_BASED_CR8_STORE_EXITING;
2261 #endif
2262
2263         /*
2264          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2265          * for I/O port accesses.
2266          */
2267         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2268         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2269
2270         /*
2271          * This bit will be computed in nested_get_vmcs12_pages, because
2272          * we do not have access to L1's MSR bitmap yet.  For now, keep
2273          * the same bit as before, hoping to avoid multiple VMWRITEs that
2274          * only set/clear this bit.
2275          */
2276         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2277         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2278
2279         exec_controls_set(vmx, exec_control);
2280
2281         /*
2282          * SECONDARY EXEC CONTROLS
2283          */
2284         if (cpu_has_secondary_exec_ctrls()) {
2285                 exec_control = vmx->secondary_exec_control;
2286
2287                 /* Take the following fields only from vmcs12 */
2288                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2289                                   SECONDARY_EXEC_ENABLE_INVPCID |
2290                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2291                                   SECONDARY_EXEC_XSAVES |
2292                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2293                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2294                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2295                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2296                 if (nested_cpu_has(vmcs12,
2297                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2298                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2299                                 ~SECONDARY_EXEC_ENABLE_PML;
2300                         exec_control |= vmcs12_exec_ctrl;
2301                 }
2302
2303                 /* VMCS shadowing for L2 is emulated for now */
2304                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2305
2306                 /*
2307                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2308                  * will not have to rewrite the controls just for this bit.
2309                  */
2310                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2311                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2312                         exec_control |= SECONDARY_EXEC_DESC;
2313
2314                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2315                         vmcs_write16(GUEST_INTR_STATUS,
2316                                 vmcs12->guest_intr_status);
2317
2318                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2319                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2320
2321                 secondary_exec_controls_set(vmx, exec_control);
2322         }
2323
2324         /*
2325          * ENTRY CONTROLS
2326          *
2327          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2328          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2329          * on the related bits (if supported by the CPU) in the hope that
2330          * we can avoid VMWrites during vmx_set_efer().
2331          */
2332         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2333                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2334         if (cpu_has_load_ia32_efer()) {
2335                 if (guest_efer & EFER_LMA)
2336                         exec_control |= VM_ENTRY_IA32E_MODE;
2337                 if (guest_efer != host_efer)
2338                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2339         }
2340         vm_entry_controls_set(vmx, exec_control);
2341
2342         /*
2343          * EXIT CONTROLS
2344          *
2345          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2346          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2347          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2348          */
2349         exec_control = vmx_vmexit_ctrl();
2350         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2351                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2352         vm_exit_controls_set(vmx, exec_control);
2353
2354         /*
2355          * Interrupt/Exception Fields
2356          */
2357         if (vmx->nested.nested_run_pending) {
2358                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2359                              vmcs12->vm_entry_intr_info_field);
2360                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2361                              vmcs12->vm_entry_exception_error_code);
2362                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2363                              vmcs12->vm_entry_instruction_len);
2364                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2365                              vmcs12->guest_interruptibility_info);
2366                 vmx->loaded_vmcs->nmi_known_unmasked =
2367                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2368         } else {
2369                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2370         }
2371 }
2372
2373 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2374 {
2375         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2376
2377         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2378                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2379                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2380                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2381                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2382                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2383                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2384                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2385                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2386                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2387                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2388                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2389                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2390                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2391                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2392                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2393                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2394                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2395                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2396                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2397                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2398                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2399                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2400                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2401                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2402                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2403                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2404                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2405                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2406                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2407                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2408                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2409                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2410                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2411                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2412                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2413                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2414                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2415
2416                 vmx->segment_cache.bitmask = 0;
2417         }
2418
2419         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2420                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2421                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2422                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2423                             vmcs12->guest_pending_dbg_exceptions);
2424                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2425                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2426
2427                 /*
2428                  * L1 may access the L2's PDPTR, so save them to construct
2429                  * vmcs12
2430                  */
2431                 if (enable_ept) {
2432                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2433                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2434                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2435                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2436                 }
2437
2438                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2439                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2440                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2441         }
2442
2443         if (nested_cpu_has_xsaves(vmcs12))
2444                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2445
2446         /*
2447          * Whether page-faults are trapped is determined by a combination of
2448          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2449          * doesn't care about page faults then we should set all of these to
2450          * L1's desires. However, if L0 does care about (some) page faults, it
2451          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2452          * simply ask to exit on each and every L2 page fault. This is done by
2453          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2454          * Note that below we don't need special code to set EB.PF beyond the
2455          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2456          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2457          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2458          */
2459         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2460                 /*
2461                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2462                  * go ahead and use it?
2463                  */
2464                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2465                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2466         } else {
2467                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2468                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2469         }
2470
2471         if (cpu_has_vmx_apicv()) {
2472                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2473                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2474                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2475                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2476         }
2477
2478         /*
2479          * Make sure the msr_autostore list is up to date before we set the
2480          * count in the vmcs02.
2481          */
2482         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2483
2484         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2485         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2486         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2487
2488         set_cr4_guest_host_mask(vmx);
2489 }
2490
2491 /*
2492  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2493  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2494  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2495  * guest in a way that will both be appropriate to L1's requests, and our
2496  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2497  * function also has additional necessary side-effects, like setting various
2498  * vcpu->arch fields.
2499  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2500  * is assigned to entry_failure_code on failure.
2501  */
2502 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2503                           enum vm_entry_failure_code *entry_failure_code)
2504 {
2505         struct vcpu_vmx *vmx = to_vmx(vcpu);
2506         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2507         bool load_guest_pdptrs_vmcs12 = false;
2508
2509         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2510                 prepare_vmcs02_rare(vmx, vmcs12);
2511                 vmx->nested.dirty_vmcs12 = false;
2512
2513                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2514                         !(hv_evmcs->hv_clean_fields &
2515                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2516         }
2517
2518         if (vmx->nested.nested_run_pending &&
2519             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2520                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2521                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2522         } else {
2523                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2524                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2525         }
2526         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2527             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2528                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2529         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2530
2531         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2532          * bitwise-or of what L1 wants to trap for L2, and what we want to
2533          * trap. Note that CR0.TS also needs updating - we do this later.
2534          */
2535         update_exception_bitmap(vcpu);
2536         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2537         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2538
2539         if (vmx->nested.nested_run_pending &&
2540             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2541                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2542                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2543         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2544                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2545         }
2546
2547         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2548
2549         if (kvm_has_tsc_control)
2550                 decache_tsc_multiplier(vmx);
2551
2552         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2553
2554         if (nested_cpu_has_ept(vmcs12))
2555                 nested_ept_init_mmu_context(vcpu);
2556
2557         /*
2558          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2559          * bits which we consider mandatory enabled.
2560          * The CR0_READ_SHADOW is what L2 should have expected to read given
2561          * the specifications by L1; It's not enough to take
2562          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2563          * have more bits than L1 expected.
2564          */
2565         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2566         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2567
2568         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2569         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2570
2571         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2572         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2573         vmx_set_efer(vcpu, vcpu->arch.efer);
2574
2575         /*
2576          * Guest state is invalid and unrestricted guest is disabled,
2577          * which means L1 attempted VMEntry to L2 with invalid state.
2578          * Fail the VMEntry.
2579          */
2580         if (CC(!vmx_guest_state_valid(vcpu))) {
2581                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2582                 return -EINVAL;
2583         }
2584
2585         /* Shadow page tables on either EPT or shadow page tables. */
2586         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2587                                 entry_failure_code))
2588                 return -EINVAL;
2589
2590         /*
2591          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2592          * on nested VM-Exit, which can occur without actually running L2 and
2593          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2594          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2595          * transition to HLT instead of running L2.
2596          */
2597         if (enable_ept)
2598                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2599
2600         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2601         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2602             is_pae_paging(vcpu)) {
2603                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2604                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2605                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2606                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2607         }
2608
2609         if (!enable_ept)
2610                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2611
2612         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2613             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2614                                      vmcs12->guest_ia32_perf_global_ctrl)))
2615                 return -EINVAL;
2616
2617         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2618         kvm_rip_write(vcpu, vmcs12->guest_rip);
2619         return 0;
2620 }
2621
2622 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2623 {
2624         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2625                nested_cpu_has_virtual_nmis(vmcs12)))
2626                 return -EINVAL;
2627
2628         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2629                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2630                 return -EINVAL;
2631
2632         return 0;
2633 }
2634
2635 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2636 {
2637         struct vcpu_vmx *vmx = to_vmx(vcpu);
2638         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2639
2640         /* Check for memory type validity */
2641         switch (new_eptp & VMX_EPTP_MT_MASK) {
2642         case VMX_EPTP_MT_UC:
2643                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2644                         return false;
2645                 break;
2646         case VMX_EPTP_MT_WB:
2647                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2648                         return false;
2649                 break;
2650         default:
2651                 return false;
2652         }
2653
2654         /* Page-walk levels validity. */
2655         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2656         case VMX_EPTP_PWL_5:
2657                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2658                         return false;
2659                 break;
2660         case VMX_EPTP_PWL_4:
2661                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2662                         return false;
2663                 break;
2664         default:
2665                 return false;
2666         }
2667
2668         /* Reserved bits should not be set */
2669         if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2670                 return false;
2671
2672         /* AD, if set, should be supported */
2673         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2674                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2675                         return false;
2676         }
2677
2678         return true;
2679 }
2680
2681 /*
2682  * Checks related to VM-Execution Control Fields
2683  */
2684 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2685                                               struct vmcs12 *vmcs12)
2686 {
2687         struct vcpu_vmx *vmx = to_vmx(vcpu);
2688
2689         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2690                                    vmx->nested.msrs.pinbased_ctls_low,
2691                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2692             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2693                                    vmx->nested.msrs.procbased_ctls_low,
2694                                    vmx->nested.msrs.procbased_ctls_high)))
2695                 return -EINVAL;
2696
2697         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2698             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2699                                    vmx->nested.msrs.secondary_ctls_low,
2700                                    vmx->nested.msrs.secondary_ctls_high)))
2701                 return -EINVAL;
2702
2703         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2704             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2705             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2706             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2707             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2708             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2709             nested_vmx_check_nmi_controls(vmcs12) ||
2710             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2711             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2712             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2713             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2714             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2715                 return -EINVAL;
2716
2717         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2718             nested_cpu_has_save_preemption_timer(vmcs12))
2719                 return -EINVAL;
2720
2721         if (nested_cpu_has_ept(vmcs12) &&
2722             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2723                 return -EINVAL;
2724
2725         if (nested_cpu_has_vmfunc(vmcs12)) {
2726                 if (CC(vmcs12->vm_function_control &
2727                        ~vmx->nested.msrs.vmfunc_controls))
2728                         return -EINVAL;
2729
2730                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2731                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2732                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2733                                 return -EINVAL;
2734                 }
2735         }
2736
2737         return 0;
2738 }
2739
2740 /*
2741  * Checks related to VM-Exit Control Fields
2742  */
2743 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2744                                          struct vmcs12 *vmcs12)
2745 {
2746         struct vcpu_vmx *vmx = to_vmx(vcpu);
2747
2748         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2749                                     vmx->nested.msrs.exit_ctls_low,
2750                                     vmx->nested.msrs.exit_ctls_high)) ||
2751             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2752                 return -EINVAL;
2753
2754         return 0;
2755 }
2756
2757 /*
2758  * Checks related to VM-Entry Control Fields
2759  */
2760 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2761                                           struct vmcs12 *vmcs12)
2762 {
2763         struct vcpu_vmx *vmx = to_vmx(vcpu);
2764
2765         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2766                                     vmx->nested.msrs.entry_ctls_low,
2767                                     vmx->nested.msrs.entry_ctls_high)))
2768                 return -EINVAL;
2769
2770         /*
2771          * From the Intel SDM, volume 3:
2772          * Fields relevant to VM-entry event injection must be set properly.
2773          * These fields are the VM-entry interruption-information field, the
2774          * VM-entry exception error code, and the VM-entry instruction length.
2775          */
2776         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2777                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2778                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2779                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2780                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2781                 bool should_have_error_code;
2782                 bool urg = nested_cpu_has2(vmcs12,
2783                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2784                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2785
2786                 /* VM-entry interruption-info field: interruption type */
2787                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2788                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2789                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2790                         return -EINVAL;
2791
2792                 /* VM-entry interruption-info field: vector */
2793                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2794                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2795                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2796                         return -EINVAL;
2797
2798                 /* VM-entry interruption-info field: deliver error code */
2799                 should_have_error_code =
2800                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2801                         x86_exception_has_error_code(vector);
2802                 if (CC(has_error_code != should_have_error_code))
2803                         return -EINVAL;
2804
2805                 /* VM-entry exception error code */
2806                 if (CC(has_error_code &&
2807                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2808                         return -EINVAL;
2809
2810                 /* VM-entry interruption-info field: reserved bits */
2811                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2812                         return -EINVAL;
2813
2814                 /* VM-entry instruction length */
2815                 switch (intr_type) {
2816                 case INTR_TYPE_SOFT_EXCEPTION:
2817                 case INTR_TYPE_SOFT_INTR:
2818                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2819                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2820                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2821                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2822                                 return -EINVAL;
2823                 }
2824         }
2825
2826         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2827                 return -EINVAL;
2828
2829         return 0;
2830 }
2831
2832 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2833                                      struct vmcs12 *vmcs12)
2834 {
2835         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2836             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2837             nested_check_vm_entry_controls(vcpu, vmcs12))
2838                 return -EINVAL;
2839
2840         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2841                 return nested_evmcs_check_controls(vmcs12);
2842
2843         return 0;
2844 }
2845
2846 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2847                                        struct vmcs12 *vmcs12)
2848 {
2849         bool ia32e;
2850
2851         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2852             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2853             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2854                 return -EINVAL;
2855
2856         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2857             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2858                 return -EINVAL;
2859
2860         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2861             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2862                 return -EINVAL;
2863
2864         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2865             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2866                                            vmcs12->host_ia32_perf_global_ctrl)))
2867                 return -EINVAL;
2868
2869 #ifdef CONFIG_X86_64
2870         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2871 #else
2872         ia32e = false;
2873 #endif
2874
2875         if (ia32e) {
2876                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2877                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2878                         return -EINVAL;
2879         } else {
2880                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2881                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2882                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2883                     CC((vmcs12->host_rip) >> 32))
2884                         return -EINVAL;
2885         }
2886
2887         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2888             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2889             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2890             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2891             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2892             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2893             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2894             CC(vmcs12->host_cs_selector == 0) ||
2895             CC(vmcs12->host_tr_selector == 0) ||
2896             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2897                 return -EINVAL;
2898
2899         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2900             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2901             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2902             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2903             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2904             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2905                 return -EINVAL;
2906
2907         /*
2908          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2909          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2910          * the values of the LMA and LME bits in the field must each be that of
2911          * the host address-space size VM-exit control.
2912          */
2913         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2914                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2915                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2916                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2917                         return -EINVAL;
2918         }
2919
2920         return 0;
2921 }
2922
2923 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2924                                           struct vmcs12 *vmcs12)
2925 {
2926         int r = 0;
2927         struct vmcs12 *shadow;
2928         struct kvm_host_map map;
2929
2930         if (vmcs12->vmcs_link_pointer == -1ull)
2931                 return 0;
2932
2933         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2934                 return -EINVAL;
2935
2936         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2937                 return -EINVAL;
2938
2939         shadow = map.hva;
2940
2941         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2942             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2943                 r = -EINVAL;
2944
2945         kvm_vcpu_unmap(vcpu, &map, false);
2946         return r;
2947 }
2948
2949 /*
2950  * Checks related to Guest Non-register State
2951  */
2952 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2953 {
2954         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2955                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2956                vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2957                 return -EINVAL;
2958
2959         return 0;
2960 }
2961
2962 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2963                                         struct vmcs12 *vmcs12,
2964                                         enum vm_entry_failure_code *entry_failure_code)
2965 {
2966         bool ia32e;
2967
2968         *entry_failure_code = ENTRY_FAIL_DEFAULT;
2969
2970         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2971             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2972                 return -EINVAL;
2973
2974         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2975             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2976                 return -EINVAL;
2977
2978         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2979             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2980                 return -EINVAL;
2981
2982         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2983                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2984                 return -EINVAL;
2985         }
2986
2987         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2988             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2989                                            vmcs12->guest_ia32_perf_global_ctrl)))
2990                 return -EINVAL;
2991
2992         /*
2993          * If the load IA32_EFER VM-entry control is 1, the following checks
2994          * are performed on the field for the IA32_EFER MSR:
2995          * - Bits reserved in the IA32_EFER MSR must be 0.
2996          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2997          *   the IA-32e mode guest VM-exit control. It must also be identical
2998          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2999          *   CR0.PG) is 1.
3000          */
3001         if (to_vmx(vcpu)->nested.nested_run_pending &&
3002             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3003                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3004                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3005                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3006                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3007                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3008                         return -EINVAL;
3009         }
3010
3011         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3012             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3013              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3014                 return -EINVAL;
3015
3016         if (nested_check_guest_non_reg_state(vmcs12))
3017                 return -EINVAL;
3018
3019         return 0;
3020 }
3021
3022 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3023 {
3024         struct vcpu_vmx *vmx = to_vmx(vcpu);
3025         unsigned long cr3, cr4;
3026         bool vm_fail;
3027
3028         if (!nested_early_check)
3029                 return 0;
3030
3031         if (vmx->msr_autoload.host.nr)
3032                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3033         if (vmx->msr_autoload.guest.nr)
3034                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3035
3036         preempt_disable();
3037
3038         vmx_prepare_switch_to_guest(vcpu);
3039
3040         /*
3041          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3042          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3043          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3044          * there is no need to preserve other bits or save/restore the field.
3045          */
3046         vmcs_writel(GUEST_RFLAGS, 0);
3047
3048         cr3 = __get_current_cr3_fast();
3049         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3050                 vmcs_writel(HOST_CR3, cr3);
3051                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3052         }
3053
3054         cr4 = cr4_read_shadow();
3055         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3056                 vmcs_writel(HOST_CR4, cr4);
3057                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3058         }
3059
3060         asm(
3061                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
3062                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3063                 "je 1f \n\t"
3064                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
3065                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3066                 "1: \n\t"
3067                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
3068
3069                 /* Check if vmlaunch or vmresume is needed */
3070                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
3071
3072                 /*
3073                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
3074                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
3075                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
3076                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
3077                  */
3078                 "call vmx_vmenter\n\t"
3079
3080                 CC_SET(be)
3081               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3082               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
3083                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
3084                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
3085                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3086                 [wordsize]"i"(sizeof(ulong))
3087               : "memory"
3088         );
3089
3090         if (vmx->msr_autoload.host.nr)
3091                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3092         if (vmx->msr_autoload.guest.nr)
3093                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3094
3095         if (vm_fail) {
3096                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3097
3098                 preempt_enable();
3099
3100                 trace_kvm_nested_vmenter_failed(
3101                         "early hardware check VM-instruction error: ", error);
3102                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3103                 return 1;
3104         }
3105
3106         /*
3107          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3108          */
3109         if (hw_breakpoint_active())
3110                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3111         local_irq_enable();
3112         preempt_enable();
3113
3114         /*
3115          * A non-failing VMEntry means we somehow entered guest mode with
3116          * an illegal RIP, and that's just the tip of the iceberg.  There
3117          * is no telling what memory has been modified or what state has
3118          * been exposed to unknown code.  Hitting this all but guarantees
3119          * a (very critical) hardware issue.
3120          */
3121         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3122                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3123
3124         return 0;
3125 }
3126
3127 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3128 {
3129         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3130         struct vcpu_vmx *vmx = to_vmx(vcpu);
3131         struct kvm_host_map *map;
3132         struct page *page;
3133         u64 hpa;
3134
3135         /*
3136          * hv_evmcs may end up being not mapped after migration (when
3137          * L2 was running), map it here to make sure vmcs12 changes are
3138          * properly reflected.
3139          */
3140         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3141                 enum nested_evmptrld_status evmptrld_status =
3142                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3143
3144                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3145                     evmptrld_status == EVMPTRLD_ERROR) {
3146                         pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3147                                              __func__);
3148                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3149                         vcpu->run->internal.suberror =
3150                                 KVM_INTERNAL_ERROR_EMULATION;
3151                         vcpu->run->internal.ndata = 0;
3152                         return false;
3153                 }
3154         }
3155
3156         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3157                 /*
3158                  * Translate L1 physical address to host physical
3159                  * address for vmcs02. Keep the page pinned, so this
3160                  * physical address remains valid. We keep a reference
3161                  * to it so we can release it later.
3162                  */
3163                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3164                         kvm_release_page_clean(vmx->nested.apic_access_page);
3165                         vmx->nested.apic_access_page = NULL;
3166                 }
3167                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3168                 if (!is_error_page(page)) {
3169                         vmx->nested.apic_access_page = page;
3170                         hpa = page_to_phys(vmx->nested.apic_access_page);
3171                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3172                 } else {
3173                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3174                                              __func__);
3175                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3176                         vcpu->run->internal.suberror =
3177                                 KVM_INTERNAL_ERROR_EMULATION;
3178                         vcpu->run->internal.ndata = 0;
3179                         return false;
3180                 }
3181         }
3182
3183         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3184                 map = &vmx->nested.virtual_apic_map;
3185
3186                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3187                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3188                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3189                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3190                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3191                         /*
3192                          * The processor will never use the TPR shadow, simply
3193                          * clear the bit from the execution control.  Such a
3194                          * configuration is useless, but it happens in tests.
3195                          * For any other configuration, failing the vm entry is
3196                          * _not_ what the processor does but it's basically the
3197                          * only possibility we have.
3198                          */
3199                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3200                 } else {
3201                         /*
3202                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3203                          * force VM-Entry to fail.
3204                          */
3205                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3206                 }
3207         }
3208
3209         if (nested_cpu_has_posted_intr(vmcs12)) {
3210                 map = &vmx->nested.pi_desc_map;
3211
3212                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3213                         vmx->nested.pi_desc =
3214                                 (struct pi_desc *)(((void *)map->hva) +
3215                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3216                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3217                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3218                 }
3219         }
3220         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3221                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3222         else
3223                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3224         return true;
3225 }
3226
3227 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3228 {
3229         struct vmcs12 *vmcs12;
3230         struct vcpu_vmx *vmx = to_vmx(vcpu);
3231         gpa_t dst;
3232
3233         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3234                 return 0;
3235
3236         if (WARN_ON_ONCE(vmx->nested.pml_full))
3237                 return 1;
3238
3239         /*
3240          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3241          * set is already checked as part of A/D emulation.
3242          */
3243         vmcs12 = get_vmcs12(vcpu);
3244         if (!nested_cpu_has_pml(vmcs12))
3245                 return 0;
3246
3247         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3248                 vmx->nested.pml_full = true;
3249                 return 1;
3250         }
3251
3252         gpa &= ~0xFFFull;
3253         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3254
3255         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3256                                  offset_in_page(dst), sizeof(gpa)))
3257                 return 0;
3258
3259         vmcs12->guest_pml_index--;
3260
3261         return 0;
3262 }
3263
3264 /*
3265  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3266  * for running VMX instructions (except VMXON, whose prerequisites are
3267  * slightly different). It also specifies what exception to inject otherwise.
3268  * Note that many of these exceptions have priority over VM exits, so they
3269  * don't have to be checked again here.
3270  */
3271 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3272 {
3273         if (!to_vmx(vcpu)->nested.vmxon) {
3274                 kvm_queue_exception(vcpu, UD_VECTOR);
3275                 return 0;
3276         }
3277
3278         if (vmx_get_cpl(vcpu)) {
3279                 kvm_inject_gp(vcpu, 0);
3280                 return 0;
3281         }
3282
3283         return 1;
3284 }
3285
3286 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3287 {
3288         u8 rvi = vmx_get_rvi();
3289         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3290
3291         return ((rvi & 0xf0) > (vppr & 0xf0));
3292 }
3293
3294 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3295                                    struct vmcs12 *vmcs12);
3296
3297 /*
3298  * If from_vmentry is false, this is being called from state restore (either RSM
3299  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3300  *
3301  * Returns:
3302  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3303  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3304  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3305  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3306  */
3307 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3308                                                         bool from_vmentry)
3309 {
3310         struct vcpu_vmx *vmx = to_vmx(vcpu);
3311         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3312         enum vm_entry_failure_code entry_failure_code;
3313         bool evaluate_pending_interrupts;
3314         u32 exit_reason, failed_index;
3315
3316         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3317                 kvm_vcpu_flush_tlb_current(vcpu);
3318
3319         evaluate_pending_interrupts = exec_controls_get(vmx) &
3320                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3321         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3322                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3323
3324         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3325                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3326         if (kvm_mpx_supported() &&
3327                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3328                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3329
3330         /*
3331          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3332          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3333          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3334          * software model to the pre-VMEntry host state.  When EPT is disabled,
3335          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3336          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3337          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3338          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3339          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3340          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3341          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3342          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3343          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3344          * path would need to manually save/restore vmcs01.GUEST_CR3.
3345          */
3346         if (!enable_ept && !nested_early_check)
3347                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3348
3349         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3350
3351         prepare_vmcs02_early(vmx, vmcs12);
3352
3353         if (from_vmentry) {
3354                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3355                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3356                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3357                 }
3358
3359                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3360                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3361                         return NVMX_VMENTRY_VMFAIL;
3362                 }
3363
3364                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3365                                                  &entry_failure_code)) {
3366                         exit_reason = EXIT_REASON_INVALID_STATE;
3367                         vmcs12->exit_qualification = entry_failure_code;
3368                         goto vmentry_fail_vmexit;
3369                 }
3370         }
3371
3372         enter_guest_mode(vcpu);
3373         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3374                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3375
3376         if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3377                 exit_reason = EXIT_REASON_INVALID_STATE;
3378                 vmcs12->exit_qualification = entry_failure_code;
3379                 goto vmentry_fail_vmexit_guest_mode;
3380         }
3381
3382         if (from_vmentry) {
3383                 failed_index = nested_vmx_load_msr(vcpu,
3384                                                    vmcs12->vm_entry_msr_load_addr,
3385                                                    vmcs12->vm_entry_msr_load_count);
3386                 if (failed_index) {
3387                         exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3388                         vmcs12->exit_qualification = failed_index;
3389                         goto vmentry_fail_vmexit_guest_mode;
3390                 }
3391         } else {
3392                 /*
3393                  * The MMU is not initialized to point at the right entities yet and
3394                  * "get pages" would need to read data from the guest (i.e. we will
3395                  * need to perform gpa to hpa translation). Request a call
3396                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3397                  * have already been set at vmentry time and should not be reset.
3398                  */
3399                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3400         }
3401
3402         /*
3403          * If L1 had a pending IRQ/NMI until it executed
3404          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3405          * disallowed (e.g. interrupts disabled), L0 needs to
3406          * evaluate if this pending event should cause an exit from L2
3407          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3408          * intercept EXTERNAL_INTERRUPT).
3409          *
3410          * Usually this would be handled by the processor noticing an
3411          * IRQ/NMI window request, or checking RVI during evaluation of
3412          * pending virtual interrupts.  However, this setting was done
3413          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3414          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3415          */
3416         if (unlikely(evaluate_pending_interrupts))
3417                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3418
3419         /*
3420          * Do not start the preemption timer hrtimer until after we know
3421          * we are successful, so that only nested_vmx_vmexit needs to cancel
3422          * the timer.
3423          */
3424         vmx->nested.preemption_timer_expired = false;
3425         if (nested_cpu_has_preemption_timer(vmcs12)) {
3426                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3427                 vmx_start_preemption_timer(vcpu, timer_value);
3428         }
3429
3430         /*
3431          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3432          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3433          * returned as far as L1 is concerned. It will only return (and set
3434          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3435          */
3436         return NVMX_VMENTRY_SUCCESS;
3437
3438         /*
3439          * A failed consistency check that leads to a VMExit during L1's
3440          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3441          * 26.7 "VM-entry failures during or after loading guest state".
3442          */
3443 vmentry_fail_vmexit_guest_mode:
3444         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3445                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3446         leave_guest_mode(vcpu);
3447
3448 vmentry_fail_vmexit:
3449         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3450
3451         if (!from_vmentry)
3452                 return NVMX_VMENTRY_VMEXIT;
3453
3454         load_vmcs12_host_state(vcpu, vmcs12);
3455         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3456         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3457                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3458         return NVMX_VMENTRY_VMEXIT;
3459 }
3460
3461 /*
3462  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3463  * for running an L2 nested guest.
3464  */
3465 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3466 {
3467         struct vmcs12 *vmcs12;
3468         enum nvmx_vmentry_status status;
3469         struct vcpu_vmx *vmx = to_vmx(vcpu);
3470         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3471         enum nested_evmptrld_status evmptrld_status;
3472
3473         if (!nested_vmx_check_permission(vcpu))
3474                 return 1;
3475
3476         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3477         if (evmptrld_status == EVMPTRLD_ERROR) {
3478                 kvm_queue_exception(vcpu, UD_VECTOR);
3479                 return 1;
3480         } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3481                 return nested_vmx_failInvalid(vcpu);
3482         }
3483
3484         if (CC(!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull))
3485                 return nested_vmx_failInvalid(vcpu);
3486
3487         vmcs12 = get_vmcs12(vcpu);
3488
3489         /*
3490          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3491          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3492          * rather than RFLAGS.ZF, and no error number is stored to the
3493          * VM-instruction error field.
3494          */
3495         if (CC(vmcs12->hdr.shadow_vmcs))
3496                 return nested_vmx_failInvalid(vcpu);
3497
3498         if (vmx->nested.hv_evmcs) {
3499                 copy_enlightened_to_vmcs12(vmx);
3500                 /* Enlightened VMCS doesn't have launch state */
3501                 vmcs12->launch_state = !launch;
3502         } else if (enable_shadow_vmcs) {
3503                 copy_shadow_to_vmcs12(vmx);
3504         }
3505
3506         /*
3507          * The nested entry process starts with enforcing various prerequisites
3508          * on vmcs12 as required by the Intel SDM, and act appropriately when
3509          * they fail: As the SDM explains, some conditions should cause the
3510          * instruction to fail, while others will cause the instruction to seem
3511          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3512          * To speed up the normal (success) code path, we should avoid checking
3513          * for misconfigurations which will anyway be caught by the processor
3514          * when using the merged vmcs02.
3515          */
3516         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3517                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3518
3519         if (CC(vmcs12->launch_state == launch))
3520                 return nested_vmx_fail(vcpu,
3521                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3522                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3523
3524         if (nested_vmx_check_controls(vcpu, vmcs12))
3525                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3526
3527         if (nested_vmx_check_host_state(vcpu, vmcs12))
3528                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3529
3530         /*
3531          * We're finally done with prerequisite checking, and can start with
3532          * the nested entry.
3533          */
3534         vmx->nested.nested_run_pending = 1;
3535         vmx->nested.has_preemption_timer_deadline = false;
3536         status = nested_vmx_enter_non_root_mode(vcpu, true);
3537         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3538                 goto vmentry_failed;
3539
3540         /* Emulate processing of posted interrupts on VM-Enter. */
3541         if (nested_cpu_has_posted_intr(vmcs12) &&
3542             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3543                 vmx->nested.pi_pending = true;
3544                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3545                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3546         }
3547
3548         /* Hide L1D cache contents from the nested guest.  */
3549         vmx->vcpu.arch.l1tf_flush_l1d = true;
3550
3551         /*
3552          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3553          * also be used as part of restoring nVMX state for
3554          * snapshot restore (migration).
3555          *
3556          * In this flow, it is assumed that vmcs12 cache was
3557          * trasferred as part of captured nVMX state and should
3558          * therefore not be read from guest memory (which may not
3559          * exist on destination host yet).
3560          */
3561         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3562
3563         switch (vmcs12->guest_activity_state) {
3564         case GUEST_ACTIVITY_HLT:
3565                 /*
3566                  * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3567                  * awakened by event injection or by an NMI-window VM-exit or
3568                  * by an interrupt-window VM-exit, halt the vcpu.
3569                  */
3570                 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3571                     !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3572                     !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3573                       (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3574                         vmx->nested.nested_run_pending = 0;
3575                         return kvm_vcpu_halt(vcpu);
3576                 }
3577                 break;
3578         case GUEST_ACTIVITY_WAIT_SIPI:
3579                 vmx->nested.nested_run_pending = 0;
3580                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3581                 break;
3582         default:
3583                 break;
3584         }
3585
3586         return 1;
3587
3588 vmentry_failed:
3589         vmx->nested.nested_run_pending = 0;
3590         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3591                 return 0;
3592         if (status == NVMX_VMENTRY_VMEXIT)
3593                 return 1;
3594         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3595         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3596 }
3597
3598 /*
3599  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3600  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3601  * This function returns the new value we should put in vmcs12.guest_cr0.
3602  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3603  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3604  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3605  *     didn't trap the bit, because if L1 did, so would L0).
3606  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3607  *     been modified by L2, and L1 knows it. So just leave the old value of
3608  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3609  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3610  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3611  *     changed these bits, and therefore they need to be updated, but L0
3612  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3613  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3614  */
3615 static inline unsigned long
3616 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3617 {
3618         return
3619         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3620         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3621         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3622                         vcpu->arch.cr0_guest_owned_bits));
3623 }
3624
3625 static inline unsigned long
3626 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3627 {
3628         return
3629         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3630         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3631         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3632                         vcpu->arch.cr4_guest_owned_bits));
3633 }
3634
3635 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3636                                       struct vmcs12 *vmcs12)
3637 {
3638         u32 idt_vectoring;
3639         unsigned int nr;
3640
3641         if (vcpu->arch.exception.injected) {
3642                 nr = vcpu->arch.exception.nr;
3643                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3644
3645                 if (kvm_exception_is_soft(nr)) {
3646                         vmcs12->vm_exit_instruction_len =
3647                                 vcpu->arch.event_exit_inst_len;
3648                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3649                 } else
3650                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3651
3652                 if (vcpu->arch.exception.has_error_code) {
3653                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3654                         vmcs12->idt_vectoring_error_code =
3655                                 vcpu->arch.exception.error_code;
3656                 }
3657
3658                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3659         } else if (vcpu->arch.nmi_injected) {
3660                 vmcs12->idt_vectoring_info_field =
3661                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3662         } else if (vcpu->arch.interrupt.injected) {
3663                 nr = vcpu->arch.interrupt.nr;
3664                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3665
3666                 if (vcpu->arch.interrupt.soft) {
3667                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3668                         vmcs12->vm_entry_instruction_len =
3669                                 vcpu->arch.event_exit_inst_len;
3670                 } else
3671                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3672
3673                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3674         }
3675 }
3676
3677
3678 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3679 {
3680         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3681         gfn_t gfn;
3682
3683         /*
3684          * Don't need to mark the APIC access page dirty; it is never
3685          * written to by the CPU during APIC virtualization.
3686          */
3687
3688         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3689                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3690                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3691         }
3692
3693         if (nested_cpu_has_posted_intr(vmcs12)) {
3694                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3695                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3696         }
3697 }
3698
3699 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3700 {
3701         struct vcpu_vmx *vmx = to_vmx(vcpu);
3702         int max_irr;
3703         void *vapic_page;
3704         u16 status;
3705
3706         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3707                 return;
3708
3709         vmx->nested.pi_pending = false;
3710         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3711                 return;
3712
3713         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3714         if (max_irr != 256) {
3715                 vapic_page = vmx->nested.virtual_apic_map.hva;
3716                 if (!vapic_page)
3717                         return;
3718
3719                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3720                         vapic_page, &max_irr);
3721                 status = vmcs_read16(GUEST_INTR_STATUS);
3722                 if ((u8)max_irr > ((u8)status & 0xff)) {
3723                         status &= ~0xff;
3724                         status |= (u8)max_irr;
3725                         vmcs_write16(GUEST_INTR_STATUS, status);
3726                 }
3727         }
3728
3729         nested_mark_vmcs12_pages_dirty(vcpu);
3730 }
3731
3732 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3733                                                unsigned long exit_qual)
3734 {
3735         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3736         unsigned int nr = vcpu->arch.exception.nr;
3737         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3738
3739         if (vcpu->arch.exception.has_error_code) {
3740                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3741                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3742         }
3743
3744         if (kvm_exception_is_soft(nr))
3745                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3746         else
3747                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3748
3749         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3750             vmx_get_nmi_mask(vcpu))
3751                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3752
3753         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3754 }
3755
3756 /*
3757  * Returns true if a debug trap is pending delivery.
3758  *
3759  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3760  * exception may be inferred from the presence of an exception payload.
3761  */
3762 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3763 {
3764         return vcpu->arch.exception.pending &&
3765                         vcpu->arch.exception.nr == DB_VECTOR &&
3766                         vcpu->arch.exception.payload;
3767 }
3768
3769 /*
3770  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3771  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3772  * represents these debug traps with a payload that is said to be compatible
3773  * with the 'pending debug exceptions' field, write the payload to the VMCS
3774  * field if a VM-exit is delivered before the debug trap.
3775  */
3776 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3777 {
3778         if (vmx_pending_dbg_trap(vcpu))
3779                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3780                             vcpu->arch.exception.payload);
3781 }
3782
3783 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3784 {
3785         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3786                to_vmx(vcpu)->nested.preemption_timer_expired;
3787 }
3788
3789 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3790 {
3791         struct vcpu_vmx *vmx = to_vmx(vcpu);
3792         unsigned long exit_qual;
3793         bool block_nested_events =
3794             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3795         bool mtf_pending = vmx->nested.mtf_pending;
3796         struct kvm_lapic *apic = vcpu->arch.apic;
3797
3798         /*
3799          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3800          * this state is discarded.
3801          */
3802         if (!block_nested_events)
3803                 vmx->nested.mtf_pending = false;
3804
3805         if (lapic_in_kernel(vcpu) &&
3806                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3807                 if (block_nested_events)
3808                         return -EBUSY;
3809                 nested_vmx_update_pending_dbg(vcpu);
3810                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3811                 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3812                         nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3813                 return 0;
3814         }
3815
3816         if (lapic_in_kernel(vcpu) &&
3817             test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3818                 if (block_nested_events)
3819                         return -EBUSY;
3820
3821                 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3822                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3823                         nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3824                                                 apic->sipi_vector & 0xFFUL);
3825                 return 0;
3826         }
3827
3828         /*
3829          * Process any exceptions that are not debug traps before MTF.
3830          */
3831         if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3832                 if (block_nested_events)
3833                         return -EBUSY;
3834                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3835                         goto no_vmexit;
3836                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3837                 return 0;
3838         }
3839
3840         if (mtf_pending) {
3841                 if (block_nested_events)
3842                         return -EBUSY;
3843                 nested_vmx_update_pending_dbg(vcpu);
3844                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3845                 return 0;
3846         }
3847
3848         if (vcpu->arch.exception.pending) {
3849                 if (block_nested_events)
3850                         return -EBUSY;
3851                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3852                         goto no_vmexit;
3853                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3854                 return 0;
3855         }
3856
3857         if (nested_vmx_preemption_timer_pending(vcpu)) {
3858                 if (block_nested_events)
3859                         return -EBUSY;
3860                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3861                 return 0;
3862         }
3863
3864         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3865                 if (block_nested_events)
3866                         return -EBUSY;
3867                 goto no_vmexit;
3868         }
3869
3870         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3871                 if (block_nested_events)
3872                         return -EBUSY;
3873                 if (!nested_exit_on_nmi(vcpu))
3874                         goto no_vmexit;
3875
3876                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3877                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3878                                   INTR_INFO_VALID_MASK, 0);
3879                 /*
3880                  * The NMI-triggered VM exit counts as injection:
3881                  * clear this one and block further NMIs.
3882                  */
3883                 vcpu->arch.nmi_pending = 0;
3884                 vmx_set_nmi_mask(vcpu, true);
3885                 return 0;
3886         }
3887
3888         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3889                 if (block_nested_events)
3890                         return -EBUSY;
3891                 if (!nested_exit_on_intr(vcpu))
3892                         goto no_vmexit;
3893                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3894                 return 0;
3895         }
3896
3897 no_vmexit:
3898         vmx_complete_nested_posted_interrupt(vcpu);
3899         return 0;
3900 }
3901
3902 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3903 {
3904         ktime_t remaining =
3905                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3906         u64 value;
3907
3908         if (ktime_to_ns(remaining) <= 0)
3909                 return 0;
3910
3911         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3912         do_div(value, 1000000);
3913         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3914 }
3915
3916 static bool is_vmcs12_ext_field(unsigned long field)
3917 {
3918         switch (field) {
3919         case GUEST_ES_SELECTOR:
3920         case GUEST_CS_SELECTOR:
3921         case GUEST_SS_SELECTOR:
3922         case GUEST_DS_SELECTOR:
3923         case GUEST_FS_SELECTOR:
3924         case GUEST_GS_SELECTOR:
3925         case GUEST_LDTR_SELECTOR:
3926         case GUEST_TR_SELECTOR:
3927         case GUEST_ES_LIMIT:
3928         case GUEST_CS_LIMIT:
3929         case GUEST_SS_LIMIT:
3930         case GUEST_DS_LIMIT:
3931         case GUEST_FS_LIMIT:
3932         case GUEST_GS_LIMIT:
3933         case GUEST_LDTR_LIMIT:
3934         case GUEST_TR_LIMIT:
3935         case GUEST_GDTR_LIMIT:
3936         case GUEST_IDTR_LIMIT:
3937         case GUEST_ES_AR_BYTES:
3938         case GUEST_DS_AR_BYTES:
3939         case GUEST_FS_AR_BYTES:
3940         case GUEST_GS_AR_BYTES:
3941         case GUEST_LDTR_AR_BYTES:
3942         case GUEST_TR_AR_BYTES:
3943         case GUEST_ES_BASE:
3944         case GUEST_CS_BASE:
3945         case GUEST_SS_BASE:
3946         case GUEST_DS_BASE:
3947         case GUEST_FS_BASE:
3948         case GUEST_GS_BASE:
3949         case GUEST_LDTR_BASE:
3950         case GUEST_TR_BASE:
3951         case GUEST_GDTR_BASE:
3952         case GUEST_IDTR_BASE:
3953         case GUEST_PENDING_DBG_EXCEPTIONS:
3954         case GUEST_BNDCFGS:
3955                 return true;
3956         default:
3957                 break;
3958         }
3959
3960         return false;
3961 }
3962
3963 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3964                                        struct vmcs12 *vmcs12)
3965 {
3966         struct vcpu_vmx *vmx = to_vmx(vcpu);
3967
3968         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3969         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3970         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3971         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3972         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3973         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3974         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3975         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3976         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3977         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3978         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3979         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3980         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3981         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3982         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3983         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3984         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3985         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3986         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3987         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3988         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3989         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3990         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3991         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3992         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3993         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3994         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3995         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3996         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3997         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3998         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3999         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4000         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4001         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4002         vmcs12->guest_pending_dbg_exceptions =
4003                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4004         if (kvm_mpx_supported())
4005                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4006
4007         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4008 }
4009
4010 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4011                                        struct vmcs12 *vmcs12)
4012 {
4013         struct vcpu_vmx *vmx = to_vmx(vcpu);
4014         int cpu;
4015
4016         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4017                 return;
4018
4019
4020         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4021
4022         cpu = get_cpu();
4023         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4024         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4025
4026         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4027
4028         vmx->loaded_vmcs = &vmx->vmcs01;
4029         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4030         put_cpu();
4031 }
4032
4033 /*
4034  * Update the guest state fields of vmcs12 to reflect changes that
4035  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4036  * VM-entry controls is also updated, since this is really a guest
4037  * state bit.)
4038  */
4039 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4040 {
4041         struct vcpu_vmx *vmx = to_vmx(vcpu);
4042
4043         if (vmx->nested.hv_evmcs)
4044                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4045
4046         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
4047
4048         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4049         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4050
4051         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4052         vmcs12->guest_rip = kvm_rip_read(vcpu);
4053         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4054
4055         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4056         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4057
4058         vmcs12->guest_interruptibility_info =
4059                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4060
4061         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4062                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4063         else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4064                 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4065         else
4066                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4067
4068         if (nested_cpu_has_preemption_timer(vmcs12) &&
4069             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4070             !vmx->nested.nested_run_pending)
4071                 vmcs12->vmx_preemption_timer_value =
4072                         vmx_get_preemption_timer_value(vcpu);
4073
4074         /*
4075          * In some cases (usually, nested EPT), L2 is allowed to change its
4076          * own CR3 without exiting. If it has changed it, we must keep it.
4077          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4078          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4079          *
4080          * Additionally, restore L2's PDPTR to vmcs12.
4081          */
4082         if (enable_ept) {
4083                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4084                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4085                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4086                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4087                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4088                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4089                 }
4090         }
4091
4092         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4093
4094         if (nested_cpu_has_vid(vmcs12))
4095                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4096
4097         vmcs12->vm_entry_controls =
4098                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4099                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4100
4101         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4102                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4103
4104         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4105                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4106 }
4107
4108 /*
4109  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4110  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4111  * and this function updates it to reflect the changes to the guest state while
4112  * L2 was running (and perhaps made some exits which were handled directly by L0
4113  * without going back to L1), and to reflect the exit reason.
4114  * Note that we do not have to copy here all VMCS fields, just those that
4115  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4116  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4117  * which already writes to vmcs12 directly.
4118  */
4119 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4120                            u32 vm_exit_reason, u32 exit_intr_info,
4121                            unsigned long exit_qualification)
4122 {
4123         /* update exit information fields: */
4124         vmcs12->vm_exit_reason = vm_exit_reason;
4125         vmcs12->exit_qualification = exit_qualification;
4126         vmcs12->vm_exit_intr_info = exit_intr_info;
4127
4128         vmcs12->idt_vectoring_info_field = 0;
4129         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4130         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4131
4132         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4133                 vmcs12->launch_state = 1;
4134
4135                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4136                  * instead of reading the real value. */
4137                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4138
4139                 /*
4140                  * Transfer the event that L0 or L1 may wanted to inject into
4141                  * L2 to IDT_VECTORING_INFO_FIELD.
4142                  */
4143                 vmcs12_save_pending_event(vcpu, vmcs12);
4144
4145                 /*
4146                  * According to spec, there's no need to store the guest's
4147                  * MSRs if the exit is due to a VM-entry failure that occurs
4148                  * during or after loading the guest state. Since this exit
4149                  * does not fall in that category, we need to save the MSRs.
4150                  */
4151                 if (nested_vmx_store_msr(vcpu,
4152                                          vmcs12->vm_exit_msr_store_addr,
4153                                          vmcs12->vm_exit_msr_store_count))
4154                         nested_vmx_abort(vcpu,
4155                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4156         }
4157
4158         /*
4159          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4160          * preserved above and would only end up incorrectly in L1.
4161          */
4162         vcpu->arch.nmi_injected = false;
4163         kvm_clear_exception_queue(vcpu);
4164         kvm_clear_interrupt_queue(vcpu);
4165 }
4166
4167 /*
4168  * A part of what we need to when the nested L2 guest exits and we want to
4169  * run its L1 parent, is to reset L1's guest state to the host state specified
4170  * in vmcs12.
4171  * This function is to be called not only on normal nested exit, but also on
4172  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4173  * Failures During or After Loading Guest State").
4174  * This function should be called when the active VMCS is L1's (vmcs01).
4175  */
4176 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4177                                    struct vmcs12 *vmcs12)
4178 {
4179         enum vm_entry_failure_code ignored;
4180         struct kvm_segment seg;
4181
4182         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4183                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4184         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4185                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4186         else
4187                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4188         vmx_set_efer(vcpu, vcpu->arch.efer);
4189
4190         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4191         kvm_rip_write(vcpu, vmcs12->host_rip);
4192         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4193         vmx_set_interrupt_shadow(vcpu, 0);
4194
4195         /*
4196          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4197          * actually changed, because vmx_set_cr0 refers to efer set above.
4198          *
4199          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4200          * (KVM doesn't change it);
4201          */
4202         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4203         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4204
4205         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4206         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4207         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4208
4209         nested_ept_uninit_mmu_context(vcpu);
4210
4211         /*
4212          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4213          * couldn't have changed.
4214          */
4215         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4216                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4217
4218         if (!enable_ept)
4219                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4220
4221         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4222
4223         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4224         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4225         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4226         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4227         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4228         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4229         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4230
4231         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4232         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4233                 vmcs_write64(GUEST_BNDCFGS, 0);
4234
4235         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4236                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4237                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4238         }
4239         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4240                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4241                                          vmcs12->host_ia32_perf_global_ctrl));
4242
4243         /* Set L1 segment info according to Intel SDM
4244             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4245         seg = (struct kvm_segment) {
4246                 .base = 0,
4247                 .limit = 0xFFFFFFFF,
4248                 .selector = vmcs12->host_cs_selector,
4249                 .type = 11,
4250                 .present = 1,
4251                 .s = 1,
4252                 .g = 1
4253         };
4254         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4255                 seg.l = 1;
4256         else
4257                 seg.db = 1;
4258         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4259         seg = (struct kvm_segment) {
4260                 .base = 0,
4261                 .limit = 0xFFFFFFFF,
4262                 .type = 3,
4263                 .present = 1,
4264                 .s = 1,
4265                 .db = 1,
4266                 .g = 1
4267         };
4268         seg.selector = vmcs12->host_ds_selector;
4269         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4270         seg.selector = vmcs12->host_es_selector;
4271         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4272         seg.selector = vmcs12->host_ss_selector;
4273         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4274         seg.selector = vmcs12->host_fs_selector;
4275         seg.base = vmcs12->host_fs_base;
4276         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4277         seg.selector = vmcs12->host_gs_selector;
4278         seg.base = vmcs12->host_gs_base;
4279         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4280         seg = (struct kvm_segment) {
4281                 .base = vmcs12->host_tr_base,
4282                 .limit = 0x67,
4283                 .selector = vmcs12->host_tr_selector,
4284                 .type = 11,
4285                 .present = 1
4286         };
4287         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4288
4289         kvm_set_dr(vcpu, 7, 0x400);
4290         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4291
4292         if (cpu_has_vmx_msr_bitmap())
4293                 vmx_update_msr_bitmap(vcpu);
4294
4295         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4296                                 vmcs12->vm_exit_msr_load_count))
4297                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4298 }
4299
4300 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4301 {
4302         struct vmx_uret_msr *efer_msr;
4303         unsigned int i;
4304
4305         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4306                 return vmcs_read64(GUEST_IA32_EFER);
4307
4308         if (cpu_has_load_ia32_efer())
4309                 return host_efer;
4310
4311         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4312                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4313                         return vmx->msr_autoload.guest.val[i].value;
4314         }
4315
4316         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4317         if (efer_msr)
4318                 return efer_msr->data;
4319
4320         return host_efer;
4321 }
4322
4323 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4324 {
4325         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4326         struct vcpu_vmx *vmx = to_vmx(vcpu);
4327         struct vmx_msr_entry g, h;
4328         gpa_t gpa;
4329         u32 i, j;
4330
4331         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4332
4333         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4334                 /*
4335                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4336                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4337                  * and vcpu->arch.dr7 is not squirreled away before the
4338                  * nested VMENTER (not worth adding a variable in nested_vmx).
4339                  */
4340                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4341                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4342                 else
4343                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4344         }
4345
4346         /*
4347          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4348          * handle a variety of side effects to KVM's software model.
4349          */
4350         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4351
4352         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4353         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4354
4355         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4356         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4357
4358         nested_ept_uninit_mmu_context(vcpu);
4359         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4360         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4361
4362         /*
4363          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4364          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4365          * VMFail, like everything else we just need to ensure our
4366          * software model is up-to-date.
4367          */
4368         if (enable_ept && is_pae_paging(vcpu))
4369                 ept_save_pdptrs(vcpu);
4370
4371         kvm_mmu_reset_context(vcpu);
4372
4373         if (cpu_has_vmx_msr_bitmap())
4374                 vmx_update_msr_bitmap(vcpu);
4375
4376         /*
4377          * This nasty bit of open coding is a compromise between blindly
4378          * loading L1's MSRs using the exit load lists (incorrect emulation
4379          * of VMFail), leaving the nested VM's MSRs in the software model
4380          * (incorrect behavior) and snapshotting the modified MSRs (too
4381          * expensive since the lists are unbound by hardware).  For each
4382          * MSR that was (prematurely) loaded from the nested VMEntry load
4383          * list, reload it from the exit load list if it exists and differs
4384          * from the guest value.  The intent is to stuff host state as
4385          * silently as possible, not to fully process the exit load list.
4386          */
4387         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4388                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4389                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4390                         pr_debug_ratelimited(
4391                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4392                                 __func__, i, gpa);
4393                         goto vmabort;
4394                 }
4395
4396                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4397                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4398                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4399                                 pr_debug_ratelimited(
4400                                         "%s read MSR failed (%u, 0x%08llx)\n",
4401                                         __func__, j, gpa);
4402                                 goto vmabort;
4403                         }
4404                         if (h.index != g.index)
4405                                 continue;
4406                         if (h.value == g.value)
4407                                 break;
4408
4409                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4410                                 pr_debug_ratelimited(
4411                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4412                                         __func__, j, h.index, h.reserved);
4413                                 goto vmabort;
4414                         }
4415
4416                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4417                                 pr_debug_ratelimited(
4418                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4419                                         __func__, j, h.index, h.value);
4420                                 goto vmabort;
4421                         }
4422                 }
4423         }
4424
4425         return;
4426
4427 vmabort:
4428         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4429 }
4430
4431 /*
4432  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4433  * and modify vmcs12 to make it see what it would expect to see there if
4434  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4435  */
4436 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4437                        u32 exit_intr_info, unsigned long exit_qualification)
4438 {
4439         struct vcpu_vmx *vmx = to_vmx(vcpu);
4440         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4441
4442         /* trying to cancel vmlaunch/vmresume is a bug */
4443         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4444
4445         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
4446
4447         /* Service the TLB flush request for L2 before switching to L1. */
4448         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4449                 kvm_vcpu_flush_tlb_current(vcpu);
4450
4451         /*
4452          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4453          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4454          * up-to-date before switching to L1.
4455          */
4456         if (enable_ept && is_pae_paging(vcpu))
4457                 vmx_ept_load_pdptrs(vcpu);
4458
4459         leave_guest_mode(vcpu);
4460
4461         if (nested_cpu_has_preemption_timer(vmcs12))
4462                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4463
4464         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4465                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4466
4467         if (likely(!vmx->fail)) {
4468                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4469
4470                 if (vm_exit_reason != -1)
4471                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4472                                        exit_intr_info, exit_qualification);
4473
4474                 /*
4475                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4476                  * also be used to capture vmcs12 cache as part of
4477                  * capturing nVMX state for snapshot (migration).
4478                  *
4479                  * Otherwise, this flush will dirty guest memory at a
4480                  * point it is already assumed by user-space to be
4481                  * immutable.
4482                  */
4483                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4484         } else {
4485                 /*
4486                  * The only expected VM-instruction error is "VM entry with
4487                  * invalid control field(s)." Anything else indicates a
4488                  * problem with L0.  And we should never get here with a
4489                  * VMFail of any type if early consistency checks are enabled.
4490                  */
4491                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4492                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4493                 WARN_ON_ONCE(nested_early_check);
4494         }
4495
4496         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4497
4498         /* Update any VMCS fields that might have changed while L2 ran */
4499         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4500         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4501         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4502         if (vmx->nested.l1_tpr_threshold != -1)
4503                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4504
4505         if (kvm_has_tsc_control)
4506                 decache_tsc_multiplier(vmx);
4507
4508         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4509                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4510                 vmx_set_virtual_apic_mode(vcpu);
4511         }
4512
4513         /* Unpin physical memory we referred to in vmcs02 */
4514         if (vmx->nested.apic_access_page) {
4515                 kvm_release_page_clean(vmx->nested.apic_access_page);
4516                 vmx->nested.apic_access_page = NULL;
4517         }
4518         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4519         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4520         vmx->nested.pi_desc = NULL;
4521
4522         if (vmx->nested.reload_vmcs01_apic_access_page) {
4523                 vmx->nested.reload_vmcs01_apic_access_page = false;
4524                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4525         }
4526
4527         if ((vm_exit_reason != -1) &&
4528             (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4529                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4530
4531         /* in case we halted in L2 */
4532         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4533
4534         if (likely(!vmx->fail)) {
4535                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4536                     nested_exit_intr_ack_set(vcpu)) {
4537                         int irq = kvm_cpu_get_interrupt(vcpu);
4538                         WARN_ON(irq < 0);
4539                         vmcs12->vm_exit_intr_info = irq |
4540                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4541                 }
4542
4543                 if (vm_exit_reason != -1)
4544                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4545                                                        vmcs12->exit_qualification,
4546                                                        vmcs12->idt_vectoring_info_field,
4547                                                        vmcs12->vm_exit_intr_info,
4548                                                        vmcs12->vm_exit_intr_error_code,
4549                                                        KVM_ISA_VMX);
4550
4551                 load_vmcs12_host_state(vcpu, vmcs12);
4552
4553                 return;
4554         }
4555
4556         /*
4557          * After an early L2 VM-entry failure, we're now back
4558          * in L1 which thinks it just finished a VMLAUNCH or
4559          * VMRESUME instruction, so we need to set the failure
4560          * flag and the VM-instruction error field of the VMCS
4561          * accordingly, and skip the emulated instruction.
4562          */
4563         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4564
4565         /*
4566          * Restore L1's host state to KVM's software model.  We're here
4567          * because a consistency check was caught by hardware, which
4568          * means some amount of guest state has been propagated to KVM's
4569          * model and needs to be unwound to the host's state.
4570          */
4571         nested_vmx_restore_host_state(vcpu);
4572
4573         vmx->fail = 0;
4574 }
4575
4576 /*
4577  * Decode the memory-address operand of a vmx instruction, as recorded on an
4578  * exit caused by such an instruction (run by a guest hypervisor).
4579  * On success, returns 0. When the operand is invalid, returns 1 and throws
4580  * #UD, #GP, or #SS.
4581  */
4582 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4583                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4584 {
4585         gva_t off;
4586         bool exn;
4587         struct kvm_segment s;
4588
4589         /*
4590          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4591          * Execution", on an exit, vmx_instruction_info holds most of the
4592          * addressing components of the operand. Only the displacement part
4593          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4594          * For how an actual address is calculated from all these components,
4595          * refer to Vol. 1, "Operand Addressing".
4596          */
4597         int  scaling = vmx_instruction_info & 3;
4598         int  addr_size = (vmx_instruction_info >> 7) & 7;
4599         bool is_reg = vmx_instruction_info & (1u << 10);
4600         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4601         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4602         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4603         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4604         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4605
4606         if (is_reg) {
4607                 kvm_queue_exception(vcpu, UD_VECTOR);
4608                 return 1;
4609         }
4610
4611         /* Addr = segment_base + offset */
4612         /* offset = base + [index * scale] + displacement */
4613         off = exit_qualification; /* holds the displacement */
4614         if (addr_size == 1)
4615                 off = (gva_t)sign_extend64(off, 31);
4616         else if (addr_size == 0)
4617                 off = (gva_t)sign_extend64(off, 15);
4618         if (base_is_valid)
4619                 off += kvm_register_read(vcpu, base_reg);
4620         if (index_is_valid)
4621                 off += kvm_register_read(vcpu, index_reg) << scaling;
4622         vmx_get_segment(vcpu, &s, seg_reg);
4623
4624         /*
4625          * The effective address, i.e. @off, of a memory operand is truncated
4626          * based on the address size of the instruction.  Note that this is
4627          * the *effective address*, i.e. the address prior to accounting for
4628          * the segment's base.
4629          */
4630         if (addr_size == 1) /* 32 bit */
4631                 off &= 0xffffffff;
4632         else if (addr_size == 0) /* 16 bit */
4633                 off &= 0xffff;
4634
4635         /* Checks for #GP/#SS exceptions. */
4636         exn = false;
4637         if (is_long_mode(vcpu)) {
4638                 /*
4639                  * The virtual/linear address is never truncated in 64-bit
4640                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4641                  * address when using FS/GS with a non-zero base.
4642                  */
4643                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4644                         *ret = s.base + off;
4645                 else
4646                         *ret = off;
4647
4648                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4649                  * non-canonical form. This is the only check on the memory
4650                  * destination for long mode!
4651                  */
4652                 exn = is_noncanonical_address(*ret, vcpu);
4653         } else {
4654                 /*
4655                  * When not in long mode, the virtual/linear address is
4656                  * unconditionally truncated to 32 bits regardless of the
4657                  * address size.
4658                  */
4659                 *ret = (s.base + off) & 0xffffffff;
4660
4661                 /* Protected mode: apply checks for segment validity in the
4662                  * following order:
4663                  * - segment type check (#GP(0) may be thrown)
4664                  * - usability check (#GP(0)/#SS(0))
4665                  * - limit check (#GP(0)/#SS(0))
4666                  */
4667                 if (wr)
4668                         /* #GP(0) if the destination operand is located in a
4669                          * read-only data segment or any code segment.
4670                          */
4671                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4672                 else
4673                         /* #GP(0) if the source operand is located in an
4674                          * execute-only code segment
4675                          */
4676                         exn = ((s.type & 0xa) == 8);
4677                 if (exn) {
4678                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4679                         return 1;
4680                 }
4681                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4682                  */
4683                 exn = (s.unusable != 0);
4684
4685                 /*
4686                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4687                  * outside the segment limit.  All CPUs that support VMX ignore
4688                  * limit checks for flat segments, i.e. segments with base==0,
4689                  * limit==0xffffffff and of type expand-up data or code.
4690                  */
4691                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4692                      ((s.type & 8) || !(s.type & 4))))
4693                         exn = exn || ((u64)off + len - 1 > s.limit);
4694         }
4695         if (exn) {
4696                 kvm_queue_exception_e(vcpu,
4697                                       seg_reg == VCPU_SREG_SS ?
4698                                                 SS_VECTOR : GP_VECTOR,
4699                                       0);
4700                 return 1;
4701         }
4702
4703         return 0;
4704 }
4705
4706 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4707 {
4708         struct vcpu_vmx *vmx;
4709
4710         if (!nested_vmx_allowed(vcpu))
4711                 return;
4712
4713         vmx = to_vmx(vcpu);
4714         if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4715                 vmx->nested.msrs.entry_ctls_high |=
4716                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4717                 vmx->nested.msrs.exit_ctls_high |=
4718                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4719         } else {
4720                 vmx->nested.msrs.entry_ctls_high &=
4721                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4722                 vmx->nested.msrs.exit_ctls_high &=
4723                                 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4724         }
4725 }
4726
4727 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4728                                 int *ret)
4729 {
4730         gva_t gva;
4731         struct x86_exception e;
4732         int r;
4733
4734         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4735                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4736                                 sizeof(*vmpointer), &gva)) {
4737                 *ret = 1;
4738                 return -EINVAL;
4739         }
4740
4741         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4742         if (r != X86EMUL_CONTINUE) {
4743                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4744                 return -EINVAL;
4745         }
4746
4747         return 0;
4748 }
4749
4750 /*
4751  * Allocate a shadow VMCS and associate it with the currently loaded
4752  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4753  * VMCS is also VMCLEARed, so that it is ready for use.
4754  */
4755 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4756 {
4757         struct vcpu_vmx *vmx = to_vmx(vcpu);
4758         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4759
4760         /*
4761          * We should allocate a shadow vmcs for vmcs01 only when L1
4762          * executes VMXON and free it when L1 executes VMXOFF.
4763          * As it is invalid to execute VMXON twice, we shouldn't reach
4764          * here when vmcs01 already have an allocated shadow vmcs.
4765          */
4766         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4767
4768         if (!loaded_vmcs->shadow_vmcs) {
4769                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4770                 if (loaded_vmcs->shadow_vmcs)
4771                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4772         }
4773         return loaded_vmcs->shadow_vmcs;
4774 }
4775
4776 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4777 {
4778         struct vcpu_vmx *vmx = to_vmx(vcpu);
4779         int r;
4780
4781         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4782         if (r < 0)
4783                 goto out_vmcs02;
4784
4785         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4786         if (!vmx->nested.cached_vmcs12)
4787                 goto out_cached_vmcs12;
4788
4789         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4790         if (!vmx->nested.cached_shadow_vmcs12)
4791                 goto out_cached_shadow_vmcs12;
4792
4793         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4794                 goto out_shadow_vmcs;
4795
4796         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4797                      HRTIMER_MODE_ABS_PINNED);
4798         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4799
4800         vmx->nested.vpid02 = allocate_vpid();
4801
4802         vmx->nested.vmcs02_initialized = false;
4803         vmx->nested.vmxon = true;
4804
4805         if (vmx_pt_mode_is_host_guest()) {
4806                 vmx->pt_desc.guest.ctl = 0;
4807                 pt_update_intercept_for_msr(vcpu);
4808         }
4809
4810         return 0;
4811
4812 out_shadow_vmcs:
4813         kfree(vmx->nested.cached_shadow_vmcs12);
4814
4815 out_cached_shadow_vmcs12:
4816         kfree(vmx->nested.cached_vmcs12);
4817
4818 out_cached_vmcs12:
4819         free_loaded_vmcs(&vmx->nested.vmcs02);
4820
4821 out_vmcs02:
4822         return -ENOMEM;
4823 }
4824
4825 /*
4826  * Emulate the VMXON instruction.
4827  * Currently, we just remember that VMX is active, and do not save or even
4828  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4829  * do not currently need to store anything in that guest-allocated memory
4830  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4831  * argument is different from the VMXON pointer (which the spec says they do).
4832  */
4833 static int handle_vmon(struct kvm_vcpu *vcpu)
4834 {
4835         int ret;
4836         gpa_t vmptr;
4837         uint32_t revision;
4838         struct vcpu_vmx *vmx = to_vmx(vcpu);
4839         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4840                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4841
4842         /*
4843          * The Intel VMX Instruction Reference lists a bunch of bits that are
4844          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4845          * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4846          * Otherwise, we should fail with #UD.  But most faulting conditions
4847          * have already been checked by hardware, prior to the VM-exit for
4848          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4849          * that bit set to 1 in non-root mode.
4850          */
4851         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4852                 kvm_queue_exception(vcpu, UD_VECTOR);
4853                 return 1;
4854         }
4855
4856         /* CPL=0 must be checked manually. */
4857         if (vmx_get_cpl(vcpu)) {
4858                 kvm_inject_gp(vcpu, 0);
4859                 return 1;
4860         }
4861
4862         if (vmx->nested.vmxon)
4863                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4864
4865         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4866                         != VMXON_NEEDED_FEATURES) {
4867                 kvm_inject_gp(vcpu, 0);
4868                 return 1;
4869         }
4870
4871         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4872                 return ret;
4873
4874         /*
4875          * SDM 3: 24.11.5
4876          * The first 4 bytes of VMXON region contain the supported
4877          * VMCS revision identifier
4878          *
4879          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4880          * which replaces physical address width with 32
4881          */
4882         if (!page_address_valid(vcpu, vmptr))
4883                 return nested_vmx_failInvalid(vcpu);
4884
4885         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4886             revision != VMCS12_REVISION)
4887                 return nested_vmx_failInvalid(vcpu);
4888
4889         vmx->nested.vmxon_ptr = vmptr;
4890         ret = enter_vmx_operation(vcpu);
4891         if (ret)
4892                 return ret;
4893
4894         return nested_vmx_succeed(vcpu);
4895 }
4896
4897 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4898 {
4899         struct vcpu_vmx *vmx = to_vmx(vcpu);
4900
4901         if (vmx->nested.current_vmptr == -1ull)
4902                 return;
4903
4904         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4905
4906         if (enable_shadow_vmcs) {
4907                 /* copy to memory all shadowed fields in case
4908                    they were modified */
4909                 copy_shadow_to_vmcs12(vmx);
4910                 vmx_disable_shadow_vmcs(vmx);
4911         }
4912         vmx->nested.posted_intr_nv = -1;
4913
4914         /* Flush VMCS12 to guest memory */
4915         kvm_vcpu_write_guest_page(vcpu,
4916                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4917                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4918
4919         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4920
4921         vmx->nested.current_vmptr = -1ull;
4922 }
4923
4924 /* Emulate the VMXOFF instruction */
4925 static int handle_vmoff(struct kvm_vcpu *vcpu)
4926 {
4927         if (!nested_vmx_check_permission(vcpu))
4928                 return 1;
4929
4930         free_nested(vcpu);
4931
4932         /* Process a latched INIT during time CPU was in VMX operation */
4933         kvm_make_request(KVM_REQ_EVENT, vcpu);
4934
4935         return nested_vmx_succeed(vcpu);
4936 }
4937
4938 /* Emulate the VMCLEAR instruction */
4939 static int handle_vmclear(struct kvm_vcpu *vcpu)
4940 {
4941         struct vcpu_vmx *vmx = to_vmx(vcpu);
4942         u32 zero = 0;
4943         gpa_t vmptr;
4944         u64 evmcs_gpa;
4945         int r;
4946
4947         if (!nested_vmx_check_permission(vcpu))
4948                 return 1;
4949
4950         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
4951                 return r;
4952
4953         if (!page_address_valid(vcpu, vmptr))
4954                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
4955
4956         if (vmptr == vmx->nested.vmxon_ptr)
4957                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
4958
4959         /*
4960          * When Enlightened VMEntry is enabled on the calling CPU we treat
4961          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4962          * way to distinguish it from VMCS12) and we must not corrupt it by
4963          * writing to the non-existent 'launch_state' field. The area doesn't
4964          * have to be the currently active EVMCS on the calling CPU and there's
4965          * nothing KVM has to do to transition it from 'active' to 'non-active'
4966          * state. It is possible that the area will stay mapped as
4967          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4968          */
4969         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4970                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4971                 if (vmptr == vmx->nested.current_vmptr)
4972                         nested_release_vmcs12(vcpu);
4973
4974                 kvm_vcpu_write_guest(vcpu,
4975                                      vmptr + offsetof(struct vmcs12,
4976                                                       launch_state),
4977                                      &zero, sizeof(zero));
4978         }
4979
4980         return nested_vmx_succeed(vcpu);
4981 }
4982
4983 /* Emulate the VMLAUNCH instruction */
4984 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4985 {
4986         return nested_vmx_run(vcpu, true);
4987 }
4988
4989 /* Emulate the VMRESUME instruction */
4990 static int handle_vmresume(struct kvm_vcpu *vcpu)
4991 {
4992
4993         return nested_vmx_run(vcpu, false);
4994 }
4995
4996 static int handle_vmread(struct kvm_vcpu *vcpu)
4997 {
4998         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4999                                                     : get_vmcs12(vcpu);
5000         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5001         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5002         struct vcpu_vmx *vmx = to_vmx(vcpu);
5003         struct x86_exception e;
5004         unsigned long field;
5005         u64 value;
5006         gva_t gva = 0;
5007         short offset;
5008         int len, r;
5009
5010         if (!nested_vmx_check_permission(vcpu))
5011                 return 1;
5012
5013         /*
5014          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5015          * any VMREAD sets the ALU flags for VMfailInvalid.
5016          */
5017         if (vmx->nested.current_vmptr == -1ull ||
5018             (is_guest_mode(vcpu) &&
5019              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5020                 return nested_vmx_failInvalid(vcpu);
5021
5022         /* Decode instruction info and find the field to read */
5023         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5024
5025         offset = vmcs_field_to_offset(field);
5026         if (offset < 0)
5027                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5028
5029         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5030                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5031
5032         /* Read the field, zero-extended to a u64 value */
5033         value = vmcs12_read_any(vmcs12, field, offset);
5034
5035         /*
5036          * Now copy part of this value to register or memory, as requested.
5037          * Note that the number of bits actually copied is 32 or 64 depending
5038          * on the guest's mode (32 or 64 bit), not on the given field's length.
5039          */
5040         if (instr_info & BIT(10)) {
5041                 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
5042         } else {
5043                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5044                 if (get_vmx_mem_address(vcpu, exit_qualification,
5045                                         instr_info, true, len, &gva))
5046                         return 1;
5047                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5048                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5049                 if (r != X86EMUL_CONTINUE)
5050                         return kvm_handle_memory_failure(vcpu, r, &e);
5051         }
5052
5053         return nested_vmx_succeed(vcpu);
5054 }
5055
5056 static bool is_shadow_field_rw(unsigned long field)
5057 {
5058         switch (field) {
5059 #define SHADOW_FIELD_RW(x, y) case x:
5060 #include "vmcs_shadow_fields.h"
5061                 return true;
5062         default:
5063                 break;
5064         }
5065         return false;
5066 }
5067
5068 static bool is_shadow_field_ro(unsigned long field)
5069 {
5070         switch (field) {
5071 #define SHADOW_FIELD_RO(x, y) case x:
5072 #include "vmcs_shadow_fields.h"
5073                 return true;
5074         default:
5075                 break;
5076         }
5077         return false;
5078 }
5079
5080 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5081 {
5082         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5083                                                     : get_vmcs12(vcpu);
5084         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5085         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5086         struct vcpu_vmx *vmx = to_vmx(vcpu);
5087         struct x86_exception e;
5088         unsigned long field;
5089         short offset;
5090         gva_t gva;
5091         int len, r;
5092
5093         /*
5094          * The value to write might be 32 or 64 bits, depending on L1's long
5095          * mode, and eventually we need to write that into a field of several
5096          * possible lengths. The code below first zero-extends the value to 64
5097          * bit (value), and then copies only the appropriate number of
5098          * bits into the vmcs12 field.
5099          */
5100         u64 value = 0;
5101
5102         if (!nested_vmx_check_permission(vcpu))
5103                 return 1;
5104
5105         /*
5106          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5107          * any VMWRITE sets the ALU flags for VMfailInvalid.
5108          */
5109         if (vmx->nested.current_vmptr == -1ull ||
5110             (is_guest_mode(vcpu) &&
5111              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5112                 return nested_vmx_failInvalid(vcpu);
5113
5114         if (instr_info & BIT(10))
5115                 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
5116         else {
5117                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5118                 if (get_vmx_mem_address(vcpu, exit_qualification,
5119                                         instr_info, false, len, &gva))
5120                         return 1;
5121                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5122                 if (r != X86EMUL_CONTINUE)
5123                         return kvm_handle_memory_failure(vcpu, r, &e);
5124         }
5125
5126         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5127
5128         offset = vmcs_field_to_offset(field);
5129         if (offset < 0)
5130                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5131
5132         /*
5133          * If the vCPU supports "VMWRITE to any supported field in the
5134          * VMCS," then the "read-only" fields are actually read/write.
5135          */
5136         if (vmcs_field_readonly(field) &&
5137             !nested_cpu_has_vmwrite_any_field(vcpu))
5138                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5139
5140         /*
5141          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5142          * vmcs12, else we may crush a field or consume a stale value.
5143          */
5144         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5145                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5146
5147         /*
5148          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5149          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5150          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5151          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5152          * from L1 will return a different value than VMREAD from L2 (L1 sees
5153          * the stripped down value, L2 sees the full value as stored by KVM).
5154          */
5155         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5156                 value &= 0x1f0ff;
5157
5158         vmcs12_write_any(vmcs12, field, offset, value);
5159
5160         /*
5161          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5162          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5163          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5164          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5165          */
5166         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5167                 /*
5168                  * L1 can read these fields without exiting, ensure the
5169                  * shadow VMCS is up-to-date.
5170                  */
5171                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5172                         preempt_disable();
5173                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5174
5175                         __vmcs_writel(field, value);
5176
5177                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5178                         vmcs_load(vmx->loaded_vmcs->vmcs);
5179                         preempt_enable();
5180                 }
5181                 vmx->nested.dirty_vmcs12 = true;
5182         }
5183
5184         return nested_vmx_succeed(vcpu);
5185 }
5186
5187 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5188 {
5189         vmx->nested.current_vmptr = vmptr;
5190         if (enable_shadow_vmcs) {
5191                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5192                 vmcs_write64(VMCS_LINK_POINTER,
5193                              __pa(vmx->vmcs01.shadow_vmcs));
5194                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5195         }
5196         vmx->nested.dirty_vmcs12 = true;
5197 }
5198
5199 /* Emulate the VMPTRLD instruction */
5200 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5201 {
5202         struct vcpu_vmx *vmx = to_vmx(vcpu);
5203         gpa_t vmptr;
5204         int r;
5205
5206         if (!nested_vmx_check_permission(vcpu))
5207                 return 1;
5208
5209         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5210                 return r;
5211
5212         if (!page_address_valid(vcpu, vmptr))
5213                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5214
5215         if (vmptr == vmx->nested.vmxon_ptr)
5216                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5217
5218         /* Forbid normal VMPTRLD if Enlightened version was used */
5219         if (vmx->nested.hv_evmcs)
5220                 return 1;
5221
5222         if (vmx->nested.current_vmptr != vmptr) {
5223                 struct kvm_host_map map;
5224                 struct vmcs12 *new_vmcs12;
5225
5226                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5227                         /*
5228                          * Reads from an unbacked page return all 1s,
5229                          * which means that the 32 bits located at the
5230                          * given physical address won't match the required
5231                          * VMCS12_REVISION identifier.
5232                          */
5233                         return nested_vmx_fail(vcpu,
5234                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5235                 }
5236
5237                 new_vmcs12 = map.hva;
5238
5239                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5240                     (new_vmcs12->hdr.shadow_vmcs &&
5241                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5242                         kvm_vcpu_unmap(vcpu, &map, false);
5243                         return nested_vmx_fail(vcpu,
5244                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5245                 }
5246
5247                 nested_release_vmcs12(vcpu);
5248
5249                 /*
5250                  * Load VMCS12 from guest memory since it is not already
5251                  * cached.
5252                  */
5253                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5254                 kvm_vcpu_unmap(vcpu, &map, false);
5255
5256                 set_current_vmptr(vmx, vmptr);
5257         }
5258
5259         return nested_vmx_succeed(vcpu);
5260 }
5261
5262 /* Emulate the VMPTRST instruction */
5263 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5264 {
5265         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5266         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5267         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5268         struct x86_exception e;
5269         gva_t gva;
5270         int r;
5271
5272         if (!nested_vmx_check_permission(vcpu))
5273                 return 1;
5274
5275         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5276                 return 1;
5277
5278         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5279                                 true, sizeof(gpa_t), &gva))
5280                 return 1;
5281         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5282         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5283                                         sizeof(gpa_t), &e);
5284         if (r != X86EMUL_CONTINUE)
5285                 return kvm_handle_memory_failure(vcpu, r, &e);
5286
5287         return nested_vmx_succeed(vcpu);
5288 }
5289
5290 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
5291
5292 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5293 {
5294         return VALID_PAGE(root_hpa) &&
5295                 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5296 }
5297
5298 /* Emulate the INVEPT instruction */
5299 static int handle_invept(struct kvm_vcpu *vcpu)
5300 {
5301         struct vcpu_vmx *vmx = to_vmx(vcpu);
5302         u32 vmx_instruction_info, types;
5303         unsigned long type, roots_to_free;
5304         struct kvm_mmu *mmu;
5305         gva_t gva;
5306         struct x86_exception e;
5307         struct {
5308                 u64 eptp, gpa;
5309         } operand;
5310         int i, r;
5311
5312         if (!(vmx->nested.msrs.secondary_ctls_high &
5313               SECONDARY_EXEC_ENABLE_EPT) ||
5314             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5315                 kvm_queue_exception(vcpu, UD_VECTOR);
5316                 return 1;
5317         }
5318
5319         if (!nested_vmx_check_permission(vcpu))
5320                 return 1;
5321
5322         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5323         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5324
5325         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5326
5327         if (type >= 32 || !(types & (1 << type)))
5328                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5329
5330         /* According to the Intel VMX instruction reference, the memory
5331          * operand is read even if it isn't needed (e.g., for type==global)
5332          */
5333         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5334                         vmx_instruction_info, false, sizeof(operand), &gva))
5335                 return 1;
5336         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5337         if (r != X86EMUL_CONTINUE)
5338                 return kvm_handle_memory_failure(vcpu, r, &e);
5339
5340         /*
5341          * Nested EPT roots are always held through guest_mmu,
5342          * not root_mmu.
5343          */
5344         mmu = &vcpu->arch.guest_mmu;
5345
5346         switch (type) {
5347         case VMX_EPT_EXTENT_CONTEXT:
5348                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5349                         return nested_vmx_fail(vcpu,
5350                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5351
5352                 roots_to_free = 0;
5353                 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5354                                             operand.eptp))
5355                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5356
5357                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5358                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5359                                                     mmu->prev_roots[i].pgd,
5360                                                     operand.eptp))
5361                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5362                 }
5363                 break;
5364         case VMX_EPT_EXTENT_GLOBAL:
5365                 roots_to_free = KVM_MMU_ROOTS_ALL;
5366                 break;
5367         default:
5368                 BUG();
5369                 break;
5370         }
5371
5372         if (roots_to_free)
5373                 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5374
5375         return nested_vmx_succeed(vcpu);
5376 }
5377
5378 static int handle_invvpid(struct kvm_vcpu *vcpu)
5379 {
5380         struct vcpu_vmx *vmx = to_vmx(vcpu);
5381         u32 vmx_instruction_info;
5382         unsigned long type, types;
5383         gva_t gva;
5384         struct x86_exception e;
5385         struct {
5386                 u64 vpid;
5387                 u64 gla;
5388         } operand;
5389         u16 vpid02;
5390         int r;
5391
5392         if (!(vmx->nested.msrs.secondary_ctls_high &
5393               SECONDARY_EXEC_ENABLE_VPID) ||
5394                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5395                 kvm_queue_exception(vcpu, UD_VECTOR);
5396                 return 1;
5397         }
5398
5399         if (!nested_vmx_check_permission(vcpu))
5400                 return 1;
5401
5402         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5403         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5404
5405         types = (vmx->nested.msrs.vpid_caps &
5406                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5407
5408         if (type >= 32 || !(types & (1 << type)))
5409                 return nested_vmx_fail(vcpu,
5410                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5411
5412         /* according to the intel vmx instruction reference, the memory
5413          * operand is read even if it isn't needed (e.g., for type==global)
5414          */
5415         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5416                         vmx_instruction_info, false, sizeof(operand), &gva))
5417                 return 1;
5418         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5419         if (r != X86EMUL_CONTINUE)
5420                 return kvm_handle_memory_failure(vcpu, r, &e);
5421
5422         if (operand.vpid >> 16)
5423                 return nested_vmx_fail(vcpu,
5424                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5425
5426         vpid02 = nested_get_vpid02(vcpu);
5427         switch (type) {
5428         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5429                 if (!operand.vpid ||
5430                     is_noncanonical_address(operand.gla, vcpu))
5431                         return nested_vmx_fail(vcpu,
5432                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5433                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5434                 break;
5435         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5436         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5437                 if (!operand.vpid)
5438                         return nested_vmx_fail(vcpu,
5439                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5440                 vpid_sync_context(vpid02);
5441                 break;
5442         case VMX_VPID_EXTENT_ALL_CONTEXT:
5443                 vpid_sync_context(vpid02);
5444                 break;
5445         default:
5446                 WARN_ON_ONCE(1);
5447                 return kvm_skip_emulated_instruction(vcpu);
5448         }
5449
5450         /*
5451          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5452          * linear mappings for L2 (tagged with L2's VPID).  Free all roots as
5453          * VPIDs are not tracked in the MMU role.
5454          *
5455          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5456          * an MMU when EPT is disabled.
5457          *
5458          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5459          */
5460         if (!enable_ept)
5461                 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5462                                    KVM_MMU_ROOTS_ALL);
5463
5464         return nested_vmx_succeed(vcpu);
5465 }
5466
5467 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5468                                      struct vmcs12 *vmcs12)
5469 {
5470         u32 index = kvm_rcx_read(vcpu);
5471         u64 new_eptp;
5472         bool accessed_dirty;
5473         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5474
5475         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5476             !nested_cpu_has_ept(vmcs12))
5477                 return 1;
5478
5479         if (index >= VMFUNC_EPTP_ENTRIES)
5480                 return 1;
5481
5482
5483         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5484                                      &new_eptp, index * 8, 8))
5485                 return 1;
5486
5487         accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
5488
5489         /*
5490          * If the (L2) guest does a vmfunc to the currently
5491          * active ept pointer, we don't have to do anything else
5492          */
5493         if (vmcs12->ept_pointer != new_eptp) {
5494                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5495                         return 1;
5496
5497                 kvm_mmu_unload(vcpu);
5498                 mmu->ept_ad = accessed_dirty;
5499                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5500                 vmcs12->ept_pointer = new_eptp;
5501                 /*
5502                  * TODO: Check what's the correct approach in case
5503                  * mmu reload fails. Currently, we just let the next
5504                  * reload potentially fail
5505                  */
5506                 kvm_mmu_reload(vcpu);
5507         }
5508
5509         return 0;
5510 }
5511
5512 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5513 {
5514         struct vcpu_vmx *vmx = to_vmx(vcpu);
5515         struct vmcs12 *vmcs12;
5516         u32 function = kvm_rax_read(vcpu);
5517
5518         /*
5519          * VMFUNC is only supported for nested guests, but we always enable the
5520          * secondary control for simplicity; for non-nested mode, fake that we
5521          * didn't by injecting #UD.
5522          */
5523         if (!is_guest_mode(vcpu)) {
5524                 kvm_queue_exception(vcpu, UD_VECTOR);
5525                 return 1;
5526         }
5527
5528         vmcs12 = get_vmcs12(vcpu);
5529         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5530                 goto fail;
5531
5532         switch (function) {
5533         case 0:
5534                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5535                         goto fail;
5536                 break;
5537         default:
5538                 goto fail;
5539         }
5540         return kvm_skip_emulated_instruction(vcpu);
5541
5542 fail:
5543         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5544                           vmx_get_intr_info(vcpu),
5545                           vmx_get_exit_qual(vcpu));
5546         return 1;
5547 }
5548
5549 /*
5550  * Return true if an IO instruction with the specified port and size should cause
5551  * a VM-exit into L1.
5552  */
5553 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5554                                  int size)
5555 {
5556         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5557         gpa_t bitmap, last_bitmap;
5558         u8 b;
5559
5560         last_bitmap = (gpa_t)-1;
5561         b = -1;
5562
5563         while (size > 0) {
5564                 if (port < 0x8000)
5565                         bitmap = vmcs12->io_bitmap_a;
5566                 else if (port < 0x10000)
5567                         bitmap = vmcs12->io_bitmap_b;
5568                 else
5569                         return true;
5570                 bitmap += (port & 0x7fff) / 8;
5571
5572                 if (last_bitmap != bitmap)
5573                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5574                                 return true;
5575                 if (b & (1 << (port & 7)))
5576                         return true;
5577
5578                 port++;
5579                 size--;
5580                 last_bitmap = bitmap;
5581         }
5582
5583         return false;
5584 }
5585
5586 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5587                                        struct vmcs12 *vmcs12)
5588 {
5589         unsigned long exit_qualification;
5590         unsigned short port;
5591         int size;
5592
5593         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5594                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5595
5596         exit_qualification = vmx_get_exit_qual(vcpu);
5597
5598         port = exit_qualification >> 16;
5599         size = (exit_qualification & 7) + 1;
5600
5601         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5602 }
5603
5604 /*
5605  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5606  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5607  * disinterest in the current event (read or write a specific MSR) by using an
5608  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5609  */
5610 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5611         struct vmcs12 *vmcs12, u32 exit_reason)
5612 {
5613         u32 msr_index = kvm_rcx_read(vcpu);
5614         gpa_t bitmap;
5615
5616         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5617                 return true;
5618
5619         /*
5620          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5621          * for the four combinations of read/write and low/high MSR numbers.
5622          * First we need to figure out which of the four to use:
5623          */
5624         bitmap = vmcs12->msr_bitmap;
5625         if (exit_reason == EXIT_REASON_MSR_WRITE)
5626                 bitmap += 2048;
5627         if (msr_index >= 0xc0000000) {
5628                 msr_index -= 0xc0000000;
5629                 bitmap += 1024;
5630         }
5631
5632         /* Then read the msr_index'th bit from this bitmap: */
5633         if (msr_index < 1024*8) {
5634                 unsigned char b;
5635                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5636                         return true;
5637                 return 1 & (b >> (msr_index & 7));
5638         } else
5639                 return true; /* let L1 handle the wrong parameter */
5640 }
5641
5642 /*
5643  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5644  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5645  * intercept (via guest_host_mask etc.) the current event.
5646  */
5647 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5648         struct vmcs12 *vmcs12)
5649 {
5650         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5651         int cr = exit_qualification & 15;
5652         int reg;
5653         unsigned long val;
5654
5655         switch ((exit_qualification >> 4) & 3) {
5656         case 0: /* mov to cr */
5657                 reg = (exit_qualification >> 8) & 15;
5658                 val = kvm_register_readl(vcpu, reg);
5659                 switch (cr) {
5660                 case 0:
5661                         if (vmcs12->cr0_guest_host_mask &
5662                             (val ^ vmcs12->cr0_read_shadow))
5663                                 return true;
5664                         break;
5665                 case 3:
5666                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5667                                 return true;
5668                         break;
5669                 case 4:
5670                         if (vmcs12->cr4_guest_host_mask &
5671                             (vmcs12->cr4_read_shadow ^ val))
5672                                 return true;
5673                         break;
5674                 case 8:
5675                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5676                                 return true;
5677                         break;
5678                 }
5679                 break;
5680         case 2: /* clts */
5681                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5682                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5683                         return true;
5684                 break;
5685         case 1: /* mov from cr */
5686                 switch (cr) {
5687                 case 3:
5688                         if (vmcs12->cpu_based_vm_exec_control &
5689                             CPU_BASED_CR3_STORE_EXITING)
5690                                 return true;
5691                         break;
5692                 case 8:
5693                         if (vmcs12->cpu_based_vm_exec_control &
5694                             CPU_BASED_CR8_STORE_EXITING)
5695                                 return true;
5696                         break;
5697                 }
5698                 break;
5699         case 3: /* lmsw */
5700                 /*
5701                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5702                  * cr0. Other attempted changes are ignored, with no exit.
5703                  */
5704                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5705                 if (vmcs12->cr0_guest_host_mask & 0xe &
5706                     (val ^ vmcs12->cr0_read_shadow))
5707                         return true;
5708                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5709                     !(vmcs12->cr0_read_shadow & 0x1) &&
5710                     (val & 0x1))
5711                         return true;
5712                 break;
5713         }
5714         return false;
5715 }
5716
5717 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5718         struct vmcs12 *vmcs12, gpa_t bitmap)
5719 {
5720         u32 vmx_instruction_info;
5721         unsigned long field;
5722         u8 b;
5723
5724         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5725                 return true;
5726
5727         /* Decode instruction info and find the field to access */
5728         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5729         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5730
5731         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5732         if (field >> 15)
5733                 return true;
5734
5735         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5736                 return true;
5737
5738         return 1 & (b >> (field & 7));
5739 }
5740
5741 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5742 {
5743         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5744
5745         if (nested_cpu_has_mtf(vmcs12))
5746                 return true;
5747
5748         /*
5749          * An MTF VM-exit may be injected into the guest by setting the
5750          * interruption-type to 7 (other event) and the vector field to 0. Such
5751          * is the case regardless of the 'monitor trap flag' VM-execution
5752          * control.
5753          */
5754         return entry_intr_info == (INTR_INFO_VALID_MASK
5755                                    | INTR_TYPE_OTHER_EVENT);
5756 }
5757
5758 /*
5759  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5760  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5761  */
5762 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5763 {
5764         u32 intr_info;
5765
5766         switch ((u16)exit_reason) {
5767         case EXIT_REASON_EXCEPTION_NMI:
5768                 intr_info = vmx_get_intr_info(vcpu);
5769                 if (is_nmi(intr_info))
5770                         return true;
5771                 else if (is_page_fault(intr_info))
5772                         return vcpu->arch.apf.host_apf_flags || !enable_ept;
5773                 else if (is_debug(intr_info) &&
5774                          vcpu->guest_debug &
5775                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5776                         return true;
5777                 else if (is_breakpoint(intr_info) &&
5778                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5779                         return true;
5780                 return false;
5781         case EXIT_REASON_EXTERNAL_INTERRUPT:
5782                 return true;
5783         case EXIT_REASON_MCE_DURING_VMENTRY:
5784                 return true;
5785         case EXIT_REASON_EPT_VIOLATION:
5786                 /*
5787                  * L0 always deals with the EPT violation. If nested EPT is
5788                  * used, and the nested mmu code discovers that the address is
5789                  * missing in the guest EPT table (EPT12), the EPT violation
5790                  * will be injected with nested_ept_inject_page_fault()
5791                  */
5792                 return true;
5793         case EXIT_REASON_EPT_MISCONFIG:
5794                 /*
5795                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5796                  * table (shadow on EPT) or a merged EPT table that L0 built
5797                  * (EPT on EPT). So any problems with the structure of the
5798                  * table is L0's fault.
5799                  */
5800                 return true;
5801         case EXIT_REASON_PREEMPTION_TIMER:
5802                 return true;
5803         case EXIT_REASON_PML_FULL:
5804                 /* We emulate PML support to L1. */
5805                 return true;
5806         case EXIT_REASON_VMFUNC:
5807                 /* VM functions are emulated through L2->L0 vmexits. */
5808                 return true;
5809         case EXIT_REASON_ENCLS:
5810                 /* SGX is never exposed to L1 */
5811                 return true;
5812         default:
5813                 break;
5814         }
5815         return false;
5816 }
5817
5818 /*
5819  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5820  * is_guest_mode (L2).
5821  */
5822 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5823 {
5824         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5825         u32 intr_info;
5826
5827         switch ((u16)exit_reason) {
5828         case EXIT_REASON_EXCEPTION_NMI:
5829                 intr_info = vmx_get_intr_info(vcpu);
5830                 if (is_nmi(intr_info))
5831                         return true;
5832                 else if (is_page_fault(intr_info))
5833                         return true;
5834                 return vmcs12->exception_bitmap &
5835                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5836         case EXIT_REASON_EXTERNAL_INTERRUPT:
5837                 return nested_exit_on_intr(vcpu);
5838         case EXIT_REASON_TRIPLE_FAULT:
5839                 return true;
5840         case EXIT_REASON_INTERRUPT_WINDOW:
5841                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5842         case EXIT_REASON_NMI_WINDOW:
5843                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5844         case EXIT_REASON_TASK_SWITCH:
5845                 return true;
5846         case EXIT_REASON_CPUID:
5847                 return true;
5848         case EXIT_REASON_HLT:
5849                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5850         case EXIT_REASON_INVD:
5851                 return true;
5852         case EXIT_REASON_INVLPG:
5853                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5854         case EXIT_REASON_RDPMC:
5855                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5856         case EXIT_REASON_RDRAND:
5857                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5858         case EXIT_REASON_RDSEED:
5859                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5860         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5861                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5862         case EXIT_REASON_VMREAD:
5863                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5864                         vmcs12->vmread_bitmap);
5865         case EXIT_REASON_VMWRITE:
5866                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5867                         vmcs12->vmwrite_bitmap);
5868         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5869         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5870         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5871         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5872         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5873                 /*
5874                  * VMX instructions trap unconditionally. This allows L1 to
5875                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5876                  */
5877                 return true;
5878         case EXIT_REASON_CR_ACCESS:
5879                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5880         case EXIT_REASON_DR_ACCESS:
5881                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5882         case EXIT_REASON_IO_INSTRUCTION:
5883                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5884         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5885                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5886         case EXIT_REASON_MSR_READ:
5887         case EXIT_REASON_MSR_WRITE:
5888                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5889         case EXIT_REASON_INVALID_STATE:
5890                 return true;
5891         case EXIT_REASON_MWAIT_INSTRUCTION:
5892                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5893         case EXIT_REASON_MONITOR_TRAP_FLAG:
5894                 return nested_vmx_exit_handled_mtf(vmcs12);
5895         case EXIT_REASON_MONITOR_INSTRUCTION:
5896                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5897         case EXIT_REASON_PAUSE_INSTRUCTION:
5898                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5899                         nested_cpu_has2(vmcs12,
5900                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5901         case EXIT_REASON_MCE_DURING_VMENTRY:
5902                 return true;
5903         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5904                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5905         case EXIT_REASON_APIC_ACCESS:
5906         case EXIT_REASON_APIC_WRITE:
5907         case EXIT_REASON_EOI_INDUCED:
5908                 /*
5909                  * The controls for "virtualize APIC accesses," "APIC-
5910                  * register virtualization," and "virtual-interrupt
5911                  * delivery" only come from vmcs12.
5912                  */
5913                 return true;
5914         case EXIT_REASON_INVPCID:
5915                 return
5916                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5917                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5918         case EXIT_REASON_WBINVD:
5919                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5920         case EXIT_REASON_XSETBV:
5921                 return true;
5922         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5923                 /*
5924                  * This should never happen, since it is not possible to
5925                  * set XSS to a non-zero value---neither in L1 nor in L2.
5926                  * If if it were, XSS would have to be checked against
5927                  * the XSS exit bitmap in vmcs12.
5928                  */
5929                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5930         case EXIT_REASON_UMWAIT:
5931         case EXIT_REASON_TPAUSE:
5932                 return nested_cpu_has2(vmcs12,
5933                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5934         default:
5935                 return true;
5936         }
5937 }
5938
5939 /*
5940  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
5941  * reflected into L1.
5942  */
5943 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
5944 {
5945         struct vcpu_vmx *vmx = to_vmx(vcpu);
5946         u32 exit_reason = vmx->exit_reason;
5947         unsigned long exit_qual;
5948         u32 exit_intr_info;
5949
5950         WARN_ON_ONCE(vmx->nested.nested_run_pending);
5951
5952         /*
5953          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
5954          * has already loaded L2's state.
5955          */
5956         if (unlikely(vmx->fail)) {
5957                 trace_kvm_nested_vmenter_failed(
5958                         "hardware VM-instruction error: ",
5959                         vmcs_read32(VM_INSTRUCTION_ERROR));
5960                 exit_intr_info = 0;
5961                 exit_qual = 0;
5962                 goto reflect_vmexit;
5963         }
5964
5965         trace_kvm_nested_vmexit(exit_reason, vcpu, KVM_ISA_VMX);
5966
5967         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
5968         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
5969                 return false;
5970
5971         /* If L1 doesn't want the exit, handle it in L0. */
5972         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
5973                 return false;
5974
5975         /*
5976          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
5977          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
5978          * need to be synthesized by querying the in-kernel LAPIC, but external
5979          * interrupts are never reflected to L1 so it's a non-issue.
5980          */
5981         exit_intr_info = vmx_get_intr_info(vcpu);
5982         if (is_exception_with_error_code(exit_intr_info)) {
5983                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5984
5985                 vmcs12->vm_exit_intr_error_code =
5986                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5987         }
5988         exit_qual = vmx_get_exit_qual(vcpu);
5989
5990 reflect_vmexit:
5991         nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, exit_qual);
5992         return true;
5993 }
5994
5995 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5996                                 struct kvm_nested_state __user *user_kvm_nested_state,
5997                                 u32 user_data_size)
5998 {
5999         struct vcpu_vmx *vmx;
6000         struct vmcs12 *vmcs12;
6001         struct kvm_nested_state kvm_state = {
6002                 .flags = 0,
6003                 .format = KVM_STATE_NESTED_FORMAT_VMX,
6004                 .size = sizeof(kvm_state),
6005                 .hdr.vmx.flags = 0,
6006                 .hdr.vmx.vmxon_pa = -1ull,
6007                 .hdr.vmx.vmcs12_pa = -1ull,
6008                 .hdr.vmx.preemption_timer_deadline = 0,
6009         };
6010         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6011                 &user_kvm_nested_state->data.vmx[0];
6012
6013         if (!vcpu)
6014                 return kvm_state.size + sizeof(*user_vmx_nested_state);
6015
6016         vmx = to_vmx(vcpu);
6017         vmcs12 = get_vmcs12(vcpu);
6018
6019         if (nested_vmx_allowed(vcpu) &&
6020             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6021                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6022                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6023
6024                 if (vmx_has_valid_vmcs12(vcpu)) {
6025                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6026
6027                         if (vmx->nested.hv_evmcs)
6028                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6029
6030                         if (is_guest_mode(vcpu) &&
6031                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6032                             vmcs12->vmcs_link_pointer != -1ull)
6033                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6034                 }
6035
6036                 if (vmx->nested.smm.vmxon)
6037                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6038
6039                 if (vmx->nested.smm.guest_mode)
6040                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6041
6042                 if (is_guest_mode(vcpu)) {
6043                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6044
6045                         if (vmx->nested.nested_run_pending)
6046                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6047
6048                         if (vmx->nested.mtf_pending)
6049                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6050
6051                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6052                             vmx->nested.has_preemption_timer_deadline) {
6053                                 kvm_state.hdr.vmx.flags |=
6054                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6055                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6056                                         vmx->nested.preemption_timer_deadline;
6057                         }
6058                 }
6059         }
6060
6061         if (user_data_size < kvm_state.size)
6062                 goto out;
6063
6064         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6065                 return -EFAULT;
6066
6067         if (!vmx_has_valid_vmcs12(vcpu))
6068                 goto out;
6069
6070         /*
6071          * When running L2, the authoritative vmcs12 state is in the
6072          * vmcs02. When running L1, the authoritative vmcs12 state is
6073          * in the shadow or enlightened vmcs linked to vmcs01, unless
6074          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6075          * vmcs12 state is in the vmcs12 already.
6076          */
6077         if (is_guest_mode(vcpu)) {
6078                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6079                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6080         } else  {
6081                 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6082                 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6083                         if (vmx->nested.hv_evmcs)
6084                                 copy_enlightened_to_vmcs12(vmx);
6085                         else if (enable_shadow_vmcs)
6086                                 copy_shadow_to_vmcs12(vmx);
6087                 }
6088         }
6089
6090         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6091         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6092
6093         /*
6094          * Copy over the full allocated size of vmcs12 rather than just the size
6095          * of the struct.
6096          */
6097         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6098                 return -EFAULT;
6099
6100         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6101             vmcs12->vmcs_link_pointer != -1ull) {
6102                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6103                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6104                         return -EFAULT;
6105         }
6106 out:
6107         return kvm_state.size;
6108 }
6109
6110 /*
6111  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6112  */
6113 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6114 {
6115         if (is_guest_mode(vcpu)) {
6116                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6117                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6118         }
6119         free_nested(vcpu);
6120 }
6121
6122 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6123                                 struct kvm_nested_state __user *user_kvm_nested_state,
6124                                 struct kvm_nested_state *kvm_state)
6125 {
6126         struct vcpu_vmx *vmx = to_vmx(vcpu);
6127         struct vmcs12 *vmcs12;
6128         enum vm_entry_failure_code ignored;
6129         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6130                 &user_kvm_nested_state->data.vmx[0];
6131         int ret;
6132
6133         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6134                 return -EINVAL;
6135
6136         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6137                 if (kvm_state->hdr.vmx.smm.flags)
6138                         return -EINVAL;
6139
6140                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6141                         return -EINVAL;
6142
6143                 /*
6144                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6145                  * enable eVMCS capability on vCPU. However, since then
6146                  * code was changed such that flag signals vmcs12 should
6147                  * be copied into eVMCS in guest memory.
6148                  *
6149                  * To preserve backwards compatability, allow user
6150                  * to set this flag even when there is no VMXON region.
6151                  */
6152                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6153                         return -EINVAL;
6154         } else {
6155                 if (!nested_vmx_allowed(vcpu))
6156                         return -EINVAL;
6157
6158                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6159                         return -EINVAL;
6160         }
6161
6162         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6163             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6164                 return -EINVAL;
6165
6166         if (kvm_state->hdr.vmx.smm.flags &
6167             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6168                 return -EINVAL;
6169
6170         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6171                 return -EINVAL;
6172
6173         /*
6174          * SMM temporarily disables VMX, so we cannot be in guest mode,
6175          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6176          * must be zero.
6177          */
6178         if (is_smm(vcpu) ?
6179                 (kvm_state->flags &
6180                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6181                 : kvm_state->hdr.vmx.smm.flags)
6182                 return -EINVAL;
6183
6184         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6185             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6186                 return -EINVAL;
6187
6188         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6189                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6190                         return -EINVAL;
6191
6192         vmx_leave_nested(vcpu);
6193
6194         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6195                 return 0;
6196
6197         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6198         ret = enter_vmx_operation(vcpu);
6199         if (ret)
6200                 return ret;
6201
6202         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6203         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6204                 /* See vmx_has_valid_vmcs12.  */
6205                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6206                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6207                     (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6208                         return -EINVAL;
6209                 else
6210                         return 0;
6211         }
6212
6213         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6214                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6215                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6216                         return -EINVAL;
6217
6218                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6219         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6220                 /*
6221                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6222                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6223                  * restored yet. EVMCS will be mapped from
6224                  * nested_get_vmcs12_pages().
6225                  */
6226                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6227         } else {
6228                 return -EINVAL;
6229         }
6230
6231         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6232                 vmx->nested.smm.vmxon = true;
6233                 vmx->nested.vmxon = false;
6234
6235                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6236                         vmx->nested.smm.guest_mode = true;
6237         }
6238
6239         vmcs12 = get_vmcs12(vcpu);
6240         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6241                 return -EFAULT;
6242
6243         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6244                 return -EINVAL;
6245
6246         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6247                 return 0;
6248
6249         vmx->nested.nested_run_pending =
6250                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6251
6252         vmx->nested.mtf_pending =
6253                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6254
6255         ret = -EINVAL;
6256         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6257             vmcs12->vmcs_link_pointer != -1ull) {
6258                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6259
6260                 if (kvm_state->size <
6261                     sizeof(*kvm_state) +
6262                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6263                         goto error_guest_mode;
6264
6265                 if (copy_from_user(shadow_vmcs12,
6266                                    user_vmx_nested_state->shadow_vmcs12,
6267                                    sizeof(*shadow_vmcs12))) {
6268                         ret = -EFAULT;
6269                         goto error_guest_mode;
6270                 }
6271
6272                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6273                     !shadow_vmcs12->hdr.shadow_vmcs)
6274                         goto error_guest_mode;
6275         }
6276
6277         vmx->nested.has_preemption_timer_deadline = false;
6278         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6279                 vmx->nested.has_preemption_timer_deadline = true;
6280                 vmx->nested.preemption_timer_deadline =
6281                         kvm_state->hdr.vmx.preemption_timer_deadline;
6282         }
6283
6284         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6285             nested_vmx_check_host_state(vcpu, vmcs12) ||
6286             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6287                 goto error_guest_mode;
6288
6289         vmx->nested.dirty_vmcs12 = true;
6290         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6291         if (ret)
6292                 goto error_guest_mode;
6293
6294         return 0;
6295
6296 error_guest_mode:
6297         vmx->nested.nested_run_pending = 0;
6298         return ret;
6299 }
6300
6301 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6302 {
6303         if (enable_shadow_vmcs) {
6304                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6305                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6306         }
6307 }
6308
6309 /*
6310  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6311  * returned for the various VMX controls MSRs when nested VMX is enabled.
6312  * The same values should also be used to verify that vmcs12 control fields are
6313  * valid during nested entry from L1 to L2.
6314  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6315  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6316  * bit in the high half is on if the corresponding bit in the control field
6317  * may be on. See also vmx_control_verify().
6318  */
6319 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6320 {
6321         /*
6322          * Note that as a general rule, the high half of the MSRs (bits in
6323          * the control fields which may be 1) should be initialized by the
6324          * intersection of the underlying hardware's MSR (i.e., features which
6325          * can be supported) and the list of features we want to expose -
6326          * because they are known to be properly supported in our code.
6327          * Also, usually, the low half of the MSRs (bits which must be 1) can
6328          * be set to 0, meaning that L1 may turn off any of these bits. The
6329          * reason is that if one of these bits is necessary, it will appear
6330          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6331          * fields of vmcs01 and vmcs02, will turn these bits off - and
6332          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6333          * These rules have exceptions below.
6334          */
6335
6336         /* pin-based controls */
6337         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6338                 msrs->pinbased_ctls_low,
6339                 msrs->pinbased_ctls_high);
6340         msrs->pinbased_ctls_low |=
6341                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6342         msrs->pinbased_ctls_high &=
6343                 PIN_BASED_EXT_INTR_MASK |
6344                 PIN_BASED_NMI_EXITING |
6345                 PIN_BASED_VIRTUAL_NMIS |
6346                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6347         msrs->pinbased_ctls_high |=
6348                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6349                 PIN_BASED_VMX_PREEMPTION_TIMER;
6350
6351         /* exit controls */
6352         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6353                 msrs->exit_ctls_low,
6354                 msrs->exit_ctls_high);
6355         msrs->exit_ctls_low =
6356                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6357
6358         msrs->exit_ctls_high &=
6359 #ifdef CONFIG_X86_64
6360                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6361 #endif
6362                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6363                 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6364         msrs->exit_ctls_high |=
6365                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6366                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6367                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6368
6369         /* We support free control of debug control saving. */
6370         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6371
6372         /* entry controls */
6373         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6374                 msrs->entry_ctls_low,
6375                 msrs->entry_ctls_high);
6376         msrs->entry_ctls_low =
6377                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6378         msrs->entry_ctls_high &=
6379 #ifdef CONFIG_X86_64
6380                 VM_ENTRY_IA32E_MODE |
6381 #endif
6382                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6383                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6384         msrs->entry_ctls_high |=
6385                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6386
6387         /* We support free control of debug control loading. */
6388         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6389
6390         /* cpu-based controls */
6391         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6392                 msrs->procbased_ctls_low,
6393                 msrs->procbased_ctls_high);
6394         msrs->procbased_ctls_low =
6395                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6396         msrs->procbased_ctls_high &=
6397                 CPU_BASED_INTR_WINDOW_EXITING |
6398                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6399                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6400                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6401                 CPU_BASED_CR3_STORE_EXITING |
6402 #ifdef CONFIG_X86_64
6403                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6404 #endif
6405                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6406                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6407                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6408                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6409                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6410         /*
6411          * We can allow some features even when not supported by the
6412          * hardware. For example, L1 can specify an MSR bitmap - and we
6413          * can use it to avoid exits to L1 - even when L0 runs L2
6414          * without MSR bitmaps.
6415          */
6416         msrs->procbased_ctls_high |=
6417                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6418                 CPU_BASED_USE_MSR_BITMAPS;
6419
6420         /* We support free control of CR3 access interception. */
6421         msrs->procbased_ctls_low &=
6422                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6423
6424         /*
6425          * secondary cpu-based controls.  Do not include those that
6426          * depend on CPUID bits, they are added later by
6427          * vmx_vcpu_after_set_cpuid.
6428          */
6429         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6430                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6431                       msrs->secondary_ctls_low,
6432                       msrs->secondary_ctls_high);
6433
6434         msrs->secondary_ctls_low = 0;
6435         msrs->secondary_ctls_high &=
6436                 SECONDARY_EXEC_DESC |
6437                 SECONDARY_EXEC_ENABLE_RDTSCP |
6438                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6439                 SECONDARY_EXEC_WBINVD_EXITING |
6440                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6441                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6442                 SECONDARY_EXEC_RDRAND_EXITING |
6443                 SECONDARY_EXEC_ENABLE_INVPCID |
6444                 SECONDARY_EXEC_RDSEED_EXITING |
6445                 SECONDARY_EXEC_XSAVES;
6446
6447         /*
6448          * We can emulate "VMCS shadowing," even if the hardware
6449          * doesn't support it.
6450          */
6451         msrs->secondary_ctls_high |=
6452                 SECONDARY_EXEC_SHADOW_VMCS;
6453
6454         if (enable_ept) {
6455                 /* nested EPT: emulate EPT also to L1 */
6456                 msrs->secondary_ctls_high |=
6457                         SECONDARY_EXEC_ENABLE_EPT;
6458                 msrs->ept_caps =
6459                         VMX_EPT_PAGE_WALK_4_BIT |
6460                         VMX_EPT_PAGE_WALK_5_BIT |
6461                         VMX_EPTP_WB_BIT |
6462                         VMX_EPT_INVEPT_BIT |
6463                         VMX_EPT_EXECUTE_ONLY_BIT;
6464
6465                 msrs->ept_caps &= ept_caps;
6466                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6467                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6468                         VMX_EPT_1GB_PAGE_BIT;
6469                 if (enable_ept_ad_bits) {
6470                         msrs->secondary_ctls_high |=
6471                                 SECONDARY_EXEC_ENABLE_PML;
6472                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6473                 }
6474         }
6475
6476         if (cpu_has_vmx_vmfunc()) {
6477                 msrs->secondary_ctls_high |=
6478                         SECONDARY_EXEC_ENABLE_VMFUNC;
6479                 /*
6480                  * Advertise EPTP switching unconditionally
6481                  * since we emulate it
6482                  */
6483                 if (enable_ept)
6484                         msrs->vmfunc_controls =
6485                                 VMX_VMFUNC_EPTP_SWITCHING;
6486         }
6487
6488         /*
6489          * Old versions of KVM use the single-context version without
6490          * checking for support, so declare that it is supported even
6491          * though it is treated as global context.  The alternative is
6492          * not failing the single-context invvpid, and it is worse.
6493          */
6494         if (enable_vpid) {
6495                 msrs->secondary_ctls_high |=
6496                         SECONDARY_EXEC_ENABLE_VPID;
6497                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6498                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6499         }
6500
6501         if (enable_unrestricted_guest)
6502                 msrs->secondary_ctls_high |=
6503                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6504
6505         if (flexpriority_enabled)
6506                 msrs->secondary_ctls_high |=
6507                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6508
6509         /* miscellaneous data */
6510         rdmsr(MSR_IA32_VMX_MISC,
6511                 msrs->misc_low,
6512                 msrs->misc_high);
6513         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6514         msrs->misc_low |=
6515                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6516                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6517                 VMX_MISC_ACTIVITY_HLT |
6518                 VMX_MISC_ACTIVITY_WAIT_SIPI;
6519         msrs->misc_high = 0;
6520
6521         /*
6522          * This MSR reports some information about VMX support. We
6523          * should return information about the VMX we emulate for the
6524          * guest, and the VMCS structure we give it - not about the
6525          * VMX support of the underlying hardware.
6526          */
6527         msrs->basic =
6528                 VMCS12_REVISION |
6529                 VMX_BASIC_TRUE_CTLS |
6530                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6531                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6532
6533         if (cpu_has_vmx_basic_inout())
6534                 msrs->basic |= VMX_BASIC_INOUT;
6535
6536         /*
6537          * These MSRs specify bits which the guest must keep fixed on
6538          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6539          * We picked the standard core2 setting.
6540          */
6541 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6542 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6543         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6544         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6545
6546         /* These MSRs specify bits which the guest must keep fixed off. */
6547         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6548         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6549
6550         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6551         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6552 }
6553
6554 void nested_vmx_hardware_unsetup(void)
6555 {
6556         int i;
6557
6558         if (enable_shadow_vmcs) {
6559                 for (i = 0; i < VMX_BITMAP_NR; i++)
6560                         free_page((unsigned long)vmx_bitmap[i]);
6561         }
6562 }
6563
6564 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6565 {
6566         int i;
6567
6568         if (!cpu_has_vmx_shadow_vmcs())
6569                 enable_shadow_vmcs = 0;
6570         if (enable_shadow_vmcs) {
6571                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6572                         /*
6573                          * The vmx_bitmap is not tied to a VM and so should
6574                          * not be charged to a memcg.
6575                          */
6576                         vmx_bitmap[i] = (unsigned long *)
6577                                 __get_free_page(GFP_KERNEL);
6578                         if (!vmx_bitmap[i]) {
6579                                 nested_vmx_hardware_unsetup();
6580                                 return -ENOMEM;
6581                         }
6582                 }
6583
6584                 init_vmcs_shadow_fields();
6585         }
6586
6587         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6588         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6589         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6590         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6591         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6592         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6593         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6594         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6595         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6596         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6597         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6598         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6599
6600         return 0;
6601 }
6602
6603 struct kvm_x86_nested_ops vmx_nested_ops = {
6604         .check_events = vmx_check_nested_events,
6605         .hv_timer_pending = nested_vmx_preemption_timer_pending,
6606         .get_state = vmx_get_nested_state,
6607         .set_state = vmx_set_nested_state,
6608         .get_nested_state_pages = nested_get_vmcs12_pages,
6609         .write_log_dirty = nested_vmx_write_pml_buffer,
6610         .enable_evmcs = nested_enable_evmcs,
6611         .get_evmcs_version = nested_get_evmcs_version,
6612 };