KVM: nVMX: Really make emulated nested preemption timer pinned
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "x86.h"
16
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
19
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
22
23 #define CC(consistency_check)                                           \
24 ({                                                                      \
25         bool failed = (consistency_check);                              \
26         if (failed)                                                     \
27                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
28         failed;                                                         \
29 })
30
31 /*
32  * Hyper-V requires all of these, so mark them as supported even though
33  * they are just treated the same as all-context.
34  */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
36         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
37         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
39         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42
43 enum {
44         VMX_VMREAD_BITMAP,
45         VMX_VMWRITE_BITMAP,
46         VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49
50 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
52
53 struct shadow_vmcs_field {
54         u16     encoding;
55         u16     offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62         ARRAY_SIZE(shadow_read_only_fields);
63
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69         ARRAY_SIZE(shadow_read_write_fields);
70
71 static void init_vmcs_shadow_fields(void)
72 {
73         int i, j;
74
75         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77
78         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80                 u16 field = entry.encoding;
81
82                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83                     (i + 1 == max_shadow_read_only_fields ||
84                      shadow_read_only_fields[i + 1].encoding != field + 1))
85                         pr_err("Missing field from shadow_read_only_field %x\n",
86                                field + 1);
87
88                 clear_bit(field, vmx_vmread_bitmap);
89                 if (field & 1)
90 #ifdef CONFIG_X86_64
91                         continue;
92 #else
93                         entry.offset += sizeof(u32);
94 #endif
95                 shadow_read_only_fields[j++] = entry;
96         }
97         max_shadow_read_only_fields = j;
98
99         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101                 u16 field = entry.encoding;
102
103                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104                     (i + 1 == max_shadow_read_write_fields ||
105                      shadow_read_write_fields[i + 1].encoding != field + 1))
106                         pr_err("Missing field from shadow_read_write_field %x\n",
107                                field + 1);
108
109                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110                           field <= GUEST_TR_AR_BYTES,
111                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112
113                 /*
114                  * PML and the preemption timer can be emulated, but the
115                  * processor cannot vmwrite to fields that don't exist
116                  * on bare metal.
117                  */
118                 switch (field) {
119                 case GUEST_PML_INDEX:
120                         if (!cpu_has_vmx_pml())
121                                 continue;
122                         break;
123                 case VMX_PREEMPTION_TIMER_VALUE:
124                         if (!cpu_has_vmx_preemption_timer())
125                                 continue;
126                         break;
127                 case GUEST_INTR_STATUS:
128                         if (!cpu_has_vmx_apicv())
129                                 continue;
130                         break;
131                 default:
132                         break;
133                 }
134
135                 clear_bit(field, vmx_vmwrite_bitmap);
136                 clear_bit(field, vmx_vmread_bitmap);
137                 if (field & 1)
138 #ifdef CONFIG_X86_64
139                         continue;
140 #else
141                         entry.offset += sizeof(u32);
142 #endif
143                 shadow_read_write_fields[j++] = entry;
144         }
145         max_shadow_read_write_fields = j;
146 }
147
148 /*
149  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150  * set the success or error code of an emulated VMX instruction (as specified
151  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152  * instruction.
153  */
154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159         return kvm_skip_emulated_instruction(vcpu);
160 }
161
162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_CF);
168         return kvm_skip_emulated_instruction(vcpu);
169 }
170
171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172                                 u32 vm_instruction_error)
173 {
174         struct vcpu_vmx *vmx = to_vmx(vcpu);
175
176         /*
177          * failValid writes the error number to the current VMCS, which
178          * can't be done if there isn't a current VMCS.
179          */
180         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
181                 return nested_vmx_failInvalid(vcpu);
182
183         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
184                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
185                             X86_EFLAGS_SF | X86_EFLAGS_OF))
186                         | X86_EFLAGS_ZF);
187         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
188         /*
189          * We don't need to force a shadow sync because
190          * VM_INSTRUCTION_ERROR is not shadowed
191          */
192         return kvm_skip_emulated_instruction(vcpu);
193 }
194
195 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
196 {
197         /* TODO: not to reset guest simply here. */
198         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
199         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
200 }
201
202 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
203 {
204         return fixed_bits_valid(control, low, high);
205 }
206
207 static inline u64 vmx_control_msr(u32 low, u32 high)
208 {
209         return low | ((u64)high << 32);
210 }
211
212 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
213 {
214         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
215         vmcs_write64(VMCS_LINK_POINTER, -1ull);
216         vmx->nested.need_vmcs12_to_shadow_sync = false;
217 }
218
219 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
220 {
221         struct vcpu_vmx *vmx = to_vmx(vcpu);
222
223         if (!vmx->nested.hv_evmcs)
224                 return;
225
226         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
227         vmx->nested.hv_evmcs_vmptr = 0;
228         vmx->nested.hv_evmcs = NULL;
229 }
230
231 /*
232  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
233  * just stops using VMX.
234  */
235 static void free_nested(struct kvm_vcpu *vcpu)
236 {
237         struct vcpu_vmx *vmx = to_vmx(vcpu);
238
239         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
240                 return;
241
242         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
243
244         vmx->nested.vmxon = false;
245         vmx->nested.smm.vmxon = false;
246         free_vpid(vmx->nested.vpid02);
247         vmx->nested.posted_intr_nv = -1;
248         vmx->nested.current_vmptr = -1ull;
249         if (enable_shadow_vmcs) {
250                 vmx_disable_shadow_vmcs(vmx);
251                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
252                 free_vmcs(vmx->vmcs01.shadow_vmcs);
253                 vmx->vmcs01.shadow_vmcs = NULL;
254         }
255         kfree(vmx->nested.cached_vmcs12);
256         vmx->nested.cached_vmcs12 = NULL;
257         kfree(vmx->nested.cached_shadow_vmcs12);
258         vmx->nested.cached_shadow_vmcs12 = NULL;
259         /* Unpin physical memory we referred to in the vmcs02 */
260         if (vmx->nested.apic_access_page) {
261                 kvm_release_page_clean(vmx->nested.apic_access_page);
262                 vmx->nested.apic_access_page = NULL;
263         }
264         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
265         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
266         vmx->nested.pi_desc = NULL;
267
268         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
269
270         nested_release_evmcs(vcpu);
271
272         free_loaded_vmcs(&vmx->nested.vmcs02);
273 }
274
275 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276                                      struct loaded_vmcs *prev)
277 {
278         struct vmcs_host_state *dest, *src;
279
280         if (unlikely(!vmx->guest_state_loaded))
281                 return;
282
283         src = &prev->host_state;
284         dest = &vmx->loaded_vmcs->host_state;
285
286         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
287         dest->ldt_sel = src->ldt_sel;
288 #ifdef CONFIG_X86_64
289         dest->ds_sel = src->ds_sel;
290         dest->es_sel = src->es_sel;
291 #endif
292 }
293
294 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
295 {
296         struct vcpu_vmx *vmx = to_vmx(vcpu);
297         struct loaded_vmcs *prev;
298         int cpu;
299
300         if (vmx->loaded_vmcs == vmcs)
301                 return;
302
303         cpu = get_cpu();
304         prev = vmx->loaded_vmcs;
305         vmx->loaded_vmcs = vmcs;
306         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
307         vmx_sync_vmcs_host_state(vmx, prev);
308         put_cpu();
309
310         vmx_register_cache_reset(vcpu);
311 }
312
313 /*
314  * Ensure that the current vmcs of the logical processor is the
315  * vmcs01 of the vcpu before calling free_nested().
316  */
317 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
318 {
319         vcpu_load(vcpu);
320         vmx_leave_nested(vcpu);
321         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
322         free_nested(vcpu);
323         vcpu_put(vcpu);
324 }
325
326 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
327                 struct x86_exception *fault)
328 {
329         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
330         struct vcpu_vmx *vmx = to_vmx(vcpu);
331         u32 vm_exit_reason;
332         unsigned long exit_qualification = vcpu->arch.exit_qualification;
333
334         if (vmx->nested.pml_full) {
335                 vm_exit_reason = EXIT_REASON_PML_FULL;
336                 vmx->nested.pml_full = false;
337                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
338         } else if (fault->error_code & PFERR_RSVD_MASK)
339                 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
340         else
341                 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
342
343         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
344         vmcs12->guest_physical_address = fault->address;
345 }
346
347 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
348 {
349         WARN_ON(mmu_is_nested(vcpu));
350
351         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
352         kvm_init_shadow_ept_mmu(vcpu,
353                         to_vmx(vcpu)->nested.msrs.ept_caps &
354                         VMX_EPT_EXECUTE_ONLY_BIT,
355                         nested_ept_ad_enabled(vcpu),
356                         nested_ept_get_eptp(vcpu));
357         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
358         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
359         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
360
361         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
362 }
363
364 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
365 {
366         vcpu->arch.mmu = &vcpu->arch.root_mmu;
367         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
368 }
369
370 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
371                                             u16 error_code)
372 {
373         bool inequality, bit;
374
375         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
376         inequality =
377                 (error_code & vmcs12->page_fault_error_code_mask) !=
378                  vmcs12->page_fault_error_code_match;
379         return inequality ^ bit;
380 }
381
382
383 /*
384  * KVM wants to inject page-faults which it got to the guest. This function
385  * checks whether in a nested guest, we need to inject them to L1 or L2.
386  */
387 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
388 {
389         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
390         unsigned int nr = vcpu->arch.exception.nr;
391         bool has_payload = vcpu->arch.exception.has_payload;
392         unsigned long payload = vcpu->arch.exception.payload;
393
394         if (nr == PF_VECTOR) {
395                 if (vcpu->arch.exception.nested_apf) {
396                         *exit_qual = vcpu->arch.apf.nested_apf_token;
397                         return 1;
398                 }
399                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
400                                                     vcpu->arch.exception.error_code)) {
401                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
402                         return 1;
403                 }
404         } else if (vmcs12->exception_bitmap & (1u << nr)) {
405                 if (nr == DB_VECTOR) {
406                         if (!has_payload) {
407                                 payload = vcpu->arch.dr6;
408                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
409                                 payload ^= DR6_RTM;
410                         }
411                         *exit_qual = payload;
412                 } else
413                         *exit_qual = 0;
414                 return 1;
415         }
416
417         return 0;
418 }
419
420
421 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
422                 struct x86_exception *fault)
423 {
424         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
425
426         WARN_ON(!is_guest_mode(vcpu));
427
428         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
429                 !to_vmx(vcpu)->nested.nested_run_pending) {
430                 vmcs12->vm_exit_intr_error_code = fault->error_code;
431                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
432                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
433                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
434                                   fault->address);
435         } else {
436                 kvm_inject_page_fault(vcpu, fault);
437         }
438 }
439
440 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
441 {
442         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
443 }
444
445 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
446                                                struct vmcs12 *vmcs12)
447 {
448         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
449                 return 0;
450
451         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
452             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
453                 return -EINVAL;
454
455         return 0;
456 }
457
458 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
459                                                 struct vmcs12 *vmcs12)
460 {
461         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
462                 return 0;
463
464         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
465                 return -EINVAL;
466
467         return 0;
468 }
469
470 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
471                                                 struct vmcs12 *vmcs12)
472 {
473         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
474                 return 0;
475
476         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
477                 return -EINVAL;
478
479         return 0;
480 }
481
482 /*
483  * Check if MSR is intercepted for L01 MSR bitmap.
484  */
485 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
486 {
487         unsigned long *msr_bitmap;
488         int f = sizeof(unsigned long);
489
490         if (!cpu_has_vmx_msr_bitmap())
491                 return true;
492
493         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
494
495         if (msr <= 0x1fff) {
496                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
497         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
498                 msr &= 0x1fff;
499                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
500         }
501
502         return true;
503 }
504
505 /*
506  * If a msr is allowed by L0, we should check whether it is allowed by L1.
507  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
508  */
509 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
510                                                unsigned long *msr_bitmap_nested,
511                                                u32 msr, int type)
512 {
513         int f = sizeof(unsigned long);
514
515         /*
516          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
517          * have the write-low and read-high bitmap offsets the wrong way round.
518          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
519          */
520         if (msr <= 0x1fff) {
521                 if (type & MSR_TYPE_R &&
522                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
523                         /* read-low */
524                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
525
526                 if (type & MSR_TYPE_W &&
527                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
528                         /* write-low */
529                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
530
531         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
532                 msr &= 0x1fff;
533                 if (type & MSR_TYPE_R &&
534                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
535                         /* read-high */
536                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
537
538                 if (type & MSR_TYPE_W &&
539                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
540                         /* write-high */
541                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
542
543         }
544 }
545
546 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
547 {
548         int msr;
549
550         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551                 unsigned word = msr / BITS_PER_LONG;
552
553                 msr_bitmap[word] = ~0;
554                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
555         }
556 }
557
558 /*
559  * Merge L0's and L1's MSR bitmap, return false to indicate that
560  * we do not use the hardware.
561  */
562 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
563                                                  struct vmcs12 *vmcs12)
564 {
565         int msr;
566         unsigned long *msr_bitmap_l1;
567         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
568         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
569
570         /* Nothing to do if the MSR bitmap is not in use.  */
571         if (!cpu_has_vmx_msr_bitmap() ||
572             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
573                 return false;
574
575         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
576                 return false;
577
578         msr_bitmap_l1 = (unsigned long *)map->hva;
579
580         /*
581          * To keep the control flow simple, pay eight 8-byte writes (sixteen
582          * 4-byte writes on 32-bit systems) up front to enable intercepts for
583          * the x2APIC MSR range and selectively disable them below.
584          */
585         enable_x2apic_msr_intercepts(msr_bitmap_l0);
586
587         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
588                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
589                         /*
590                          * L0 need not intercept reads for MSRs between 0x800
591                          * and 0x8ff, it just lets the processor take the value
592                          * from the virtual-APIC page; take those 256 bits
593                          * directly from the L1 bitmap.
594                          */
595                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
596                                 unsigned word = msr / BITS_PER_LONG;
597
598                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
599                         }
600                 }
601
602                 nested_vmx_disable_intercept_for_msr(
603                         msr_bitmap_l1, msr_bitmap_l0,
604                         X2APIC_MSR(APIC_TASKPRI),
605                         MSR_TYPE_R | MSR_TYPE_W);
606
607                 if (nested_cpu_has_vid(vmcs12)) {
608                         nested_vmx_disable_intercept_for_msr(
609                                 msr_bitmap_l1, msr_bitmap_l0,
610                                 X2APIC_MSR(APIC_EOI),
611                                 MSR_TYPE_W);
612                         nested_vmx_disable_intercept_for_msr(
613                                 msr_bitmap_l1, msr_bitmap_l0,
614                                 X2APIC_MSR(APIC_SELF_IPI),
615                                 MSR_TYPE_W);
616                 }
617         }
618
619         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
620         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
621                                              MSR_FS_BASE, MSR_TYPE_RW);
622
623         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
624                                              MSR_GS_BASE, MSR_TYPE_RW);
625
626         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
627                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
628
629         /*
630          * Checking the L0->L1 bitmap is trying to verify two things:
631          *
632          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
633          *    ensures that we do not accidentally generate an L02 MSR bitmap
634          *    from the L12 MSR bitmap that is too permissive.
635          * 2. That L1 or L2s have actually used the MSR. This avoids
636          *    unnecessarily merging of the bitmap if the MSR is unused. This
637          *    works properly because we only update the L01 MSR bitmap lazily.
638          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
639          *    updated to reflect this when L1 (or its L2s) actually write to
640          *    the MSR.
641          */
642         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
643                 nested_vmx_disable_intercept_for_msr(
644                                         msr_bitmap_l1, msr_bitmap_l0,
645                                         MSR_IA32_SPEC_CTRL,
646                                         MSR_TYPE_R | MSR_TYPE_W);
647
648         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
649                 nested_vmx_disable_intercept_for_msr(
650                                         msr_bitmap_l1, msr_bitmap_l0,
651                                         MSR_IA32_PRED_CMD,
652                                         MSR_TYPE_W);
653
654         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
655
656         return true;
657 }
658
659 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
660                                        struct vmcs12 *vmcs12)
661 {
662         struct kvm_host_map map;
663         struct vmcs12 *shadow;
664
665         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
666             vmcs12->vmcs_link_pointer == -1ull)
667                 return;
668
669         shadow = get_shadow_vmcs12(vcpu);
670
671         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
672                 return;
673
674         memcpy(shadow, map.hva, VMCS12_SIZE);
675         kvm_vcpu_unmap(vcpu, &map, false);
676 }
677
678 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
679                                               struct vmcs12 *vmcs12)
680 {
681         struct vcpu_vmx *vmx = to_vmx(vcpu);
682
683         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
684             vmcs12->vmcs_link_pointer == -1ull)
685                 return;
686
687         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
688                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
689 }
690
691 /*
692  * In nested virtualization, check if L1 has set
693  * VM_EXIT_ACK_INTR_ON_EXIT
694  */
695 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
696 {
697         return get_vmcs12(vcpu)->vm_exit_controls &
698                 VM_EXIT_ACK_INTR_ON_EXIT;
699 }
700
701 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
702                                           struct vmcs12 *vmcs12)
703 {
704         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
705             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
706                 return -EINVAL;
707         else
708                 return 0;
709 }
710
711 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
712                                            struct vmcs12 *vmcs12)
713 {
714         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
715             !nested_cpu_has_apic_reg_virt(vmcs12) &&
716             !nested_cpu_has_vid(vmcs12) &&
717             !nested_cpu_has_posted_intr(vmcs12))
718                 return 0;
719
720         /*
721          * If virtualize x2apic mode is enabled,
722          * virtualize apic access must be disabled.
723          */
724         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
725                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
726                 return -EINVAL;
727
728         /*
729          * If virtual interrupt delivery is enabled,
730          * we must exit on external interrupts.
731          */
732         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
733                 return -EINVAL;
734
735         /*
736          * bits 15:8 should be zero in posted_intr_nv,
737          * the descriptor address has been already checked
738          * in nested_get_vmcs12_pages.
739          *
740          * bits 5:0 of posted_intr_desc_addr should be zero.
741          */
742         if (nested_cpu_has_posted_intr(vmcs12) &&
743            (CC(!nested_cpu_has_vid(vmcs12)) ||
744             CC(!nested_exit_intr_ack_set(vcpu)) ||
745             CC((vmcs12->posted_intr_nv & 0xff00)) ||
746             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
747             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
748                 return -EINVAL;
749
750         /* tpr shadow is needed by all apicv features. */
751         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
752                 return -EINVAL;
753
754         return 0;
755 }
756
757 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
758                                        u32 count, u64 addr)
759 {
760         int maxphyaddr;
761
762         if (count == 0)
763                 return 0;
764         maxphyaddr = cpuid_maxphyaddr(vcpu);
765         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
766             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
767                 return -EINVAL;
768
769         return 0;
770 }
771
772 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
773                                                      struct vmcs12 *vmcs12)
774 {
775         if (CC(nested_vmx_check_msr_switch(vcpu,
776                                            vmcs12->vm_exit_msr_load_count,
777                                            vmcs12->vm_exit_msr_load_addr)) ||
778             CC(nested_vmx_check_msr_switch(vcpu,
779                                            vmcs12->vm_exit_msr_store_count,
780                                            vmcs12->vm_exit_msr_store_addr)))
781                 return -EINVAL;
782
783         return 0;
784 }
785
786 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
787                                                       struct vmcs12 *vmcs12)
788 {
789         if (CC(nested_vmx_check_msr_switch(vcpu,
790                                            vmcs12->vm_entry_msr_load_count,
791                                            vmcs12->vm_entry_msr_load_addr)))
792                 return -EINVAL;
793
794         return 0;
795 }
796
797 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
798                                          struct vmcs12 *vmcs12)
799 {
800         if (!nested_cpu_has_pml(vmcs12))
801                 return 0;
802
803         if (CC(!nested_cpu_has_ept(vmcs12)) ||
804             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
805                 return -EINVAL;
806
807         return 0;
808 }
809
810 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
811                                                         struct vmcs12 *vmcs12)
812 {
813         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
814                !nested_cpu_has_ept(vmcs12)))
815                 return -EINVAL;
816         return 0;
817 }
818
819 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
820                                                          struct vmcs12 *vmcs12)
821 {
822         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
823                !nested_cpu_has_ept(vmcs12)))
824                 return -EINVAL;
825         return 0;
826 }
827
828 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
829                                                  struct vmcs12 *vmcs12)
830 {
831         if (!nested_cpu_has_shadow_vmcs(vmcs12))
832                 return 0;
833
834         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
835             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
836                 return -EINVAL;
837
838         return 0;
839 }
840
841 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
842                                        struct vmx_msr_entry *e)
843 {
844         /* x2APIC MSR accesses are not allowed */
845         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
846                 return -EINVAL;
847         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
848             CC(e->index == MSR_IA32_UCODE_REV))
849                 return -EINVAL;
850         if (CC(e->reserved != 0))
851                 return -EINVAL;
852         return 0;
853 }
854
855 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
856                                      struct vmx_msr_entry *e)
857 {
858         if (CC(e->index == MSR_FS_BASE) ||
859             CC(e->index == MSR_GS_BASE) ||
860             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
861             nested_vmx_msr_check_common(vcpu, e))
862                 return -EINVAL;
863         return 0;
864 }
865
866 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
867                                       struct vmx_msr_entry *e)
868 {
869         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
870             nested_vmx_msr_check_common(vcpu, e))
871                 return -EINVAL;
872         return 0;
873 }
874
875 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
876 {
877         struct vcpu_vmx *vmx = to_vmx(vcpu);
878         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
879                                        vmx->nested.msrs.misc_high);
880
881         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
882 }
883
884 /*
885  * Load guest's/host's msr at nested entry/exit.
886  * return 0 for success, entry index for failure.
887  *
888  * One of the failure modes for MSR load/store is when a list exceeds the
889  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
890  * as possible, process all valid entries before failing rather than precheck
891  * for a capacity violation.
892  */
893 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
894 {
895         u32 i;
896         struct vmx_msr_entry e;
897         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
898
899         for (i = 0; i < count; i++) {
900                 if (unlikely(i >= max_msr_list_size))
901                         goto fail;
902
903                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
904                                         &e, sizeof(e))) {
905                         pr_debug_ratelimited(
906                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
907                                 __func__, i, gpa + i * sizeof(e));
908                         goto fail;
909                 }
910                 if (nested_vmx_load_msr_check(vcpu, &e)) {
911                         pr_debug_ratelimited(
912                                 "%s check failed (%u, 0x%x, 0x%x)\n",
913                                 __func__, i, e.index, e.reserved);
914                         goto fail;
915                 }
916                 if (kvm_set_msr(vcpu, e.index, e.value)) {
917                         pr_debug_ratelimited(
918                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
919                                 __func__, i, e.index, e.value);
920                         goto fail;
921                 }
922         }
923         return 0;
924 fail:
925         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
926         return i + 1;
927 }
928
929 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
930                                             u32 msr_index,
931                                             u64 *data)
932 {
933         struct vcpu_vmx *vmx = to_vmx(vcpu);
934
935         /*
936          * If the L0 hypervisor stored a more accurate value for the TSC that
937          * does not include the time taken for emulation of the L2->L1
938          * VM-exit in L0, use the more accurate value.
939          */
940         if (msr_index == MSR_IA32_TSC) {
941                 int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
942                                                MSR_IA32_TSC);
943
944                 if (index >= 0) {
945                         u64 val = vmx->msr_autostore.guest.val[index].value;
946
947                         *data = kvm_read_l1_tsc(vcpu, val);
948                         return true;
949                 }
950         }
951
952         if (kvm_get_msr(vcpu, msr_index, data)) {
953                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
954                         msr_index);
955                 return false;
956         }
957         return true;
958 }
959
960 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
961                                      struct vmx_msr_entry *e)
962 {
963         if (kvm_vcpu_read_guest(vcpu,
964                                 gpa + i * sizeof(*e),
965                                 e, 2 * sizeof(u32))) {
966                 pr_debug_ratelimited(
967                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
968                         __func__, i, gpa + i * sizeof(*e));
969                 return false;
970         }
971         if (nested_vmx_store_msr_check(vcpu, e)) {
972                 pr_debug_ratelimited(
973                         "%s check failed (%u, 0x%x, 0x%x)\n",
974                         __func__, i, e->index, e->reserved);
975                 return false;
976         }
977         return true;
978 }
979
980 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
981 {
982         u64 data;
983         u32 i;
984         struct vmx_msr_entry e;
985         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
986
987         for (i = 0; i < count; i++) {
988                 if (unlikely(i >= max_msr_list_size))
989                         return -EINVAL;
990
991                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
992                         return -EINVAL;
993
994                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
995                         return -EINVAL;
996
997                 if (kvm_vcpu_write_guest(vcpu,
998                                          gpa + i * sizeof(e) +
999                                              offsetof(struct vmx_msr_entry, value),
1000                                          &data, sizeof(data))) {
1001                         pr_debug_ratelimited(
1002                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1003                                 __func__, i, e.index, data);
1004                         return -EINVAL;
1005                 }
1006         }
1007         return 0;
1008 }
1009
1010 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1011 {
1012         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1013         u32 count = vmcs12->vm_exit_msr_store_count;
1014         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1015         struct vmx_msr_entry e;
1016         u32 i;
1017
1018         for (i = 0; i < count; i++) {
1019                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1020                         return false;
1021
1022                 if (e.index == msr_index)
1023                         return true;
1024         }
1025         return false;
1026 }
1027
1028 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1029                                            u32 msr_index)
1030 {
1031         struct vcpu_vmx *vmx = to_vmx(vcpu);
1032         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1033         bool in_vmcs12_store_list;
1034         int msr_autostore_index;
1035         bool in_autostore_list;
1036         int last;
1037
1038         msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
1039         in_autostore_list = msr_autostore_index >= 0;
1040         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1041
1042         if (in_vmcs12_store_list && !in_autostore_list) {
1043                 if (autostore->nr == NR_LOADSTORE_MSRS) {
1044                         /*
1045                          * Emulated VMEntry does not fail here.  Instead a less
1046                          * accurate value will be returned by
1047                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1048                          * instead of reading the value from the vmcs02 VMExit
1049                          * MSR-store area.
1050                          */
1051                         pr_warn_ratelimited(
1052                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1053                                 msr_index);
1054                         return;
1055                 }
1056                 last = autostore->nr++;
1057                 autostore->val[last].index = msr_index;
1058         } else if (!in_vmcs12_store_list && in_autostore_list) {
1059                 last = --autostore->nr;
1060                 autostore->val[msr_autostore_index] = autostore->val[last];
1061         }
1062 }
1063
1064 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1065 {
1066         unsigned long invalid_mask;
1067
1068         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1069         return (val & invalid_mask) == 0;
1070 }
1071
1072 /*
1073  * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1074  * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1075  * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1076  * Here's why.
1077  *
1078  * If EPT is enabled by L0 a sync is never needed:
1079  * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1080  *   cannot be unsync'd SPTEs for either L1 or L2.
1081  *
1082  * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1083  *   VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1084  *   (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1085  *   stale guest-physical mappings for L2 from the TLB.  And as above, L0 isn't
1086  *   shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1087  *
1088  * If EPT is disabled by L0:
1089  * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1090  *   enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1091  *   required to invalidate linear mappings (EPT is disabled so there are
1092  *   no combined or guest-physical mappings), i.e. L1 can't rely on the
1093  *   (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1094  *
1095  * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1096  *   linear mappings (EPT is disabled so there are no combined or guest-physical
1097  *   mappings) to be invalidated on both VM-Enter and VM-Exit.
1098  *
1099  * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1100  * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1101  * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1102  * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1103  * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1104  * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1105  * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1106  * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1107  * stale TLB entries, at which point L0 will sync L2's MMU.
1108  */
1109 static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1110 {
1111         return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1112 }
1113
1114 /*
1115  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1116  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1117  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1118  * @entry_failure_code.
1119  */
1120 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1121                                enum vm_entry_failure_code *entry_failure_code)
1122 {
1123         if (CC(!nested_cr3_valid(vcpu, cr3))) {
1124                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1125                 return -EINVAL;
1126         }
1127
1128         /*
1129          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1130          * must not be dereferenced.
1131          */
1132         if (!nested_ept && is_pae_paging(vcpu) &&
1133             (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1134                 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1135                         *entry_failure_code = ENTRY_FAIL_PDPTE;
1136                         return -EINVAL;
1137                 }
1138         }
1139
1140         /*
1141          * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1142          * flushes are handled by nested_vmx_transition_tlb_flush().  See
1143          * nested_vmx_transition_mmu_sync for details on skipping the MMU sync.
1144          */
1145         if (!nested_ept)
1146                 kvm_mmu_new_pgd(vcpu, cr3, true,
1147                                 !nested_vmx_transition_mmu_sync(vcpu));
1148
1149         vcpu->arch.cr3 = cr3;
1150         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1151
1152         kvm_init_mmu(vcpu, false);
1153
1154         return 0;
1155 }
1156
1157 /*
1158  * Returns if KVM is able to config CPU to tag TLB entries
1159  * populated by L2 differently than TLB entries populated
1160  * by L1.
1161  *
1162  * If L0 uses EPT, L1 and L2 run with different EPTP because
1163  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1164  * are tagged with different EPTP.
1165  *
1166  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1167  * with different VPID (L1 entries are tagged with vmx->vpid
1168  * while L2 entries are tagged with vmx->nested.vpid02).
1169  */
1170 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1171 {
1172         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1173
1174         return enable_ept ||
1175                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1176 }
1177
1178 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1179                                             struct vmcs12 *vmcs12,
1180                                             bool is_vmenter)
1181 {
1182         struct vcpu_vmx *vmx = to_vmx(vcpu);
1183
1184         /*
1185          * If VPID is disabled, linear and combined mappings are flushed on
1186          * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1187          * their associated EPTP.
1188          */
1189         if (!enable_vpid)
1190                 return;
1191
1192         /*
1193          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1194          * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1195          *
1196          * If VPID is enabled and used by vmc12, but L2 does not have a unique
1197          * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1198          * a VPID for L2, flush the current context as the effective ASID is
1199          * common to both L1 and L2.
1200          *
1201          * Defer the flush so that it runs after vmcs02.EPTP has been set by
1202          * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1203          * redundant flushes further down the nested pipeline.
1204          *
1205          * If a TLB flush isn't required due to any of the above, and vpid12 is
1206          * changing then the new "virtual" VPID (vpid12) will reuse the same
1207          * "real" VPID (vpid02), and so needs to be sync'd.  There is no direct
1208          * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1209          * all nested vCPUs.
1210          */
1211         if (!nested_cpu_has_vpid(vmcs12)) {
1212                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1213         } else if (!nested_has_guest_tlb_tag(vcpu)) {
1214                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1215         } else if (is_vmenter &&
1216                    vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1217                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1218                 vpid_sync_context(nested_get_vpid02(vcpu));
1219         }
1220 }
1221
1222 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1223 {
1224         superset &= mask;
1225         subset &= mask;
1226
1227         return (superset | subset) == superset;
1228 }
1229
1230 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1231 {
1232         const u64 feature_and_reserved =
1233                 /* feature (except bit 48; see below) */
1234                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1235                 /* reserved */
1236                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1237         u64 vmx_basic = vmx->nested.msrs.basic;
1238
1239         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1240                 return -EINVAL;
1241
1242         /*
1243          * KVM does not emulate a version of VMX that constrains physical
1244          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1245          */
1246         if (data & BIT_ULL(48))
1247                 return -EINVAL;
1248
1249         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1250             vmx_basic_vmcs_revision_id(data))
1251                 return -EINVAL;
1252
1253         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1254                 return -EINVAL;
1255
1256         vmx->nested.msrs.basic = data;
1257         return 0;
1258 }
1259
1260 static int
1261 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1262 {
1263         u64 supported;
1264         u32 *lowp, *highp;
1265
1266         switch (msr_index) {
1267         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1268                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1269                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1270                 break;
1271         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1272                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1273                 highp = &vmx->nested.msrs.procbased_ctls_high;
1274                 break;
1275         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1276                 lowp = &vmx->nested.msrs.exit_ctls_low;
1277                 highp = &vmx->nested.msrs.exit_ctls_high;
1278                 break;
1279         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1280                 lowp = &vmx->nested.msrs.entry_ctls_low;
1281                 highp = &vmx->nested.msrs.entry_ctls_high;
1282                 break;
1283         case MSR_IA32_VMX_PROCBASED_CTLS2:
1284                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1285                 highp = &vmx->nested.msrs.secondary_ctls_high;
1286                 break;
1287         default:
1288                 BUG();
1289         }
1290
1291         supported = vmx_control_msr(*lowp, *highp);
1292
1293         /* Check must-be-1 bits are still 1. */
1294         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1295                 return -EINVAL;
1296
1297         /* Check must-be-0 bits are still 0. */
1298         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1299                 return -EINVAL;
1300
1301         *lowp = data;
1302         *highp = data >> 32;
1303         return 0;
1304 }
1305
1306 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1307 {
1308         const u64 feature_and_reserved_bits =
1309                 /* feature */
1310                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1311                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1312                 /* reserved */
1313                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1314         u64 vmx_misc;
1315
1316         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1317                                    vmx->nested.msrs.misc_high);
1318
1319         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1320                 return -EINVAL;
1321
1322         if ((vmx->nested.msrs.pinbased_ctls_high &
1323              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1324             vmx_misc_preemption_timer_rate(data) !=
1325             vmx_misc_preemption_timer_rate(vmx_misc))
1326                 return -EINVAL;
1327
1328         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1329                 return -EINVAL;
1330
1331         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1332                 return -EINVAL;
1333
1334         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1335                 return -EINVAL;
1336
1337         vmx->nested.msrs.misc_low = data;
1338         vmx->nested.msrs.misc_high = data >> 32;
1339
1340         return 0;
1341 }
1342
1343 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1344 {
1345         u64 vmx_ept_vpid_cap;
1346
1347         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1348                                            vmx->nested.msrs.vpid_caps);
1349
1350         /* Every bit is either reserved or a feature bit. */
1351         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1352                 return -EINVAL;
1353
1354         vmx->nested.msrs.ept_caps = data;
1355         vmx->nested.msrs.vpid_caps = data >> 32;
1356         return 0;
1357 }
1358
1359 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1360 {
1361         u64 *msr;
1362
1363         switch (msr_index) {
1364         case MSR_IA32_VMX_CR0_FIXED0:
1365                 msr = &vmx->nested.msrs.cr0_fixed0;
1366                 break;
1367         case MSR_IA32_VMX_CR4_FIXED0:
1368                 msr = &vmx->nested.msrs.cr4_fixed0;
1369                 break;
1370         default:
1371                 BUG();
1372         }
1373
1374         /*
1375          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1376          * must be 1 in the restored value.
1377          */
1378         if (!is_bitwise_subset(data, *msr, -1ULL))
1379                 return -EINVAL;
1380
1381         *msr = data;
1382         return 0;
1383 }
1384
1385 /*
1386  * Called when userspace is restoring VMX MSRs.
1387  *
1388  * Returns 0 on success, non-0 otherwise.
1389  */
1390 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1391 {
1392         struct vcpu_vmx *vmx = to_vmx(vcpu);
1393
1394         /*
1395          * Don't allow changes to the VMX capability MSRs while the vCPU
1396          * is in VMX operation.
1397          */
1398         if (vmx->nested.vmxon)
1399                 return -EBUSY;
1400
1401         switch (msr_index) {
1402         case MSR_IA32_VMX_BASIC:
1403                 return vmx_restore_vmx_basic(vmx, data);
1404         case MSR_IA32_VMX_PINBASED_CTLS:
1405         case MSR_IA32_VMX_PROCBASED_CTLS:
1406         case MSR_IA32_VMX_EXIT_CTLS:
1407         case MSR_IA32_VMX_ENTRY_CTLS:
1408                 /*
1409                  * The "non-true" VMX capability MSRs are generated from the
1410                  * "true" MSRs, so we do not support restoring them directly.
1411                  *
1412                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1413                  * should restore the "true" MSRs with the must-be-1 bits
1414                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1415                  * DEFAULT SETTINGS".
1416                  */
1417                 return -EINVAL;
1418         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1419         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1420         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1421         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1422         case MSR_IA32_VMX_PROCBASED_CTLS2:
1423                 return vmx_restore_control_msr(vmx, msr_index, data);
1424         case MSR_IA32_VMX_MISC:
1425                 return vmx_restore_vmx_misc(vmx, data);
1426         case MSR_IA32_VMX_CR0_FIXED0:
1427         case MSR_IA32_VMX_CR4_FIXED0:
1428                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1429         case MSR_IA32_VMX_CR0_FIXED1:
1430         case MSR_IA32_VMX_CR4_FIXED1:
1431                 /*
1432                  * These MSRs are generated based on the vCPU's CPUID, so we
1433                  * do not support restoring them directly.
1434                  */
1435                 return -EINVAL;
1436         case MSR_IA32_VMX_EPT_VPID_CAP:
1437                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1438         case MSR_IA32_VMX_VMCS_ENUM:
1439                 vmx->nested.msrs.vmcs_enum = data;
1440                 return 0;
1441         case MSR_IA32_VMX_VMFUNC:
1442                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1443                         return -EINVAL;
1444                 vmx->nested.msrs.vmfunc_controls = data;
1445                 return 0;
1446         default:
1447                 /*
1448                  * The rest of the VMX capability MSRs do not support restore.
1449                  */
1450                 return -EINVAL;
1451         }
1452 }
1453
1454 /* Returns 0 on success, non-0 otherwise. */
1455 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1456 {
1457         switch (msr_index) {
1458         case MSR_IA32_VMX_BASIC:
1459                 *pdata = msrs->basic;
1460                 break;
1461         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1462         case MSR_IA32_VMX_PINBASED_CTLS:
1463                 *pdata = vmx_control_msr(
1464                         msrs->pinbased_ctls_low,
1465                         msrs->pinbased_ctls_high);
1466                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1467                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1468                 break;
1469         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1470         case MSR_IA32_VMX_PROCBASED_CTLS:
1471                 *pdata = vmx_control_msr(
1472                         msrs->procbased_ctls_low,
1473                         msrs->procbased_ctls_high);
1474                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1475                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1476                 break;
1477         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1478         case MSR_IA32_VMX_EXIT_CTLS:
1479                 *pdata = vmx_control_msr(
1480                         msrs->exit_ctls_low,
1481                         msrs->exit_ctls_high);
1482                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1483                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1484                 break;
1485         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1486         case MSR_IA32_VMX_ENTRY_CTLS:
1487                 *pdata = vmx_control_msr(
1488                         msrs->entry_ctls_low,
1489                         msrs->entry_ctls_high);
1490                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1491                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1492                 break;
1493         case MSR_IA32_VMX_MISC:
1494                 *pdata = vmx_control_msr(
1495                         msrs->misc_low,
1496                         msrs->misc_high);
1497                 break;
1498         case MSR_IA32_VMX_CR0_FIXED0:
1499                 *pdata = msrs->cr0_fixed0;
1500                 break;
1501         case MSR_IA32_VMX_CR0_FIXED1:
1502                 *pdata = msrs->cr0_fixed1;
1503                 break;
1504         case MSR_IA32_VMX_CR4_FIXED0:
1505                 *pdata = msrs->cr4_fixed0;
1506                 break;
1507         case MSR_IA32_VMX_CR4_FIXED1:
1508                 *pdata = msrs->cr4_fixed1;
1509                 break;
1510         case MSR_IA32_VMX_VMCS_ENUM:
1511                 *pdata = msrs->vmcs_enum;
1512                 break;
1513         case MSR_IA32_VMX_PROCBASED_CTLS2:
1514                 *pdata = vmx_control_msr(
1515                         msrs->secondary_ctls_low,
1516                         msrs->secondary_ctls_high);
1517                 break;
1518         case MSR_IA32_VMX_EPT_VPID_CAP:
1519                 *pdata = msrs->ept_caps |
1520                         ((u64)msrs->vpid_caps << 32);
1521                 break;
1522         case MSR_IA32_VMX_VMFUNC:
1523                 *pdata = msrs->vmfunc_controls;
1524                 break;
1525         default:
1526                 return 1;
1527         }
1528
1529         return 0;
1530 }
1531
1532 /*
1533  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1534  * been modified by the L1 guest.  Note, "writable" in this context means
1535  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1536  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1537  * VM-exit information fields (which are actually writable if the vCPU is
1538  * configured to support "VMWRITE to any supported field in the VMCS").
1539  */
1540 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1541 {
1542         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1543         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1544         struct shadow_vmcs_field field;
1545         unsigned long val;
1546         int i;
1547
1548         if (WARN_ON(!shadow_vmcs))
1549                 return;
1550
1551         preempt_disable();
1552
1553         vmcs_load(shadow_vmcs);
1554
1555         for (i = 0; i < max_shadow_read_write_fields; i++) {
1556                 field = shadow_read_write_fields[i];
1557                 val = __vmcs_readl(field.encoding);
1558                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1559         }
1560
1561         vmcs_clear(shadow_vmcs);
1562         vmcs_load(vmx->loaded_vmcs->vmcs);
1563
1564         preempt_enable();
1565 }
1566
1567 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1568 {
1569         const struct shadow_vmcs_field *fields[] = {
1570                 shadow_read_write_fields,
1571                 shadow_read_only_fields
1572         };
1573         const int max_fields[] = {
1574                 max_shadow_read_write_fields,
1575                 max_shadow_read_only_fields
1576         };
1577         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1578         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1579         struct shadow_vmcs_field field;
1580         unsigned long val;
1581         int i, q;
1582
1583         if (WARN_ON(!shadow_vmcs))
1584                 return;
1585
1586         vmcs_load(shadow_vmcs);
1587
1588         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1589                 for (i = 0; i < max_fields[q]; i++) {
1590                         field = fields[q][i];
1591                         val = vmcs12_read_any(vmcs12, field.encoding,
1592                                               field.offset);
1593                         __vmcs_writel(field.encoding, val);
1594                 }
1595         }
1596
1597         vmcs_clear(shadow_vmcs);
1598         vmcs_load(vmx->loaded_vmcs->vmcs);
1599 }
1600
1601 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1602 {
1603         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1604         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1605
1606         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1607         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1608         vmcs12->guest_rip = evmcs->guest_rip;
1609
1610         if (unlikely(!(evmcs->hv_clean_fields &
1611                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1612                 vmcs12->guest_rsp = evmcs->guest_rsp;
1613                 vmcs12->guest_rflags = evmcs->guest_rflags;
1614                 vmcs12->guest_interruptibility_info =
1615                         evmcs->guest_interruptibility_info;
1616         }
1617
1618         if (unlikely(!(evmcs->hv_clean_fields &
1619                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1620                 vmcs12->cpu_based_vm_exec_control =
1621                         evmcs->cpu_based_vm_exec_control;
1622         }
1623
1624         if (unlikely(!(evmcs->hv_clean_fields &
1625                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1626                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1627         }
1628
1629         if (unlikely(!(evmcs->hv_clean_fields &
1630                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1631                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1632         }
1633
1634         if (unlikely(!(evmcs->hv_clean_fields &
1635                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1636                 vmcs12->vm_entry_intr_info_field =
1637                         evmcs->vm_entry_intr_info_field;
1638                 vmcs12->vm_entry_exception_error_code =
1639                         evmcs->vm_entry_exception_error_code;
1640                 vmcs12->vm_entry_instruction_len =
1641                         evmcs->vm_entry_instruction_len;
1642         }
1643
1644         if (unlikely(!(evmcs->hv_clean_fields &
1645                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1646                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1647                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1648                 vmcs12->host_cr0 = evmcs->host_cr0;
1649                 vmcs12->host_cr3 = evmcs->host_cr3;
1650                 vmcs12->host_cr4 = evmcs->host_cr4;
1651                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1652                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1653                 vmcs12->host_rip = evmcs->host_rip;
1654                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1655                 vmcs12->host_es_selector = evmcs->host_es_selector;
1656                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1657                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1658                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1659                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1660                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1661                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1662         }
1663
1664         if (unlikely(!(evmcs->hv_clean_fields &
1665                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1666                 vmcs12->pin_based_vm_exec_control =
1667                         evmcs->pin_based_vm_exec_control;
1668                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1669                 vmcs12->secondary_vm_exec_control =
1670                         evmcs->secondary_vm_exec_control;
1671         }
1672
1673         if (unlikely(!(evmcs->hv_clean_fields &
1674                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1675                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1676                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1677         }
1678
1679         if (unlikely(!(evmcs->hv_clean_fields &
1680                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1681                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1682         }
1683
1684         if (unlikely(!(evmcs->hv_clean_fields &
1685                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1686                 vmcs12->guest_es_base = evmcs->guest_es_base;
1687                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1688                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1689                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1690                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1691                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1692                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1693                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1694                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1695                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1696                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1697                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1698                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1699                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1700                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1701                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1702                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1703                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1704                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1705                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1706                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1707                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1708                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1709                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1710                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1711                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1712                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1713                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1714                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1715                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1716                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1717                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1718                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1719                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1720                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1721                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1722         }
1723
1724         if (unlikely(!(evmcs->hv_clean_fields &
1725                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1726                 vmcs12->tsc_offset = evmcs->tsc_offset;
1727                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1728                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1729         }
1730
1731         if (unlikely(!(evmcs->hv_clean_fields &
1732                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1733                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1734                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1735                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1736                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1737                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1738                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1739                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1740                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1741         }
1742
1743         if (unlikely(!(evmcs->hv_clean_fields &
1744                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1745                 vmcs12->host_fs_base = evmcs->host_fs_base;
1746                 vmcs12->host_gs_base = evmcs->host_gs_base;
1747                 vmcs12->host_tr_base = evmcs->host_tr_base;
1748                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1749                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1750                 vmcs12->host_rsp = evmcs->host_rsp;
1751         }
1752
1753         if (unlikely(!(evmcs->hv_clean_fields &
1754                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1755                 vmcs12->ept_pointer = evmcs->ept_pointer;
1756                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1757         }
1758
1759         if (unlikely(!(evmcs->hv_clean_fields &
1760                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1761                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1762                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1763                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1764                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1765                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1766                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1767                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1768                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1769                 vmcs12->guest_pending_dbg_exceptions =
1770                         evmcs->guest_pending_dbg_exceptions;
1771                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1772                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1773                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1774                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1775                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1776         }
1777
1778         /*
1779          * Not used?
1780          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1781          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1782          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1783          * vmcs12->page_fault_error_code_mask =
1784          *              evmcs->page_fault_error_code_mask;
1785          * vmcs12->page_fault_error_code_match =
1786          *              evmcs->page_fault_error_code_match;
1787          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1788          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1789          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1790          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1791          */
1792
1793         /*
1794          * Read only fields:
1795          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1796          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1797          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1798          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1799          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1800          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1801          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1802          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1803          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1804          * vmcs12->exit_qualification = evmcs->exit_qualification;
1805          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1806          *
1807          * Not present in struct vmcs12:
1808          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1809          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1810          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1811          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1812          */
1813
1814         return 0;
1815 }
1816
1817 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1818 {
1819         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1820         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1821
1822         /*
1823          * Should not be changed by KVM:
1824          *
1825          * evmcs->host_es_selector = vmcs12->host_es_selector;
1826          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1827          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1828          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1829          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1830          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1831          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1832          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1833          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1834          * evmcs->host_cr0 = vmcs12->host_cr0;
1835          * evmcs->host_cr3 = vmcs12->host_cr3;
1836          * evmcs->host_cr4 = vmcs12->host_cr4;
1837          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1838          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1839          * evmcs->host_rip = vmcs12->host_rip;
1840          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1841          * evmcs->host_fs_base = vmcs12->host_fs_base;
1842          * evmcs->host_gs_base = vmcs12->host_gs_base;
1843          * evmcs->host_tr_base = vmcs12->host_tr_base;
1844          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1845          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1846          * evmcs->host_rsp = vmcs12->host_rsp;
1847          * sync_vmcs02_to_vmcs12() doesn't read these:
1848          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1849          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1850          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1851          * evmcs->ept_pointer = vmcs12->ept_pointer;
1852          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1853          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1854          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1855          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1856          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1857          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1858          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1859          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1860          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1861          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1862          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1863          * evmcs->page_fault_error_code_mask =
1864          *              vmcs12->page_fault_error_code_mask;
1865          * evmcs->page_fault_error_code_match =
1866          *              vmcs12->page_fault_error_code_match;
1867          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1868          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1869          * evmcs->tsc_offset = vmcs12->tsc_offset;
1870          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1871          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1872          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1873          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1874          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1875          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1876          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1877          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1878          *
1879          * Not present in struct vmcs12:
1880          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1881          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1882          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1883          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1884          */
1885
1886         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1887         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1888         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1889         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1890         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1891         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1892         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1893         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1894
1895         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1896         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1897         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1898         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1899         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1900         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1901         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1902         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1903         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1904         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1905
1906         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1907         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1908         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1909         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1910         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1911         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1912         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1913         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1914
1915         evmcs->guest_es_base = vmcs12->guest_es_base;
1916         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1917         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1918         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1919         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1920         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1921         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1922         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1923         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1924         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1925
1926         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1927         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1928
1929         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1930         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1931         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1932         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1933
1934         evmcs->guest_pending_dbg_exceptions =
1935                 vmcs12->guest_pending_dbg_exceptions;
1936         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1937         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1938
1939         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1940         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1941
1942         evmcs->guest_cr0 = vmcs12->guest_cr0;
1943         evmcs->guest_cr3 = vmcs12->guest_cr3;
1944         evmcs->guest_cr4 = vmcs12->guest_cr4;
1945         evmcs->guest_dr7 = vmcs12->guest_dr7;
1946
1947         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1948
1949         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1950         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1951         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1952         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1953         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1954         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1955         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1956         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1957
1958         evmcs->exit_qualification = vmcs12->exit_qualification;
1959
1960         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1961         evmcs->guest_rsp = vmcs12->guest_rsp;
1962         evmcs->guest_rflags = vmcs12->guest_rflags;
1963
1964         evmcs->guest_interruptibility_info =
1965                 vmcs12->guest_interruptibility_info;
1966         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1967         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1968         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1969         evmcs->vm_entry_exception_error_code =
1970                 vmcs12->vm_entry_exception_error_code;
1971         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1972
1973         evmcs->guest_rip = vmcs12->guest_rip;
1974
1975         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1976
1977         return 0;
1978 }
1979
1980 /*
1981  * This is an equivalent of the nested hypervisor executing the vmptrld
1982  * instruction.
1983  */
1984 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1985         struct kvm_vcpu *vcpu, bool from_launch)
1986 {
1987         struct vcpu_vmx *vmx = to_vmx(vcpu);
1988         bool evmcs_gpa_changed = false;
1989         u64 evmcs_gpa;
1990
1991         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1992                 return EVMPTRLD_DISABLED;
1993
1994         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1995                 return EVMPTRLD_DISABLED;
1996
1997         if (unlikely(!vmx->nested.hv_evmcs ||
1998                      evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1999                 if (!vmx->nested.hv_evmcs)
2000                         vmx->nested.current_vmptr = -1ull;
2001
2002                 nested_release_evmcs(vcpu);
2003
2004                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2005                                  &vmx->nested.hv_evmcs_map))
2006                         return EVMPTRLD_ERROR;
2007
2008                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2009
2010                 /*
2011                  * Currently, KVM only supports eVMCS version 1
2012                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2013                  * value to first u32 field of eVMCS which should specify eVMCS
2014                  * VersionNumber.
2015                  *
2016                  * Guest should be aware of supported eVMCS versions by host by
2017                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2018                  * expected to set this CPUID leaf according to the value
2019                  * returned in vmcs_version from nested_enable_evmcs().
2020                  *
2021                  * However, it turns out that Microsoft Hyper-V fails to comply
2022                  * to their own invented interface: When Hyper-V use eVMCS, it
2023                  * just sets first u32 field of eVMCS to revision_id specified
2024                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2025                  * which is one of the supported versions specified in
2026                  * CPUID.0x4000000A.EAX[0:15].
2027                  *
2028                  * To overcome Hyper-V bug, we accept here either a supported
2029                  * eVMCS version or VMCS12 revision_id as valid values for first
2030                  * u32 field of eVMCS.
2031                  */
2032                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2033                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2034                         nested_release_evmcs(vcpu);
2035                         return EVMPTRLD_VMFAIL;
2036                 }
2037
2038                 vmx->nested.dirty_vmcs12 = true;
2039                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2040
2041                 evmcs_gpa_changed = true;
2042                 /*
2043                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2044                  * reloaded from guest's memory (read only fields, fields not
2045                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2046                  * are no leftovers.
2047                  */
2048                 if (from_launch) {
2049                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2050                         memset(vmcs12, 0, sizeof(*vmcs12));
2051                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2052                 }
2053
2054         }
2055
2056         /*
2057          * Clean fields data can't be used on VMLAUNCH and when we switch
2058          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2059          */
2060         if (from_launch || evmcs_gpa_changed)
2061                 vmx->nested.hv_evmcs->hv_clean_fields &=
2062                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2063
2064         return EVMPTRLD_SUCCEEDED;
2065 }
2066
2067 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2068 {
2069         struct vcpu_vmx *vmx = to_vmx(vcpu);
2070
2071         if (vmx->nested.hv_evmcs) {
2072                 copy_vmcs12_to_enlightened(vmx);
2073                 /* All fields are clean */
2074                 vmx->nested.hv_evmcs->hv_clean_fields |=
2075                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2076         } else {
2077                 copy_vmcs12_to_shadow(vmx);
2078         }
2079
2080         vmx->nested.need_vmcs12_to_shadow_sync = false;
2081 }
2082
2083 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2084 {
2085         struct vcpu_vmx *vmx =
2086                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2087
2088         vmx->nested.preemption_timer_expired = true;
2089         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2090         kvm_vcpu_kick(&vmx->vcpu);
2091
2092         return HRTIMER_NORESTART;
2093 }
2094
2095 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
2096 {
2097         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
2098         struct vcpu_vmx *vmx = to_vmx(vcpu);
2099
2100         /*
2101          * A timer value of zero is architecturally guaranteed to cause
2102          * a VMExit prior to executing any instructions in the guest.
2103          */
2104         if (preemption_timeout == 0) {
2105                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2106                 return;
2107         }
2108
2109         if (vcpu->arch.virtual_tsc_khz == 0)
2110                 return;
2111
2112         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2113         preemption_timeout *= 1000000;
2114         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2115         hrtimer_start(&vmx->nested.preemption_timer,
2116                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL_PINNED);
2117 }
2118
2119 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2120 {
2121         if (vmx->nested.nested_run_pending &&
2122             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2123                 return vmcs12->guest_ia32_efer;
2124         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2125                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2126         else
2127                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2128 }
2129
2130 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2131 {
2132         /*
2133          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2134          * according to L0's settings (vmcs12 is irrelevant here).  Host
2135          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2136          * will be set as needed prior to VMLAUNCH/VMRESUME.
2137          */
2138         if (vmx->nested.vmcs02_initialized)
2139                 return;
2140         vmx->nested.vmcs02_initialized = true;
2141
2142         /*
2143          * We don't care what the EPTP value is we just need to guarantee
2144          * it's valid so we don't get a false positive when doing early
2145          * consistency checks.
2146          */
2147         if (enable_ept && nested_early_check)
2148                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
2149
2150         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2151         if (cpu_has_vmx_vmfunc())
2152                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2153
2154         if (cpu_has_vmx_posted_intr())
2155                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2156
2157         if (cpu_has_vmx_msr_bitmap())
2158                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2159
2160         /*
2161          * The PML address never changes, so it is constant in vmcs02.
2162          * Conceptually we want to copy the PML index from vmcs01 here,
2163          * and then back to vmcs01 on nested vmexit.  But since we flush
2164          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2165          * index is also effectively constant in vmcs02.
2166          */
2167         if (enable_pml) {
2168                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2169                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2170         }
2171
2172         if (cpu_has_vmx_encls_vmexit())
2173                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2174
2175         /*
2176          * Set the MSR load/store lists to match L0's settings.  Only the
2177          * addresses are constant (for vmcs02), the counts can change based
2178          * on L2's behavior, e.g. switching to/from long mode.
2179          */
2180         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2181         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2182         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2183
2184         vmx_set_constant_host_state(vmx);
2185 }
2186
2187 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2188                                       struct vmcs12 *vmcs12)
2189 {
2190         prepare_vmcs02_constant_state(vmx);
2191
2192         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2193
2194         if (enable_vpid) {
2195                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2196                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2197                 else
2198                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2199         }
2200 }
2201
2202 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2203 {
2204         u32 exec_control, vmcs12_exec_ctrl;
2205         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2206
2207         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2208                 prepare_vmcs02_early_rare(vmx, vmcs12);
2209
2210         /*
2211          * PIN CONTROLS
2212          */
2213         exec_control = vmx_pin_based_exec_ctrl(vmx);
2214         exec_control |= (vmcs12->pin_based_vm_exec_control &
2215                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2216
2217         /* Posted interrupts setting is only taken from vmcs12.  */
2218         if (nested_cpu_has_posted_intr(vmcs12)) {
2219                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2220                 vmx->nested.pi_pending = false;
2221         } else {
2222                 exec_control &= ~PIN_BASED_POSTED_INTR;
2223         }
2224         pin_controls_set(vmx, exec_control);
2225
2226         /*
2227          * EXEC CONTROLS
2228          */
2229         exec_control = vmx_exec_control(vmx); /* L0's desires */
2230         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2231         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2232         exec_control &= ~CPU_BASED_TPR_SHADOW;
2233         exec_control |= vmcs12->cpu_based_vm_exec_control;
2234
2235         vmx->nested.l1_tpr_threshold = -1;
2236         if (exec_control & CPU_BASED_TPR_SHADOW)
2237                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2238 #ifdef CONFIG_X86_64
2239         else
2240                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2241                                 CPU_BASED_CR8_STORE_EXITING;
2242 #endif
2243
2244         /*
2245          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2246          * for I/O port accesses.
2247          */
2248         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2249         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2250
2251         /*
2252          * This bit will be computed in nested_get_vmcs12_pages, because
2253          * we do not have access to L1's MSR bitmap yet.  For now, keep
2254          * the same bit as before, hoping to avoid multiple VMWRITEs that
2255          * only set/clear this bit.
2256          */
2257         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2258         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2259
2260         exec_controls_set(vmx, exec_control);
2261
2262         /*
2263          * SECONDARY EXEC CONTROLS
2264          */
2265         if (cpu_has_secondary_exec_ctrls()) {
2266                 exec_control = vmx->secondary_exec_control;
2267
2268                 /* Take the following fields only from vmcs12 */
2269                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2270                                   SECONDARY_EXEC_ENABLE_INVPCID |
2271                                   SECONDARY_EXEC_RDTSCP |
2272                                   SECONDARY_EXEC_XSAVES |
2273                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2274                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2275                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2276                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2277                 if (nested_cpu_has(vmcs12,
2278                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2279                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2280                                 ~SECONDARY_EXEC_ENABLE_PML;
2281                         exec_control |= vmcs12_exec_ctrl;
2282                 }
2283
2284                 /* VMCS shadowing for L2 is emulated for now */
2285                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2286
2287                 /*
2288                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2289                  * will not have to rewrite the controls just for this bit.
2290                  */
2291                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2292                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2293                         exec_control |= SECONDARY_EXEC_DESC;
2294
2295                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2296                         vmcs_write16(GUEST_INTR_STATUS,
2297                                 vmcs12->guest_intr_status);
2298
2299                 secondary_exec_controls_set(vmx, exec_control);
2300         }
2301
2302         /*
2303          * ENTRY CONTROLS
2304          *
2305          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2306          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2307          * on the related bits (if supported by the CPU) in the hope that
2308          * we can avoid VMWrites during vmx_set_efer().
2309          */
2310         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2311                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2312         if (cpu_has_load_ia32_efer()) {
2313                 if (guest_efer & EFER_LMA)
2314                         exec_control |= VM_ENTRY_IA32E_MODE;
2315                 if (guest_efer != host_efer)
2316                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2317         }
2318         vm_entry_controls_set(vmx, exec_control);
2319
2320         /*
2321          * EXIT CONTROLS
2322          *
2323          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2324          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2325          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2326          */
2327         exec_control = vmx_vmexit_ctrl();
2328         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2329                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2330         vm_exit_controls_set(vmx, exec_control);
2331
2332         /*
2333          * Interrupt/Exception Fields
2334          */
2335         if (vmx->nested.nested_run_pending) {
2336                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2337                              vmcs12->vm_entry_intr_info_field);
2338                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2339                              vmcs12->vm_entry_exception_error_code);
2340                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2341                              vmcs12->vm_entry_instruction_len);
2342                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2343                              vmcs12->guest_interruptibility_info);
2344                 vmx->loaded_vmcs->nmi_known_unmasked =
2345                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2346         } else {
2347                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2348         }
2349 }
2350
2351 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2352 {
2353         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2354
2355         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2356                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2357                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2358                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2359                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2360                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2361                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2362                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2363                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2364                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2365                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2366                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2367                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2368                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2369                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2370                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2371                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2372                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2373                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2374                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2375                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2376                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2377                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2378                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2379                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2380                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2381                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2382                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2383                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2384                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2385                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2386                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2387                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2388                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2389                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2390                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2391                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2392                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2393         }
2394
2395         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2396                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2397                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2398                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2399                             vmcs12->guest_pending_dbg_exceptions);
2400                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2401                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2402
2403                 /*
2404                  * L1 may access the L2's PDPTR, so save them to construct
2405                  * vmcs12
2406                  */
2407                 if (enable_ept) {
2408                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2409                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2410                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2411                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2412                 }
2413
2414                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2415                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2416                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2417         }
2418
2419         if (nested_cpu_has_xsaves(vmcs12))
2420                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2421
2422         /*
2423          * Whether page-faults are trapped is determined by a combination of
2424          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2425          * If enable_ept, L0 doesn't care about page faults and we should
2426          * set all of these to L1's desires. However, if !enable_ept, L0 does
2427          * care about (at least some) page faults, and because it is not easy
2428          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2429          * to exit on each and every L2 page fault. This is done by setting
2430          * MASK=MATCH=0 and (see below) EB.PF=1.
2431          * Note that below we don't need special code to set EB.PF beyond the
2432          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2433          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2434          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2435          */
2436         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2437                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2438         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2439                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2440
2441         if (cpu_has_vmx_apicv()) {
2442                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2443                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2444                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2445                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2446         }
2447
2448         /*
2449          * Make sure the msr_autostore list is up to date before we set the
2450          * count in the vmcs02.
2451          */
2452         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2453
2454         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2455         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2456         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2457
2458         set_cr4_guest_host_mask(vmx);
2459 }
2460
2461 /*
2462  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2463  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2464  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2465  * guest in a way that will both be appropriate to L1's requests, and our
2466  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2467  * function also has additional necessary side-effects, like setting various
2468  * vcpu->arch fields.
2469  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2470  * is assigned to entry_failure_code on failure.
2471  */
2472 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2473                           enum vm_entry_failure_code *entry_failure_code)
2474 {
2475         struct vcpu_vmx *vmx = to_vmx(vcpu);
2476         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2477         bool load_guest_pdptrs_vmcs12 = false;
2478
2479         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2480                 prepare_vmcs02_rare(vmx, vmcs12);
2481                 vmx->nested.dirty_vmcs12 = false;
2482
2483                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2484                         !(hv_evmcs->hv_clean_fields &
2485                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2486         }
2487
2488         if (vmx->nested.nested_run_pending &&
2489             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2490                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2491                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2492         } else {
2493                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2494                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2495         }
2496         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2497             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2498                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2499         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2500
2501         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2502          * bitwise-or of what L1 wants to trap for L2, and what we want to
2503          * trap. Note that CR0.TS also needs updating - we do this later.
2504          */
2505         update_exception_bitmap(vcpu);
2506         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2507         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2508
2509         if (vmx->nested.nested_run_pending &&
2510             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2511                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2512                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2513         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2514                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2515         }
2516
2517         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2518
2519         if (kvm_has_tsc_control)
2520                 decache_tsc_multiplier(vmx);
2521
2522         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2523
2524         if (nested_cpu_has_ept(vmcs12))
2525                 nested_ept_init_mmu_context(vcpu);
2526
2527         /*
2528          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2529          * bits which we consider mandatory enabled.
2530          * The CR0_READ_SHADOW is what L2 should have expected to read given
2531          * the specifications by L1; It's not enough to take
2532          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2533          * have more bits than L1 expected.
2534          */
2535         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2536         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2537
2538         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2539         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2540
2541         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2542         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2543         vmx_set_efer(vcpu, vcpu->arch.efer);
2544
2545         /*
2546          * Guest state is invalid and unrestricted guest is disabled,
2547          * which means L1 attempted VMEntry to L2 with invalid state.
2548          * Fail the VMEntry.
2549          */
2550         if (vmx->emulation_required) {
2551                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2552                 return -EINVAL;
2553         }
2554
2555         /* Shadow page tables on either EPT or shadow page tables. */
2556         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2557                                 entry_failure_code))
2558                 return -EINVAL;
2559
2560         /*
2561          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2562          * on nested VM-Exit, which can occur without actually running L2 and
2563          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2564          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2565          * transition to HLT instead of running L2.
2566          */
2567         if (enable_ept)
2568                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2569
2570         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2571         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2572             is_pae_paging(vcpu)) {
2573                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2574                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2575                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2576                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2577         }
2578
2579         if (!enable_ept)
2580                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2581
2582         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2583             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2584                                      vmcs12->guest_ia32_perf_global_ctrl)))
2585                 return -EINVAL;
2586
2587         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2588         kvm_rip_write(vcpu, vmcs12->guest_rip);
2589         return 0;
2590 }
2591
2592 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2593 {
2594         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2595                nested_cpu_has_virtual_nmis(vmcs12)))
2596                 return -EINVAL;
2597
2598         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2599                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2600                 return -EINVAL;
2601
2602         return 0;
2603 }
2604
2605 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2606 {
2607         struct vcpu_vmx *vmx = to_vmx(vcpu);
2608         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2609
2610         /* Check for memory type validity */
2611         switch (new_eptp & VMX_EPTP_MT_MASK) {
2612         case VMX_EPTP_MT_UC:
2613                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2614                         return false;
2615                 break;
2616         case VMX_EPTP_MT_WB:
2617                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2618                         return false;
2619                 break;
2620         default:
2621                 return false;
2622         }
2623
2624         /* Page-walk levels validity. */
2625         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2626         case VMX_EPTP_PWL_5:
2627                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2628                         return false;
2629                 break;
2630         case VMX_EPTP_PWL_4:
2631                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2632                         return false;
2633                 break;
2634         default:
2635                 return false;
2636         }
2637
2638         /* Reserved bits should not be set */
2639         if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2640                 return false;
2641
2642         /* AD, if set, should be supported */
2643         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2644                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2645                         return false;
2646         }
2647
2648         return true;
2649 }
2650
2651 /*
2652  * Checks related to VM-Execution Control Fields
2653  */
2654 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2655                                               struct vmcs12 *vmcs12)
2656 {
2657         struct vcpu_vmx *vmx = to_vmx(vcpu);
2658
2659         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2660                                    vmx->nested.msrs.pinbased_ctls_low,
2661                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2662             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2663                                    vmx->nested.msrs.procbased_ctls_low,
2664                                    vmx->nested.msrs.procbased_ctls_high)))
2665                 return -EINVAL;
2666
2667         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2668             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2669                                    vmx->nested.msrs.secondary_ctls_low,
2670                                    vmx->nested.msrs.secondary_ctls_high)))
2671                 return -EINVAL;
2672
2673         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2674             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2675             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2676             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2677             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2678             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2679             nested_vmx_check_nmi_controls(vmcs12) ||
2680             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2681             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2682             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2683             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2684             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2685                 return -EINVAL;
2686
2687         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2688             nested_cpu_has_save_preemption_timer(vmcs12))
2689                 return -EINVAL;
2690
2691         if (nested_cpu_has_ept(vmcs12) &&
2692             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2693                 return -EINVAL;
2694
2695         if (nested_cpu_has_vmfunc(vmcs12)) {
2696                 if (CC(vmcs12->vm_function_control &
2697                        ~vmx->nested.msrs.vmfunc_controls))
2698                         return -EINVAL;
2699
2700                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2701                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2702                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2703                                 return -EINVAL;
2704                 }
2705         }
2706
2707         return 0;
2708 }
2709
2710 /*
2711  * Checks related to VM-Exit Control Fields
2712  */
2713 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2714                                          struct vmcs12 *vmcs12)
2715 {
2716         struct vcpu_vmx *vmx = to_vmx(vcpu);
2717
2718         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2719                                     vmx->nested.msrs.exit_ctls_low,
2720                                     vmx->nested.msrs.exit_ctls_high)) ||
2721             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2722                 return -EINVAL;
2723
2724         return 0;
2725 }
2726
2727 /*
2728  * Checks related to VM-Entry Control Fields
2729  */
2730 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2731                                           struct vmcs12 *vmcs12)
2732 {
2733         struct vcpu_vmx *vmx = to_vmx(vcpu);
2734
2735         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2736                                     vmx->nested.msrs.entry_ctls_low,
2737                                     vmx->nested.msrs.entry_ctls_high)))
2738                 return -EINVAL;
2739
2740         /*
2741          * From the Intel SDM, volume 3:
2742          * Fields relevant to VM-entry event injection must be set properly.
2743          * These fields are the VM-entry interruption-information field, the
2744          * VM-entry exception error code, and the VM-entry instruction length.
2745          */
2746         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2747                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2748                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2749                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2750                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2751                 bool should_have_error_code;
2752                 bool urg = nested_cpu_has2(vmcs12,
2753                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2754                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2755
2756                 /* VM-entry interruption-info field: interruption type */
2757                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2758                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2759                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2760                         return -EINVAL;
2761
2762                 /* VM-entry interruption-info field: vector */
2763                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2764                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2765                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2766                         return -EINVAL;
2767
2768                 /* VM-entry interruption-info field: deliver error code */
2769                 should_have_error_code =
2770                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2771                         x86_exception_has_error_code(vector);
2772                 if (CC(has_error_code != should_have_error_code))
2773                         return -EINVAL;
2774
2775                 /* VM-entry exception error code */
2776                 if (CC(has_error_code &&
2777                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2778                         return -EINVAL;
2779
2780                 /* VM-entry interruption-info field: reserved bits */
2781                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2782                         return -EINVAL;
2783
2784                 /* VM-entry instruction length */
2785                 switch (intr_type) {
2786                 case INTR_TYPE_SOFT_EXCEPTION:
2787                 case INTR_TYPE_SOFT_INTR:
2788                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2789                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2790                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2791                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2792                                 return -EINVAL;
2793                 }
2794         }
2795
2796         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2797                 return -EINVAL;
2798
2799         return 0;
2800 }
2801
2802 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2803                                      struct vmcs12 *vmcs12)
2804 {
2805         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2806             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2807             nested_check_vm_entry_controls(vcpu, vmcs12))
2808                 return -EINVAL;
2809
2810         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2811                 return nested_evmcs_check_controls(vmcs12);
2812
2813         return 0;
2814 }
2815
2816 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2817                                        struct vmcs12 *vmcs12)
2818 {
2819         bool ia32e;
2820
2821         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2822             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2823             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2824                 return -EINVAL;
2825
2826         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2827             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2828                 return -EINVAL;
2829
2830         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2831             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2832                 return -EINVAL;
2833
2834         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2835             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2836                                            vmcs12->host_ia32_perf_global_ctrl)))
2837                 return -EINVAL;
2838
2839 #ifdef CONFIG_X86_64
2840         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2841 #else
2842         ia32e = false;
2843 #endif
2844
2845         if (ia32e) {
2846                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2847                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2848                         return -EINVAL;
2849         } else {
2850                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2851                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2852                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2853                     CC((vmcs12->host_rip) >> 32))
2854                         return -EINVAL;
2855         }
2856
2857         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2858             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2859             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2860             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2861             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2862             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2863             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2864             CC(vmcs12->host_cs_selector == 0) ||
2865             CC(vmcs12->host_tr_selector == 0) ||
2866             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2867                 return -EINVAL;
2868
2869         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2870             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2871             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2872             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2873             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2874             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2875                 return -EINVAL;
2876
2877         /*
2878          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2879          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2880          * the values of the LMA and LME bits in the field must each be that of
2881          * the host address-space size VM-exit control.
2882          */
2883         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2884                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2885                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2886                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2887                         return -EINVAL;
2888         }
2889
2890         return 0;
2891 }
2892
2893 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2894                                           struct vmcs12 *vmcs12)
2895 {
2896         int r = 0;
2897         struct vmcs12 *shadow;
2898         struct kvm_host_map map;
2899
2900         if (vmcs12->vmcs_link_pointer == -1ull)
2901                 return 0;
2902
2903         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2904                 return -EINVAL;
2905
2906         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2907                 return -EINVAL;
2908
2909         shadow = map.hva;
2910
2911         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2912             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2913                 r = -EINVAL;
2914
2915         kvm_vcpu_unmap(vcpu, &map, false);
2916         return r;
2917 }
2918
2919 /*
2920  * Checks related to Guest Non-register State
2921  */
2922 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2923 {
2924         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2925                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2926                 return -EINVAL;
2927
2928         return 0;
2929 }
2930
2931 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2932                                         struct vmcs12 *vmcs12,
2933                                         enum vm_entry_failure_code *entry_failure_code)
2934 {
2935         bool ia32e;
2936
2937         *entry_failure_code = ENTRY_FAIL_DEFAULT;
2938
2939         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2940             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2941                 return -EINVAL;
2942
2943         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2944             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2945                 return -EINVAL;
2946
2947         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2948             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2949                 return -EINVAL;
2950
2951         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2952                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2953                 return -EINVAL;
2954         }
2955
2956         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2957             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2958                                            vmcs12->guest_ia32_perf_global_ctrl)))
2959                 return -EINVAL;
2960
2961         /*
2962          * If the load IA32_EFER VM-entry control is 1, the following checks
2963          * are performed on the field for the IA32_EFER MSR:
2964          * - Bits reserved in the IA32_EFER MSR must be 0.
2965          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2966          *   the IA-32e mode guest VM-exit control. It must also be identical
2967          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2968          *   CR0.PG) is 1.
2969          */
2970         if (to_vmx(vcpu)->nested.nested_run_pending &&
2971             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2972                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2973                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2974                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2975                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2976                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2977                         return -EINVAL;
2978         }
2979
2980         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2981             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2982              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2983                 return -EINVAL;
2984
2985         if (nested_check_guest_non_reg_state(vmcs12))
2986                 return -EINVAL;
2987
2988         return 0;
2989 }
2990
2991 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2992 {
2993         struct vcpu_vmx *vmx = to_vmx(vcpu);
2994         unsigned long cr3, cr4;
2995         bool vm_fail;
2996
2997         if (!nested_early_check)
2998                 return 0;
2999
3000         if (vmx->msr_autoload.host.nr)
3001                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3002         if (vmx->msr_autoload.guest.nr)
3003                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3004
3005         preempt_disable();
3006
3007         vmx_prepare_switch_to_guest(vcpu);
3008
3009         /*
3010          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3011          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3012          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3013          * there is no need to preserve other bits or save/restore the field.
3014          */
3015         vmcs_writel(GUEST_RFLAGS, 0);
3016
3017         cr3 = __get_current_cr3_fast();
3018         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3019                 vmcs_writel(HOST_CR3, cr3);
3020                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3021         }
3022
3023         cr4 = cr4_read_shadow();
3024         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3025                 vmcs_writel(HOST_CR4, cr4);
3026                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3027         }
3028
3029         asm(
3030                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
3031                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3032                 "je 1f \n\t"
3033                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
3034                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3035                 "1: \n\t"
3036                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
3037
3038                 /* Check if vmlaunch or vmresume is needed */
3039                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
3040
3041                 /*
3042                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
3043                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
3044                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
3045                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
3046                  */
3047                 "call vmx_vmenter\n\t"
3048
3049                 CC_SET(be)
3050               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3051               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
3052                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
3053                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
3054                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3055                 [wordsize]"i"(sizeof(ulong))
3056               : "memory"
3057         );
3058
3059         if (vmx->msr_autoload.host.nr)
3060                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3061         if (vmx->msr_autoload.guest.nr)
3062                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3063
3064         if (vm_fail) {
3065                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3066
3067                 preempt_enable();
3068
3069                 trace_kvm_nested_vmenter_failed(
3070                         "early hardware check VM-instruction error: ", error);
3071                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3072                 return 1;
3073         }
3074
3075         /*
3076          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3077          */
3078         local_irq_enable();
3079         if (hw_breakpoint_active())
3080                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3081         preempt_enable();
3082
3083         /*
3084          * A non-failing VMEntry means we somehow entered guest mode with
3085          * an illegal RIP, and that's just the tip of the iceberg.  There
3086          * is no telling what memory has been modified or what state has
3087          * been exposed to unknown code.  Hitting this all but guarantees
3088          * a (very critical) hardware issue.
3089          */
3090         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3091                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3092
3093         return 0;
3094 }
3095
3096 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3097 {
3098         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3099         struct vcpu_vmx *vmx = to_vmx(vcpu);
3100         struct kvm_host_map *map;
3101         struct page *page;
3102         u64 hpa;
3103
3104         /*
3105          * hv_evmcs may end up being not mapped after migration (when
3106          * L2 was running), map it here to make sure vmcs12 changes are
3107          * properly reflected.
3108          */
3109         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3110                 enum nested_evmptrld_status evmptrld_status =
3111                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3112
3113                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3114                     evmptrld_status == EVMPTRLD_ERROR) {
3115                         pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3116                                              __func__);
3117                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3118                         vcpu->run->internal.suberror =
3119                                 KVM_INTERNAL_ERROR_EMULATION;
3120                         vcpu->run->internal.ndata = 0;
3121                         return false;
3122                 }
3123         }
3124
3125         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3126                 /*
3127                  * Translate L1 physical address to host physical
3128                  * address for vmcs02. Keep the page pinned, so this
3129                  * physical address remains valid. We keep a reference
3130                  * to it so we can release it later.
3131                  */
3132                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3133                         kvm_release_page_clean(vmx->nested.apic_access_page);
3134                         vmx->nested.apic_access_page = NULL;
3135                 }
3136                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3137                 if (!is_error_page(page)) {
3138                         vmx->nested.apic_access_page = page;
3139                         hpa = page_to_phys(vmx->nested.apic_access_page);
3140                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3141                 } else {
3142                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3143                                              __func__);
3144                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3145                         vcpu->run->internal.suberror =
3146                                 KVM_INTERNAL_ERROR_EMULATION;
3147                         vcpu->run->internal.ndata = 0;
3148                         return false;
3149                 }
3150         }
3151
3152         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3153                 map = &vmx->nested.virtual_apic_map;
3154
3155                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3156                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3157                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3158                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3159                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3160                         /*
3161                          * The processor will never use the TPR shadow, simply
3162                          * clear the bit from the execution control.  Such a
3163                          * configuration is useless, but it happens in tests.
3164                          * For any other configuration, failing the vm entry is
3165                          * _not_ what the processor does but it's basically the
3166                          * only possibility we have.
3167                          */
3168                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3169                 } else {
3170                         /*
3171                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3172                          * force VM-Entry to fail.
3173                          */
3174                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3175                 }
3176         }
3177
3178         if (nested_cpu_has_posted_intr(vmcs12)) {
3179                 map = &vmx->nested.pi_desc_map;
3180
3181                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3182                         vmx->nested.pi_desc =
3183                                 (struct pi_desc *)(((void *)map->hva) +
3184                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3185                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3186                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3187                 }
3188         }
3189         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3190                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3191         else
3192                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3193         return true;
3194 }
3195
3196 /*
3197  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3198  * for running VMX instructions (except VMXON, whose prerequisites are
3199  * slightly different). It also specifies what exception to inject otherwise.
3200  * Note that many of these exceptions have priority over VM exits, so they
3201  * don't have to be checked again here.
3202  */
3203 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3204 {
3205         if (!to_vmx(vcpu)->nested.vmxon) {
3206                 kvm_queue_exception(vcpu, UD_VECTOR);
3207                 return 0;
3208         }
3209
3210         if (vmx_get_cpl(vcpu)) {
3211                 kvm_inject_gp(vcpu, 0);
3212                 return 0;
3213         }
3214
3215         return 1;
3216 }
3217
3218 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3219 {
3220         u8 rvi = vmx_get_rvi();
3221         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3222
3223         return ((rvi & 0xf0) > (vppr & 0xf0));
3224 }
3225
3226 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3227                                    struct vmcs12 *vmcs12);
3228
3229 /*
3230  * If from_vmentry is false, this is being called from state restore (either RSM
3231  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3232  *
3233  * Returns:
3234  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3235  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3236  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3237  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3238  */
3239 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3240                                                         bool from_vmentry)
3241 {
3242         struct vcpu_vmx *vmx = to_vmx(vcpu);
3243         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3244         enum vm_entry_failure_code entry_failure_code;
3245         bool evaluate_pending_interrupts;
3246         u32 exit_reason, failed_index;
3247
3248         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3249                 kvm_vcpu_flush_tlb_current(vcpu);
3250
3251         evaluate_pending_interrupts = exec_controls_get(vmx) &
3252                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3253         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3254                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3255
3256         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3257                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3258         if (kvm_mpx_supported() &&
3259                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3260                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3261
3262         /*
3263          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3264          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3265          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3266          * software model to the pre-VMEntry host state.  When EPT is disabled,
3267          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3268          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3269          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3270          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3271          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3272          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3273          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3274          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3275          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3276          * path would need to manually save/restore vmcs01.GUEST_CR3.
3277          */
3278         if (!enable_ept && !nested_early_check)
3279                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3280
3281         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3282
3283         prepare_vmcs02_early(vmx, vmcs12);
3284
3285         if (from_vmentry) {
3286                 if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3287                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3288
3289                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3290                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3291                         return NVMX_VMENTRY_VMFAIL;
3292                 }
3293
3294                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3295                                                  &entry_failure_code)) {
3296                         exit_reason = EXIT_REASON_INVALID_STATE;
3297                         vmcs12->exit_qualification = entry_failure_code;
3298                         goto vmentry_fail_vmexit;
3299                 }
3300         }
3301
3302         enter_guest_mode(vcpu);
3303         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3304                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3305
3306         if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3307                 exit_reason = EXIT_REASON_INVALID_STATE;
3308                 vmcs12->exit_qualification = entry_failure_code;
3309                 goto vmentry_fail_vmexit_guest_mode;
3310         }
3311
3312         if (from_vmentry) {
3313                 failed_index = nested_vmx_load_msr(vcpu,
3314                                                    vmcs12->vm_entry_msr_load_addr,
3315                                                    vmcs12->vm_entry_msr_load_count);
3316                 if (failed_index) {
3317                         exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3318                         vmcs12->exit_qualification = failed_index;
3319                         goto vmentry_fail_vmexit_guest_mode;
3320                 }
3321         } else {
3322                 /*
3323                  * The MMU is not initialized to point at the right entities yet and
3324                  * "get pages" would need to read data from the guest (i.e. we will
3325                  * need to perform gpa to hpa translation). Request a call
3326                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3327                  * have already been set at vmentry time and should not be reset.
3328                  */
3329                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3330         }
3331
3332         /*
3333          * If L1 had a pending IRQ/NMI until it executed
3334          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3335          * disallowed (e.g. interrupts disabled), L0 needs to
3336          * evaluate if this pending event should cause an exit from L2
3337          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3338          * intercept EXTERNAL_INTERRUPT).
3339          *
3340          * Usually this would be handled by the processor noticing an
3341          * IRQ/NMI window request, or checking RVI during evaluation of
3342          * pending virtual interrupts.  However, this setting was done
3343          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3344          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3345          */
3346         if (unlikely(evaluate_pending_interrupts))
3347                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3348
3349         /*
3350          * Do not start the preemption timer hrtimer until after we know
3351          * we are successful, so that only nested_vmx_vmexit needs to cancel
3352          * the timer.
3353          */
3354         vmx->nested.preemption_timer_expired = false;
3355         if (nested_cpu_has_preemption_timer(vmcs12))
3356                 vmx_start_preemption_timer(vcpu);
3357
3358         /*
3359          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3360          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3361          * returned as far as L1 is concerned. It will only return (and set
3362          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3363          */
3364         return NVMX_VMENTRY_SUCCESS;
3365
3366         /*
3367          * A failed consistency check that leads to a VMExit during L1's
3368          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3369          * 26.7 "VM-entry failures during or after loading guest state".
3370          */
3371 vmentry_fail_vmexit_guest_mode:
3372         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3373                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3374         leave_guest_mode(vcpu);
3375
3376 vmentry_fail_vmexit:
3377         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3378
3379         if (!from_vmentry)
3380                 return NVMX_VMENTRY_VMEXIT;
3381
3382         load_vmcs12_host_state(vcpu, vmcs12);
3383         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3384         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3385                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3386         return NVMX_VMENTRY_VMEXIT;
3387 }
3388
3389 /*
3390  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3391  * for running an L2 nested guest.
3392  */
3393 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3394 {
3395         struct vmcs12 *vmcs12;
3396         enum nvmx_vmentry_status status;
3397         struct vcpu_vmx *vmx = to_vmx(vcpu);
3398         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3399         enum nested_evmptrld_status evmptrld_status;
3400
3401         if (!nested_vmx_check_permission(vcpu))
3402                 return 1;
3403
3404         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3405         if (evmptrld_status == EVMPTRLD_ERROR) {
3406                 kvm_queue_exception(vcpu, UD_VECTOR);
3407                 return 1;
3408         } else if (evmptrld_status == EVMPTRLD_VMFAIL) {
3409                 return nested_vmx_failInvalid(vcpu);
3410         }
3411
3412         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3413                 return nested_vmx_failInvalid(vcpu);
3414
3415         vmcs12 = get_vmcs12(vcpu);
3416
3417         /*
3418          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3419          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3420          * rather than RFLAGS.ZF, and no error number is stored to the
3421          * VM-instruction error field.
3422          */
3423         if (vmcs12->hdr.shadow_vmcs)
3424                 return nested_vmx_failInvalid(vcpu);
3425
3426         if (vmx->nested.hv_evmcs) {
3427                 copy_enlightened_to_vmcs12(vmx);
3428                 /* Enlightened VMCS doesn't have launch state */
3429                 vmcs12->launch_state = !launch;
3430         } else if (enable_shadow_vmcs) {
3431                 copy_shadow_to_vmcs12(vmx);
3432         }
3433
3434         /*
3435          * The nested entry process starts with enforcing various prerequisites
3436          * on vmcs12 as required by the Intel SDM, and act appropriately when
3437          * they fail: As the SDM explains, some conditions should cause the
3438          * instruction to fail, while others will cause the instruction to seem
3439          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3440          * To speed up the normal (success) code path, we should avoid checking
3441          * for misconfigurations which will anyway be caught by the processor
3442          * when using the merged vmcs02.
3443          */
3444         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3445                 return nested_vmx_failValid(vcpu,
3446                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3447
3448         if (vmcs12->launch_state == launch)
3449                 return nested_vmx_failValid(vcpu,
3450                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3451                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3452
3453         if (nested_vmx_check_controls(vcpu, vmcs12))
3454                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3455
3456         if (nested_vmx_check_host_state(vcpu, vmcs12))
3457                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3458
3459         /*
3460          * We're finally done with prerequisite checking, and can start with
3461          * the nested entry.
3462          */
3463         vmx->nested.nested_run_pending = 1;
3464         status = nested_vmx_enter_non_root_mode(vcpu, true);
3465         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3466                 goto vmentry_failed;
3467
3468         /* Hide L1D cache contents from the nested guest.  */
3469         vmx->vcpu.arch.l1tf_flush_l1d = true;
3470
3471         /*
3472          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3473          * also be used as part of restoring nVMX state for
3474          * snapshot restore (migration).
3475          *
3476          * In this flow, it is assumed that vmcs12 cache was
3477          * trasferred as part of captured nVMX state and should
3478          * therefore not be read from guest memory (which may not
3479          * exist on destination host yet).
3480          */
3481         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3482
3483         /*
3484          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3485          * awakened by event injection or by an NMI-window VM-exit or
3486          * by an interrupt-window VM-exit, halt the vcpu.
3487          */
3488         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3489             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3490             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3491             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3492               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3493                 vmx->nested.nested_run_pending = 0;
3494                 return kvm_vcpu_halt(vcpu);
3495         }
3496         return 1;
3497
3498 vmentry_failed:
3499         vmx->nested.nested_run_pending = 0;
3500         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3501                 return 0;
3502         if (status == NVMX_VMENTRY_VMEXIT)
3503                 return 1;
3504         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3505         return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3506 }
3507
3508 /*
3509  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3510  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3511  * This function returns the new value we should put in vmcs12.guest_cr0.
3512  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3513  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3514  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3515  *     didn't trap the bit, because if L1 did, so would L0).
3516  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3517  *     been modified by L2, and L1 knows it. So just leave the old value of
3518  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3519  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3520  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3521  *     changed these bits, and therefore they need to be updated, but L0
3522  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3523  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3524  */
3525 static inline unsigned long
3526 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3527 {
3528         return
3529         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3530         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3531         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3532                         vcpu->arch.cr0_guest_owned_bits));
3533 }
3534
3535 static inline unsigned long
3536 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3537 {
3538         return
3539         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3540         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3541         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3542                         vcpu->arch.cr4_guest_owned_bits));
3543 }
3544
3545 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3546                                       struct vmcs12 *vmcs12)
3547 {
3548         u32 idt_vectoring;
3549         unsigned int nr;
3550
3551         if (vcpu->arch.exception.injected) {
3552                 nr = vcpu->arch.exception.nr;
3553                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3554
3555                 if (kvm_exception_is_soft(nr)) {
3556                         vmcs12->vm_exit_instruction_len =
3557                                 vcpu->arch.event_exit_inst_len;
3558                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3559                 } else
3560                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3561
3562                 if (vcpu->arch.exception.has_error_code) {
3563                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3564                         vmcs12->idt_vectoring_error_code =
3565                                 vcpu->arch.exception.error_code;
3566                 }
3567
3568                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3569         } else if (vcpu->arch.nmi_injected) {
3570                 vmcs12->idt_vectoring_info_field =
3571                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3572         } else if (vcpu->arch.interrupt.injected) {
3573                 nr = vcpu->arch.interrupt.nr;
3574                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3575
3576                 if (vcpu->arch.interrupt.soft) {
3577                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3578                         vmcs12->vm_entry_instruction_len =
3579                                 vcpu->arch.event_exit_inst_len;
3580                 } else
3581                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3582
3583                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3584         }
3585 }
3586
3587
3588 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3589 {
3590         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3591         gfn_t gfn;
3592
3593         /*
3594          * Don't need to mark the APIC access page dirty; it is never
3595          * written to by the CPU during APIC virtualization.
3596          */
3597
3598         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3599                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3600                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3601         }
3602
3603         if (nested_cpu_has_posted_intr(vmcs12)) {
3604                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3605                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3606         }
3607 }
3608
3609 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3610 {
3611         struct vcpu_vmx *vmx = to_vmx(vcpu);
3612         int max_irr;
3613         void *vapic_page;
3614         u16 status;
3615
3616         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3617                 return;
3618
3619         vmx->nested.pi_pending = false;
3620         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3621                 return;
3622
3623         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3624         if (max_irr != 256) {
3625                 vapic_page = vmx->nested.virtual_apic_map.hva;
3626                 if (!vapic_page)
3627                         return;
3628
3629                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3630                         vapic_page, &max_irr);
3631                 status = vmcs_read16(GUEST_INTR_STATUS);
3632                 if ((u8)max_irr > ((u8)status & 0xff)) {
3633                         status &= ~0xff;
3634                         status |= (u8)max_irr;
3635                         vmcs_write16(GUEST_INTR_STATUS, status);
3636                 }
3637         }
3638
3639         nested_mark_vmcs12_pages_dirty(vcpu);
3640 }
3641
3642 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3643                                                unsigned long exit_qual)
3644 {
3645         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3646         unsigned int nr = vcpu->arch.exception.nr;
3647         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3648
3649         if (vcpu->arch.exception.has_error_code) {
3650                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3651                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3652         }
3653
3654         if (kvm_exception_is_soft(nr))
3655                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3656         else
3657                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3658
3659         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3660             vmx_get_nmi_mask(vcpu))
3661                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3662
3663         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3664 }
3665
3666 /*
3667  * Returns true if a debug trap is pending delivery.
3668  *
3669  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3670  * exception may be inferred from the presence of an exception payload.
3671  */
3672 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3673 {
3674         return vcpu->arch.exception.pending &&
3675                         vcpu->arch.exception.nr == DB_VECTOR &&
3676                         vcpu->arch.exception.payload;
3677 }
3678
3679 /*
3680  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3681  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3682  * represents these debug traps with a payload that is said to be compatible
3683  * with the 'pending debug exceptions' field, write the payload to the VMCS
3684  * field if a VM-exit is delivered before the debug trap.
3685  */
3686 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3687 {
3688         if (vmx_pending_dbg_trap(vcpu))
3689                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3690                             vcpu->arch.exception.payload);
3691 }
3692
3693 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3694 {
3695         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3696                to_vmx(vcpu)->nested.preemption_timer_expired;
3697 }
3698
3699 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3700 {
3701         struct vcpu_vmx *vmx = to_vmx(vcpu);
3702         unsigned long exit_qual;
3703         bool block_nested_events =
3704             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3705         bool mtf_pending = vmx->nested.mtf_pending;
3706         struct kvm_lapic *apic = vcpu->arch.apic;
3707
3708         /*
3709          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3710          * this state is discarded.
3711          */
3712         if (!block_nested_events)
3713                 vmx->nested.mtf_pending = false;
3714
3715         if (lapic_in_kernel(vcpu) &&
3716                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3717                 if (block_nested_events)
3718                         return -EBUSY;
3719                 nested_vmx_update_pending_dbg(vcpu);
3720                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3721                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3722                 return 0;
3723         }
3724
3725         /*
3726          * Process any exceptions that are not debug traps before MTF.
3727          */
3728         if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3729                 if (block_nested_events)
3730                         return -EBUSY;
3731                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3732                         goto no_vmexit;
3733                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3734                 return 0;
3735         }
3736
3737         if (mtf_pending) {
3738                 if (block_nested_events)
3739                         return -EBUSY;
3740                 nested_vmx_update_pending_dbg(vcpu);
3741                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3742                 return 0;
3743         }
3744
3745         if (vcpu->arch.exception.pending) {
3746                 if (block_nested_events)
3747                         return -EBUSY;
3748                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3749                         goto no_vmexit;
3750                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3751                 return 0;
3752         }
3753
3754         if (nested_vmx_preemption_timer_pending(vcpu)) {
3755                 if (block_nested_events)
3756                         return -EBUSY;
3757                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3758                 return 0;
3759         }
3760
3761         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3762                 if (block_nested_events)
3763                         return -EBUSY;
3764                 goto no_vmexit;
3765         }
3766
3767         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3768                 if (block_nested_events)
3769                         return -EBUSY;
3770                 if (!nested_exit_on_nmi(vcpu))
3771                         goto no_vmexit;
3772
3773                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3774                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3775                                   INTR_INFO_VALID_MASK, 0);
3776                 /*
3777                  * The NMI-triggered VM exit counts as injection:
3778                  * clear this one and block further NMIs.
3779                  */
3780                 vcpu->arch.nmi_pending = 0;
3781                 vmx_set_nmi_mask(vcpu, true);
3782                 return 0;
3783         }
3784
3785         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3786                 if (block_nested_events)
3787                         return -EBUSY;
3788                 if (!nested_exit_on_intr(vcpu))
3789                         goto no_vmexit;
3790                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3791                 return 0;
3792         }
3793
3794 no_vmexit:
3795         vmx_complete_nested_posted_interrupt(vcpu);
3796         return 0;
3797 }
3798
3799 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3800 {
3801         ktime_t remaining =
3802                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3803         u64 value;
3804
3805         if (ktime_to_ns(remaining) <= 0)
3806                 return 0;
3807
3808         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3809         do_div(value, 1000000);
3810         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3811 }
3812
3813 static bool is_vmcs12_ext_field(unsigned long field)
3814 {
3815         switch (field) {
3816         case GUEST_ES_SELECTOR:
3817         case GUEST_CS_SELECTOR:
3818         case GUEST_SS_SELECTOR:
3819         case GUEST_DS_SELECTOR:
3820         case GUEST_FS_SELECTOR:
3821         case GUEST_GS_SELECTOR:
3822         case GUEST_LDTR_SELECTOR:
3823         case GUEST_TR_SELECTOR:
3824         case GUEST_ES_LIMIT:
3825         case GUEST_CS_LIMIT:
3826         case GUEST_SS_LIMIT:
3827         case GUEST_DS_LIMIT:
3828         case GUEST_FS_LIMIT:
3829         case GUEST_GS_LIMIT:
3830         case GUEST_LDTR_LIMIT:
3831         case GUEST_TR_LIMIT:
3832         case GUEST_GDTR_LIMIT:
3833         case GUEST_IDTR_LIMIT:
3834         case GUEST_ES_AR_BYTES:
3835         case GUEST_DS_AR_BYTES:
3836         case GUEST_FS_AR_BYTES:
3837         case GUEST_GS_AR_BYTES:
3838         case GUEST_LDTR_AR_BYTES:
3839         case GUEST_TR_AR_BYTES:
3840         case GUEST_ES_BASE:
3841         case GUEST_CS_BASE:
3842         case GUEST_SS_BASE:
3843         case GUEST_DS_BASE:
3844         case GUEST_FS_BASE:
3845         case GUEST_GS_BASE:
3846         case GUEST_LDTR_BASE:
3847         case GUEST_TR_BASE:
3848         case GUEST_GDTR_BASE:
3849         case GUEST_IDTR_BASE:
3850         case GUEST_PENDING_DBG_EXCEPTIONS:
3851         case GUEST_BNDCFGS:
3852                 return true;
3853         default:
3854                 break;
3855         }
3856
3857         return false;
3858 }
3859
3860 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3861                                        struct vmcs12 *vmcs12)
3862 {
3863         struct vcpu_vmx *vmx = to_vmx(vcpu);
3864
3865         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3866         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3867         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3868         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3869         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3870         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3871         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3872         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3873         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3874         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3875         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3876         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3877         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3878         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3879         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3880         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3881         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3882         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3883         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3884         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3885         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3886         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3887         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3888         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3889         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3890         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3891         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3892         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3893         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3894         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3895         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3896         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3897         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3898         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3899         vmcs12->guest_pending_dbg_exceptions =
3900                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3901         if (kvm_mpx_supported())
3902                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3903
3904         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3905 }
3906
3907 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3908                                        struct vmcs12 *vmcs12)
3909 {
3910         struct vcpu_vmx *vmx = to_vmx(vcpu);
3911         int cpu;
3912
3913         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3914                 return;
3915
3916
3917         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3918
3919         cpu = get_cpu();
3920         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3921         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
3922
3923         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3924
3925         vmx->loaded_vmcs = &vmx->vmcs01;
3926         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
3927         put_cpu();
3928 }
3929
3930 /*
3931  * Update the guest state fields of vmcs12 to reflect changes that
3932  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3933  * VM-entry controls is also updated, since this is really a guest
3934  * state bit.)
3935  */
3936 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3937 {
3938         struct vcpu_vmx *vmx = to_vmx(vcpu);
3939
3940         if (vmx->nested.hv_evmcs)
3941                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3942
3943         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3944
3945         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3946         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3947
3948         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3949         vmcs12->guest_rip = kvm_rip_read(vcpu);
3950         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3951
3952         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3953         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3954
3955         vmcs12->guest_interruptibility_info =
3956                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3957
3958         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3959                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3960         else
3961                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3962
3963         if (nested_cpu_has_preemption_timer(vmcs12) &&
3964             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3965                         vmcs12->vmx_preemption_timer_value =
3966                                 vmx_get_preemption_timer_value(vcpu);
3967
3968         /*
3969          * In some cases (usually, nested EPT), L2 is allowed to change its
3970          * own CR3 without exiting. If it has changed it, we must keep it.
3971          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3972          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3973          *
3974          * Additionally, restore L2's PDPTR to vmcs12.
3975          */
3976         if (enable_ept) {
3977                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3978                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3979                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3980                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3981                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3982                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3983                 }
3984         }
3985
3986         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3987
3988         if (nested_cpu_has_vid(vmcs12))
3989                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3990
3991         vmcs12->vm_entry_controls =
3992                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3993                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3994
3995         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3996                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3997
3998         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3999                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4000 }
4001
4002 /*
4003  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4004  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4005  * and this function updates it to reflect the changes to the guest state while
4006  * L2 was running (and perhaps made some exits which were handled directly by L0
4007  * without going back to L1), and to reflect the exit reason.
4008  * Note that we do not have to copy here all VMCS fields, just those that
4009  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4010  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4011  * which already writes to vmcs12 directly.
4012  */
4013 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4014                            u32 vm_exit_reason, u32 exit_intr_info,
4015                            unsigned long exit_qualification)
4016 {
4017         /* update exit information fields: */
4018         vmcs12->vm_exit_reason = vm_exit_reason;
4019         vmcs12->exit_qualification = exit_qualification;
4020         vmcs12->vm_exit_intr_info = exit_intr_info;
4021
4022         vmcs12->idt_vectoring_info_field = 0;
4023         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4024         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4025
4026         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4027                 vmcs12->launch_state = 1;
4028
4029                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4030                  * instead of reading the real value. */
4031                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4032
4033                 /*
4034                  * Transfer the event that L0 or L1 may wanted to inject into
4035                  * L2 to IDT_VECTORING_INFO_FIELD.
4036                  */
4037                 vmcs12_save_pending_event(vcpu, vmcs12);
4038
4039                 /*
4040                  * According to spec, there's no need to store the guest's
4041                  * MSRs if the exit is due to a VM-entry failure that occurs
4042                  * during or after loading the guest state. Since this exit
4043                  * does not fall in that category, we need to save the MSRs.
4044                  */
4045                 if (nested_vmx_store_msr(vcpu,
4046                                          vmcs12->vm_exit_msr_store_addr,
4047                                          vmcs12->vm_exit_msr_store_count))
4048                         nested_vmx_abort(vcpu,
4049                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4050         }
4051
4052         /*
4053          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4054          * preserved above and would only end up incorrectly in L1.
4055          */
4056         vcpu->arch.nmi_injected = false;
4057         kvm_clear_exception_queue(vcpu);
4058         kvm_clear_interrupt_queue(vcpu);
4059 }
4060
4061 /*
4062  * A part of what we need to when the nested L2 guest exits and we want to
4063  * run its L1 parent, is to reset L1's guest state to the host state specified
4064  * in vmcs12.
4065  * This function is to be called not only on normal nested exit, but also on
4066  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4067  * Failures During or After Loading Guest State").
4068  * This function should be called when the active VMCS is L1's (vmcs01).
4069  */
4070 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4071                                    struct vmcs12 *vmcs12)
4072 {
4073         enum vm_entry_failure_code ignored;
4074         struct kvm_segment seg;
4075
4076         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4077                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4078         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4079                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4080         else
4081                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4082         vmx_set_efer(vcpu, vcpu->arch.efer);
4083
4084         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4085         kvm_rip_write(vcpu, vmcs12->host_rip);
4086         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4087         vmx_set_interrupt_shadow(vcpu, 0);
4088
4089         /*
4090          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4091          * actually changed, because vmx_set_cr0 refers to efer set above.
4092          *
4093          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4094          * (KVM doesn't change it);
4095          */
4096         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4097         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4098
4099         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4100         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4101         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4102
4103         nested_ept_uninit_mmu_context(vcpu);
4104
4105         /*
4106          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4107          * couldn't have changed.
4108          */
4109         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4110                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4111
4112         if (!enable_ept)
4113                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4114
4115         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4116
4117         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4118         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4119         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4120         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4121         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4122         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4123         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4124
4125         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4126         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4127                 vmcs_write64(GUEST_BNDCFGS, 0);
4128
4129         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4130                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4131                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4132         }
4133         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4134                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4135                                          vmcs12->host_ia32_perf_global_ctrl));
4136
4137         /* Set L1 segment info according to Intel SDM
4138             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4139         seg = (struct kvm_segment) {
4140                 .base = 0,
4141                 .limit = 0xFFFFFFFF,
4142                 .selector = vmcs12->host_cs_selector,
4143                 .type = 11,
4144                 .present = 1,
4145                 .s = 1,
4146                 .g = 1
4147         };
4148         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4149                 seg.l = 1;
4150         else
4151                 seg.db = 1;
4152         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4153         seg = (struct kvm_segment) {
4154                 .base = 0,
4155                 .limit = 0xFFFFFFFF,
4156                 .type = 3,
4157                 .present = 1,
4158                 .s = 1,
4159                 .db = 1,
4160                 .g = 1
4161         };
4162         seg.selector = vmcs12->host_ds_selector;
4163         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4164         seg.selector = vmcs12->host_es_selector;
4165         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4166         seg.selector = vmcs12->host_ss_selector;
4167         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4168         seg.selector = vmcs12->host_fs_selector;
4169         seg.base = vmcs12->host_fs_base;
4170         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4171         seg.selector = vmcs12->host_gs_selector;
4172         seg.base = vmcs12->host_gs_base;
4173         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4174         seg = (struct kvm_segment) {
4175                 .base = vmcs12->host_tr_base,
4176                 .limit = 0x67,
4177                 .selector = vmcs12->host_tr_selector,
4178                 .type = 11,
4179                 .present = 1
4180         };
4181         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4182
4183         kvm_set_dr(vcpu, 7, 0x400);
4184         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4185
4186         if (cpu_has_vmx_msr_bitmap())
4187                 vmx_update_msr_bitmap(vcpu);
4188
4189         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4190                                 vmcs12->vm_exit_msr_load_count))
4191                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4192 }
4193
4194 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4195 {
4196         struct shared_msr_entry *efer_msr;
4197         unsigned int i;
4198
4199         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4200                 return vmcs_read64(GUEST_IA32_EFER);
4201
4202         if (cpu_has_load_ia32_efer())
4203                 return host_efer;
4204
4205         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4206                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4207                         return vmx->msr_autoload.guest.val[i].value;
4208         }
4209
4210         efer_msr = find_msr_entry(vmx, MSR_EFER);
4211         if (efer_msr)
4212                 return efer_msr->data;
4213
4214         return host_efer;
4215 }
4216
4217 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4218 {
4219         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4220         struct vcpu_vmx *vmx = to_vmx(vcpu);
4221         struct vmx_msr_entry g, h;
4222         gpa_t gpa;
4223         u32 i, j;
4224
4225         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4226
4227         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4228                 /*
4229                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4230                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4231                  * and vcpu->arch.dr7 is not squirreled away before the
4232                  * nested VMENTER (not worth adding a variable in nested_vmx).
4233                  */
4234                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4235                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4236                 else
4237                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4238         }
4239
4240         /*
4241          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4242          * handle a variety of side effects to KVM's software model.
4243          */
4244         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4245
4246         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4247         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4248
4249         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4250         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4251
4252         nested_ept_uninit_mmu_context(vcpu);
4253         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4254         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4255
4256         /*
4257          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4258          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4259          * VMFail, like everything else we just need to ensure our
4260          * software model is up-to-date.
4261          */
4262         if (enable_ept && is_pae_paging(vcpu))
4263                 ept_save_pdptrs(vcpu);
4264
4265         kvm_mmu_reset_context(vcpu);
4266
4267         if (cpu_has_vmx_msr_bitmap())
4268                 vmx_update_msr_bitmap(vcpu);
4269
4270         /*
4271          * This nasty bit of open coding is a compromise between blindly
4272          * loading L1's MSRs using the exit load lists (incorrect emulation
4273          * of VMFail), leaving the nested VM's MSRs in the software model
4274          * (incorrect behavior) and snapshotting the modified MSRs (too
4275          * expensive since the lists are unbound by hardware).  For each
4276          * MSR that was (prematurely) loaded from the nested VMEntry load
4277          * list, reload it from the exit load list if it exists and differs
4278          * from the guest value.  The intent is to stuff host state as
4279          * silently as possible, not to fully process the exit load list.
4280          */
4281         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4282                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4283                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4284                         pr_debug_ratelimited(
4285                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4286                                 __func__, i, gpa);
4287                         goto vmabort;
4288                 }
4289
4290                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4291                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4292                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4293                                 pr_debug_ratelimited(
4294                                         "%s read MSR failed (%u, 0x%08llx)\n",
4295                                         __func__, j, gpa);
4296                                 goto vmabort;
4297                         }
4298                         if (h.index != g.index)
4299                                 continue;
4300                         if (h.value == g.value)
4301                                 break;
4302
4303                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4304                                 pr_debug_ratelimited(
4305                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4306                                         __func__, j, h.index, h.reserved);
4307                                 goto vmabort;
4308                         }
4309
4310                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4311                                 pr_debug_ratelimited(
4312                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4313                                         __func__, j, h.index, h.value);
4314                                 goto vmabort;
4315                         }
4316                 }
4317         }
4318
4319         return;
4320
4321 vmabort:
4322         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4323 }
4324
4325 /*
4326  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4327  * and modify vmcs12 to make it see what it would expect to see there if
4328  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4329  */
4330 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4331                        u32 exit_intr_info, unsigned long exit_qualification)
4332 {
4333         struct vcpu_vmx *vmx = to_vmx(vcpu);
4334         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4335
4336         /* trying to cancel vmlaunch/vmresume is a bug */
4337         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4338
4339         /* Service the TLB flush request for L2 before switching to L1. */
4340         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4341                 kvm_vcpu_flush_tlb_current(vcpu);
4342
4343         leave_guest_mode(vcpu);
4344
4345         if (nested_cpu_has_preemption_timer(vmcs12))
4346                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4347
4348         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4349                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4350
4351         if (likely(!vmx->fail)) {
4352                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4353
4354                 if (vm_exit_reason != -1)
4355                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4356                                        exit_intr_info, exit_qualification);
4357
4358                 /*
4359                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4360                  * also be used to capture vmcs12 cache as part of
4361                  * capturing nVMX state for snapshot (migration).
4362                  *
4363                  * Otherwise, this flush will dirty guest memory at a
4364                  * point it is already assumed by user-space to be
4365                  * immutable.
4366                  */
4367                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4368         } else {
4369                 /*
4370                  * The only expected VM-instruction error is "VM entry with
4371                  * invalid control field(s)." Anything else indicates a
4372                  * problem with L0.  And we should never get here with a
4373                  * VMFail of any type if early consistency checks are enabled.
4374                  */
4375                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4376                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4377                 WARN_ON_ONCE(nested_early_check);
4378         }
4379
4380         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4381
4382         /* Update any VMCS fields that might have changed while L2 ran */
4383         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4384         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4385         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4386         if (vmx->nested.l1_tpr_threshold != -1)
4387                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4388
4389         if (kvm_has_tsc_control)
4390                 decache_tsc_multiplier(vmx);
4391
4392         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4393                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4394                 vmx_set_virtual_apic_mode(vcpu);
4395         }
4396
4397         /* Unpin physical memory we referred to in vmcs02 */
4398         if (vmx->nested.apic_access_page) {
4399                 kvm_release_page_clean(vmx->nested.apic_access_page);
4400                 vmx->nested.apic_access_page = NULL;
4401         }
4402         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4403         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4404         vmx->nested.pi_desc = NULL;
4405
4406         if (vmx->nested.reload_vmcs01_apic_access_page) {
4407                 vmx->nested.reload_vmcs01_apic_access_page = false;
4408                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4409         }
4410
4411         if ((vm_exit_reason != -1) &&
4412             (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4413                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4414
4415         /* in case we halted in L2 */
4416         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4417
4418         if (likely(!vmx->fail)) {
4419                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4420                     nested_exit_intr_ack_set(vcpu)) {
4421                         int irq = kvm_cpu_get_interrupt(vcpu);
4422                         WARN_ON(irq < 0);
4423                         vmcs12->vm_exit_intr_info = irq |
4424                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4425                 }
4426
4427                 if (vm_exit_reason != -1)
4428                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4429                                                        vmcs12->exit_qualification,
4430                                                        vmcs12->idt_vectoring_info_field,
4431                                                        vmcs12->vm_exit_intr_info,
4432                                                        vmcs12->vm_exit_intr_error_code,
4433                                                        KVM_ISA_VMX);
4434
4435                 load_vmcs12_host_state(vcpu, vmcs12);
4436
4437                 return;
4438         }
4439
4440         /*
4441          * After an early L2 VM-entry failure, we're now back
4442          * in L1 which thinks it just finished a VMLAUNCH or
4443          * VMRESUME instruction, so we need to set the failure
4444          * flag and the VM-instruction error field of the VMCS
4445          * accordingly, and skip the emulated instruction.
4446          */
4447         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4448
4449         /*
4450          * Restore L1's host state to KVM's software model.  We're here
4451          * because a consistency check was caught by hardware, which
4452          * means some amount of guest state has been propagated to KVM's
4453          * model and needs to be unwound to the host's state.
4454          */
4455         nested_vmx_restore_host_state(vcpu);
4456
4457         vmx->fail = 0;
4458 }
4459
4460 /*
4461  * Decode the memory-address operand of a vmx instruction, as recorded on an
4462  * exit caused by such an instruction (run by a guest hypervisor).
4463  * On success, returns 0. When the operand is invalid, returns 1 and throws
4464  * #UD, #GP, or #SS.
4465  */
4466 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4467                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4468 {
4469         gva_t off;
4470         bool exn;
4471         struct kvm_segment s;
4472
4473         /*
4474          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4475          * Execution", on an exit, vmx_instruction_info holds most of the
4476          * addressing components of the operand. Only the displacement part
4477          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4478          * For how an actual address is calculated from all these components,
4479          * refer to Vol. 1, "Operand Addressing".
4480          */
4481         int  scaling = vmx_instruction_info & 3;
4482         int  addr_size = (vmx_instruction_info >> 7) & 7;
4483         bool is_reg = vmx_instruction_info & (1u << 10);
4484         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4485         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4486         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4487         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4488         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4489
4490         if (is_reg) {
4491                 kvm_queue_exception(vcpu, UD_VECTOR);
4492                 return 1;
4493         }
4494
4495         /* Addr = segment_base + offset */
4496         /* offset = base + [index * scale] + displacement */
4497         off = exit_qualification; /* holds the displacement */
4498         if (addr_size == 1)
4499                 off = (gva_t)sign_extend64(off, 31);
4500         else if (addr_size == 0)
4501                 off = (gva_t)sign_extend64(off, 15);
4502         if (base_is_valid)
4503                 off += kvm_register_read(vcpu, base_reg);
4504         if (index_is_valid)
4505                 off += kvm_register_read(vcpu, index_reg) << scaling;
4506         vmx_get_segment(vcpu, &s, seg_reg);
4507
4508         /*
4509          * The effective address, i.e. @off, of a memory operand is truncated
4510          * based on the address size of the instruction.  Note that this is
4511          * the *effective address*, i.e. the address prior to accounting for
4512          * the segment's base.
4513          */
4514         if (addr_size == 1) /* 32 bit */
4515                 off &= 0xffffffff;
4516         else if (addr_size == 0) /* 16 bit */
4517                 off &= 0xffff;
4518
4519         /* Checks for #GP/#SS exceptions. */
4520         exn = false;
4521         if (is_long_mode(vcpu)) {
4522                 /*
4523                  * The virtual/linear address is never truncated in 64-bit
4524                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4525                  * address when using FS/GS with a non-zero base.
4526                  */
4527                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4528                         *ret = s.base + off;
4529                 else
4530                         *ret = off;
4531
4532                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4533                  * non-canonical form. This is the only check on the memory
4534                  * destination for long mode!
4535                  */
4536                 exn = is_noncanonical_address(*ret, vcpu);
4537         } else {
4538                 /*
4539                  * When not in long mode, the virtual/linear address is
4540                  * unconditionally truncated to 32 bits regardless of the
4541                  * address size.
4542                  */
4543                 *ret = (s.base + off) & 0xffffffff;
4544
4545                 /* Protected mode: apply checks for segment validity in the
4546                  * following order:
4547                  * - segment type check (#GP(0) may be thrown)
4548                  * - usability check (#GP(0)/#SS(0))
4549                  * - limit check (#GP(0)/#SS(0))
4550                  */
4551                 if (wr)
4552                         /* #GP(0) if the destination operand is located in a
4553                          * read-only data segment or any code segment.
4554                          */
4555                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4556                 else
4557                         /* #GP(0) if the source operand is located in an
4558                          * execute-only code segment
4559                          */
4560                         exn = ((s.type & 0xa) == 8);
4561                 if (exn) {
4562                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4563                         return 1;
4564                 }
4565                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4566                  */
4567                 exn = (s.unusable != 0);
4568
4569                 /*
4570                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4571                  * outside the segment limit.  All CPUs that support VMX ignore
4572                  * limit checks for flat segments, i.e. segments with base==0,
4573                  * limit==0xffffffff and of type expand-up data or code.
4574                  */
4575                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4576                      ((s.type & 8) || !(s.type & 4))))
4577                         exn = exn || ((u64)off + len - 1 > s.limit);
4578         }
4579         if (exn) {
4580                 kvm_queue_exception_e(vcpu,
4581                                       seg_reg == VCPU_SREG_SS ?
4582                                                 SS_VECTOR : GP_VECTOR,
4583                                       0);
4584                 return 1;
4585         }
4586
4587         return 0;
4588 }
4589
4590 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4591 {
4592         struct vcpu_vmx *vmx;
4593
4594         if (!nested_vmx_allowed(vcpu))
4595                 return;
4596
4597         vmx = to_vmx(vcpu);
4598         if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4599                 vmx->nested.msrs.entry_ctls_high |=
4600                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4601                 vmx->nested.msrs.exit_ctls_high |=
4602                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4603         } else {
4604                 vmx->nested.msrs.entry_ctls_high &=
4605                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4606                 vmx->nested.msrs.exit_ctls_high &=
4607                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4608         }
4609 }
4610
4611 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4612 {
4613         gva_t gva;
4614         struct x86_exception e;
4615
4616         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4617                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4618                                 sizeof(*vmpointer), &gva))
4619                 return 1;
4620
4621         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4622                 kvm_inject_emulated_page_fault(vcpu, &e);
4623                 return 1;
4624         }
4625
4626         return 0;
4627 }
4628
4629 /*
4630  * Allocate a shadow VMCS and associate it with the currently loaded
4631  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4632  * VMCS is also VMCLEARed, so that it is ready for use.
4633  */
4634 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4635 {
4636         struct vcpu_vmx *vmx = to_vmx(vcpu);
4637         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4638
4639         /*
4640          * We should allocate a shadow vmcs for vmcs01 only when L1
4641          * executes VMXON and free it when L1 executes VMXOFF.
4642          * As it is invalid to execute VMXON twice, we shouldn't reach
4643          * here when vmcs01 already have an allocated shadow vmcs.
4644          */
4645         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4646
4647         if (!loaded_vmcs->shadow_vmcs) {
4648                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4649                 if (loaded_vmcs->shadow_vmcs)
4650                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4651         }
4652         return loaded_vmcs->shadow_vmcs;
4653 }
4654
4655 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4656 {
4657         struct vcpu_vmx *vmx = to_vmx(vcpu);
4658         int r;
4659
4660         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4661         if (r < 0)
4662                 goto out_vmcs02;
4663
4664         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4665         if (!vmx->nested.cached_vmcs12)
4666                 goto out_cached_vmcs12;
4667
4668         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4669         if (!vmx->nested.cached_shadow_vmcs12)
4670                 goto out_cached_shadow_vmcs12;
4671
4672         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4673                 goto out_shadow_vmcs;
4674
4675         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4676                      HRTIMER_MODE_REL_PINNED);
4677         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4678
4679         vmx->nested.vpid02 = allocate_vpid();
4680
4681         vmx->nested.vmcs02_initialized = false;
4682         vmx->nested.vmxon = true;
4683
4684         if (vmx_pt_mode_is_host_guest()) {
4685                 vmx->pt_desc.guest.ctl = 0;
4686                 pt_update_intercept_for_msr(vmx);
4687         }
4688
4689         return 0;
4690
4691 out_shadow_vmcs:
4692         kfree(vmx->nested.cached_shadow_vmcs12);
4693
4694 out_cached_shadow_vmcs12:
4695         kfree(vmx->nested.cached_vmcs12);
4696
4697 out_cached_vmcs12:
4698         free_loaded_vmcs(&vmx->nested.vmcs02);
4699
4700 out_vmcs02:
4701         return -ENOMEM;
4702 }
4703
4704 /*
4705  * Emulate the VMXON instruction.
4706  * Currently, we just remember that VMX is active, and do not save or even
4707  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4708  * do not currently need to store anything in that guest-allocated memory
4709  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4710  * argument is different from the VMXON pointer (which the spec says they do).
4711  */
4712 static int handle_vmon(struct kvm_vcpu *vcpu)
4713 {
4714         int ret;
4715         gpa_t vmptr;
4716         uint32_t revision;
4717         struct vcpu_vmx *vmx = to_vmx(vcpu);
4718         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4719                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4720
4721         /*
4722          * The Intel VMX Instruction Reference lists a bunch of bits that are
4723          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4724          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4725          * Otherwise, we should fail with #UD.  But most faulting conditions
4726          * have already been checked by hardware, prior to the VM-exit for
4727          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4728          * that bit set to 1 in non-root mode.
4729          */
4730         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4731                 kvm_queue_exception(vcpu, UD_VECTOR);
4732                 return 1;
4733         }
4734
4735         /* CPL=0 must be checked manually. */
4736         if (vmx_get_cpl(vcpu)) {
4737                 kvm_inject_gp(vcpu, 0);
4738                 return 1;
4739         }
4740
4741         if (vmx->nested.vmxon)
4742                 return nested_vmx_failValid(vcpu,
4743                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4744
4745         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4746                         != VMXON_NEEDED_FEATURES) {
4747                 kvm_inject_gp(vcpu, 0);
4748                 return 1;
4749         }
4750
4751         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4752                 return 1;
4753
4754         /*
4755          * SDM 3: 24.11.5
4756          * The first 4 bytes of VMXON region contain the supported
4757          * VMCS revision identifier
4758          *
4759          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4760          * which replaces physical address width with 32
4761          */
4762         if (!page_address_valid(vcpu, vmptr))
4763                 return nested_vmx_failInvalid(vcpu);
4764
4765         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4766             revision != VMCS12_REVISION)
4767                 return nested_vmx_failInvalid(vcpu);
4768
4769         vmx->nested.vmxon_ptr = vmptr;
4770         ret = enter_vmx_operation(vcpu);
4771         if (ret)
4772                 return ret;
4773
4774         return nested_vmx_succeed(vcpu);
4775 }
4776
4777 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4778 {
4779         struct vcpu_vmx *vmx = to_vmx(vcpu);
4780
4781         if (vmx->nested.current_vmptr == -1ull)
4782                 return;
4783
4784         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4785
4786         if (enable_shadow_vmcs) {
4787                 /* copy to memory all shadowed fields in case
4788                    they were modified */
4789                 copy_shadow_to_vmcs12(vmx);
4790                 vmx_disable_shadow_vmcs(vmx);
4791         }
4792         vmx->nested.posted_intr_nv = -1;
4793
4794         /* Flush VMCS12 to guest memory */
4795         kvm_vcpu_write_guest_page(vcpu,
4796                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4797                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4798
4799         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4800
4801         vmx->nested.current_vmptr = -1ull;
4802 }
4803
4804 /* Emulate the VMXOFF instruction */
4805 static int handle_vmoff(struct kvm_vcpu *vcpu)
4806 {
4807         if (!nested_vmx_check_permission(vcpu))
4808                 return 1;
4809
4810         free_nested(vcpu);
4811
4812         /* Process a latched INIT during time CPU was in VMX operation */
4813         kvm_make_request(KVM_REQ_EVENT, vcpu);
4814
4815         return nested_vmx_succeed(vcpu);
4816 }
4817
4818 /* Emulate the VMCLEAR instruction */
4819 static int handle_vmclear(struct kvm_vcpu *vcpu)
4820 {
4821         struct vcpu_vmx *vmx = to_vmx(vcpu);
4822         u32 zero = 0;
4823         gpa_t vmptr;
4824         u64 evmcs_gpa;
4825
4826         if (!nested_vmx_check_permission(vcpu))
4827                 return 1;
4828
4829         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4830                 return 1;
4831
4832         if (!page_address_valid(vcpu, vmptr))
4833                 return nested_vmx_failValid(vcpu,
4834                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4835
4836         if (vmptr == vmx->nested.vmxon_ptr)
4837                 return nested_vmx_failValid(vcpu,
4838                         VMXERR_VMCLEAR_VMXON_POINTER);
4839
4840         /*
4841          * When Enlightened VMEntry is enabled on the calling CPU we treat
4842          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4843          * way to distinguish it from VMCS12) and we must not corrupt it by
4844          * writing to the non-existent 'launch_state' field. The area doesn't
4845          * have to be the currently active EVMCS on the calling CPU and there's
4846          * nothing KVM has to do to transition it from 'active' to 'non-active'
4847          * state. It is possible that the area will stay mapped as
4848          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4849          */
4850         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4851                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4852                 if (vmptr == vmx->nested.current_vmptr)
4853                         nested_release_vmcs12(vcpu);
4854
4855                 kvm_vcpu_write_guest(vcpu,
4856                                      vmptr + offsetof(struct vmcs12,
4857                                                       launch_state),
4858                                      &zero, sizeof(zero));
4859         }
4860
4861         return nested_vmx_succeed(vcpu);
4862 }
4863
4864 /* Emulate the VMLAUNCH instruction */
4865 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4866 {
4867         return nested_vmx_run(vcpu, true);
4868 }
4869
4870 /* Emulate the VMRESUME instruction */
4871 static int handle_vmresume(struct kvm_vcpu *vcpu)
4872 {
4873
4874         return nested_vmx_run(vcpu, false);
4875 }
4876
4877 static int handle_vmread(struct kvm_vcpu *vcpu)
4878 {
4879         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4880                                                     : get_vmcs12(vcpu);
4881         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
4882         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4883         struct vcpu_vmx *vmx = to_vmx(vcpu);
4884         struct x86_exception e;
4885         unsigned long field;
4886         u64 value;
4887         gva_t gva = 0;
4888         short offset;
4889         int len;
4890
4891         if (!nested_vmx_check_permission(vcpu))
4892                 return 1;
4893
4894         /*
4895          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4896          * any VMREAD sets the ALU flags for VMfailInvalid.
4897          */
4898         if (vmx->nested.current_vmptr == -1ull ||
4899             (is_guest_mode(vcpu) &&
4900              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4901                 return nested_vmx_failInvalid(vcpu);
4902
4903         /* Decode instruction info and find the field to read */
4904         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4905
4906         offset = vmcs_field_to_offset(field);
4907         if (offset < 0)
4908                 return nested_vmx_failValid(vcpu,
4909                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4910
4911         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4912                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4913
4914         /* Read the field, zero-extended to a u64 value */
4915         value = vmcs12_read_any(vmcs12, field, offset);
4916
4917         /*
4918          * Now copy part of this value to register or memory, as requested.
4919          * Note that the number of bits actually copied is 32 or 64 depending
4920          * on the guest's mode (32 or 64 bit), not on the given field's length.
4921          */
4922         if (instr_info & BIT(10)) {
4923                 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
4924         } else {
4925                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4926                 if (get_vmx_mem_address(vcpu, exit_qualification,
4927                                         instr_info, true, len, &gva))
4928                         return 1;
4929                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4930                 if (kvm_write_guest_virt_system(vcpu, gva, &value, len, &e)) {
4931                         kvm_inject_emulated_page_fault(vcpu, &e);
4932                         return 1;
4933                 }
4934         }
4935
4936         return nested_vmx_succeed(vcpu);
4937 }
4938
4939 static bool is_shadow_field_rw(unsigned long field)
4940 {
4941         switch (field) {
4942 #define SHADOW_FIELD_RW(x, y) case x:
4943 #include "vmcs_shadow_fields.h"
4944                 return true;
4945         default:
4946                 break;
4947         }
4948         return false;
4949 }
4950
4951 static bool is_shadow_field_ro(unsigned long field)
4952 {
4953         switch (field) {
4954 #define SHADOW_FIELD_RO(x, y) case x:
4955 #include "vmcs_shadow_fields.h"
4956                 return true;
4957         default:
4958                 break;
4959         }
4960         return false;
4961 }
4962
4963 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4964 {
4965         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4966                                                     : get_vmcs12(vcpu);
4967         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
4968         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4969         struct vcpu_vmx *vmx = to_vmx(vcpu);
4970         struct x86_exception e;
4971         unsigned long field;
4972         short offset;
4973         gva_t gva;
4974         int len;
4975
4976         /*
4977          * The value to write might be 32 or 64 bits, depending on L1's long
4978          * mode, and eventually we need to write that into a field of several
4979          * possible lengths. The code below first zero-extends the value to 64
4980          * bit (value), and then copies only the appropriate number of
4981          * bits into the vmcs12 field.
4982          */
4983         u64 value = 0;
4984
4985         if (!nested_vmx_check_permission(vcpu))
4986                 return 1;
4987
4988         /*
4989          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4990          * any VMWRITE sets the ALU flags for VMfailInvalid.
4991          */
4992         if (vmx->nested.current_vmptr == -1ull ||
4993             (is_guest_mode(vcpu) &&
4994              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4995                 return nested_vmx_failInvalid(vcpu);
4996
4997         if (instr_info & BIT(10))
4998                 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
4999         else {
5000                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5001                 if (get_vmx_mem_address(vcpu, exit_qualification,
5002                                         instr_info, false, len, &gva))
5003                         return 1;
5004                 if (kvm_read_guest_virt(vcpu, gva, &value, len, &e)) {
5005                         kvm_inject_emulated_page_fault(vcpu, &e);
5006                         return 1;
5007                 }
5008         }
5009
5010         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5011
5012         offset = vmcs_field_to_offset(field);
5013         if (offset < 0)
5014                 return nested_vmx_failValid(vcpu,
5015                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5016
5017         /*
5018          * If the vCPU supports "VMWRITE to any supported field in the
5019          * VMCS," then the "read-only" fields are actually read/write.
5020          */
5021         if (vmcs_field_readonly(field) &&
5022             !nested_cpu_has_vmwrite_any_field(vcpu))
5023                 return nested_vmx_failValid(vcpu,
5024                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5025
5026         /*
5027          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5028          * vmcs12, else we may crush a field or consume a stale value.
5029          */
5030         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5031                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5032
5033         /*
5034          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5035          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5036          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5037          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5038          * from L1 will return a different value than VMREAD from L2 (L1 sees
5039          * the stripped down value, L2 sees the full value as stored by KVM).
5040          */
5041         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5042                 value &= 0x1f0ff;
5043
5044         vmcs12_write_any(vmcs12, field, offset, value);
5045
5046         /*
5047          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5048          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5049          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5050          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5051          */
5052         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5053                 /*
5054                  * L1 can read these fields without exiting, ensure the
5055                  * shadow VMCS is up-to-date.
5056                  */
5057                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5058                         preempt_disable();
5059                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5060
5061                         __vmcs_writel(field, value);
5062
5063                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5064                         vmcs_load(vmx->loaded_vmcs->vmcs);
5065                         preempt_enable();
5066                 }
5067                 vmx->nested.dirty_vmcs12 = true;
5068         }
5069
5070         return nested_vmx_succeed(vcpu);
5071 }
5072
5073 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5074 {
5075         vmx->nested.current_vmptr = vmptr;
5076         if (enable_shadow_vmcs) {
5077                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5078                 vmcs_write64(VMCS_LINK_POINTER,
5079                              __pa(vmx->vmcs01.shadow_vmcs));
5080                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5081         }
5082         vmx->nested.dirty_vmcs12 = true;
5083 }
5084
5085 /* Emulate the VMPTRLD instruction */
5086 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5087 {
5088         struct vcpu_vmx *vmx = to_vmx(vcpu);
5089         gpa_t vmptr;
5090
5091         if (!nested_vmx_check_permission(vcpu))
5092                 return 1;
5093
5094         if (nested_vmx_get_vmptr(vcpu, &vmptr))
5095                 return 1;
5096
5097         if (!page_address_valid(vcpu, vmptr))
5098                 return nested_vmx_failValid(vcpu,
5099                         VMXERR_VMPTRLD_INVALID_ADDRESS);
5100
5101         if (vmptr == vmx->nested.vmxon_ptr)
5102                 return nested_vmx_failValid(vcpu,
5103                         VMXERR_VMPTRLD_VMXON_POINTER);
5104
5105         /* Forbid normal VMPTRLD if Enlightened version was used */
5106         if (vmx->nested.hv_evmcs)
5107                 return 1;
5108
5109         if (vmx->nested.current_vmptr != vmptr) {
5110                 struct kvm_host_map map;
5111                 struct vmcs12 *new_vmcs12;
5112
5113                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5114                         /*
5115                          * Reads from an unbacked page return all 1s,
5116                          * which means that the 32 bits located at the
5117                          * given physical address won't match the required
5118                          * VMCS12_REVISION identifier.
5119                          */
5120                         return nested_vmx_failValid(vcpu,
5121                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5122                 }
5123
5124                 new_vmcs12 = map.hva;
5125
5126                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5127                     (new_vmcs12->hdr.shadow_vmcs &&
5128                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5129                         kvm_vcpu_unmap(vcpu, &map, false);
5130                         return nested_vmx_failValid(vcpu,
5131                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5132                 }
5133
5134                 nested_release_vmcs12(vcpu);
5135
5136                 /*
5137                  * Load VMCS12 from guest memory since it is not already
5138                  * cached.
5139                  */
5140                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5141                 kvm_vcpu_unmap(vcpu, &map, false);
5142
5143                 set_current_vmptr(vmx, vmptr);
5144         }
5145
5146         return nested_vmx_succeed(vcpu);
5147 }
5148
5149 /* Emulate the VMPTRST instruction */
5150 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5151 {
5152         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5153         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5154         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5155         struct x86_exception e;
5156         gva_t gva;
5157
5158         if (!nested_vmx_check_permission(vcpu))
5159                 return 1;
5160
5161         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5162                 return 1;
5163
5164         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5165                                 true, sizeof(gpa_t), &gva))
5166                 return 1;
5167         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5168         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5169                                         sizeof(gpa_t), &e)) {
5170                 kvm_inject_emulated_page_fault(vcpu, &e);
5171                 return 1;
5172         }
5173         return nested_vmx_succeed(vcpu);
5174 }
5175
5176 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
5177
5178 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5179 {
5180         return VALID_PAGE(root_hpa) &&
5181                 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5182 }
5183
5184 /* Emulate the INVEPT instruction */
5185 static int handle_invept(struct kvm_vcpu *vcpu)
5186 {
5187         struct vcpu_vmx *vmx = to_vmx(vcpu);
5188         u32 vmx_instruction_info, types;
5189         unsigned long type, roots_to_free;
5190         struct kvm_mmu *mmu;
5191         gva_t gva;
5192         struct x86_exception e;
5193         struct {
5194                 u64 eptp, gpa;
5195         } operand;
5196         int i;
5197
5198         if (!(vmx->nested.msrs.secondary_ctls_high &
5199               SECONDARY_EXEC_ENABLE_EPT) ||
5200             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5201                 kvm_queue_exception(vcpu, UD_VECTOR);
5202                 return 1;
5203         }
5204
5205         if (!nested_vmx_check_permission(vcpu))
5206                 return 1;
5207
5208         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5209         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5210
5211         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5212
5213         if (type >= 32 || !(types & (1 << type)))
5214                 return nested_vmx_failValid(vcpu,
5215                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5216
5217         /* According to the Intel VMX instruction reference, the memory
5218          * operand is read even if it isn't needed (e.g., for type==global)
5219          */
5220         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5221                         vmx_instruction_info, false, sizeof(operand), &gva))
5222                 return 1;
5223         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5224                 kvm_inject_emulated_page_fault(vcpu, &e);
5225                 return 1;
5226         }
5227
5228         /*
5229          * Nested EPT roots are always held through guest_mmu,
5230          * not root_mmu.
5231          */
5232         mmu = &vcpu->arch.guest_mmu;
5233
5234         switch (type) {
5235         case VMX_EPT_EXTENT_CONTEXT:
5236                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5237                         return nested_vmx_failValid(vcpu,
5238                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5239
5240                 roots_to_free = 0;
5241                 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5242                                             operand.eptp))
5243                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5244
5245                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5246                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5247                                                     mmu->prev_roots[i].pgd,
5248                                                     operand.eptp))
5249                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5250                 }
5251                 break;
5252         case VMX_EPT_EXTENT_GLOBAL:
5253                 roots_to_free = KVM_MMU_ROOTS_ALL;
5254                 break;
5255         default:
5256                 BUG();
5257                 break;
5258         }
5259
5260         if (roots_to_free)
5261                 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5262
5263         return nested_vmx_succeed(vcpu);
5264 }
5265
5266 static int handle_invvpid(struct kvm_vcpu *vcpu)
5267 {
5268         struct vcpu_vmx *vmx = to_vmx(vcpu);
5269         u32 vmx_instruction_info;
5270         unsigned long type, types;
5271         gva_t gva;
5272         struct x86_exception e;
5273         struct {
5274                 u64 vpid;
5275                 u64 gla;
5276         } operand;
5277         u16 vpid02;
5278
5279         if (!(vmx->nested.msrs.secondary_ctls_high &
5280               SECONDARY_EXEC_ENABLE_VPID) ||
5281                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5282                 kvm_queue_exception(vcpu, UD_VECTOR);
5283                 return 1;
5284         }
5285
5286         if (!nested_vmx_check_permission(vcpu))
5287                 return 1;
5288
5289         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5290         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5291
5292         types = (vmx->nested.msrs.vpid_caps &
5293                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5294
5295         if (type >= 32 || !(types & (1 << type)))
5296                 return nested_vmx_failValid(vcpu,
5297                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5298
5299         /* according to the intel vmx instruction reference, the memory
5300          * operand is read even if it isn't needed (e.g., for type==global)
5301          */
5302         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5303                         vmx_instruction_info, false, sizeof(operand), &gva))
5304                 return 1;
5305         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5306                 kvm_inject_emulated_page_fault(vcpu, &e);
5307                 return 1;
5308         }
5309         if (operand.vpid >> 16)
5310                 return nested_vmx_failValid(vcpu,
5311                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5312
5313         vpid02 = nested_get_vpid02(vcpu);
5314         switch (type) {
5315         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5316                 if (!operand.vpid ||
5317                     is_noncanonical_address(operand.gla, vcpu))
5318                         return nested_vmx_failValid(vcpu,
5319                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5320                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5321                 break;
5322         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5323         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5324                 if (!operand.vpid)
5325                         return nested_vmx_failValid(vcpu,
5326                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5327                 vpid_sync_context(vpid02);
5328                 break;
5329         case VMX_VPID_EXTENT_ALL_CONTEXT:
5330                 vpid_sync_context(vpid02);
5331                 break;
5332         default:
5333                 WARN_ON_ONCE(1);
5334                 return kvm_skip_emulated_instruction(vcpu);
5335         }
5336
5337         /*
5338          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5339          * linear mappings for L2 (tagged with L2's VPID).  Free all roots as
5340          * VPIDs are not tracked in the MMU role.
5341          *
5342          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5343          * an MMU when EPT is disabled.
5344          *
5345          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5346          */
5347         if (!enable_ept)
5348                 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5349                                    KVM_MMU_ROOTS_ALL);
5350
5351         return nested_vmx_succeed(vcpu);
5352 }
5353
5354 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5355                                      struct vmcs12 *vmcs12)
5356 {
5357         u32 index = kvm_rcx_read(vcpu);
5358         u64 new_eptp;
5359         bool accessed_dirty;
5360         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5361
5362         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5363             !nested_cpu_has_ept(vmcs12))
5364                 return 1;
5365
5366         if (index >= VMFUNC_EPTP_ENTRIES)
5367                 return 1;
5368
5369
5370         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5371                                      &new_eptp, index * 8, 8))
5372                 return 1;
5373
5374         accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
5375
5376         /*
5377          * If the (L2) guest does a vmfunc to the currently
5378          * active ept pointer, we don't have to do anything else
5379          */
5380         if (vmcs12->ept_pointer != new_eptp) {
5381                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5382                         return 1;
5383
5384                 kvm_mmu_unload(vcpu);
5385                 mmu->ept_ad = accessed_dirty;
5386                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5387                 vmcs12->ept_pointer = new_eptp;
5388                 /*
5389                  * TODO: Check what's the correct approach in case
5390                  * mmu reload fails. Currently, we just let the next
5391                  * reload potentially fail
5392                  */
5393                 kvm_mmu_reload(vcpu);
5394         }
5395
5396         return 0;
5397 }
5398
5399 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5400 {
5401         struct vcpu_vmx *vmx = to_vmx(vcpu);
5402         struct vmcs12 *vmcs12;
5403         u32 function = kvm_rax_read(vcpu);
5404
5405         /*
5406          * VMFUNC is only supported for nested guests, but we always enable the
5407          * secondary control for simplicity; for non-nested mode, fake that we
5408          * didn't by injecting #UD.
5409          */
5410         if (!is_guest_mode(vcpu)) {
5411                 kvm_queue_exception(vcpu, UD_VECTOR);
5412                 return 1;
5413         }
5414
5415         vmcs12 = get_vmcs12(vcpu);
5416         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5417                 goto fail;
5418
5419         switch (function) {
5420         case 0:
5421                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5422                         goto fail;
5423                 break;
5424         default:
5425                 goto fail;
5426         }
5427         return kvm_skip_emulated_instruction(vcpu);
5428
5429 fail:
5430         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5431                           vmx_get_intr_info(vcpu),
5432                           vmx_get_exit_qual(vcpu));
5433         return 1;
5434 }
5435
5436 /*
5437  * Return true if an IO instruction with the specified port and size should cause
5438  * a VM-exit into L1.
5439  */
5440 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5441                                  int size)
5442 {
5443         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5444         gpa_t bitmap, last_bitmap;
5445         u8 b;
5446
5447         last_bitmap = (gpa_t)-1;
5448         b = -1;
5449
5450         while (size > 0) {
5451                 if (port < 0x8000)
5452                         bitmap = vmcs12->io_bitmap_a;
5453                 else if (port < 0x10000)
5454                         bitmap = vmcs12->io_bitmap_b;
5455                 else
5456                         return true;
5457                 bitmap += (port & 0x7fff) / 8;
5458
5459                 if (last_bitmap != bitmap)
5460                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5461                                 return true;
5462                 if (b & (1 << (port & 7)))
5463                         return true;
5464
5465                 port++;
5466                 size--;
5467                 last_bitmap = bitmap;
5468         }
5469
5470         return false;
5471 }
5472
5473 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5474                                        struct vmcs12 *vmcs12)
5475 {
5476         unsigned long exit_qualification;
5477         unsigned short port;
5478         int size;
5479
5480         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5481                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5482
5483         exit_qualification = vmx_get_exit_qual(vcpu);
5484
5485         port = exit_qualification >> 16;
5486         size = (exit_qualification & 7) + 1;
5487
5488         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5489 }
5490
5491 /*
5492  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5493  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5494  * disinterest in the current event (read or write a specific MSR) by using an
5495  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5496  */
5497 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5498         struct vmcs12 *vmcs12, u32 exit_reason)
5499 {
5500         u32 msr_index = kvm_rcx_read(vcpu);
5501         gpa_t bitmap;
5502
5503         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5504                 return true;
5505
5506         /*
5507          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5508          * for the four combinations of read/write and low/high MSR numbers.
5509          * First we need to figure out which of the four to use:
5510          */
5511         bitmap = vmcs12->msr_bitmap;
5512         if (exit_reason == EXIT_REASON_MSR_WRITE)
5513                 bitmap += 2048;
5514         if (msr_index >= 0xc0000000) {
5515                 msr_index -= 0xc0000000;
5516                 bitmap += 1024;
5517         }
5518
5519         /* Then read the msr_index'th bit from this bitmap: */
5520         if (msr_index < 1024*8) {
5521                 unsigned char b;
5522                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5523                         return true;
5524                 return 1 & (b >> (msr_index & 7));
5525         } else
5526                 return true; /* let L1 handle the wrong parameter */
5527 }
5528
5529 /*
5530  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5531  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5532  * intercept (via guest_host_mask etc.) the current event.
5533  */
5534 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5535         struct vmcs12 *vmcs12)
5536 {
5537         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5538         int cr = exit_qualification & 15;
5539         int reg;
5540         unsigned long val;
5541
5542         switch ((exit_qualification >> 4) & 3) {
5543         case 0: /* mov to cr */
5544                 reg = (exit_qualification >> 8) & 15;
5545                 val = kvm_register_readl(vcpu, reg);
5546                 switch (cr) {
5547                 case 0:
5548                         if (vmcs12->cr0_guest_host_mask &
5549                             (val ^ vmcs12->cr0_read_shadow))
5550                                 return true;
5551                         break;
5552                 case 3:
5553                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5554                                 return true;
5555                         break;
5556                 case 4:
5557                         if (vmcs12->cr4_guest_host_mask &
5558                             (vmcs12->cr4_read_shadow ^ val))
5559                                 return true;
5560                         break;
5561                 case 8:
5562                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5563                                 return true;
5564                         break;
5565                 }
5566                 break;
5567         case 2: /* clts */
5568                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5569                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5570                         return true;
5571                 break;
5572         case 1: /* mov from cr */
5573                 switch (cr) {
5574                 case 3:
5575                         if (vmcs12->cpu_based_vm_exec_control &
5576                             CPU_BASED_CR3_STORE_EXITING)
5577                                 return true;
5578                         break;
5579                 case 8:
5580                         if (vmcs12->cpu_based_vm_exec_control &
5581                             CPU_BASED_CR8_STORE_EXITING)
5582                                 return true;
5583                         break;
5584                 }
5585                 break;
5586         case 3: /* lmsw */
5587                 /*
5588                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5589                  * cr0. Other attempted changes are ignored, with no exit.
5590                  */
5591                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5592                 if (vmcs12->cr0_guest_host_mask & 0xe &
5593                     (val ^ vmcs12->cr0_read_shadow))
5594                         return true;
5595                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5596                     !(vmcs12->cr0_read_shadow & 0x1) &&
5597                     (val & 0x1))
5598                         return true;
5599                 break;
5600         }
5601         return false;
5602 }
5603
5604 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5605         struct vmcs12 *vmcs12, gpa_t bitmap)
5606 {
5607         u32 vmx_instruction_info;
5608         unsigned long field;
5609         u8 b;
5610
5611         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5612                 return true;
5613
5614         /* Decode instruction info and find the field to access */
5615         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5616         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5617
5618         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5619         if (field >> 15)
5620                 return true;
5621
5622         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5623                 return true;
5624
5625         return 1 & (b >> (field & 7));
5626 }
5627
5628 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5629 {
5630         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5631
5632         if (nested_cpu_has_mtf(vmcs12))
5633                 return true;
5634
5635         /*
5636          * An MTF VM-exit may be injected into the guest by setting the
5637          * interruption-type to 7 (other event) and the vector field to 0. Such
5638          * is the case regardless of the 'monitor trap flag' VM-execution
5639          * control.
5640          */
5641         return entry_intr_info == (INTR_INFO_VALID_MASK
5642                                    | INTR_TYPE_OTHER_EVENT);
5643 }
5644
5645 /*
5646  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5647  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5648  */
5649 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5650 {
5651         u32 intr_info;
5652
5653         switch (exit_reason) {
5654         case EXIT_REASON_EXCEPTION_NMI:
5655                 intr_info = vmx_get_intr_info(vcpu);
5656                 if (is_nmi(intr_info))
5657                         return true;
5658                 else if (is_page_fault(intr_info))
5659                         return vcpu->arch.apf.host_apf_reason || !enable_ept;
5660                 else if (is_debug(intr_info) &&
5661                          vcpu->guest_debug &
5662                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5663                         return true;
5664                 else if (is_breakpoint(intr_info) &&
5665                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5666                         return true;
5667                 return false;
5668         case EXIT_REASON_EXTERNAL_INTERRUPT:
5669                 return true;
5670         case EXIT_REASON_MCE_DURING_VMENTRY:
5671                 return true;
5672         case EXIT_REASON_EPT_VIOLATION:
5673                 /*
5674                  * L0 always deals with the EPT violation. If nested EPT is
5675                  * used, and the nested mmu code discovers that the address is
5676                  * missing in the guest EPT table (EPT12), the EPT violation
5677                  * will be injected with nested_ept_inject_page_fault()
5678                  */
5679                 return true;
5680         case EXIT_REASON_EPT_MISCONFIG:
5681                 /*
5682                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5683                  * table (shadow on EPT) or a merged EPT table that L0 built
5684                  * (EPT on EPT). So any problems with the structure of the
5685                  * table is L0's fault.
5686                  */
5687                 return true;
5688         case EXIT_REASON_PREEMPTION_TIMER:
5689                 return true;
5690         case EXIT_REASON_PML_FULL:
5691                 /* We emulate PML support to L1. */
5692                 return true;
5693         case EXIT_REASON_VMFUNC:
5694                 /* VM functions are emulated through L2->L0 vmexits. */
5695                 return true;
5696         case EXIT_REASON_ENCLS:
5697                 /* SGX is never exposed to L1 */
5698                 return true;
5699         default:
5700                 break;
5701         }
5702         return false;
5703 }
5704
5705 /*
5706  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5707  * is_guest_mode (L2).
5708  */
5709 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5710 {
5711         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5712         u32 intr_info;
5713
5714         switch (exit_reason) {
5715         case EXIT_REASON_EXCEPTION_NMI:
5716                 intr_info = vmx_get_intr_info(vcpu);
5717                 if (is_nmi(intr_info))
5718                         return true;
5719                 else if (is_page_fault(intr_info))
5720                         return true;
5721                 return vmcs12->exception_bitmap &
5722                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5723         case EXIT_REASON_EXTERNAL_INTERRUPT:
5724                 return nested_exit_on_intr(vcpu);
5725         case EXIT_REASON_TRIPLE_FAULT:
5726                 return true;
5727         case EXIT_REASON_INTERRUPT_WINDOW:
5728                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5729         case EXIT_REASON_NMI_WINDOW:
5730                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5731         case EXIT_REASON_TASK_SWITCH:
5732                 return true;
5733         case EXIT_REASON_CPUID:
5734                 return true;
5735         case EXIT_REASON_HLT:
5736                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5737         case EXIT_REASON_INVD:
5738                 return true;
5739         case EXIT_REASON_INVLPG:
5740                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5741         case EXIT_REASON_RDPMC:
5742                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5743         case EXIT_REASON_RDRAND:
5744                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5745         case EXIT_REASON_RDSEED:
5746                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5747         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5748                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5749         case EXIT_REASON_VMREAD:
5750                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5751                         vmcs12->vmread_bitmap);
5752         case EXIT_REASON_VMWRITE:
5753                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5754                         vmcs12->vmwrite_bitmap);
5755         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5756         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5757         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5758         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5759         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5760                 /*
5761                  * VMX instructions trap unconditionally. This allows L1 to
5762                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5763                  */
5764                 return true;
5765         case EXIT_REASON_CR_ACCESS:
5766                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5767         case EXIT_REASON_DR_ACCESS:
5768                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5769         case EXIT_REASON_IO_INSTRUCTION:
5770                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5771         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5772                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5773         case EXIT_REASON_MSR_READ:
5774         case EXIT_REASON_MSR_WRITE:
5775                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5776         case EXIT_REASON_INVALID_STATE:
5777                 return true;
5778         case EXIT_REASON_MWAIT_INSTRUCTION:
5779                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5780         case EXIT_REASON_MONITOR_TRAP_FLAG:
5781                 return nested_vmx_exit_handled_mtf(vmcs12);
5782         case EXIT_REASON_MONITOR_INSTRUCTION:
5783                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5784         case EXIT_REASON_PAUSE_INSTRUCTION:
5785                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5786                         nested_cpu_has2(vmcs12,
5787                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5788         case EXIT_REASON_MCE_DURING_VMENTRY:
5789                 return true;
5790         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5791                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5792         case EXIT_REASON_APIC_ACCESS:
5793         case EXIT_REASON_APIC_WRITE:
5794         case EXIT_REASON_EOI_INDUCED:
5795                 /*
5796                  * The controls for "virtualize APIC accesses," "APIC-
5797                  * register virtualization," and "virtual-interrupt
5798                  * delivery" only come from vmcs12.
5799                  */
5800                 return true;
5801         case EXIT_REASON_INVPCID:
5802                 return
5803                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5804                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5805         case EXIT_REASON_WBINVD:
5806                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5807         case EXIT_REASON_XSETBV:
5808                 return true;
5809         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5810                 /*
5811                  * This should never happen, since it is not possible to
5812                  * set XSS to a non-zero value---neither in L1 nor in L2.
5813                  * If if it were, XSS would have to be checked against
5814                  * the XSS exit bitmap in vmcs12.
5815                  */
5816                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5817         case EXIT_REASON_UMWAIT:
5818         case EXIT_REASON_TPAUSE:
5819                 return nested_cpu_has2(vmcs12,
5820                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5821         default:
5822                 return true;
5823         }
5824 }
5825
5826 /*
5827  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
5828  * reflected into L1.
5829  */
5830 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
5831 {
5832         struct vcpu_vmx *vmx = to_vmx(vcpu);
5833         u32 exit_reason = vmx->exit_reason;
5834         unsigned long exit_qual;
5835         u32 exit_intr_info;
5836
5837         WARN_ON_ONCE(vmx->nested.nested_run_pending);
5838
5839         /*
5840          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
5841          * has already loaded L2's state.
5842          */
5843         if (unlikely(vmx->fail)) {
5844                 trace_kvm_nested_vmenter_failed(
5845                         "hardware VM-instruction error: ",
5846                         vmcs_read32(VM_INSTRUCTION_ERROR));
5847                 exit_intr_info = 0;
5848                 exit_qual = 0;
5849                 goto reflect_vmexit;
5850         }
5851
5852         exit_intr_info = vmx_get_intr_info(vcpu);
5853         exit_qual = vmx_get_exit_qual(vcpu);
5854
5855         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, exit_qual,
5856                                 vmx->idt_vectoring_info, exit_intr_info,
5857                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5858                                 KVM_ISA_VMX);
5859
5860         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
5861         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
5862                 return false;
5863
5864         /* If L1 doesn't want the exit, handle it in L0. */
5865         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
5866                 return false;
5867
5868         /*
5869          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
5870          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
5871          * need to be synthesized by querying the in-kernel LAPIC, but external
5872          * interrupts are never reflected to L1 so it's a non-issue.
5873          */
5874         if ((exit_intr_info &
5875              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
5876             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
5877                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5878
5879                 vmcs12->vm_exit_intr_error_code =
5880                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5881         }
5882
5883 reflect_vmexit:
5884         nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, exit_qual);
5885         return true;
5886 }
5887
5888 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5889                                 struct kvm_nested_state __user *user_kvm_nested_state,
5890                                 u32 user_data_size)
5891 {
5892         struct vcpu_vmx *vmx;
5893         struct vmcs12 *vmcs12;
5894         struct kvm_nested_state kvm_state = {
5895                 .flags = 0,
5896                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5897                 .size = sizeof(kvm_state),
5898                 .hdr.vmx.vmxon_pa = -1ull,
5899                 .hdr.vmx.vmcs12_pa = -1ull,
5900         };
5901         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5902                 &user_kvm_nested_state->data.vmx[0];
5903
5904         if (!vcpu)
5905                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5906
5907         vmx = to_vmx(vcpu);
5908         vmcs12 = get_vmcs12(vcpu);
5909
5910         if (nested_vmx_allowed(vcpu) &&
5911             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5912                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5913                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5914
5915                 if (vmx_has_valid_vmcs12(vcpu)) {
5916                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5917
5918                         if (vmx->nested.hv_evmcs)
5919                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5920
5921                         if (is_guest_mode(vcpu) &&
5922                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5923                             vmcs12->vmcs_link_pointer != -1ull)
5924                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5925                 }
5926
5927                 if (vmx->nested.smm.vmxon)
5928                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5929
5930                 if (vmx->nested.smm.guest_mode)
5931                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5932
5933                 if (is_guest_mode(vcpu)) {
5934                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5935
5936                         if (vmx->nested.nested_run_pending)
5937                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5938
5939                         if (vmx->nested.mtf_pending)
5940                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
5941                 }
5942         }
5943
5944         if (user_data_size < kvm_state.size)
5945                 goto out;
5946
5947         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5948                 return -EFAULT;
5949
5950         if (!vmx_has_valid_vmcs12(vcpu))
5951                 goto out;
5952
5953         /*
5954          * When running L2, the authoritative vmcs12 state is in the
5955          * vmcs02. When running L1, the authoritative vmcs12 state is
5956          * in the shadow or enlightened vmcs linked to vmcs01, unless
5957          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5958          * vmcs12 state is in the vmcs12 already.
5959          */
5960         if (is_guest_mode(vcpu)) {
5961                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5962                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5963         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5964                 if (vmx->nested.hv_evmcs)
5965                         copy_enlightened_to_vmcs12(vmx);
5966                 else if (enable_shadow_vmcs)
5967                         copy_shadow_to_vmcs12(vmx);
5968         }
5969
5970         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5971         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5972
5973         /*
5974          * Copy over the full allocated size of vmcs12 rather than just the size
5975          * of the struct.
5976          */
5977         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5978                 return -EFAULT;
5979
5980         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5981             vmcs12->vmcs_link_pointer != -1ull) {
5982                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5983                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5984                         return -EFAULT;
5985         }
5986
5987 out:
5988         return kvm_state.size;
5989 }
5990
5991 /*
5992  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5993  */
5994 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5995 {
5996         if (is_guest_mode(vcpu)) {
5997                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5998                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5999         }
6000         free_nested(vcpu);
6001 }
6002
6003 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6004                                 struct kvm_nested_state __user *user_kvm_nested_state,
6005                                 struct kvm_nested_state *kvm_state)
6006 {
6007         struct vcpu_vmx *vmx = to_vmx(vcpu);
6008         struct vmcs12 *vmcs12;
6009         enum vm_entry_failure_code ignored;
6010         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6011                 &user_kvm_nested_state->data.vmx[0];
6012         int ret;
6013
6014         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6015                 return -EINVAL;
6016
6017         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6018                 if (kvm_state->hdr.vmx.smm.flags)
6019                         return -EINVAL;
6020
6021                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6022                         return -EINVAL;
6023
6024                 /*
6025                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6026                  * enable eVMCS capability on vCPU. However, since then
6027                  * code was changed such that flag signals vmcs12 should
6028                  * be copied into eVMCS in guest memory.
6029                  *
6030                  * To preserve backwards compatability, allow user
6031                  * to set this flag even when there is no VMXON region.
6032                  */
6033                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6034                         return -EINVAL;
6035         } else {
6036                 if (!nested_vmx_allowed(vcpu))
6037                         return -EINVAL;
6038
6039                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6040                         return -EINVAL;
6041         }
6042
6043         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6044             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6045                 return -EINVAL;
6046
6047         if (kvm_state->hdr.vmx.smm.flags &
6048             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6049                 return -EINVAL;
6050
6051         /*
6052          * SMM temporarily disables VMX, so we cannot be in guest mode,
6053          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6054          * must be zero.
6055          */
6056         if (is_smm(vcpu) ?
6057                 (kvm_state->flags &
6058                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6059                 : kvm_state->hdr.vmx.smm.flags)
6060                 return -EINVAL;
6061
6062         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6063             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6064                 return -EINVAL;
6065
6066         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6067                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6068                         return -EINVAL;
6069
6070         vmx_leave_nested(vcpu);
6071
6072         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6073                 return 0;
6074
6075         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6076         ret = enter_vmx_operation(vcpu);
6077         if (ret)
6078                 return ret;
6079
6080         /* Empty 'VMXON' state is permitted */
6081         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
6082                 return 0;
6083
6084         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6085                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6086                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6087                         return -EINVAL;
6088
6089                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6090         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6091                 /*
6092                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6093                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6094                  * restored yet. EVMCS will be mapped from
6095                  * nested_get_vmcs12_pages().
6096                  */
6097                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
6098         } else {
6099                 return -EINVAL;
6100         }
6101
6102         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6103                 vmx->nested.smm.vmxon = true;
6104                 vmx->nested.vmxon = false;
6105
6106                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6107                         vmx->nested.smm.guest_mode = true;
6108         }
6109
6110         vmcs12 = get_vmcs12(vcpu);
6111         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6112                 return -EFAULT;
6113
6114         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6115                 return -EINVAL;
6116
6117         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6118                 return 0;
6119
6120         vmx->nested.nested_run_pending =
6121                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6122
6123         vmx->nested.mtf_pending =
6124                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6125
6126         ret = -EINVAL;
6127         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6128             vmcs12->vmcs_link_pointer != -1ull) {
6129                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6130
6131                 if (kvm_state->size <
6132                     sizeof(*kvm_state) +
6133                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6134                         goto error_guest_mode;
6135
6136                 if (copy_from_user(shadow_vmcs12,
6137                                    user_vmx_nested_state->shadow_vmcs12,
6138                                    sizeof(*shadow_vmcs12))) {
6139                         ret = -EFAULT;
6140                         goto error_guest_mode;
6141                 }
6142
6143                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6144                     !shadow_vmcs12->hdr.shadow_vmcs)
6145                         goto error_guest_mode;
6146         }
6147
6148         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6149             nested_vmx_check_host_state(vcpu, vmcs12) ||
6150             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6151                 goto error_guest_mode;
6152
6153         vmx->nested.dirty_vmcs12 = true;
6154         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6155         if (ret)
6156                 goto error_guest_mode;
6157
6158         return 0;
6159
6160 error_guest_mode:
6161         vmx->nested.nested_run_pending = 0;
6162         return ret;
6163 }
6164
6165 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6166 {
6167         if (enable_shadow_vmcs) {
6168                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6169                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6170         }
6171 }
6172
6173 /*
6174  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6175  * returned for the various VMX controls MSRs when nested VMX is enabled.
6176  * The same values should also be used to verify that vmcs12 control fields are
6177  * valid during nested entry from L1 to L2.
6178  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6179  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6180  * bit in the high half is on if the corresponding bit in the control field
6181  * may be on. See also vmx_control_verify().
6182  */
6183 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6184 {
6185         /*
6186          * Note that as a general rule, the high half of the MSRs (bits in
6187          * the control fields which may be 1) should be initialized by the
6188          * intersection of the underlying hardware's MSR (i.e., features which
6189          * can be supported) and the list of features we want to expose -
6190          * because they are known to be properly supported in our code.
6191          * Also, usually, the low half of the MSRs (bits which must be 1) can
6192          * be set to 0, meaning that L1 may turn off any of these bits. The
6193          * reason is that if one of these bits is necessary, it will appear
6194          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6195          * fields of vmcs01 and vmcs02, will turn these bits off - and
6196          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6197          * These rules have exceptions below.
6198          */
6199
6200         /* pin-based controls */
6201         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6202                 msrs->pinbased_ctls_low,
6203                 msrs->pinbased_ctls_high);
6204         msrs->pinbased_ctls_low |=
6205                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6206         msrs->pinbased_ctls_high &=
6207                 PIN_BASED_EXT_INTR_MASK |
6208                 PIN_BASED_NMI_EXITING |
6209                 PIN_BASED_VIRTUAL_NMIS |
6210                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6211         msrs->pinbased_ctls_high |=
6212                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6213                 PIN_BASED_VMX_PREEMPTION_TIMER;
6214
6215         /* exit controls */
6216         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6217                 msrs->exit_ctls_low,
6218                 msrs->exit_ctls_high);
6219         msrs->exit_ctls_low =
6220                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6221
6222         msrs->exit_ctls_high &=
6223 #ifdef CONFIG_X86_64
6224                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6225 #endif
6226                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
6227         msrs->exit_ctls_high |=
6228                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6229                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6230                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6231
6232         /* We support free control of debug control saving. */
6233         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6234
6235         /* entry controls */
6236         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6237                 msrs->entry_ctls_low,
6238                 msrs->entry_ctls_high);
6239         msrs->entry_ctls_low =
6240                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6241         msrs->entry_ctls_high &=
6242 #ifdef CONFIG_X86_64
6243                 VM_ENTRY_IA32E_MODE |
6244 #endif
6245                 VM_ENTRY_LOAD_IA32_PAT;
6246         msrs->entry_ctls_high |=
6247                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6248
6249         /* We support free control of debug control loading. */
6250         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6251
6252         /* cpu-based controls */
6253         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6254                 msrs->procbased_ctls_low,
6255                 msrs->procbased_ctls_high);
6256         msrs->procbased_ctls_low =
6257                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6258         msrs->procbased_ctls_high &=
6259                 CPU_BASED_INTR_WINDOW_EXITING |
6260                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6261                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6262                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6263                 CPU_BASED_CR3_STORE_EXITING |
6264 #ifdef CONFIG_X86_64
6265                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6266 #endif
6267                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6268                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6269                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6270                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6271                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6272         /*
6273          * We can allow some features even when not supported by the
6274          * hardware. For example, L1 can specify an MSR bitmap - and we
6275          * can use it to avoid exits to L1 - even when L0 runs L2
6276          * without MSR bitmaps.
6277          */
6278         msrs->procbased_ctls_high |=
6279                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6280                 CPU_BASED_USE_MSR_BITMAPS;
6281
6282         /* We support free control of CR3 access interception. */
6283         msrs->procbased_ctls_low &=
6284                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6285
6286         /*
6287          * secondary cpu-based controls.  Do not include those that
6288          * depend on CPUID bits, they are added later by vmx_cpuid_update.
6289          */
6290         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6291                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6292                       msrs->secondary_ctls_low,
6293                       msrs->secondary_ctls_high);
6294
6295         msrs->secondary_ctls_low = 0;
6296         msrs->secondary_ctls_high &=
6297                 SECONDARY_EXEC_DESC |
6298                 SECONDARY_EXEC_RDTSCP |
6299                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6300                 SECONDARY_EXEC_WBINVD_EXITING |
6301                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6302                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6303                 SECONDARY_EXEC_RDRAND_EXITING |
6304                 SECONDARY_EXEC_ENABLE_INVPCID |
6305                 SECONDARY_EXEC_RDSEED_EXITING |
6306                 SECONDARY_EXEC_XSAVES;
6307
6308         /*
6309          * We can emulate "VMCS shadowing," even if the hardware
6310          * doesn't support it.
6311          */
6312         msrs->secondary_ctls_high |=
6313                 SECONDARY_EXEC_SHADOW_VMCS;
6314
6315         if (enable_ept) {
6316                 /* nested EPT: emulate EPT also to L1 */
6317                 msrs->secondary_ctls_high |=
6318                         SECONDARY_EXEC_ENABLE_EPT;
6319                 msrs->ept_caps =
6320                         VMX_EPT_PAGE_WALK_4_BIT |
6321                         VMX_EPT_PAGE_WALK_5_BIT |
6322                         VMX_EPTP_WB_BIT |
6323                         VMX_EPT_INVEPT_BIT |
6324                         VMX_EPT_EXECUTE_ONLY_BIT;
6325
6326                 msrs->ept_caps &= ept_caps;
6327                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6328                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6329                         VMX_EPT_1GB_PAGE_BIT;
6330                 if (enable_ept_ad_bits) {
6331                         msrs->secondary_ctls_high |=
6332                                 SECONDARY_EXEC_ENABLE_PML;
6333                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6334                 }
6335         }
6336
6337         if (cpu_has_vmx_vmfunc()) {
6338                 msrs->secondary_ctls_high |=
6339                         SECONDARY_EXEC_ENABLE_VMFUNC;
6340                 /*
6341                  * Advertise EPTP switching unconditionally
6342                  * since we emulate it
6343                  */
6344                 if (enable_ept)
6345                         msrs->vmfunc_controls =
6346                                 VMX_VMFUNC_EPTP_SWITCHING;
6347         }
6348
6349         /*
6350          * Old versions of KVM use the single-context version without
6351          * checking for support, so declare that it is supported even
6352          * though it is treated as global context.  The alternative is
6353          * not failing the single-context invvpid, and it is worse.
6354          */
6355         if (enable_vpid) {
6356                 msrs->secondary_ctls_high |=
6357                         SECONDARY_EXEC_ENABLE_VPID;
6358                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6359                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6360         }
6361
6362         if (enable_unrestricted_guest)
6363                 msrs->secondary_ctls_high |=
6364                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6365
6366         if (flexpriority_enabled)
6367                 msrs->secondary_ctls_high |=
6368                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6369
6370         /* miscellaneous data */
6371         rdmsr(MSR_IA32_VMX_MISC,
6372                 msrs->misc_low,
6373                 msrs->misc_high);
6374         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6375         msrs->misc_low |=
6376                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6377                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6378                 VMX_MISC_ACTIVITY_HLT;
6379         msrs->misc_high = 0;
6380
6381         /*
6382          * This MSR reports some information about VMX support. We
6383          * should return information about the VMX we emulate for the
6384          * guest, and the VMCS structure we give it - not about the
6385          * VMX support of the underlying hardware.
6386          */
6387         msrs->basic =
6388                 VMCS12_REVISION |
6389                 VMX_BASIC_TRUE_CTLS |
6390                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6391                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6392
6393         if (cpu_has_vmx_basic_inout())
6394                 msrs->basic |= VMX_BASIC_INOUT;
6395
6396         /*
6397          * These MSRs specify bits which the guest must keep fixed on
6398          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6399          * We picked the standard core2 setting.
6400          */
6401 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6402 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6403         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6404         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6405
6406         /* These MSRs specify bits which the guest must keep fixed off. */
6407         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6408         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6409
6410         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6411         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6412 }
6413
6414 void nested_vmx_hardware_unsetup(void)
6415 {
6416         int i;
6417
6418         if (enable_shadow_vmcs) {
6419                 for (i = 0; i < VMX_BITMAP_NR; i++)
6420                         free_page((unsigned long)vmx_bitmap[i]);
6421         }
6422 }
6423
6424 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6425 {
6426         int i;
6427
6428         if (!cpu_has_vmx_shadow_vmcs())
6429                 enable_shadow_vmcs = 0;
6430         if (enable_shadow_vmcs) {
6431                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6432                         /*
6433                          * The vmx_bitmap is not tied to a VM and so should
6434                          * not be charged to a memcg.
6435                          */
6436                         vmx_bitmap[i] = (unsigned long *)
6437                                 __get_free_page(GFP_KERNEL);
6438                         if (!vmx_bitmap[i]) {
6439                                 nested_vmx_hardware_unsetup();
6440                                 return -ENOMEM;
6441                         }
6442                 }
6443
6444                 init_vmcs_shadow_fields();
6445         }
6446
6447         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6448         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6449         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6450         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6451         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6452         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6453         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6454         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6455         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6456         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6457         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6458         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6459
6460         return 0;
6461 }
6462
6463 struct kvm_x86_nested_ops vmx_nested_ops = {
6464         .check_events = vmx_check_nested_events,
6465         .hv_timer_pending = nested_vmx_preemption_timer_pending,
6466         .get_state = vmx_get_nested_state,
6467         .set_state = vmx_set_nested_state,
6468         .get_vmcs12_pages = nested_get_vmcs12_pages,
6469         .enable_evmcs = nested_enable_evmcs,
6470         .get_evmcs_version = nested_get_evmcs_version,
6471 };