5038201d6f3daf9c542aeb1612c8d4b9bcb4ccdc
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT            (1 <<  0)
51 #define SVM_FEATURE_LBRV           (1 <<  1)
52 #define SVM_FEATURE_SVML           (1 <<  2)
53 #define SVM_FEATURE_NRIP           (1 <<  3)
54 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
55
56 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
57 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
58 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
59
60 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
61
62 static bool erratum_383_found __read_mostly;
63
64 static const u32 host_save_user_msrs[] = {
65 #ifdef CONFIG_X86_64
66         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
67         MSR_FS_BASE,
68 #endif
69         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
70 };
71
72 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
73
74 struct kvm_vcpu;
75
76 struct nested_state {
77         struct vmcb *hsave;
78         u64 hsave_msr;
79         u64 vm_cr_msr;
80         u64 vmcb;
81
82         /* These are the merged vectors */
83         u32 *msrpm;
84
85         /* gpa pointers to the real vectors */
86         u64 vmcb_msrpm;
87         u64 vmcb_iopm;
88
89         /* A VMEXIT is required but not yet emulated */
90         bool exit_required;
91
92         /*
93          * If we vmexit during an instruction emulation we need this to restore
94          * the l1 guest rip after the emulation
95          */
96         unsigned long vmexit_rip;
97         unsigned long vmexit_rsp;
98         unsigned long vmexit_rax;
99
100         /* cache for intercepts of the guest */
101         u32 intercept_cr;
102         u32 intercept_dr;
103         u32 intercept_exceptions;
104         u64 intercept;
105
106         /* Nested Paging related state */
107         u64 nested_cr3;
108 };
109
110 #define MSRPM_OFFSETS   16
111 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
112
113 struct vcpu_svm {
114         struct kvm_vcpu vcpu;
115         struct vmcb *vmcb;
116         unsigned long vmcb_pa;
117         struct svm_cpu_data *svm_data;
118         uint64_t asid_generation;
119         uint64_t sysenter_esp;
120         uint64_t sysenter_eip;
121
122         u64 next_rip;
123
124         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
125         struct {
126                 u16 fs;
127                 u16 gs;
128                 u16 ldt;
129                 u64 gs_base;
130         } host;
131
132         u32 *msrpm;
133
134         struct nested_state nested;
135
136         bool nmi_singlestep;
137
138         unsigned int3_injected;
139         unsigned long int3_rip;
140         u32 apf_reason;
141 };
142
143 #define MSR_INVALID                     0xffffffffU
144
145 static struct svm_direct_access_msrs {
146         u32 index;   /* Index of the MSR */
147         bool always; /* True if intercept is always on */
148 } direct_access_msrs[] = {
149         { .index = MSR_STAR,                            .always = true  },
150         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
151 #ifdef CONFIG_X86_64
152         { .index = MSR_GS_BASE,                         .always = true  },
153         { .index = MSR_FS_BASE,                         .always = true  },
154         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
155         { .index = MSR_LSTAR,                           .always = true  },
156         { .index = MSR_CSTAR,                           .always = true  },
157         { .index = MSR_SYSCALL_MASK,                    .always = true  },
158 #endif
159         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
160         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
161         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
162         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
163         { .index = MSR_INVALID,                         .always = false },
164 };
165
166 /* enable NPT for AMD64 and X86 with PAE */
167 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
168 static bool npt_enabled = true;
169 #else
170 static bool npt_enabled;
171 #endif
172 static int npt = 1;
173
174 module_param(npt, int, S_IRUGO);
175
176 static int nested = 1;
177 module_param(nested, int, S_IRUGO);
178
179 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
180 static void svm_complete_interrupts(struct vcpu_svm *svm);
181
182 static int nested_svm_exit_handled(struct vcpu_svm *svm);
183 static int nested_svm_intercept(struct vcpu_svm *svm);
184 static int nested_svm_vmexit(struct vcpu_svm *svm);
185 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
186                                       bool has_error_code, u32 error_code);
187
188 enum {
189         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
190                             pause filter count */
191         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
192         VMCB_ASID,       /* ASID */
193         VMCB_INTR,       /* int_ctl, int_vector */
194         VMCB_NPT,        /* npt_en, nCR3, gPAT */
195         VMCB_DIRTY_MAX,
196 };
197
198 /* TPR is always written before VMRUN */
199 #define VMCB_ALWAYS_DIRTY_MASK  (1U << VMCB_INTR)
200
201 static inline void mark_all_dirty(struct vmcb *vmcb)
202 {
203         vmcb->control.clean = 0;
204 }
205
206 static inline void mark_all_clean(struct vmcb *vmcb)
207 {
208         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
209                                & ~VMCB_ALWAYS_DIRTY_MASK;
210 }
211
212 static inline void mark_dirty(struct vmcb *vmcb, int bit)
213 {
214         vmcb->control.clean &= ~(1 << bit);
215 }
216
217 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
218 {
219         return container_of(vcpu, struct vcpu_svm, vcpu);
220 }
221
222 static void recalc_intercepts(struct vcpu_svm *svm)
223 {
224         struct vmcb_control_area *c, *h;
225         struct nested_state *g;
226
227         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
228
229         if (!is_guest_mode(&svm->vcpu))
230                 return;
231
232         c = &svm->vmcb->control;
233         h = &svm->nested.hsave->control;
234         g = &svm->nested;
235
236         c->intercept_cr = h->intercept_cr | g->intercept_cr;
237         c->intercept_dr = h->intercept_dr | g->intercept_dr;
238         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
239         c->intercept = h->intercept | g->intercept;
240 }
241
242 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
243 {
244         if (is_guest_mode(&svm->vcpu))
245                 return svm->nested.hsave;
246         else
247                 return svm->vmcb;
248 }
249
250 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
251 {
252         struct vmcb *vmcb = get_host_vmcb(svm);
253
254         vmcb->control.intercept_cr |= (1U << bit);
255
256         recalc_intercepts(svm);
257 }
258
259 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
260 {
261         struct vmcb *vmcb = get_host_vmcb(svm);
262
263         vmcb->control.intercept_cr &= ~(1U << bit);
264
265         recalc_intercepts(svm);
266 }
267
268 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
269 {
270         struct vmcb *vmcb = get_host_vmcb(svm);
271
272         return vmcb->control.intercept_cr & (1U << bit);
273 }
274
275 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
276 {
277         struct vmcb *vmcb = get_host_vmcb(svm);
278
279         vmcb->control.intercept_dr |= (1U << bit);
280
281         recalc_intercepts(svm);
282 }
283
284 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
285 {
286         struct vmcb *vmcb = get_host_vmcb(svm);
287
288         vmcb->control.intercept_dr &= ~(1U << bit);
289
290         recalc_intercepts(svm);
291 }
292
293 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
294 {
295         struct vmcb *vmcb = get_host_vmcb(svm);
296
297         vmcb->control.intercept_exceptions |= (1U << bit);
298
299         recalc_intercepts(svm);
300 }
301
302 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
303 {
304         struct vmcb *vmcb = get_host_vmcb(svm);
305
306         vmcb->control.intercept_exceptions &= ~(1U << bit);
307
308         recalc_intercepts(svm);
309 }
310
311 static inline void set_intercept(struct vcpu_svm *svm, int bit)
312 {
313         struct vmcb *vmcb = get_host_vmcb(svm);
314
315         vmcb->control.intercept |= (1ULL << bit);
316
317         recalc_intercepts(svm);
318 }
319
320 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
321 {
322         struct vmcb *vmcb = get_host_vmcb(svm);
323
324         vmcb->control.intercept &= ~(1ULL << bit);
325
326         recalc_intercepts(svm);
327 }
328
329 static inline void enable_gif(struct vcpu_svm *svm)
330 {
331         svm->vcpu.arch.hflags |= HF_GIF_MASK;
332 }
333
334 static inline void disable_gif(struct vcpu_svm *svm)
335 {
336         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
337 }
338
339 static inline bool gif_set(struct vcpu_svm *svm)
340 {
341         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
342 }
343
344 static unsigned long iopm_base;
345
346 struct kvm_ldttss_desc {
347         u16 limit0;
348         u16 base0;
349         unsigned base1:8, type:5, dpl:2, p:1;
350         unsigned limit1:4, zero0:3, g:1, base2:8;
351         u32 base3;
352         u32 zero1;
353 } __attribute__((packed));
354
355 struct svm_cpu_data {
356         int cpu;
357
358         u64 asid_generation;
359         u32 max_asid;
360         u32 next_asid;
361         struct kvm_ldttss_desc *tss_desc;
362
363         struct page *save_area;
364 };
365
366 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
367 static uint32_t svm_features;
368
369 struct svm_init_data {
370         int cpu;
371         int r;
372 };
373
374 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
375
376 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
377 #define MSRS_RANGE_SIZE 2048
378 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
379
380 static u32 svm_msrpm_offset(u32 msr)
381 {
382         u32 offset;
383         int i;
384
385         for (i = 0; i < NUM_MSR_MAPS; i++) {
386                 if (msr < msrpm_ranges[i] ||
387                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
388                         continue;
389
390                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
391                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
392
393                 /* Now we have the u8 offset - but need the u32 offset */
394                 return offset / 4;
395         }
396
397         /* MSR not in any range */
398         return MSR_INVALID;
399 }
400
401 #define MAX_INST_SIZE 15
402
403 static inline void clgi(void)
404 {
405         asm volatile (__ex(SVM_CLGI));
406 }
407
408 static inline void stgi(void)
409 {
410         asm volatile (__ex(SVM_STGI));
411 }
412
413 static inline void invlpga(unsigned long addr, u32 asid)
414 {
415         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
416 }
417
418 static inline void force_new_asid(struct kvm_vcpu *vcpu)
419 {
420         to_svm(vcpu)->asid_generation--;
421 }
422
423 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
424 {
425         force_new_asid(vcpu);
426 }
427
428 static int get_npt_level(void)
429 {
430 #ifdef CONFIG_X86_64
431         return PT64_ROOT_LEVEL;
432 #else
433         return PT32E_ROOT_LEVEL;
434 #endif
435 }
436
437 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
438 {
439         vcpu->arch.efer = efer;
440         if (!npt_enabled && !(efer & EFER_LMA))
441                 efer &= ~EFER_LME;
442
443         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
444 }
445
446 static int is_external_interrupt(u32 info)
447 {
448         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
449         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
450 }
451
452 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
453 {
454         struct vcpu_svm *svm = to_svm(vcpu);
455         u32 ret = 0;
456
457         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
458                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
459         return ret & mask;
460 }
461
462 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
463 {
464         struct vcpu_svm *svm = to_svm(vcpu);
465
466         if (mask == 0)
467                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
468         else
469                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
470
471 }
472
473 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
474 {
475         struct vcpu_svm *svm = to_svm(vcpu);
476
477         if (svm->vmcb->control.next_rip != 0)
478                 svm->next_rip = svm->vmcb->control.next_rip;
479
480         if (!svm->next_rip) {
481                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
482                                 EMULATE_DONE)
483                         printk(KERN_DEBUG "%s: NOP\n", __func__);
484                 return;
485         }
486         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
487                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
488                        __func__, kvm_rip_read(vcpu), svm->next_rip);
489
490         kvm_rip_write(vcpu, svm->next_rip);
491         svm_set_interrupt_shadow(vcpu, 0);
492 }
493
494 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
495                                 bool has_error_code, u32 error_code,
496                                 bool reinject)
497 {
498         struct vcpu_svm *svm = to_svm(vcpu);
499
500         /*
501          * If we are within a nested VM we'd better #VMEXIT and let the guest
502          * handle the exception
503          */
504         if (!reinject &&
505             nested_svm_check_exception(svm, nr, has_error_code, error_code))
506                 return;
507
508         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
509                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
510
511                 /*
512                  * For guest debugging where we have to reinject #BP if some
513                  * INT3 is guest-owned:
514                  * Emulate nRIP by moving RIP forward. Will fail if injection
515                  * raises a fault that is not intercepted. Still better than
516                  * failing in all cases.
517                  */
518                 skip_emulated_instruction(&svm->vcpu);
519                 rip = kvm_rip_read(&svm->vcpu);
520                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
521                 svm->int3_injected = rip - old_rip;
522         }
523
524         svm->vmcb->control.event_inj = nr
525                 | SVM_EVTINJ_VALID
526                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
527                 | SVM_EVTINJ_TYPE_EXEPT;
528         svm->vmcb->control.event_inj_err = error_code;
529 }
530
531 static void svm_init_erratum_383(void)
532 {
533         u32 low, high;
534         int err;
535         u64 val;
536
537         if (!cpu_has_amd_erratum(amd_erratum_383))
538                 return;
539
540         /* Use _safe variants to not break nested virtualization */
541         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
542         if (err)
543                 return;
544
545         val |= (1ULL << 47);
546
547         low  = lower_32_bits(val);
548         high = upper_32_bits(val);
549
550         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
551
552         erratum_383_found = true;
553 }
554
555 static int has_svm(void)
556 {
557         const char *msg;
558
559         if (!cpu_has_svm(&msg)) {
560                 printk(KERN_INFO "has_svm: %s\n", msg);
561                 return 0;
562         }
563
564         return 1;
565 }
566
567 static void svm_hardware_disable(void *garbage)
568 {
569         cpu_svm_disable();
570 }
571
572 static int svm_hardware_enable(void *garbage)
573 {
574
575         struct svm_cpu_data *sd;
576         uint64_t efer;
577         struct desc_ptr gdt_descr;
578         struct desc_struct *gdt;
579         int me = raw_smp_processor_id();
580
581         rdmsrl(MSR_EFER, efer);
582         if (efer & EFER_SVME)
583                 return -EBUSY;
584
585         if (!has_svm()) {
586                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
587                        me);
588                 return -EINVAL;
589         }
590         sd = per_cpu(svm_data, me);
591
592         if (!sd) {
593                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
594                        me);
595                 return -EINVAL;
596         }
597
598         sd->asid_generation = 1;
599         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
600         sd->next_asid = sd->max_asid + 1;
601
602         native_store_gdt(&gdt_descr);
603         gdt = (struct desc_struct *)gdt_descr.address;
604         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
605
606         wrmsrl(MSR_EFER, efer | EFER_SVME);
607
608         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
609
610         svm_init_erratum_383();
611
612         return 0;
613 }
614
615 static void svm_cpu_uninit(int cpu)
616 {
617         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
618
619         if (!sd)
620                 return;
621
622         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
623         __free_page(sd->save_area);
624         kfree(sd);
625 }
626
627 static int svm_cpu_init(int cpu)
628 {
629         struct svm_cpu_data *sd;
630         int r;
631
632         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
633         if (!sd)
634                 return -ENOMEM;
635         sd->cpu = cpu;
636         sd->save_area = alloc_page(GFP_KERNEL);
637         r = -ENOMEM;
638         if (!sd->save_area)
639                 goto err_1;
640
641         per_cpu(svm_data, cpu) = sd;
642
643         return 0;
644
645 err_1:
646         kfree(sd);
647         return r;
648
649 }
650
651 static bool valid_msr_intercept(u32 index)
652 {
653         int i;
654
655         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
656                 if (direct_access_msrs[i].index == index)
657                         return true;
658
659         return false;
660 }
661
662 static void set_msr_interception(u32 *msrpm, unsigned msr,
663                                  int read, int write)
664 {
665         u8 bit_read, bit_write;
666         unsigned long tmp;
667         u32 offset;
668
669         /*
670          * If this warning triggers extend the direct_access_msrs list at the
671          * beginning of the file
672          */
673         WARN_ON(!valid_msr_intercept(msr));
674
675         offset    = svm_msrpm_offset(msr);
676         bit_read  = 2 * (msr & 0x0f);
677         bit_write = 2 * (msr & 0x0f) + 1;
678         tmp       = msrpm[offset];
679
680         BUG_ON(offset == MSR_INVALID);
681
682         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
683         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
684
685         msrpm[offset] = tmp;
686 }
687
688 static void svm_vcpu_init_msrpm(u32 *msrpm)
689 {
690         int i;
691
692         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
693
694         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
695                 if (!direct_access_msrs[i].always)
696                         continue;
697
698                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
699         }
700 }
701
702 static void add_msr_offset(u32 offset)
703 {
704         int i;
705
706         for (i = 0; i < MSRPM_OFFSETS; ++i) {
707
708                 /* Offset already in list? */
709                 if (msrpm_offsets[i] == offset)
710                         return;
711
712                 /* Slot used by another offset? */
713                 if (msrpm_offsets[i] != MSR_INVALID)
714                         continue;
715
716                 /* Add offset to list */
717                 msrpm_offsets[i] = offset;
718
719                 return;
720         }
721
722         /*
723          * If this BUG triggers the msrpm_offsets table has an overflow. Just
724          * increase MSRPM_OFFSETS in this case.
725          */
726         BUG();
727 }
728
729 static void init_msrpm_offsets(void)
730 {
731         int i;
732
733         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
734
735         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
736                 u32 offset;
737
738                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
739                 BUG_ON(offset == MSR_INVALID);
740
741                 add_msr_offset(offset);
742         }
743 }
744
745 static void svm_enable_lbrv(struct vcpu_svm *svm)
746 {
747         u32 *msrpm = svm->msrpm;
748
749         svm->vmcb->control.lbr_ctl = 1;
750         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
751         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
752         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
753         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
754 }
755
756 static void svm_disable_lbrv(struct vcpu_svm *svm)
757 {
758         u32 *msrpm = svm->msrpm;
759
760         svm->vmcb->control.lbr_ctl = 0;
761         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
762         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
763         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
764         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
765 }
766
767 static __init int svm_hardware_setup(void)
768 {
769         int cpu;
770         struct page *iopm_pages;
771         void *iopm_va;
772         int r;
773
774         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
775
776         if (!iopm_pages)
777                 return -ENOMEM;
778
779         iopm_va = page_address(iopm_pages);
780         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
781         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
782
783         init_msrpm_offsets();
784
785         if (boot_cpu_has(X86_FEATURE_NX))
786                 kvm_enable_efer_bits(EFER_NX);
787
788         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
789                 kvm_enable_efer_bits(EFER_FFXSR);
790
791         if (nested) {
792                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
793                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
794         }
795
796         for_each_possible_cpu(cpu) {
797                 r = svm_cpu_init(cpu);
798                 if (r)
799                         goto err;
800         }
801
802         svm_features = cpuid_edx(SVM_CPUID_FUNC);
803
804         if (!boot_cpu_has(X86_FEATURE_NPT))
805                 npt_enabled = false;
806
807         if (npt_enabled && !npt) {
808                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
809                 npt_enabled = false;
810         }
811
812         if (npt_enabled) {
813                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
814                 kvm_enable_tdp();
815         } else
816                 kvm_disable_tdp();
817
818         return 0;
819
820 err:
821         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
822         iopm_base = 0;
823         return r;
824 }
825
826 static __exit void svm_hardware_unsetup(void)
827 {
828         int cpu;
829
830         for_each_possible_cpu(cpu)
831                 svm_cpu_uninit(cpu);
832
833         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
834         iopm_base = 0;
835 }
836
837 static void init_seg(struct vmcb_seg *seg)
838 {
839         seg->selector = 0;
840         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
841                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
842         seg->limit = 0xffff;
843         seg->base = 0;
844 }
845
846 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
847 {
848         seg->selector = 0;
849         seg->attrib = SVM_SELECTOR_P_MASK | type;
850         seg->limit = 0xffff;
851         seg->base = 0;
852 }
853
854 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
855 {
856         struct vcpu_svm *svm = to_svm(vcpu);
857         u64 g_tsc_offset = 0;
858
859         if (is_guest_mode(vcpu)) {
860                 g_tsc_offset = svm->vmcb->control.tsc_offset -
861                                svm->nested.hsave->control.tsc_offset;
862                 svm->nested.hsave->control.tsc_offset = offset;
863         }
864
865         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
866
867         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
868 }
869
870 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
871 {
872         struct vcpu_svm *svm = to_svm(vcpu);
873
874         svm->vmcb->control.tsc_offset += adjustment;
875         if (is_guest_mode(vcpu))
876                 svm->nested.hsave->control.tsc_offset += adjustment;
877         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
878 }
879
880 static void init_vmcb(struct vcpu_svm *svm)
881 {
882         struct vmcb_control_area *control = &svm->vmcb->control;
883         struct vmcb_save_area *save = &svm->vmcb->save;
884
885         svm->vcpu.fpu_active = 1;
886         svm->vcpu.arch.hflags = 0;
887
888         set_cr_intercept(svm, INTERCEPT_CR0_READ);
889         set_cr_intercept(svm, INTERCEPT_CR3_READ);
890         set_cr_intercept(svm, INTERCEPT_CR4_READ);
891         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
892         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
893         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
894         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
895
896         set_dr_intercept(svm, INTERCEPT_DR0_READ);
897         set_dr_intercept(svm, INTERCEPT_DR1_READ);
898         set_dr_intercept(svm, INTERCEPT_DR2_READ);
899         set_dr_intercept(svm, INTERCEPT_DR3_READ);
900         set_dr_intercept(svm, INTERCEPT_DR4_READ);
901         set_dr_intercept(svm, INTERCEPT_DR5_READ);
902         set_dr_intercept(svm, INTERCEPT_DR6_READ);
903         set_dr_intercept(svm, INTERCEPT_DR7_READ);
904
905         set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
906         set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
907         set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
908         set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
909         set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
910         set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
911         set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
912         set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
913
914         set_exception_intercept(svm, PF_VECTOR);
915         set_exception_intercept(svm, UD_VECTOR);
916         set_exception_intercept(svm, MC_VECTOR);
917
918         set_intercept(svm, INTERCEPT_INTR);
919         set_intercept(svm, INTERCEPT_NMI);
920         set_intercept(svm, INTERCEPT_SMI);
921         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
922         set_intercept(svm, INTERCEPT_CPUID);
923         set_intercept(svm, INTERCEPT_INVD);
924         set_intercept(svm, INTERCEPT_HLT);
925         set_intercept(svm, INTERCEPT_INVLPG);
926         set_intercept(svm, INTERCEPT_INVLPGA);
927         set_intercept(svm, INTERCEPT_IOIO_PROT);
928         set_intercept(svm, INTERCEPT_MSR_PROT);
929         set_intercept(svm, INTERCEPT_TASK_SWITCH);
930         set_intercept(svm, INTERCEPT_SHUTDOWN);
931         set_intercept(svm, INTERCEPT_VMRUN);
932         set_intercept(svm, INTERCEPT_VMMCALL);
933         set_intercept(svm, INTERCEPT_VMLOAD);
934         set_intercept(svm, INTERCEPT_VMSAVE);
935         set_intercept(svm, INTERCEPT_STGI);
936         set_intercept(svm, INTERCEPT_CLGI);
937         set_intercept(svm, INTERCEPT_SKINIT);
938         set_intercept(svm, INTERCEPT_WBINVD);
939         set_intercept(svm, INTERCEPT_MONITOR);
940         set_intercept(svm, INTERCEPT_MWAIT);
941
942         control->iopm_base_pa = iopm_base;
943         control->msrpm_base_pa = __pa(svm->msrpm);
944         control->int_ctl = V_INTR_MASKING_MASK;
945
946         init_seg(&save->es);
947         init_seg(&save->ss);
948         init_seg(&save->ds);
949         init_seg(&save->fs);
950         init_seg(&save->gs);
951
952         save->cs.selector = 0xf000;
953         /* Executable/Readable Code Segment */
954         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
955                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
956         save->cs.limit = 0xffff;
957         /*
958          * cs.base should really be 0xffff0000, but vmx can't handle that, so
959          * be consistent with it.
960          *
961          * Replace when we have real mode working for vmx.
962          */
963         save->cs.base = 0xf0000;
964
965         save->gdtr.limit = 0xffff;
966         save->idtr.limit = 0xffff;
967
968         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
969         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
970
971         svm_set_efer(&svm->vcpu, 0);
972         save->dr6 = 0xffff0ff0;
973         save->dr7 = 0x400;
974         save->rflags = 2;
975         save->rip = 0x0000fff0;
976         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
977
978         /*
979          * This is the guest-visible cr0 value.
980          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
981          */
982         svm->vcpu.arch.cr0 = 0;
983         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
984
985         save->cr4 = X86_CR4_PAE;
986         /* rdx = ?? */
987
988         if (npt_enabled) {
989                 /* Setup VMCB for Nested Paging */
990                 control->nested_ctl = 1;
991                 clr_intercept(svm, INTERCEPT_TASK_SWITCH);
992                 clr_intercept(svm, INTERCEPT_INVLPG);
993                 clr_exception_intercept(svm, PF_VECTOR);
994                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
995                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
996                 save->g_pat = 0x0007040600070406ULL;
997                 save->cr3 = 0;
998                 save->cr4 = 0;
999         }
1000         force_new_asid(&svm->vcpu);
1001
1002         svm->nested.vmcb = 0;
1003         svm->vcpu.arch.hflags = 0;
1004
1005         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1006                 control->pause_filter_count = 3000;
1007                 set_intercept(svm, INTERCEPT_PAUSE);
1008         }
1009
1010         mark_all_dirty(svm->vmcb);
1011
1012         enable_gif(svm);
1013 }
1014
1015 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1016 {
1017         struct vcpu_svm *svm = to_svm(vcpu);
1018
1019         init_vmcb(svm);
1020
1021         if (!kvm_vcpu_is_bsp(vcpu)) {
1022                 kvm_rip_write(vcpu, 0);
1023                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1024                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1025         }
1026         vcpu->arch.regs_avail = ~0;
1027         vcpu->arch.regs_dirty = ~0;
1028
1029         return 0;
1030 }
1031
1032 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1033 {
1034         struct vcpu_svm *svm;
1035         struct page *page;
1036         struct page *msrpm_pages;
1037         struct page *hsave_page;
1038         struct page *nested_msrpm_pages;
1039         int err;
1040
1041         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1042         if (!svm) {
1043                 err = -ENOMEM;
1044                 goto out;
1045         }
1046
1047         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1048         if (err)
1049                 goto free_svm;
1050
1051         err = -ENOMEM;
1052         page = alloc_page(GFP_KERNEL);
1053         if (!page)
1054                 goto uninit;
1055
1056         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1057         if (!msrpm_pages)
1058                 goto free_page1;
1059
1060         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1061         if (!nested_msrpm_pages)
1062                 goto free_page2;
1063
1064         hsave_page = alloc_page(GFP_KERNEL);
1065         if (!hsave_page)
1066                 goto free_page3;
1067
1068         svm->nested.hsave = page_address(hsave_page);
1069
1070         svm->msrpm = page_address(msrpm_pages);
1071         svm_vcpu_init_msrpm(svm->msrpm);
1072
1073         svm->nested.msrpm = page_address(nested_msrpm_pages);
1074         svm_vcpu_init_msrpm(svm->nested.msrpm);
1075
1076         svm->vmcb = page_address(page);
1077         clear_page(svm->vmcb);
1078         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1079         svm->asid_generation = 0;
1080         init_vmcb(svm);
1081         kvm_write_tsc(&svm->vcpu, 0);
1082
1083         err = fx_init(&svm->vcpu);
1084         if (err)
1085                 goto free_page4;
1086
1087         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1088         if (kvm_vcpu_is_bsp(&svm->vcpu))
1089                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1090
1091         return &svm->vcpu;
1092
1093 free_page4:
1094         __free_page(hsave_page);
1095 free_page3:
1096         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1097 free_page2:
1098         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1099 free_page1:
1100         __free_page(page);
1101 uninit:
1102         kvm_vcpu_uninit(&svm->vcpu);
1103 free_svm:
1104         kmem_cache_free(kvm_vcpu_cache, svm);
1105 out:
1106         return ERR_PTR(err);
1107 }
1108
1109 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1110 {
1111         struct vcpu_svm *svm = to_svm(vcpu);
1112
1113         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1114         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1115         __free_page(virt_to_page(svm->nested.hsave));
1116         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1117         kvm_vcpu_uninit(vcpu);
1118         kmem_cache_free(kvm_vcpu_cache, svm);
1119 }
1120
1121 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1122 {
1123         struct vcpu_svm *svm = to_svm(vcpu);
1124         int i;
1125
1126         if (unlikely(cpu != vcpu->cpu)) {
1127                 svm->asid_generation = 0;
1128                 mark_all_dirty(svm->vmcb);
1129         }
1130
1131 #ifdef CONFIG_X86_64
1132         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1133 #endif
1134         savesegment(fs, svm->host.fs);
1135         savesegment(gs, svm->host.gs);
1136         svm->host.ldt = kvm_read_ldt();
1137
1138         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1139                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1140 }
1141
1142 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1143 {
1144         struct vcpu_svm *svm = to_svm(vcpu);
1145         int i;
1146
1147         ++vcpu->stat.host_state_reload;
1148         kvm_load_ldt(svm->host.ldt);
1149 #ifdef CONFIG_X86_64
1150         loadsegment(fs, svm->host.fs);
1151         load_gs_index(svm->host.gs);
1152         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1153 #else
1154         loadsegment(gs, svm->host.gs);
1155 #endif
1156         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1157                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1158 }
1159
1160 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1161 {
1162         return to_svm(vcpu)->vmcb->save.rflags;
1163 }
1164
1165 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1166 {
1167         to_svm(vcpu)->vmcb->save.rflags = rflags;
1168 }
1169
1170 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1171 {
1172         switch (reg) {
1173         case VCPU_EXREG_PDPTR:
1174                 BUG_ON(!npt_enabled);
1175                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
1176                 break;
1177         default:
1178                 BUG();
1179         }
1180 }
1181
1182 static void svm_set_vintr(struct vcpu_svm *svm)
1183 {
1184         set_intercept(svm, INTERCEPT_VINTR);
1185 }
1186
1187 static void svm_clear_vintr(struct vcpu_svm *svm)
1188 {
1189         clr_intercept(svm, INTERCEPT_VINTR);
1190 }
1191
1192 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1193 {
1194         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1195
1196         switch (seg) {
1197         case VCPU_SREG_CS: return &save->cs;
1198         case VCPU_SREG_DS: return &save->ds;
1199         case VCPU_SREG_ES: return &save->es;
1200         case VCPU_SREG_FS: return &save->fs;
1201         case VCPU_SREG_GS: return &save->gs;
1202         case VCPU_SREG_SS: return &save->ss;
1203         case VCPU_SREG_TR: return &save->tr;
1204         case VCPU_SREG_LDTR: return &save->ldtr;
1205         }
1206         BUG();
1207         return NULL;
1208 }
1209
1210 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1211 {
1212         struct vmcb_seg *s = svm_seg(vcpu, seg);
1213
1214         return s->base;
1215 }
1216
1217 static void svm_get_segment(struct kvm_vcpu *vcpu,
1218                             struct kvm_segment *var, int seg)
1219 {
1220         struct vmcb_seg *s = svm_seg(vcpu, seg);
1221
1222         var->base = s->base;
1223         var->limit = s->limit;
1224         var->selector = s->selector;
1225         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1226         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1227         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1228         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1229         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1230         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1231         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1232         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1233
1234         /*
1235          * AMD's VMCB does not have an explicit unusable field, so emulate it
1236          * for cross vendor migration purposes by "not present"
1237          */
1238         var->unusable = !var->present || (var->type == 0);
1239
1240         switch (seg) {
1241         case VCPU_SREG_CS:
1242                 /*
1243                  * SVM always stores 0 for the 'G' bit in the CS selector in
1244                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1245                  * Intel's VMENTRY has a check on the 'G' bit.
1246                  */
1247                 var->g = s->limit > 0xfffff;
1248                 break;
1249         case VCPU_SREG_TR:
1250                 /*
1251                  * Work around a bug where the busy flag in the tr selector
1252                  * isn't exposed
1253                  */
1254                 var->type |= 0x2;
1255                 break;
1256         case VCPU_SREG_DS:
1257         case VCPU_SREG_ES:
1258         case VCPU_SREG_FS:
1259         case VCPU_SREG_GS:
1260                 /*
1261                  * The accessed bit must always be set in the segment
1262                  * descriptor cache, although it can be cleared in the
1263                  * descriptor, the cached bit always remains at 1. Since
1264                  * Intel has a check on this, set it here to support
1265                  * cross-vendor migration.
1266                  */
1267                 if (!var->unusable)
1268                         var->type |= 0x1;
1269                 break;
1270         case VCPU_SREG_SS:
1271                 /*
1272                  * On AMD CPUs sometimes the DB bit in the segment
1273                  * descriptor is left as 1, although the whole segment has
1274                  * been made unusable. Clear it here to pass an Intel VMX
1275                  * entry check when cross vendor migrating.
1276                  */
1277                 if (var->unusable)
1278                         var->db = 0;
1279                 break;
1280         }
1281 }
1282
1283 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1284 {
1285         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1286
1287         return save->cpl;
1288 }
1289
1290 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1291 {
1292         struct vcpu_svm *svm = to_svm(vcpu);
1293
1294         dt->size = svm->vmcb->save.idtr.limit;
1295         dt->address = svm->vmcb->save.idtr.base;
1296 }
1297
1298 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1299 {
1300         struct vcpu_svm *svm = to_svm(vcpu);
1301
1302         svm->vmcb->save.idtr.limit = dt->size;
1303         svm->vmcb->save.idtr.base = dt->address ;
1304 }
1305
1306 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1307 {
1308         struct vcpu_svm *svm = to_svm(vcpu);
1309
1310         dt->size = svm->vmcb->save.gdtr.limit;
1311         dt->address = svm->vmcb->save.gdtr.base;
1312 }
1313
1314 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1315 {
1316         struct vcpu_svm *svm = to_svm(vcpu);
1317
1318         svm->vmcb->save.gdtr.limit = dt->size;
1319         svm->vmcb->save.gdtr.base = dt->address ;
1320 }
1321
1322 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1323 {
1324 }
1325
1326 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1327 {
1328 }
1329
1330 static void update_cr0_intercept(struct vcpu_svm *svm)
1331 {
1332         ulong gcr0 = svm->vcpu.arch.cr0;
1333         u64 *hcr0 = &svm->vmcb->save.cr0;
1334
1335         if (!svm->vcpu.fpu_active)
1336                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1337         else
1338                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1339                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1340
1341
1342         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1343                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1344                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1345         } else {
1346                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1347                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1348         }
1349 }
1350
1351 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1352 {
1353         struct vcpu_svm *svm = to_svm(vcpu);
1354
1355         if (is_guest_mode(vcpu)) {
1356                 /*
1357                  * We are here because we run in nested mode, the host kvm
1358                  * intercepts cr0 writes but the l1 hypervisor does not.
1359                  * But the L1 hypervisor may intercept selective cr0 writes.
1360                  * This needs to be checked here.
1361                  */
1362                 unsigned long old, new;
1363
1364                 /* Remove bits that would trigger a real cr0 write intercept */
1365                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1366                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1367
1368                 if (old == new) {
1369                         /* cr0 write with ts and mp unchanged */
1370                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1371                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1372                                 svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1373                                 svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1374                                 svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1375                                 return;
1376                         }
1377                 }
1378         }
1379
1380 #ifdef CONFIG_X86_64
1381         if (vcpu->arch.efer & EFER_LME) {
1382                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1383                         vcpu->arch.efer |= EFER_LMA;
1384                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1385                 }
1386
1387                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1388                         vcpu->arch.efer &= ~EFER_LMA;
1389                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1390                 }
1391         }
1392 #endif
1393         vcpu->arch.cr0 = cr0;
1394
1395         if (!npt_enabled)
1396                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1397
1398         if (!vcpu->fpu_active)
1399                 cr0 |= X86_CR0_TS;
1400         /*
1401          * re-enable caching here because the QEMU bios
1402          * does not do it - this results in some delay at
1403          * reboot
1404          */
1405         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1406         svm->vmcb->save.cr0 = cr0;
1407         update_cr0_intercept(svm);
1408 }
1409
1410 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1411 {
1412         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1413         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1414
1415         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1416                 force_new_asid(vcpu);
1417
1418         vcpu->arch.cr4 = cr4;
1419         if (!npt_enabled)
1420                 cr4 |= X86_CR4_PAE;
1421         cr4 |= host_cr4_mce;
1422         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1423 }
1424
1425 static void svm_set_segment(struct kvm_vcpu *vcpu,
1426                             struct kvm_segment *var, int seg)
1427 {
1428         struct vcpu_svm *svm = to_svm(vcpu);
1429         struct vmcb_seg *s = svm_seg(vcpu, seg);
1430
1431         s->base = var->base;
1432         s->limit = var->limit;
1433         s->selector = var->selector;
1434         if (var->unusable)
1435                 s->attrib = 0;
1436         else {
1437                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1438                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1439                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1440                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1441                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1442                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1443                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1444                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1445         }
1446         if (seg == VCPU_SREG_CS)
1447                 svm->vmcb->save.cpl
1448                         = (svm->vmcb->save.cs.attrib
1449                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1450
1451 }
1452
1453 static void update_db_intercept(struct kvm_vcpu *vcpu)
1454 {
1455         struct vcpu_svm *svm = to_svm(vcpu);
1456
1457         clr_exception_intercept(svm, DB_VECTOR);
1458         clr_exception_intercept(svm, BP_VECTOR);
1459
1460         if (svm->nmi_singlestep)
1461                 set_exception_intercept(svm, DB_VECTOR);
1462
1463         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1464                 if (vcpu->guest_debug &
1465                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1466                         set_exception_intercept(svm, DB_VECTOR);
1467                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1468                         set_exception_intercept(svm, BP_VECTOR);
1469         } else
1470                 vcpu->guest_debug = 0;
1471 }
1472
1473 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1474 {
1475         struct vcpu_svm *svm = to_svm(vcpu);
1476
1477         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1478                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1479         else
1480                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1481
1482         update_db_intercept(vcpu);
1483 }
1484
1485 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1486 {
1487         if (sd->next_asid > sd->max_asid) {
1488                 ++sd->asid_generation;
1489                 sd->next_asid = 1;
1490                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1491         }
1492
1493         svm->asid_generation = sd->asid_generation;
1494         svm->vmcb->control.asid = sd->next_asid++;
1495
1496         mark_dirty(svm->vmcb, VMCB_ASID);
1497 }
1498
1499 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1500 {
1501         struct vcpu_svm *svm = to_svm(vcpu);
1502
1503         svm->vmcb->save.dr7 = value;
1504 }
1505
1506 static int pf_interception(struct vcpu_svm *svm)
1507 {
1508         u64 fault_address = svm->vmcb->control.exit_info_2;
1509         u32 error_code;
1510         int r = 1;
1511
1512         switch (svm->apf_reason) {
1513         default:
1514                 error_code = svm->vmcb->control.exit_info_1;
1515
1516                 trace_kvm_page_fault(fault_address, error_code);
1517                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1518                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1519                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1520                 break;
1521         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1522                 svm->apf_reason = 0;
1523                 local_irq_disable();
1524                 kvm_async_pf_task_wait(fault_address);
1525                 local_irq_enable();
1526                 break;
1527         case KVM_PV_REASON_PAGE_READY:
1528                 svm->apf_reason = 0;
1529                 local_irq_disable();
1530                 kvm_async_pf_task_wake(fault_address);
1531                 local_irq_enable();
1532                 break;
1533         }
1534         return r;
1535 }
1536
1537 static int db_interception(struct vcpu_svm *svm)
1538 {
1539         struct kvm_run *kvm_run = svm->vcpu.run;
1540
1541         if (!(svm->vcpu.guest_debug &
1542               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1543                 !svm->nmi_singlestep) {
1544                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1545                 return 1;
1546         }
1547
1548         if (svm->nmi_singlestep) {
1549                 svm->nmi_singlestep = false;
1550                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1551                         svm->vmcb->save.rflags &=
1552                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1553                 update_db_intercept(&svm->vcpu);
1554         }
1555
1556         if (svm->vcpu.guest_debug &
1557             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1558                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1559                 kvm_run->debug.arch.pc =
1560                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1561                 kvm_run->debug.arch.exception = DB_VECTOR;
1562                 return 0;
1563         }
1564
1565         return 1;
1566 }
1567
1568 static int bp_interception(struct vcpu_svm *svm)
1569 {
1570         struct kvm_run *kvm_run = svm->vcpu.run;
1571
1572         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1573         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1574         kvm_run->debug.arch.exception = BP_VECTOR;
1575         return 0;
1576 }
1577
1578 static int ud_interception(struct vcpu_svm *svm)
1579 {
1580         int er;
1581
1582         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1583         if (er != EMULATE_DONE)
1584                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1585         return 1;
1586 }
1587
1588 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1589 {
1590         struct vcpu_svm *svm = to_svm(vcpu);
1591
1592         clr_exception_intercept(svm, NM_VECTOR);
1593
1594         svm->vcpu.fpu_active = 1;
1595         update_cr0_intercept(svm);
1596 }
1597
1598 static int nm_interception(struct vcpu_svm *svm)
1599 {
1600         svm_fpu_activate(&svm->vcpu);
1601         return 1;
1602 }
1603
1604 static bool is_erratum_383(void)
1605 {
1606         int err, i;
1607         u64 value;
1608
1609         if (!erratum_383_found)
1610                 return false;
1611
1612         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1613         if (err)
1614                 return false;
1615
1616         /* Bit 62 may or may not be set for this mce */
1617         value &= ~(1ULL << 62);
1618
1619         if (value != 0xb600000000010015ULL)
1620                 return false;
1621
1622         /* Clear MCi_STATUS registers */
1623         for (i = 0; i < 6; ++i)
1624                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1625
1626         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1627         if (!err) {
1628                 u32 low, high;
1629
1630                 value &= ~(1ULL << 2);
1631                 low    = lower_32_bits(value);
1632                 high   = upper_32_bits(value);
1633
1634                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1635         }
1636
1637         /* Flush tlb to evict multi-match entries */
1638         __flush_tlb_all();
1639
1640         return true;
1641 }
1642
1643 static void svm_handle_mce(struct vcpu_svm *svm)
1644 {
1645         if (is_erratum_383()) {
1646                 /*
1647                  * Erratum 383 triggered. Guest state is corrupt so kill the
1648                  * guest.
1649                  */
1650                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1651
1652                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1653
1654                 return;
1655         }
1656
1657         /*
1658          * On an #MC intercept the MCE handler is not called automatically in
1659          * the host. So do it by hand here.
1660          */
1661         asm volatile (
1662                 "int $0x12\n");
1663         /* not sure if we ever come back to this point */
1664
1665         return;
1666 }
1667
1668 static int mc_interception(struct vcpu_svm *svm)
1669 {
1670         return 1;
1671 }
1672
1673 static int shutdown_interception(struct vcpu_svm *svm)
1674 {
1675         struct kvm_run *kvm_run = svm->vcpu.run;
1676
1677         /*
1678          * VMCB is undefined after a SHUTDOWN intercept
1679          * so reinitialize it.
1680          */
1681         clear_page(svm->vmcb);
1682         init_vmcb(svm);
1683
1684         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1685         return 0;
1686 }
1687
1688 static int io_interception(struct vcpu_svm *svm)
1689 {
1690         struct kvm_vcpu *vcpu = &svm->vcpu;
1691         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1692         int size, in, string;
1693         unsigned port;
1694
1695         ++svm->vcpu.stat.io_exits;
1696         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1697         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1698         if (string || in)
1699                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1700
1701         port = io_info >> 16;
1702         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1703         svm->next_rip = svm->vmcb->control.exit_info_2;
1704         skip_emulated_instruction(&svm->vcpu);
1705
1706         return kvm_fast_pio_out(vcpu, size, port);
1707 }
1708
1709 static int nmi_interception(struct vcpu_svm *svm)
1710 {
1711         return 1;
1712 }
1713
1714 static int intr_interception(struct vcpu_svm *svm)
1715 {
1716         ++svm->vcpu.stat.irq_exits;
1717         return 1;
1718 }
1719
1720 static int nop_on_interception(struct vcpu_svm *svm)
1721 {
1722         return 1;
1723 }
1724
1725 static int halt_interception(struct vcpu_svm *svm)
1726 {
1727         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1728         skip_emulated_instruction(&svm->vcpu);
1729         return kvm_emulate_halt(&svm->vcpu);
1730 }
1731
1732 static int vmmcall_interception(struct vcpu_svm *svm)
1733 {
1734         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1735         skip_emulated_instruction(&svm->vcpu);
1736         kvm_emulate_hypercall(&svm->vcpu);
1737         return 1;
1738 }
1739
1740 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1741 {
1742         struct vcpu_svm *svm = to_svm(vcpu);
1743
1744         return svm->nested.nested_cr3;
1745 }
1746
1747 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1748                                    unsigned long root)
1749 {
1750         struct vcpu_svm *svm = to_svm(vcpu);
1751
1752         svm->vmcb->control.nested_cr3 = root;
1753         mark_dirty(svm->vmcb, VMCB_NPT);
1754         force_new_asid(vcpu);
1755 }
1756
1757 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1758                                        struct x86_exception *fault)
1759 {
1760         struct vcpu_svm *svm = to_svm(vcpu);
1761
1762         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1763         svm->vmcb->control.exit_code_hi = 0;
1764         svm->vmcb->control.exit_info_1 = fault->error_code;
1765         svm->vmcb->control.exit_info_2 = fault->address;
1766
1767         nested_svm_vmexit(svm);
1768 }
1769
1770 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1771 {
1772         int r;
1773
1774         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1775
1776         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1777         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1778         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1779         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1780         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1781
1782         return r;
1783 }
1784
1785 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1786 {
1787         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1788 }
1789
1790 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1791 {
1792         if (!(svm->vcpu.arch.efer & EFER_SVME)
1793             || !is_paging(&svm->vcpu)) {
1794                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1795                 return 1;
1796         }
1797
1798         if (svm->vmcb->save.cpl) {
1799                 kvm_inject_gp(&svm->vcpu, 0);
1800                 return 1;
1801         }
1802
1803        return 0;
1804 }
1805
1806 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1807                                       bool has_error_code, u32 error_code)
1808 {
1809         int vmexit;
1810
1811         if (!is_guest_mode(&svm->vcpu))
1812                 return 0;
1813
1814         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1815         svm->vmcb->control.exit_code_hi = 0;
1816         svm->vmcb->control.exit_info_1 = error_code;
1817         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1818
1819         vmexit = nested_svm_intercept(svm);
1820         if (vmexit == NESTED_EXIT_DONE)
1821                 svm->nested.exit_required = true;
1822
1823         return vmexit;
1824 }
1825
1826 /* This function returns true if it is save to enable the irq window */
1827 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1828 {
1829         if (!is_guest_mode(&svm->vcpu))
1830                 return true;
1831
1832         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1833                 return true;
1834
1835         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1836                 return false;
1837
1838         /*
1839          * if vmexit was already requested (by intercepted exception
1840          * for instance) do not overwrite it with "external interrupt"
1841          * vmexit.
1842          */
1843         if (svm->nested.exit_required)
1844                 return false;
1845
1846         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1847         svm->vmcb->control.exit_info_1 = 0;
1848         svm->vmcb->control.exit_info_2 = 0;
1849
1850         if (svm->nested.intercept & 1ULL) {
1851                 /*
1852                  * The #vmexit can't be emulated here directly because this
1853                  * code path runs with irqs and preemtion disabled. A
1854                  * #vmexit emulation might sleep. Only signal request for
1855                  * the #vmexit here.
1856                  */
1857                 svm->nested.exit_required = true;
1858                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1859                 return false;
1860         }
1861
1862         return true;
1863 }
1864
1865 /* This function returns true if it is save to enable the nmi window */
1866 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1867 {
1868         if (!is_guest_mode(&svm->vcpu))
1869                 return true;
1870
1871         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1872                 return true;
1873
1874         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1875         svm->nested.exit_required = true;
1876
1877         return false;
1878 }
1879
1880 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1881 {
1882         struct page *page;
1883
1884         might_sleep();
1885
1886         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1887         if (is_error_page(page))
1888                 goto error;
1889
1890         *_page = page;
1891
1892         return kmap(page);
1893
1894 error:
1895         kvm_release_page_clean(page);
1896         kvm_inject_gp(&svm->vcpu, 0);
1897
1898         return NULL;
1899 }
1900
1901 static void nested_svm_unmap(struct page *page)
1902 {
1903         kunmap(page);
1904         kvm_release_page_dirty(page);
1905 }
1906
1907 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1908 {
1909         unsigned port;
1910         u8 val, bit;
1911         u64 gpa;
1912
1913         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1914                 return NESTED_EXIT_HOST;
1915
1916         port = svm->vmcb->control.exit_info_1 >> 16;
1917         gpa  = svm->nested.vmcb_iopm + (port / 8);
1918         bit  = port % 8;
1919         val  = 0;
1920
1921         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1922                 val &= (1 << bit);
1923
1924         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1925 }
1926
1927 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1928 {
1929         u32 offset, msr, value;
1930         int write, mask;
1931
1932         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1933                 return NESTED_EXIT_HOST;
1934
1935         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1936         offset = svm_msrpm_offset(msr);
1937         write  = svm->vmcb->control.exit_info_1 & 1;
1938         mask   = 1 << ((2 * (msr & 0xf)) + write);
1939
1940         if (offset == MSR_INVALID)
1941                 return NESTED_EXIT_DONE;
1942
1943         /* Offset is in 32 bit units but need in 8 bit units */
1944         offset *= 4;
1945
1946         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1947                 return NESTED_EXIT_DONE;
1948
1949         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1950 }
1951
1952 static int nested_svm_exit_special(struct vcpu_svm *svm)
1953 {
1954         u32 exit_code = svm->vmcb->control.exit_code;
1955
1956         switch (exit_code) {
1957         case SVM_EXIT_INTR:
1958         case SVM_EXIT_NMI:
1959         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1960                 return NESTED_EXIT_HOST;
1961         case SVM_EXIT_NPF:
1962                 /* For now we are always handling NPFs when using them */
1963                 if (npt_enabled)
1964                         return NESTED_EXIT_HOST;
1965                 break;
1966         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1967                 /* When we're shadowing, trap PFs, but not async PF */
1968                 if (!npt_enabled && svm->apf_reason == 0)
1969                         return NESTED_EXIT_HOST;
1970                 break;
1971         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1972                 nm_interception(svm);
1973                 break;
1974         default:
1975                 break;
1976         }
1977
1978         return NESTED_EXIT_CONTINUE;
1979 }
1980
1981 /*
1982  * If this function returns true, this #vmexit was already handled
1983  */
1984 static int nested_svm_intercept(struct vcpu_svm *svm)
1985 {
1986         u32 exit_code = svm->vmcb->control.exit_code;
1987         int vmexit = NESTED_EXIT_HOST;
1988
1989         switch (exit_code) {
1990         case SVM_EXIT_MSR:
1991                 vmexit = nested_svm_exit_handled_msr(svm);
1992                 break;
1993         case SVM_EXIT_IOIO:
1994                 vmexit = nested_svm_intercept_ioio(svm);
1995                 break;
1996         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
1997                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
1998                 if (svm->nested.intercept_cr & bit)
1999                         vmexit = NESTED_EXIT_DONE;
2000                 break;
2001         }
2002         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2003                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2004                 if (svm->nested.intercept_dr & bit)
2005                         vmexit = NESTED_EXIT_DONE;
2006                 break;
2007         }
2008         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2009                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2010                 if (svm->nested.intercept_exceptions & excp_bits)
2011                         vmexit = NESTED_EXIT_DONE;
2012                 /* async page fault always cause vmexit */
2013                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2014                          svm->apf_reason != 0)
2015                         vmexit = NESTED_EXIT_DONE;
2016                 break;
2017         }
2018         case SVM_EXIT_ERR: {
2019                 vmexit = NESTED_EXIT_DONE;
2020                 break;
2021         }
2022         default: {
2023                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2024                 if (svm->nested.intercept & exit_bits)
2025                         vmexit = NESTED_EXIT_DONE;
2026         }
2027         }
2028
2029         return vmexit;
2030 }
2031
2032 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2033 {
2034         int vmexit;
2035
2036         vmexit = nested_svm_intercept(svm);
2037
2038         if (vmexit == NESTED_EXIT_DONE)
2039                 nested_svm_vmexit(svm);
2040
2041         return vmexit;
2042 }
2043
2044 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2045 {
2046         struct vmcb_control_area *dst  = &dst_vmcb->control;
2047         struct vmcb_control_area *from = &from_vmcb->control;
2048
2049         dst->intercept_cr         = from->intercept_cr;
2050         dst->intercept_dr         = from->intercept_dr;
2051         dst->intercept_exceptions = from->intercept_exceptions;
2052         dst->intercept            = from->intercept;
2053         dst->iopm_base_pa         = from->iopm_base_pa;
2054         dst->msrpm_base_pa        = from->msrpm_base_pa;
2055         dst->tsc_offset           = from->tsc_offset;
2056         dst->asid                 = from->asid;
2057         dst->tlb_ctl              = from->tlb_ctl;
2058         dst->int_ctl              = from->int_ctl;
2059         dst->int_vector           = from->int_vector;
2060         dst->int_state            = from->int_state;
2061         dst->exit_code            = from->exit_code;
2062         dst->exit_code_hi         = from->exit_code_hi;
2063         dst->exit_info_1          = from->exit_info_1;
2064         dst->exit_info_2          = from->exit_info_2;
2065         dst->exit_int_info        = from->exit_int_info;
2066         dst->exit_int_info_err    = from->exit_int_info_err;
2067         dst->nested_ctl           = from->nested_ctl;
2068         dst->event_inj            = from->event_inj;
2069         dst->event_inj_err        = from->event_inj_err;
2070         dst->nested_cr3           = from->nested_cr3;
2071         dst->lbr_ctl              = from->lbr_ctl;
2072 }
2073
2074 static int nested_svm_vmexit(struct vcpu_svm *svm)
2075 {
2076         struct vmcb *nested_vmcb;
2077         struct vmcb *hsave = svm->nested.hsave;
2078         struct vmcb *vmcb = svm->vmcb;
2079         struct page *page;
2080
2081         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2082                                        vmcb->control.exit_info_1,
2083                                        vmcb->control.exit_info_2,
2084                                        vmcb->control.exit_int_info,
2085                                        vmcb->control.exit_int_info_err);
2086
2087         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2088         if (!nested_vmcb)
2089                 return 1;
2090
2091         /* Exit Guest-Mode */
2092         leave_guest_mode(&svm->vcpu);
2093         svm->nested.vmcb = 0;
2094
2095         /* Give the current vmcb to the guest */
2096         disable_gif(svm);
2097
2098         nested_vmcb->save.es     = vmcb->save.es;
2099         nested_vmcb->save.cs     = vmcb->save.cs;
2100         nested_vmcb->save.ss     = vmcb->save.ss;
2101         nested_vmcb->save.ds     = vmcb->save.ds;
2102         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2103         nested_vmcb->save.idtr   = vmcb->save.idtr;
2104         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2105         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2106         nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
2107         nested_vmcb->save.cr2    = vmcb->save.cr2;
2108         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2109         nested_vmcb->save.rflags = vmcb->save.rflags;
2110         nested_vmcb->save.rip    = vmcb->save.rip;
2111         nested_vmcb->save.rsp    = vmcb->save.rsp;
2112         nested_vmcb->save.rax    = vmcb->save.rax;
2113         nested_vmcb->save.dr7    = vmcb->save.dr7;
2114         nested_vmcb->save.dr6    = vmcb->save.dr6;
2115         nested_vmcb->save.cpl    = vmcb->save.cpl;
2116
2117         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2118         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2119         nested_vmcb->control.int_state         = vmcb->control.int_state;
2120         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2121         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2122         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2123         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2124         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2125         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2126         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2127
2128         /*
2129          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2130          * to make sure that we do not lose injected events. So check event_inj
2131          * here and copy it to exit_int_info if it is valid.
2132          * Exit_int_info and event_inj can't be both valid because the case
2133          * below only happens on a VMRUN instruction intercept which has
2134          * no valid exit_int_info set.
2135          */
2136         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2137                 struct vmcb_control_area *nc = &nested_vmcb->control;
2138
2139                 nc->exit_int_info     = vmcb->control.event_inj;
2140                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2141         }
2142
2143         nested_vmcb->control.tlb_ctl           = 0;
2144         nested_vmcb->control.event_inj         = 0;
2145         nested_vmcb->control.event_inj_err     = 0;
2146
2147         /* We always set V_INTR_MASKING and remember the old value in hflags */
2148         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2149                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2150
2151         /* Restore the original control entries */
2152         copy_vmcb_control_area(vmcb, hsave);
2153
2154         kvm_clear_exception_queue(&svm->vcpu);
2155         kvm_clear_interrupt_queue(&svm->vcpu);
2156
2157         svm->nested.nested_cr3 = 0;
2158
2159         /* Restore selected save entries */
2160         svm->vmcb->save.es = hsave->save.es;
2161         svm->vmcb->save.cs = hsave->save.cs;
2162         svm->vmcb->save.ss = hsave->save.ss;
2163         svm->vmcb->save.ds = hsave->save.ds;
2164         svm->vmcb->save.gdtr = hsave->save.gdtr;
2165         svm->vmcb->save.idtr = hsave->save.idtr;
2166         svm->vmcb->save.rflags = hsave->save.rflags;
2167         svm_set_efer(&svm->vcpu, hsave->save.efer);
2168         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2169         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2170         if (npt_enabled) {
2171                 svm->vmcb->save.cr3 = hsave->save.cr3;
2172                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2173         } else {
2174                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2175         }
2176         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2177         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2178         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2179         svm->vmcb->save.dr7 = 0;
2180         svm->vmcb->save.cpl = 0;
2181         svm->vmcb->control.exit_int_info = 0;
2182
2183         mark_all_dirty(svm->vmcb);
2184
2185         nested_svm_unmap(page);
2186
2187         nested_svm_uninit_mmu_context(&svm->vcpu);
2188         kvm_mmu_reset_context(&svm->vcpu);
2189         kvm_mmu_load(&svm->vcpu);
2190
2191         return 0;
2192 }
2193
2194 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2195 {
2196         /*
2197          * This function merges the msr permission bitmaps of kvm and the
2198          * nested vmcb. It is omptimized in that it only merges the parts where
2199          * the kvm msr permission bitmap may contain zero bits
2200          */
2201         int i;
2202
2203         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2204                 return true;
2205
2206         for (i = 0; i < MSRPM_OFFSETS; i++) {
2207                 u32 value, p;
2208                 u64 offset;
2209
2210                 if (msrpm_offsets[i] == 0xffffffff)
2211                         break;
2212
2213                 p      = msrpm_offsets[i];
2214                 offset = svm->nested.vmcb_msrpm + (p * 4);
2215
2216                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2217                         return false;
2218
2219                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2220         }
2221
2222         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2223
2224         return true;
2225 }
2226
2227 static bool nested_vmcb_checks(struct vmcb *vmcb)
2228 {
2229         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2230                 return false;
2231
2232         if (vmcb->control.asid == 0)
2233                 return false;
2234
2235         if (vmcb->control.nested_ctl && !npt_enabled)
2236                 return false;
2237
2238         return true;
2239 }
2240
2241 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2242 {
2243         struct vmcb *nested_vmcb;
2244         struct vmcb *hsave = svm->nested.hsave;
2245         struct vmcb *vmcb = svm->vmcb;
2246         struct page *page;
2247         u64 vmcb_gpa;
2248
2249         vmcb_gpa = svm->vmcb->save.rax;
2250
2251         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2252         if (!nested_vmcb)
2253                 return false;
2254
2255         if (!nested_vmcb_checks(nested_vmcb)) {
2256                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2257                 nested_vmcb->control.exit_code_hi = 0;
2258                 nested_vmcb->control.exit_info_1  = 0;
2259                 nested_vmcb->control.exit_info_2  = 0;
2260
2261                 nested_svm_unmap(page);
2262
2263                 return false;
2264         }
2265
2266         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2267                                nested_vmcb->save.rip,
2268                                nested_vmcb->control.int_ctl,
2269                                nested_vmcb->control.event_inj,
2270                                nested_vmcb->control.nested_ctl);
2271
2272         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2273                                     nested_vmcb->control.intercept_cr >> 16,
2274                                     nested_vmcb->control.intercept_exceptions,
2275                                     nested_vmcb->control.intercept);
2276
2277         /* Clear internal status */
2278         kvm_clear_exception_queue(&svm->vcpu);
2279         kvm_clear_interrupt_queue(&svm->vcpu);
2280
2281         /*
2282          * Save the old vmcb, so we don't need to pick what we save, but can
2283          * restore everything when a VMEXIT occurs
2284          */
2285         hsave->save.es     = vmcb->save.es;
2286         hsave->save.cs     = vmcb->save.cs;
2287         hsave->save.ss     = vmcb->save.ss;
2288         hsave->save.ds     = vmcb->save.ds;
2289         hsave->save.gdtr   = vmcb->save.gdtr;
2290         hsave->save.idtr   = vmcb->save.idtr;
2291         hsave->save.efer   = svm->vcpu.arch.efer;
2292         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2293         hsave->save.cr4    = svm->vcpu.arch.cr4;
2294         hsave->save.rflags = vmcb->save.rflags;
2295         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2296         hsave->save.rsp    = vmcb->save.rsp;
2297         hsave->save.rax    = vmcb->save.rax;
2298         if (npt_enabled)
2299                 hsave->save.cr3    = vmcb->save.cr3;
2300         else
2301                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2302
2303         copy_vmcb_control_area(hsave, vmcb);
2304
2305         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2306                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2307         else
2308                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2309
2310         if (nested_vmcb->control.nested_ctl) {
2311                 kvm_mmu_unload(&svm->vcpu);
2312                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2313                 nested_svm_init_mmu_context(&svm->vcpu);
2314         }
2315
2316         /* Load the nested guest state */
2317         svm->vmcb->save.es = nested_vmcb->save.es;
2318         svm->vmcb->save.cs = nested_vmcb->save.cs;
2319         svm->vmcb->save.ss = nested_vmcb->save.ss;
2320         svm->vmcb->save.ds = nested_vmcb->save.ds;
2321         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2322         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2323         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2324         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2325         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2326         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2327         if (npt_enabled) {
2328                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2329                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2330         } else
2331                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2332
2333         /* Guest paging mode is active - reset mmu */
2334         kvm_mmu_reset_context(&svm->vcpu);
2335
2336         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2337         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2338         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2339         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2340
2341         /* In case we don't even reach vcpu_run, the fields are not updated */
2342         svm->vmcb->save.rax = nested_vmcb->save.rax;
2343         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2344         svm->vmcb->save.rip = nested_vmcb->save.rip;
2345         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2346         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2347         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2348
2349         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2350         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2351
2352         /* cache intercepts */
2353         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2354         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2355         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2356         svm->nested.intercept            = nested_vmcb->control.intercept;
2357
2358         force_new_asid(&svm->vcpu);
2359         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2360         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2361                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2362         else
2363                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2364
2365         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2366                 /* We only want the cr8 intercept bits of the guest */
2367                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2368                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2369         }
2370
2371         /* We don't want to see VMMCALLs from a nested guest */
2372         clr_intercept(svm, INTERCEPT_VMMCALL);
2373
2374         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2375         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2376         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2377         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2378         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2379         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2380
2381         nested_svm_unmap(page);
2382
2383         /* Enter Guest-Mode */
2384         enter_guest_mode(&svm->vcpu);
2385
2386         /*
2387          * Merge guest and host intercepts - must be called  with vcpu in
2388          * guest-mode to take affect here
2389          */
2390         recalc_intercepts(svm);
2391
2392         svm->nested.vmcb = vmcb_gpa;
2393
2394         enable_gif(svm);
2395
2396         mark_all_dirty(svm->vmcb);
2397
2398         return true;
2399 }
2400
2401 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2402 {
2403         to_vmcb->save.fs = from_vmcb->save.fs;
2404         to_vmcb->save.gs = from_vmcb->save.gs;
2405         to_vmcb->save.tr = from_vmcb->save.tr;
2406         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2407         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2408         to_vmcb->save.star = from_vmcb->save.star;
2409         to_vmcb->save.lstar = from_vmcb->save.lstar;
2410         to_vmcb->save.cstar = from_vmcb->save.cstar;
2411         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2412         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2413         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2414         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2415 }
2416
2417 static int vmload_interception(struct vcpu_svm *svm)
2418 {
2419         struct vmcb *nested_vmcb;
2420         struct page *page;
2421
2422         if (nested_svm_check_permissions(svm))
2423                 return 1;
2424
2425         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2426         skip_emulated_instruction(&svm->vcpu);
2427
2428         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2429         if (!nested_vmcb)
2430                 return 1;
2431
2432         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2433         nested_svm_unmap(page);
2434
2435         return 1;
2436 }
2437
2438 static int vmsave_interception(struct vcpu_svm *svm)
2439 {
2440         struct vmcb *nested_vmcb;
2441         struct page *page;
2442
2443         if (nested_svm_check_permissions(svm))
2444                 return 1;
2445
2446         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2447         skip_emulated_instruction(&svm->vcpu);
2448
2449         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2450         if (!nested_vmcb)
2451                 return 1;
2452
2453         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2454         nested_svm_unmap(page);
2455
2456         return 1;
2457 }
2458
2459 static int vmrun_interception(struct vcpu_svm *svm)
2460 {
2461         if (nested_svm_check_permissions(svm))
2462                 return 1;
2463
2464         /* Save rip after vmrun instruction */
2465         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2466
2467         if (!nested_svm_vmrun(svm))
2468                 return 1;
2469
2470         if (!nested_svm_vmrun_msrpm(svm))
2471                 goto failed;
2472
2473         return 1;
2474
2475 failed:
2476
2477         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2478         svm->vmcb->control.exit_code_hi = 0;
2479         svm->vmcb->control.exit_info_1  = 0;
2480         svm->vmcb->control.exit_info_2  = 0;
2481
2482         nested_svm_vmexit(svm);
2483
2484         return 1;
2485 }
2486
2487 static int stgi_interception(struct vcpu_svm *svm)
2488 {
2489         if (nested_svm_check_permissions(svm))
2490                 return 1;
2491
2492         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2493         skip_emulated_instruction(&svm->vcpu);
2494         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2495
2496         enable_gif(svm);
2497
2498         return 1;
2499 }
2500
2501 static int clgi_interception(struct vcpu_svm *svm)
2502 {
2503         if (nested_svm_check_permissions(svm))
2504                 return 1;
2505
2506         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2507         skip_emulated_instruction(&svm->vcpu);
2508
2509         disable_gif(svm);
2510
2511         /* After a CLGI no interrupts should come */
2512         svm_clear_vintr(svm);
2513         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2514
2515         mark_dirty(svm->vmcb, VMCB_INTR);
2516
2517         return 1;
2518 }
2519
2520 static int invlpga_interception(struct vcpu_svm *svm)
2521 {
2522         struct kvm_vcpu *vcpu = &svm->vcpu;
2523
2524         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2525                           vcpu->arch.regs[VCPU_REGS_RAX]);
2526
2527         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2528         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2529
2530         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2531         skip_emulated_instruction(&svm->vcpu);
2532         return 1;
2533 }
2534
2535 static int skinit_interception(struct vcpu_svm *svm)
2536 {
2537         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2538
2539         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2540         return 1;
2541 }
2542
2543 static int invalid_op_interception(struct vcpu_svm *svm)
2544 {
2545         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2546         return 1;
2547 }
2548
2549 static int task_switch_interception(struct vcpu_svm *svm)
2550 {
2551         u16 tss_selector;
2552         int reason;
2553         int int_type = svm->vmcb->control.exit_int_info &
2554                 SVM_EXITINTINFO_TYPE_MASK;
2555         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2556         uint32_t type =
2557                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2558         uint32_t idt_v =
2559                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2560         bool has_error_code = false;
2561         u32 error_code = 0;
2562
2563         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2564
2565         if (svm->vmcb->control.exit_info_2 &
2566             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2567                 reason = TASK_SWITCH_IRET;
2568         else if (svm->vmcb->control.exit_info_2 &
2569                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2570                 reason = TASK_SWITCH_JMP;
2571         else if (idt_v)
2572                 reason = TASK_SWITCH_GATE;
2573         else
2574                 reason = TASK_SWITCH_CALL;
2575
2576         if (reason == TASK_SWITCH_GATE) {
2577                 switch (type) {
2578                 case SVM_EXITINTINFO_TYPE_NMI:
2579                         svm->vcpu.arch.nmi_injected = false;
2580                         break;
2581                 case SVM_EXITINTINFO_TYPE_EXEPT:
2582                         if (svm->vmcb->control.exit_info_2 &
2583                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2584                                 has_error_code = true;
2585                                 error_code =
2586                                         (u32)svm->vmcb->control.exit_info_2;
2587                         }
2588                         kvm_clear_exception_queue(&svm->vcpu);
2589                         break;
2590                 case SVM_EXITINTINFO_TYPE_INTR:
2591                         kvm_clear_interrupt_queue(&svm->vcpu);
2592                         break;
2593                 default:
2594                         break;
2595                 }
2596         }
2597
2598         if (reason != TASK_SWITCH_GATE ||
2599             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2600             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2601              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2602                 skip_emulated_instruction(&svm->vcpu);
2603
2604         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2605                                 has_error_code, error_code) == EMULATE_FAIL) {
2606                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2607                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2608                 svm->vcpu.run->internal.ndata = 0;
2609                 return 0;
2610         }
2611         return 1;
2612 }
2613
2614 static int cpuid_interception(struct vcpu_svm *svm)
2615 {
2616         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2617         kvm_emulate_cpuid(&svm->vcpu);
2618         return 1;
2619 }
2620
2621 static int iret_interception(struct vcpu_svm *svm)
2622 {
2623         ++svm->vcpu.stat.nmi_window_exits;
2624         clr_intercept(svm, INTERCEPT_IRET);
2625         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2626         return 1;
2627 }
2628
2629 static int invlpg_interception(struct vcpu_svm *svm)
2630 {
2631         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2632 }
2633
2634 static int emulate_on_interception(struct vcpu_svm *svm)
2635 {
2636         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2637 }
2638
2639 static int cr0_write_interception(struct vcpu_svm *svm)
2640 {
2641         struct kvm_vcpu *vcpu = &svm->vcpu;
2642         int r;
2643
2644         r = emulate_instruction(&svm->vcpu, 0, 0, 0);
2645
2646         if (svm->nested.vmexit_rip) {
2647                 kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2648                 kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2649                 kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2650                 svm->nested.vmexit_rip = 0;
2651         }
2652
2653         return r == EMULATE_DONE;
2654 }
2655
2656 static int cr8_write_interception(struct vcpu_svm *svm)
2657 {
2658         struct kvm_run *kvm_run = svm->vcpu.run;
2659
2660         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2661         /* instruction emulation calls kvm_set_cr8() */
2662         emulate_instruction(&svm->vcpu, 0, 0, 0);
2663         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2664                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2665                 return 1;
2666         }
2667         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2668                 return 1;
2669         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2670         return 0;
2671 }
2672
2673 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2674 {
2675         struct vcpu_svm *svm = to_svm(vcpu);
2676
2677         switch (ecx) {
2678         case MSR_IA32_TSC: {
2679                 struct vmcb *vmcb = get_host_vmcb(svm);
2680
2681                 *data = vmcb->control.tsc_offset + native_read_tsc();
2682                 break;
2683         }
2684         case MSR_STAR:
2685                 *data = svm->vmcb->save.star;
2686                 break;
2687 #ifdef CONFIG_X86_64
2688         case MSR_LSTAR:
2689                 *data = svm->vmcb->save.lstar;
2690                 break;
2691         case MSR_CSTAR:
2692                 *data = svm->vmcb->save.cstar;
2693                 break;
2694         case MSR_KERNEL_GS_BASE:
2695                 *data = svm->vmcb->save.kernel_gs_base;
2696                 break;
2697         case MSR_SYSCALL_MASK:
2698                 *data = svm->vmcb->save.sfmask;
2699                 break;
2700 #endif
2701         case MSR_IA32_SYSENTER_CS:
2702                 *data = svm->vmcb->save.sysenter_cs;
2703                 break;
2704         case MSR_IA32_SYSENTER_EIP:
2705                 *data = svm->sysenter_eip;
2706                 break;
2707         case MSR_IA32_SYSENTER_ESP:
2708                 *data = svm->sysenter_esp;
2709                 break;
2710         /*
2711          * Nobody will change the following 5 values in the VMCB so we can
2712          * safely return them on rdmsr. They will always be 0 until LBRV is
2713          * implemented.
2714          */
2715         case MSR_IA32_DEBUGCTLMSR:
2716                 *data = svm->vmcb->save.dbgctl;
2717                 break;
2718         case MSR_IA32_LASTBRANCHFROMIP:
2719                 *data = svm->vmcb->save.br_from;
2720                 break;
2721         case MSR_IA32_LASTBRANCHTOIP:
2722                 *data = svm->vmcb->save.br_to;
2723                 break;
2724         case MSR_IA32_LASTINTFROMIP:
2725                 *data = svm->vmcb->save.last_excp_from;
2726                 break;
2727         case MSR_IA32_LASTINTTOIP:
2728                 *data = svm->vmcb->save.last_excp_to;
2729                 break;
2730         case MSR_VM_HSAVE_PA:
2731                 *data = svm->nested.hsave_msr;
2732                 break;
2733         case MSR_VM_CR:
2734                 *data = svm->nested.vm_cr_msr;
2735                 break;
2736         case MSR_IA32_UCODE_REV:
2737                 *data = 0x01000065;
2738                 break;
2739         default:
2740                 return kvm_get_msr_common(vcpu, ecx, data);
2741         }
2742         return 0;
2743 }
2744
2745 static int rdmsr_interception(struct vcpu_svm *svm)
2746 {
2747         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2748         u64 data;
2749
2750         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2751                 trace_kvm_msr_read_ex(ecx);
2752                 kvm_inject_gp(&svm->vcpu, 0);
2753         } else {
2754                 trace_kvm_msr_read(ecx, data);
2755
2756                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2757                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2758                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2759                 skip_emulated_instruction(&svm->vcpu);
2760         }
2761         return 1;
2762 }
2763
2764 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2765 {
2766         struct vcpu_svm *svm = to_svm(vcpu);
2767         int svm_dis, chg_mask;
2768
2769         if (data & ~SVM_VM_CR_VALID_MASK)
2770                 return 1;
2771
2772         chg_mask = SVM_VM_CR_VALID_MASK;
2773
2774         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2775                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2776
2777         svm->nested.vm_cr_msr &= ~chg_mask;
2778         svm->nested.vm_cr_msr |= (data & chg_mask);
2779
2780         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2781
2782         /* check for svm_disable while efer.svme is set */
2783         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2784                 return 1;
2785
2786         return 0;
2787 }
2788
2789 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2790 {
2791         struct vcpu_svm *svm = to_svm(vcpu);
2792
2793         switch (ecx) {
2794         case MSR_IA32_TSC:
2795                 kvm_write_tsc(vcpu, data);
2796                 break;
2797         case MSR_STAR:
2798                 svm->vmcb->save.star = data;
2799                 break;
2800 #ifdef CONFIG_X86_64
2801         case MSR_LSTAR:
2802                 svm->vmcb->save.lstar = data;
2803                 break;
2804         case MSR_CSTAR:
2805                 svm->vmcb->save.cstar = data;
2806                 break;
2807         case MSR_KERNEL_GS_BASE:
2808                 svm->vmcb->save.kernel_gs_base = data;
2809                 break;
2810         case MSR_SYSCALL_MASK:
2811                 svm->vmcb->save.sfmask = data;
2812                 break;
2813 #endif
2814         case MSR_IA32_SYSENTER_CS:
2815                 svm->vmcb->save.sysenter_cs = data;
2816                 break;
2817         case MSR_IA32_SYSENTER_EIP:
2818                 svm->sysenter_eip = data;
2819                 svm->vmcb->save.sysenter_eip = data;
2820                 break;
2821         case MSR_IA32_SYSENTER_ESP:
2822                 svm->sysenter_esp = data;
2823                 svm->vmcb->save.sysenter_esp = data;
2824                 break;
2825         case MSR_IA32_DEBUGCTLMSR:
2826                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2827                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2828                                         __func__, data);
2829                         break;
2830                 }
2831                 if (data & DEBUGCTL_RESERVED_BITS)
2832                         return 1;
2833
2834                 svm->vmcb->save.dbgctl = data;
2835                 if (data & (1ULL<<0))
2836                         svm_enable_lbrv(svm);
2837                 else
2838                         svm_disable_lbrv(svm);
2839                 break;
2840         case MSR_VM_HSAVE_PA:
2841                 svm->nested.hsave_msr = data;
2842                 break;
2843         case MSR_VM_CR:
2844                 return svm_set_vm_cr(vcpu, data);
2845         case MSR_VM_IGNNE:
2846                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2847                 break;
2848         default:
2849                 return kvm_set_msr_common(vcpu, ecx, data);
2850         }
2851         return 0;
2852 }
2853
2854 static int wrmsr_interception(struct vcpu_svm *svm)
2855 {
2856         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2857         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2858                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2859
2860
2861         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2862         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2863                 trace_kvm_msr_write_ex(ecx, data);
2864                 kvm_inject_gp(&svm->vcpu, 0);
2865         } else {
2866                 trace_kvm_msr_write(ecx, data);
2867                 skip_emulated_instruction(&svm->vcpu);
2868         }
2869         return 1;
2870 }
2871
2872 static int msr_interception(struct vcpu_svm *svm)
2873 {
2874         if (svm->vmcb->control.exit_info_1)
2875                 return wrmsr_interception(svm);
2876         else
2877                 return rdmsr_interception(svm);
2878 }
2879
2880 static int interrupt_window_interception(struct vcpu_svm *svm)
2881 {
2882         struct kvm_run *kvm_run = svm->vcpu.run;
2883
2884         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2885         svm_clear_vintr(svm);
2886         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2887         mark_dirty(svm->vmcb, VMCB_INTR);
2888         /*
2889          * If the user space waits to inject interrupts, exit as soon as
2890          * possible
2891          */
2892         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2893             kvm_run->request_interrupt_window &&
2894             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2895                 ++svm->vcpu.stat.irq_window_exits;
2896                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2897                 return 0;
2898         }
2899
2900         return 1;
2901 }
2902
2903 static int pause_interception(struct vcpu_svm *svm)
2904 {
2905         kvm_vcpu_on_spin(&(svm->vcpu));
2906         return 1;
2907 }
2908
2909 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2910         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2911         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2912         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2913         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2914         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2915         [SVM_EXIT_WRITE_CR0]                    = cr0_write_interception,
2916         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2917         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2918         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2919         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2920         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2921         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2922         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2923         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2924         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2925         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2926         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2927         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2928         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2929         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2930         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2931         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2932         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2933         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2934         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2935         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2936         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2937         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2938         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2939         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2940         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2941         [SVM_EXIT_INTR]                         = intr_interception,
2942         [SVM_EXIT_NMI]                          = nmi_interception,
2943         [SVM_EXIT_SMI]                          = nop_on_interception,
2944         [SVM_EXIT_INIT]                         = nop_on_interception,
2945         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2946         [SVM_EXIT_CPUID]                        = cpuid_interception,
2947         [SVM_EXIT_IRET]                         = iret_interception,
2948         [SVM_EXIT_INVD]                         = emulate_on_interception,
2949         [SVM_EXIT_PAUSE]                        = pause_interception,
2950         [SVM_EXIT_HLT]                          = halt_interception,
2951         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2952         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2953         [SVM_EXIT_IOIO]                         = io_interception,
2954         [SVM_EXIT_MSR]                          = msr_interception,
2955         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2956         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2957         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2958         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2959         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2960         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2961         [SVM_EXIT_STGI]                         = stgi_interception,
2962         [SVM_EXIT_CLGI]                         = clgi_interception,
2963         [SVM_EXIT_SKINIT]                       = skinit_interception,
2964         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2965         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2966         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2967         [SVM_EXIT_NPF]                          = pf_interception,
2968 };
2969
2970 void dump_vmcb(struct kvm_vcpu *vcpu)
2971 {
2972         struct vcpu_svm *svm = to_svm(vcpu);
2973         struct vmcb_control_area *control = &svm->vmcb->control;
2974         struct vmcb_save_area *save = &svm->vmcb->save;
2975
2976         pr_err("VMCB Control Area:\n");
2977         pr_err("cr_read:            %04x\n", control->intercept_cr & 0xffff);
2978         pr_err("cr_write:           %04x\n", control->intercept_cr >> 16);
2979         pr_err("dr_read:            %04x\n", control->intercept_dr & 0xffff);
2980         pr_err("dr_write:           %04x\n", control->intercept_dr >> 16);
2981         pr_err("exceptions:         %08x\n", control->intercept_exceptions);
2982         pr_err("intercepts:         %016llx\n", control->intercept);
2983         pr_err("pause filter count: %d\n", control->pause_filter_count);
2984         pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa);
2985         pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa);
2986         pr_err("tsc_offset:         %016llx\n", control->tsc_offset);
2987         pr_err("asid:               %d\n", control->asid);
2988         pr_err("tlb_ctl:            %d\n", control->tlb_ctl);
2989         pr_err("int_ctl:            %08x\n", control->int_ctl);
2990         pr_err("int_vector:         %08x\n", control->int_vector);
2991         pr_err("int_state:          %08x\n", control->int_state);
2992         pr_err("exit_code:          %08x\n", control->exit_code);
2993         pr_err("exit_info1:         %016llx\n", control->exit_info_1);
2994         pr_err("exit_info2:         %016llx\n", control->exit_info_2);
2995         pr_err("exit_int_info:      %08x\n", control->exit_int_info);
2996         pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err);
2997         pr_err("nested_ctl:         %lld\n", control->nested_ctl);
2998         pr_err("nested_cr3:         %016llx\n", control->nested_cr3);
2999         pr_err("event_inj:          %08x\n", control->event_inj);
3000         pr_err("event_inj_err:      %08x\n", control->event_inj_err);
3001         pr_err("lbr_ctl:            %lld\n", control->lbr_ctl);
3002         pr_err("next_rip:           %016llx\n", control->next_rip);
3003         pr_err("VMCB State Save Area:\n");
3004         pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n",
3005                 save->es.selector, save->es.attrib,
3006                 save->es.limit, save->es.base);
3007         pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n",
3008                 save->cs.selector, save->cs.attrib,
3009                 save->cs.limit, save->cs.base);
3010         pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n",
3011                 save->ss.selector, save->ss.attrib,
3012                 save->ss.limit, save->ss.base);
3013         pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n",
3014                 save->ds.selector, save->ds.attrib,
3015                 save->ds.limit, save->ds.base);
3016         pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n",
3017                 save->fs.selector, save->fs.attrib,
3018                 save->fs.limit, save->fs.base);
3019         pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n",
3020                 save->gs.selector, save->gs.attrib,
3021                 save->gs.limit, save->gs.base);
3022         pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
3023                 save->gdtr.selector, save->gdtr.attrib,
3024                 save->gdtr.limit, save->gdtr.base);
3025         pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
3026                 save->ldtr.selector, save->ldtr.attrib,
3027                 save->ldtr.limit, save->ldtr.base);
3028         pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
3029                 save->idtr.selector, save->idtr.attrib,
3030                 save->idtr.limit, save->idtr.base);
3031         pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n",
3032                 save->tr.selector, save->tr.attrib,
3033                 save->tr.limit, save->tr.base);
3034         pr_err("cpl:            %d                efer:         %016llx\n",
3035                 save->cpl, save->efer);
3036         pr_err("cr0:            %016llx cr2:          %016llx\n",
3037                 save->cr0, save->cr2);
3038         pr_err("cr3:            %016llx cr4:          %016llx\n",
3039                 save->cr3, save->cr4);
3040         pr_err("dr6:            %016llx dr7:          %016llx\n",
3041                 save->dr6, save->dr7);
3042         pr_err("rip:            %016llx rflags:       %016llx\n",
3043                 save->rip, save->rflags);
3044         pr_err("rsp:            %016llx rax:          %016llx\n",
3045                 save->rsp, save->rax);
3046         pr_err("star:           %016llx lstar:        %016llx\n",
3047                 save->star, save->lstar);
3048         pr_err("cstar:          %016llx sfmask:       %016llx\n",
3049                 save->cstar, save->sfmask);
3050         pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n",
3051                 save->kernel_gs_base, save->sysenter_cs);
3052         pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n",
3053                 save->sysenter_esp, save->sysenter_eip);
3054         pr_err("gpat:           %016llx dbgctl:       %016llx\n",
3055                 save->g_pat, save->dbgctl);
3056         pr_err("br_from:        %016llx br_to:        %016llx\n",
3057                 save->br_from, save->br_to);
3058         pr_err("excp_from:      %016llx excp_to:      %016llx\n",
3059                 save->last_excp_from, save->last_excp_to);
3060
3061 }
3062
3063 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3064 {
3065         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3066
3067         *info1 = control->exit_info_1;
3068         *info2 = control->exit_info_2;
3069 }
3070
3071 static int handle_exit(struct kvm_vcpu *vcpu)
3072 {
3073         struct vcpu_svm *svm = to_svm(vcpu);
3074         struct kvm_run *kvm_run = vcpu->run;
3075         u32 exit_code = svm->vmcb->control.exit_code;
3076
3077         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3078
3079         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3080                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3081         if (npt_enabled)
3082                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3083
3084         if (unlikely(svm->nested.exit_required)) {
3085                 nested_svm_vmexit(svm);
3086                 svm->nested.exit_required = false;
3087
3088                 return 1;
3089         }
3090
3091         if (is_guest_mode(vcpu)) {
3092                 int vmexit;
3093
3094                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3095                                         svm->vmcb->control.exit_info_1,
3096                                         svm->vmcb->control.exit_info_2,
3097                                         svm->vmcb->control.exit_int_info,
3098                                         svm->vmcb->control.exit_int_info_err);
3099
3100                 vmexit = nested_svm_exit_special(svm);
3101
3102                 if (vmexit == NESTED_EXIT_CONTINUE)
3103                         vmexit = nested_svm_exit_handled(svm);
3104
3105                 if (vmexit == NESTED_EXIT_DONE)
3106                         return 1;
3107         }
3108
3109         svm_complete_interrupts(svm);
3110
3111         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3112                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3113                 kvm_run->fail_entry.hardware_entry_failure_reason
3114                         = svm->vmcb->control.exit_code;
3115                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3116                 dump_vmcb(vcpu);
3117                 return 0;
3118         }
3119
3120         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3121             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3122             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3123             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3124                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3125                        "exit_code 0x%x\n",
3126                        __func__, svm->vmcb->control.exit_int_info,
3127                        exit_code);
3128
3129         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3130             || !svm_exit_handlers[exit_code]) {
3131                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3132                 kvm_run->hw.hardware_exit_reason = exit_code;
3133                 return 0;
3134         }
3135
3136         return svm_exit_handlers[exit_code](svm);
3137 }
3138
3139 static void reload_tss(struct kvm_vcpu *vcpu)
3140 {
3141         int cpu = raw_smp_processor_id();
3142
3143         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3144         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3145         load_TR_desc();
3146 }
3147
3148 static void pre_svm_run(struct vcpu_svm *svm)
3149 {
3150         int cpu = raw_smp_processor_id();
3151
3152         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3153
3154         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3155         /* FIXME: handle wraparound of asid_generation */
3156         if (svm->asid_generation != sd->asid_generation)
3157                 new_asid(svm, sd);
3158 }
3159
3160 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3161 {
3162         struct vcpu_svm *svm = to_svm(vcpu);
3163
3164         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3165         vcpu->arch.hflags |= HF_NMI_MASK;
3166         set_intercept(svm, INTERCEPT_IRET);
3167         ++vcpu->stat.nmi_injections;
3168 }
3169
3170 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3171 {
3172         struct vmcb_control_area *control;
3173
3174         control = &svm->vmcb->control;
3175         control->int_vector = irq;
3176         control->int_ctl &= ~V_INTR_PRIO_MASK;
3177         control->int_ctl |= V_IRQ_MASK |
3178                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3179         mark_dirty(svm->vmcb, VMCB_INTR);
3180 }
3181
3182 static void svm_set_irq(struct kvm_vcpu *vcpu)
3183 {
3184         struct vcpu_svm *svm = to_svm(vcpu);
3185
3186         BUG_ON(!(gif_set(svm)));
3187
3188         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3189         ++vcpu->stat.irq_injections;
3190
3191         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3192                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3193 }
3194
3195 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3196 {
3197         struct vcpu_svm *svm = to_svm(vcpu);
3198
3199         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3200                 return;
3201
3202         if (irr == -1)
3203                 return;
3204
3205         if (tpr >= irr)
3206                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3207 }
3208
3209 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3210 {
3211         struct vcpu_svm *svm = to_svm(vcpu);
3212         struct vmcb *vmcb = svm->vmcb;
3213         int ret;
3214         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3215               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3216         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3217
3218         return ret;
3219 }
3220
3221 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3222 {
3223         struct vcpu_svm *svm = to_svm(vcpu);
3224
3225         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3226 }
3227
3228 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3229 {
3230         struct vcpu_svm *svm = to_svm(vcpu);
3231
3232         if (masked) {
3233                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3234                 set_intercept(svm, INTERCEPT_IRET);
3235         } else {
3236                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3237                 clr_intercept(svm, INTERCEPT_IRET);
3238         }
3239 }
3240
3241 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3242 {
3243         struct vcpu_svm *svm = to_svm(vcpu);
3244         struct vmcb *vmcb = svm->vmcb;
3245         int ret;
3246
3247         if (!gif_set(svm) ||
3248              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3249                 return 0;
3250
3251         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3252
3253         if (is_guest_mode(vcpu))
3254                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3255
3256         return ret;
3257 }
3258
3259 static void enable_irq_window(struct kvm_vcpu *vcpu)
3260 {
3261         struct vcpu_svm *svm = to_svm(vcpu);
3262
3263         /*
3264          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3265          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3266          * get that intercept, this function will be called again though and
3267          * we'll get the vintr intercept.
3268          */
3269         if (gif_set(svm) && nested_svm_intr(svm)) {
3270                 svm_set_vintr(svm);
3271                 svm_inject_irq(svm, 0x0);
3272         }
3273 }
3274
3275 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3276 {
3277         struct vcpu_svm *svm = to_svm(vcpu);
3278
3279         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3280             == HF_NMI_MASK)
3281                 return; /* IRET will cause a vm exit */
3282
3283         /*
3284          * Something prevents NMI from been injected. Single step over possible
3285          * problem (IRET or exception injection or interrupt shadow)
3286          */
3287         svm->nmi_singlestep = true;
3288         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3289         update_db_intercept(vcpu);
3290 }
3291
3292 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3293 {
3294         return 0;
3295 }
3296
3297 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3298 {
3299         force_new_asid(vcpu);
3300 }
3301
3302 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3303 {
3304 }
3305
3306 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3307 {
3308         struct vcpu_svm *svm = to_svm(vcpu);
3309
3310         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3311                 return;
3312
3313         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3314                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3315                 kvm_set_cr8(vcpu, cr8);
3316         }
3317 }
3318
3319 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3320 {
3321         struct vcpu_svm *svm = to_svm(vcpu);
3322         u64 cr8;
3323
3324         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3325                 return;
3326
3327         cr8 = kvm_get_cr8(vcpu);
3328         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3329         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3330 }
3331
3332 static void svm_complete_interrupts(struct vcpu_svm *svm)
3333 {
3334         u8 vector;
3335         int type;
3336         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3337         unsigned int3_injected = svm->int3_injected;
3338
3339         svm->int3_injected = 0;
3340
3341         if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
3342                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3343                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3344         }
3345
3346         svm->vcpu.arch.nmi_injected = false;
3347         kvm_clear_exception_queue(&svm->vcpu);
3348         kvm_clear_interrupt_queue(&svm->vcpu);
3349
3350         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3351                 return;
3352
3353         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3354
3355         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3356         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3357
3358         switch (type) {
3359         case SVM_EXITINTINFO_TYPE_NMI:
3360                 svm->vcpu.arch.nmi_injected = true;
3361                 break;
3362         case SVM_EXITINTINFO_TYPE_EXEPT:
3363                 /*
3364                  * In case of software exceptions, do not reinject the vector,
3365                  * but re-execute the instruction instead. Rewind RIP first
3366                  * if we emulated INT3 before.
3367                  */
3368                 if (kvm_exception_is_soft(vector)) {
3369                         if (vector == BP_VECTOR && int3_injected &&
3370                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3371                                 kvm_rip_write(&svm->vcpu,
3372                                               kvm_rip_read(&svm->vcpu) -
3373                                               int3_injected);
3374                         break;
3375                 }
3376                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3377                         u32 err = svm->vmcb->control.exit_int_info_err;
3378                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3379
3380                 } else
3381                         kvm_requeue_exception(&svm->vcpu, vector);
3382                 break;
3383         case SVM_EXITINTINFO_TYPE_INTR:
3384                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3385                 break;
3386         default:
3387                 break;
3388         }
3389 }
3390
3391 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3392 {
3393         struct vcpu_svm *svm = to_svm(vcpu);
3394         struct vmcb_control_area *control = &svm->vmcb->control;
3395
3396         control->exit_int_info = control->event_inj;
3397         control->exit_int_info_err = control->event_inj_err;
3398         control->event_inj = 0;
3399         svm_complete_interrupts(svm);
3400 }
3401
3402 #ifdef CONFIG_X86_64
3403 #define R "r"
3404 #else
3405 #define R "e"
3406 #endif
3407
3408 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3409 {
3410         struct vcpu_svm *svm = to_svm(vcpu);
3411
3412         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3413         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3414         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3415
3416         /*
3417          * A vmexit emulation is required before the vcpu can be executed
3418          * again.
3419          */
3420         if (unlikely(svm->nested.exit_required))
3421                 return;
3422
3423         pre_svm_run(svm);
3424
3425         sync_lapic_to_cr8(vcpu);
3426
3427         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3428
3429         clgi();
3430
3431         local_irq_enable();
3432
3433         asm volatile (
3434                 "push %%"R"bp; \n\t"
3435                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3436                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3437                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3438                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3439                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3440                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3441 #ifdef CONFIG_X86_64
3442                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3443                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3444                 "mov %c[r10](%[svm]), %%r10 \n\t"
3445                 "mov %c[r11](%[svm]), %%r11 \n\t"
3446                 "mov %c[r12](%[svm]), %%r12 \n\t"
3447                 "mov %c[r13](%[svm]), %%r13 \n\t"
3448                 "mov %c[r14](%[svm]), %%r14 \n\t"
3449                 "mov %c[r15](%[svm]), %%r15 \n\t"
3450 #endif
3451
3452                 /* Enter guest mode */
3453                 "push %%"R"ax \n\t"
3454                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3455                 __ex(SVM_VMLOAD) "\n\t"
3456                 __ex(SVM_VMRUN) "\n\t"
3457                 __ex(SVM_VMSAVE) "\n\t"
3458                 "pop %%"R"ax \n\t"
3459
3460                 /* Save guest registers, load host registers */
3461                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3462                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3463                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3464                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3465                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3466                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3467 #ifdef CONFIG_X86_64
3468                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3469                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3470                 "mov %%r10, %c[r10](%[svm]) \n\t"
3471                 "mov %%r11, %c[r11](%[svm]) \n\t"
3472                 "mov %%r12, %c[r12](%[svm]) \n\t"
3473                 "mov %%r13, %c[r13](%[svm]) \n\t"
3474                 "mov %%r14, %c[r14](%[svm]) \n\t"
3475                 "mov %%r15, %c[r15](%[svm]) \n\t"
3476 #endif
3477                 "pop %%"R"bp"
3478                 :
3479                 : [svm]"a"(svm),
3480                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3481                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3482                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3483                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3484                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3485                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3486                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3487 #ifdef CONFIG_X86_64
3488                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3489                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3490                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3491                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3492                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3493                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3494                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3495                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3496 #endif
3497                 : "cc", "memory"
3498                 , R"bx", R"cx", R"dx", R"si", R"di"
3499 #ifdef CONFIG_X86_64
3500                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3501 #endif
3502                 );
3503
3504 #ifdef CONFIG_X86_64
3505         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3506 #else
3507         loadsegment(fs, svm->host.fs);
3508 #endif
3509
3510         reload_tss(vcpu);
3511
3512         local_irq_disable();
3513
3514         stgi();
3515
3516         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3517         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3518         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3519         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3520
3521         sync_cr8_to_lapic(vcpu);
3522
3523         svm->next_rip = 0;
3524
3525         /* if exit due to PF check for async PF */
3526         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3527                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3528
3529         if (npt_enabled) {
3530                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3531                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3532         }
3533
3534         /*
3535          * We need to handle MC intercepts here before the vcpu has a chance to
3536          * change the physical cpu
3537          */
3538         if (unlikely(svm->vmcb->control.exit_code ==
3539                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3540                 svm_handle_mce(svm);
3541
3542         mark_all_clean(svm->vmcb);
3543 }
3544
3545 #undef R
3546
3547 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3548 {
3549         struct vcpu_svm *svm = to_svm(vcpu);
3550
3551         svm->vmcb->save.cr3 = root;
3552         force_new_asid(vcpu);
3553 }
3554
3555 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3556 {
3557         struct vcpu_svm *svm = to_svm(vcpu);
3558
3559         svm->vmcb->control.nested_cr3 = root;
3560         mark_dirty(svm->vmcb, VMCB_NPT);
3561
3562         /* Also sync guest cr3 here in case we live migrate */
3563         svm->vmcb->save.cr3 = vcpu->arch.cr3;
3564
3565         force_new_asid(vcpu);
3566 }
3567
3568 static int is_disabled(void)
3569 {
3570         u64 vm_cr;
3571
3572         rdmsrl(MSR_VM_CR, vm_cr);
3573         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3574                 return 1;
3575
3576         return 0;
3577 }
3578
3579 static void
3580 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3581 {
3582         /*
3583          * Patch in the VMMCALL instruction:
3584          */
3585         hypercall[0] = 0x0f;
3586         hypercall[1] = 0x01;
3587         hypercall[2] = 0xd9;
3588 }
3589
3590 static void svm_check_processor_compat(void *rtn)
3591 {
3592         *(int *)rtn = 0;
3593 }
3594
3595 static bool svm_cpu_has_accelerated_tpr(void)
3596 {
3597         return false;
3598 }
3599
3600 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3601 {
3602         return 0;
3603 }
3604
3605 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3606 {
3607 }
3608
3609 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3610 {
3611         switch (func) {
3612         case 0x00000001:
3613                 /* Mask out xsave bit as long as it is not supported by SVM */
3614                 entry->ecx &= ~(bit(X86_FEATURE_XSAVE));
3615                 break;
3616         case 0x80000001:
3617                 if (nested)
3618                         entry->ecx |= (1 << 2); /* Set SVM bit */
3619                 break;
3620         case 0x8000000A:
3621                 entry->eax = 1; /* SVM revision 1 */
3622                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3623                                    ASID emulation to nested SVM */
3624                 entry->ecx = 0; /* Reserved */
3625                 entry->edx = 0; /* Per default do not support any
3626                                    additional features */
3627
3628                 /* Support next_rip if host supports it */
3629                 if (boot_cpu_has(X86_FEATURE_NRIPS))
3630                         entry->edx |= SVM_FEATURE_NRIP;
3631
3632                 /* Support NPT for the guest if enabled */
3633                 if (npt_enabled)
3634                         entry->edx |= SVM_FEATURE_NPT;
3635
3636                 break;
3637         }
3638 }
3639
3640 static const struct trace_print_flags svm_exit_reasons_str[] = {
3641         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3642         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3643         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3644         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3645         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3646         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3647         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3648         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3649         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3650         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3651         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3652         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3653         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3654         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3655         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3656         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3657         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3658         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3659         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3660         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3661         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3662         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3663         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3664         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3665         { SVM_EXIT_INTR,                        "interrupt" },
3666         { SVM_EXIT_NMI,                         "nmi" },
3667         { SVM_EXIT_SMI,                         "smi" },
3668         { SVM_EXIT_INIT,                        "init" },
3669         { SVM_EXIT_VINTR,                       "vintr" },
3670         { SVM_EXIT_CPUID,                       "cpuid" },
3671         { SVM_EXIT_INVD,                        "invd" },
3672         { SVM_EXIT_HLT,                         "hlt" },
3673         { SVM_EXIT_INVLPG,                      "invlpg" },
3674         { SVM_EXIT_INVLPGA,                     "invlpga" },
3675         { SVM_EXIT_IOIO,                        "io" },
3676         { SVM_EXIT_MSR,                         "msr" },
3677         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3678         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3679         { SVM_EXIT_VMRUN,                       "vmrun" },
3680         { SVM_EXIT_VMMCALL,                     "hypercall" },
3681         { SVM_EXIT_VMLOAD,                      "vmload" },
3682         { SVM_EXIT_VMSAVE,                      "vmsave" },
3683         { SVM_EXIT_STGI,                        "stgi" },
3684         { SVM_EXIT_CLGI,                        "clgi" },
3685         { SVM_EXIT_SKINIT,                      "skinit" },
3686         { SVM_EXIT_WBINVD,                      "wbinvd" },
3687         { SVM_EXIT_MONITOR,                     "monitor" },
3688         { SVM_EXIT_MWAIT,                       "mwait" },
3689         { SVM_EXIT_NPF,                         "npf" },
3690         { -1, NULL }
3691 };
3692
3693 static int svm_get_lpage_level(void)
3694 {
3695         return PT_PDPE_LEVEL;
3696 }
3697
3698 static bool svm_rdtscp_supported(void)
3699 {
3700         return false;
3701 }
3702
3703 static bool svm_has_wbinvd_exit(void)
3704 {
3705         return true;
3706 }
3707
3708 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3709 {
3710         struct vcpu_svm *svm = to_svm(vcpu);
3711
3712         set_exception_intercept(svm, NM_VECTOR);
3713         update_cr0_intercept(svm);
3714 }
3715
3716 static struct kvm_x86_ops svm_x86_ops = {
3717         .cpu_has_kvm_support = has_svm,
3718         .disabled_by_bios = is_disabled,
3719         .hardware_setup = svm_hardware_setup,
3720         .hardware_unsetup = svm_hardware_unsetup,
3721         .check_processor_compatibility = svm_check_processor_compat,
3722         .hardware_enable = svm_hardware_enable,
3723         .hardware_disable = svm_hardware_disable,
3724         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3725
3726         .vcpu_create = svm_create_vcpu,
3727         .vcpu_free = svm_free_vcpu,
3728         .vcpu_reset = svm_vcpu_reset,
3729
3730         .prepare_guest_switch = svm_prepare_guest_switch,
3731         .vcpu_load = svm_vcpu_load,
3732         .vcpu_put = svm_vcpu_put,
3733
3734         .set_guest_debug = svm_guest_debug,
3735         .get_msr = svm_get_msr,
3736         .set_msr = svm_set_msr,
3737         .get_segment_base = svm_get_segment_base,
3738         .get_segment = svm_get_segment,
3739         .set_segment = svm_set_segment,
3740         .get_cpl = svm_get_cpl,
3741         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3742         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3743         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3744         .set_cr0 = svm_set_cr0,
3745         .set_cr3 = svm_set_cr3,
3746         .set_cr4 = svm_set_cr4,
3747         .set_efer = svm_set_efer,
3748         .get_idt = svm_get_idt,
3749         .set_idt = svm_set_idt,
3750         .get_gdt = svm_get_gdt,
3751         .set_gdt = svm_set_gdt,
3752         .set_dr7 = svm_set_dr7,
3753         .cache_reg = svm_cache_reg,
3754         .get_rflags = svm_get_rflags,
3755         .set_rflags = svm_set_rflags,
3756         .fpu_activate = svm_fpu_activate,
3757         .fpu_deactivate = svm_fpu_deactivate,
3758
3759         .tlb_flush = svm_flush_tlb,
3760
3761         .run = svm_vcpu_run,
3762         .handle_exit = handle_exit,
3763         .skip_emulated_instruction = skip_emulated_instruction,
3764         .set_interrupt_shadow = svm_set_interrupt_shadow,
3765         .get_interrupt_shadow = svm_get_interrupt_shadow,
3766         .patch_hypercall = svm_patch_hypercall,
3767         .set_irq = svm_set_irq,
3768         .set_nmi = svm_inject_nmi,
3769         .queue_exception = svm_queue_exception,
3770         .cancel_injection = svm_cancel_injection,
3771         .interrupt_allowed = svm_interrupt_allowed,
3772         .nmi_allowed = svm_nmi_allowed,
3773         .get_nmi_mask = svm_get_nmi_mask,
3774         .set_nmi_mask = svm_set_nmi_mask,
3775         .enable_nmi_window = enable_nmi_window,
3776         .enable_irq_window = enable_irq_window,
3777         .update_cr8_intercept = update_cr8_intercept,
3778
3779         .set_tss_addr = svm_set_tss_addr,
3780         .get_tdp_level = get_npt_level,
3781         .get_mt_mask = svm_get_mt_mask,
3782
3783         .get_exit_info = svm_get_exit_info,
3784         .exit_reasons_str = svm_exit_reasons_str,
3785
3786         .get_lpage_level = svm_get_lpage_level,
3787
3788         .cpuid_update = svm_cpuid_update,
3789
3790         .rdtscp_supported = svm_rdtscp_supported,
3791
3792         .set_supported_cpuid = svm_set_supported_cpuid,
3793
3794         .has_wbinvd_exit = svm_has_wbinvd_exit,
3795
3796         .write_tsc_offset = svm_write_tsc_offset,
3797         .adjust_tsc_offset = svm_adjust_tsc_offset,
3798
3799         .set_tdp_cr3 = set_tdp_cr3,
3800 };
3801
3802 static int __init svm_init(void)
3803 {
3804         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3805                         __alignof__(struct vcpu_svm), THIS_MODULE);
3806 }
3807
3808 static void __exit svm_exit(void)
3809 {
3810         kvm_exit();
3811 }
3812
3813 module_init(svm_init)
3814 module_exit(svm_exit)