Merge tag 'driver-core-5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / sev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17
18 #include "x86.h"
19 #include "svm.h"
20
21 static int sev_flush_asids(void);
22 static DECLARE_RWSEM(sev_deactivate_lock);
23 static DEFINE_MUTEX(sev_bitmap_lock);
24 unsigned int max_sev_asid;
25 static unsigned int min_sev_asid;
26 static unsigned long *sev_asid_bitmap;
27 static unsigned long *sev_reclaim_asid_bitmap;
28 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
29
30 struct enc_region {
31         struct list_head list;
32         unsigned long npages;
33         struct page **pages;
34         unsigned long uaddr;
35         unsigned long size;
36 };
37
38 static int sev_flush_asids(void)
39 {
40         int ret, error = 0;
41
42         /*
43          * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
44          * so it must be guarded.
45          */
46         down_write(&sev_deactivate_lock);
47
48         wbinvd_on_all_cpus();
49         ret = sev_guest_df_flush(&error);
50
51         up_write(&sev_deactivate_lock);
52
53         if (ret)
54                 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
55
56         return ret;
57 }
58
59 /* Must be called with the sev_bitmap_lock held */
60 static bool __sev_recycle_asids(void)
61 {
62         int pos;
63
64         /* Check if there are any ASIDs to reclaim before performing a flush */
65         pos = find_next_bit(sev_reclaim_asid_bitmap,
66                             max_sev_asid, min_sev_asid - 1);
67         if (pos >= max_sev_asid)
68                 return false;
69
70         if (sev_flush_asids())
71                 return false;
72
73         bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
74                    max_sev_asid);
75         bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
76
77         return true;
78 }
79
80 static int sev_asid_new(void)
81 {
82         bool retry = true;
83         int pos;
84
85         mutex_lock(&sev_bitmap_lock);
86
87         /*
88          * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
89          */
90 again:
91         pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
92         if (pos >= max_sev_asid) {
93                 if (retry && __sev_recycle_asids()) {
94                         retry = false;
95                         goto again;
96                 }
97                 mutex_unlock(&sev_bitmap_lock);
98                 return -EBUSY;
99         }
100
101         __set_bit(pos, sev_asid_bitmap);
102
103         mutex_unlock(&sev_bitmap_lock);
104
105         return pos + 1;
106 }
107
108 static int sev_get_asid(struct kvm *kvm)
109 {
110         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
111
112         return sev->asid;
113 }
114
115 static void sev_asid_free(int asid)
116 {
117         struct svm_cpu_data *sd;
118         int cpu, pos;
119
120         mutex_lock(&sev_bitmap_lock);
121
122         pos = asid - 1;
123         __set_bit(pos, sev_reclaim_asid_bitmap);
124
125         for_each_possible_cpu(cpu) {
126                 sd = per_cpu(svm_data, cpu);
127                 sd->sev_vmcbs[pos] = NULL;
128         }
129
130         mutex_unlock(&sev_bitmap_lock);
131 }
132
133 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
134 {
135         struct sev_data_decommission *decommission;
136         struct sev_data_deactivate *data;
137
138         if (!handle)
139                 return;
140
141         data = kzalloc(sizeof(*data), GFP_KERNEL);
142         if (!data)
143                 return;
144
145         /* deactivate handle */
146         data->handle = handle;
147
148         /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
149         down_read(&sev_deactivate_lock);
150         sev_guest_deactivate(data, NULL);
151         up_read(&sev_deactivate_lock);
152
153         kfree(data);
154
155         decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
156         if (!decommission)
157                 return;
158
159         /* decommission handle */
160         decommission->handle = handle;
161         sev_guest_decommission(decommission, NULL);
162
163         kfree(decommission);
164 }
165
166 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
167 {
168         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
169         int asid, ret;
170
171         ret = -EBUSY;
172         if (unlikely(sev->active))
173                 return ret;
174
175         asid = sev_asid_new();
176         if (asid < 0)
177                 return ret;
178
179         ret = sev_platform_init(&argp->error);
180         if (ret)
181                 goto e_free;
182
183         sev->active = true;
184         sev->asid = asid;
185         INIT_LIST_HEAD(&sev->regions_list);
186
187         return 0;
188
189 e_free:
190         sev_asid_free(asid);
191         return ret;
192 }
193
194 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
195 {
196         struct sev_data_activate *data;
197         int asid = sev_get_asid(kvm);
198         int ret;
199
200         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
201         if (!data)
202                 return -ENOMEM;
203
204         /* activate ASID on the given handle */
205         data->handle = handle;
206         data->asid   = asid;
207         ret = sev_guest_activate(data, error);
208         kfree(data);
209
210         return ret;
211 }
212
213 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
214 {
215         struct fd f;
216         int ret;
217
218         f = fdget(fd);
219         if (!f.file)
220                 return -EBADF;
221
222         ret = sev_issue_cmd_external_user(f.file, id, data, error);
223
224         fdput(f);
225         return ret;
226 }
227
228 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
229 {
230         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
231
232         return __sev_issue_cmd(sev->fd, id, data, error);
233 }
234
235 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
236 {
237         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238         struct sev_data_launch_start *start;
239         struct kvm_sev_launch_start params;
240         void *dh_blob, *session_blob;
241         int *error = &argp->error;
242         int ret;
243
244         if (!sev_guest(kvm))
245                 return -ENOTTY;
246
247         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
248                 return -EFAULT;
249
250         start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
251         if (!start)
252                 return -ENOMEM;
253
254         dh_blob = NULL;
255         if (params.dh_uaddr) {
256                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
257                 if (IS_ERR(dh_blob)) {
258                         ret = PTR_ERR(dh_blob);
259                         goto e_free;
260                 }
261
262                 start->dh_cert_address = __sme_set(__pa(dh_blob));
263                 start->dh_cert_len = params.dh_len;
264         }
265
266         session_blob = NULL;
267         if (params.session_uaddr) {
268                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
269                 if (IS_ERR(session_blob)) {
270                         ret = PTR_ERR(session_blob);
271                         goto e_free_dh;
272                 }
273
274                 start->session_address = __sme_set(__pa(session_blob));
275                 start->session_len = params.session_len;
276         }
277
278         start->handle = params.handle;
279         start->policy = params.policy;
280
281         /* create memory encryption context */
282         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
283         if (ret)
284                 goto e_free_session;
285
286         /* Bind ASID to this guest */
287         ret = sev_bind_asid(kvm, start->handle, error);
288         if (ret)
289                 goto e_free_session;
290
291         /* return handle to userspace */
292         params.handle = start->handle;
293         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
294                 sev_unbind_asid(kvm, start->handle);
295                 ret = -EFAULT;
296                 goto e_free_session;
297         }
298
299         sev->handle = start->handle;
300         sev->fd = argp->sev_fd;
301
302 e_free_session:
303         kfree(session_blob);
304 e_free_dh:
305         kfree(dh_blob);
306 e_free:
307         kfree(start);
308         return ret;
309 }
310
311 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
312                                     unsigned long ulen, unsigned long *n,
313                                     int write)
314 {
315         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
316         unsigned long npages, npinned, size;
317         unsigned long locked, lock_limit;
318         struct page **pages;
319         unsigned long first, last;
320
321         if (ulen == 0 || uaddr + ulen < uaddr)
322                 return NULL;
323
324         /* Calculate number of pages. */
325         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
326         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
327         npages = (last - first + 1);
328
329         locked = sev->pages_locked + npages;
330         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
331         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
332                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
333                 return NULL;
334         }
335
336         /* Avoid using vmalloc for smaller buffers. */
337         size = npages * sizeof(struct page *);
338         if (size > PAGE_SIZE)
339                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
340         else
341                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
342
343         if (!pages)
344                 return NULL;
345
346         /* Pin the user virtual address. */
347         npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
348         if (npinned != npages) {
349                 pr_err("SEV: Failure locking %lu pages.\n", npages);
350                 goto err;
351         }
352
353         *n = npages;
354         sev->pages_locked = locked;
355
356         return pages;
357
358 err:
359         if (npinned > 0)
360                 release_pages(pages, npinned);
361
362         kvfree(pages);
363         return NULL;
364 }
365
366 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
367                              unsigned long npages)
368 {
369         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
370
371         release_pages(pages, npages);
372         kvfree(pages);
373         sev->pages_locked -= npages;
374 }
375
376 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
377 {
378         uint8_t *page_virtual;
379         unsigned long i;
380
381         if (npages == 0 || pages == NULL)
382                 return;
383
384         for (i = 0; i < npages; i++) {
385                 page_virtual = kmap_atomic(pages[i]);
386                 clflush_cache_range(page_virtual, PAGE_SIZE);
387                 kunmap_atomic(page_virtual);
388         }
389 }
390
391 static unsigned long get_num_contig_pages(unsigned long idx,
392                                 struct page **inpages, unsigned long npages)
393 {
394         unsigned long paddr, next_paddr;
395         unsigned long i = idx + 1, pages = 1;
396
397         /* find the number of contiguous pages starting from idx */
398         paddr = __sme_page_pa(inpages[idx]);
399         while (i < npages) {
400                 next_paddr = __sme_page_pa(inpages[i++]);
401                 if ((paddr + PAGE_SIZE) == next_paddr) {
402                         pages++;
403                         paddr = next_paddr;
404                         continue;
405                 }
406                 break;
407         }
408
409         return pages;
410 }
411
412 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
413 {
414         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
415         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
416         struct kvm_sev_launch_update_data params;
417         struct sev_data_launch_update_data *data;
418         struct page **inpages;
419         int ret;
420
421         if (!sev_guest(kvm))
422                 return -ENOTTY;
423
424         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
425                 return -EFAULT;
426
427         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
428         if (!data)
429                 return -ENOMEM;
430
431         vaddr = params.uaddr;
432         size = params.len;
433         vaddr_end = vaddr + size;
434
435         /* Lock the user memory. */
436         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
437         if (!inpages) {
438                 ret = -ENOMEM;
439                 goto e_free;
440         }
441
442         /*
443          * The LAUNCH_UPDATE command will perform in-place encryption of the
444          * memory content (i.e it will write the same memory region with C=1).
445          * It's possible that the cache may contain the data with C=0, i.e.,
446          * unencrypted so invalidate it first.
447          */
448         sev_clflush_pages(inpages, npages);
449
450         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
451                 int offset, len;
452
453                 /*
454                  * If the user buffer is not page-aligned, calculate the offset
455                  * within the page.
456                  */
457                 offset = vaddr & (PAGE_SIZE - 1);
458
459                 /* Calculate the number of pages that can be encrypted in one go. */
460                 pages = get_num_contig_pages(i, inpages, npages);
461
462                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
463
464                 data->handle = sev->handle;
465                 data->len = len;
466                 data->address = __sme_page_pa(inpages[i]) + offset;
467                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
468                 if (ret)
469                         goto e_unpin;
470
471                 size -= len;
472                 next_vaddr = vaddr + len;
473         }
474
475 e_unpin:
476         /* content of memory is updated, mark pages dirty */
477         for (i = 0; i < npages; i++) {
478                 set_page_dirty_lock(inpages[i]);
479                 mark_page_accessed(inpages[i]);
480         }
481         /* unlock the user pages */
482         sev_unpin_memory(kvm, inpages, npages);
483 e_free:
484         kfree(data);
485         return ret;
486 }
487
488 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
489 {
490         void __user *measure = (void __user *)(uintptr_t)argp->data;
491         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
492         struct sev_data_launch_measure *data;
493         struct kvm_sev_launch_measure params;
494         void __user *p = NULL;
495         void *blob = NULL;
496         int ret;
497
498         if (!sev_guest(kvm))
499                 return -ENOTTY;
500
501         if (copy_from_user(&params, measure, sizeof(params)))
502                 return -EFAULT;
503
504         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
505         if (!data)
506                 return -ENOMEM;
507
508         /* User wants to query the blob length */
509         if (!params.len)
510                 goto cmd;
511
512         p = (void __user *)(uintptr_t)params.uaddr;
513         if (p) {
514                 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
515                         ret = -EINVAL;
516                         goto e_free;
517                 }
518
519                 ret = -ENOMEM;
520                 blob = kmalloc(params.len, GFP_KERNEL);
521                 if (!blob)
522                         goto e_free;
523
524                 data->address = __psp_pa(blob);
525                 data->len = params.len;
526         }
527
528 cmd:
529         data->handle = sev->handle;
530         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
531
532         /*
533          * If we query the session length, FW responded with expected data.
534          */
535         if (!params.len)
536                 goto done;
537
538         if (ret)
539                 goto e_free_blob;
540
541         if (blob) {
542                 if (copy_to_user(p, blob, params.len))
543                         ret = -EFAULT;
544         }
545
546 done:
547         params.len = data->len;
548         if (copy_to_user(measure, &params, sizeof(params)))
549                 ret = -EFAULT;
550 e_free_blob:
551         kfree(blob);
552 e_free:
553         kfree(data);
554         return ret;
555 }
556
557 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
558 {
559         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
560         struct sev_data_launch_finish *data;
561         int ret;
562
563         if (!sev_guest(kvm))
564                 return -ENOTTY;
565
566         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
567         if (!data)
568                 return -ENOMEM;
569
570         data->handle = sev->handle;
571         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
572
573         kfree(data);
574         return ret;
575 }
576
577 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
578 {
579         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
580         struct kvm_sev_guest_status params;
581         struct sev_data_guest_status *data;
582         int ret;
583
584         if (!sev_guest(kvm))
585                 return -ENOTTY;
586
587         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
588         if (!data)
589                 return -ENOMEM;
590
591         data->handle = sev->handle;
592         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
593         if (ret)
594                 goto e_free;
595
596         params.policy = data->policy;
597         params.state = data->state;
598         params.handle = data->handle;
599
600         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
601                 ret = -EFAULT;
602 e_free:
603         kfree(data);
604         return ret;
605 }
606
607 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
608                                unsigned long dst, int size,
609                                int *error, bool enc)
610 {
611         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
612         struct sev_data_dbg *data;
613         int ret;
614
615         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
616         if (!data)
617                 return -ENOMEM;
618
619         data->handle = sev->handle;
620         data->dst_addr = dst;
621         data->src_addr = src;
622         data->len = size;
623
624         ret = sev_issue_cmd(kvm,
625                             enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
626                             data, error);
627         kfree(data);
628         return ret;
629 }
630
631 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
632                              unsigned long dst_paddr, int sz, int *err)
633 {
634         int offset;
635
636         /*
637          * Its safe to read more than we are asked, caller should ensure that
638          * destination has enough space.
639          */
640         src_paddr = round_down(src_paddr, 16);
641         offset = src_paddr & 15;
642         sz = round_up(sz + offset, 16);
643
644         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
645 }
646
647 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
648                                   unsigned long __user dst_uaddr,
649                                   unsigned long dst_paddr,
650                                   int size, int *err)
651 {
652         struct page *tpage = NULL;
653         int ret, offset;
654
655         /* if inputs are not 16-byte then use intermediate buffer */
656         if (!IS_ALIGNED(dst_paddr, 16) ||
657             !IS_ALIGNED(paddr,     16) ||
658             !IS_ALIGNED(size,      16)) {
659                 tpage = (void *)alloc_page(GFP_KERNEL);
660                 if (!tpage)
661                         return -ENOMEM;
662
663                 dst_paddr = __sme_page_pa(tpage);
664         }
665
666         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
667         if (ret)
668                 goto e_free;
669
670         if (tpage) {
671                 offset = paddr & 15;
672                 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
673                                  page_address(tpage) + offset, size))
674                         ret = -EFAULT;
675         }
676
677 e_free:
678         if (tpage)
679                 __free_page(tpage);
680
681         return ret;
682 }
683
684 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
685                                   unsigned long __user vaddr,
686                                   unsigned long dst_paddr,
687                                   unsigned long __user dst_vaddr,
688                                   int size, int *error)
689 {
690         struct page *src_tpage = NULL;
691         struct page *dst_tpage = NULL;
692         int ret, len = size;
693
694         /* If source buffer is not aligned then use an intermediate buffer */
695         if (!IS_ALIGNED(vaddr, 16)) {
696                 src_tpage = alloc_page(GFP_KERNEL);
697                 if (!src_tpage)
698                         return -ENOMEM;
699
700                 if (copy_from_user(page_address(src_tpage),
701                                 (void __user *)(uintptr_t)vaddr, size)) {
702                         __free_page(src_tpage);
703                         return -EFAULT;
704                 }
705
706                 paddr = __sme_page_pa(src_tpage);
707         }
708
709         /*
710          *  If destination buffer or length is not aligned then do read-modify-write:
711          *   - decrypt destination in an intermediate buffer
712          *   - copy the source buffer in an intermediate buffer
713          *   - use the intermediate buffer as source buffer
714          */
715         if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
716                 int dst_offset;
717
718                 dst_tpage = alloc_page(GFP_KERNEL);
719                 if (!dst_tpage) {
720                         ret = -ENOMEM;
721                         goto e_free;
722                 }
723
724                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
725                                         __sme_page_pa(dst_tpage), size, error);
726                 if (ret)
727                         goto e_free;
728
729                 /*
730                  *  If source is kernel buffer then use memcpy() otherwise
731                  *  copy_from_user().
732                  */
733                 dst_offset = dst_paddr & 15;
734
735                 if (src_tpage)
736                         memcpy(page_address(dst_tpage) + dst_offset,
737                                page_address(src_tpage), size);
738                 else {
739                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
740                                            (void __user *)(uintptr_t)vaddr, size)) {
741                                 ret = -EFAULT;
742                                 goto e_free;
743                         }
744                 }
745
746                 paddr = __sme_page_pa(dst_tpage);
747                 dst_paddr = round_down(dst_paddr, 16);
748                 len = round_up(size, 16);
749         }
750
751         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
752
753 e_free:
754         if (src_tpage)
755                 __free_page(src_tpage);
756         if (dst_tpage)
757                 __free_page(dst_tpage);
758         return ret;
759 }
760
761 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
762 {
763         unsigned long vaddr, vaddr_end, next_vaddr;
764         unsigned long dst_vaddr;
765         struct page **src_p, **dst_p;
766         struct kvm_sev_dbg debug;
767         unsigned long n;
768         unsigned int size;
769         int ret;
770
771         if (!sev_guest(kvm))
772                 return -ENOTTY;
773
774         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
775                 return -EFAULT;
776
777         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
778                 return -EINVAL;
779         if (!debug.dst_uaddr)
780                 return -EINVAL;
781
782         vaddr = debug.src_uaddr;
783         size = debug.len;
784         vaddr_end = vaddr + size;
785         dst_vaddr = debug.dst_uaddr;
786
787         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
788                 int len, s_off, d_off;
789
790                 /* lock userspace source and destination page */
791                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
792                 if (!src_p)
793                         return -EFAULT;
794
795                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
796                 if (!dst_p) {
797                         sev_unpin_memory(kvm, src_p, n);
798                         return -EFAULT;
799                 }
800
801                 /*
802                  * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
803                  * memory content (i.e it will write the same memory region with C=1).
804                  * It's possible that the cache may contain the data with C=0, i.e.,
805                  * unencrypted so invalidate it first.
806                  */
807                 sev_clflush_pages(src_p, 1);
808                 sev_clflush_pages(dst_p, 1);
809
810                 /*
811                  * Since user buffer may not be page aligned, calculate the
812                  * offset within the page.
813                  */
814                 s_off = vaddr & ~PAGE_MASK;
815                 d_off = dst_vaddr & ~PAGE_MASK;
816                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
817
818                 if (dec)
819                         ret = __sev_dbg_decrypt_user(kvm,
820                                                      __sme_page_pa(src_p[0]) + s_off,
821                                                      dst_vaddr,
822                                                      __sme_page_pa(dst_p[0]) + d_off,
823                                                      len, &argp->error);
824                 else
825                         ret = __sev_dbg_encrypt_user(kvm,
826                                                      __sme_page_pa(src_p[0]) + s_off,
827                                                      vaddr,
828                                                      __sme_page_pa(dst_p[0]) + d_off,
829                                                      dst_vaddr,
830                                                      len, &argp->error);
831
832                 sev_unpin_memory(kvm, src_p, n);
833                 sev_unpin_memory(kvm, dst_p, n);
834
835                 if (ret)
836                         goto err;
837
838                 next_vaddr = vaddr + len;
839                 dst_vaddr = dst_vaddr + len;
840                 size -= len;
841         }
842 err:
843         return ret;
844 }
845
846 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
847 {
848         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
849         struct sev_data_launch_secret *data;
850         struct kvm_sev_launch_secret params;
851         struct page **pages;
852         void *blob, *hdr;
853         unsigned long n;
854         int ret, offset;
855
856         if (!sev_guest(kvm))
857                 return -ENOTTY;
858
859         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
860                 return -EFAULT;
861
862         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
863         if (!pages)
864                 return -ENOMEM;
865
866         /*
867          * The secret must be copied into contiguous memory region, lets verify
868          * that userspace memory pages are contiguous before we issue command.
869          */
870         if (get_num_contig_pages(0, pages, n) != n) {
871                 ret = -EINVAL;
872                 goto e_unpin_memory;
873         }
874
875         ret = -ENOMEM;
876         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
877         if (!data)
878                 goto e_unpin_memory;
879
880         offset = params.guest_uaddr & (PAGE_SIZE - 1);
881         data->guest_address = __sme_page_pa(pages[0]) + offset;
882         data->guest_len = params.guest_len;
883
884         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
885         if (IS_ERR(blob)) {
886                 ret = PTR_ERR(blob);
887                 goto e_free;
888         }
889
890         data->trans_address = __psp_pa(blob);
891         data->trans_len = params.trans_len;
892
893         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
894         if (IS_ERR(hdr)) {
895                 ret = PTR_ERR(hdr);
896                 goto e_free_blob;
897         }
898         data->hdr_address = __psp_pa(hdr);
899         data->hdr_len = params.hdr_len;
900
901         data->handle = sev->handle;
902         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
903
904         kfree(hdr);
905
906 e_free_blob:
907         kfree(blob);
908 e_free:
909         kfree(data);
910 e_unpin_memory:
911         sev_unpin_memory(kvm, pages, n);
912         return ret;
913 }
914
915 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
916 {
917         struct kvm_sev_cmd sev_cmd;
918         int r;
919
920         if (!svm_sev_enabled())
921                 return -ENOTTY;
922
923         if (!argp)
924                 return 0;
925
926         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
927                 return -EFAULT;
928
929         mutex_lock(&kvm->lock);
930
931         switch (sev_cmd.id) {
932         case KVM_SEV_INIT:
933                 r = sev_guest_init(kvm, &sev_cmd);
934                 break;
935         case KVM_SEV_LAUNCH_START:
936                 r = sev_launch_start(kvm, &sev_cmd);
937                 break;
938         case KVM_SEV_LAUNCH_UPDATE_DATA:
939                 r = sev_launch_update_data(kvm, &sev_cmd);
940                 break;
941         case KVM_SEV_LAUNCH_MEASURE:
942                 r = sev_launch_measure(kvm, &sev_cmd);
943                 break;
944         case KVM_SEV_LAUNCH_FINISH:
945                 r = sev_launch_finish(kvm, &sev_cmd);
946                 break;
947         case KVM_SEV_GUEST_STATUS:
948                 r = sev_guest_status(kvm, &sev_cmd);
949                 break;
950         case KVM_SEV_DBG_DECRYPT:
951                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
952                 break;
953         case KVM_SEV_DBG_ENCRYPT:
954                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
955                 break;
956         case KVM_SEV_LAUNCH_SECRET:
957                 r = sev_launch_secret(kvm, &sev_cmd);
958                 break;
959         default:
960                 r = -EINVAL;
961                 goto out;
962         }
963
964         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
965                 r = -EFAULT;
966
967 out:
968         mutex_unlock(&kvm->lock);
969         return r;
970 }
971
972 int svm_register_enc_region(struct kvm *kvm,
973                             struct kvm_enc_region *range)
974 {
975         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
976         struct enc_region *region;
977         int ret = 0;
978
979         if (!sev_guest(kvm))
980                 return -ENOTTY;
981
982         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
983                 return -EINVAL;
984
985         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
986         if (!region)
987                 return -ENOMEM;
988
989         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
990         if (!region->pages) {
991                 ret = -ENOMEM;
992                 goto e_free;
993         }
994
995         /*
996          * The guest may change the memory encryption attribute from C=0 -> C=1
997          * or vice versa for this memory range. Lets make sure caches are
998          * flushed to ensure that guest data gets written into memory with
999          * correct C-bit.
1000          */
1001         sev_clflush_pages(region->pages, region->npages);
1002
1003         region->uaddr = range->addr;
1004         region->size = range->size;
1005
1006         mutex_lock(&kvm->lock);
1007         list_add_tail(&region->list, &sev->regions_list);
1008         mutex_unlock(&kvm->lock);
1009
1010         return ret;
1011
1012 e_free:
1013         kfree(region);
1014         return ret;
1015 }
1016
1017 static struct enc_region *
1018 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1019 {
1020         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1021         struct list_head *head = &sev->regions_list;
1022         struct enc_region *i;
1023
1024         list_for_each_entry(i, head, list) {
1025                 if (i->uaddr == range->addr &&
1026                     i->size == range->size)
1027                         return i;
1028         }
1029
1030         return NULL;
1031 }
1032
1033 static void __unregister_enc_region_locked(struct kvm *kvm,
1034                                            struct enc_region *region)
1035 {
1036         sev_unpin_memory(kvm, region->pages, region->npages);
1037         list_del(&region->list);
1038         kfree(region);
1039 }
1040
1041 int svm_unregister_enc_region(struct kvm *kvm,
1042                               struct kvm_enc_region *range)
1043 {
1044         struct enc_region *region;
1045         int ret;
1046
1047         mutex_lock(&kvm->lock);
1048
1049         if (!sev_guest(kvm)) {
1050                 ret = -ENOTTY;
1051                 goto failed;
1052         }
1053
1054         region = find_enc_region(kvm, range);
1055         if (!region) {
1056                 ret = -EINVAL;
1057                 goto failed;
1058         }
1059
1060         /*
1061          * Ensure that all guest tagged cache entries are flushed before
1062          * releasing the pages back to the system for use. CLFLUSH will
1063          * not do this, so issue a WBINVD.
1064          */
1065         wbinvd_on_all_cpus();
1066
1067         __unregister_enc_region_locked(kvm, region);
1068
1069         mutex_unlock(&kvm->lock);
1070         return 0;
1071
1072 failed:
1073         mutex_unlock(&kvm->lock);
1074         return ret;
1075 }
1076
1077 void sev_vm_destroy(struct kvm *kvm)
1078 {
1079         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1080         struct list_head *head = &sev->regions_list;
1081         struct list_head *pos, *q;
1082
1083         if (!sev_guest(kvm))
1084                 return;
1085
1086         mutex_lock(&kvm->lock);
1087
1088         /*
1089          * Ensure that all guest tagged cache entries are flushed before
1090          * releasing the pages back to the system for use. CLFLUSH will
1091          * not do this, so issue a WBINVD.
1092          */
1093         wbinvd_on_all_cpus();
1094
1095         /*
1096          * if userspace was terminated before unregistering the memory regions
1097          * then lets unpin all the registered memory.
1098          */
1099         if (!list_empty(head)) {
1100                 list_for_each_safe(pos, q, head) {
1101                         __unregister_enc_region_locked(kvm,
1102                                 list_entry(pos, struct enc_region, list));
1103                 }
1104         }
1105
1106         mutex_unlock(&kvm->lock);
1107
1108         sev_unbind_asid(kvm, sev->handle);
1109         sev_asid_free(sev->asid);
1110 }
1111
1112 int __init sev_hardware_setup(void)
1113 {
1114         struct sev_user_data_status *status;
1115         int rc;
1116
1117         /* Maximum number of encrypted guests supported simultaneously */
1118         max_sev_asid = cpuid_ecx(0x8000001F);
1119
1120         if (!svm_sev_enabled())
1121                 return 1;
1122
1123         /* Minimum ASID value that should be used for SEV guest */
1124         min_sev_asid = cpuid_edx(0x8000001F);
1125
1126         /* Initialize SEV ASID bitmaps */
1127         sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1128         if (!sev_asid_bitmap)
1129                 return 1;
1130
1131         sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1132         if (!sev_reclaim_asid_bitmap)
1133                 return 1;
1134
1135         status = kmalloc(sizeof(*status), GFP_KERNEL);
1136         if (!status)
1137                 return 1;
1138
1139         /*
1140          * Check SEV platform status.
1141          *
1142          * PLATFORM_STATUS can be called in any state, if we failed to query
1143          * the PLATFORM status then either PSP firmware does not support SEV
1144          * feature or SEV firmware is dead.
1145          */
1146         rc = sev_platform_status(status, NULL);
1147         if (rc)
1148                 goto err;
1149
1150         pr_info("SEV supported\n");
1151
1152 err:
1153         kfree(status);
1154         return rc;
1155 }
1156
1157 void sev_hardware_teardown(void)
1158 {
1159         if (!svm_sev_enabled())
1160                 return;
1161
1162         bitmap_free(sev_asid_bitmap);
1163         bitmap_free(sev_reclaim_asid_bitmap);
1164
1165         sev_flush_asids();
1166 }
1167
1168 void pre_sev_run(struct vcpu_svm *svm, int cpu)
1169 {
1170         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1171         int asid = sev_get_asid(svm->vcpu.kvm);
1172
1173         /* Assign the asid allocated with this SEV guest */
1174         svm->vmcb->control.asid = asid;
1175
1176         /*
1177          * Flush guest TLB:
1178          *
1179          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
1180          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
1181          */
1182         if (sd->sev_vmcbs[asid] == svm->vmcb &&
1183             svm->last_cpu == cpu)
1184                 return;
1185
1186         svm->last_cpu = cpu;
1187         sd->sev_vmcbs[asid] = svm->vmcb;
1188         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
1189         mark_dirty(svm->vmcb, VMCB_ASID);
1190 }