KVM: SEV: move mirror status to destination of KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / sev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20
21 #include <asm/pkru.h>
22 #include <asm/trapnr.h>
23 #include <asm/fpu/xcr.h>
24
25 #include "x86.h"
26 #include "svm.h"
27 #include "svm_ops.h"
28 #include "cpuid.h"
29 #include "trace.h"
30
31 #ifndef CONFIG_KVM_AMD_SEV
32 /*
33  * When this config is not defined, SEV feature is not supported and APIs in
34  * this file are not used but this file still gets compiled into the KVM AMD
35  * module.
36  *
37  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
38  * misc_res_type {} defined in linux/misc_cgroup.h.
39  *
40  * Below macros allow compilation to succeed.
41  */
42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
44 #endif
45
46 #ifdef CONFIG_KVM_AMD_SEV
47 /* enable/disable SEV support */
48 static bool sev_enabled = true;
49 module_param_named(sev, sev_enabled, bool, 0444);
50
51 /* enable/disable SEV-ES support */
52 static bool sev_es_enabled = true;
53 module_param_named(sev_es, sev_es_enabled, bool, 0444);
54 #else
55 #define sev_enabled false
56 #define sev_es_enabled false
57 #endif /* CONFIG_KVM_AMD_SEV */
58
59 static u8 sev_enc_bit;
60 static DECLARE_RWSEM(sev_deactivate_lock);
61 static DEFINE_MUTEX(sev_bitmap_lock);
62 unsigned int max_sev_asid;
63 static unsigned int min_sev_asid;
64 static unsigned long sev_me_mask;
65 static unsigned int nr_asids;
66 static unsigned long *sev_asid_bitmap;
67 static unsigned long *sev_reclaim_asid_bitmap;
68
69 struct enc_region {
70         struct list_head list;
71         unsigned long npages;
72         struct page **pages;
73         unsigned long uaddr;
74         unsigned long size;
75 };
76
77 /* Called with the sev_bitmap_lock held, or on shutdown  */
78 static int sev_flush_asids(int min_asid, int max_asid)
79 {
80         int ret, asid, error = 0;
81
82         /* Check if there are any ASIDs to reclaim before performing a flush */
83         asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
84         if (asid > max_asid)
85                 return -EBUSY;
86
87         /*
88          * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
89          * so it must be guarded.
90          */
91         down_write(&sev_deactivate_lock);
92
93         wbinvd_on_all_cpus();
94         ret = sev_guest_df_flush(&error);
95
96         up_write(&sev_deactivate_lock);
97
98         if (ret)
99                 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
100
101         return ret;
102 }
103
104 static inline bool is_mirroring_enc_context(struct kvm *kvm)
105 {
106         return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
107 }
108
109 /* Must be called with the sev_bitmap_lock held */
110 static bool __sev_recycle_asids(int min_asid, int max_asid)
111 {
112         if (sev_flush_asids(min_asid, max_asid))
113                 return false;
114
115         /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
116         bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
117                    nr_asids);
118         bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
119
120         return true;
121 }
122
123 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
124 {
125         enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
126         return misc_cg_try_charge(type, sev->misc_cg, 1);
127 }
128
129 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
130 {
131         enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
132         misc_cg_uncharge(type, sev->misc_cg, 1);
133 }
134
135 static int sev_asid_new(struct kvm_sev_info *sev)
136 {
137         int asid, min_asid, max_asid, ret;
138         bool retry = true;
139
140         WARN_ON(sev->misc_cg);
141         sev->misc_cg = get_current_misc_cg();
142         ret = sev_misc_cg_try_charge(sev);
143         if (ret) {
144                 put_misc_cg(sev->misc_cg);
145                 sev->misc_cg = NULL;
146                 return ret;
147         }
148
149         mutex_lock(&sev_bitmap_lock);
150
151         /*
152          * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
153          * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
154          */
155         min_asid = sev->es_active ? 1 : min_sev_asid;
156         max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
157 again:
158         asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
159         if (asid > max_asid) {
160                 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
161                         retry = false;
162                         goto again;
163                 }
164                 mutex_unlock(&sev_bitmap_lock);
165                 ret = -EBUSY;
166                 goto e_uncharge;
167         }
168
169         __set_bit(asid, sev_asid_bitmap);
170
171         mutex_unlock(&sev_bitmap_lock);
172
173         return asid;
174 e_uncharge:
175         sev_misc_cg_uncharge(sev);
176         put_misc_cg(sev->misc_cg);
177         sev->misc_cg = NULL;
178         return ret;
179 }
180
181 static int sev_get_asid(struct kvm *kvm)
182 {
183         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
184
185         return sev->asid;
186 }
187
188 static void sev_asid_free(struct kvm_sev_info *sev)
189 {
190         struct svm_cpu_data *sd;
191         int cpu;
192
193         mutex_lock(&sev_bitmap_lock);
194
195         __set_bit(sev->asid, sev_reclaim_asid_bitmap);
196
197         for_each_possible_cpu(cpu) {
198                 sd = per_cpu(svm_data, cpu);
199                 sd->sev_vmcbs[sev->asid] = NULL;
200         }
201
202         mutex_unlock(&sev_bitmap_lock);
203
204         sev_misc_cg_uncharge(sev);
205         put_misc_cg(sev->misc_cg);
206         sev->misc_cg = NULL;
207 }
208
209 static void sev_decommission(unsigned int handle)
210 {
211         struct sev_data_decommission decommission;
212
213         if (!handle)
214                 return;
215
216         decommission.handle = handle;
217         sev_guest_decommission(&decommission, NULL);
218 }
219
220 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
221 {
222         struct sev_data_deactivate deactivate;
223
224         if (!handle)
225                 return;
226
227         deactivate.handle = handle;
228
229         /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
230         down_read(&sev_deactivate_lock);
231         sev_guest_deactivate(&deactivate, NULL);
232         up_read(&sev_deactivate_lock);
233
234         sev_decommission(handle);
235 }
236
237 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
238 {
239         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
240         int asid, ret;
241
242         if (kvm->created_vcpus)
243                 return -EINVAL;
244
245         ret = -EBUSY;
246         if (unlikely(sev->active))
247                 return ret;
248
249         sev->active = true;
250         sev->es_active = argp->id == KVM_SEV_ES_INIT;
251         asid = sev_asid_new(sev);
252         if (asid < 0)
253                 goto e_no_asid;
254         sev->asid = asid;
255
256         ret = sev_platform_init(&argp->error);
257         if (ret)
258                 goto e_free;
259
260         INIT_LIST_HEAD(&sev->regions_list);
261
262         return 0;
263
264 e_free:
265         sev_asid_free(sev);
266         sev->asid = 0;
267 e_no_asid:
268         sev->es_active = false;
269         sev->active = false;
270         return ret;
271 }
272
273 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
274 {
275         struct sev_data_activate activate;
276         int asid = sev_get_asid(kvm);
277         int ret;
278
279         /* activate ASID on the given handle */
280         activate.handle = handle;
281         activate.asid   = asid;
282         ret = sev_guest_activate(&activate, error);
283
284         return ret;
285 }
286
287 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
288 {
289         struct fd f;
290         int ret;
291
292         f = fdget(fd);
293         if (!f.file)
294                 return -EBADF;
295
296         ret = sev_issue_cmd_external_user(f.file, id, data, error);
297
298         fdput(f);
299         return ret;
300 }
301
302 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
303 {
304         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
305
306         return __sev_issue_cmd(sev->fd, id, data, error);
307 }
308
309 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
310 {
311         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
312         struct sev_data_launch_start start;
313         struct kvm_sev_launch_start params;
314         void *dh_blob, *session_blob;
315         int *error = &argp->error;
316         int ret;
317
318         if (!sev_guest(kvm))
319                 return -ENOTTY;
320
321         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
322                 return -EFAULT;
323
324         memset(&start, 0, sizeof(start));
325
326         dh_blob = NULL;
327         if (params.dh_uaddr) {
328                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
329                 if (IS_ERR(dh_blob))
330                         return PTR_ERR(dh_blob);
331
332                 start.dh_cert_address = __sme_set(__pa(dh_blob));
333                 start.dh_cert_len = params.dh_len;
334         }
335
336         session_blob = NULL;
337         if (params.session_uaddr) {
338                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
339                 if (IS_ERR(session_blob)) {
340                         ret = PTR_ERR(session_blob);
341                         goto e_free_dh;
342                 }
343
344                 start.session_address = __sme_set(__pa(session_blob));
345                 start.session_len = params.session_len;
346         }
347
348         start.handle = params.handle;
349         start.policy = params.policy;
350
351         /* create memory encryption context */
352         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
353         if (ret)
354                 goto e_free_session;
355
356         /* Bind ASID to this guest */
357         ret = sev_bind_asid(kvm, start.handle, error);
358         if (ret) {
359                 sev_decommission(start.handle);
360                 goto e_free_session;
361         }
362
363         /* return handle to userspace */
364         params.handle = start.handle;
365         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
366                 sev_unbind_asid(kvm, start.handle);
367                 ret = -EFAULT;
368                 goto e_free_session;
369         }
370
371         sev->handle = start.handle;
372         sev->fd = argp->sev_fd;
373
374 e_free_session:
375         kfree(session_blob);
376 e_free_dh:
377         kfree(dh_blob);
378         return ret;
379 }
380
381 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
382                                     unsigned long ulen, unsigned long *n,
383                                     int write)
384 {
385         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
386         unsigned long npages, size;
387         int npinned;
388         unsigned long locked, lock_limit;
389         struct page **pages;
390         unsigned long first, last;
391         int ret;
392
393         lockdep_assert_held(&kvm->lock);
394
395         if (ulen == 0 || uaddr + ulen < uaddr)
396                 return ERR_PTR(-EINVAL);
397
398         /* Calculate number of pages. */
399         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
400         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
401         npages = (last - first + 1);
402
403         locked = sev->pages_locked + npages;
404         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
405         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
406                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
407                 return ERR_PTR(-ENOMEM);
408         }
409
410         if (WARN_ON_ONCE(npages > INT_MAX))
411                 return ERR_PTR(-EINVAL);
412
413         /* Avoid using vmalloc for smaller buffers. */
414         size = npages * sizeof(struct page *);
415         if (size > PAGE_SIZE)
416                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
417         else
418                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
419
420         if (!pages)
421                 return ERR_PTR(-ENOMEM);
422
423         /* Pin the user virtual address. */
424         npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
425         if (npinned != npages) {
426                 pr_err("SEV: Failure locking %lu pages.\n", npages);
427                 ret = -ENOMEM;
428                 goto err;
429         }
430
431         *n = npages;
432         sev->pages_locked = locked;
433
434         return pages;
435
436 err:
437         if (npinned > 0)
438                 unpin_user_pages(pages, npinned);
439
440         kvfree(pages);
441         return ERR_PTR(ret);
442 }
443
444 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
445                              unsigned long npages)
446 {
447         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
448
449         unpin_user_pages(pages, npages);
450         kvfree(pages);
451         sev->pages_locked -= npages;
452 }
453
454 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
455 {
456         uint8_t *page_virtual;
457         unsigned long i;
458
459         if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
460             pages == NULL)
461                 return;
462
463         for (i = 0; i < npages; i++) {
464                 page_virtual = kmap_atomic(pages[i]);
465                 clflush_cache_range(page_virtual, PAGE_SIZE);
466                 kunmap_atomic(page_virtual);
467         }
468 }
469
470 static unsigned long get_num_contig_pages(unsigned long idx,
471                                 struct page **inpages, unsigned long npages)
472 {
473         unsigned long paddr, next_paddr;
474         unsigned long i = idx + 1, pages = 1;
475
476         /* find the number of contiguous pages starting from idx */
477         paddr = __sme_page_pa(inpages[idx]);
478         while (i < npages) {
479                 next_paddr = __sme_page_pa(inpages[i++]);
480                 if ((paddr + PAGE_SIZE) == next_paddr) {
481                         pages++;
482                         paddr = next_paddr;
483                         continue;
484                 }
485                 break;
486         }
487
488         return pages;
489 }
490
491 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
492 {
493         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
494         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
495         struct kvm_sev_launch_update_data params;
496         struct sev_data_launch_update_data data;
497         struct page **inpages;
498         int ret;
499
500         if (!sev_guest(kvm))
501                 return -ENOTTY;
502
503         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
504                 return -EFAULT;
505
506         vaddr = params.uaddr;
507         size = params.len;
508         vaddr_end = vaddr + size;
509
510         /* Lock the user memory. */
511         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
512         if (IS_ERR(inpages))
513                 return PTR_ERR(inpages);
514
515         /*
516          * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
517          * place; the cache may contain the data that was written unencrypted.
518          */
519         sev_clflush_pages(inpages, npages);
520
521         data.reserved = 0;
522         data.handle = sev->handle;
523
524         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
525                 int offset, len;
526
527                 /*
528                  * If the user buffer is not page-aligned, calculate the offset
529                  * within the page.
530                  */
531                 offset = vaddr & (PAGE_SIZE - 1);
532
533                 /* Calculate the number of pages that can be encrypted in one go. */
534                 pages = get_num_contig_pages(i, inpages, npages);
535
536                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
537
538                 data.len = len;
539                 data.address = __sme_page_pa(inpages[i]) + offset;
540                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
541                 if (ret)
542                         goto e_unpin;
543
544                 size -= len;
545                 next_vaddr = vaddr + len;
546         }
547
548 e_unpin:
549         /* content of memory is updated, mark pages dirty */
550         for (i = 0; i < npages; i++) {
551                 set_page_dirty_lock(inpages[i]);
552                 mark_page_accessed(inpages[i]);
553         }
554         /* unlock the user pages */
555         sev_unpin_memory(kvm, inpages, npages);
556         return ret;
557 }
558
559 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
560 {
561         struct vmcb_save_area *save = &svm->vmcb->save;
562
563         /* Check some debug related fields before encrypting the VMSA */
564         if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
565                 return -EINVAL;
566
567         /* Sync registgers */
568         save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
569         save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
570         save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
571         save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
572         save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
573         save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
574         save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
575         save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
576 #ifdef CONFIG_X86_64
577         save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
578         save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
579         save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
580         save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
581         save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
582         save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
583         save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
584         save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
585 #endif
586         save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
587
588         /* Sync some non-GPR registers before encrypting */
589         save->xcr0 = svm->vcpu.arch.xcr0;
590         save->pkru = svm->vcpu.arch.pkru;
591         save->xss  = svm->vcpu.arch.ia32_xss;
592         save->dr6  = svm->vcpu.arch.dr6;
593
594         /*
595          * SEV-ES will use a VMSA that is pointed to by the VMCB, not
596          * the traditional VMSA that is part of the VMCB. Copy the
597          * traditional VMSA as it has been built so far (in prep
598          * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
599          */
600         memcpy(svm->sev_es.vmsa, save, sizeof(*save));
601
602         return 0;
603 }
604
605 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
606                                     int *error)
607 {
608         struct sev_data_launch_update_vmsa vmsa;
609         struct vcpu_svm *svm = to_svm(vcpu);
610         int ret;
611
612         /* Perform some pre-encryption checks against the VMSA */
613         ret = sev_es_sync_vmsa(svm);
614         if (ret)
615                 return ret;
616
617         /*
618          * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
619          * the VMSA memory content (i.e it will write the same memory region
620          * with the guest's key), so invalidate it first.
621          */
622         clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
623
624         vmsa.reserved = 0;
625         vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
626         vmsa.address = __sme_pa(svm->sev_es.vmsa);
627         vmsa.len = PAGE_SIZE;
628         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
629         if (ret)
630           return ret;
631
632         vcpu->arch.guest_state_protected = true;
633         return 0;
634 }
635
636 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
637 {
638         struct kvm_vcpu *vcpu;
639         int i, ret;
640
641         if (!sev_es_guest(kvm))
642                 return -ENOTTY;
643
644         kvm_for_each_vcpu(i, vcpu, kvm) {
645                 ret = mutex_lock_killable(&vcpu->mutex);
646                 if (ret)
647                         return ret;
648
649                 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
650
651                 mutex_unlock(&vcpu->mutex);
652                 if (ret)
653                         return ret;
654         }
655
656         return 0;
657 }
658
659 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
660 {
661         void __user *measure = (void __user *)(uintptr_t)argp->data;
662         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
663         struct sev_data_launch_measure data;
664         struct kvm_sev_launch_measure params;
665         void __user *p = NULL;
666         void *blob = NULL;
667         int ret;
668
669         if (!sev_guest(kvm))
670                 return -ENOTTY;
671
672         if (copy_from_user(&params, measure, sizeof(params)))
673                 return -EFAULT;
674
675         memset(&data, 0, sizeof(data));
676
677         /* User wants to query the blob length */
678         if (!params.len)
679                 goto cmd;
680
681         p = (void __user *)(uintptr_t)params.uaddr;
682         if (p) {
683                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
684                         return -EINVAL;
685
686                 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
687                 if (!blob)
688                         return -ENOMEM;
689
690                 data.address = __psp_pa(blob);
691                 data.len = params.len;
692         }
693
694 cmd:
695         data.handle = sev->handle;
696         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
697
698         /*
699          * If we query the session length, FW responded with expected data.
700          */
701         if (!params.len)
702                 goto done;
703
704         if (ret)
705                 goto e_free_blob;
706
707         if (blob) {
708                 if (copy_to_user(p, blob, params.len))
709                         ret = -EFAULT;
710         }
711
712 done:
713         params.len = data.len;
714         if (copy_to_user(measure, &params, sizeof(params)))
715                 ret = -EFAULT;
716 e_free_blob:
717         kfree(blob);
718         return ret;
719 }
720
721 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
722 {
723         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
724         struct sev_data_launch_finish data;
725
726         if (!sev_guest(kvm))
727                 return -ENOTTY;
728
729         data.handle = sev->handle;
730         return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
731 }
732
733 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
734 {
735         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
736         struct kvm_sev_guest_status params;
737         struct sev_data_guest_status data;
738         int ret;
739
740         if (!sev_guest(kvm))
741                 return -ENOTTY;
742
743         memset(&data, 0, sizeof(data));
744
745         data.handle = sev->handle;
746         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
747         if (ret)
748                 return ret;
749
750         params.policy = data.policy;
751         params.state = data.state;
752         params.handle = data.handle;
753
754         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
755                 ret = -EFAULT;
756
757         return ret;
758 }
759
760 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
761                                unsigned long dst, int size,
762                                int *error, bool enc)
763 {
764         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
765         struct sev_data_dbg data;
766
767         data.reserved = 0;
768         data.handle = sev->handle;
769         data.dst_addr = dst;
770         data.src_addr = src;
771         data.len = size;
772
773         return sev_issue_cmd(kvm,
774                              enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
775                              &data, error);
776 }
777
778 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
779                              unsigned long dst_paddr, int sz, int *err)
780 {
781         int offset;
782
783         /*
784          * Its safe to read more than we are asked, caller should ensure that
785          * destination has enough space.
786          */
787         offset = src_paddr & 15;
788         src_paddr = round_down(src_paddr, 16);
789         sz = round_up(sz + offset, 16);
790
791         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
792 }
793
794 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
795                                   void __user *dst_uaddr,
796                                   unsigned long dst_paddr,
797                                   int size, int *err)
798 {
799         struct page *tpage = NULL;
800         int ret, offset;
801
802         /* if inputs are not 16-byte then use intermediate buffer */
803         if (!IS_ALIGNED(dst_paddr, 16) ||
804             !IS_ALIGNED(paddr,     16) ||
805             !IS_ALIGNED(size,      16)) {
806                 tpage = (void *)alloc_page(GFP_KERNEL);
807                 if (!tpage)
808                         return -ENOMEM;
809
810                 dst_paddr = __sme_page_pa(tpage);
811         }
812
813         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
814         if (ret)
815                 goto e_free;
816
817         if (tpage) {
818                 offset = paddr & 15;
819                 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
820                         ret = -EFAULT;
821         }
822
823 e_free:
824         if (tpage)
825                 __free_page(tpage);
826
827         return ret;
828 }
829
830 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
831                                   void __user *vaddr,
832                                   unsigned long dst_paddr,
833                                   void __user *dst_vaddr,
834                                   int size, int *error)
835 {
836         struct page *src_tpage = NULL;
837         struct page *dst_tpage = NULL;
838         int ret, len = size;
839
840         /* If source buffer is not aligned then use an intermediate buffer */
841         if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
842                 src_tpage = alloc_page(GFP_KERNEL);
843                 if (!src_tpage)
844                         return -ENOMEM;
845
846                 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
847                         __free_page(src_tpage);
848                         return -EFAULT;
849                 }
850
851                 paddr = __sme_page_pa(src_tpage);
852         }
853
854         /*
855          *  If destination buffer or length is not aligned then do read-modify-write:
856          *   - decrypt destination in an intermediate buffer
857          *   - copy the source buffer in an intermediate buffer
858          *   - use the intermediate buffer as source buffer
859          */
860         if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
861                 int dst_offset;
862
863                 dst_tpage = alloc_page(GFP_KERNEL);
864                 if (!dst_tpage) {
865                         ret = -ENOMEM;
866                         goto e_free;
867                 }
868
869                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
870                                         __sme_page_pa(dst_tpage), size, error);
871                 if (ret)
872                         goto e_free;
873
874                 /*
875                  *  If source is kernel buffer then use memcpy() otherwise
876                  *  copy_from_user().
877                  */
878                 dst_offset = dst_paddr & 15;
879
880                 if (src_tpage)
881                         memcpy(page_address(dst_tpage) + dst_offset,
882                                page_address(src_tpage), size);
883                 else {
884                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
885                                            vaddr, size)) {
886                                 ret = -EFAULT;
887                                 goto e_free;
888                         }
889                 }
890
891                 paddr = __sme_page_pa(dst_tpage);
892                 dst_paddr = round_down(dst_paddr, 16);
893                 len = round_up(size, 16);
894         }
895
896         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
897
898 e_free:
899         if (src_tpage)
900                 __free_page(src_tpage);
901         if (dst_tpage)
902                 __free_page(dst_tpage);
903         return ret;
904 }
905
906 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
907 {
908         unsigned long vaddr, vaddr_end, next_vaddr;
909         unsigned long dst_vaddr;
910         struct page **src_p, **dst_p;
911         struct kvm_sev_dbg debug;
912         unsigned long n;
913         unsigned int size;
914         int ret;
915
916         if (!sev_guest(kvm))
917                 return -ENOTTY;
918
919         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
920                 return -EFAULT;
921
922         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
923                 return -EINVAL;
924         if (!debug.dst_uaddr)
925                 return -EINVAL;
926
927         vaddr = debug.src_uaddr;
928         size = debug.len;
929         vaddr_end = vaddr + size;
930         dst_vaddr = debug.dst_uaddr;
931
932         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
933                 int len, s_off, d_off;
934
935                 /* lock userspace source and destination page */
936                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
937                 if (IS_ERR(src_p))
938                         return PTR_ERR(src_p);
939
940                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
941                 if (IS_ERR(dst_p)) {
942                         sev_unpin_memory(kvm, src_p, n);
943                         return PTR_ERR(dst_p);
944                 }
945
946                 /*
947                  * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
948                  * the pages; flush the destination too so that future accesses do not
949                  * see stale data.
950                  */
951                 sev_clflush_pages(src_p, 1);
952                 sev_clflush_pages(dst_p, 1);
953
954                 /*
955                  * Since user buffer may not be page aligned, calculate the
956                  * offset within the page.
957                  */
958                 s_off = vaddr & ~PAGE_MASK;
959                 d_off = dst_vaddr & ~PAGE_MASK;
960                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
961
962                 if (dec)
963                         ret = __sev_dbg_decrypt_user(kvm,
964                                                      __sme_page_pa(src_p[0]) + s_off,
965                                                      (void __user *)dst_vaddr,
966                                                      __sme_page_pa(dst_p[0]) + d_off,
967                                                      len, &argp->error);
968                 else
969                         ret = __sev_dbg_encrypt_user(kvm,
970                                                      __sme_page_pa(src_p[0]) + s_off,
971                                                      (void __user *)vaddr,
972                                                      __sme_page_pa(dst_p[0]) + d_off,
973                                                      (void __user *)dst_vaddr,
974                                                      len, &argp->error);
975
976                 sev_unpin_memory(kvm, src_p, n);
977                 sev_unpin_memory(kvm, dst_p, n);
978
979                 if (ret)
980                         goto err;
981
982                 next_vaddr = vaddr + len;
983                 dst_vaddr = dst_vaddr + len;
984                 size -= len;
985         }
986 err:
987         return ret;
988 }
989
990 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
991 {
992         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
993         struct sev_data_launch_secret data;
994         struct kvm_sev_launch_secret params;
995         struct page **pages;
996         void *blob, *hdr;
997         unsigned long n, i;
998         int ret, offset;
999
1000         if (!sev_guest(kvm))
1001                 return -ENOTTY;
1002
1003         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1004                 return -EFAULT;
1005
1006         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1007         if (IS_ERR(pages))
1008                 return PTR_ERR(pages);
1009
1010         /*
1011          * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1012          * place; the cache may contain the data that was written unencrypted.
1013          */
1014         sev_clflush_pages(pages, n);
1015
1016         /*
1017          * The secret must be copied into contiguous memory region, lets verify
1018          * that userspace memory pages are contiguous before we issue command.
1019          */
1020         if (get_num_contig_pages(0, pages, n) != n) {
1021                 ret = -EINVAL;
1022                 goto e_unpin_memory;
1023         }
1024
1025         memset(&data, 0, sizeof(data));
1026
1027         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1028         data.guest_address = __sme_page_pa(pages[0]) + offset;
1029         data.guest_len = params.guest_len;
1030
1031         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1032         if (IS_ERR(blob)) {
1033                 ret = PTR_ERR(blob);
1034                 goto e_unpin_memory;
1035         }
1036
1037         data.trans_address = __psp_pa(blob);
1038         data.trans_len = params.trans_len;
1039
1040         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1041         if (IS_ERR(hdr)) {
1042                 ret = PTR_ERR(hdr);
1043                 goto e_free_blob;
1044         }
1045         data.hdr_address = __psp_pa(hdr);
1046         data.hdr_len = params.hdr_len;
1047
1048         data.handle = sev->handle;
1049         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1050
1051         kfree(hdr);
1052
1053 e_free_blob:
1054         kfree(blob);
1055 e_unpin_memory:
1056         /* content of memory is updated, mark pages dirty */
1057         for (i = 0; i < n; i++) {
1058                 set_page_dirty_lock(pages[i]);
1059                 mark_page_accessed(pages[i]);
1060         }
1061         sev_unpin_memory(kvm, pages, n);
1062         return ret;
1063 }
1064
1065 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1066 {
1067         void __user *report = (void __user *)(uintptr_t)argp->data;
1068         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1069         struct sev_data_attestation_report data;
1070         struct kvm_sev_attestation_report params;
1071         void __user *p;
1072         void *blob = NULL;
1073         int ret;
1074
1075         if (!sev_guest(kvm))
1076                 return -ENOTTY;
1077
1078         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1079                 return -EFAULT;
1080
1081         memset(&data, 0, sizeof(data));
1082
1083         /* User wants to query the blob length */
1084         if (!params.len)
1085                 goto cmd;
1086
1087         p = (void __user *)(uintptr_t)params.uaddr;
1088         if (p) {
1089                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1090                         return -EINVAL;
1091
1092                 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
1093                 if (!blob)
1094                         return -ENOMEM;
1095
1096                 data.address = __psp_pa(blob);
1097                 data.len = params.len;
1098                 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1099         }
1100 cmd:
1101         data.handle = sev->handle;
1102         ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1103         /*
1104          * If we query the session length, FW responded with expected data.
1105          */
1106         if (!params.len)
1107                 goto done;
1108
1109         if (ret)
1110                 goto e_free_blob;
1111
1112         if (blob) {
1113                 if (copy_to_user(p, blob, params.len))
1114                         ret = -EFAULT;
1115         }
1116
1117 done:
1118         params.len = data.len;
1119         if (copy_to_user(report, &params, sizeof(params)))
1120                 ret = -EFAULT;
1121 e_free_blob:
1122         kfree(blob);
1123         return ret;
1124 }
1125
1126 /* Userspace wants to query session length. */
1127 static int
1128 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1129                                       struct kvm_sev_send_start *params)
1130 {
1131         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1132         struct sev_data_send_start data;
1133         int ret;
1134
1135         memset(&data, 0, sizeof(data));
1136         data.handle = sev->handle;
1137         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1138
1139         params->session_len = data.session_len;
1140         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1141                                 sizeof(struct kvm_sev_send_start)))
1142                 ret = -EFAULT;
1143
1144         return ret;
1145 }
1146
1147 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1148 {
1149         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1150         struct sev_data_send_start data;
1151         struct kvm_sev_send_start params;
1152         void *amd_certs, *session_data;
1153         void *pdh_cert, *plat_certs;
1154         int ret;
1155
1156         if (!sev_guest(kvm))
1157                 return -ENOTTY;
1158
1159         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1160                                 sizeof(struct kvm_sev_send_start)))
1161                 return -EFAULT;
1162
1163         /* if session_len is zero, userspace wants to query the session length */
1164         if (!params.session_len)
1165                 return __sev_send_start_query_session_length(kvm, argp,
1166                                 &params);
1167
1168         /* some sanity checks */
1169         if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1170             !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1171                 return -EINVAL;
1172
1173         /* allocate the memory to hold the session data blob */
1174         session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1175         if (!session_data)
1176                 return -ENOMEM;
1177
1178         /* copy the certificate blobs from userspace */
1179         pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1180                                 params.pdh_cert_len);
1181         if (IS_ERR(pdh_cert)) {
1182                 ret = PTR_ERR(pdh_cert);
1183                 goto e_free_session;
1184         }
1185
1186         plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1187                                 params.plat_certs_len);
1188         if (IS_ERR(plat_certs)) {
1189                 ret = PTR_ERR(plat_certs);
1190                 goto e_free_pdh;
1191         }
1192
1193         amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1194                                 params.amd_certs_len);
1195         if (IS_ERR(amd_certs)) {
1196                 ret = PTR_ERR(amd_certs);
1197                 goto e_free_plat_cert;
1198         }
1199
1200         /* populate the FW SEND_START field with system physical address */
1201         memset(&data, 0, sizeof(data));
1202         data.pdh_cert_address = __psp_pa(pdh_cert);
1203         data.pdh_cert_len = params.pdh_cert_len;
1204         data.plat_certs_address = __psp_pa(plat_certs);
1205         data.plat_certs_len = params.plat_certs_len;
1206         data.amd_certs_address = __psp_pa(amd_certs);
1207         data.amd_certs_len = params.amd_certs_len;
1208         data.session_address = __psp_pa(session_data);
1209         data.session_len = params.session_len;
1210         data.handle = sev->handle;
1211
1212         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1213
1214         if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1215                         session_data, params.session_len)) {
1216                 ret = -EFAULT;
1217                 goto e_free_amd_cert;
1218         }
1219
1220         params.policy = data.policy;
1221         params.session_len = data.session_len;
1222         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1223                                 sizeof(struct kvm_sev_send_start)))
1224                 ret = -EFAULT;
1225
1226 e_free_amd_cert:
1227         kfree(amd_certs);
1228 e_free_plat_cert:
1229         kfree(plat_certs);
1230 e_free_pdh:
1231         kfree(pdh_cert);
1232 e_free_session:
1233         kfree(session_data);
1234         return ret;
1235 }
1236
1237 /* Userspace wants to query either header or trans length. */
1238 static int
1239 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1240                                      struct kvm_sev_send_update_data *params)
1241 {
1242         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1243         struct sev_data_send_update_data data;
1244         int ret;
1245
1246         memset(&data, 0, sizeof(data));
1247         data.handle = sev->handle;
1248         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1249
1250         params->hdr_len = data.hdr_len;
1251         params->trans_len = data.trans_len;
1252
1253         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1254                          sizeof(struct kvm_sev_send_update_data)))
1255                 ret = -EFAULT;
1256
1257         return ret;
1258 }
1259
1260 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1261 {
1262         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1263         struct sev_data_send_update_data data;
1264         struct kvm_sev_send_update_data params;
1265         void *hdr, *trans_data;
1266         struct page **guest_page;
1267         unsigned long n;
1268         int ret, offset;
1269
1270         if (!sev_guest(kvm))
1271                 return -ENOTTY;
1272
1273         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1274                         sizeof(struct kvm_sev_send_update_data)))
1275                 return -EFAULT;
1276
1277         /* userspace wants to query either header or trans length */
1278         if (!params.trans_len || !params.hdr_len)
1279                 return __sev_send_update_data_query_lengths(kvm, argp, &params);
1280
1281         if (!params.trans_uaddr || !params.guest_uaddr ||
1282             !params.guest_len || !params.hdr_uaddr)
1283                 return -EINVAL;
1284
1285         /* Check if we are crossing the page boundary */
1286         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1287         if ((params.guest_len + offset > PAGE_SIZE))
1288                 return -EINVAL;
1289
1290         /* Pin guest memory */
1291         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1292                                     PAGE_SIZE, &n, 0);
1293         if (IS_ERR(guest_page))
1294                 return PTR_ERR(guest_page);
1295
1296         /* allocate memory for header and transport buffer */
1297         ret = -ENOMEM;
1298         hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1299         if (!hdr)
1300                 goto e_unpin;
1301
1302         trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1303         if (!trans_data)
1304                 goto e_free_hdr;
1305
1306         memset(&data, 0, sizeof(data));
1307         data.hdr_address = __psp_pa(hdr);
1308         data.hdr_len = params.hdr_len;
1309         data.trans_address = __psp_pa(trans_data);
1310         data.trans_len = params.trans_len;
1311
1312         /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1313         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1314         data.guest_address |= sev_me_mask;
1315         data.guest_len = params.guest_len;
1316         data.handle = sev->handle;
1317
1318         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1319
1320         if (ret)
1321                 goto e_free_trans_data;
1322
1323         /* copy transport buffer to user space */
1324         if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1325                          trans_data, params.trans_len)) {
1326                 ret = -EFAULT;
1327                 goto e_free_trans_data;
1328         }
1329
1330         /* Copy packet header to userspace. */
1331         if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1332                          params.hdr_len))
1333                 ret = -EFAULT;
1334
1335 e_free_trans_data:
1336         kfree(trans_data);
1337 e_free_hdr:
1338         kfree(hdr);
1339 e_unpin:
1340         sev_unpin_memory(kvm, guest_page, n);
1341
1342         return ret;
1343 }
1344
1345 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1346 {
1347         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1348         struct sev_data_send_finish data;
1349
1350         if (!sev_guest(kvm))
1351                 return -ENOTTY;
1352
1353         data.handle = sev->handle;
1354         return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1355 }
1356
1357 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1358 {
1359         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1360         struct sev_data_send_cancel data;
1361
1362         if (!sev_guest(kvm))
1363                 return -ENOTTY;
1364
1365         data.handle = sev->handle;
1366         return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1367 }
1368
1369 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1370 {
1371         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1372         struct sev_data_receive_start start;
1373         struct kvm_sev_receive_start params;
1374         int *error = &argp->error;
1375         void *session_data;
1376         void *pdh_data;
1377         int ret;
1378
1379         if (!sev_guest(kvm))
1380                 return -ENOTTY;
1381
1382         /* Get parameter from the userspace */
1383         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1384                         sizeof(struct kvm_sev_receive_start)))
1385                 return -EFAULT;
1386
1387         /* some sanity checks */
1388         if (!params.pdh_uaddr || !params.pdh_len ||
1389             !params.session_uaddr || !params.session_len)
1390                 return -EINVAL;
1391
1392         pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1393         if (IS_ERR(pdh_data))
1394                 return PTR_ERR(pdh_data);
1395
1396         session_data = psp_copy_user_blob(params.session_uaddr,
1397                         params.session_len);
1398         if (IS_ERR(session_data)) {
1399                 ret = PTR_ERR(session_data);
1400                 goto e_free_pdh;
1401         }
1402
1403         memset(&start, 0, sizeof(start));
1404         start.handle = params.handle;
1405         start.policy = params.policy;
1406         start.pdh_cert_address = __psp_pa(pdh_data);
1407         start.pdh_cert_len = params.pdh_len;
1408         start.session_address = __psp_pa(session_data);
1409         start.session_len = params.session_len;
1410
1411         /* create memory encryption context */
1412         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1413                                 error);
1414         if (ret)
1415                 goto e_free_session;
1416
1417         /* Bind ASID to this guest */
1418         ret = sev_bind_asid(kvm, start.handle, error);
1419         if (ret) {
1420                 sev_decommission(start.handle);
1421                 goto e_free_session;
1422         }
1423
1424         params.handle = start.handle;
1425         if (copy_to_user((void __user *)(uintptr_t)argp->data,
1426                          &params, sizeof(struct kvm_sev_receive_start))) {
1427                 ret = -EFAULT;
1428                 sev_unbind_asid(kvm, start.handle);
1429                 goto e_free_session;
1430         }
1431
1432         sev->handle = start.handle;
1433         sev->fd = argp->sev_fd;
1434
1435 e_free_session:
1436         kfree(session_data);
1437 e_free_pdh:
1438         kfree(pdh_data);
1439
1440         return ret;
1441 }
1442
1443 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1444 {
1445         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1446         struct kvm_sev_receive_update_data params;
1447         struct sev_data_receive_update_data data;
1448         void *hdr = NULL, *trans = NULL;
1449         struct page **guest_page;
1450         unsigned long n;
1451         int ret, offset;
1452
1453         if (!sev_guest(kvm))
1454                 return -EINVAL;
1455
1456         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1457                         sizeof(struct kvm_sev_receive_update_data)))
1458                 return -EFAULT;
1459
1460         if (!params.hdr_uaddr || !params.hdr_len ||
1461             !params.guest_uaddr || !params.guest_len ||
1462             !params.trans_uaddr || !params.trans_len)
1463                 return -EINVAL;
1464
1465         /* Check if we are crossing the page boundary */
1466         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1467         if ((params.guest_len + offset > PAGE_SIZE))
1468                 return -EINVAL;
1469
1470         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1471         if (IS_ERR(hdr))
1472                 return PTR_ERR(hdr);
1473
1474         trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1475         if (IS_ERR(trans)) {
1476                 ret = PTR_ERR(trans);
1477                 goto e_free_hdr;
1478         }
1479
1480         memset(&data, 0, sizeof(data));
1481         data.hdr_address = __psp_pa(hdr);
1482         data.hdr_len = params.hdr_len;
1483         data.trans_address = __psp_pa(trans);
1484         data.trans_len = params.trans_len;
1485
1486         /* Pin guest memory */
1487         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1488                                     PAGE_SIZE, &n, 1);
1489         if (IS_ERR(guest_page)) {
1490                 ret = PTR_ERR(guest_page);
1491                 goto e_free_trans;
1492         }
1493
1494         /*
1495          * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1496          * encrypts the written data with the guest's key, and the cache may
1497          * contain dirty, unencrypted data.
1498          */
1499         sev_clflush_pages(guest_page, n);
1500
1501         /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1502         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1503         data.guest_address |= sev_me_mask;
1504         data.guest_len = params.guest_len;
1505         data.handle = sev->handle;
1506
1507         ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1508                                 &argp->error);
1509
1510         sev_unpin_memory(kvm, guest_page, n);
1511
1512 e_free_trans:
1513         kfree(trans);
1514 e_free_hdr:
1515         kfree(hdr);
1516
1517         return ret;
1518 }
1519
1520 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1521 {
1522         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1523         struct sev_data_receive_finish data;
1524
1525         if (!sev_guest(kvm))
1526                 return -ENOTTY;
1527
1528         data.handle = sev->handle;
1529         return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1530 }
1531
1532 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1533 {
1534         /*
1535          * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1536          * active mirror VMs. Also allow the debugging and status commands.
1537          */
1538         if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1539             cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1540             cmd_id == KVM_SEV_DBG_ENCRYPT)
1541                 return true;
1542
1543         return false;
1544 }
1545
1546 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1547 {
1548         struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1549         struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1550
1551         if (dst_kvm == src_kvm)
1552                 return -EINVAL;
1553
1554         /*
1555          * Bail if these VMs are already involved in a migration to avoid
1556          * deadlock between two VMs trying to migrate to/from each other.
1557          */
1558         if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1559                 return -EBUSY;
1560
1561         if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) {
1562                 atomic_set_release(&dst_sev->migration_in_progress, 0);
1563                 return -EBUSY;
1564         }
1565
1566         mutex_lock(&dst_kvm->lock);
1567         mutex_lock(&src_kvm->lock);
1568         return 0;
1569 }
1570
1571 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1572 {
1573         struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1574         struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1575
1576         mutex_unlock(&dst_kvm->lock);
1577         mutex_unlock(&src_kvm->lock);
1578         atomic_set_release(&dst_sev->migration_in_progress, 0);
1579         atomic_set_release(&src_sev->migration_in_progress, 0);
1580 }
1581
1582
1583 static int sev_lock_vcpus_for_migration(struct kvm *kvm)
1584 {
1585         struct kvm_vcpu *vcpu;
1586         int i, j;
1587
1588         kvm_for_each_vcpu(i, vcpu, kvm) {
1589                 if (mutex_lock_killable(&vcpu->mutex))
1590                         goto out_unlock;
1591         }
1592
1593         return 0;
1594
1595 out_unlock:
1596         kvm_for_each_vcpu(j, vcpu, kvm) {
1597                 if (i == j)
1598                         break;
1599
1600                 mutex_unlock(&vcpu->mutex);
1601         }
1602         return -EINTR;
1603 }
1604
1605 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1606 {
1607         struct kvm_vcpu *vcpu;
1608         int i;
1609
1610         kvm_for_each_vcpu(i, vcpu, kvm) {
1611                 mutex_unlock(&vcpu->mutex);
1612         }
1613 }
1614
1615 static void sev_migrate_from(struct kvm_sev_info *dst,
1616                               struct kvm_sev_info *src)
1617 {
1618         dst->active = true;
1619         dst->asid = src->asid;
1620         dst->handle = src->handle;
1621         dst->pages_locked = src->pages_locked;
1622         dst->enc_context_owner = src->enc_context_owner;
1623
1624         src->asid = 0;
1625         src->active = false;
1626         src->handle = 0;
1627         src->pages_locked = 0;
1628         src->enc_context_owner = NULL;
1629
1630         list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1631 }
1632
1633 static int sev_es_migrate_from(struct kvm *dst, struct kvm *src)
1634 {
1635         int i;
1636         struct kvm_vcpu *dst_vcpu, *src_vcpu;
1637         struct vcpu_svm *dst_svm, *src_svm;
1638
1639         if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1640                 return -EINVAL;
1641
1642         kvm_for_each_vcpu(i, src_vcpu, src) {
1643                 if (!src_vcpu->arch.guest_state_protected)
1644                         return -EINVAL;
1645         }
1646
1647         kvm_for_each_vcpu(i, src_vcpu, src) {
1648                 src_svm = to_svm(src_vcpu);
1649                 dst_vcpu = kvm_get_vcpu(dst, i);
1650                 dst_svm = to_svm(dst_vcpu);
1651
1652                 /*
1653                  * Transfer VMSA and GHCB state to the destination.  Nullify and
1654                  * clear source fields as appropriate, the state now belongs to
1655                  * the destination.
1656                  */
1657                 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1658                 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1659                 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1660                 dst_vcpu->arch.guest_state_protected = true;
1661
1662                 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1663                 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1664                 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1665                 src_vcpu->arch.guest_state_protected = false;
1666         }
1667         to_kvm_svm(src)->sev_info.es_active = false;
1668         to_kvm_svm(dst)->sev_info.es_active = true;
1669
1670         return 0;
1671 }
1672
1673 int svm_vm_migrate_from(struct kvm *kvm, unsigned int source_fd)
1674 {
1675         struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1676         struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1677         struct file *source_kvm_file;
1678         struct kvm *source_kvm;
1679         bool charged = false;
1680         int ret;
1681
1682         source_kvm_file = fget(source_fd);
1683         if (!file_is_kvm(source_kvm_file)) {
1684                 ret = -EBADF;
1685                 goto out_fput;
1686         }
1687
1688         source_kvm = source_kvm_file->private_data;
1689         ret = sev_lock_two_vms(kvm, source_kvm);
1690         if (ret)
1691                 goto out_fput;
1692
1693         if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1694                 ret = -EINVAL;
1695                 goto out_unlock;
1696         }
1697
1698         src_sev = &to_kvm_svm(source_kvm)->sev_info;
1699         dst_sev->misc_cg = get_current_misc_cg();
1700         cg_cleanup_sev = dst_sev;
1701         if (dst_sev->misc_cg != src_sev->misc_cg) {
1702                 ret = sev_misc_cg_try_charge(dst_sev);
1703                 if (ret)
1704                         goto out_dst_cgroup;
1705                 charged = true;
1706         }
1707
1708         ret = sev_lock_vcpus_for_migration(kvm);
1709         if (ret)
1710                 goto out_dst_cgroup;
1711         ret = sev_lock_vcpus_for_migration(source_kvm);
1712         if (ret)
1713                 goto out_dst_vcpu;
1714
1715         if (sev_es_guest(source_kvm)) {
1716                 ret = sev_es_migrate_from(kvm, source_kvm);
1717                 if (ret)
1718                         goto out_source_vcpu;
1719         }
1720         sev_migrate_from(dst_sev, src_sev);
1721         kvm_vm_dead(source_kvm);
1722         cg_cleanup_sev = src_sev;
1723         ret = 0;
1724
1725 out_source_vcpu:
1726         sev_unlock_vcpus_for_migration(source_kvm);
1727 out_dst_vcpu:
1728         sev_unlock_vcpus_for_migration(kvm);
1729 out_dst_cgroup:
1730         /* Operates on the source on success, on the destination on failure.  */
1731         if (charged)
1732                 sev_misc_cg_uncharge(cg_cleanup_sev);
1733         put_misc_cg(cg_cleanup_sev->misc_cg);
1734         cg_cleanup_sev->misc_cg = NULL;
1735 out_unlock:
1736         sev_unlock_two_vms(kvm, source_kvm);
1737 out_fput:
1738         if (source_kvm_file)
1739                 fput(source_kvm_file);
1740         return ret;
1741 }
1742
1743 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1744 {
1745         struct kvm_sev_cmd sev_cmd;
1746         int r;
1747
1748         if (!sev_enabled)
1749                 return -ENOTTY;
1750
1751         if (!argp)
1752                 return 0;
1753
1754         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1755                 return -EFAULT;
1756
1757         mutex_lock(&kvm->lock);
1758
1759         /* Only the enc_context_owner handles some memory enc operations. */
1760         if (is_mirroring_enc_context(kvm) &&
1761             !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1762                 r = -EINVAL;
1763                 goto out;
1764         }
1765
1766         switch (sev_cmd.id) {
1767         case KVM_SEV_ES_INIT:
1768                 if (!sev_es_enabled) {
1769                         r = -ENOTTY;
1770                         goto out;
1771                 }
1772                 fallthrough;
1773         case KVM_SEV_INIT:
1774                 r = sev_guest_init(kvm, &sev_cmd);
1775                 break;
1776         case KVM_SEV_LAUNCH_START:
1777                 r = sev_launch_start(kvm, &sev_cmd);
1778                 break;
1779         case KVM_SEV_LAUNCH_UPDATE_DATA:
1780                 r = sev_launch_update_data(kvm, &sev_cmd);
1781                 break;
1782         case KVM_SEV_LAUNCH_UPDATE_VMSA:
1783                 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1784                 break;
1785         case KVM_SEV_LAUNCH_MEASURE:
1786                 r = sev_launch_measure(kvm, &sev_cmd);
1787                 break;
1788         case KVM_SEV_LAUNCH_FINISH:
1789                 r = sev_launch_finish(kvm, &sev_cmd);
1790                 break;
1791         case KVM_SEV_GUEST_STATUS:
1792                 r = sev_guest_status(kvm, &sev_cmd);
1793                 break;
1794         case KVM_SEV_DBG_DECRYPT:
1795                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1796                 break;
1797         case KVM_SEV_DBG_ENCRYPT:
1798                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1799                 break;
1800         case KVM_SEV_LAUNCH_SECRET:
1801                 r = sev_launch_secret(kvm, &sev_cmd);
1802                 break;
1803         case KVM_SEV_GET_ATTESTATION_REPORT:
1804                 r = sev_get_attestation_report(kvm, &sev_cmd);
1805                 break;
1806         case KVM_SEV_SEND_START:
1807                 r = sev_send_start(kvm, &sev_cmd);
1808                 break;
1809         case KVM_SEV_SEND_UPDATE_DATA:
1810                 r = sev_send_update_data(kvm, &sev_cmd);
1811                 break;
1812         case KVM_SEV_SEND_FINISH:
1813                 r = sev_send_finish(kvm, &sev_cmd);
1814                 break;
1815         case KVM_SEV_SEND_CANCEL:
1816                 r = sev_send_cancel(kvm, &sev_cmd);
1817                 break;
1818         case KVM_SEV_RECEIVE_START:
1819                 r = sev_receive_start(kvm, &sev_cmd);
1820                 break;
1821         case KVM_SEV_RECEIVE_UPDATE_DATA:
1822                 r = sev_receive_update_data(kvm, &sev_cmd);
1823                 break;
1824         case KVM_SEV_RECEIVE_FINISH:
1825                 r = sev_receive_finish(kvm, &sev_cmd);
1826                 break;
1827         default:
1828                 r = -EINVAL;
1829                 goto out;
1830         }
1831
1832         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1833                 r = -EFAULT;
1834
1835 out:
1836         mutex_unlock(&kvm->lock);
1837         return r;
1838 }
1839
1840 int svm_register_enc_region(struct kvm *kvm,
1841                             struct kvm_enc_region *range)
1842 {
1843         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1844         struct enc_region *region;
1845         int ret = 0;
1846
1847         if (!sev_guest(kvm))
1848                 return -ENOTTY;
1849
1850         /* If kvm is mirroring encryption context it isn't responsible for it */
1851         if (is_mirroring_enc_context(kvm))
1852                 return -EINVAL;
1853
1854         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1855                 return -EINVAL;
1856
1857         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1858         if (!region)
1859                 return -ENOMEM;
1860
1861         mutex_lock(&kvm->lock);
1862         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1863         if (IS_ERR(region->pages)) {
1864                 ret = PTR_ERR(region->pages);
1865                 mutex_unlock(&kvm->lock);
1866                 goto e_free;
1867         }
1868
1869         region->uaddr = range->addr;
1870         region->size = range->size;
1871
1872         list_add_tail(&region->list, &sev->regions_list);
1873         mutex_unlock(&kvm->lock);
1874
1875         /*
1876          * The guest may change the memory encryption attribute from C=0 -> C=1
1877          * or vice versa for this memory range. Lets make sure caches are
1878          * flushed to ensure that guest data gets written into memory with
1879          * correct C-bit.
1880          */
1881         sev_clflush_pages(region->pages, region->npages);
1882
1883         return ret;
1884
1885 e_free:
1886         kfree(region);
1887         return ret;
1888 }
1889
1890 static struct enc_region *
1891 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1892 {
1893         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1894         struct list_head *head = &sev->regions_list;
1895         struct enc_region *i;
1896
1897         list_for_each_entry(i, head, list) {
1898                 if (i->uaddr == range->addr &&
1899                     i->size == range->size)
1900                         return i;
1901         }
1902
1903         return NULL;
1904 }
1905
1906 static void __unregister_enc_region_locked(struct kvm *kvm,
1907                                            struct enc_region *region)
1908 {
1909         sev_unpin_memory(kvm, region->pages, region->npages);
1910         list_del(&region->list);
1911         kfree(region);
1912 }
1913
1914 int svm_unregister_enc_region(struct kvm *kvm,
1915                               struct kvm_enc_region *range)
1916 {
1917         struct enc_region *region;
1918         int ret;
1919
1920         /* If kvm is mirroring encryption context it isn't responsible for it */
1921         if (is_mirroring_enc_context(kvm))
1922                 return -EINVAL;
1923
1924         mutex_lock(&kvm->lock);
1925
1926         if (!sev_guest(kvm)) {
1927                 ret = -ENOTTY;
1928                 goto failed;
1929         }
1930
1931         region = find_enc_region(kvm, range);
1932         if (!region) {
1933                 ret = -EINVAL;
1934                 goto failed;
1935         }
1936
1937         /*
1938          * Ensure that all guest tagged cache entries are flushed before
1939          * releasing the pages back to the system for use. CLFLUSH will
1940          * not do this, so issue a WBINVD.
1941          */
1942         wbinvd_on_all_cpus();
1943
1944         __unregister_enc_region_locked(kvm, region);
1945
1946         mutex_unlock(&kvm->lock);
1947         return 0;
1948
1949 failed:
1950         mutex_unlock(&kvm->lock);
1951         return ret;
1952 }
1953
1954 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
1955 {
1956         struct file *source_kvm_file;
1957         struct kvm *source_kvm;
1958         struct kvm_sev_info source_sev, *mirror_sev;
1959         int ret;
1960
1961         source_kvm_file = fget(source_fd);
1962         if (!file_is_kvm(source_kvm_file)) {
1963                 ret = -EBADF;
1964                 goto e_source_put;
1965         }
1966
1967         source_kvm = source_kvm_file->private_data;
1968         mutex_lock(&source_kvm->lock);
1969
1970         if (!sev_guest(source_kvm)) {
1971                 ret = -EINVAL;
1972                 goto e_source_unlock;
1973         }
1974
1975         /* Mirrors of mirrors should work, but let's not get silly */
1976         if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) {
1977                 ret = -EINVAL;
1978                 goto e_source_unlock;
1979         }
1980
1981         memcpy(&source_sev, &to_kvm_svm(source_kvm)->sev_info,
1982                sizeof(source_sev));
1983
1984         /*
1985          * The mirror kvm holds an enc_context_owner ref so its asid can't
1986          * disappear until we're done with it
1987          */
1988         kvm_get_kvm(source_kvm);
1989
1990         fput(source_kvm_file);
1991         mutex_unlock(&source_kvm->lock);
1992         mutex_lock(&kvm->lock);
1993
1994         /*
1995          * Disallow out-of-band SEV/SEV-ES init if the target is already an
1996          * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
1997          * created after SEV/SEV-ES initialization, e.g. to init intercepts.
1998          */
1999         if (sev_guest(kvm) || kvm->created_vcpus) {
2000                 ret = -EINVAL;
2001                 goto e_mirror_unlock;
2002         }
2003
2004         /* Set enc_context_owner and copy its encryption context over */
2005         mirror_sev = &to_kvm_svm(kvm)->sev_info;
2006         mirror_sev->enc_context_owner = source_kvm;
2007         mirror_sev->active = true;
2008         mirror_sev->asid = source_sev.asid;
2009         mirror_sev->fd = source_sev.fd;
2010         mirror_sev->es_active = source_sev.es_active;
2011         mirror_sev->handle = source_sev.handle;
2012         INIT_LIST_HEAD(&mirror_sev->regions_list);
2013         /*
2014          * Do not copy ap_jump_table. Since the mirror does not share the same
2015          * KVM contexts as the original, and they may have different
2016          * memory-views.
2017          */
2018
2019         mutex_unlock(&kvm->lock);
2020         return 0;
2021
2022 e_mirror_unlock:
2023         mutex_unlock(&kvm->lock);
2024         kvm_put_kvm(source_kvm);
2025         return ret;
2026 e_source_unlock:
2027         mutex_unlock(&source_kvm->lock);
2028 e_source_put:
2029         if (source_kvm_file)
2030                 fput(source_kvm_file);
2031         return ret;
2032 }
2033
2034 void sev_vm_destroy(struct kvm *kvm)
2035 {
2036         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2037         struct list_head *head = &sev->regions_list;
2038         struct list_head *pos, *q;
2039
2040         if (!sev_guest(kvm))
2041                 return;
2042
2043         /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2044         if (is_mirroring_enc_context(kvm)) {
2045                 kvm_put_kvm(sev->enc_context_owner);
2046                 return;
2047         }
2048
2049         mutex_lock(&kvm->lock);
2050
2051         /*
2052          * Ensure that all guest tagged cache entries are flushed before
2053          * releasing the pages back to the system for use. CLFLUSH will
2054          * not do this, so issue a WBINVD.
2055          */
2056         wbinvd_on_all_cpus();
2057
2058         /*
2059          * if userspace was terminated before unregistering the memory regions
2060          * then lets unpin all the registered memory.
2061          */
2062         if (!list_empty(head)) {
2063                 list_for_each_safe(pos, q, head) {
2064                         __unregister_enc_region_locked(kvm,
2065                                 list_entry(pos, struct enc_region, list));
2066                         cond_resched();
2067                 }
2068         }
2069
2070         mutex_unlock(&kvm->lock);
2071
2072         sev_unbind_asid(kvm, sev->handle);
2073         sev_asid_free(sev);
2074 }
2075
2076 void __init sev_set_cpu_caps(void)
2077 {
2078         if (!sev_enabled)
2079                 kvm_cpu_cap_clear(X86_FEATURE_SEV);
2080         if (!sev_es_enabled)
2081                 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2082 }
2083
2084 void __init sev_hardware_setup(void)
2085 {
2086 #ifdef CONFIG_KVM_AMD_SEV
2087         unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2088         bool sev_es_supported = false;
2089         bool sev_supported = false;
2090
2091         if (!sev_enabled || !npt_enabled)
2092                 goto out;
2093
2094         /* Does the CPU support SEV? */
2095         if (!boot_cpu_has(X86_FEATURE_SEV))
2096                 goto out;
2097
2098         /* Retrieve SEV CPUID information */
2099         cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2100
2101         /* Set encryption bit location for SEV-ES guests */
2102         sev_enc_bit = ebx & 0x3f;
2103
2104         /* Maximum number of encrypted guests supported simultaneously */
2105         max_sev_asid = ecx;
2106         if (!max_sev_asid)
2107                 goto out;
2108
2109         /* Minimum ASID value that should be used for SEV guest */
2110         min_sev_asid = edx;
2111         sev_me_mask = 1UL << (ebx & 0x3f);
2112
2113         /*
2114          * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2115          * even though it's never used, so that the bitmap is indexed by the
2116          * actual ASID.
2117          */
2118         nr_asids = max_sev_asid + 1;
2119         sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2120         if (!sev_asid_bitmap)
2121                 goto out;
2122
2123         sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2124         if (!sev_reclaim_asid_bitmap) {
2125                 bitmap_free(sev_asid_bitmap);
2126                 sev_asid_bitmap = NULL;
2127                 goto out;
2128         }
2129
2130         sev_asid_count = max_sev_asid - min_sev_asid + 1;
2131         if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
2132                 goto out;
2133
2134         pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
2135         sev_supported = true;
2136
2137         /* SEV-ES support requested? */
2138         if (!sev_es_enabled)
2139                 goto out;
2140
2141         /* Does the CPU support SEV-ES? */
2142         if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2143                 goto out;
2144
2145         /* Has the system been allocated ASIDs for SEV-ES? */
2146         if (min_sev_asid == 1)
2147                 goto out;
2148
2149         sev_es_asid_count = min_sev_asid - 1;
2150         if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
2151                 goto out;
2152
2153         pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
2154         sev_es_supported = true;
2155
2156 out:
2157         sev_enabled = sev_supported;
2158         sev_es_enabled = sev_es_supported;
2159 #endif
2160 }
2161
2162 void sev_hardware_teardown(void)
2163 {
2164         if (!sev_enabled)
2165                 return;
2166
2167         /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2168         sev_flush_asids(1, max_sev_asid);
2169
2170         bitmap_free(sev_asid_bitmap);
2171         bitmap_free(sev_reclaim_asid_bitmap);
2172
2173         misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2174         misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2175 }
2176
2177 int sev_cpu_init(struct svm_cpu_data *sd)
2178 {
2179         if (!sev_enabled)
2180                 return 0;
2181
2182         sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2183         if (!sd->sev_vmcbs)
2184                 return -ENOMEM;
2185
2186         return 0;
2187 }
2188
2189 /*
2190  * Pages used by hardware to hold guest encrypted state must be flushed before
2191  * returning them to the system.
2192  */
2193 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
2194                                    unsigned long len)
2195 {
2196         /*
2197          * If hardware enforced cache coherency for encrypted mappings of the
2198          * same physical page is supported, nothing to do.
2199          */
2200         if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
2201                 return;
2202
2203         /*
2204          * If the VM Page Flush MSR is supported, use it to flush the page
2205          * (using the page virtual address and the guest ASID).
2206          */
2207         if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
2208                 struct kvm_sev_info *sev;
2209                 unsigned long va_start;
2210                 u64 start, stop;
2211
2212                 /* Align start and stop to page boundaries. */
2213                 va_start = (unsigned long)va;
2214                 start = (u64)va_start & PAGE_MASK;
2215                 stop = PAGE_ALIGN((u64)va_start + len);
2216
2217                 if (start < stop) {
2218                         sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
2219
2220                         while (start < stop) {
2221                                 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
2222                                        start | sev->asid);
2223
2224                                 start += PAGE_SIZE;
2225                         }
2226
2227                         return;
2228                 }
2229
2230                 WARN(1, "Address overflow, using WBINVD\n");
2231         }
2232
2233         /*
2234          * Hardware should always have one of the above features,
2235          * but if not, use WBINVD and issue a warning.
2236          */
2237         WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
2238         wbinvd_on_all_cpus();
2239 }
2240
2241 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2242 {
2243         struct vcpu_svm *svm;
2244
2245         if (!sev_es_guest(vcpu->kvm))
2246                 return;
2247
2248         svm = to_svm(vcpu);
2249
2250         if (vcpu->arch.guest_state_protected)
2251                 sev_flush_guest_memory(svm, svm->sev_es.vmsa, PAGE_SIZE);
2252         __free_page(virt_to_page(svm->sev_es.vmsa));
2253
2254         if (svm->sev_es.ghcb_sa_free)
2255                 kfree(svm->sev_es.ghcb_sa);
2256 }
2257
2258 static void dump_ghcb(struct vcpu_svm *svm)
2259 {
2260         struct ghcb *ghcb = svm->sev_es.ghcb;
2261         unsigned int nbits;
2262
2263         /* Re-use the dump_invalid_vmcb module parameter */
2264         if (!dump_invalid_vmcb) {
2265                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2266                 return;
2267         }
2268
2269         nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2270
2271         pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2272         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2273                ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2274         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2275                ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2276         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2277                ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2278         pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2279                ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2280         pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2281 }
2282
2283 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2284 {
2285         struct kvm_vcpu *vcpu = &svm->vcpu;
2286         struct ghcb *ghcb = svm->sev_es.ghcb;
2287
2288         /*
2289          * The GHCB protocol so far allows for the following data
2290          * to be returned:
2291          *   GPRs RAX, RBX, RCX, RDX
2292          *
2293          * Copy their values, even if they may not have been written during the
2294          * VM-Exit.  It's the guest's responsibility to not consume random data.
2295          */
2296         ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2297         ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2298         ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2299         ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2300 }
2301
2302 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2303 {
2304         struct vmcb_control_area *control = &svm->vmcb->control;
2305         struct kvm_vcpu *vcpu = &svm->vcpu;
2306         struct ghcb *ghcb = svm->sev_es.ghcb;
2307         u64 exit_code;
2308
2309         /*
2310          * The GHCB protocol so far allows for the following data
2311          * to be supplied:
2312          *   GPRs RAX, RBX, RCX, RDX
2313          *   XCR0
2314          *   CPL
2315          *
2316          * VMMCALL allows the guest to provide extra registers. KVM also
2317          * expects RSI for hypercalls, so include that, too.
2318          *
2319          * Copy their values to the appropriate location if supplied.
2320          */
2321         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2322
2323         vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2324         vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2325         vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2326         vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2327         vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2328
2329         svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2330
2331         if (ghcb_xcr0_is_valid(ghcb)) {
2332                 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2333                 kvm_update_cpuid_runtime(vcpu);
2334         }
2335
2336         /* Copy the GHCB exit information into the VMCB fields */
2337         exit_code = ghcb_get_sw_exit_code(ghcb);
2338         control->exit_code = lower_32_bits(exit_code);
2339         control->exit_code_hi = upper_32_bits(exit_code);
2340         control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2341         control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2342
2343         /* Clear the valid entries fields */
2344         memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2345 }
2346
2347 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2348 {
2349         struct kvm_vcpu *vcpu;
2350         struct ghcb *ghcb;
2351         u64 exit_code = 0;
2352
2353         ghcb = svm->sev_es.ghcb;
2354
2355         /* Only GHCB Usage code 0 is supported */
2356         if (ghcb->ghcb_usage)
2357                 goto vmgexit_err;
2358
2359         /*
2360          * Retrieve the exit code now even though is may not be marked valid
2361          * as it could help with debugging.
2362          */
2363         exit_code = ghcb_get_sw_exit_code(ghcb);
2364
2365         if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2366             !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2367             !ghcb_sw_exit_info_2_is_valid(ghcb))
2368                 goto vmgexit_err;
2369
2370         switch (ghcb_get_sw_exit_code(ghcb)) {
2371         case SVM_EXIT_READ_DR7:
2372                 break;
2373         case SVM_EXIT_WRITE_DR7:
2374                 if (!ghcb_rax_is_valid(ghcb))
2375                         goto vmgexit_err;
2376                 break;
2377         case SVM_EXIT_RDTSC:
2378                 break;
2379         case SVM_EXIT_RDPMC:
2380                 if (!ghcb_rcx_is_valid(ghcb))
2381                         goto vmgexit_err;
2382                 break;
2383         case SVM_EXIT_CPUID:
2384                 if (!ghcb_rax_is_valid(ghcb) ||
2385                     !ghcb_rcx_is_valid(ghcb))
2386                         goto vmgexit_err;
2387                 if (ghcb_get_rax(ghcb) == 0xd)
2388                         if (!ghcb_xcr0_is_valid(ghcb))
2389                                 goto vmgexit_err;
2390                 break;
2391         case SVM_EXIT_INVD:
2392                 break;
2393         case SVM_EXIT_IOIO:
2394                 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2395                         if (!ghcb_sw_scratch_is_valid(ghcb))
2396                                 goto vmgexit_err;
2397                 } else {
2398                         if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2399                                 if (!ghcb_rax_is_valid(ghcb))
2400                                         goto vmgexit_err;
2401                 }
2402                 break;
2403         case SVM_EXIT_MSR:
2404                 if (!ghcb_rcx_is_valid(ghcb))
2405                         goto vmgexit_err;
2406                 if (ghcb_get_sw_exit_info_1(ghcb)) {
2407                         if (!ghcb_rax_is_valid(ghcb) ||
2408                             !ghcb_rdx_is_valid(ghcb))
2409                                 goto vmgexit_err;
2410                 }
2411                 break;
2412         case SVM_EXIT_VMMCALL:
2413                 if (!ghcb_rax_is_valid(ghcb) ||
2414                     !ghcb_cpl_is_valid(ghcb))
2415                         goto vmgexit_err;
2416                 break;
2417         case SVM_EXIT_RDTSCP:
2418                 break;
2419         case SVM_EXIT_WBINVD:
2420                 break;
2421         case SVM_EXIT_MONITOR:
2422                 if (!ghcb_rax_is_valid(ghcb) ||
2423                     !ghcb_rcx_is_valid(ghcb) ||
2424                     !ghcb_rdx_is_valid(ghcb))
2425                         goto vmgexit_err;
2426                 break;
2427         case SVM_EXIT_MWAIT:
2428                 if (!ghcb_rax_is_valid(ghcb) ||
2429                     !ghcb_rcx_is_valid(ghcb))
2430                         goto vmgexit_err;
2431                 break;
2432         case SVM_VMGEXIT_MMIO_READ:
2433         case SVM_VMGEXIT_MMIO_WRITE:
2434                 if (!ghcb_sw_scratch_is_valid(ghcb))
2435                         goto vmgexit_err;
2436                 break;
2437         case SVM_VMGEXIT_NMI_COMPLETE:
2438         case SVM_VMGEXIT_AP_HLT_LOOP:
2439         case SVM_VMGEXIT_AP_JUMP_TABLE:
2440         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2441                 break;
2442         default:
2443                 goto vmgexit_err;
2444         }
2445
2446         return 0;
2447
2448 vmgexit_err:
2449         vcpu = &svm->vcpu;
2450
2451         if (ghcb->ghcb_usage) {
2452                 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2453                             ghcb->ghcb_usage);
2454         } else {
2455                 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
2456                             exit_code);
2457                 dump_ghcb(svm);
2458         }
2459
2460         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2461         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2462         vcpu->run->internal.ndata = 2;
2463         vcpu->run->internal.data[0] = exit_code;
2464         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2465
2466         return -EINVAL;
2467 }
2468
2469 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2470 {
2471         if (!svm->sev_es.ghcb)
2472                 return;
2473
2474         if (svm->sev_es.ghcb_sa_free) {
2475                 /*
2476                  * The scratch area lives outside the GHCB, so there is a
2477                  * buffer that, depending on the operation performed, may
2478                  * need to be synced, then freed.
2479                  */
2480                 if (svm->sev_es.ghcb_sa_sync) {
2481                         kvm_write_guest(svm->vcpu.kvm,
2482                                         ghcb_get_sw_scratch(svm->sev_es.ghcb),
2483                                         svm->sev_es.ghcb_sa,
2484                                         svm->sev_es.ghcb_sa_len);
2485                         svm->sev_es.ghcb_sa_sync = false;
2486                 }
2487
2488                 kfree(svm->sev_es.ghcb_sa);
2489                 svm->sev_es.ghcb_sa = NULL;
2490                 svm->sev_es.ghcb_sa_free = false;
2491         }
2492
2493         trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2494
2495         sev_es_sync_to_ghcb(svm);
2496
2497         kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2498         svm->sev_es.ghcb = NULL;
2499 }
2500
2501 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2502 {
2503         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2504         int asid = sev_get_asid(svm->vcpu.kvm);
2505
2506         /* Assign the asid allocated with this SEV guest */
2507         svm->asid = asid;
2508
2509         /*
2510          * Flush guest TLB:
2511          *
2512          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2513          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2514          */
2515         if (sd->sev_vmcbs[asid] == svm->vmcb &&
2516             svm->vcpu.arch.last_vmentry_cpu == cpu)
2517                 return;
2518
2519         sd->sev_vmcbs[asid] = svm->vmcb;
2520         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2521         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2522 }
2523
2524 #define GHCB_SCRATCH_AREA_LIMIT         (16ULL * PAGE_SIZE)
2525 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2526 {
2527         struct vmcb_control_area *control = &svm->vmcb->control;
2528         struct ghcb *ghcb = svm->sev_es.ghcb;
2529         u64 ghcb_scratch_beg, ghcb_scratch_end;
2530         u64 scratch_gpa_beg, scratch_gpa_end;
2531         void *scratch_va;
2532
2533         scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2534         if (!scratch_gpa_beg) {
2535                 pr_err("vmgexit: scratch gpa not provided\n");
2536                 return false;
2537         }
2538
2539         scratch_gpa_end = scratch_gpa_beg + len;
2540         if (scratch_gpa_end < scratch_gpa_beg) {
2541                 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2542                        len, scratch_gpa_beg);
2543                 return false;
2544         }
2545
2546         if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2547                 /* Scratch area begins within GHCB */
2548                 ghcb_scratch_beg = control->ghcb_gpa +
2549                                    offsetof(struct ghcb, shared_buffer);
2550                 ghcb_scratch_end = control->ghcb_gpa +
2551                                    offsetof(struct ghcb, reserved_1);
2552
2553                 /*
2554                  * If the scratch area begins within the GHCB, it must be
2555                  * completely contained in the GHCB shared buffer area.
2556                  */
2557                 if (scratch_gpa_beg < ghcb_scratch_beg ||
2558                     scratch_gpa_end > ghcb_scratch_end) {
2559                         pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2560                                scratch_gpa_beg, scratch_gpa_end);
2561                         return false;
2562                 }
2563
2564                 scratch_va = (void *)svm->sev_es.ghcb;
2565                 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2566         } else {
2567                 /*
2568                  * The guest memory must be read into a kernel buffer, so
2569                  * limit the size
2570                  */
2571                 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2572                         pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2573                                len, GHCB_SCRATCH_AREA_LIMIT);
2574                         return false;
2575                 }
2576                 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT);
2577                 if (!scratch_va)
2578                         return false;
2579
2580                 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2581                         /* Unable to copy scratch area from guest */
2582                         pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2583
2584                         kfree(scratch_va);
2585                         return false;
2586                 }
2587
2588                 /*
2589                  * The scratch area is outside the GHCB. The operation will
2590                  * dictate whether the buffer needs to be synced before running
2591                  * the vCPU next time (i.e. a read was requested so the data
2592                  * must be written back to the guest memory).
2593                  */
2594                 svm->sev_es.ghcb_sa_sync = sync;
2595                 svm->sev_es.ghcb_sa_free = true;
2596         }
2597
2598         svm->sev_es.ghcb_sa = scratch_va;
2599         svm->sev_es.ghcb_sa_len = len;
2600
2601         return true;
2602 }
2603
2604 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2605                               unsigned int pos)
2606 {
2607         svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2608         svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2609 }
2610
2611 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2612 {
2613         return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2614 }
2615
2616 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2617 {
2618         svm->vmcb->control.ghcb_gpa = value;
2619 }
2620
2621 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2622 {
2623         struct vmcb_control_area *control = &svm->vmcb->control;
2624         struct kvm_vcpu *vcpu = &svm->vcpu;
2625         u64 ghcb_info;
2626         int ret = 1;
2627
2628         ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2629
2630         trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2631                                              control->ghcb_gpa);
2632
2633         switch (ghcb_info) {
2634         case GHCB_MSR_SEV_INFO_REQ:
2635                 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2636                                                     GHCB_VERSION_MIN,
2637                                                     sev_enc_bit));
2638                 break;
2639         case GHCB_MSR_CPUID_REQ: {
2640                 u64 cpuid_fn, cpuid_reg, cpuid_value;
2641
2642                 cpuid_fn = get_ghcb_msr_bits(svm,
2643                                              GHCB_MSR_CPUID_FUNC_MASK,
2644                                              GHCB_MSR_CPUID_FUNC_POS);
2645
2646                 /* Initialize the registers needed by the CPUID intercept */
2647                 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2648                 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2649
2650                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2651                 if (!ret) {
2652                         ret = -EINVAL;
2653                         break;
2654                 }
2655
2656                 cpuid_reg = get_ghcb_msr_bits(svm,
2657                                               GHCB_MSR_CPUID_REG_MASK,
2658                                               GHCB_MSR_CPUID_REG_POS);
2659                 if (cpuid_reg == 0)
2660                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2661                 else if (cpuid_reg == 1)
2662                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2663                 else if (cpuid_reg == 2)
2664                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2665                 else
2666                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2667
2668                 set_ghcb_msr_bits(svm, cpuid_value,
2669                                   GHCB_MSR_CPUID_VALUE_MASK,
2670                                   GHCB_MSR_CPUID_VALUE_POS);
2671
2672                 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2673                                   GHCB_MSR_INFO_MASK,
2674                                   GHCB_MSR_INFO_POS);
2675                 break;
2676         }
2677         case GHCB_MSR_TERM_REQ: {
2678                 u64 reason_set, reason_code;
2679
2680                 reason_set = get_ghcb_msr_bits(svm,
2681                                                GHCB_MSR_TERM_REASON_SET_MASK,
2682                                                GHCB_MSR_TERM_REASON_SET_POS);
2683                 reason_code = get_ghcb_msr_bits(svm,
2684                                                 GHCB_MSR_TERM_REASON_MASK,
2685                                                 GHCB_MSR_TERM_REASON_POS);
2686                 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2687                         reason_set, reason_code);
2688                 fallthrough;
2689         }
2690         default:
2691                 ret = -EINVAL;
2692         }
2693
2694         trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2695                                             control->ghcb_gpa, ret);
2696
2697         return ret;
2698 }
2699
2700 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2701 {
2702         struct vcpu_svm *svm = to_svm(vcpu);
2703         struct vmcb_control_area *control = &svm->vmcb->control;
2704         u64 ghcb_gpa, exit_code;
2705         struct ghcb *ghcb;
2706         int ret;
2707
2708         /* Validate the GHCB */
2709         ghcb_gpa = control->ghcb_gpa;
2710         if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2711                 return sev_handle_vmgexit_msr_protocol(svm);
2712
2713         if (!ghcb_gpa) {
2714                 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2715                 return -EINVAL;
2716         }
2717
2718         if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2719                 /* Unable to map GHCB from guest */
2720                 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2721                             ghcb_gpa);
2722                 return -EINVAL;
2723         }
2724
2725         svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2726         ghcb = svm->sev_es.ghcb_map.hva;
2727
2728         trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2729
2730         exit_code = ghcb_get_sw_exit_code(ghcb);
2731
2732         ret = sev_es_validate_vmgexit(svm);
2733         if (ret)
2734                 return ret;
2735
2736         sev_es_sync_from_ghcb(svm);
2737         ghcb_set_sw_exit_info_1(ghcb, 0);
2738         ghcb_set_sw_exit_info_2(ghcb, 0);
2739
2740         ret = -EINVAL;
2741         switch (exit_code) {
2742         case SVM_VMGEXIT_MMIO_READ:
2743                 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
2744                         break;
2745
2746                 ret = kvm_sev_es_mmio_read(vcpu,
2747                                            control->exit_info_1,
2748                                            control->exit_info_2,
2749                                            svm->sev_es.ghcb_sa);
2750                 break;
2751         case SVM_VMGEXIT_MMIO_WRITE:
2752                 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
2753                         break;
2754
2755                 ret = kvm_sev_es_mmio_write(vcpu,
2756                                             control->exit_info_1,
2757                                             control->exit_info_2,
2758                                             svm->sev_es.ghcb_sa);
2759                 break;
2760         case SVM_VMGEXIT_NMI_COMPLETE:
2761                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2762                 break;
2763         case SVM_VMGEXIT_AP_HLT_LOOP:
2764                 ret = kvm_emulate_ap_reset_hold(vcpu);
2765                 break;
2766         case SVM_VMGEXIT_AP_JUMP_TABLE: {
2767                 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2768
2769                 switch (control->exit_info_1) {
2770                 case 0:
2771                         /* Set AP jump table address */
2772                         sev->ap_jump_table = control->exit_info_2;
2773                         break;
2774                 case 1:
2775                         /* Get AP jump table address */
2776                         ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2777                         break;
2778                 default:
2779                         pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2780                                control->exit_info_1);
2781                         ghcb_set_sw_exit_info_1(ghcb, 1);
2782                         ghcb_set_sw_exit_info_2(ghcb,
2783                                                 X86_TRAP_UD |
2784                                                 SVM_EVTINJ_TYPE_EXEPT |
2785                                                 SVM_EVTINJ_VALID);
2786                 }
2787
2788                 ret = 1;
2789                 break;
2790         }
2791         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2792                 vcpu_unimpl(vcpu,
2793                             "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2794                             control->exit_info_1, control->exit_info_2);
2795                 break;
2796         default:
2797                 ret = svm_invoke_exit_handler(vcpu, exit_code);
2798         }
2799
2800         return ret;
2801 }
2802
2803 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2804 {
2805         int count;
2806         int bytes;
2807
2808         if (svm->vmcb->control.exit_info_2 > INT_MAX)
2809                 return -EINVAL;
2810
2811         count = svm->vmcb->control.exit_info_2;
2812         if (unlikely(check_mul_overflow(count, size, &bytes)))
2813                 return -EINVAL;
2814
2815         if (!setup_vmgexit_scratch(svm, in, bytes))
2816                 return -EINVAL;
2817
2818         return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2819                                     count, in);
2820 }
2821
2822 void sev_es_init_vmcb(struct vcpu_svm *svm)
2823 {
2824         struct kvm_vcpu *vcpu = &svm->vcpu;
2825
2826         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2827         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2828
2829         /*
2830          * An SEV-ES guest requires a VMSA area that is a separate from the
2831          * VMCB page. Do not include the encryption mask on the VMSA physical
2832          * address since hardware will access it using the guest key.
2833          */
2834         svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
2835
2836         /* Can't intercept CR register access, HV can't modify CR registers */
2837         svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2838         svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2839         svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2840         svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2841         svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2842         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2843
2844         svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2845
2846         /* Track EFER/CR register changes */
2847         svm_set_intercept(svm, TRAP_EFER_WRITE);
2848         svm_set_intercept(svm, TRAP_CR0_WRITE);
2849         svm_set_intercept(svm, TRAP_CR4_WRITE);
2850         svm_set_intercept(svm, TRAP_CR8_WRITE);
2851
2852         /* No support for enable_vmware_backdoor */
2853         clr_exception_intercept(svm, GP_VECTOR);
2854
2855         /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2856         svm_clr_intercept(svm, INTERCEPT_XSETBV);
2857
2858         /* Clear intercepts on selected MSRs */
2859         set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2860         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2861         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2862         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2863         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2864         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2865 }
2866
2867 void sev_es_vcpu_reset(struct vcpu_svm *svm)
2868 {
2869         /*
2870          * Set the GHCB MSR value as per the GHCB specification when emulating
2871          * vCPU RESET for an SEV-ES guest.
2872          */
2873         set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2874                                             GHCB_VERSION_MIN,
2875                                             sev_enc_bit));
2876 }
2877
2878 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2879 {
2880         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2881         struct vmcb_save_area *hostsa;
2882
2883         /*
2884          * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2885          * of which one step is to perform a VMLOAD. Since hardware does not
2886          * perform a VMSAVE on VMRUN, the host savearea must be updated.
2887          */
2888         vmsave(__sme_page_pa(sd->save_area));
2889
2890         /* XCR0 is restored on VMEXIT, save the current host value */
2891         hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2892         hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2893
2894         /* PKRU is restored on VMEXIT, save the current host value */
2895         hostsa->pkru = read_pkru();
2896
2897         /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2898         hostsa->xss = host_xss;
2899 }
2900
2901 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2902 {
2903         struct vcpu_svm *svm = to_svm(vcpu);
2904
2905         /* First SIPI: Use the values as initially set by the VMM */
2906         if (!svm->sev_es.received_first_sipi) {
2907                 svm->sev_es.received_first_sipi = true;
2908                 return;
2909         }
2910
2911         /*
2912          * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2913          * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2914          * non-zero value.
2915          */
2916         if (!svm->sev_es.ghcb)
2917                 return;
2918
2919         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
2920 }