Merge tag 'coresight-next-v5.20' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / sev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20
21 #include <asm/pkru.h>
22 #include <asm/trapnr.h>
23 #include <asm/fpu/xcr.h>
24
25 #include "x86.h"
26 #include "svm.h"
27 #include "svm_ops.h"
28 #include "cpuid.h"
29 #include "trace.h"
30
31 #ifndef CONFIG_KVM_AMD_SEV
32 /*
33  * When this config is not defined, SEV feature is not supported and APIs in
34  * this file are not used but this file still gets compiled into the KVM AMD
35  * module.
36  *
37  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
38  * misc_res_type {} defined in linux/misc_cgroup.h.
39  *
40  * Below macros allow compilation to succeed.
41  */
42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
44 #endif
45
46 #ifdef CONFIG_KVM_AMD_SEV
47 /* enable/disable SEV support */
48 static bool sev_enabled = true;
49 module_param_named(sev, sev_enabled, bool, 0444);
50
51 /* enable/disable SEV-ES support */
52 static bool sev_es_enabled = true;
53 module_param_named(sev_es, sev_es_enabled, bool, 0444);
54 #else
55 #define sev_enabled false
56 #define sev_es_enabled false
57 #endif /* CONFIG_KVM_AMD_SEV */
58
59 static u8 sev_enc_bit;
60 static DECLARE_RWSEM(sev_deactivate_lock);
61 static DEFINE_MUTEX(sev_bitmap_lock);
62 unsigned int max_sev_asid;
63 static unsigned int min_sev_asid;
64 static unsigned long sev_me_mask;
65 static unsigned int nr_asids;
66 static unsigned long *sev_asid_bitmap;
67 static unsigned long *sev_reclaim_asid_bitmap;
68
69 struct enc_region {
70         struct list_head list;
71         unsigned long npages;
72         struct page **pages;
73         unsigned long uaddr;
74         unsigned long size;
75 };
76
77 /* Called with the sev_bitmap_lock held, or on shutdown  */
78 static int sev_flush_asids(int min_asid, int max_asid)
79 {
80         int ret, asid, error = 0;
81
82         /* Check if there are any ASIDs to reclaim before performing a flush */
83         asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
84         if (asid > max_asid)
85                 return -EBUSY;
86
87         /*
88          * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
89          * so it must be guarded.
90          */
91         down_write(&sev_deactivate_lock);
92
93         wbinvd_on_all_cpus();
94         ret = sev_guest_df_flush(&error);
95
96         up_write(&sev_deactivate_lock);
97
98         if (ret)
99                 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
100
101         return ret;
102 }
103
104 static inline bool is_mirroring_enc_context(struct kvm *kvm)
105 {
106         return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
107 }
108
109 /* Must be called with the sev_bitmap_lock held */
110 static bool __sev_recycle_asids(int min_asid, int max_asid)
111 {
112         if (sev_flush_asids(min_asid, max_asid))
113                 return false;
114
115         /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
116         bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
117                    nr_asids);
118         bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
119
120         return true;
121 }
122
123 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
124 {
125         enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
126         return misc_cg_try_charge(type, sev->misc_cg, 1);
127 }
128
129 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
130 {
131         enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
132         misc_cg_uncharge(type, sev->misc_cg, 1);
133 }
134
135 static int sev_asid_new(struct kvm_sev_info *sev)
136 {
137         int asid, min_asid, max_asid, ret;
138         bool retry = true;
139
140         WARN_ON(sev->misc_cg);
141         sev->misc_cg = get_current_misc_cg();
142         ret = sev_misc_cg_try_charge(sev);
143         if (ret) {
144                 put_misc_cg(sev->misc_cg);
145                 sev->misc_cg = NULL;
146                 return ret;
147         }
148
149         mutex_lock(&sev_bitmap_lock);
150
151         /*
152          * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
153          * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
154          */
155         min_asid = sev->es_active ? 1 : min_sev_asid;
156         max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
157 again:
158         asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
159         if (asid > max_asid) {
160                 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
161                         retry = false;
162                         goto again;
163                 }
164                 mutex_unlock(&sev_bitmap_lock);
165                 ret = -EBUSY;
166                 goto e_uncharge;
167         }
168
169         __set_bit(asid, sev_asid_bitmap);
170
171         mutex_unlock(&sev_bitmap_lock);
172
173         return asid;
174 e_uncharge:
175         sev_misc_cg_uncharge(sev);
176         put_misc_cg(sev->misc_cg);
177         sev->misc_cg = NULL;
178         return ret;
179 }
180
181 static int sev_get_asid(struct kvm *kvm)
182 {
183         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
184
185         return sev->asid;
186 }
187
188 static void sev_asid_free(struct kvm_sev_info *sev)
189 {
190         struct svm_cpu_data *sd;
191         int cpu;
192
193         mutex_lock(&sev_bitmap_lock);
194
195         __set_bit(sev->asid, sev_reclaim_asid_bitmap);
196
197         for_each_possible_cpu(cpu) {
198                 sd = per_cpu(svm_data, cpu);
199                 sd->sev_vmcbs[sev->asid] = NULL;
200         }
201
202         mutex_unlock(&sev_bitmap_lock);
203
204         sev_misc_cg_uncharge(sev);
205         put_misc_cg(sev->misc_cg);
206         sev->misc_cg = NULL;
207 }
208
209 static void sev_decommission(unsigned int handle)
210 {
211         struct sev_data_decommission decommission;
212
213         if (!handle)
214                 return;
215
216         decommission.handle = handle;
217         sev_guest_decommission(&decommission, NULL);
218 }
219
220 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
221 {
222         struct sev_data_deactivate deactivate;
223
224         if (!handle)
225                 return;
226
227         deactivate.handle = handle;
228
229         /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
230         down_read(&sev_deactivate_lock);
231         sev_guest_deactivate(&deactivate, NULL);
232         up_read(&sev_deactivate_lock);
233
234         sev_decommission(handle);
235 }
236
237 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
238 {
239         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
240         int asid, ret;
241
242         if (kvm->created_vcpus)
243                 return -EINVAL;
244
245         ret = -EBUSY;
246         if (unlikely(sev->active))
247                 return ret;
248
249         sev->active = true;
250         sev->es_active = argp->id == KVM_SEV_ES_INIT;
251         asid = sev_asid_new(sev);
252         if (asid < 0)
253                 goto e_no_asid;
254         sev->asid = asid;
255
256         ret = sev_platform_init(&argp->error);
257         if (ret)
258                 goto e_free;
259
260         INIT_LIST_HEAD(&sev->regions_list);
261         INIT_LIST_HEAD(&sev->mirror_vms);
262
263         kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
264
265         return 0;
266
267 e_free:
268         sev_asid_free(sev);
269         sev->asid = 0;
270 e_no_asid:
271         sev->es_active = false;
272         sev->active = false;
273         return ret;
274 }
275
276 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
277 {
278         struct sev_data_activate activate;
279         int asid = sev_get_asid(kvm);
280         int ret;
281
282         /* activate ASID on the given handle */
283         activate.handle = handle;
284         activate.asid   = asid;
285         ret = sev_guest_activate(&activate, error);
286
287         return ret;
288 }
289
290 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
291 {
292         struct fd f;
293         int ret;
294
295         f = fdget(fd);
296         if (!f.file)
297                 return -EBADF;
298
299         ret = sev_issue_cmd_external_user(f.file, id, data, error);
300
301         fdput(f);
302         return ret;
303 }
304
305 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
306 {
307         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
308
309         return __sev_issue_cmd(sev->fd, id, data, error);
310 }
311
312 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
313 {
314         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
315         struct sev_data_launch_start start;
316         struct kvm_sev_launch_start params;
317         void *dh_blob, *session_blob;
318         int *error = &argp->error;
319         int ret;
320
321         if (!sev_guest(kvm))
322                 return -ENOTTY;
323
324         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
325                 return -EFAULT;
326
327         memset(&start, 0, sizeof(start));
328
329         dh_blob = NULL;
330         if (params.dh_uaddr) {
331                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
332                 if (IS_ERR(dh_blob))
333                         return PTR_ERR(dh_blob);
334
335                 start.dh_cert_address = __sme_set(__pa(dh_blob));
336                 start.dh_cert_len = params.dh_len;
337         }
338
339         session_blob = NULL;
340         if (params.session_uaddr) {
341                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
342                 if (IS_ERR(session_blob)) {
343                         ret = PTR_ERR(session_blob);
344                         goto e_free_dh;
345                 }
346
347                 start.session_address = __sme_set(__pa(session_blob));
348                 start.session_len = params.session_len;
349         }
350
351         start.handle = params.handle;
352         start.policy = params.policy;
353
354         /* create memory encryption context */
355         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
356         if (ret)
357                 goto e_free_session;
358
359         /* Bind ASID to this guest */
360         ret = sev_bind_asid(kvm, start.handle, error);
361         if (ret) {
362                 sev_decommission(start.handle);
363                 goto e_free_session;
364         }
365
366         /* return handle to userspace */
367         params.handle = start.handle;
368         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
369                 sev_unbind_asid(kvm, start.handle);
370                 ret = -EFAULT;
371                 goto e_free_session;
372         }
373
374         sev->handle = start.handle;
375         sev->fd = argp->sev_fd;
376
377 e_free_session:
378         kfree(session_blob);
379 e_free_dh:
380         kfree(dh_blob);
381         return ret;
382 }
383
384 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
385                                     unsigned long ulen, unsigned long *n,
386                                     int write)
387 {
388         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
389         unsigned long npages, size;
390         int npinned;
391         unsigned long locked, lock_limit;
392         struct page **pages;
393         unsigned long first, last;
394         int ret;
395
396         lockdep_assert_held(&kvm->lock);
397
398         if (ulen == 0 || uaddr + ulen < uaddr)
399                 return ERR_PTR(-EINVAL);
400
401         /* Calculate number of pages. */
402         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
403         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
404         npages = (last - first + 1);
405
406         locked = sev->pages_locked + npages;
407         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
408         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
409                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
410                 return ERR_PTR(-ENOMEM);
411         }
412
413         if (WARN_ON_ONCE(npages > INT_MAX))
414                 return ERR_PTR(-EINVAL);
415
416         /* Avoid using vmalloc for smaller buffers. */
417         size = npages * sizeof(struct page *);
418         if (size > PAGE_SIZE)
419                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
420         else
421                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
422
423         if (!pages)
424                 return ERR_PTR(-ENOMEM);
425
426         /* Pin the user virtual address. */
427         npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
428         if (npinned != npages) {
429                 pr_err("SEV: Failure locking %lu pages.\n", npages);
430                 ret = -ENOMEM;
431                 goto err;
432         }
433
434         *n = npages;
435         sev->pages_locked = locked;
436
437         return pages;
438
439 err:
440         if (npinned > 0)
441                 unpin_user_pages(pages, npinned);
442
443         kvfree(pages);
444         return ERR_PTR(ret);
445 }
446
447 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
448                              unsigned long npages)
449 {
450         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
451
452         unpin_user_pages(pages, npages);
453         kvfree(pages);
454         sev->pages_locked -= npages;
455 }
456
457 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
458 {
459         uint8_t *page_virtual;
460         unsigned long i;
461
462         if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
463             pages == NULL)
464                 return;
465
466         for (i = 0; i < npages; i++) {
467                 page_virtual = kmap_atomic(pages[i]);
468                 clflush_cache_range(page_virtual, PAGE_SIZE);
469                 kunmap_atomic(page_virtual);
470                 cond_resched();
471         }
472 }
473
474 static unsigned long get_num_contig_pages(unsigned long idx,
475                                 struct page **inpages, unsigned long npages)
476 {
477         unsigned long paddr, next_paddr;
478         unsigned long i = idx + 1, pages = 1;
479
480         /* find the number of contiguous pages starting from idx */
481         paddr = __sme_page_pa(inpages[idx]);
482         while (i < npages) {
483                 next_paddr = __sme_page_pa(inpages[i++]);
484                 if ((paddr + PAGE_SIZE) == next_paddr) {
485                         pages++;
486                         paddr = next_paddr;
487                         continue;
488                 }
489                 break;
490         }
491
492         return pages;
493 }
494
495 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
496 {
497         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
498         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
499         struct kvm_sev_launch_update_data params;
500         struct sev_data_launch_update_data data;
501         struct page **inpages;
502         int ret;
503
504         if (!sev_guest(kvm))
505                 return -ENOTTY;
506
507         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
508                 return -EFAULT;
509
510         vaddr = params.uaddr;
511         size = params.len;
512         vaddr_end = vaddr + size;
513
514         /* Lock the user memory. */
515         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
516         if (IS_ERR(inpages))
517                 return PTR_ERR(inpages);
518
519         /*
520          * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
521          * place; the cache may contain the data that was written unencrypted.
522          */
523         sev_clflush_pages(inpages, npages);
524
525         data.reserved = 0;
526         data.handle = sev->handle;
527
528         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
529                 int offset, len;
530
531                 /*
532                  * If the user buffer is not page-aligned, calculate the offset
533                  * within the page.
534                  */
535                 offset = vaddr & (PAGE_SIZE - 1);
536
537                 /* Calculate the number of pages that can be encrypted in one go. */
538                 pages = get_num_contig_pages(i, inpages, npages);
539
540                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
541
542                 data.len = len;
543                 data.address = __sme_page_pa(inpages[i]) + offset;
544                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
545                 if (ret)
546                         goto e_unpin;
547
548                 size -= len;
549                 next_vaddr = vaddr + len;
550         }
551
552 e_unpin:
553         /* content of memory is updated, mark pages dirty */
554         for (i = 0; i < npages; i++) {
555                 set_page_dirty_lock(inpages[i]);
556                 mark_page_accessed(inpages[i]);
557         }
558         /* unlock the user pages */
559         sev_unpin_memory(kvm, inpages, npages);
560         return ret;
561 }
562
563 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
564 {
565         struct sev_es_save_area *save = svm->sev_es.vmsa;
566
567         /* Check some debug related fields before encrypting the VMSA */
568         if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
569                 return -EINVAL;
570
571         /*
572          * SEV-ES will use a VMSA that is pointed to by the VMCB, not
573          * the traditional VMSA that is part of the VMCB. Copy the
574          * traditional VMSA as it has been built so far (in prep
575          * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
576          */
577         memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
578
579         /* Sync registgers */
580         save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
581         save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
582         save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
583         save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
584         save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
585         save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
586         save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
587         save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
588 #ifdef CONFIG_X86_64
589         save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
590         save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
591         save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
592         save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
593         save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
594         save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
595         save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
596         save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
597 #endif
598         save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
599
600         /* Sync some non-GPR registers before encrypting */
601         save->xcr0 = svm->vcpu.arch.xcr0;
602         save->pkru = svm->vcpu.arch.pkru;
603         save->xss  = svm->vcpu.arch.ia32_xss;
604         save->dr6  = svm->vcpu.arch.dr6;
605
606         return 0;
607 }
608
609 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
610                                     int *error)
611 {
612         struct sev_data_launch_update_vmsa vmsa;
613         struct vcpu_svm *svm = to_svm(vcpu);
614         int ret;
615
616         /* Perform some pre-encryption checks against the VMSA */
617         ret = sev_es_sync_vmsa(svm);
618         if (ret)
619                 return ret;
620
621         /*
622          * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
623          * the VMSA memory content (i.e it will write the same memory region
624          * with the guest's key), so invalidate it first.
625          */
626         clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
627
628         vmsa.reserved = 0;
629         vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
630         vmsa.address = __sme_pa(svm->sev_es.vmsa);
631         vmsa.len = PAGE_SIZE;
632         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
633         if (ret)
634           return ret;
635
636         vcpu->arch.guest_state_protected = true;
637         return 0;
638 }
639
640 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
641 {
642         struct kvm_vcpu *vcpu;
643         unsigned long i;
644         int ret;
645
646         if (!sev_es_guest(kvm))
647                 return -ENOTTY;
648
649         kvm_for_each_vcpu(i, vcpu, kvm) {
650                 ret = mutex_lock_killable(&vcpu->mutex);
651                 if (ret)
652                         return ret;
653
654                 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
655
656                 mutex_unlock(&vcpu->mutex);
657                 if (ret)
658                         return ret;
659         }
660
661         return 0;
662 }
663
664 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
665 {
666         void __user *measure = (void __user *)(uintptr_t)argp->data;
667         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
668         struct sev_data_launch_measure data;
669         struct kvm_sev_launch_measure params;
670         void __user *p = NULL;
671         void *blob = NULL;
672         int ret;
673
674         if (!sev_guest(kvm))
675                 return -ENOTTY;
676
677         if (copy_from_user(&params, measure, sizeof(params)))
678                 return -EFAULT;
679
680         memset(&data, 0, sizeof(data));
681
682         /* User wants to query the blob length */
683         if (!params.len)
684                 goto cmd;
685
686         p = (void __user *)(uintptr_t)params.uaddr;
687         if (p) {
688                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
689                         return -EINVAL;
690
691                 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
692                 if (!blob)
693                         return -ENOMEM;
694
695                 data.address = __psp_pa(blob);
696                 data.len = params.len;
697         }
698
699 cmd:
700         data.handle = sev->handle;
701         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
702
703         /*
704          * If we query the session length, FW responded with expected data.
705          */
706         if (!params.len)
707                 goto done;
708
709         if (ret)
710                 goto e_free_blob;
711
712         if (blob) {
713                 if (copy_to_user(p, blob, params.len))
714                         ret = -EFAULT;
715         }
716
717 done:
718         params.len = data.len;
719         if (copy_to_user(measure, &params, sizeof(params)))
720                 ret = -EFAULT;
721 e_free_blob:
722         kfree(blob);
723         return ret;
724 }
725
726 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
727 {
728         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
729         struct sev_data_launch_finish data;
730
731         if (!sev_guest(kvm))
732                 return -ENOTTY;
733
734         data.handle = sev->handle;
735         return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
736 }
737
738 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
739 {
740         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
741         struct kvm_sev_guest_status params;
742         struct sev_data_guest_status data;
743         int ret;
744
745         if (!sev_guest(kvm))
746                 return -ENOTTY;
747
748         memset(&data, 0, sizeof(data));
749
750         data.handle = sev->handle;
751         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
752         if (ret)
753                 return ret;
754
755         params.policy = data.policy;
756         params.state = data.state;
757         params.handle = data.handle;
758
759         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
760                 ret = -EFAULT;
761
762         return ret;
763 }
764
765 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
766                                unsigned long dst, int size,
767                                int *error, bool enc)
768 {
769         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
770         struct sev_data_dbg data;
771
772         data.reserved = 0;
773         data.handle = sev->handle;
774         data.dst_addr = dst;
775         data.src_addr = src;
776         data.len = size;
777
778         return sev_issue_cmd(kvm,
779                              enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
780                              &data, error);
781 }
782
783 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
784                              unsigned long dst_paddr, int sz, int *err)
785 {
786         int offset;
787
788         /*
789          * Its safe to read more than we are asked, caller should ensure that
790          * destination has enough space.
791          */
792         offset = src_paddr & 15;
793         src_paddr = round_down(src_paddr, 16);
794         sz = round_up(sz + offset, 16);
795
796         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
797 }
798
799 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
800                                   void __user *dst_uaddr,
801                                   unsigned long dst_paddr,
802                                   int size, int *err)
803 {
804         struct page *tpage = NULL;
805         int ret, offset;
806
807         /* if inputs are not 16-byte then use intermediate buffer */
808         if (!IS_ALIGNED(dst_paddr, 16) ||
809             !IS_ALIGNED(paddr,     16) ||
810             !IS_ALIGNED(size,      16)) {
811                 tpage = (void *)alloc_page(GFP_KERNEL | __GFP_ZERO);
812                 if (!tpage)
813                         return -ENOMEM;
814
815                 dst_paddr = __sme_page_pa(tpage);
816         }
817
818         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
819         if (ret)
820                 goto e_free;
821
822         if (tpage) {
823                 offset = paddr & 15;
824                 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
825                         ret = -EFAULT;
826         }
827
828 e_free:
829         if (tpage)
830                 __free_page(tpage);
831
832         return ret;
833 }
834
835 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
836                                   void __user *vaddr,
837                                   unsigned long dst_paddr,
838                                   void __user *dst_vaddr,
839                                   int size, int *error)
840 {
841         struct page *src_tpage = NULL;
842         struct page *dst_tpage = NULL;
843         int ret, len = size;
844
845         /* If source buffer is not aligned then use an intermediate buffer */
846         if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
847                 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
848                 if (!src_tpage)
849                         return -ENOMEM;
850
851                 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
852                         __free_page(src_tpage);
853                         return -EFAULT;
854                 }
855
856                 paddr = __sme_page_pa(src_tpage);
857         }
858
859         /*
860          *  If destination buffer or length is not aligned then do read-modify-write:
861          *   - decrypt destination in an intermediate buffer
862          *   - copy the source buffer in an intermediate buffer
863          *   - use the intermediate buffer as source buffer
864          */
865         if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
866                 int dst_offset;
867
868                 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
869                 if (!dst_tpage) {
870                         ret = -ENOMEM;
871                         goto e_free;
872                 }
873
874                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
875                                         __sme_page_pa(dst_tpage), size, error);
876                 if (ret)
877                         goto e_free;
878
879                 /*
880                  *  If source is kernel buffer then use memcpy() otherwise
881                  *  copy_from_user().
882                  */
883                 dst_offset = dst_paddr & 15;
884
885                 if (src_tpage)
886                         memcpy(page_address(dst_tpage) + dst_offset,
887                                page_address(src_tpage), size);
888                 else {
889                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
890                                            vaddr, size)) {
891                                 ret = -EFAULT;
892                                 goto e_free;
893                         }
894                 }
895
896                 paddr = __sme_page_pa(dst_tpage);
897                 dst_paddr = round_down(dst_paddr, 16);
898                 len = round_up(size, 16);
899         }
900
901         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
902
903 e_free:
904         if (src_tpage)
905                 __free_page(src_tpage);
906         if (dst_tpage)
907                 __free_page(dst_tpage);
908         return ret;
909 }
910
911 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
912 {
913         unsigned long vaddr, vaddr_end, next_vaddr;
914         unsigned long dst_vaddr;
915         struct page **src_p, **dst_p;
916         struct kvm_sev_dbg debug;
917         unsigned long n;
918         unsigned int size;
919         int ret;
920
921         if (!sev_guest(kvm))
922                 return -ENOTTY;
923
924         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
925                 return -EFAULT;
926
927         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
928                 return -EINVAL;
929         if (!debug.dst_uaddr)
930                 return -EINVAL;
931
932         vaddr = debug.src_uaddr;
933         size = debug.len;
934         vaddr_end = vaddr + size;
935         dst_vaddr = debug.dst_uaddr;
936
937         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
938                 int len, s_off, d_off;
939
940                 /* lock userspace source and destination page */
941                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
942                 if (IS_ERR(src_p))
943                         return PTR_ERR(src_p);
944
945                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
946                 if (IS_ERR(dst_p)) {
947                         sev_unpin_memory(kvm, src_p, n);
948                         return PTR_ERR(dst_p);
949                 }
950
951                 /*
952                  * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
953                  * the pages; flush the destination too so that future accesses do not
954                  * see stale data.
955                  */
956                 sev_clflush_pages(src_p, 1);
957                 sev_clflush_pages(dst_p, 1);
958
959                 /*
960                  * Since user buffer may not be page aligned, calculate the
961                  * offset within the page.
962                  */
963                 s_off = vaddr & ~PAGE_MASK;
964                 d_off = dst_vaddr & ~PAGE_MASK;
965                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
966
967                 if (dec)
968                         ret = __sev_dbg_decrypt_user(kvm,
969                                                      __sme_page_pa(src_p[0]) + s_off,
970                                                      (void __user *)dst_vaddr,
971                                                      __sme_page_pa(dst_p[0]) + d_off,
972                                                      len, &argp->error);
973                 else
974                         ret = __sev_dbg_encrypt_user(kvm,
975                                                      __sme_page_pa(src_p[0]) + s_off,
976                                                      (void __user *)vaddr,
977                                                      __sme_page_pa(dst_p[0]) + d_off,
978                                                      (void __user *)dst_vaddr,
979                                                      len, &argp->error);
980
981                 sev_unpin_memory(kvm, src_p, n);
982                 sev_unpin_memory(kvm, dst_p, n);
983
984                 if (ret)
985                         goto err;
986
987                 next_vaddr = vaddr + len;
988                 dst_vaddr = dst_vaddr + len;
989                 size -= len;
990         }
991 err:
992         return ret;
993 }
994
995 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
996 {
997         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
998         struct sev_data_launch_secret data;
999         struct kvm_sev_launch_secret params;
1000         struct page **pages;
1001         void *blob, *hdr;
1002         unsigned long n, i;
1003         int ret, offset;
1004
1005         if (!sev_guest(kvm))
1006                 return -ENOTTY;
1007
1008         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1009                 return -EFAULT;
1010
1011         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1012         if (IS_ERR(pages))
1013                 return PTR_ERR(pages);
1014
1015         /*
1016          * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1017          * place; the cache may contain the data that was written unencrypted.
1018          */
1019         sev_clflush_pages(pages, n);
1020
1021         /*
1022          * The secret must be copied into contiguous memory region, lets verify
1023          * that userspace memory pages are contiguous before we issue command.
1024          */
1025         if (get_num_contig_pages(0, pages, n) != n) {
1026                 ret = -EINVAL;
1027                 goto e_unpin_memory;
1028         }
1029
1030         memset(&data, 0, sizeof(data));
1031
1032         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1033         data.guest_address = __sme_page_pa(pages[0]) + offset;
1034         data.guest_len = params.guest_len;
1035
1036         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1037         if (IS_ERR(blob)) {
1038                 ret = PTR_ERR(blob);
1039                 goto e_unpin_memory;
1040         }
1041
1042         data.trans_address = __psp_pa(blob);
1043         data.trans_len = params.trans_len;
1044
1045         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1046         if (IS_ERR(hdr)) {
1047                 ret = PTR_ERR(hdr);
1048                 goto e_free_blob;
1049         }
1050         data.hdr_address = __psp_pa(hdr);
1051         data.hdr_len = params.hdr_len;
1052
1053         data.handle = sev->handle;
1054         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1055
1056         kfree(hdr);
1057
1058 e_free_blob:
1059         kfree(blob);
1060 e_unpin_memory:
1061         /* content of memory is updated, mark pages dirty */
1062         for (i = 0; i < n; i++) {
1063                 set_page_dirty_lock(pages[i]);
1064                 mark_page_accessed(pages[i]);
1065         }
1066         sev_unpin_memory(kvm, pages, n);
1067         return ret;
1068 }
1069
1070 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1071 {
1072         void __user *report = (void __user *)(uintptr_t)argp->data;
1073         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1074         struct sev_data_attestation_report data;
1075         struct kvm_sev_attestation_report params;
1076         void __user *p;
1077         void *blob = NULL;
1078         int ret;
1079
1080         if (!sev_guest(kvm))
1081                 return -ENOTTY;
1082
1083         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1084                 return -EFAULT;
1085
1086         memset(&data, 0, sizeof(data));
1087
1088         /* User wants to query the blob length */
1089         if (!params.len)
1090                 goto cmd;
1091
1092         p = (void __user *)(uintptr_t)params.uaddr;
1093         if (p) {
1094                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1095                         return -EINVAL;
1096
1097                 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1098                 if (!blob)
1099                         return -ENOMEM;
1100
1101                 data.address = __psp_pa(blob);
1102                 data.len = params.len;
1103                 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1104         }
1105 cmd:
1106         data.handle = sev->handle;
1107         ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1108         /*
1109          * If we query the session length, FW responded with expected data.
1110          */
1111         if (!params.len)
1112                 goto done;
1113
1114         if (ret)
1115                 goto e_free_blob;
1116
1117         if (blob) {
1118                 if (copy_to_user(p, blob, params.len))
1119                         ret = -EFAULT;
1120         }
1121
1122 done:
1123         params.len = data.len;
1124         if (copy_to_user(report, &params, sizeof(params)))
1125                 ret = -EFAULT;
1126 e_free_blob:
1127         kfree(blob);
1128         return ret;
1129 }
1130
1131 /* Userspace wants to query session length. */
1132 static int
1133 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1134                                       struct kvm_sev_send_start *params)
1135 {
1136         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1137         struct sev_data_send_start data;
1138         int ret;
1139
1140         memset(&data, 0, sizeof(data));
1141         data.handle = sev->handle;
1142         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1143
1144         params->session_len = data.session_len;
1145         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1146                                 sizeof(struct kvm_sev_send_start)))
1147                 ret = -EFAULT;
1148
1149         return ret;
1150 }
1151
1152 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1153 {
1154         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1155         struct sev_data_send_start data;
1156         struct kvm_sev_send_start params;
1157         void *amd_certs, *session_data;
1158         void *pdh_cert, *plat_certs;
1159         int ret;
1160
1161         if (!sev_guest(kvm))
1162                 return -ENOTTY;
1163
1164         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1165                                 sizeof(struct kvm_sev_send_start)))
1166                 return -EFAULT;
1167
1168         /* if session_len is zero, userspace wants to query the session length */
1169         if (!params.session_len)
1170                 return __sev_send_start_query_session_length(kvm, argp,
1171                                 &params);
1172
1173         /* some sanity checks */
1174         if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1175             !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1176                 return -EINVAL;
1177
1178         /* allocate the memory to hold the session data blob */
1179         session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1180         if (!session_data)
1181                 return -ENOMEM;
1182
1183         /* copy the certificate blobs from userspace */
1184         pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1185                                 params.pdh_cert_len);
1186         if (IS_ERR(pdh_cert)) {
1187                 ret = PTR_ERR(pdh_cert);
1188                 goto e_free_session;
1189         }
1190
1191         plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1192                                 params.plat_certs_len);
1193         if (IS_ERR(plat_certs)) {
1194                 ret = PTR_ERR(plat_certs);
1195                 goto e_free_pdh;
1196         }
1197
1198         amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1199                                 params.amd_certs_len);
1200         if (IS_ERR(amd_certs)) {
1201                 ret = PTR_ERR(amd_certs);
1202                 goto e_free_plat_cert;
1203         }
1204
1205         /* populate the FW SEND_START field with system physical address */
1206         memset(&data, 0, sizeof(data));
1207         data.pdh_cert_address = __psp_pa(pdh_cert);
1208         data.pdh_cert_len = params.pdh_cert_len;
1209         data.plat_certs_address = __psp_pa(plat_certs);
1210         data.plat_certs_len = params.plat_certs_len;
1211         data.amd_certs_address = __psp_pa(amd_certs);
1212         data.amd_certs_len = params.amd_certs_len;
1213         data.session_address = __psp_pa(session_data);
1214         data.session_len = params.session_len;
1215         data.handle = sev->handle;
1216
1217         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1218
1219         if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1220                         session_data, params.session_len)) {
1221                 ret = -EFAULT;
1222                 goto e_free_amd_cert;
1223         }
1224
1225         params.policy = data.policy;
1226         params.session_len = data.session_len;
1227         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1228                                 sizeof(struct kvm_sev_send_start)))
1229                 ret = -EFAULT;
1230
1231 e_free_amd_cert:
1232         kfree(amd_certs);
1233 e_free_plat_cert:
1234         kfree(plat_certs);
1235 e_free_pdh:
1236         kfree(pdh_cert);
1237 e_free_session:
1238         kfree(session_data);
1239         return ret;
1240 }
1241
1242 /* Userspace wants to query either header or trans length. */
1243 static int
1244 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1245                                      struct kvm_sev_send_update_data *params)
1246 {
1247         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1248         struct sev_data_send_update_data data;
1249         int ret;
1250
1251         memset(&data, 0, sizeof(data));
1252         data.handle = sev->handle;
1253         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1254
1255         params->hdr_len = data.hdr_len;
1256         params->trans_len = data.trans_len;
1257
1258         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1259                          sizeof(struct kvm_sev_send_update_data)))
1260                 ret = -EFAULT;
1261
1262         return ret;
1263 }
1264
1265 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1266 {
1267         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1268         struct sev_data_send_update_data data;
1269         struct kvm_sev_send_update_data params;
1270         void *hdr, *trans_data;
1271         struct page **guest_page;
1272         unsigned long n;
1273         int ret, offset;
1274
1275         if (!sev_guest(kvm))
1276                 return -ENOTTY;
1277
1278         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1279                         sizeof(struct kvm_sev_send_update_data)))
1280                 return -EFAULT;
1281
1282         /* userspace wants to query either header or trans length */
1283         if (!params.trans_len || !params.hdr_len)
1284                 return __sev_send_update_data_query_lengths(kvm, argp, &params);
1285
1286         if (!params.trans_uaddr || !params.guest_uaddr ||
1287             !params.guest_len || !params.hdr_uaddr)
1288                 return -EINVAL;
1289
1290         /* Check if we are crossing the page boundary */
1291         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1292         if ((params.guest_len + offset > PAGE_SIZE))
1293                 return -EINVAL;
1294
1295         /* Pin guest memory */
1296         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1297                                     PAGE_SIZE, &n, 0);
1298         if (IS_ERR(guest_page))
1299                 return PTR_ERR(guest_page);
1300
1301         /* allocate memory for header and transport buffer */
1302         ret = -ENOMEM;
1303         hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1304         if (!hdr)
1305                 goto e_unpin;
1306
1307         trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1308         if (!trans_data)
1309                 goto e_free_hdr;
1310
1311         memset(&data, 0, sizeof(data));
1312         data.hdr_address = __psp_pa(hdr);
1313         data.hdr_len = params.hdr_len;
1314         data.trans_address = __psp_pa(trans_data);
1315         data.trans_len = params.trans_len;
1316
1317         /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1318         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1319         data.guest_address |= sev_me_mask;
1320         data.guest_len = params.guest_len;
1321         data.handle = sev->handle;
1322
1323         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1324
1325         if (ret)
1326                 goto e_free_trans_data;
1327
1328         /* copy transport buffer to user space */
1329         if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1330                          trans_data, params.trans_len)) {
1331                 ret = -EFAULT;
1332                 goto e_free_trans_data;
1333         }
1334
1335         /* Copy packet header to userspace. */
1336         if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1337                          params.hdr_len))
1338                 ret = -EFAULT;
1339
1340 e_free_trans_data:
1341         kfree(trans_data);
1342 e_free_hdr:
1343         kfree(hdr);
1344 e_unpin:
1345         sev_unpin_memory(kvm, guest_page, n);
1346
1347         return ret;
1348 }
1349
1350 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1351 {
1352         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1353         struct sev_data_send_finish data;
1354
1355         if (!sev_guest(kvm))
1356                 return -ENOTTY;
1357
1358         data.handle = sev->handle;
1359         return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1360 }
1361
1362 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1363 {
1364         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1365         struct sev_data_send_cancel data;
1366
1367         if (!sev_guest(kvm))
1368                 return -ENOTTY;
1369
1370         data.handle = sev->handle;
1371         return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1372 }
1373
1374 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1375 {
1376         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1377         struct sev_data_receive_start start;
1378         struct kvm_sev_receive_start params;
1379         int *error = &argp->error;
1380         void *session_data;
1381         void *pdh_data;
1382         int ret;
1383
1384         if (!sev_guest(kvm))
1385                 return -ENOTTY;
1386
1387         /* Get parameter from the userspace */
1388         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1389                         sizeof(struct kvm_sev_receive_start)))
1390                 return -EFAULT;
1391
1392         /* some sanity checks */
1393         if (!params.pdh_uaddr || !params.pdh_len ||
1394             !params.session_uaddr || !params.session_len)
1395                 return -EINVAL;
1396
1397         pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1398         if (IS_ERR(pdh_data))
1399                 return PTR_ERR(pdh_data);
1400
1401         session_data = psp_copy_user_blob(params.session_uaddr,
1402                         params.session_len);
1403         if (IS_ERR(session_data)) {
1404                 ret = PTR_ERR(session_data);
1405                 goto e_free_pdh;
1406         }
1407
1408         memset(&start, 0, sizeof(start));
1409         start.handle = params.handle;
1410         start.policy = params.policy;
1411         start.pdh_cert_address = __psp_pa(pdh_data);
1412         start.pdh_cert_len = params.pdh_len;
1413         start.session_address = __psp_pa(session_data);
1414         start.session_len = params.session_len;
1415
1416         /* create memory encryption context */
1417         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1418                                 error);
1419         if (ret)
1420                 goto e_free_session;
1421
1422         /* Bind ASID to this guest */
1423         ret = sev_bind_asid(kvm, start.handle, error);
1424         if (ret) {
1425                 sev_decommission(start.handle);
1426                 goto e_free_session;
1427         }
1428
1429         params.handle = start.handle;
1430         if (copy_to_user((void __user *)(uintptr_t)argp->data,
1431                          &params, sizeof(struct kvm_sev_receive_start))) {
1432                 ret = -EFAULT;
1433                 sev_unbind_asid(kvm, start.handle);
1434                 goto e_free_session;
1435         }
1436
1437         sev->handle = start.handle;
1438         sev->fd = argp->sev_fd;
1439
1440 e_free_session:
1441         kfree(session_data);
1442 e_free_pdh:
1443         kfree(pdh_data);
1444
1445         return ret;
1446 }
1447
1448 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1449 {
1450         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1451         struct kvm_sev_receive_update_data params;
1452         struct sev_data_receive_update_data data;
1453         void *hdr = NULL, *trans = NULL;
1454         struct page **guest_page;
1455         unsigned long n;
1456         int ret, offset;
1457
1458         if (!sev_guest(kvm))
1459                 return -EINVAL;
1460
1461         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1462                         sizeof(struct kvm_sev_receive_update_data)))
1463                 return -EFAULT;
1464
1465         if (!params.hdr_uaddr || !params.hdr_len ||
1466             !params.guest_uaddr || !params.guest_len ||
1467             !params.trans_uaddr || !params.trans_len)
1468                 return -EINVAL;
1469
1470         /* Check if we are crossing the page boundary */
1471         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1472         if ((params.guest_len + offset > PAGE_SIZE))
1473                 return -EINVAL;
1474
1475         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1476         if (IS_ERR(hdr))
1477                 return PTR_ERR(hdr);
1478
1479         trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1480         if (IS_ERR(trans)) {
1481                 ret = PTR_ERR(trans);
1482                 goto e_free_hdr;
1483         }
1484
1485         memset(&data, 0, sizeof(data));
1486         data.hdr_address = __psp_pa(hdr);
1487         data.hdr_len = params.hdr_len;
1488         data.trans_address = __psp_pa(trans);
1489         data.trans_len = params.trans_len;
1490
1491         /* Pin guest memory */
1492         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1493                                     PAGE_SIZE, &n, 1);
1494         if (IS_ERR(guest_page)) {
1495                 ret = PTR_ERR(guest_page);
1496                 goto e_free_trans;
1497         }
1498
1499         /*
1500          * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1501          * encrypts the written data with the guest's key, and the cache may
1502          * contain dirty, unencrypted data.
1503          */
1504         sev_clflush_pages(guest_page, n);
1505
1506         /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1507         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1508         data.guest_address |= sev_me_mask;
1509         data.guest_len = params.guest_len;
1510         data.handle = sev->handle;
1511
1512         ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1513                                 &argp->error);
1514
1515         sev_unpin_memory(kvm, guest_page, n);
1516
1517 e_free_trans:
1518         kfree(trans);
1519 e_free_hdr:
1520         kfree(hdr);
1521
1522         return ret;
1523 }
1524
1525 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1526 {
1527         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1528         struct sev_data_receive_finish data;
1529
1530         if (!sev_guest(kvm))
1531                 return -ENOTTY;
1532
1533         data.handle = sev->handle;
1534         return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1535 }
1536
1537 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1538 {
1539         /*
1540          * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1541          * active mirror VMs. Also allow the debugging and status commands.
1542          */
1543         if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1544             cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1545             cmd_id == KVM_SEV_DBG_ENCRYPT)
1546                 return true;
1547
1548         return false;
1549 }
1550
1551 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1552 {
1553         struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1554         struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1555         int r = -EBUSY;
1556
1557         if (dst_kvm == src_kvm)
1558                 return -EINVAL;
1559
1560         /*
1561          * Bail if these VMs are already involved in a migration to avoid
1562          * deadlock between two VMs trying to migrate to/from each other.
1563          */
1564         if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1565                 return -EBUSY;
1566
1567         if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1568                 goto release_dst;
1569
1570         r = -EINTR;
1571         if (mutex_lock_killable(&dst_kvm->lock))
1572                 goto release_src;
1573         if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1574                 goto unlock_dst;
1575         return 0;
1576
1577 unlock_dst:
1578         mutex_unlock(&dst_kvm->lock);
1579 release_src:
1580         atomic_set_release(&src_sev->migration_in_progress, 0);
1581 release_dst:
1582         atomic_set_release(&dst_sev->migration_in_progress, 0);
1583         return r;
1584 }
1585
1586 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1587 {
1588         struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1589         struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1590
1591         mutex_unlock(&dst_kvm->lock);
1592         mutex_unlock(&src_kvm->lock);
1593         atomic_set_release(&dst_sev->migration_in_progress, 0);
1594         atomic_set_release(&src_sev->migration_in_progress, 0);
1595 }
1596
1597 /* vCPU mutex subclasses.  */
1598 enum sev_migration_role {
1599         SEV_MIGRATION_SOURCE = 0,
1600         SEV_MIGRATION_TARGET,
1601         SEV_NR_MIGRATION_ROLES,
1602 };
1603
1604 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1605                                         enum sev_migration_role role)
1606 {
1607         struct kvm_vcpu *vcpu;
1608         unsigned long i, j;
1609         bool first = true;
1610
1611         kvm_for_each_vcpu(i, vcpu, kvm) {
1612                 if (mutex_lock_killable_nested(&vcpu->mutex, role))
1613                         goto out_unlock;
1614
1615                 if (first) {
1616                         /*
1617                          * Reset the role to one that avoids colliding with
1618                          * the role used for the first vcpu mutex.
1619                          */
1620                         role = SEV_NR_MIGRATION_ROLES;
1621                         first = false;
1622                 } else {
1623                         mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1624                 }
1625         }
1626
1627         return 0;
1628
1629 out_unlock:
1630
1631         first = true;
1632         kvm_for_each_vcpu(j, vcpu, kvm) {
1633                 if (i == j)
1634                         break;
1635
1636                 if (first)
1637                         first = false;
1638                 else
1639                         mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1640
1641
1642                 mutex_unlock(&vcpu->mutex);
1643         }
1644         return -EINTR;
1645 }
1646
1647 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1648 {
1649         struct kvm_vcpu *vcpu;
1650         unsigned long i;
1651         bool first = true;
1652
1653         kvm_for_each_vcpu(i, vcpu, kvm) {
1654                 if (first)
1655                         first = false;
1656                 else
1657                         mutex_acquire(&vcpu->mutex.dep_map,
1658                                       SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1659
1660                 mutex_unlock(&vcpu->mutex);
1661         }
1662 }
1663
1664 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1665 {
1666         struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1667         struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1668         struct kvm_vcpu *dst_vcpu, *src_vcpu;
1669         struct vcpu_svm *dst_svm, *src_svm;
1670         struct kvm_sev_info *mirror;
1671         unsigned long i;
1672
1673         dst->active = true;
1674         dst->asid = src->asid;
1675         dst->handle = src->handle;
1676         dst->pages_locked = src->pages_locked;
1677         dst->enc_context_owner = src->enc_context_owner;
1678         dst->es_active = src->es_active;
1679
1680         src->asid = 0;
1681         src->active = false;
1682         src->handle = 0;
1683         src->pages_locked = 0;
1684         src->enc_context_owner = NULL;
1685         src->es_active = false;
1686
1687         list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1688
1689         /*
1690          * If this VM has mirrors, "transfer" each mirror's refcount of the
1691          * source to the destination (this KVM).  The caller holds a reference
1692          * to the source, so there's no danger of use-after-free.
1693          */
1694         list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1695         list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1696                 kvm_get_kvm(dst_kvm);
1697                 kvm_put_kvm(src_kvm);
1698                 mirror->enc_context_owner = dst_kvm;
1699         }
1700
1701         /*
1702          * If this VM is a mirror, remove the old mirror from the owners list
1703          * and add the new mirror to the list.
1704          */
1705         if (is_mirroring_enc_context(dst_kvm)) {
1706                 struct kvm_sev_info *owner_sev_info =
1707                         &to_kvm_svm(dst->enc_context_owner)->sev_info;
1708
1709                 list_del(&src->mirror_entry);
1710                 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1711         }
1712
1713         kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1714                 dst_svm = to_svm(dst_vcpu);
1715
1716                 sev_init_vmcb(dst_svm);
1717
1718                 if (!dst->es_active)
1719                         continue;
1720
1721                 /*
1722                  * Note, the source is not required to have the same number of
1723                  * vCPUs as the destination when migrating a vanilla SEV VM.
1724                  */
1725                 src_vcpu = kvm_get_vcpu(dst_kvm, i);
1726                 src_svm = to_svm(src_vcpu);
1727
1728                 /*
1729                  * Transfer VMSA and GHCB state to the destination.  Nullify and
1730                  * clear source fields as appropriate, the state now belongs to
1731                  * the destination.
1732                  */
1733                 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1734                 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1735                 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1736                 dst_vcpu->arch.guest_state_protected = true;
1737
1738                 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1739                 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1740                 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1741                 src_vcpu->arch.guest_state_protected = false;
1742         }
1743 }
1744
1745 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1746 {
1747         struct kvm_vcpu *src_vcpu;
1748         unsigned long i;
1749
1750         if (!sev_es_guest(src))
1751                 return 0;
1752
1753         if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1754                 return -EINVAL;
1755
1756         kvm_for_each_vcpu(i, src_vcpu, src) {
1757                 if (!src_vcpu->arch.guest_state_protected)
1758                         return -EINVAL;
1759         }
1760
1761         return 0;
1762 }
1763
1764 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1765 {
1766         struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1767         struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1768         struct file *source_kvm_file;
1769         struct kvm *source_kvm;
1770         bool charged = false;
1771         int ret;
1772
1773         source_kvm_file = fget(source_fd);
1774         if (!file_is_kvm(source_kvm_file)) {
1775                 ret = -EBADF;
1776                 goto out_fput;
1777         }
1778
1779         source_kvm = source_kvm_file->private_data;
1780         ret = sev_lock_two_vms(kvm, source_kvm);
1781         if (ret)
1782                 goto out_fput;
1783
1784         if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1785                 ret = -EINVAL;
1786                 goto out_unlock;
1787         }
1788
1789         src_sev = &to_kvm_svm(source_kvm)->sev_info;
1790
1791         dst_sev->misc_cg = get_current_misc_cg();
1792         cg_cleanup_sev = dst_sev;
1793         if (dst_sev->misc_cg != src_sev->misc_cg) {
1794                 ret = sev_misc_cg_try_charge(dst_sev);
1795                 if (ret)
1796                         goto out_dst_cgroup;
1797                 charged = true;
1798         }
1799
1800         ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1801         if (ret)
1802                 goto out_dst_cgroup;
1803         ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1804         if (ret)
1805                 goto out_dst_vcpu;
1806
1807         ret = sev_check_source_vcpus(kvm, source_kvm);
1808         if (ret)
1809                 goto out_source_vcpu;
1810
1811         sev_migrate_from(kvm, source_kvm);
1812         kvm_vm_dead(source_kvm);
1813         cg_cleanup_sev = src_sev;
1814         ret = 0;
1815
1816 out_source_vcpu:
1817         sev_unlock_vcpus_for_migration(source_kvm);
1818 out_dst_vcpu:
1819         sev_unlock_vcpus_for_migration(kvm);
1820 out_dst_cgroup:
1821         /* Operates on the source on success, on the destination on failure.  */
1822         if (charged)
1823                 sev_misc_cg_uncharge(cg_cleanup_sev);
1824         put_misc_cg(cg_cleanup_sev->misc_cg);
1825         cg_cleanup_sev->misc_cg = NULL;
1826 out_unlock:
1827         sev_unlock_two_vms(kvm, source_kvm);
1828 out_fput:
1829         if (source_kvm_file)
1830                 fput(source_kvm_file);
1831         return ret;
1832 }
1833
1834 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1835 {
1836         struct kvm_sev_cmd sev_cmd;
1837         int r;
1838
1839         if (!sev_enabled)
1840                 return -ENOTTY;
1841
1842         if (!argp)
1843                 return 0;
1844
1845         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1846                 return -EFAULT;
1847
1848         mutex_lock(&kvm->lock);
1849
1850         /* Only the enc_context_owner handles some memory enc operations. */
1851         if (is_mirroring_enc_context(kvm) &&
1852             !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1853                 r = -EINVAL;
1854                 goto out;
1855         }
1856
1857         switch (sev_cmd.id) {
1858         case KVM_SEV_ES_INIT:
1859                 if (!sev_es_enabled) {
1860                         r = -ENOTTY;
1861                         goto out;
1862                 }
1863                 fallthrough;
1864         case KVM_SEV_INIT:
1865                 r = sev_guest_init(kvm, &sev_cmd);
1866                 break;
1867         case KVM_SEV_LAUNCH_START:
1868                 r = sev_launch_start(kvm, &sev_cmd);
1869                 break;
1870         case KVM_SEV_LAUNCH_UPDATE_DATA:
1871                 r = sev_launch_update_data(kvm, &sev_cmd);
1872                 break;
1873         case KVM_SEV_LAUNCH_UPDATE_VMSA:
1874                 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1875                 break;
1876         case KVM_SEV_LAUNCH_MEASURE:
1877                 r = sev_launch_measure(kvm, &sev_cmd);
1878                 break;
1879         case KVM_SEV_LAUNCH_FINISH:
1880                 r = sev_launch_finish(kvm, &sev_cmd);
1881                 break;
1882         case KVM_SEV_GUEST_STATUS:
1883                 r = sev_guest_status(kvm, &sev_cmd);
1884                 break;
1885         case KVM_SEV_DBG_DECRYPT:
1886                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1887                 break;
1888         case KVM_SEV_DBG_ENCRYPT:
1889                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1890                 break;
1891         case KVM_SEV_LAUNCH_SECRET:
1892                 r = sev_launch_secret(kvm, &sev_cmd);
1893                 break;
1894         case KVM_SEV_GET_ATTESTATION_REPORT:
1895                 r = sev_get_attestation_report(kvm, &sev_cmd);
1896                 break;
1897         case KVM_SEV_SEND_START:
1898                 r = sev_send_start(kvm, &sev_cmd);
1899                 break;
1900         case KVM_SEV_SEND_UPDATE_DATA:
1901                 r = sev_send_update_data(kvm, &sev_cmd);
1902                 break;
1903         case KVM_SEV_SEND_FINISH:
1904                 r = sev_send_finish(kvm, &sev_cmd);
1905                 break;
1906         case KVM_SEV_SEND_CANCEL:
1907                 r = sev_send_cancel(kvm, &sev_cmd);
1908                 break;
1909         case KVM_SEV_RECEIVE_START:
1910                 r = sev_receive_start(kvm, &sev_cmd);
1911                 break;
1912         case KVM_SEV_RECEIVE_UPDATE_DATA:
1913                 r = sev_receive_update_data(kvm, &sev_cmd);
1914                 break;
1915         case KVM_SEV_RECEIVE_FINISH:
1916                 r = sev_receive_finish(kvm, &sev_cmd);
1917                 break;
1918         default:
1919                 r = -EINVAL;
1920                 goto out;
1921         }
1922
1923         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1924                 r = -EFAULT;
1925
1926 out:
1927         mutex_unlock(&kvm->lock);
1928         return r;
1929 }
1930
1931 int sev_mem_enc_register_region(struct kvm *kvm,
1932                                 struct kvm_enc_region *range)
1933 {
1934         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1935         struct enc_region *region;
1936         int ret = 0;
1937
1938         if (!sev_guest(kvm))
1939                 return -ENOTTY;
1940
1941         /* If kvm is mirroring encryption context it isn't responsible for it */
1942         if (is_mirroring_enc_context(kvm))
1943                 return -EINVAL;
1944
1945         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1946                 return -EINVAL;
1947
1948         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1949         if (!region)
1950                 return -ENOMEM;
1951
1952         mutex_lock(&kvm->lock);
1953         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1954         if (IS_ERR(region->pages)) {
1955                 ret = PTR_ERR(region->pages);
1956                 mutex_unlock(&kvm->lock);
1957                 goto e_free;
1958         }
1959
1960         region->uaddr = range->addr;
1961         region->size = range->size;
1962
1963         list_add_tail(&region->list, &sev->regions_list);
1964         mutex_unlock(&kvm->lock);
1965
1966         /*
1967          * The guest may change the memory encryption attribute from C=0 -> C=1
1968          * or vice versa for this memory range. Lets make sure caches are
1969          * flushed to ensure that guest data gets written into memory with
1970          * correct C-bit.
1971          */
1972         sev_clflush_pages(region->pages, region->npages);
1973
1974         return ret;
1975
1976 e_free:
1977         kfree(region);
1978         return ret;
1979 }
1980
1981 static struct enc_region *
1982 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1983 {
1984         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1985         struct list_head *head = &sev->regions_list;
1986         struct enc_region *i;
1987
1988         list_for_each_entry(i, head, list) {
1989                 if (i->uaddr == range->addr &&
1990                     i->size == range->size)
1991                         return i;
1992         }
1993
1994         return NULL;
1995 }
1996
1997 static void __unregister_enc_region_locked(struct kvm *kvm,
1998                                            struct enc_region *region)
1999 {
2000         sev_unpin_memory(kvm, region->pages, region->npages);
2001         list_del(&region->list);
2002         kfree(region);
2003 }
2004
2005 int sev_mem_enc_unregister_region(struct kvm *kvm,
2006                                   struct kvm_enc_region *range)
2007 {
2008         struct enc_region *region;
2009         int ret;
2010
2011         /* If kvm is mirroring encryption context it isn't responsible for it */
2012         if (is_mirroring_enc_context(kvm))
2013                 return -EINVAL;
2014
2015         mutex_lock(&kvm->lock);
2016
2017         if (!sev_guest(kvm)) {
2018                 ret = -ENOTTY;
2019                 goto failed;
2020         }
2021
2022         region = find_enc_region(kvm, range);
2023         if (!region) {
2024                 ret = -EINVAL;
2025                 goto failed;
2026         }
2027
2028         /*
2029          * Ensure that all guest tagged cache entries are flushed before
2030          * releasing the pages back to the system for use. CLFLUSH will
2031          * not do this, so issue a WBINVD.
2032          */
2033         wbinvd_on_all_cpus();
2034
2035         __unregister_enc_region_locked(kvm, region);
2036
2037         mutex_unlock(&kvm->lock);
2038         return 0;
2039
2040 failed:
2041         mutex_unlock(&kvm->lock);
2042         return ret;
2043 }
2044
2045 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2046 {
2047         struct file *source_kvm_file;
2048         struct kvm *source_kvm;
2049         struct kvm_sev_info *source_sev, *mirror_sev;
2050         int ret;
2051
2052         source_kvm_file = fget(source_fd);
2053         if (!file_is_kvm(source_kvm_file)) {
2054                 ret = -EBADF;
2055                 goto e_source_fput;
2056         }
2057
2058         source_kvm = source_kvm_file->private_data;
2059         ret = sev_lock_two_vms(kvm, source_kvm);
2060         if (ret)
2061                 goto e_source_fput;
2062
2063         /*
2064          * Mirrors of mirrors should work, but let's not get silly.  Also
2065          * disallow out-of-band SEV/SEV-ES init if the target is already an
2066          * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2067          * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2068          */
2069         if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2070             is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2071                 ret = -EINVAL;
2072                 goto e_unlock;
2073         }
2074
2075         /*
2076          * The mirror kvm holds an enc_context_owner ref so its asid can't
2077          * disappear until we're done with it
2078          */
2079         source_sev = &to_kvm_svm(source_kvm)->sev_info;
2080         kvm_get_kvm(source_kvm);
2081         mirror_sev = &to_kvm_svm(kvm)->sev_info;
2082         list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2083
2084         /* Set enc_context_owner and copy its encryption context over */
2085         mirror_sev->enc_context_owner = source_kvm;
2086         mirror_sev->active = true;
2087         mirror_sev->asid = source_sev->asid;
2088         mirror_sev->fd = source_sev->fd;
2089         mirror_sev->es_active = source_sev->es_active;
2090         mirror_sev->handle = source_sev->handle;
2091         INIT_LIST_HEAD(&mirror_sev->regions_list);
2092         INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2093         ret = 0;
2094
2095         /*
2096          * Do not copy ap_jump_table. Since the mirror does not share the same
2097          * KVM contexts as the original, and they may have different
2098          * memory-views.
2099          */
2100
2101 e_unlock:
2102         sev_unlock_two_vms(kvm, source_kvm);
2103 e_source_fput:
2104         if (source_kvm_file)
2105                 fput(source_kvm_file);
2106         return ret;
2107 }
2108
2109 void sev_vm_destroy(struct kvm *kvm)
2110 {
2111         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2112         struct list_head *head = &sev->regions_list;
2113         struct list_head *pos, *q;
2114
2115         if (!sev_guest(kvm))
2116                 return;
2117
2118         WARN_ON(!list_empty(&sev->mirror_vms));
2119
2120         /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2121         if (is_mirroring_enc_context(kvm)) {
2122                 struct kvm *owner_kvm = sev->enc_context_owner;
2123
2124                 mutex_lock(&owner_kvm->lock);
2125                 list_del(&sev->mirror_entry);
2126                 mutex_unlock(&owner_kvm->lock);
2127                 kvm_put_kvm(owner_kvm);
2128                 return;
2129         }
2130
2131         /*
2132          * Ensure that all guest tagged cache entries are flushed before
2133          * releasing the pages back to the system for use. CLFLUSH will
2134          * not do this, so issue a WBINVD.
2135          */
2136         wbinvd_on_all_cpus();
2137
2138         /*
2139          * if userspace was terminated before unregistering the memory regions
2140          * then lets unpin all the registered memory.
2141          */
2142         if (!list_empty(head)) {
2143                 list_for_each_safe(pos, q, head) {
2144                         __unregister_enc_region_locked(kvm,
2145                                 list_entry(pos, struct enc_region, list));
2146                         cond_resched();
2147                 }
2148         }
2149
2150         sev_unbind_asid(kvm, sev->handle);
2151         sev_asid_free(sev);
2152 }
2153
2154 void __init sev_set_cpu_caps(void)
2155 {
2156         if (!sev_enabled)
2157                 kvm_cpu_cap_clear(X86_FEATURE_SEV);
2158         if (!sev_es_enabled)
2159                 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2160 }
2161
2162 void __init sev_hardware_setup(void)
2163 {
2164 #ifdef CONFIG_KVM_AMD_SEV
2165         unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2166         bool sev_es_supported = false;
2167         bool sev_supported = false;
2168
2169         if (!sev_enabled || !npt_enabled)
2170                 goto out;
2171
2172         /*
2173          * SEV must obviously be supported in hardware.  Sanity check that the
2174          * CPU supports decode assists, which is mandatory for SEV guests to
2175          * support instruction emulation.
2176          */
2177         if (!boot_cpu_has(X86_FEATURE_SEV) ||
2178             WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2179                 goto out;
2180
2181         /* Retrieve SEV CPUID information */
2182         cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2183
2184         /* Set encryption bit location for SEV-ES guests */
2185         sev_enc_bit = ebx & 0x3f;
2186
2187         /* Maximum number of encrypted guests supported simultaneously */
2188         max_sev_asid = ecx;
2189         if (!max_sev_asid)
2190                 goto out;
2191
2192         /* Minimum ASID value that should be used for SEV guest */
2193         min_sev_asid = edx;
2194         sev_me_mask = 1UL << (ebx & 0x3f);
2195
2196         /*
2197          * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2198          * even though it's never used, so that the bitmap is indexed by the
2199          * actual ASID.
2200          */
2201         nr_asids = max_sev_asid + 1;
2202         sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2203         if (!sev_asid_bitmap)
2204                 goto out;
2205
2206         sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2207         if (!sev_reclaim_asid_bitmap) {
2208                 bitmap_free(sev_asid_bitmap);
2209                 sev_asid_bitmap = NULL;
2210                 goto out;
2211         }
2212
2213         sev_asid_count = max_sev_asid - min_sev_asid + 1;
2214         if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
2215                 goto out;
2216
2217         pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
2218         sev_supported = true;
2219
2220         /* SEV-ES support requested? */
2221         if (!sev_es_enabled)
2222                 goto out;
2223
2224         /* Does the CPU support SEV-ES? */
2225         if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2226                 goto out;
2227
2228         /* Has the system been allocated ASIDs for SEV-ES? */
2229         if (min_sev_asid == 1)
2230                 goto out;
2231
2232         sev_es_asid_count = min_sev_asid - 1;
2233         if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
2234                 goto out;
2235
2236         pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
2237         sev_es_supported = true;
2238
2239 out:
2240         sev_enabled = sev_supported;
2241         sev_es_enabled = sev_es_supported;
2242 #endif
2243 }
2244
2245 void sev_hardware_unsetup(void)
2246 {
2247         if (!sev_enabled)
2248                 return;
2249
2250         /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2251         sev_flush_asids(1, max_sev_asid);
2252
2253         bitmap_free(sev_asid_bitmap);
2254         bitmap_free(sev_reclaim_asid_bitmap);
2255
2256         misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2257         misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2258 }
2259
2260 int sev_cpu_init(struct svm_cpu_data *sd)
2261 {
2262         if (!sev_enabled)
2263                 return 0;
2264
2265         sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2266         if (!sd->sev_vmcbs)
2267                 return -ENOMEM;
2268
2269         return 0;
2270 }
2271
2272 /*
2273  * Pages used by hardware to hold guest encrypted state must be flushed before
2274  * returning them to the system.
2275  */
2276 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2277 {
2278         int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2279
2280         /*
2281          * Note!  The address must be a kernel address, as regular page walk
2282          * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2283          * address is non-deterministic and unsafe.  This function deliberately
2284          * takes a pointer to deter passing in a user address.
2285          */
2286         unsigned long addr = (unsigned long)va;
2287
2288         /*
2289          * If CPU enforced cache coherency for encrypted mappings of the
2290          * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2291          * flush is still needed in order to work properly with DMA devices.
2292          */
2293         if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2294                 clflush_cache_range(va, PAGE_SIZE);
2295                 return;
2296         }
2297
2298         /*
2299          * VM Page Flush takes a host virtual address and a guest ASID.  Fall
2300          * back to WBINVD if this faults so as not to make any problems worse
2301          * by leaving stale encrypted data in the cache.
2302          */
2303         if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2304                 goto do_wbinvd;
2305
2306         return;
2307
2308 do_wbinvd:
2309         wbinvd_on_all_cpus();
2310 }
2311
2312 void sev_guest_memory_reclaimed(struct kvm *kvm)
2313 {
2314         if (!sev_guest(kvm))
2315                 return;
2316
2317         wbinvd_on_all_cpus();
2318 }
2319
2320 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2321 {
2322         struct vcpu_svm *svm;
2323
2324         if (!sev_es_guest(vcpu->kvm))
2325                 return;
2326
2327         svm = to_svm(vcpu);
2328
2329         if (vcpu->arch.guest_state_protected)
2330                 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2331
2332         __free_page(virt_to_page(svm->sev_es.vmsa));
2333
2334         if (svm->sev_es.ghcb_sa_free)
2335                 kvfree(svm->sev_es.ghcb_sa);
2336 }
2337
2338 static void dump_ghcb(struct vcpu_svm *svm)
2339 {
2340         struct ghcb *ghcb = svm->sev_es.ghcb;
2341         unsigned int nbits;
2342
2343         /* Re-use the dump_invalid_vmcb module parameter */
2344         if (!dump_invalid_vmcb) {
2345                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2346                 return;
2347         }
2348
2349         nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2350
2351         pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2352         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2353                ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2354         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2355                ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2356         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2357                ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2358         pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2359                ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2360         pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2361 }
2362
2363 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2364 {
2365         struct kvm_vcpu *vcpu = &svm->vcpu;
2366         struct ghcb *ghcb = svm->sev_es.ghcb;
2367
2368         /*
2369          * The GHCB protocol so far allows for the following data
2370          * to be returned:
2371          *   GPRs RAX, RBX, RCX, RDX
2372          *
2373          * Copy their values, even if they may not have been written during the
2374          * VM-Exit.  It's the guest's responsibility to not consume random data.
2375          */
2376         ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2377         ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2378         ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2379         ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2380 }
2381
2382 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2383 {
2384         struct vmcb_control_area *control = &svm->vmcb->control;
2385         struct kvm_vcpu *vcpu = &svm->vcpu;
2386         struct ghcb *ghcb = svm->sev_es.ghcb;
2387         u64 exit_code;
2388
2389         /*
2390          * The GHCB protocol so far allows for the following data
2391          * to be supplied:
2392          *   GPRs RAX, RBX, RCX, RDX
2393          *   XCR0
2394          *   CPL
2395          *
2396          * VMMCALL allows the guest to provide extra registers. KVM also
2397          * expects RSI for hypercalls, so include that, too.
2398          *
2399          * Copy their values to the appropriate location if supplied.
2400          */
2401         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2402
2403         vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2404         vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2405         vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2406         vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2407         vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2408
2409         svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2410
2411         if (ghcb_xcr0_is_valid(ghcb)) {
2412                 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2413                 kvm_update_cpuid_runtime(vcpu);
2414         }
2415
2416         /* Copy the GHCB exit information into the VMCB fields */
2417         exit_code = ghcb_get_sw_exit_code(ghcb);
2418         control->exit_code = lower_32_bits(exit_code);
2419         control->exit_code_hi = upper_32_bits(exit_code);
2420         control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2421         control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2422
2423         /* Clear the valid entries fields */
2424         memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2425 }
2426
2427 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2428 {
2429         struct kvm_vcpu *vcpu;
2430         struct ghcb *ghcb;
2431         u64 exit_code;
2432         u64 reason;
2433
2434         ghcb = svm->sev_es.ghcb;
2435
2436         /*
2437          * Retrieve the exit code now even though it may not be marked valid
2438          * as it could help with debugging.
2439          */
2440         exit_code = ghcb_get_sw_exit_code(ghcb);
2441
2442         /* Only GHCB Usage code 0 is supported */
2443         if (ghcb->ghcb_usage) {
2444                 reason = GHCB_ERR_INVALID_USAGE;
2445                 goto vmgexit_err;
2446         }
2447
2448         reason = GHCB_ERR_MISSING_INPUT;
2449
2450         if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2451             !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2452             !ghcb_sw_exit_info_2_is_valid(ghcb))
2453                 goto vmgexit_err;
2454
2455         switch (ghcb_get_sw_exit_code(ghcb)) {
2456         case SVM_EXIT_READ_DR7:
2457                 break;
2458         case SVM_EXIT_WRITE_DR7:
2459                 if (!ghcb_rax_is_valid(ghcb))
2460                         goto vmgexit_err;
2461                 break;
2462         case SVM_EXIT_RDTSC:
2463                 break;
2464         case SVM_EXIT_RDPMC:
2465                 if (!ghcb_rcx_is_valid(ghcb))
2466                         goto vmgexit_err;
2467                 break;
2468         case SVM_EXIT_CPUID:
2469                 if (!ghcb_rax_is_valid(ghcb) ||
2470                     !ghcb_rcx_is_valid(ghcb))
2471                         goto vmgexit_err;
2472                 if (ghcb_get_rax(ghcb) == 0xd)
2473                         if (!ghcb_xcr0_is_valid(ghcb))
2474                                 goto vmgexit_err;
2475                 break;
2476         case SVM_EXIT_INVD:
2477                 break;
2478         case SVM_EXIT_IOIO:
2479                 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2480                         if (!ghcb_sw_scratch_is_valid(ghcb))
2481                                 goto vmgexit_err;
2482                 } else {
2483                         if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2484                                 if (!ghcb_rax_is_valid(ghcb))
2485                                         goto vmgexit_err;
2486                 }
2487                 break;
2488         case SVM_EXIT_MSR:
2489                 if (!ghcb_rcx_is_valid(ghcb))
2490                         goto vmgexit_err;
2491                 if (ghcb_get_sw_exit_info_1(ghcb)) {
2492                         if (!ghcb_rax_is_valid(ghcb) ||
2493                             !ghcb_rdx_is_valid(ghcb))
2494                                 goto vmgexit_err;
2495                 }
2496                 break;
2497         case SVM_EXIT_VMMCALL:
2498                 if (!ghcb_rax_is_valid(ghcb) ||
2499                     !ghcb_cpl_is_valid(ghcb))
2500                         goto vmgexit_err;
2501                 break;
2502         case SVM_EXIT_RDTSCP:
2503                 break;
2504         case SVM_EXIT_WBINVD:
2505                 break;
2506         case SVM_EXIT_MONITOR:
2507                 if (!ghcb_rax_is_valid(ghcb) ||
2508                     !ghcb_rcx_is_valid(ghcb) ||
2509                     !ghcb_rdx_is_valid(ghcb))
2510                         goto vmgexit_err;
2511                 break;
2512         case SVM_EXIT_MWAIT:
2513                 if (!ghcb_rax_is_valid(ghcb) ||
2514                     !ghcb_rcx_is_valid(ghcb))
2515                         goto vmgexit_err;
2516                 break;
2517         case SVM_VMGEXIT_MMIO_READ:
2518         case SVM_VMGEXIT_MMIO_WRITE:
2519                 if (!ghcb_sw_scratch_is_valid(ghcb))
2520                         goto vmgexit_err;
2521                 break;
2522         case SVM_VMGEXIT_NMI_COMPLETE:
2523         case SVM_VMGEXIT_AP_HLT_LOOP:
2524         case SVM_VMGEXIT_AP_JUMP_TABLE:
2525         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2526                 break;
2527         default:
2528                 reason = GHCB_ERR_INVALID_EVENT;
2529                 goto vmgexit_err;
2530         }
2531
2532         return 0;
2533
2534 vmgexit_err:
2535         vcpu = &svm->vcpu;
2536
2537         if (reason == GHCB_ERR_INVALID_USAGE) {
2538                 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2539                             ghcb->ghcb_usage);
2540         } else if (reason == GHCB_ERR_INVALID_EVENT) {
2541                 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2542                             exit_code);
2543         } else {
2544                 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2545                             exit_code);
2546                 dump_ghcb(svm);
2547         }
2548
2549         /* Clear the valid entries fields */
2550         memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2551
2552         ghcb_set_sw_exit_info_1(ghcb, 2);
2553         ghcb_set_sw_exit_info_2(ghcb, reason);
2554
2555         /* Resume the guest to "return" the error code. */
2556         return 1;
2557 }
2558
2559 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2560 {
2561         if (!svm->sev_es.ghcb)
2562                 return;
2563
2564         if (svm->sev_es.ghcb_sa_free) {
2565                 /*
2566                  * The scratch area lives outside the GHCB, so there is a
2567                  * buffer that, depending on the operation performed, may
2568                  * need to be synced, then freed.
2569                  */
2570                 if (svm->sev_es.ghcb_sa_sync) {
2571                         kvm_write_guest(svm->vcpu.kvm,
2572                                         ghcb_get_sw_scratch(svm->sev_es.ghcb),
2573                                         svm->sev_es.ghcb_sa,
2574                                         svm->sev_es.ghcb_sa_len);
2575                         svm->sev_es.ghcb_sa_sync = false;
2576                 }
2577
2578                 kvfree(svm->sev_es.ghcb_sa);
2579                 svm->sev_es.ghcb_sa = NULL;
2580                 svm->sev_es.ghcb_sa_free = false;
2581         }
2582
2583         trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2584
2585         sev_es_sync_to_ghcb(svm);
2586
2587         kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2588         svm->sev_es.ghcb = NULL;
2589 }
2590
2591 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2592 {
2593         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2594         int asid = sev_get_asid(svm->vcpu.kvm);
2595
2596         /* Assign the asid allocated with this SEV guest */
2597         svm->asid = asid;
2598
2599         /*
2600          * Flush guest TLB:
2601          *
2602          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2603          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2604          */
2605         if (sd->sev_vmcbs[asid] == svm->vmcb &&
2606             svm->vcpu.arch.last_vmentry_cpu == cpu)
2607                 return;
2608
2609         sd->sev_vmcbs[asid] = svm->vmcb;
2610         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2611         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2612 }
2613
2614 #define GHCB_SCRATCH_AREA_LIMIT         (16ULL * PAGE_SIZE)
2615 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2616 {
2617         struct vmcb_control_area *control = &svm->vmcb->control;
2618         struct ghcb *ghcb = svm->sev_es.ghcb;
2619         u64 ghcb_scratch_beg, ghcb_scratch_end;
2620         u64 scratch_gpa_beg, scratch_gpa_end;
2621         void *scratch_va;
2622
2623         scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2624         if (!scratch_gpa_beg) {
2625                 pr_err("vmgexit: scratch gpa not provided\n");
2626                 goto e_scratch;
2627         }
2628
2629         scratch_gpa_end = scratch_gpa_beg + len;
2630         if (scratch_gpa_end < scratch_gpa_beg) {
2631                 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2632                        len, scratch_gpa_beg);
2633                 goto e_scratch;
2634         }
2635
2636         if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2637                 /* Scratch area begins within GHCB */
2638                 ghcb_scratch_beg = control->ghcb_gpa +
2639                                    offsetof(struct ghcb, shared_buffer);
2640                 ghcb_scratch_end = control->ghcb_gpa +
2641                                    offsetof(struct ghcb, reserved_1);
2642
2643                 /*
2644                  * If the scratch area begins within the GHCB, it must be
2645                  * completely contained in the GHCB shared buffer area.
2646                  */
2647                 if (scratch_gpa_beg < ghcb_scratch_beg ||
2648                     scratch_gpa_end > ghcb_scratch_end) {
2649                         pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2650                                scratch_gpa_beg, scratch_gpa_end);
2651                         goto e_scratch;
2652                 }
2653
2654                 scratch_va = (void *)svm->sev_es.ghcb;
2655                 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2656         } else {
2657                 /*
2658                  * The guest memory must be read into a kernel buffer, so
2659                  * limit the size
2660                  */
2661                 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2662                         pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2663                                len, GHCB_SCRATCH_AREA_LIMIT);
2664                         goto e_scratch;
2665                 }
2666                 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2667                 if (!scratch_va)
2668                         return -ENOMEM;
2669
2670                 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2671                         /* Unable to copy scratch area from guest */
2672                         pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2673
2674                         kvfree(scratch_va);
2675                         return -EFAULT;
2676                 }
2677
2678                 /*
2679                  * The scratch area is outside the GHCB. The operation will
2680                  * dictate whether the buffer needs to be synced before running
2681                  * the vCPU next time (i.e. a read was requested so the data
2682                  * must be written back to the guest memory).
2683                  */
2684                 svm->sev_es.ghcb_sa_sync = sync;
2685                 svm->sev_es.ghcb_sa_free = true;
2686         }
2687
2688         svm->sev_es.ghcb_sa = scratch_va;
2689         svm->sev_es.ghcb_sa_len = len;
2690
2691         return 0;
2692
2693 e_scratch:
2694         ghcb_set_sw_exit_info_1(ghcb, 2);
2695         ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2696
2697         return 1;
2698 }
2699
2700 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2701                               unsigned int pos)
2702 {
2703         svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2704         svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2705 }
2706
2707 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2708 {
2709         return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2710 }
2711
2712 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2713 {
2714         svm->vmcb->control.ghcb_gpa = value;
2715 }
2716
2717 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2718 {
2719         struct vmcb_control_area *control = &svm->vmcb->control;
2720         struct kvm_vcpu *vcpu = &svm->vcpu;
2721         u64 ghcb_info;
2722         int ret = 1;
2723
2724         ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2725
2726         trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2727                                              control->ghcb_gpa);
2728
2729         switch (ghcb_info) {
2730         case GHCB_MSR_SEV_INFO_REQ:
2731                 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2732                                                     GHCB_VERSION_MIN,
2733                                                     sev_enc_bit));
2734                 break;
2735         case GHCB_MSR_CPUID_REQ: {
2736                 u64 cpuid_fn, cpuid_reg, cpuid_value;
2737
2738                 cpuid_fn = get_ghcb_msr_bits(svm,
2739                                              GHCB_MSR_CPUID_FUNC_MASK,
2740                                              GHCB_MSR_CPUID_FUNC_POS);
2741
2742                 /* Initialize the registers needed by the CPUID intercept */
2743                 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2744                 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2745
2746                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2747                 if (!ret) {
2748                         /* Error, keep GHCB MSR value as-is */
2749                         break;
2750                 }
2751
2752                 cpuid_reg = get_ghcb_msr_bits(svm,
2753                                               GHCB_MSR_CPUID_REG_MASK,
2754                                               GHCB_MSR_CPUID_REG_POS);
2755                 if (cpuid_reg == 0)
2756                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2757                 else if (cpuid_reg == 1)
2758                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2759                 else if (cpuid_reg == 2)
2760                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2761                 else
2762                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2763
2764                 set_ghcb_msr_bits(svm, cpuid_value,
2765                                   GHCB_MSR_CPUID_VALUE_MASK,
2766                                   GHCB_MSR_CPUID_VALUE_POS);
2767
2768                 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2769                                   GHCB_MSR_INFO_MASK,
2770                                   GHCB_MSR_INFO_POS);
2771                 break;
2772         }
2773         case GHCB_MSR_TERM_REQ: {
2774                 u64 reason_set, reason_code;
2775
2776                 reason_set = get_ghcb_msr_bits(svm,
2777                                                GHCB_MSR_TERM_REASON_SET_MASK,
2778                                                GHCB_MSR_TERM_REASON_SET_POS);
2779                 reason_code = get_ghcb_msr_bits(svm,
2780                                                 GHCB_MSR_TERM_REASON_MASK,
2781                                                 GHCB_MSR_TERM_REASON_POS);
2782                 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2783                         reason_set, reason_code);
2784
2785                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2786                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2787                 vcpu->run->system_event.ndata = 1;
2788                 vcpu->run->system_event.data[0] = control->ghcb_gpa;
2789
2790                 return 0;
2791         }
2792         default:
2793                 /* Error, keep GHCB MSR value as-is */
2794                 break;
2795         }
2796
2797         trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2798                                             control->ghcb_gpa, ret);
2799
2800         return ret;
2801 }
2802
2803 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2804 {
2805         struct vcpu_svm *svm = to_svm(vcpu);
2806         struct vmcb_control_area *control = &svm->vmcb->control;
2807         u64 ghcb_gpa, exit_code;
2808         struct ghcb *ghcb;
2809         int ret;
2810
2811         /* Validate the GHCB */
2812         ghcb_gpa = control->ghcb_gpa;
2813         if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2814                 return sev_handle_vmgexit_msr_protocol(svm);
2815
2816         if (!ghcb_gpa) {
2817                 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2818
2819                 /* Without a GHCB, just return right back to the guest */
2820                 return 1;
2821         }
2822
2823         if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2824                 /* Unable to map GHCB from guest */
2825                 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2826                             ghcb_gpa);
2827
2828                 /* Without a GHCB, just return right back to the guest */
2829                 return 1;
2830         }
2831
2832         svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2833         ghcb = svm->sev_es.ghcb_map.hva;
2834
2835         trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2836
2837         exit_code = ghcb_get_sw_exit_code(ghcb);
2838
2839         ret = sev_es_validate_vmgexit(svm);
2840         if (ret)
2841                 return ret;
2842
2843         sev_es_sync_from_ghcb(svm);
2844         ghcb_set_sw_exit_info_1(ghcb, 0);
2845         ghcb_set_sw_exit_info_2(ghcb, 0);
2846
2847         switch (exit_code) {
2848         case SVM_VMGEXIT_MMIO_READ:
2849                 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2850                 if (ret)
2851                         break;
2852
2853                 ret = kvm_sev_es_mmio_read(vcpu,
2854                                            control->exit_info_1,
2855                                            control->exit_info_2,
2856                                            svm->sev_es.ghcb_sa);
2857                 break;
2858         case SVM_VMGEXIT_MMIO_WRITE:
2859                 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2860                 if (ret)
2861                         break;
2862
2863                 ret = kvm_sev_es_mmio_write(vcpu,
2864                                             control->exit_info_1,
2865                                             control->exit_info_2,
2866                                             svm->sev_es.ghcb_sa);
2867                 break;
2868         case SVM_VMGEXIT_NMI_COMPLETE:
2869                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2870                 break;
2871         case SVM_VMGEXIT_AP_HLT_LOOP:
2872                 ret = kvm_emulate_ap_reset_hold(vcpu);
2873                 break;
2874         case SVM_VMGEXIT_AP_JUMP_TABLE: {
2875                 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2876
2877                 switch (control->exit_info_1) {
2878                 case 0:
2879                         /* Set AP jump table address */
2880                         sev->ap_jump_table = control->exit_info_2;
2881                         break;
2882                 case 1:
2883                         /* Get AP jump table address */
2884                         ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2885                         break;
2886                 default:
2887                         pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2888                                control->exit_info_1);
2889                         ghcb_set_sw_exit_info_1(ghcb, 2);
2890                         ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT);
2891                 }
2892
2893                 ret = 1;
2894                 break;
2895         }
2896         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2897                 vcpu_unimpl(vcpu,
2898                             "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2899                             control->exit_info_1, control->exit_info_2);
2900                 ret = -EINVAL;
2901                 break;
2902         default:
2903                 ret = svm_invoke_exit_handler(vcpu, exit_code);
2904         }
2905
2906         return ret;
2907 }
2908
2909 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2910 {
2911         int count;
2912         int bytes;
2913         int r;
2914
2915         if (svm->vmcb->control.exit_info_2 > INT_MAX)
2916                 return -EINVAL;
2917
2918         count = svm->vmcb->control.exit_info_2;
2919         if (unlikely(check_mul_overflow(count, size, &bytes)))
2920                 return -EINVAL;
2921
2922         r = setup_vmgexit_scratch(svm, in, bytes);
2923         if (r)
2924                 return r;
2925
2926         return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2927                                     count, in);
2928 }
2929
2930 static void sev_es_init_vmcb(struct vcpu_svm *svm)
2931 {
2932         struct kvm_vcpu *vcpu = &svm->vcpu;
2933
2934         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2935         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2936
2937         /*
2938          * An SEV-ES guest requires a VMSA area that is a separate from the
2939          * VMCB page. Do not include the encryption mask on the VMSA physical
2940          * address since hardware will access it using the guest key.
2941          */
2942         svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
2943
2944         /* Can't intercept CR register access, HV can't modify CR registers */
2945         svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2946         svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2947         svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2948         svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2949         svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2950         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2951
2952         svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2953
2954         /* Track EFER/CR register changes */
2955         svm_set_intercept(svm, TRAP_EFER_WRITE);
2956         svm_set_intercept(svm, TRAP_CR0_WRITE);
2957         svm_set_intercept(svm, TRAP_CR4_WRITE);
2958         svm_set_intercept(svm, TRAP_CR8_WRITE);
2959
2960         /* No support for enable_vmware_backdoor */
2961         clr_exception_intercept(svm, GP_VECTOR);
2962
2963         /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2964         svm_clr_intercept(svm, INTERCEPT_XSETBV);
2965
2966         /* Clear intercepts on selected MSRs */
2967         set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2968         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2969         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2970         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2971         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2972         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2973
2974         if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) &&
2975             (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP) ||
2976              guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDPID))) {
2977                 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, 1, 1);
2978                 if (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP))
2979                         svm_clr_intercept(svm, INTERCEPT_RDTSCP);
2980         }
2981 }
2982
2983 void sev_init_vmcb(struct vcpu_svm *svm)
2984 {
2985         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
2986         clr_exception_intercept(svm, UD_VECTOR);
2987
2988         if (sev_es_guest(svm->vcpu.kvm))
2989                 sev_es_init_vmcb(svm);
2990 }
2991
2992 void sev_es_vcpu_reset(struct vcpu_svm *svm)
2993 {
2994         /*
2995          * Set the GHCB MSR value as per the GHCB specification when emulating
2996          * vCPU RESET for an SEV-ES guest.
2997          */
2998         set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2999                                             GHCB_VERSION_MIN,
3000                                             sev_enc_bit));
3001 }
3002
3003 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3004 {
3005         /*
3006          * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
3007          * of which one step is to perform a VMLOAD.  KVM performs the
3008          * corresponding VMSAVE in svm_prepare_guest_switch for both
3009          * traditional and SEV-ES guests.
3010          */
3011
3012         /* XCR0 is restored on VMEXIT, save the current host value */
3013         hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3014
3015         /* PKRU is restored on VMEXIT, save the current host value */
3016         hostsa->pkru = read_pkru();
3017
3018         /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
3019         hostsa->xss = host_xss;
3020 }
3021
3022 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3023 {
3024         struct vcpu_svm *svm = to_svm(vcpu);
3025
3026         /* First SIPI: Use the values as initially set by the VMM */
3027         if (!svm->sev_es.received_first_sipi) {
3028                 svm->sev_es.received_first_sipi = true;
3029                 return;
3030         }
3031
3032         /*
3033          * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3034          * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3035          * non-zero value.
3036          */
3037         if (!svm->sev_es.ghcb)
3038                 return;
3039
3040         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3041 }