KVM: SVM: Don't rewrite guest ICR on AVIC IPI virtualization failure
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / avic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14
15 #define pr_fmt(fmt) "SVM: " fmt
16
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21
22 #include <asm/irq_remapping.h>
23
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29
30 /* AVIC GATAG is encoded using VM and VCPU IDs */
31 #define AVIC_VCPU_ID_BITS               8
32 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
33
34 #define AVIC_VM_ID_BITS                 24
35 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
36 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
37
38 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
39                                                 (y & AVIC_VCPU_ID_MASK))
40 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
41 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
42
43 /* Note:
44  * This hash table is used to map VM_ID to a struct kvm_svm,
45  * when handling AMD IOMMU GALOG notification to schedule in
46  * a particular vCPU.
47  */
48 #define SVM_VM_DATA_HASH_BITS   8
49 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
50 static u32 next_vm_id = 0;
51 static bool next_vm_id_wrapped = 0;
52 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
53
54 /*
55  * This is a wrapper of struct amd_iommu_ir_data.
56  */
57 struct amd_svm_iommu_ir {
58         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
59         void *data;             /* Storing pointer to struct amd_ir_data */
60 };
61
62
63 /* Note:
64  * This function is called from IOMMU driver to notify
65  * SVM to schedule in a particular vCPU of a particular VM.
66  */
67 int avic_ga_log_notifier(u32 ga_tag)
68 {
69         unsigned long flags;
70         struct kvm_svm *kvm_svm;
71         struct kvm_vcpu *vcpu = NULL;
72         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
73         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
74
75         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
76         trace_kvm_avic_ga_log(vm_id, vcpu_id);
77
78         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
79         hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
80                 if (kvm_svm->avic_vm_id != vm_id)
81                         continue;
82                 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
83                 break;
84         }
85         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
86
87         /* Note:
88          * At this point, the IOMMU should have already set the pending
89          * bit in the vAPIC backing page. So, we just need to schedule
90          * in the vcpu.
91          */
92         if (vcpu)
93                 kvm_vcpu_wake_up(vcpu);
94
95         return 0;
96 }
97
98 void avic_vm_destroy(struct kvm *kvm)
99 {
100         unsigned long flags;
101         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
102
103         if (!enable_apicv)
104                 return;
105
106         if (kvm_svm->avic_logical_id_table_page)
107                 __free_page(kvm_svm->avic_logical_id_table_page);
108         if (kvm_svm->avic_physical_id_table_page)
109                 __free_page(kvm_svm->avic_physical_id_table_page);
110
111         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
112         hash_del(&kvm_svm->hnode);
113         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
114 }
115
116 int avic_vm_init(struct kvm *kvm)
117 {
118         unsigned long flags;
119         int err = -ENOMEM;
120         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
121         struct kvm_svm *k2;
122         struct page *p_page;
123         struct page *l_page;
124         u32 vm_id;
125
126         if (!enable_apicv)
127                 return 0;
128
129         /* Allocating physical APIC ID table (4KB) */
130         p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
131         if (!p_page)
132                 goto free_avic;
133
134         kvm_svm->avic_physical_id_table_page = p_page;
135
136         /* Allocating logical APIC ID table (4KB) */
137         l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
138         if (!l_page)
139                 goto free_avic;
140
141         kvm_svm->avic_logical_id_table_page = l_page;
142
143         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
144  again:
145         vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
146         if (vm_id == 0) { /* id is 1-based, zero is not okay */
147                 next_vm_id_wrapped = 1;
148                 goto again;
149         }
150         /* Is it still in use? Only possible if wrapped at least once */
151         if (next_vm_id_wrapped) {
152                 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
153                         if (k2->avic_vm_id == vm_id)
154                                 goto again;
155                 }
156         }
157         kvm_svm->avic_vm_id = vm_id;
158         hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
159         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
160
161         return 0;
162
163 free_avic:
164         avic_vm_destroy(kvm);
165         return err;
166 }
167
168 void avic_init_vmcb(struct vcpu_svm *svm)
169 {
170         struct vmcb *vmcb = svm->vmcb;
171         struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
172         phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
173         phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
174         phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
175
176         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
177         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
178         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
179         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
180         vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
181
182         if (kvm_apicv_activated(svm->vcpu.kvm))
183                 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
184         else
185                 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
186 }
187
188 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
189                                        unsigned int index)
190 {
191         u64 *avic_physical_id_table;
192         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
193
194         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
195                 return NULL;
196
197         avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
198
199         return &avic_physical_id_table[index];
200 }
201
202 /*
203  * Note:
204  * AVIC hardware walks the nested page table to check permissions,
205  * but does not use the SPA address specified in the leaf page
206  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
207  * field of the VMCB. Therefore, we set up the
208  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
209  */
210 static int avic_alloc_access_page(struct kvm *kvm)
211 {
212         void __user *ret;
213         int r = 0;
214
215         mutex_lock(&kvm->slots_lock);
216
217         if (kvm->arch.apic_access_memslot_enabled)
218                 goto out;
219
220         ret = __x86_set_memory_region(kvm,
221                                       APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
222                                       APIC_DEFAULT_PHYS_BASE,
223                                       PAGE_SIZE);
224         if (IS_ERR(ret)) {
225                 r = PTR_ERR(ret);
226                 goto out;
227         }
228
229         kvm->arch.apic_access_memslot_enabled = true;
230 out:
231         mutex_unlock(&kvm->slots_lock);
232         return r;
233 }
234
235 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
236 {
237         u64 *entry, new_entry;
238         int id = vcpu->vcpu_id;
239         struct vcpu_svm *svm = to_svm(vcpu);
240
241         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
242                 return -EINVAL;
243
244         if (!vcpu->arch.apic->regs)
245                 return -EINVAL;
246
247         if (kvm_apicv_activated(vcpu->kvm)) {
248                 int ret;
249
250                 ret = avic_alloc_access_page(vcpu->kvm);
251                 if (ret)
252                         return ret;
253         }
254
255         svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
256
257         /* Setting AVIC backing page address in the phy APIC ID table */
258         entry = avic_get_physical_id_entry(vcpu, id);
259         if (!entry)
260                 return -EINVAL;
261
262         new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
263                               AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
264                               AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
265         WRITE_ONCE(*entry, new_entry);
266
267         svm->avic_physical_id_cache = entry;
268
269         return 0;
270 }
271
272 void avic_ring_doorbell(struct kvm_vcpu *vcpu)
273 {
274         /*
275          * Note, the vCPU could get migrated to a different pCPU at any point,
276          * which could result in signalling the wrong/previous pCPU.  But if
277          * that happens the vCPU is guaranteed to do a VMRUN (after being
278          * migrated) and thus will process pending interrupts, i.e. a doorbell
279          * is not needed (and the spurious one is harmless).
280          */
281         int cpu = READ_ONCE(vcpu->cpu);
282
283         if (cpu != get_cpu())
284                 wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
285         put_cpu();
286 }
287
288 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
289                                    u32 icrl, u32 icrh)
290 {
291         struct kvm_vcpu *vcpu;
292         unsigned long i;
293
294         /*
295          * Wake any target vCPUs that are blocking, i.e. waiting for a wake
296          * event.  There's no need to signal doorbells, as hardware has handled
297          * vCPUs that were in guest at the time of the IPI, and vCPUs that have
298          * since entered the guest will have processed pending IRQs at VMRUN.
299          */
300         kvm_for_each_vcpu(i, vcpu, kvm) {
301                 if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
302                                         GET_APIC_DEST_FIELD(icrh),
303                                         icrl & APIC_DEST_MASK)) {
304                         vcpu->arch.apic->irr_pending = true;
305                         svm_complete_interrupt_delivery(vcpu,
306                                                         icrl & APIC_MODE_MASK,
307                                                         icrl & APIC_INT_LEVELTRIG,
308                                                         icrl & APIC_VECTOR_MASK);
309                 }
310         }
311 }
312
313 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
314 {
315         struct vcpu_svm *svm = to_svm(vcpu);
316         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
317         u32 icrl = svm->vmcb->control.exit_info_1;
318         u32 id = svm->vmcb->control.exit_info_2 >> 32;
319         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
320         struct kvm_lapic *apic = vcpu->arch.apic;
321
322         trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
323
324         switch (id) {
325         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
326                 /*
327                  * Emulate IPIs that are not handled by AVIC hardware, which
328                  * only virtualizes Fixed, Edge-Triggered INTRs.  The exit is
329                  * a trap, e.g. ICR holds the correct value and RIP has been
330                  * advanced, KVM is responsible only for emulating the IPI.
331                  * Sadly, hardware may sometimes leave the BUSY flag set, in
332                  * which case KVM needs to emulate the ICR write as well in
333                  * order to clear the BUSY flag.
334                  */
335                 if (icrl & APIC_ICR_BUSY)
336                         kvm_apic_write_nodecode(vcpu, APIC_ICR);
337                 else
338                         kvm_apic_send_ipi(apic, icrl, icrh);
339                 break;
340         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
341                 /*
342                  * At this point, we expect that the AVIC HW has already
343                  * set the appropriate IRR bits on the valid target
344                  * vcpus. So, we just need to kick the appropriate vcpu.
345                  */
346                 avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh);
347                 break;
348         case AVIC_IPI_FAILURE_INVALID_TARGET:
349                 break;
350         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
351                 WARN_ONCE(1, "Invalid backing page\n");
352                 break;
353         default:
354                 pr_err("Unknown IPI interception\n");
355         }
356
357         return 1;
358 }
359
360 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
361 {
362         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
363         int index;
364         u32 *logical_apic_id_table;
365         int dlid = GET_APIC_LOGICAL_ID(ldr);
366
367         if (!dlid)
368                 return NULL;
369
370         if (flat) { /* flat */
371                 index = ffs(dlid) - 1;
372                 if (index > 7)
373                         return NULL;
374         } else { /* cluster */
375                 int cluster = (dlid & 0xf0) >> 4;
376                 int apic = ffs(dlid & 0x0f) - 1;
377
378                 if ((apic < 0) || (apic > 7) ||
379                     (cluster >= 0xf))
380                         return NULL;
381                 index = (cluster << 2) + apic;
382         }
383
384         logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
385
386         return &logical_apic_id_table[index];
387 }
388
389 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
390 {
391         bool flat;
392         u32 *entry, new_entry;
393
394         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
395         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
396         if (!entry)
397                 return -EINVAL;
398
399         new_entry = READ_ONCE(*entry);
400         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
401         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
402         new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
403         WRITE_ONCE(*entry, new_entry);
404
405         return 0;
406 }
407
408 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
409 {
410         struct vcpu_svm *svm = to_svm(vcpu);
411         bool flat = svm->dfr_reg == APIC_DFR_FLAT;
412         u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
413
414         if (entry)
415                 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
416 }
417
418 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
419 {
420         int ret = 0;
421         struct vcpu_svm *svm = to_svm(vcpu);
422         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
423         u32 id = kvm_xapic_id(vcpu->arch.apic);
424
425         if (ldr == svm->ldr_reg)
426                 return 0;
427
428         avic_invalidate_logical_id_entry(vcpu);
429
430         if (ldr)
431                 ret = avic_ldr_write(vcpu, id, ldr);
432
433         if (!ret)
434                 svm->ldr_reg = ldr;
435
436         return ret;
437 }
438
439 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
440 {
441         u64 *old, *new;
442         struct vcpu_svm *svm = to_svm(vcpu);
443         u32 id = kvm_xapic_id(vcpu->arch.apic);
444
445         if (vcpu->vcpu_id == id)
446                 return 0;
447
448         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
449         new = avic_get_physical_id_entry(vcpu, id);
450         if (!new || !old)
451                 return 1;
452
453         /* We need to move physical_id_entry to new offset */
454         *new = *old;
455         *old = 0ULL;
456         to_svm(vcpu)->avic_physical_id_cache = new;
457
458         /*
459          * Also update the guest physical APIC ID in the logical
460          * APIC ID table entry if already setup the LDR.
461          */
462         if (svm->ldr_reg)
463                 avic_handle_ldr_update(vcpu);
464
465         return 0;
466 }
467
468 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
469 {
470         struct vcpu_svm *svm = to_svm(vcpu);
471         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
472
473         if (svm->dfr_reg == dfr)
474                 return;
475
476         avic_invalidate_logical_id_entry(vcpu);
477         svm->dfr_reg = dfr;
478 }
479
480 static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
481 {
482         u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
483                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
484
485         switch (offset) {
486         case APIC_ID:
487                 if (avic_handle_apic_id_update(vcpu))
488                         return 0;
489                 break;
490         case APIC_LDR:
491                 if (avic_handle_ldr_update(vcpu))
492                         return 0;
493                 break;
494         case APIC_DFR:
495                 avic_handle_dfr_update(vcpu);
496                 break;
497         default:
498                 break;
499         }
500
501         kvm_apic_write_nodecode(vcpu, offset);
502         return 1;
503 }
504
505 static bool is_avic_unaccelerated_access_trap(u32 offset)
506 {
507         bool ret = false;
508
509         switch (offset) {
510         case APIC_ID:
511         case APIC_EOI:
512         case APIC_RRR:
513         case APIC_LDR:
514         case APIC_DFR:
515         case APIC_SPIV:
516         case APIC_ESR:
517         case APIC_ICR:
518         case APIC_LVTT:
519         case APIC_LVTTHMR:
520         case APIC_LVTPC:
521         case APIC_LVT0:
522         case APIC_LVT1:
523         case APIC_LVTERR:
524         case APIC_TMICT:
525         case APIC_TDCR:
526                 ret = true;
527                 break;
528         default:
529                 break;
530         }
531         return ret;
532 }
533
534 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
535 {
536         struct vcpu_svm *svm = to_svm(vcpu);
537         int ret = 0;
538         u32 offset = svm->vmcb->control.exit_info_1 &
539                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
540         u32 vector = svm->vmcb->control.exit_info_2 &
541                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
542         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
543                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
544         bool trap = is_avic_unaccelerated_access_trap(offset);
545
546         trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
547                                             trap, write, vector);
548         if (trap) {
549                 /* Handling Trap */
550                 WARN_ONCE(!write, "svm: Handling trap read.\n");
551                 ret = avic_unaccel_trap_write(vcpu);
552         } else {
553                 /* Handling Fault */
554                 ret = kvm_emulate_instruction(vcpu, 0);
555         }
556
557         return ret;
558 }
559
560 int avic_init_vcpu(struct vcpu_svm *svm)
561 {
562         int ret;
563         struct kvm_vcpu *vcpu = &svm->vcpu;
564
565         if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
566                 return 0;
567
568         ret = avic_init_backing_page(vcpu);
569         if (ret)
570                 return ret;
571
572         INIT_LIST_HEAD(&svm->ir_list);
573         spin_lock_init(&svm->ir_list_lock);
574         svm->dfr_reg = APIC_DFR_FLAT;
575
576         return ret;
577 }
578
579 void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
580 {
581         if (avic_handle_apic_id_update(vcpu) != 0)
582                 return;
583         avic_handle_dfr_update(vcpu);
584         avic_handle_ldr_update(vcpu);
585 }
586
587 static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
588 {
589         int ret = 0;
590         unsigned long flags;
591         struct amd_svm_iommu_ir *ir;
592         struct vcpu_svm *svm = to_svm(vcpu);
593
594         if (!kvm_arch_has_assigned_device(vcpu->kvm))
595                 return 0;
596
597         /*
598          * Here, we go through the per-vcpu ir_list to update all existing
599          * interrupt remapping table entry targeting this vcpu.
600          */
601         spin_lock_irqsave(&svm->ir_list_lock, flags);
602
603         if (list_empty(&svm->ir_list))
604                 goto out;
605
606         list_for_each_entry(ir, &svm->ir_list, node) {
607                 if (activate)
608                         ret = amd_iommu_activate_guest_mode(ir->data);
609                 else
610                         ret = amd_iommu_deactivate_guest_mode(ir->data);
611                 if (ret)
612                         break;
613         }
614 out:
615         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
616         return ret;
617 }
618
619 void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
620 {
621         struct vcpu_svm *svm = to_svm(vcpu);
622         struct vmcb *vmcb = svm->vmcb01.ptr;
623         bool activated = kvm_vcpu_apicv_active(vcpu);
624
625         if (!enable_apicv)
626                 return;
627
628         if (activated) {
629                 /**
630                  * During AVIC temporary deactivation, guest could update
631                  * APIC ID, DFR and LDR registers, which would not be trapped
632                  * by avic_unaccelerated_access_interception(). In this case,
633                  * we need to check and update the AVIC logical APIC ID table
634                  * accordingly before re-activating.
635                  */
636                 avic_apicv_post_state_restore(vcpu);
637                 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
638         } else {
639                 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
640         }
641         vmcb_mark_dirty(vmcb, VMCB_AVIC);
642
643         if (activated)
644                 avic_vcpu_load(vcpu, vcpu->cpu);
645         else
646                 avic_vcpu_put(vcpu);
647
648         avic_set_pi_irte_mode(vcpu, activated);
649 }
650
651 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
652 {
653         unsigned long flags;
654         struct amd_svm_iommu_ir *cur;
655
656         spin_lock_irqsave(&svm->ir_list_lock, flags);
657         list_for_each_entry(cur, &svm->ir_list, node) {
658                 if (cur->data != pi->ir_data)
659                         continue;
660                 list_del(&cur->node);
661                 kfree(cur);
662                 break;
663         }
664         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
665 }
666
667 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
668 {
669         int ret = 0;
670         unsigned long flags;
671         struct amd_svm_iommu_ir *ir;
672
673         /**
674          * In some cases, the existing irte is updated and re-set,
675          * so we need to check here if it's already been * added
676          * to the ir_list.
677          */
678         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
679                 struct kvm *kvm = svm->vcpu.kvm;
680                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
681                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
682                 struct vcpu_svm *prev_svm;
683
684                 if (!prev_vcpu) {
685                         ret = -EINVAL;
686                         goto out;
687                 }
688
689                 prev_svm = to_svm(prev_vcpu);
690                 svm_ir_list_del(prev_svm, pi);
691         }
692
693         /**
694          * Allocating new amd_iommu_pi_data, which will get
695          * add to the per-vcpu ir_list.
696          */
697         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
698         if (!ir) {
699                 ret = -ENOMEM;
700                 goto out;
701         }
702         ir->data = pi->ir_data;
703
704         spin_lock_irqsave(&svm->ir_list_lock, flags);
705         list_add(&ir->node, &svm->ir_list);
706         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
707 out:
708         return ret;
709 }
710
711 /*
712  * Note:
713  * The HW cannot support posting multicast/broadcast
714  * interrupts to a vCPU. So, we still use legacy interrupt
715  * remapping for these kind of interrupts.
716  *
717  * For lowest-priority interrupts, we only support
718  * those with single CPU as the destination, e.g. user
719  * configures the interrupts via /proc/irq or uses
720  * irqbalance to make the interrupts single-CPU.
721  */
722 static int
723 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
724                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
725 {
726         struct kvm_lapic_irq irq;
727         struct kvm_vcpu *vcpu = NULL;
728
729         kvm_set_msi_irq(kvm, e, &irq);
730
731         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
732             !kvm_irq_is_postable(&irq)) {
733                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
734                          __func__, irq.vector);
735                 return -1;
736         }
737
738         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
739                  irq.vector);
740         *svm = to_svm(vcpu);
741         vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
742         vcpu_info->vector = irq.vector;
743
744         return 0;
745 }
746
747 /*
748  * avic_pi_update_irte - set IRTE for Posted-Interrupts
749  *
750  * @kvm: kvm
751  * @host_irq: host irq of the interrupt
752  * @guest_irq: gsi of the interrupt
753  * @set: set or unset PI
754  * returns 0 on success, < 0 on failure
755  */
756 int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
757                         uint32_t guest_irq, bool set)
758 {
759         struct kvm_kernel_irq_routing_entry *e;
760         struct kvm_irq_routing_table *irq_rt;
761         int idx, ret = -EINVAL;
762
763         if (!kvm_arch_has_assigned_device(kvm) ||
764             !irq_remapping_cap(IRQ_POSTING_CAP))
765                 return 0;
766
767         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
768                  __func__, host_irq, guest_irq, set);
769
770         idx = srcu_read_lock(&kvm->irq_srcu);
771         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
772         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
773
774         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
775                 struct vcpu_data vcpu_info;
776                 struct vcpu_svm *svm = NULL;
777
778                 if (e->type != KVM_IRQ_ROUTING_MSI)
779                         continue;
780
781                 /**
782                  * Here, we setup with legacy mode in the following cases:
783                  * 1. When cannot target interrupt to a specific vcpu.
784                  * 2. Unsetting posted interrupt.
785                  * 3. APIC virtualization is disabled for the vcpu.
786                  * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
787                  */
788                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
789                     kvm_vcpu_apicv_active(&svm->vcpu)) {
790                         struct amd_iommu_pi_data pi;
791
792                         /* Try to enable guest_mode in IRTE */
793                         pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
794                                             AVIC_HPA_MASK);
795                         pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
796                                                      svm->vcpu.vcpu_id);
797                         pi.is_guest_mode = true;
798                         pi.vcpu_data = &vcpu_info;
799                         ret = irq_set_vcpu_affinity(host_irq, &pi);
800
801                         /**
802                          * Here, we successfully setting up vcpu affinity in
803                          * IOMMU guest mode. Now, we need to store the posted
804                          * interrupt information in a per-vcpu ir_list so that
805                          * we can reference to them directly when we update vcpu
806                          * scheduling information in IOMMU irte.
807                          */
808                         if (!ret && pi.is_guest_mode)
809                                 svm_ir_list_add(svm, &pi);
810                 } else {
811                         /* Use legacy mode in IRTE */
812                         struct amd_iommu_pi_data pi;
813
814                         /**
815                          * Here, pi is used to:
816                          * - Tell IOMMU to use legacy mode for this interrupt.
817                          * - Retrieve ga_tag of prior interrupt remapping data.
818                          */
819                         pi.prev_ga_tag = 0;
820                         pi.is_guest_mode = false;
821                         ret = irq_set_vcpu_affinity(host_irq, &pi);
822
823                         /**
824                          * Check if the posted interrupt was previously
825                          * setup with the guest_mode by checking if the ga_tag
826                          * was cached. If so, we need to clean up the per-vcpu
827                          * ir_list.
828                          */
829                         if (!ret && pi.prev_ga_tag) {
830                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
831                                 struct kvm_vcpu *vcpu;
832
833                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
834                                 if (vcpu)
835                                         svm_ir_list_del(to_svm(vcpu), &pi);
836                         }
837                 }
838
839                 if (!ret && svm) {
840                         trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
841                                                  e->gsi, vcpu_info.vector,
842                                                  vcpu_info.pi_desc_addr, set);
843                 }
844
845                 if (ret < 0) {
846                         pr_err("%s: failed to update PI IRTE\n", __func__);
847                         goto out;
848                 }
849         }
850
851         ret = 0;
852 out:
853         srcu_read_unlock(&kvm->irq_srcu, idx);
854         return ret;
855 }
856
857 bool avic_check_apicv_inhibit_reasons(ulong bit)
858 {
859         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
860                           BIT(APICV_INHIBIT_REASON_ABSENT) |
861                           BIT(APICV_INHIBIT_REASON_HYPERV) |
862                           BIT(APICV_INHIBIT_REASON_NESTED) |
863                           BIT(APICV_INHIBIT_REASON_IRQWIN) |
864                           BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
865                           BIT(APICV_INHIBIT_REASON_X2APIC) |
866                           BIT(APICV_INHIBIT_REASON_BLOCKIRQ);
867
868         return supported & BIT(bit);
869 }
870
871
872 static inline int
873 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
874 {
875         int ret = 0;
876         unsigned long flags;
877         struct amd_svm_iommu_ir *ir;
878         struct vcpu_svm *svm = to_svm(vcpu);
879
880         if (!kvm_arch_has_assigned_device(vcpu->kvm))
881                 return 0;
882
883         /*
884          * Here, we go through the per-vcpu ir_list to update all existing
885          * interrupt remapping table entry targeting this vcpu.
886          */
887         spin_lock_irqsave(&svm->ir_list_lock, flags);
888
889         if (list_empty(&svm->ir_list))
890                 goto out;
891
892         list_for_each_entry(ir, &svm->ir_list, node) {
893                 ret = amd_iommu_update_ga(cpu, r, ir->data);
894                 if (ret)
895                         break;
896         }
897 out:
898         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
899         return ret;
900 }
901
902 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
903 {
904         u64 entry;
905         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
906         int h_physical_id = kvm_cpu_get_apicid(cpu);
907         struct vcpu_svm *svm = to_svm(vcpu);
908
909         lockdep_assert_preemption_disabled();
910
911         /*
912          * Since the host physical APIC id is 8 bits,
913          * we can support host APIC ID upto 255.
914          */
915         if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
916                 return;
917
918         /*
919          * No need to update anything if the vCPU is blocking, i.e. if the vCPU
920          * is being scheduled in after being preempted.  The CPU entries in the
921          * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
922          * If the vCPU was migrated, its new CPU value will be stuffed when the
923          * vCPU unblocks.
924          */
925         if (kvm_vcpu_is_blocking(vcpu))
926                 return;
927
928         entry = READ_ONCE(*(svm->avic_physical_id_cache));
929         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
930
931         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
932         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
933         entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
934
935         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
936         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
937 }
938
939 void avic_vcpu_put(struct kvm_vcpu *vcpu)
940 {
941         u64 entry;
942         struct vcpu_svm *svm = to_svm(vcpu);
943
944         lockdep_assert_preemption_disabled();
945
946         entry = READ_ONCE(*(svm->avic_physical_id_cache));
947
948         /* Nothing to do if IsRunning == '0' due to vCPU blocking. */
949         if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
950                 return;
951
952         avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
953
954         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
955         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
956 }
957
958 void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
959 {
960         if (!kvm_vcpu_apicv_active(vcpu))
961                 return;
962
963         preempt_disable();
964
965        /*
966         * Unload the AVIC when the vCPU is about to block, _before_
967         * the vCPU actually blocks.
968         *
969         * Any IRQs that arrive before IsRunning=0 will not cause an
970         * incomplete IPI vmexit on the source, therefore vIRR will also
971         * be checked by kvm_vcpu_check_block() before blocking.  The
972         * memory barrier implicit in set_current_state orders writing
973         * IsRunning=0 before reading the vIRR.  The processor needs a
974         * matching memory barrier on interrupt delivery between writing
975         * IRR and reading IsRunning; the lack of this barrier might be
976         * the cause of errata #1235).
977         */
978         avic_vcpu_put(vcpu);
979
980         preempt_enable();
981 }
982
983 void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
984 {
985         int cpu;
986
987         if (!kvm_vcpu_apicv_active(vcpu))
988                 return;
989
990         cpu = get_cpu();
991         WARN_ON(cpu != vcpu->cpu);
992
993         avic_vcpu_load(vcpu, cpu);
994
995         put_cpu();
996 }