KVM: x86: Unify pr_fmt to use module name for all KVM modules
[linux-2.6-microblaze.git] / arch / x86 / kvm / pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32 static const struct x86_cpu_id vmx_icl_pebs_cpu[] = {
33         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
34         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
35         {}
36 };
37
38 /* NOTE:
39  * - Each perf counter is defined as "struct kvm_pmc";
40  * - There are two types of perf counters: general purpose (gp) and fixed.
41  *   gp counters are stored in gp_counters[] and fixed counters are stored
42  *   in fixed_counters[] respectively. Both of them are part of "struct
43  *   kvm_pmu";
44  * - pmu.c understands the difference between gp counters and fixed counters.
45  *   However AMD doesn't support fixed-counters;
46  * - There are three types of index to access perf counters (PMC):
47  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
48  *        has MSR_K7_PERFCTRn and, for families 15H and later,
49  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
50  *        aliased to MSR_K7_PERFCTRn.
51  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
52  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
53  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
54  *        that it also supports fixed counters. idx can be used to as index to
55  *        gp and fixed counters.
56  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
57  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
58  *        all perf counters (both gp and fixed). The mapping relationship
59  *        between pmc and perf counters is as the following:
60  *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
61  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
62  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
63  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
64  */
65
66 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
67
68 #define KVM_X86_PMU_OP(func)                                         \
69         DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,                          \
70                                 *(((struct kvm_pmu_ops *)0)->func));
71 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
72 #include <asm/kvm-x86-pmu-ops.h>
73
74 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
75 {
76         memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
77
78 #define __KVM_X86_PMU_OP(func) \
79         static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
80 #define KVM_X86_PMU_OP(func) \
81         WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
82 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
83 #include <asm/kvm-x86-pmu-ops.h>
84 #undef __KVM_X86_PMU_OP
85 }
86
87 static inline bool pmc_is_enabled(struct kvm_pmc *pmc)
88 {
89         return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc);
90 }
91
92 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
93 {
94         struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
95         struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
96
97         kvm_pmu_deliver_pmi(vcpu);
98 }
99
100 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
101 {
102         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
103         bool skip_pmi = false;
104
105         if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
106                 if (!in_pmi) {
107                         /*
108                          * TODO: KVM is currently _choosing_ to not generate records
109                          * for emulated instructions, avoiding BUFFER_OVF PMI when
110                          * there are no records. Strictly speaking, it should be done
111                          * as well in the right context to improve sampling accuracy.
112                          */
113                         skip_pmi = true;
114                 } else {
115                         /* Indicate PEBS overflow PMI to guest. */
116                         skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
117                                                       (unsigned long *)&pmu->global_status);
118                 }
119         } else {
120                 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
121         }
122
123         if (!pmc->intr || skip_pmi)
124                 return;
125
126         /*
127          * Inject PMI. If vcpu was in a guest mode during NMI PMI
128          * can be ejected on a guest mode re-entry. Otherwise we can't
129          * be sure that vcpu wasn't executing hlt instruction at the
130          * time of vmexit and is not going to re-enter guest mode until
131          * woken up. So we should wake it, but this is impossible from
132          * NMI context. Do it from irq work instead.
133          */
134         if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
135                 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
136         else
137                 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
138 }
139
140 static void kvm_perf_overflow(struct perf_event *perf_event,
141                               struct perf_sample_data *data,
142                               struct pt_regs *regs)
143 {
144         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
145
146         /*
147          * Ignore overflow events for counters that are scheduled to be
148          * reprogrammed, e.g. if a PMI for the previous event races with KVM's
149          * handling of a related guest WRMSR.
150          */
151         if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
152                 return;
153
154         __kvm_perf_overflow(pmc, true);
155
156         kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
157 }
158
159 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
160                                  bool exclude_user, bool exclude_kernel,
161                                  bool intr)
162 {
163         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
164         struct perf_event *event;
165         struct perf_event_attr attr = {
166                 .type = type,
167                 .size = sizeof(attr),
168                 .pinned = true,
169                 .exclude_idle = true,
170                 .exclude_host = 1,
171                 .exclude_user = exclude_user,
172                 .exclude_kernel = exclude_kernel,
173                 .config = config,
174         };
175         bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
176
177         attr.sample_period = get_sample_period(pmc, pmc->counter);
178
179         if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
180             guest_cpuid_is_intel(pmc->vcpu)) {
181                 /*
182                  * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
183                  * period. Just clear the sample period so at least
184                  * allocating the counter doesn't fail.
185                  */
186                 attr.sample_period = 0;
187         }
188         if (pebs) {
189                 /*
190                  * The non-zero precision level of guest event makes the ordinary
191                  * guest event becomes a guest PEBS event and triggers the host
192                  * PEBS PMI handler to determine whether the PEBS overflow PMI
193                  * comes from the host counters or the guest.
194                  *
195                  * For most PEBS hardware events, the difference in the software
196                  * precision levels of guest and host PEBS events will not affect
197                  * the accuracy of the PEBS profiling result, because the "event IP"
198                  * in the PEBS record is calibrated on the guest side.
199                  *
200                  * On Icelake everything is fine. Other hardware (GLC+, TNT+) that
201                  * could possibly care here is unsupported and needs changes.
202                  */
203                 attr.precise_ip = 1;
204                 if (x86_match_cpu(vmx_icl_pebs_cpu) && pmc->idx == 32)
205                         attr.precise_ip = 3;
206         }
207
208         event = perf_event_create_kernel_counter(&attr, -1, current,
209                                                  kvm_perf_overflow, pmc);
210         if (IS_ERR(event)) {
211                 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
212                             PTR_ERR(event), pmc->idx);
213                 return PTR_ERR(event);
214         }
215
216         pmc->perf_event = event;
217         pmc_to_pmu(pmc)->event_count++;
218         pmc->is_paused = false;
219         pmc->intr = intr || pebs;
220         return 0;
221 }
222
223 static void pmc_pause_counter(struct kvm_pmc *pmc)
224 {
225         u64 counter = pmc->counter;
226
227         if (!pmc->perf_event || pmc->is_paused)
228                 return;
229
230         /* update counter, reset event value to avoid redundant accumulation */
231         counter += perf_event_pause(pmc->perf_event, true);
232         pmc->counter = counter & pmc_bitmask(pmc);
233         pmc->is_paused = true;
234 }
235
236 static bool pmc_resume_counter(struct kvm_pmc *pmc)
237 {
238         if (!pmc->perf_event)
239                 return false;
240
241         /* recalibrate sample period and check if it's accepted by perf core */
242         if (is_sampling_event(pmc->perf_event) &&
243             perf_event_period(pmc->perf_event,
244                               get_sample_period(pmc, pmc->counter)))
245                 return false;
246
247         if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
248             (!!pmc->perf_event->attr.precise_ip))
249                 return false;
250
251         /* reuse perf_event to serve as pmc_reprogram_counter() does*/
252         perf_event_enable(pmc->perf_event);
253         pmc->is_paused = false;
254
255         return true;
256 }
257
258 static int cmp_u64(const void *pa, const void *pb)
259 {
260         u64 a = *(u64 *)pa;
261         u64 b = *(u64 *)pb;
262
263         return (a > b) - (a < b);
264 }
265
266 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
267 {
268         struct kvm_pmu_event_filter *filter;
269         struct kvm *kvm = pmc->vcpu->kvm;
270         bool allow_event = true;
271         __u64 key;
272         int idx;
273
274         if (!static_call(kvm_x86_pmu_hw_event_available)(pmc))
275                 return false;
276
277         filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
278         if (!filter)
279                 goto out;
280
281         if (pmc_is_gp(pmc)) {
282                 key = pmc->eventsel & AMD64_RAW_EVENT_MASK_NB;
283                 if (bsearch(&key, filter->events, filter->nevents,
284                             sizeof(__u64), cmp_u64))
285                         allow_event = filter->action == KVM_PMU_EVENT_ALLOW;
286                 else
287                         allow_event = filter->action == KVM_PMU_EVENT_DENY;
288         } else {
289                 idx = pmc->idx - INTEL_PMC_IDX_FIXED;
290                 if (filter->action == KVM_PMU_EVENT_DENY &&
291                     test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
292                         allow_event = false;
293                 if (filter->action == KVM_PMU_EVENT_ALLOW &&
294                     !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
295                         allow_event = false;
296         }
297
298 out:
299         return allow_event;
300 }
301
302 static void reprogram_counter(struct kvm_pmc *pmc)
303 {
304         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
305         u64 eventsel = pmc->eventsel;
306         u64 new_config = eventsel;
307         u8 fixed_ctr_ctrl;
308
309         pmc_pause_counter(pmc);
310
311         if (!pmc_speculative_in_use(pmc) || !pmc_is_enabled(pmc))
312                 goto reprogram_complete;
313
314         if (!check_pmu_event_filter(pmc))
315                 goto reprogram_complete;
316
317         if (pmc->counter < pmc->prev_counter)
318                 __kvm_perf_overflow(pmc, false);
319
320         if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
321                 printk_once("kvm pmu: pin control bit is ignored\n");
322
323         if (pmc_is_fixed(pmc)) {
324                 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
325                                                   pmc->idx - INTEL_PMC_IDX_FIXED);
326                 if (fixed_ctr_ctrl & 0x1)
327                         eventsel |= ARCH_PERFMON_EVENTSEL_OS;
328                 if (fixed_ctr_ctrl & 0x2)
329                         eventsel |= ARCH_PERFMON_EVENTSEL_USR;
330                 if (fixed_ctr_ctrl & 0x8)
331                         eventsel |= ARCH_PERFMON_EVENTSEL_INT;
332                 new_config = (u64)fixed_ctr_ctrl;
333         }
334
335         if (pmc->current_config == new_config && pmc_resume_counter(pmc))
336                 goto reprogram_complete;
337
338         pmc_release_perf_event(pmc);
339
340         pmc->current_config = new_config;
341
342         /*
343          * If reprogramming fails, e.g. due to contention, leave the counter's
344          * regprogram bit set, i.e. opportunistically try again on the next PMU
345          * refresh.  Don't make a new request as doing so can stall the guest
346          * if reprogramming repeatedly fails.
347          */
348         if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
349                                   (eventsel & pmu->raw_event_mask),
350                                   !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
351                                   !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
352                                   eventsel & ARCH_PERFMON_EVENTSEL_INT))
353                 return;
354
355 reprogram_complete:
356         clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
357         pmc->prev_counter = 0;
358 }
359
360 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
361 {
362         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
363         int bit;
364
365         for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
366                 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
367
368                 if (unlikely(!pmc)) {
369                         clear_bit(bit, pmu->reprogram_pmi);
370                         continue;
371                 }
372
373                 reprogram_counter(pmc);
374         }
375
376         /*
377          * Unused perf_events are only released if the corresponding MSRs
378          * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
379          * triggers KVM_REQ_PMU if cleanup is needed.
380          */
381         if (unlikely(pmu->need_cleanup))
382                 kvm_pmu_cleanup(vcpu);
383 }
384
385 /* check if idx is a valid index to access PMU */
386 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
387 {
388         return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
389 }
390
391 bool is_vmware_backdoor_pmc(u32 pmc_idx)
392 {
393         switch (pmc_idx) {
394         case VMWARE_BACKDOOR_PMC_HOST_TSC:
395         case VMWARE_BACKDOOR_PMC_REAL_TIME:
396         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
397                 return true;
398         }
399         return false;
400 }
401
402 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
403 {
404         u64 ctr_val;
405
406         switch (idx) {
407         case VMWARE_BACKDOOR_PMC_HOST_TSC:
408                 ctr_val = rdtsc();
409                 break;
410         case VMWARE_BACKDOOR_PMC_REAL_TIME:
411                 ctr_val = ktime_get_boottime_ns();
412                 break;
413         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
414                 ctr_val = ktime_get_boottime_ns() +
415                         vcpu->kvm->arch.kvmclock_offset;
416                 break;
417         default:
418                 return 1;
419         }
420
421         *data = ctr_val;
422         return 0;
423 }
424
425 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
426 {
427         bool fast_mode = idx & (1u << 31);
428         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
429         struct kvm_pmc *pmc;
430         u64 mask = fast_mode ? ~0u : ~0ull;
431
432         if (!pmu->version)
433                 return 1;
434
435         if (is_vmware_backdoor_pmc(idx))
436                 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
437
438         pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
439         if (!pmc)
440                 return 1;
441
442         if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
443             (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
444             (kvm_read_cr0(vcpu) & X86_CR0_PE))
445                 return 1;
446
447         *data = pmc_read_counter(pmc) & mask;
448         return 0;
449 }
450
451 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
452 {
453         if (lapic_in_kernel(vcpu)) {
454                 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
455                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
456         }
457 }
458
459 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
460 {
461         return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
462                 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
463 }
464
465 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
466 {
467         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
468         struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
469
470         if (pmc)
471                 __set_bit(pmc->idx, pmu->pmc_in_use);
472 }
473
474 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
475 {
476         return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
477 }
478
479 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
480 {
481         kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
482         return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
483 }
484
485 /* refresh PMU settings. This function generally is called when underlying
486  * settings are changed (such as changes of PMU CPUID by guest VMs), which
487  * should rarely happen.
488  */
489 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
490 {
491         static_call(kvm_x86_pmu_refresh)(vcpu);
492 }
493
494 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
495 {
496         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
497
498         irq_work_sync(&pmu->irq_work);
499         static_call(kvm_x86_pmu_reset)(vcpu);
500 }
501
502 void kvm_pmu_init(struct kvm_vcpu *vcpu)
503 {
504         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
505
506         memset(pmu, 0, sizeof(*pmu));
507         static_call(kvm_x86_pmu_init)(vcpu);
508         init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
509         pmu->event_count = 0;
510         pmu->need_cleanup = false;
511         kvm_pmu_refresh(vcpu);
512 }
513
514 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
515 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
516 {
517         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
518         struct kvm_pmc *pmc = NULL;
519         DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
520         int i;
521
522         pmu->need_cleanup = false;
523
524         bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
525                       pmu->pmc_in_use, X86_PMC_IDX_MAX);
526
527         for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
528                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
529
530                 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
531                         pmc_stop_counter(pmc);
532         }
533
534         static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
535
536         bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
537 }
538
539 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
540 {
541         kvm_pmu_reset(vcpu);
542 }
543
544 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
545 {
546         pmc->prev_counter = pmc->counter;
547         pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
548         kvm_pmu_request_counter_reprogam(pmc);
549 }
550
551 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
552         unsigned int perf_hw_id)
553 {
554         return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
555                 AMD64_RAW_EVENT_MASK_NB);
556 }
557
558 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
559 {
560         bool select_os, select_user;
561         u64 config;
562
563         if (pmc_is_gp(pmc)) {
564                 config = pmc->eventsel;
565                 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
566                 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
567         } else {
568                 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
569                                           pmc->idx - INTEL_PMC_IDX_FIXED);
570                 select_os = config & 0x1;
571                 select_user = config & 0x2;
572         }
573
574         return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
575 }
576
577 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
578 {
579         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
580         struct kvm_pmc *pmc;
581         int i;
582
583         for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
584                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
585
586                 if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc))
587                         continue;
588
589                 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
590                 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
591                         kvm_pmu_incr_counter(pmc);
592         }
593 }
594 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
595
596 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
597 {
598         struct kvm_pmu_event_filter tmp, *filter;
599         struct kvm_vcpu *vcpu;
600         unsigned long i;
601         size_t size;
602         int r;
603
604         if (copy_from_user(&tmp, argp, sizeof(tmp)))
605                 return -EFAULT;
606
607         if (tmp.action != KVM_PMU_EVENT_ALLOW &&
608             tmp.action != KVM_PMU_EVENT_DENY)
609                 return -EINVAL;
610
611         if (tmp.flags != 0)
612                 return -EINVAL;
613
614         if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
615                 return -E2BIG;
616
617         size = struct_size(filter, events, tmp.nevents);
618         filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
619         if (!filter)
620                 return -ENOMEM;
621
622         r = -EFAULT;
623         if (copy_from_user(filter, argp, size))
624                 goto cleanup;
625
626         /* Ensure nevents can't be changed between the user copies. */
627         *filter = tmp;
628
629         /*
630          * Sort the in-kernel list so that we can search it with bsearch.
631          */
632         sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL);
633
634         mutex_lock(&kvm->lock);
635         filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
636                                      mutex_is_locked(&kvm->lock));
637         synchronize_srcu_expedited(&kvm->srcu);
638
639         BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
640                      sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
641
642         kvm_for_each_vcpu(i, vcpu, kvm)
643                 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
644
645         kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
646
647         mutex_unlock(&kvm->lock);
648
649         r = 0;
650 cleanup:
651         kfree(filter);
652         return r;
653 }