Merge tag 'kvmarm-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm...
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_H
3 #define __KVM_X86_MMU_H
4
5 #include <linux/kvm_host.h>
6 #include "kvm_cache_regs.h"
7 #include "cpuid.h"
8
9 #define PT64_PT_BITS 9
10 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
11 #define PT32_PT_BITS 10
12 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
13
14 #define PT_WRITABLE_SHIFT 1
15 #define PT_USER_SHIFT 2
16
17 #define PT_PRESENT_MASK (1ULL << 0)
18 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
19 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
20 #define PT_PWT_MASK (1ULL << 3)
21 #define PT_PCD_MASK (1ULL << 4)
22 #define PT_ACCESSED_SHIFT 5
23 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
24 #define PT_DIRTY_SHIFT 6
25 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
26 #define PT_PAGE_SIZE_SHIFT 7
27 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
28 #define PT_PAT_MASK (1ULL << 7)
29 #define PT_GLOBAL_MASK (1ULL << 8)
30 #define PT64_NX_SHIFT 63
31 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
32
33 #define PT_PAT_SHIFT 7
34 #define PT_DIR_PAT_SHIFT 12
35 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
36
37 #define PT32_DIR_PSE36_SIZE 4
38 #define PT32_DIR_PSE36_SHIFT 13
39 #define PT32_DIR_PSE36_MASK \
40         (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
41
42 #define PT64_ROOT_5LEVEL 5
43 #define PT64_ROOT_4LEVEL 4
44 #define PT32_ROOT_LEVEL 2
45 #define PT32E_ROOT_LEVEL 3
46
47 static inline u64 rsvd_bits(int s, int e)
48 {
49         if (e < s)
50                 return 0;
51
52         return ((1ULL << (e - s + 1)) - 1) << s;
53 }
54
55 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask);
56
57 void
58 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
59
60 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots);
61 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
62                              gpa_t nested_cr3);
63 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
64                              bool accessed_dirty, gpa_t new_eptp);
65 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
66 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
67                                 u64 fault_address, char *insn, int insn_len);
68
69 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
70 {
71         if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
72                 return 0;
73
74         return kvm_mmu_load(vcpu);
75 }
76
77 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
78 {
79         BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
80
81         return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
82                ? cr3 & X86_CR3_PCID_MASK
83                : 0;
84 }
85
86 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
87 {
88         return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
89 }
90
91 static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
92 {
93         u64 root_hpa = vcpu->arch.mmu->root_hpa;
94
95         if (!VALID_PAGE(root_hpa))
96                 return;
97
98         kvm_x86_ops.load_mmu_pgd(vcpu, root_hpa | kvm_get_active_pcid(vcpu),
99                                  vcpu->arch.mmu->shadow_root_level);
100 }
101
102 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
103                        bool prefault);
104
105 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
106                                         u32 err, bool prefault)
107 {
108 #ifdef CONFIG_RETPOLINE
109         if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
110                 return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
111 #endif
112         return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
113 }
114
115 /*
116  * Currently, we have two sorts of write-protection, a) the first one
117  * write-protects guest page to sync the guest modification, b) another one is
118  * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
119  * between these two sorts are:
120  * 1) the first case clears SPTE_MMU_WRITEABLE bit.
121  * 2) the first case requires flushing tlb immediately avoiding corrupting
122  *    shadow page table between all vcpus so it should be in the protection of
123  *    mmu-lock. And the another case does not need to flush tlb until returning
124  *    the dirty bitmap to userspace since it only write-protects the page
125  *    logged in the bitmap, that means the page in the dirty bitmap is not
126  *    missed, so it can flush tlb out of mmu-lock.
127  *
128  * So, there is the problem: the first case can meet the corrupted tlb caused
129  * by another case which write-protects pages but without flush tlb
130  * immediately. In order to making the first case be aware this problem we let
131  * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
132  * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
133  *
134  * Anyway, whenever a spte is updated (only permission and status bits are
135  * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
136  * readonly, if that happens, we need to flush tlb. Fortunately,
137  * mmu_spte_update() has already handled it perfectly.
138  *
139  * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
140  * - if we want to see if it has writable tlb entry or if the spte can be
141  *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
142  *   case, otherwise
143  * - if we fix page fault on the spte or do write-protection by dirty logging,
144  *   check PT_WRITABLE_MASK.
145  *
146  * TODO: introduce APIs to split these two cases.
147  */
148 static inline int is_writable_pte(unsigned long pte)
149 {
150         return pte & PT_WRITABLE_MASK;
151 }
152
153 static inline bool is_write_protection(struct kvm_vcpu *vcpu)
154 {
155         return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
156 }
157
158 static inline bool kvm_mmu_is_illegal_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
159 {
160         return (gpa >= BIT_ULL(cpuid_maxphyaddr(vcpu)));
161 }
162
163 /*
164  * Check if a given access (described through the I/D, W/R and U/S bits of a
165  * page fault error code pfec) causes a permission fault with the given PTE
166  * access rights (in ACC_* format).
167  *
168  * Return zero if the access does not fault; return the page fault error code
169  * if the access faults.
170  */
171 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
172                                   unsigned pte_access, unsigned pte_pkey,
173                                   unsigned pfec)
174 {
175         int cpl = kvm_x86_ops.get_cpl(vcpu);
176         unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
177
178         /*
179          * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
180          *
181          * If CPL = 3, SMAP applies to all supervisor-mode data accesses
182          * (these are implicit supervisor accesses) regardless of the value
183          * of EFLAGS.AC.
184          *
185          * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
186          * the result in X86_EFLAGS_AC. We then insert it in place of
187          * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
188          * but it will be one in index if SMAP checks are being overridden.
189          * It is important to keep this branchless.
190          */
191         unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
192         int index = (pfec >> 1) +
193                     (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
194         bool fault = (mmu->permissions[index] >> pte_access) & 1;
195         u32 errcode = PFERR_PRESENT_MASK;
196
197         WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
198         if (unlikely(mmu->pkru_mask)) {
199                 u32 pkru_bits, offset;
200
201                 /*
202                 * PKRU defines 32 bits, there are 16 domains and 2
203                 * attribute bits per domain in pkru.  pte_pkey is the
204                 * index of the protection domain, so pte_pkey * 2 is
205                 * is the index of the first bit for the domain.
206                 */
207                 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
208
209                 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
210                 offset = (pfec & ~1) +
211                         ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
212
213                 pkru_bits &= mmu->pkru_mask >> offset;
214                 errcode |= -pkru_bits & PFERR_PK_MASK;
215                 fault |= (pkru_bits != 0);
216         }
217
218         return -(u32)fault & errcode;
219 }
220
221 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
222
223 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
224
225 int kvm_mmu_post_init_vm(struct kvm *kvm);
226 void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
227
228 #endif