KVM: MMU: introduce slot_handle_level_range() and its helpers
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM                8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99                                                 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110                                                 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113                                                 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                             * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123                         | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK    1
126 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
127 #define ACC_USER_MASK    PT_USER_MASK
128 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144         u64 *sptes[PTE_LIST_EXT];
145         struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149         u64 addr;
150         hpa_t shadow_addr;
151         u64 *sptep;
152         int level;
153         unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
157         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
158              shadow_walk_okay(&(_walker));                      \
159              shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
162         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
163              shadow_walk_okay(&(_walker)) &&                            \
164                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
165              __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183         shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188  * the low bit of the generation number is always presumed to be zero.
189  * This disables mmio caching during memslot updates.  The concept is
190  * similar to a seqcount but instead of retrying the access we just punt
191  * and ignore the cache.
192  *
193  * spte bits 3-11 are used as bits 1-9 of the generation number,
194  * the bits 52-61 are used as bits 10-19 of the generation number.
195  */
196 #define MMIO_SPTE_GEN_LOW_SHIFT         2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
198
199 #define MMIO_GEN_SHIFT                  20
200 #define MMIO_GEN_LOW_SHIFT              10
201 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206         u64 mask;
207
208         WARN_ON(gen & ~MMIO_GEN_MASK);
209
210         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212         return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217         unsigned int gen;
218
219         spte &= ~shadow_mmio_mask;
220
221         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223         return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
227 {
228         return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
232                            unsigned access)
233 {
234         unsigned int gen = kvm_current_mmio_generation(kvm);
235         u64 mask = generation_mmio_spte_mask(gen);
236
237         access &= ACC_WRITE_MASK | ACC_USER_MASK;
238         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240         trace_mark_mmio_spte(sptep, gfn, access, gen);
241         mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252         return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258         return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
262                           pfn_t pfn, unsigned access)
263 {
264         if (unlikely(is_noslot_pfn(pfn))) {
265                 mark_mmio_spte(kvm, sptep, gfn, access);
266                 return true;
267         }
268
269         return false;
270 }
271
272 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
273 {
274         unsigned int kvm_gen, spte_gen;
275
276         kvm_gen = kvm_current_mmio_generation(kvm);
277         spte_gen = get_mmio_spte_generation(spte);
278
279         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280         return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286         shadow_user_mask = user_mask;
287         shadow_accessed_mask = accessed_mask;
288         shadow_dirty_mask = dirty_mask;
289         shadow_nx_mask = nx_mask;
290         shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296         return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301         return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311         return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316         return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321         if (level == PT_PAGE_TABLE_LEVEL)
322                 return 1;
323         if (is_large_pte(pte))
324                 return 1;
325         return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337         return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343         *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348         *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353         return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358         return ACCESS_ONCE(*sptep);
359 }
360
361 static bool __check_direct_spte_mmio_pf(u64 spte)
362 {
363         /* It is valid if the spte is zapped. */
364         return spte == 0ull;
365 }
366 #else
367 union split_spte {
368         struct {
369                 u32 spte_low;
370                 u32 spte_high;
371         };
372         u64 spte;
373 };
374
375 static void count_spte_clear(u64 *sptep, u64 spte)
376 {
377         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
378
379         if (is_shadow_present_pte(spte))
380                 return;
381
382         /* Ensure the spte is completely set before we increase the count */
383         smp_wmb();
384         sp->clear_spte_count++;
385 }
386
387 static void __set_spte(u64 *sptep, u64 spte)
388 {
389         union split_spte *ssptep, sspte;
390
391         ssptep = (union split_spte *)sptep;
392         sspte = (union split_spte)spte;
393
394         ssptep->spte_high = sspte.spte_high;
395
396         /*
397          * If we map the spte from nonpresent to present, We should store
398          * the high bits firstly, then set present bit, so cpu can not
399          * fetch this spte while we are setting the spte.
400          */
401         smp_wmb();
402
403         ssptep->spte_low = sspte.spte_low;
404 }
405
406 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
407 {
408         union split_spte *ssptep, sspte;
409
410         ssptep = (union split_spte *)sptep;
411         sspte = (union split_spte)spte;
412
413         ssptep->spte_low = sspte.spte_low;
414
415         /*
416          * If we map the spte from present to nonpresent, we should clear
417          * present bit firstly to avoid vcpu fetch the old high bits.
418          */
419         smp_wmb();
420
421         ssptep->spte_high = sspte.spte_high;
422         count_spte_clear(sptep, spte);
423 }
424
425 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
426 {
427         union split_spte *ssptep, sspte, orig;
428
429         ssptep = (union split_spte *)sptep;
430         sspte = (union split_spte)spte;
431
432         /* xchg acts as a barrier before the setting of the high bits */
433         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
434         orig.spte_high = ssptep->spte_high;
435         ssptep->spte_high = sspte.spte_high;
436         count_spte_clear(sptep, spte);
437
438         return orig.spte;
439 }
440
441 /*
442  * The idea using the light way get the spte on x86_32 guest is from
443  * gup_get_pte(arch/x86/mm/gup.c).
444  *
445  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
446  * coalesces them and we are running out of the MMU lock.  Therefore
447  * we need to protect against in-progress updates of the spte.
448  *
449  * Reading the spte while an update is in progress may get the old value
450  * for the high part of the spte.  The race is fine for a present->non-present
451  * change (because the high part of the spte is ignored for non-present spte),
452  * but for a present->present change we must reread the spte.
453  *
454  * All such changes are done in two steps (present->non-present and
455  * non-present->present), hence it is enough to count the number of
456  * present->non-present updates: if it changed while reading the spte,
457  * we might have hit the race.  This is done using clear_spte_count.
458  */
459 static u64 __get_spte_lockless(u64 *sptep)
460 {
461         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
462         union split_spte spte, *orig = (union split_spte *)sptep;
463         int count;
464
465 retry:
466         count = sp->clear_spte_count;
467         smp_rmb();
468
469         spte.spte_low = orig->spte_low;
470         smp_rmb();
471
472         spte.spte_high = orig->spte_high;
473         smp_rmb();
474
475         if (unlikely(spte.spte_low != orig->spte_low ||
476               count != sp->clear_spte_count))
477                 goto retry;
478
479         return spte.spte;
480 }
481
482 static bool __check_direct_spte_mmio_pf(u64 spte)
483 {
484         union split_spte sspte = (union split_spte)spte;
485         u32 high_mmio_mask = shadow_mmio_mask >> 32;
486
487         /* It is valid if the spte is zapped. */
488         if (spte == 0ull)
489                 return true;
490
491         /* It is valid if the spte is being zapped. */
492         if (sspte.spte_low == 0ull &&
493             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
494                 return true;
495
496         return false;
497 }
498 #endif
499
500 static bool spte_is_locklessly_modifiable(u64 spte)
501 {
502         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
503                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
504 }
505
506 static bool spte_has_volatile_bits(u64 spte)
507 {
508         /*
509          * Always atomicly update spte if it can be updated
510          * out of mmu-lock, it can ensure dirty bit is not lost,
511          * also, it can help us to get a stable is_writable_pte()
512          * to ensure tlb flush is not missed.
513          */
514         if (spte_is_locklessly_modifiable(spte))
515                 return true;
516
517         if (!shadow_accessed_mask)
518                 return false;
519
520         if (!is_shadow_present_pte(spte))
521                 return false;
522
523         if ((spte & shadow_accessed_mask) &&
524               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
525                 return false;
526
527         return true;
528 }
529
530 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
531 {
532         return (old_spte & bit_mask) && !(new_spte & bit_mask);
533 }
534
535 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
536 {
537         return (old_spte & bit_mask) != (new_spte & bit_mask);
538 }
539
540 /* Rules for using mmu_spte_set:
541  * Set the sptep from nonpresent to present.
542  * Note: the sptep being assigned *must* be either not present
543  * or in a state where the hardware will not attempt to update
544  * the spte.
545  */
546 static void mmu_spte_set(u64 *sptep, u64 new_spte)
547 {
548         WARN_ON(is_shadow_present_pte(*sptep));
549         __set_spte(sptep, new_spte);
550 }
551
552 /* Rules for using mmu_spte_update:
553  * Update the state bits, it means the mapped pfn is not changged.
554  *
555  * Whenever we overwrite a writable spte with a read-only one we
556  * should flush remote TLBs. Otherwise rmap_write_protect
557  * will find a read-only spte, even though the writable spte
558  * might be cached on a CPU's TLB, the return value indicates this
559  * case.
560  */
561 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562 {
563         u64 old_spte = *sptep;
564         bool ret = false;
565
566         WARN_ON(!is_rmap_spte(new_spte));
567
568         if (!is_shadow_present_pte(old_spte)) {
569                 mmu_spte_set(sptep, new_spte);
570                 return ret;
571         }
572
573         if (!spte_has_volatile_bits(old_spte))
574                 __update_clear_spte_fast(sptep, new_spte);
575         else
576                 old_spte = __update_clear_spte_slow(sptep, new_spte);
577
578         /*
579          * For the spte updated out of mmu-lock is safe, since
580          * we always atomicly update it, see the comments in
581          * spte_has_volatile_bits().
582          */
583         if (spte_is_locklessly_modifiable(old_spte) &&
584               !is_writable_pte(new_spte))
585                 ret = true;
586
587         if (!shadow_accessed_mask)
588                 return ret;
589
590         /*
591          * Flush TLB when accessed/dirty bits are changed in the page tables,
592          * to guarantee consistency between TLB and page tables.
593          */
594         if (spte_is_bit_changed(old_spte, new_spte,
595                                 shadow_accessed_mask | shadow_dirty_mask))
596                 ret = true;
597
598         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
602
603         return ret;
604 }
605
606 /*
607  * Rules for using mmu_spte_clear_track_bits:
608  * It sets the sptep from present to nonpresent, and track the
609  * state bits, it is used to clear the last level sptep.
610  */
611 static int mmu_spte_clear_track_bits(u64 *sptep)
612 {
613         pfn_t pfn;
614         u64 old_spte = *sptep;
615
616         if (!spte_has_volatile_bits(old_spte))
617                 __update_clear_spte_fast(sptep, 0ull);
618         else
619                 old_spte = __update_clear_spte_slow(sptep, 0ull);
620
621         if (!is_rmap_spte(old_spte))
622                 return 0;
623
624         pfn = spte_to_pfn(old_spte);
625
626         /*
627          * KVM does not hold the refcount of the page used by
628          * kvm mmu, before reclaiming the page, we should
629          * unmap it from mmu first.
630          */
631         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632
633         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634                 kvm_set_pfn_accessed(pfn);
635         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636                 kvm_set_pfn_dirty(pfn);
637         return 1;
638 }
639
640 /*
641  * Rules for using mmu_spte_clear_no_track:
642  * Directly clear spte without caring the state bits of sptep,
643  * it is used to set the upper level spte.
644  */
645 static void mmu_spte_clear_no_track(u64 *sptep)
646 {
647         __update_clear_spte_fast(sptep, 0ull);
648 }
649
650 static u64 mmu_spte_get_lockless(u64 *sptep)
651 {
652         return __get_spte_lockless(sptep);
653 }
654
655 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656 {
657         /*
658          * Prevent page table teardown by making any free-er wait during
659          * kvm_flush_remote_tlbs() IPI to all active vcpus.
660          */
661         local_irq_disable();
662         vcpu->mode = READING_SHADOW_PAGE_TABLES;
663         /*
664          * Make sure a following spte read is not reordered ahead of the write
665          * to vcpu->mode.
666          */
667         smp_mb();
668 }
669
670 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671 {
672         /*
673          * Make sure the write to vcpu->mode is not reordered in front of
674          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
675          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676          */
677         smp_mb();
678         vcpu->mode = OUTSIDE_GUEST_MODE;
679         local_irq_enable();
680 }
681
682 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
683                                   struct kmem_cache *base_cache, int min)
684 {
685         void *obj;
686
687         if (cache->nobjs >= min)
688                 return 0;
689         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
691                 if (!obj)
692                         return -ENOMEM;
693                 cache->objects[cache->nobjs++] = obj;
694         }
695         return 0;
696 }
697
698 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699 {
700         return cache->nobjs;
701 }
702
703 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704                                   struct kmem_cache *cache)
705 {
706         while (mc->nobjs)
707                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
708 }
709
710 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
711                                        int min)
712 {
713         void *page;
714
715         if (cache->nobjs >= min)
716                 return 0;
717         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
718                 page = (void *)__get_free_page(GFP_KERNEL);
719                 if (!page)
720                         return -ENOMEM;
721                 cache->objects[cache->nobjs++] = page;
722         }
723         return 0;
724 }
725
726 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727 {
728         while (mc->nobjs)
729                 free_page((unsigned long)mc->objects[--mc->nobjs]);
730 }
731
732 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
733 {
734         int r;
735
736         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
738         if (r)
739                 goto out;
740         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
741         if (r)
742                 goto out;
743         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
744                                    mmu_page_header_cache, 4);
745 out:
746         return r;
747 }
748
749 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750 {
751         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752                                 pte_list_desc_cache);
753         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
754         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755                                 mmu_page_header_cache);
756 }
757
758 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
759 {
760         void *p;
761
762         BUG_ON(!mc->nobjs);
763         p = mc->objects[--mc->nobjs];
764         return p;
765 }
766
767 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
768 {
769         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
770 }
771
772 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
773 {
774         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
775 }
776
777 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778 {
779         if (!sp->role.direct)
780                 return sp->gfns[index];
781
782         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783 }
784
785 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786 {
787         if (sp->role.direct)
788                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789         else
790                 sp->gfns[index] = gfn;
791 }
792
793 /*
794  * Return the pointer to the large page information for a given gfn,
795  * handling slots that are not large page aligned.
796  */
797 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798                                               struct kvm_memory_slot *slot,
799                                               int level)
800 {
801         unsigned long idx;
802
803         idx = gfn_to_index(gfn, slot->base_gfn, level);
804         return &slot->arch.lpage_info[level - 2][idx];
805 }
806
807 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
808 {
809         struct kvm_memory_slot *slot;
810         struct kvm_lpage_info *linfo;
811         int i;
812
813         slot = gfn_to_memslot(kvm, gfn);
814         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
815                 linfo = lpage_info_slot(gfn, slot, i);
816                 linfo->write_count += 1;
817         }
818         kvm->arch.indirect_shadow_pages++;
819 }
820
821 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
822 {
823         struct kvm_memory_slot *slot;
824         struct kvm_lpage_info *linfo;
825         int i;
826
827         slot = gfn_to_memslot(kvm, gfn);
828         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
829                 linfo = lpage_info_slot(gfn, slot, i);
830                 linfo->write_count -= 1;
831                 WARN_ON(linfo->write_count < 0);
832         }
833         kvm->arch.indirect_shadow_pages--;
834 }
835
836 static int has_wrprotected_page(struct kvm *kvm,
837                                 gfn_t gfn,
838                                 int level)
839 {
840         struct kvm_memory_slot *slot;
841         struct kvm_lpage_info *linfo;
842
843         slot = gfn_to_memslot(kvm, gfn);
844         if (slot) {
845                 linfo = lpage_info_slot(gfn, slot, level);
846                 return linfo->write_count;
847         }
848
849         return 1;
850 }
851
852 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
853 {
854         unsigned long page_size;
855         int i, ret = 0;
856
857         page_size = kvm_host_page_size(kvm, gfn);
858
859         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
860                 if (page_size >= KVM_HPAGE_SIZE(i))
861                         ret = i;
862                 else
863                         break;
864         }
865
866         return ret;
867 }
868
869 static struct kvm_memory_slot *
870 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
871                             bool no_dirty_log)
872 {
873         struct kvm_memory_slot *slot;
874
875         slot = gfn_to_memslot(vcpu->kvm, gfn);
876         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
877               (no_dirty_log && slot->dirty_bitmap))
878                 slot = NULL;
879
880         return slot;
881 }
882
883 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
884 {
885         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
886 }
887
888 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
889 {
890         int host_level, level, max_level;
891
892         host_level = host_mapping_level(vcpu->kvm, large_gfn);
893
894         if (host_level == PT_PAGE_TABLE_LEVEL)
895                 return host_level;
896
897         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
898
899         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
900                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
901                         break;
902
903         return level - 1;
904 }
905
906 /*
907  * Pte mapping structures:
908  *
909  * If pte_list bit zero is zero, then pte_list point to the spte.
910  *
911  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
912  * pte_list_desc containing more mappings.
913  *
914  * Returns the number of pte entries before the spte was added or zero if
915  * the spte was not added.
916  *
917  */
918 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
919                         unsigned long *pte_list)
920 {
921         struct pte_list_desc *desc;
922         int i, count = 0;
923
924         if (!*pte_list) {
925                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
926                 *pte_list = (unsigned long)spte;
927         } else if (!(*pte_list & 1)) {
928                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
929                 desc = mmu_alloc_pte_list_desc(vcpu);
930                 desc->sptes[0] = (u64 *)*pte_list;
931                 desc->sptes[1] = spte;
932                 *pte_list = (unsigned long)desc | 1;
933                 ++count;
934         } else {
935                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
936                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
937                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
938                         desc = desc->more;
939                         count += PTE_LIST_EXT;
940                 }
941                 if (desc->sptes[PTE_LIST_EXT-1]) {
942                         desc->more = mmu_alloc_pte_list_desc(vcpu);
943                         desc = desc->more;
944                 }
945                 for (i = 0; desc->sptes[i]; ++i)
946                         ++count;
947                 desc->sptes[i] = spte;
948         }
949         return count;
950 }
951
952 static void
953 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
954                            int i, struct pte_list_desc *prev_desc)
955 {
956         int j;
957
958         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
959                 ;
960         desc->sptes[i] = desc->sptes[j];
961         desc->sptes[j] = NULL;
962         if (j != 0)
963                 return;
964         if (!prev_desc && !desc->more)
965                 *pte_list = (unsigned long)desc->sptes[0];
966         else
967                 if (prev_desc)
968                         prev_desc->more = desc->more;
969                 else
970                         *pte_list = (unsigned long)desc->more | 1;
971         mmu_free_pte_list_desc(desc);
972 }
973
974 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
975 {
976         struct pte_list_desc *desc;
977         struct pte_list_desc *prev_desc;
978         int i;
979
980         if (!*pte_list) {
981                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
982                 BUG();
983         } else if (!(*pte_list & 1)) {
984                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
985                 if ((u64 *)*pte_list != spte) {
986                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
987                         BUG();
988                 }
989                 *pte_list = 0;
990         } else {
991                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
992                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
993                 prev_desc = NULL;
994                 while (desc) {
995                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
996                                 if (desc->sptes[i] == spte) {
997                                         pte_list_desc_remove_entry(pte_list,
998                                                                desc, i,
999                                                                prev_desc);
1000                                         return;
1001                                 }
1002                         prev_desc = desc;
1003                         desc = desc->more;
1004                 }
1005                 pr_err("pte_list_remove: %p many->many\n", spte);
1006                 BUG();
1007         }
1008 }
1009
1010 typedef void (*pte_list_walk_fn) (u64 *spte);
1011 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1012 {
1013         struct pte_list_desc *desc;
1014         int i;
1015
1016         if (!*pte_list)
1017                 return;
1018
1019         if (!(*pte_list & 1))
1020                 return fn((u64 *)*pte_list);
1021
1022         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1023         while (desc) {
1024                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1025                         fn(desc->sptes[i]);
1026                 desc = desc->more;
1027         }
1028 }
1029
1030 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1031                                     struct kvm_memory_slot *slot)
1032 {
1033         unsigned long idx;
1034
1035         idx = gfn_to_index(gfn, slot->base_gfn, level);
1036         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1037 }
1038
1039 /*
1040  * Take gfn and return the reverse mapping to it.
1041  */
1042 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1043 {
1044         struct kvm_memory_slot *slot;
1045
1046         slot = gfn_to_memslot(kvm, gfn);
1047         return __gfn_to_rmap(gfn, level, slot);
1048 }
1049
1050 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1051 {
1052         struct kvm_mmu_memory_cache *cache;
1053
1054         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1055         return mmu_memory_cache_free_objects(cache);
1056 }
1057
1058 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1059 {
1060         struct kvm_mmu_page *sp;
1061         unsigned long *rmapp;
1062
1063         sp = page_header(__pa(spte));
1064         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1065         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1066         return pte_list_add(vcpu, spte, rmapp);
1067 }
1068
1069 static void rmap_remove(struct kvm *kvm, u64 *spte)
1070 {
1071         struct kvm_mmu_page *sp;
1072         gfn_t gfn;
1073         unsigned long *rmapp;
1074
1075         sp = page_header(__pa(spte));
1076         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1077         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1078         pte_list_remove(spte, rmapp);
1079 }
1080
1081 /*
1082  * Used by the following functions to iterate through the sptes linked by a
1083  * rmap.  All fields are private and not assumed to be used outside.
1084  */
1085 struct rmap_iterator {
1086         /* private fields */
1087         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1088         int pos;                        /* index of the sptep */
1089 };
1090
1091 /*
1092  * Iteration must be started by this function.  This should also be used after
1093  * removing/dropping sptes from the rmap link because in such cases the
1094  * information in the itererator may not be valid.
1095  *
1096  * Returns sptep if found, NULL otherwise.
1097  */
1098 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1099 {
1100         if (!rmap)
1101                 return NULL;
1102
1103         if (!(rmap & 1)) {
1104                 iter->desc = NULL;
1105                 return (u64 *)rmap;
1106         }
1107
1108         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1109         iter->pos = 0;
1110         return iter->desc->sptes[iter->pos];
1111 }
1112
1113 /*
1114  * Must be used with a valid iterator: e.g. after rmap_get_first().
1115  *
1116  * Returns sptep if found, NULL otherwise.
1117  */
1118 static u64 *rmap_get_next(struct rmap_iterator *iter)
1119 {
1120         if (iter->desc) {
1121                 if (iter->pos < PTE_LIST_EXT - 1) {
1122                         u64 *sptep;
1123
1124                         ++iter->pos;
1125                         sptep = iter->desc->sptes[iter->pos];
1126                         if (sptep)
1127                                 return sptep;
1128                 }
1129
1130                 iter->desc = iter->desc->more;
1131
1132                 if (iter->desc) {
1133                         iter->pos = 0;
1134                         /* desc->sptes[0] cannot be NULL */
1135                         return iter->desc->sptes[iter->pos];
1136                 }
1137         }
1138
1139         return NULL;
1140 }
1141
1142 #define for_each_rmap_spte(_rmap_, _iter_, _spte_)                          \
1143            for (_spte_ = rmap_get_first(*_rmap_, _iter_);                   \
1144                 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;});  \
1145                         _spte_ = rmap_get_next(_iter_))
1146
1147 static void drop_spte(struct kvm *kvm, u64 *sptep)
1148 {
1149         if (mmu_spte_clear_track_bits(sptep))
1150                 rmap_remove(kvm, sptep);
1151 }
1152
1153
1154 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1155 {
1156         if (is_large_pte(*sptep)) {
1157                 WARN_ON(page_header(__pa(sptep))->role.level ==
1158                         PT_PAGE_TABLE_LEVEL);
1159                 drop_spte(kvm, sptep);
1160                 --kvm->stat.lpages;
1161                 return true;
1162         }
1163
1164         return false;
1165 }
1166
1167 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1168 {
1169         if (__drop_large_spte(vcpu->kvm, sptep))
1170                 kvm_flush_remote_tlbs(vcpu->kvm);
1171 }
1172
1173 /*
1174  * Write-protect on the specified @sptep, @pt_protect indicates whether
1175  * spte write-protection is caused by protecting shadow page table.
1176  *
1177  * Note: write protection is difference between dirty logging and spte
1178  * protection:
1179  * - for dirty logging, the spte can be set to writable at anytime if
1180  *   its dirty bitmap is properly set.
1181  * - for spte protection, the spte can be writable only after unsync-ing
1182  *   shadow page.
1183  *
1184  * Return true if tlb need be flushed.
1185  */
1186 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1187 {
1188         u64 spte = *sptep;
1189
1190         if (!is_writable_pte(spte) &&
1191               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1192                 return false;
1193
1194         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1195
1196         if (pt_protect)
1197                 spte &= ~SPTE_MMU_WRITEABLE;
1198         spte = spte & ~PT_WRITABLE_MASK;
1199
1200         return mmu_spte_update(sptep, spte);
1201 }
1202
1203 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1204                                  bool pt_protect)
1205 {
1206         u64 *sptep;
1207         struct rmap_iterator iter;
1208         bool flush = false;
1209
1210         for_each_rmap_spte(rmapp, &iter, sptep)
1211                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1212
1213         return flush;
1214 }
1215
1216 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1217 {
1218         u64 spte = *sptep;
1219
1220         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1221
1222         spte &= ~shadow_dirty_mask;
1223
1224         return mmu_spte_update(sptep, spte);
1225 }
1226
1227 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1228 {
1229         u64 *sptep;
1230         struct rmap_iterator iter;
1231         bool flush = false;
1232
1233         for_each_rmap_spte(rmapp, &iter, sptep)
1234                 flush |= spte_clear_dirty(kvm, sptep);
1235
1236         return flush;
1237 }
1238
1239 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1240 {
1241         u64 spte = *sptep;
1242
1243         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1244
1245         spte |= shadow_dirty_mask;
1246
1247         return mmu_spte_update(sptep, spte);
1248 }
1249
1250 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1251 {
1252         u64 *sptep;
1253         struct rmap_iterator iter;
1254         bool flush = false;
1255
1256         for_each_rmap_spte(rmapp, &iter, sptep)
1257                 flush |= spte_set_dirty(kvm, sptep);
1258
1259         return flush;
1260 }
1261
1262 /**
1263  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1264  * @kvm: kvm instance
1265  * @slot: slot to protect
1266  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1267  * @mask: indicates which pages we should protect
1268  *
1269  * Used when we do not need to care about huge page mappings: e.g. during dirty
1270  * logging we do not have any such mappings.
1271  */
1272 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1273                                      struct kvm_memory_slot *slot,
1274                                      gfn_t gfn_offset, unsigned long mask)
1275 {
1276         unsigned long *rmapp;
1277
1278         while (mask) {
1279                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1280                                       PT_PAGE_TABLE_LEVEL, slot);
1281                 __rmap_write_protect(kvm, rmapp, false);
1282
1283                 /* clear the first set bit */
1284                 mask &= mask - 1;
1285         }
1286 }
1287
1288 /**
1289  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1290  * @kvm: kvm instance
1291  * @slot: slot to clear D-bit
1292  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1293  * @mask: indicates which pages we should clear D-bit
1294  *
1295  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1296  */
1297 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1298                                      struct kvm_memory_slot *slot,
1299                                      gfn_t gfn_offset, unsigned long mask)
1300 {
1301         unsigned long *rmapp;
1302
1303         while (mask) {
1304                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1305                                       PT_PAGE_TABLE_LEVEL, slot);
1306                 __rmap_clear_dirty(kvm, rmapp);
1307
1308                 /* clear the first set bit */
1309                 mask &= mask - 1;
1310         }
1311 }
1312 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1313
1314 /**
1315  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1316  * PT level pages.
1317  *
1318  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1319  * enable dirty logging for them.
1320  *
1321  * Used when we do not need to care about huge page mappings: e.g. during dirty
1322  * logging we do not have any such mappings.
1323  */
1324 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1325                                 struct kvm_memory_slot *slot,
1326                                 gfn_t gfn_offset, unsigned long mask)
1327 {
1328         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1329                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1330                                 mask);
1331         else
1332                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1333 }
1334
1335 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1336 {
1337         struct kvm_memory_slot *slot;
1338         unsigned long *rmapp;
1339         int i;
1340         bool write_protected = false;
1341
1342         slot = gfn_to_memslot(kvm, gfn);
1343
1344         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1345                 rmapp = __gfn_to_rmap(gfn, i, slot);
1346                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1347         }
1348
1349         return write_protected;
1350 }
1351
1352 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1353                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1354                            unsigned long data)
1355 {
1356         u64 *sptep;
1357         struct rmap_iterator iter;
1358         int need_tlb_flush = 0;
1359
1360         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1361                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1362                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1363                              sptep, *sptep, gfn, level);
1364
1365                 drop_spte(kvm, sptep);
1366                 need_tlb_flush = 1;
1367         }
1368
1369         return need_tlb_flush;
1370 }
1371
1372 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1373                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1374                              unsigned long data)
1375 {
1376         u64 *sptep;
1377         struct rmap_iterator iter;
1378         int need_flush = 0;
1379         u64 new_spte;
1380         pte_t *ptep = (pte_t *)data;
1381         pfn_t new_pfn;
1382
1383         WARN_ON(pte_huge(*ptep));
1384         new_pfn = pte_pfn(*ptep);
1385
1386 restart:
1387         for_each_rmap_spte(rmapp, &iter, sptep) {
1388                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1389                              sptep, *sptep, gfn, level);
1390
1391                 need_flush = 1;
1392
1393                 if (pte_write(*ptep)) {
1394                         drop_spte(kvm, sptep);
1395                         goto restart;
1396                 } else {
1397                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1398                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1399
1400                         new_spte &= ~PT_WRITABLE_MASK;
1401                         new_spte &= ~SPTE_HOST_WRITEABLE;
1402                         new_spte &= ~shadow_accessed_mask;
1403
1404                         mmu_spte_clear_track_bits(sptep);
1405                         mmu_spte_set(sptep, new_spte);
1406                 }
1407         }
1408
1409         if (need_flush)
1410                 kvm_flush_remote_tlbs(kvm);
1411
1412         return 0;
1413 }
1414
1415 struct slot_rmap_walk_iterator {
1416         /* input fields. */
1417         struct kvm_memory_slot *slot;
1418         gfn_t start_gfn;
1419         gfn_t end_gfn;
1420         int start_level;
1421         int end_level;
1422
1423         /* output fields. */
1424         gfn_t gfn;
1425         unsigned long *rmap;
1426         int level;
1427
1428         /* private field. */
1429         unsigned long *end_rmap;
1430 };
1431
1432 static void
1433 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1434 {
1435         iterator->level = level;
1436         iterator->gfn = iterator->start_gfn;
1437         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1438         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1439                                            iterator->slot);
1440 }
1441
1442 static void
1443 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1444                     struct kvm_memory_slot *slot, int start_level,
1445                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1446 {
1447         iterator->slot = slot;
1448         iterator->start_level = start_level;
1449         iterator->end_level = end_level;
1450         iterator->start_gfn = start_gfn;
1451         iterator->end_gfn = end_gfn;
1452
1453         rmap_walk_init_level(iterator, iterator->start_level);
1454 }
1455
1456 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1457 {
1458         return !!iterator->rmap;
1459 }
1460
1461 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1462 {
1463         if (++iterator->rmap <= iterator->end_rmap) {
1464                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1465                 return;
1466         }
1467
1468         if (++iterator->level > iterator->end_level) {
1469                 iterator->rmap = NULL;
1470                 return;
1471         }
1472
1473         rmap_walk_init_level(iterator, iterator->level);
1474 }
1475
1476 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1477            _start_gfn, _end_gfn, _iter_)                                \
1478         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1479                                  _end_level_, _start_gfn, _end_gfn);    \
1480              slot_rmap_walk_okay(_iter_);                               \
1481              slot_rmap_walk_next(_iter_))
1482
1483 static int kvm_handle_hva_range(struct kvm *kvm,
1484                                 unsigned long start,
1485                                 unsigned long end,
1486                                 unsigned long data,
1487                                 int (*handler)(struct kvm *kvm,
1488                                                unsigned long *rmapp,
1489                                                struct kvm_memory_slot *slot,
1490                                                gfn_t gfn,
1491                                                int level,
1492                                                unsigned long data))
1493 {
1494         struct kvm_memslots *slots;
1495         struct kvm_memory_slot *memslot;
1496         struct slot_rmap_walk_iterator iterator;
1497         int ret = 0;
1498
1499         slots = kvm_memslots(kvm);
1500
1501         kvm_for_each_memslot(memslot, slots) {
1502                 unsigned long hva_start, hva_end;
1503                 gfn_t gfn_start, gfn_end;
1504
1505                 hva_start = max(start, memslot->userspace_addr);
1506                 hva_end = min(end, memslot->userspace_addr +
1507                                         (memslot->npages << PAGE_SHIFT));
1508                 if (hva_start >= hva_end)
1509                         continue;
1510                 /*
1511                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1512                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1513                  */
1514                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1515                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1516
1517                 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1518                                 PT_MAX_HUGEPAGE_LEVEL, gfn_start, gfn_end - 1,
1519                                 &iterator)
1520                         ret |= handler(kvm, iterator.rmap, memslot,
1521                                        iterator.gfn, iterator.level, data);
1522         }
1523
1524         return ret;
1525 }
1526
1527 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1528                           unsigned long data,
1529                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1530                                          struct kvm_memory_slot *slot,
1531                                          gfn_t gfn, int level,
1532                                          unsigned long data))
1533 {
1534         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1535 }
1536
1537 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1538 {
1539         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1540 }
1541
1542 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1543 {
1544         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1545 }
1546
1547 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1548 {
1549         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1550 }
1551
1552 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1553                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1554                          unsigned long data)
1555 {
1556         u64 *sptep;
1557         struct rmap_iterator uninitialized_var(iter);
1558         int young = 0;
1559
1560         BUG_ON(!shadow_accessed_mask);
1561
1562         for_each_rmap_spte(rmapp, &iter, sptep)
1563                 if (*sptep & shadow_accessed_mask) {
1564                         young = 1;
1565                         clear_bit((ffs(shadow_accessed_mask) - 1),
1566                                  (unsigned long *)sptep);
1567                 }
1568
1569         trace_kvm_age_page(gfn, level, slot, young);
1570         return young;
1571 }
1572
1573 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1574                               struct kvm_memory_slot *slot, gfn_t gfn,
1575                               int level, unsigned long data)
1576 {
1577         u64 *sptep;
1578         struct rmap_iterator iter;
1579         int young = 0;
1580
1581         /*
1582          * If there's no access bit in the secondary pte set by the
1583          * hardware it's up to gup-fast/gup to set the access bit in
1584          * the primary pte or in the page structure.
1585          */
1586         if (!shadow_accessed_mask)
1587                 goto out;
1588
1589         for_each_rmap_spte(rmapp, &iter, sptep)
1590                 if (*sptep & shadow_accessed_mask) {
1591                         young = 1;
1592                         break;
1593                 }
1594 out:
1595         return young;
1596 }
1597
1598 #define RMAP_RECYCLE_THRESHOLD 1000
1599
1600 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1601 {
1602         unsigned long *rmapp;
1603         struct kvm_mmu_page *sp;
1604
1605         sp = page_header(__pa(spte));
1606
1607         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1608
1609         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1610         kvm_flush_remote_tlbs(vcpu->kvm);
1611 }
1612
1613 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1614 {
1615         /*
1616          * In case of absence of EPT Access and Dirty Bits supports,
1617          * emulate the accessed bit for EPT, by checking if this page has
1618          * an EPT mapping, and clearing it if it does. On the next access,
1619          * a new EPT mapping will be established.
1620          * This has some overhead, but not as much as the cost of swapping
1621          * out actively used pages or breaking up actively used hugepages.
1622          */
1623         if (!shadow_accessed_mask) {
1624                 /*
1625                  * We are holding the kvm->mmu_lock, and we are blowing up
1626                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1627                  * This is correct as long as we don't decouple the mmu_lock
1628                  * protected regions (like invalidate_range_start|end does).
1629                  */
1630                 kvm->mmu_notifier_seq++;
1631                 return kvm_handle_hva_range(kvm, start, end, 0,
1632                                             kvm_unmap_rmapp);
1633         }
1634
1635         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1636 }
1637
1638 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1639 {
1640         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1641 }
1642
1643 #ifdef MMU_DEBUG
1644 static int is_empty_shadow_page(u64 *spt)
1645 {
1646         u64 *pos;
1647         u64 *end;
1648
1649         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1650                 if (is_shadow_present_pte(*pos)) {
1651                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1652                                pos, *pos);
1653                         return 0;
1654                 }
1655         return 1;
1656 }
1657 #endif
1658
1659 /*
1660  * This value is the sum of all of the kvm instances's
1661  * kvm->arch.n_used_mmu_pages values.  We need a global,
1662  * aggregate version in order to make the slab shrinker
1663  * faster
1664  */
1665 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1666 {
1667         kvm->arch.n_used_mmu_pages += nr;
1668         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1669 }
1670
1671 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1672 {
1673         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1674         hlist_del(&sp->hash_link);
1675         list_del(&sp->link);
1676         free_page((unsigned long)sp->spt);
1677         if (!sp->role.direct)
1678                 free_page((unsigned long)sp->gfns);
1679         kmem_cache_free(mmu_page_header_cache, sp);
1680 }
1681
1682 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1683 {
1684         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1685 }
1686
1687 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1688                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1689 {
1690         if (!parent_pte)
1691                 return;
1692
1693         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1694 }
1695
1696 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1697                                        u64 *parent_pte)
1698 {
1699         pte_list_remove(parent_pte, &sp->parent_ptes);
1700 }
1701
1702 static void drop_parent_pte(struct kvm_mmu_page *sp,
1703                             u64 *parent_pte)
1704 {
1705         mmu_page_remove_parent_pte(sp, parent_pte);
1706         mmu_spte_clear_no_track(parent_pte);
1707 }
1708
1709 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1710                                                u64 *parent_pte, int direct)
1711 {
1712         struct kvm_mmu_page *sp;
1713
1714         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1715         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1716         if (!direct)
1717                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1718         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1719
1720         /*
1721          * The active_mmu_pages list is the FIFO list, do not move the
1722          * page until it is zapped. kvm_zap_obsolete_pages depends on
1723          * this feature. See the comments in kvm_zap_obsolete_pages().
1724          */
1725         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1726         sp->parent_ptes = 0;
1727         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1728         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1729         return sp;
1730 }
1731
1732 static void mark_unsync(u64 *spte);
1733 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1734 {
1735         pte_list_walk(&sp->parent_ptes, mark_unsync);
1736 }
1737
1738 static void mark_unsync(u64 *spte)
1739 {
1740         struct kvm_mmu_page *sp;
1741         unsigned int index;
1742
1743         sp = page_header(__pa(spte));
1744         index = spte - sp->spt;
1745         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1746                 return;
1747         if (sp->unsync_children++)
1748                 return;
1749         kvm_mmu_mark_parents_unsync(sp);
1750 }
1751
1752 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1753                                struct kvm_mmu_page *sp)
1754 {
1755         return 1;
1756 }
1757
1758 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1759 {
1760 }
1761
1762 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1763                                  struct kvm_mmu_page *sp, u64 *spte,
1764                                  const void *pte)
1765 {
1766         WARN_ON(1);
1767 }
1768
1769 #define KVM_PAGE_ARRAY_NR 16
1770
1771 struct kvm_mmu_pages {
1772         struct mmu_page_and_offset {
1773                 struct kvm_mmu_page *sp;
1774                 unsigned int idx;
1775         } page[KVM_PAGE_ARRAY_NR];
1776         unsigned int nr;
1777 };
1778
1779 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1780                          int idx)
1781 {
1782         int i;
1783
1784         if (sp->unsync)
1785                 for (i=0; i < pvec->nr; i++)
1786                         if (pvec->page[i].sp == sp)
1787                                 return 0;
1788
1789         pvec->page[pvec->nr].sp = sp;
1790         pvec->page[pvec->nr].idx = idx;
1791         pvec->nr++;
1792         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1793 }
1794
1795 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1796                            struct kvm_mmu_pages *pvec)
1797 {
1798         int i, ret, nr_unsync_leaf = 0;
1799
1800         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1801                 struct kvm_mmu_page *child;
1802                 u64 ent = sp->spt[i];
1803
1804                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1805                         goto clear_child_bitmap;
1806
1807                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1808
1809                 if (child->unsync_children) {
1810                         if (mmu_pages_add(pvec, child, i))
1811                                 return -ENOSPC;
1812
1813                         ret = __mmu_unsync_walk(child, pvec);
1814                         if (!ret)
1815                                 goto clear_child_bitmap;
1816                         else if (ret > 0)
1817                                 nr_unsync_leaf += ret;
1818                         else
1819                                 return ret;
1820                 } else if (child->unsync) {
1821                         nr_unsync_leaf++;
1822                         if (mmu_pages_add(pvec, child, i))
1823                                 return -ENOSPC;
1824                 } else
1825                          goto clear_child_bitmap;
1826
1827                 continue;
1828
1829 clear_child_bitmap:
1830                 __clear_bit(i, sp->unsync_child_bitmap);
1831                 sp->unsync_children--;
1832                 WARN_ON((int)sp->unsync_children < 0);
1833         }
1834
1835
1836         return nr_unsync_leaf;
1837 }
1838
1839 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1840                            struct kvm_mmu_pages *pvec)
1841 {
1842         if (!sp->unsync_children)
1843                 return 0;
1844
1845         mmu_pages_add(pvec, sp, 0);
1846         return __mmu_unsync_walk(sp, pvec);
1847 }
1848
1849 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1850 {
1851         WARN_ON(!sp->unsync);
1852         trace_kvm_mmu_sync_page(sp);
1853         sp->unsync = 0;
1854         --kvm->stat.mmu_unsync;
1855 }
1856
1857 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1858                                     struct list_head *invalid_list);
1859 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1860                                     struct list_head *invalid_list);
1861
1862 /*
1863  * NOTE: we should pay more attention on the zapped-obsolete page
1864  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1865  * since it has been deleted from active_mmu_pages but still can be found
1866  * at hast list.
1867  *
1868  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1869  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1870  * all the obsolete pages.
1871  */
1872 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1873         hlist_for_each_entry(_sp,                                       \
1874           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1875                 if ((_sp)->gfn != (_gfn)) {} else
1876
1877 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1878         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1879                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1880
1881 /* @sp->gfn should be write-protected at the call site */
1882 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1883                            struct list_head *invalid_list, bool clear_unsync)
1884 {
1885         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1886                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1887                 return 1;
1888         }
1889
1890         if (clear_unsync)
1891                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1892
1893         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1894                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1895                 return 1;
1896         }
1897
1898         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1899         return 0;
1900 }
1901
1902 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1903                                    struct kvm_mmu_page *sp)
1904 {
1905         LIST_HEAD(invalid_list);
1906         int ret;
1907
1908         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1909         if (ret)
1910                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1911
1912         return ret;
1913 }
1914
1915 #ifdef CONFIG_KVM_MMU_AUDIT
1916 #include "mmu_audit.c"
1917 #else
1918 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1919 static void mmu_audit_disable(void) { }
1920 #endif
1921
1922 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1923                          struct list_head *invalid_list)
1924 {
1925         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1926 }
1927
1928 /* @gfn should be write-protected at the call site */
1929 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1930 {
1931         struct kvm_mmu_page *s;
1932         LIST_HEAD(invalid_list);
1933         bool flush = false;
1934
1935         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1936                 if (!s->unsync)
1937                         continue;
1938
1939                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1940                 kvm_unlink_unsync_page(vcpu->kvm, s);
1941                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1942                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1943                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1944                         continue;
1945                 }
1946                 flush = true;
1947         }
1948
1949         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1950         if (flush)
1951                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1952 }
1953
1954 struct mmu_page_path {
1955         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1956         unsigned int idx[PT64_ROOT_LEVEL-1];
1957 };
1958
1959 #define for_each_sp(pvec, sp, parents, i)                       \
1960                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1961                         sp = pvec.page[i].sp;                   \
1962                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1963                         i = mmu_pages_next(&pvec, &parents, i))
1964
1965 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1966                           struct mmu_page_path *parents,
1967                           int i)
1968 {
1969         int n;
1970
1971         for (n = i+1; n < pvec->nr; n++) {
1972                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1973
1974                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1975                         parents->idx[0] = pvec->page[n].idx;
1976                         return n;
1977                 }
1978
1979                 parents->parent[sp->role.level-2] = sp;
1980                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1981         }
1982
1983         return n;
1984 }
1985
1986 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1987 {
1988         struct kvm_mmu_page *sp;
1989         unsigned int level = 0;
1990
1991         do {
1992                 unsigned int idx = parents->idx[level];
1993
1994                 sp = parents->parent[level];
1995                 if (!sp)
1996                         return;
1997
1998                 --sp->unsync_children;
1999                 WARN_ON((int)sp->unsync_children < 0);
2000                 __clear_bit(idx, sp->unsync_child_bitmap);
2001                 level++;
2002         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2003 }
2004
2005 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2006                                struct mmu_page_path *parents,
2007                                struct kvm_mmu_pages *pvec)
2008 {
2009         parents->parent[parent->role.level-1] = NULL;
2010         pvec->nr = 0;
2011 }
2012
2013 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2014                               struct kvm_mmu_page *parent)
2015 {
2016         int i;
2017         struct kvm_mmu_page *sp;
2018         struct mmu_page_path parents;
2019         struct kvm_mmu_pages pages;
2020         LIST_HEAD(invalid_list);
2021
2022         kvm_mmu_pages_init(parent, &parents, &pages);
2023         while (mmu_unsync_walk(parent, &pages)) {
2024                 bool protected = false;
2025
2026                 for_each_sp(pages, sp, parents, i)
2027                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
2028
2029                 if (protected)
2030                         kvm_flush_remote_tlbs(vcpu->kvm);
2031
2032                 for_each_sp(pages, sp, parents, i) {
2033                         kvm_sync_page(vcpu, sp, &invalid_list);
2034                         mmu_pages_clear_parents(&parents);
2035                 }
2036                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2037                 cond_resched_lock(&vcpu->kvm->mmu_lock);
2038                 kvm_mmu_pages_init(parent, &parents, &pages);
2039         }
2040 }
2041
2042 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2043 {
2044         int i;
2045
2046         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2047                 sp->spt[i] = 0ull;
2048 }
2049
2050 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2051 {
2052         sp->write_flooding_count = 0;
2053 }
2054
2055 static void clear_sp_write_flooding_count(u64 *spte)
2056 {
2057         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2058
2059         __clear_sp_write_flooding_count(sp);
2060 }
2061
2062 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2063 {
2064         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2065 }
2066
2067 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2068                                              gfn_t gfn,
2069                                              gva_t gaddr,
2070                                              unsigned level,
2071                                              int direct,
2072                                              unsigned access,
2073                                              u64 *parent_pte)
2074 {
2075         union kvm_mmu_page_role role;
2076         unsigned quadrant;
2077         struct kvm_mmu_page *sp;
2078         bool need_sync = false;
2079
2080         role = vcpu->arch.mmu.base_role;
2081         role.level = level;
2082         role.direct = direct;
2083         if (role.direct)
2084                 role.cr4_pae = 0;
2085         role.access = access;
2086         if (!vcpu->arch.mmu.direct_map
2087             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2088                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2089                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2090                 role.quadrant = quadrant;
2091         }
2092         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2093                 if (is_obsolete_sp(vcpu->kvm, sp))
2094                         continue;
2095
2096                 if (!need_sync && sp->unsync)
2097                         need_sync = true;
2098
2099                 if (sp->role.word != role.word)
2100                         continue;
2101
2102                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2103                         break;
2104
2105                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2106                 if (sp->unsync_children) {
2107                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2108                         kvm_mmu_mark_parents_unsync(sp);
2109                 } else if (sp->unsync)
2110                         kvm_mmu_mark_parents_unsync(sp);
2111
2112                 __clear_sp_write_flooding_count(sp);
2113                 trace_kvm_mmu_get_page(sp, false);
2114                 return sp;
2115         }
2116         ++vcpu->kvm->stat.mmu_cache_miss;
2117         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2118         if (!sp)
2119                 return sp;
2120         sp->gfn = gfn;
2121         sp->role = role;
2122         hlist_add_head(&sp->hash_link,
2123                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2124         if (!direct) {
2125                 if (rmap_write_protect(vcpu->kvm, gfn))
2126                         kvm_flush_remote_tlbs(vcpu->kvm);
2127                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2128                         kvm_sync_pages(vcpu, gfn);
2129
2130                 account_shadowed(vcpu->kvm, gfn);
2131         }
2132         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2133         init_shadow_page_table(sp);
2134         trace_kvm_mmu_get_page(sp, true);
2135         return sp;
2136 }
2137
2138 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2139                              struct kvm_vcpu *vcpu, u64 addr)
2140 {
2141         iterator->addr = addr;
2142         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2143         iterator->level = vcpu->arch.mmu.shadow_root_level;
2144
2145         if (iterator->level == PT64_ROOT_LEVEL &&
2146             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2147             !vcpu->arch.mmu.direct_map)
2148                 --iterator->level;
2149
2150         if (iterator->level == PT32E_ROOT_LEVEL) {
2151                 iterator->shadow_addr
2152                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2153                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2154                 --iterator->level;
2155                 if (!iterator->shadow_addr)
2156                         iterator->level = 0;
2157         }
2158 }
2159
2160 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2161 {
2162         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2163                 return false;
2164
2165         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2166         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2167         return true;
2168 }
2169
2170 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2171                                u64 spte)
2172 {
2173         if (is_last_spte(spte, iterator->level)) {
2174                 iterator->level = 0;
2175                 return;
2176         }
2177
2178         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2179         --iterator->level;
2180 }
2181
2182 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2183 {
2184         return __shadow_walk_next(iterator, *iterator->sptep);
2185 }
2186
2187 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2188 {
2189         u64 spte;
2190
2191         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2192                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2193
2194         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2195                shadow_user_mask | shadow_x_mask;
2196
2197         if (accessed)
2198                 spte |= shadow_accessed_mask;
2199
2200         mmu_spte_set(sptep, spte);
2201 }
2202
2203 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2204                                    unsigned direct_access)
2205 {
2206         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2207                 struct kvm_mmu_page *child;
2208
2209                 /*
2210                  * For the direct sp, if the guest pte's dirty bit
2211                  * changed form clean to dirty, it will corrupt the
2212                  * sp's access: allow writable in the read-only sp,
2213                  * so we should update the spte at this point to get
2214                  * a new sp with the correct access.
2215                  */
2216                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2217                 if (child->role.access == direct_access)
2218                         return;
2219
2220                 drop_parent_pte(child, sptep);
2221                 kvm_flush_remote_tlbs(vcpu->kvm);
2222         }
2223 }
2224
2225 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2226                              u64 *spte)
2227 {
2228         u64 pte;
2229         struct kvm_mmu_page *child;
2230
2231         pte = *spte;
2232         if (is_shadow_present_pte(pte)) {
2233                 if (is_last_spte(pte, sp->role.level)) {
2234                         drop_spte(kvm, spte);
2235                         if (is_large_pte(pte))
2236                                 --kvm->stat.lpages;
2237                 } else {
2238                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2239                         drop_parent_pte(child, spte);
2240                 }
2241                 return true;
2242         }
2243
2244         if (is_mmio_spte(pte))
2245                 mmu_spte_clear_no_track(spte);
2246
2247         return false;
2248 }
2249
2250 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2251                                          struct kvm_mmu_page *sp)
2252 {
2253         unsigned i;
2254
2255         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2256                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2257 }
2258
2259 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2260 {
2261         mmu_page_remove_parent_pte(sp, parent_pte);
2262 }
2263
2264 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2265 {
2266         u64 *sptep;
2267         struct rmap_iterator iter;
2268
2269         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2270                 drop_parent_pte(sp, sptep);
2271 }
2272
2273 static int mmu_zap_unsync_children(struct kvm *kvm,
2274                                    struct kvm_mmu_page *parent,
2275                                    struct list_head *invalid_list)
2276 {
2277         int i, zapped = 0;
2278         struct mmu_page_path parents;
2279         struct kvm_mmu_pages pages;
2280
2281         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2282                 return 0;
2283
2284         kvm_mmu_pages_init(parent, &parents, &pages);
2285         while (mmu_unsync_walk(parent, &pages)) {
2286                 struct kvm_mmu_page *sp;
2287
2288                 for_each_sp(pages, sp, parents, i) {
2289                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2290                         mmu_pages_clear_parents(&parents);
2291                         zapped++;
2292                 }
2293                 kvm_mmu_pages_init(parent, &parents, &pages);
2294         }
2295
2296         return zapped;
2297 }
2298
2299 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2300                                     struct list_head *invalid_list)
2301 {
2302         int ret;
2303
2304         trace_kvm_mmu_prepare_zap_page(sp);
2305         ++kvm->stat.mmu_shadow_zapped;
2306         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2307         kvm_mmu_page_unlink_children(kvm, sp);
2308         kvm_mmu_unlink_parents(kvm, sp);
2309
2310         if (!sp->role.invalid && !sp->role.direct)
2311                 unaccount_shadowed(kvm, sp->gfn);
2312
2313         if (sp->unsync)
2314                 kvm_unlink_unsync_page(kvm, sp);
2315         if (!sp->root_count) {
2316                 /* Count self */
2317                 ret++;
2318                 list_move(&sp->link, invalid_list);
2319                 kvm_mod_used_mmu_pages(kvm, -1);
2320         } else {
2321                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2322
2323                 /*
2324                  * The obsolete pages can not be used on any vcpus.
2325                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2326                  */
2327                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2328                         kvm_reload_remote_mmus(kvm);
2329         }
2330
2331         sp->role.invalid = 1;
2332         return ret;
2333 }
2334
2335 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2336                                     struct list_head *invalid_list)
2337 {
2338         struct kvm_mmu_page *sp, *nsp;
2339
2340         if (list_empty(invalid_list))
2341                 return;
2342
2343         /*
2344          * wmb: make sure everyone sees our modifications to the page tables
2345          * rmb: make sure we see changes to vcpu->mode
2346          */
2347         smp_mb();
2348
2349         /*
2350          * Wait for all vcpus to exit guest mode and/or lockless shadow
2351          * page table walks.
2352          */
2353         kvm_flush_remote_tlbs(kvm);
2354
2355         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2356                 WARN_ON(!sp->role.invalid || sp->root_count);
2357                 kvm_mmu_free_page(sp);
2358         }
2359 }
2360
2361 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2362                                         struct list_head *invalid_list)
2363 {
2364         struct kvm_mmu_page *sp;
2365
2366         if (list_empty(&kvm->arch.active_mmu_pages))
2367                 return false;
2368
2369         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2370                         struct kvm_mmu_page, link);
2371         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2372
2373         return true;
2374 }
2375
2376 /*
2377  * Changing the number of mmu pages allocated to the vm
2378  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2379  */
2380 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2381 {
2382         LIST_HEAD(invalid_list);
2383
2384         spin_lock(&kvm->mmu_lock);
2385
2386         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2387                 /* Need to free some mmu pages to achieve the goal. */
2388                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2389                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2390                                 break;
2391
2392                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2393                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2394         }
2395
2396         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2397
2398         spin_unlock(&kvm->mmu_lock);
2399 }
2400
2401 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2402 {
2403         struct kvm_mmu_page *sp;
2404         LIST_HEAD(invalid_list);
2405         int r;
2406
2407         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2408         r = 0;
2409         spin_lock(&kvm->mmu_lock);
2410         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2411                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2412                          sp->role.word);
2413                 r = 1;
2414                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2415         }
2416         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2417         spin_unlock(&kvm->mmu_lock);
2418
2419         return r;
2420 }
2421 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2422
2423 /*
2424  * The function is based on mtrr_type_lookup() in
2425  * arch/x86/kernel/cpu/mtrr/generic.c
2426  */
2427 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2428                          u64 start, u64 end)
2429 {
2430         int i;
2431         u64 base, mask;
2432         u8 prev_match, curr_match;
2433         int num_var_ranges = KVM_NR_VAR_MTRR;
2434
2435         if (!mtrr_state->enabled)
2436                 return 0xFF;
2437
2438         /* Make end inclusive end, instead of exclusive */
2439         end--;
2440
2441         /* Look in fixed ranges. Just return the type as per start */
2442         if (mtrr_state->have_fixed && (start < 0x100000)) {
2443                 int idx;
2444
2445                 if (start < 0x80000) {
2446                         idx = 0;
2447                         idx += (start >> 16);
2448                         return mtrr_state->fixed_ranges[idx];
2449                 } else if (start < 0xC0000) {
2450                         idx = 1 * 8;
2451                         idx += ((start - 0x80000) >> 14);
2452                         return mtrr_state->fixed_ranges[idx];
2453                 } else if (start < 0x1000000) {
2454                         idx = 3 * 8;
2455                         idx += ((start - 0xC0000) >> 12);
2456                         return mtrr_state->fixed_ranges[idx];
2457                 }
2458         }
2459
2460         /*
2461          * Look in variable ranges
2462          * Look of multiple ranges matching this address and pick type
2463          * as per MTRR precedence
2464          */
2465         if (!(mtrr_state->enabled & 2))
2466                 return mtrr_state->def_type;
2467
2468         prev_match = 0xFF;
2469         for (i = 0; i < num_var_ranges; ++i) {
2470                 unsigned short start_state, end_state;
2471
2472                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2473                         continue;
2474
2475                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2476                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2477                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2478                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2479
2480                 start_state = ((start & mask) == (base & mask));
2481                 end_state = ((end & mask) == (base & mask));
2482                 if (start_state != end_state)
2483                         return 0xFE;
2484
2485                 if ((start & mask) != (base & mask))
2486                         continue;
2487
2488                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2489                 if (prev_match == 0xFF) {
2490                         prev_match = curr_match;
2491                         continue;
2492                 }
2493
2494                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2495                     curr_match == MTRR_TYPE_UNCACHABLE)
2496                         return MTRR_TYPE_UNCACHABLE;
2497
2498                 if ((prev_match == MTRR_TYPE_WRBACK &&
2499                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2500                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2501                      curr_match == MTRR_TYPE_WRBACK)) {
2502                         prev_match = MTRR_TYPE_WRTHROUGH;
2503                         curr_match = MTRR_TYPE_WRTHROUGH;
2504                 }
2505
2506                 if (prev_match != curr_match)
2507                         return MTRR_TYPE_UNCACHABLE;
2508         }
2509
2510         if (prev_match != 0xFF)
2511                 return prev_match;
2512
2513         return mtrr_state->def_type;
2514 }
2515
2516 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2517 {
2518         u8 mtrr;
2519
2520         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2521                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2522         if (mtrr == 0xfe || mtrr == 0xff)
2523                 mtrr = MTRR_TYPE_WRBACK;
2524         return mtrr;
2525 }
2526 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2527
2528 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2529 {
2530         trace_kvm_mmu_unsync_page(sp);
2531         ++vcpu->kvm->stat.mmu_unsync;
2532         sp->unsync = 1;
2533
2534         kvm_mmu_mark_parents_unsync(sp);
2535 }
2536
2537 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2538 {
2539         struct kvm_mmu_page *s;
2540
2541         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2542                 if (s->unsync)
2543                         continue;
2544                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2545                 __kvm_unsync_page(vcpu, s);
2546         }
2547 }
2548
2549 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2550                                   bool can_unsync)
2551 {
2552         struct kvm_mmu_page *s;
2553         bool need_unsync = false;
2554
2555         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2556                 if (!can_unsync)
2557                         return 1;
2558
2559                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2560                         return 1;
2561
2562                 if (!s->unsync)
2563                         need_unsync = true;
2564         }
2565         if (need_unsync)
2566                 kvm_unsync_pages(vcpu, gfn);
2567         return 0;
2568 }
2569
2570 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2571                     unsigned pte_access, int level,
2572                     gfn_t gfn, pfn_t pfn, bool speculative,
2573                     bool can_unsync, bool host_writable)
2574 {
2575         u64 spte;
2576         int ret = 0;
2577
2578         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2579                 return 0;
2580
2581         spte = PT_PRESENT_MASK;
2582         if (!speculative)
2583                 spte |= shadow_accessed_mask;
2584
2585         if (pte_access & ACC_EXEC_MASK)
2586                 spte |= shadow_x_mask;
2587         else
2588                 spte |= shadow_nx_mask;
2589
2590         if (pte_access & ACC_USER_MASK)
2591                 spte |= shadow_user_mask;
2592
2593         if (level > PT_PAGE_TABLE_LEVEL)
2594                 spte |= PT_PAGE_SIZE_MASK;
2595         if (tdp_enabled)
2596                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2597                         kvm_is_reserved_pfn(pfn));
2598
2599         if (host_writable)
2600                 spte |= SPTE_HOST_WRITEABLE;
2601         else
2602                 pte_access &= ~ACC_WRITE_MASK;
2603
2604         spte |= (u64)pfn << PAGE_SHIFT;
2605
2606         if (pte_access & ACC_WRITE_MASK) {
2607
2608                 /*
2609                  * Other vcpu creates new sp in the window between
2610                  * mapping_level() and acquiring mmu-lock. We can
2611                  * allow guest to retry the access, the mapping can
2612                  * be fixed if guest refault.
2613                  */
2614                 if (level > PT_PAGE_TABLE_LEVEL &&
2615                     has_wrprotected_page(vcpu->kvm, gfn, level))
2616                         goto done;
2617
2618                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2619
2620                 /*
2621                  * Optimization: for pte sync, if spte was writable the hash
2622                  * lookup is unnecessary (and expensive). Write protection
2623                  * is responsibility of mmu_get_page / kvm_sync_page.
2624                  * Same reasoning can be applied to dirty page accounting.
2625                  */
2626                 if (!can_unsync && is_writable_pte(*sptep))
2627                         goto set_pte;
2628
2629                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2630                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2631                                  __func__, gfn);
2632                         ret = 1;
2633                         pte_access &= ~ACC_WRITE_MASK;
2634                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2635                 }
2636         }
2637
2638         if (pte_access & ACC_WRITE_MASK) {
2639                 mark_page_dirty(vcpu->kvm, gfn);
2640                 spte |= shadow_dirty_mask;
2641         }
2642
2643 set_pte:
2644         if (mmu_spte_update(sptep, spte))
2645                 kvm_flush_remote_tlbs(vcpu->kvm);
2646 done:
2647         return ret;
2648 }
2649
2650 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2651                          unsigned pte_access, int write_fault, int *emulate,
2652                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2653                          bool host_writable)
2654 {
2655         int was_rmapped = 0;
2656         int rmap_count;
2657
2658         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2659                  *sptep, write_fault, gfn);
2660
2661         if (is_rmap_spte(*sptep)) {
2662                 /*
2663                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2664                  * the parent of the now unreachable PTE.
2665                  */
2666                 if (level > PT_PAGE_TABLE_LEVEL &&
2667                     !is_large_pte(*sptep)) {
2668                         struct kvm_mmu_page *child;
2669                         u64 pte = *sptep;
2670
2671                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2672                         drop_parent_pte(child, sptep);
2673                         kvm_flush_remote_tlbs(vcpu->kvm);
2674                 } else if (pfn != spte_to_pfn(*sptep)) {
2675                         pgprintk("hfn old %llx new %llx\n",
2676                                  spte_to_pfn(*sptep), pfn);
2677                         drop_spte(vcpu->kvm, sptep);
2678                         kvm_flush_remote_tlbs(vcpu->kvm);
2679                 } else
2680                         was_rmapped = 1;
2681         }
2682
2683         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2684               true, host_writable)) {
2685                 if (write_fault)
2686                         *emulate = 1;
2687                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2688         }
2689
2690         if (unlikely(is_mmio_spte(*sptep) && emulate))
2691                 *emulate = 1;
2692
2693         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2694         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2695                  is_large_pte(*sptep)? "2MB" : "4kB",
2696                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2697                  *sptep, sptep);
2698         if (!was_rmapped && is_large_pte(*sptep))
2699                 ++vcpu->kvm->stat.lpages;
2700
2701         if (is_shadow_present_pte(*sptep)) {
2702                 if (!was_rmapped) {
2703                         rmap_count = rmap_add(vcpu, sptep, gfn);
2704                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2705                                 rmap_recycle(vcpu, sptep, gfn);
2706                 }
2707         }
2708
2709         kvm_release_pfn_clean(pfn);
2710 }
2711
2712 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2713                                      bool no_dirty_log)
2714 {
2715         struct kvm_memory_slot *slot;
2716
2717         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2718         if (!slot)
2719                 return KVM_PFN_ERR_FAULT;
2720
2721         return gfn_to_pfn_memslot_atomic(slot, gfn);
2722 }
2723
2724 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2725                                     struct kvm_mmu_page *sp,
2726                                     u64 *start, u64 *end)
2727 {
2728         struct page *pages[PTE_PREFETCH_NUM];
2729         unsigned access = sp->role.access;
2730         int i, ret;
2731         gfn_t gfn;
2732
2733         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2734         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2735                 return -1;
2736
2737         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2738         if (ret <= 0)
2739                 return -1;
2740
2741         for (i = 0; i < ret; i++, gfn++, start++)
2742                 mmu_set_spte(vcpu, start, access, 0, NULL,
2743                              sp->role.level, gfn, page_to_pfn(pages[i]),
2744                              true, true);
2745
2746         return 0;
2747 }
2748
2749 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2750                                   struct kvm_mmu_page *sp, u64 *sptep)
2751 {
2752         u64 *spte, *start = NULL;
2753         int i;
2754
2755         WARN_ON(!sp->role.direct);
2756
2757         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2758         spte = sp->spt + i;
2759
2760         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2761                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2762                         if (!start)
2763                                 continue;
2764                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2765                                 break;
2766                         start = NULL;
2767                 } else if (!start)
2768                         start = spte;
2769         }
2770 }
2771
2772 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2773 {
2774         struct kvm_mmu_page *sp;
2775
2776         /*
2777          * Since it's no accessed bit on EPT, it's no way to
2778          * distinguish between actually accessed translations
2779          * and prefetched, so disable pte prefetch if EPT is
2780          * enabled.
2781          */
2782         if (!shadow_accessed_mask)
2783                 return;
2784
2785         sp = page_header(__pa(sptep));
2786         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2787                 return;
2788
2789         __direct_pte_prefetch(vcpu, sp, sptep);
2790 }
2791
2792 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2793                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2794                         bool prefault)
2795 {
2796         struct kvm_shadow_walk_iterator iterator;
2797         struct kvm_mmu_page *sp;
2798         int emulate = 0;
2799         gfn_t pseudo_gfn;
2800
2801         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2802                 return 0;
2803
2804         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2805                 if (iterator.level == level) {
2806                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2807                                      write, &emulate, level, gfn, pfn,
2808                                      prefault, map_writable);
2809                         direct_pte_prefetch(vcpu, iterator.sptep);
2810                         ++vcpu->stat.pf_fixed;
2811                         break;
2812                 }
2813
2814                 drop_large_spte(vcpu, iterator.sptep);
2815                 if (!is_shadow_present_pte(*iterator.sptep)) {
2816                         u64 base_addr = iterator.addr;
2817
2818                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2819                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2820                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2821                                               iterator.level - 1,
2822                                               1, ACC_ALL, iterator.sptep);
2823
2824                         link_shadow_page(iterator.sptep, sp, true);
2825                 }
2826         }
2827         return emulate;
2828 }
2829
2830 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2831 {
2832         siginfo_t info;
2833
2834         info.si_signo   = SIGBUS;
2835         info.si_errno   = 0;
2836         info.si_code    = BUS_MCEERR_AR;
2837         info.si_addr    = (void __user *)address;
2838         info.si_addr_lsb = PAGE_SHIFT;
2839
2840         send_sig_info(SIGBUS, &info, tsk);
2841 }
2842
2843 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2844 {
2845         /*
2846          * Do not cache the mmio info caused by writing the readonly gfn
2847          * into the spte otherwise read access on readonly gfn also can
2848          * caused mmio page fault and treat it as mmio access.
2849          * Return 1 to tell kvm to emulate it.
2850          */
2851         if (pfn == KVM_PFN_ERR_RO_FAULT)
2852                 return 1;
2853
2854         if (pfn == KVM_PFN_ERR_HWPOISON) {
2855                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2856                 return 0;
2857         }
2858
2859         return -EFAULT;
2860 }
2861
2862 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2863                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2864 {
2865         pfn_t pfn = *pfnp;
2866         gfn_t gfn = *gfnp;
2867         int level = *levelp;
2868
2869         /*
2870          * Check if it's a transparent hugepage. If this would be an
2871          * hugetlbfs page, level wouldn't be set to
2872          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2873          * here.
2874          */
2875         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2876             level == PT_PAGE_TABLE_LEVEL &&
2877             PageTransCompound(pfn_to_page(pfn)) &&
2878             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2879                 unsigned long mask;
2880                 /*
2881                  * mmu_notifier_retry was successful and we hold the
2882                  * mmu_lock here, so the pmd can't become splitting
2883                  * from under us, and in turn
2884                  * __split_huge_page_refcount() can't run from under
2885                  * us and we can safely transfer the refcount from
2886                  * PG_tail to PG_head as we switch the pfn to tail to
2887                  * head.
2888                  */
2889                 *levelp = level = PT_DIRECTORY_LEVEL;
2890                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2891                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2892                 if (pfn & mask) {
2893                         gfn &= ~mask;
2894                         *gfnp = gfn;
2895                         kvm_release_pfn_clean(pfn);
2896                         pfn &= ~mask;
2897                         kvm_get_pfn(pfn);
2898                         *pfnp = pfn;
2899                 }
2900         }
2901 }
2902
2903 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2904                                 pfn_t pfn, unsigned access, int *ret_val)
2905 {
2906         bool ret = true;
2907
2908         /* The pfn is invalid, report the error! */
2909         if (unlikely(is_error_pfn(pfn))) {
2910                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2911                 goto exit;
2912         }
2913
2914         if (unlikely(is_noslot_pfn(pfn)))
2915                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2916
2917         ret = false;
2918 exit:
2919         return ret;
2920 }
2921
2922 static bool page_fault_can_be_fast(u32 error_code)
2923 {
2924         /*
2925          * Do not fix the mmio spte with invalid generation number which
2926          * need to be updated by slow page fault path.
2927          */
2928         if (unlikely(error_code & PFERR_RSVD_MASK))
2929                 return false;
2930
2931         /*
2932          * #PF can be fast only if the shadow page table is present and it
2933          * is caused by write-protect, that means we just need change the
2934          * W bit of the spte which can be done out of mmu-lock.
2935          */
2936         if (!(error_code & PFERR_PRESENT_MASK) ||
2937               !(error_code & PFERR_WRITE_MASK))
2938                 return false;
2939
2940         return true;
2941 }
2942
2943 static bool
2944 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2945                         u64 *sptep, u64 spte)
2946 {
2947         gfn_t gfn;
2948
2949         WARN_ON(!sp->role.direct);
2950
2951         /*
2952          * The gfn of direct spte is stable since it is calculated
2953          * by sp->gfn.
2954          */
2955         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2956
2957         /*
2958          * Theoretically we could also set dirty bit (and flush TLB) here in
2959          * order to eliminate unnecessary PML logging. See comments in
2960          * set_spte. But fast_page_fault is very unlikely to happen with PML
2961          * enabled, so we do not do this. This might result in the same GPA
2962          * to be logged in PML buffer again when the write really happens, and
2963          * eventually to be called by mark_page_dirty twice. But it's also no
2964          * harm. This also avoids the TLB flush needed after setting dirty bit
2965          * so non-PML cases won't be impacted.
2966          *
2967          * Compare with set_spte where instead shadow_dirty_mask is set.
2968          */
2969         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2970                 mark_page_dirty(vcpu->kvm, gfn);
2971
2972         return true;
2973 }
2974
2975 /*
2976  * Return value:
2977  * - true: let the vcpu to access on the same address again.
2978  * - false: let the real page fault path to fix it.
2979  */
2980 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2981                             u32 error_code)
2982 {
2983         struct kvm_shadow_walk_iterator iterator;
2984         struct kvm_mmu_page *sp;
2985         bool ret = false;
2986         u64 spte = 0ull;
2987
2988         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2989                 return false;
2990
2991         if (!page_fault_can_be_fast(error_code))
2992                 return false;
2993
2994         walk_shadow_page_lockless_begin(vcpu);
2995         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2996                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2997                         break;
2998
2999         /*
3000          * If the mapping has been changed, let the vcpu fault on the
3001          * same address again.
3002          */
3003         if (!is_rmap_spte(spte)) {
3004                 ret = true;
3005                 goto exit;
3006         }
3007
3008         sp = page_header(__pa(iterator.sptep));
3009         if (!is_last_spte(spte, sp->role.level))
3010                 goto exit;
3011
3012         /*
3013          * Check if it is a spurious fault caused by TLB lazily flushed.
3014          *
3015          * Need not check the access of upper level table entries since
3016          * they are always ACC_ALL.
3017          */
3018          if (is_writable_pte(spte)) {
3019                 ret = true;
3020                 goto exit;
3021         }
3022
3023         /*
3024          * Currently, to simplify the code, only the spte write-protected
3025          * by dirty-log can be fast fixed.
3026          */
3027         if (!spte_is_locklessly_modifiable(spte))
3028                 goto exit;
3029
3030         /*
3031          * Do not fix write-permission on the large spte since we only dirty
3032          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
3033          * that means other pages are missed if its slot is dirty-logged.
3034          *
3035          * Instead, we let the slow page fault path create a normal spte to
3036          * fix the access.
3037          *
3038          * See the comments in kvm_arch_commit_memory_region().
3039          */
3040         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3041                 goto exit;
3042
3043         /*
3044          * Currently, fast page fault only works for direct mapping since
3045          * the gfn is not stable for indirect shadow page.
3046          * See Documentation/virtual/kvm/locking.txt to get more detail.
3047          */
3048         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
3049 exit:
3050         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3051                               spte, ret);
3052         walk_shadow_page_lockless_end(vcpu);
3053
3054         return ret;
3055 }
3056
3057 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3058                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
3059 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3060
3061 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3062                          gfn_t gfn, bool prefault)
3063 {
3064         int r;
3065         int level;
3066         int force_pt_level;
3067         pfn_t pfn;
3068         unsigned long mmu_seq;
3069         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3070
3071         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3072         if (likely(!force_pt_level)) {
3073                 level = mapping_level(vcpu, gfn);
3074                 /*
3075                  * This path builds a PAE pagetable - so we can map
3076                  * 2mb pages at maximum. Therefore check if the level
3077                  * is larger than that.
3078                  */
3079                 if (level > PT_DIRECTORY_LEVEL)
3080                         level = PT_DIRECTORY_LEVEL;
3081
3082                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3083         } else
3084                 level = PT_PAGE_TABLE_LEVEL;
3085
3086         if (fast_page_fault(vcpu, v, level, error_code))
3087                 return 0;
3088
3089         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3090         smp_rmb();
3091
3092         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3093                 return 0;
3094
3095         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3096                 return r;
3097
3098         spin_lock(&vcpu->kvm->mmu_lock);
3099         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3100                 goto out_unlock;
3101         make_mmu_pages_available(vcpu);
3102         if (likely(!force_pt_level))
3103                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3104         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3105                          prefault);
3106         spin_unlock(&vcpu->kvm->mmu_lock);
3107
3108
3109         return r;
3110
3111 out_unlock:
3112         spin_unlock(&vcpu->kvm->mmu_lock);
3113         kvm_release_pfn_clean(pfn);
3114         return 0;
3115 }
3116
3117
3118 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3119 {
3120         int i;
3121         struct kvm_mmu_page *sp;
3122         LIST_HEAD(invalid_list);
3123
3124         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3125                 return;
3126
3127         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3128             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3129              vcpu->arch.mmu.direct_map)) {
3130                 hpa_t root = vcpu->arch.mmu.root_hpa;
3131
3132                 spin_lock(&vcpu->kvm->mmu_lock);
3133                 sp = page_header(root);
3134                 --sp->root_count;
3135                 if (!sp->root_count && sp->role.invalid) {
3136                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3137                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3138                 }
3139                 spin_unlock(&vcpu->kvm->mmu_lock);
3140                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3141                 return;
3142         }
3143
3144         spin_lock(&vcpu->kvm->mmu_lock);
3145         for (i = 0; i < 4; ++i) {
3146                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3147
3148                 if (root) {
3149                         root &= PT64_BASE_ADDR_MASK;
3150                         sp = page_header(root);
3151                         --sp->root_count;
3152                         if (!sp->root_count && sp->role.invalid)
3153                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3154                                                          &invalid_list);
3155                 }
3156                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3157         }
3158         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3159         spin_unlock(&vcpu->kvm->mmu_lock);
3160         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3161 }
3162
3163 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3164 {
3165         int ret = 0;
3166
3167         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3168                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3169                 ret = 1;
3170         }
3171
3172         return ret;
3173 }
3174
3175 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3176 {
3177         struct kvm_mmu_page *sp;
3178         unsigned i;
3179
3180         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3181                 spin_lock(&vcpu->kvm->mmu_lock);
3182                 make_mmu_pages_available(vcpu);
3183                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3184                                       1, ACC_ALL, NULL);
3185                 ++sp->root_count;
3186                 spin_unlock(&vcpu->kvm->mmu_lock);
3187                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3188         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3189                 for (i = 0; i < 4; ++i) {
3190                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3191
3192                         MMU_WARN_ON(VALID_PAGE(root));
3193                         spin_lock(&vcpu->kvm->mmu_lock);
3194                         make_mmu_pages_available(vcpu);
3195                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3196                                               i << 30,
3197                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3198                                               NULL);
3199                         root = __pa(sp->spt);
3200                         ++sp->root_count;
3201                         spin_unlock(&vcpu->kvm->mmu_lock);
3202                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3203                 }
3204                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3205         } else
3206                 BUG();
3207
3208         return 0;
3209 }
3210
3211 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3212 {
3213         struct kvm_mmu_page *sp;
3214         u64 pdptr, pm_mask;
3215         gfn_t root_gfn;
3216         int i;
3217
3218         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3219
3220         if (mmu_check_root(vcpu, root_gfn))
3221                 return 1;
3222
3223         /*
3224          * Do we shadow a long mode page table? If so we need to
3225          * write-protect the guests page table root.
3226          */
3227         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3228                 hpa_t root = vcpu->arch.mmu.root_hpa;
3229
3230                 MMU_WARN_ON(VALID_PAGE(root));
3231
3232                 spin_lock(&vcpu->kvm->mmu_lock);
3233                 make_mmu_pages_available(vcpu);
3234                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3235                                       0, ACC_ALL, NULL);
3236                 root = __pa(sp->spt);
3237                 ++sp->root_count;
3238                 spin_unlock(&vcpu->kvm->mmu_lock);
3239                 vcpu->arch.mmu.root_hpa = root;
3240                 return 0;
3241         }
3242
3243         /*
3244          * We shadow a 32 bit page table. This may be a legacy 2-level
3245          * or a PAE 3-level page table. In either case we need to be aware that
3246          * the shadow page table may be a PAE or a long mode page table.
3247          */
3248         pm_mask = PT_PRESENT_MASK;
3249         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3250                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3251
3252         for (i = 0; i < 4; ++i) {
3253                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3254
3255                 MMU_WARN_ON(VALID_PAGE(root));
3256                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3257                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3258                         if (!is_present_gpte(pdptr)) {
3259                                 vcpu->arch.mmu.pae_root[i] = 0;
3260                                 continue;
3261                         }
3262                         root_gfn = pdptr >> PAGE_SHIFT;
3263                         if (mmu_check_root(vcpu, root_gfn))
3264                                 return 1;
3265                 }
3266                 spin_lock(&vcpu->kvm->mmu_lock);
3267                 make_mmu_pages_available(vcpu);
3268                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3269                                       PT32_ROOT_LEVEL, 0,
3270                                       ACC_ALL, NULL);
3271                 root = __pa(sp->spt);
3272                 ++sp->root_count;
3273                 spin_unlock(&vcpu->kvm->mmu_lock);
3274
3275                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3276         }
3277         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3278
3279         /*
3280          * If we shadow a 32 bit page table with a long mode page
3281          * table we enter this path.
3282          */
3283         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3284                 if (vcpu->arch.mmu.lm_root == NULL) {
3285                         /*
3286                          * The additional page necessary for this is only
3287                          * allocated on demand.
3288                          */
3289
3290                         u64 *lm_root;
3291
3292                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3293                         if (lm_root == NULL)
3294                                 return 1;
3295
3296                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3297
3298                         vcpu->arch.mmu.lm_root = lm_root;
3299                 }
3300
3301                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3302         }
3303
3304         return 0;
3305 }
3306
3307 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3308 {
3309         if (vcpu->arch.mmu.direct_map)
3310                 return mmu_alloc_direct_roots(vcpu);
3311         else
3312                 return mmu_alloc_shadow_roots(vcpu);
3313 }
3314
3315 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3316 {
3317         int i;
3318         struct kvm_mmu_page *sp;
3319
3320         if (vcpu->arch.mmu.direct_map)
3321                 return;
3322
3323         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3324                 return;
3325
3326         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3327         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3328         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3329                 hpa_t root = vcpu->arch.mmu.root_hpa;
3330                 sp = page_header(root);
3331                 mmu_sync_children(vcpu, sp);
3332                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3333                 return;
3334         }
3335         for (i = 0; i < 4; ++i) {
3336                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3337
3338                 if (root && VALID_PAGE(root)) {
3339                         root &= PT64_BASE_ADDR_MASK;
3340                         sp = page_header(root);
3341                         mmu_sync_children(vcpu, sp);
3342                 }
3343         }
3344         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3345 }
3346
3347 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3348 {
3349         spin_lock(&vcpu->kvm->mmu_lock);
3350         mmu_sync_roots(vcpu);
3351         spin_unlock(&vcpu->kvm->mmu_lock);
3352 }
3353 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3354
3355 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3356                                   u32 access, struct x86_exception *exception)
3357 {
3358         if (exception)
3359                 exception->error_code = 0;
3360         return vaddr;
3361 }
3362
3363 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3364                                          u32 access,
3365                                          struct x86_exception *exception)
3366 {
3367         if (exception)
3368                 exception->error_code = 0;
3369         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3370 }
3371
3372 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3373 {
3374         if (direct)
3375                 return vcpu_match_mmio_gpa(vcpu, addr);
3376
3377         return vcpu_match_mmio_gva(vcpu, addr);
3378 }
3379
3380
3381 /*
3382  * On direct hosts, the last spte is only allows two states
3383  * for mmio page fault:
3384  *   - It is the mmio spte
3385  *   - It is zapped or it is being zapped.
3386  *
3387  * This function completely checks the spte when the last spte
3388  * is not the mmio spte.
3389  */
3390 static bool check_direct_spte_mmio_pf(u64 spte)
3391 {
3392         return __check_direct_spte_mmio_pf(spte);
3393 }
3394
3395 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3396 {
3397         struct kvm_shadow_walk_iterator iterator;
3398         u64 spte = 0ull;
3399
3400         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3401                 return spte;
3402
3403         walk_shadow_page_lockless_begin(vcpu);
3404         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3405                 if (!is_shadow_present_pte(spte))
3406                         break;
3407         walk_shadow_page_lockless_end(vcpu);
3408
3409         return spte;
3410 }
3411
3412 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3413 {
3414         u64 spte;
3415
3416         if (quickly_check_mmio_pf(vcpu, addr, direct))
3417                 return RET_MMIO_PF_EMULATE;
3418
3419         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3420
3421         if (is_mmio_spte(spte)) {
3422                 gfn_t gfn = get_mmio_spte_gfn(spte);
3423                 unsigned access = get_mmio_spte_access(spte);
3424
3425                 if (!check_mmio_spte(vcpu->kvm, spte))
3426                         return RET_MMIO_PF_INVALID;
3427
3428                 if (direct)
3429                         addr = 0;
3430
3431                 trace_handle_mmio_page_fault(addr, gfn, access);
3432                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3433                 return RET_MMIO_PF_EMULATE;
3434         }
3435
3436         /*
3437          * It's ok if the gva is remapped by other cpus on shadow guest,
3438          * it's a BUG if the gfn is not a mmio page.
3439          */
3440         if (direct && !check_direct_spte_mmio_pf(spte))
3441                 return RET_MMIO_PF_BUG;
3442
3443         /*
3444          * If the page table is zapped by other cpus, let CPU fault again on
3445          * the address.
3446          */
3447         return RET_MMIO_PF_RETRY;
3448 }
3449 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3450
3451 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3452                                   u32 error_code, bool direct)
3453 {
3454         int ret;
3455
3456         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3457         WARN_ON(ret == RET_MMIO_PF_BUG);
3458         return ret;
3459 }
3460
3461 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3462                                 u32 error_code, bool prefault)
3463 {
3464         gfn_t gfn;
3465         int r;
3466
3467         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3468
3469         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3470                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3471
3472                 if (likely(r != RET_MMIO_PF_INVALID))
3473                         return r;
3474         }
3475
3476         r = mmu_topup_memory_caches(vcpu);
3477         if (r)
3478                 return r;
3479
3480         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3481
3482         gfn = gva >> PAGE_SHIFT;
3483
3484         return nonpaging_map(vcpu, gva & PAGE_MASK,
3485                              error_code, gfn, prefault);
3486 }
3487
3488 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3489 {
3490         struct kvm_arch_async_pf arch;
3491
3492         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3493         arch.gfn = gfn;
3494         arch.direct_map = vcpu->arch.mmu.direct_map;
3495         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3496
3497         return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3498 }
3499
3500 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3501 {
3502         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3503                      kvm_event_needs_reinjection(vcpu)))
3504                 return false;
3505
3506         return kvm_x86_ops->interrupt_allowed(vcpu);
3507 }
3508
3509 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3510                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3511 {
3512         bool async;
3513
3514         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3515
3516         if (!async)
3517                 return false; /* *pfn has correct page already */
3518
3519         if (!prefault && can_do_async_pf(vcpu)) {
3520                 trace_kvm_try_async_get_page(gva, gfn);
3521                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3522                         trace_kvm_async_pf_doublefault(gva, gfn);
3523                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3524                         return true;
3525                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3526                         return true;
3527         }
3528
3529         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3530
3531         return false;
3532 }
3533
3534 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3535                           bool prefault)
3536 {
3537         pfn_t pfn;
3538         int r;
3539         int level;
3540         int force_pt_level;
3541         gfn_t gfn = gpa >> PAGE_SHIFT;
3542         unsigned long mmu_seq;
3543         int write = error_code & PFERR_WRITE_MASK;
3544         bool map_writable;
3545
3546         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3547
3548         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3549                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3550
3551                 if (likely(r != RET_MMIO_PF_INVALID))
3552                         return r;
3553         }
3554
3555         r = mmu_topup_memory_caches(vcpu);
3556         if (r)
3557                 return r;
3558
3559         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3560         if (likely(!force_pt_level)) {
3561                 level = mapping_level(vcpu, gfn);
3562                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3563         } else
3564                 level = PT_PAGE_TABLE_LEVEL;
3565
3566         if (fast_page_fault(vcpu, gpa, level, error_code))
3567                 return 0;
3568
3569         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3570         smp_rmb();
3571
3572         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3573                 return 0;
3574
3575         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3576                 return r;
3577
3578         spin_lock(&vcpu->kvm->mmu_lock);
3579         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3580                 goto out_unlock;
3581         make_mmu_pages_available(vcpu);
3582         if (likely(!force_pt_level))
3583                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3584         r = __direct_map(vcpu, gpa, write, map_writable,
3585                          level, gfn, pfn, prefault);
3586         spin_unlock(&vcpu->kvm->mmu_lock);
3587
3588         return r;
3589
3590 out_unlock:
3591         spin_unlock(&vcpu->kvm->mmu_lock);
3592         kvm_release_pfn_clean(pfn);
3593         return 0;
3594 }
3595
3596 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3597                                    struct kvm_mmu *context)
3598 {
3599         context->page_fault = nonpaging_page_fault;
3600         context->gva_to_gpa = nonpaging_gva_to_gpa;
3601         context->sync_page = nonpaging_sync_page;
3602         context->invlpg = nonpaging_invlpg;
3603         context->update_pte = nonpaging_update_pte;
3604         context->root_level = 0;
3605         context->shadow_root_level = PT32E_ROOT_LEVEL;
3606         context->root_hpa = INVALID_PAGE;
3607         context->direct_map = true;
3608         context->nx = false;
3609 }
3610
3611 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3612 {
3613         mmu_free_roots(vcpu);
3614 }
3615
3616 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3617 {
3618         return kvm_read_cr3(vcpu);
3619 }
3620
3621 static void inject_page_fault(struct kvm_vcpu *vcpu,
3622                               struct x86_exception *fault)
3623 {
3624         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3625 }
3626
3627 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3628                            unsigned access, int *nr_present)
3629 {
3630         if (unlikely(is_mmio_spte(*sptep))) {
3631                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3632                         mmu_spte_clear_no_track(sptep);
3633                         return true;
3634                 }
3635
3636                 (*nr_present)++;
3637                 mark_mmio_spte(kvm, sptep, gfn, access);
3638                 return true;
3639         }
3640
3641         return false;
3642 }
3643
3644 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3645 {
3646         unsigned index;
3647
3648         index = level - 1;
3649         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3650         return mmu->last_pte_bitmap & (1 << index);
3651 }
3652
3653 #define PTTYPE_EPT 18 /* arbitrary */
3654 #define PTTYPE PTTYPE_EPT
3655 #include "paging_tmpl.h"
3656 #undef PTTYPE
3657
3658 #define PTTYPE 64
3659 #include "paging_tmpl.h"
3660 #undef PTTYPE
3661
3662 #define PTTYPE 32
3663 #include "paging_tmpl.h"
3664 #undef PTTYPE
3665
3666 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3667                                   struct kvm_mmu *context)
3668 {
3669         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3670         u64 exb_bit_rsvd = 0;
3671         u64 gbpages_bit_rsvd = 0;
3672         u64 nonleaf_bit8_rsvd = 0;
3673
3674         context->bad_mt_xwr = 0;
3675
3676         if (!context->nx)
3677                 exb_bit_rsvd = rsvd_bits(63, 63);
3678         if (!guest_cpuid_has_gbpages(vcpu))
3679                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3680
3681         /*
3682          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3683          * leaf entries) on AMD CPUs only.
3684          */
3685         if (guest_cpuid_is_amd(vcpu))
3686                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3687
3688         switch (context->root_level) {
3689         case PT32_ROOT_LEVEL:
3690                 /* no rsvd bits for 2 level 4K page table entries */
3691                 context->rsvd_bits_mask[0][1] = 0;
3692                 context->rsvd_bits_mask[0][0] = 0;
3693                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3694
3695                 if (!is_pse(vcpu)) {
3696                         context->rsvd_bits_mask[1][1] = 0;
3697                         break;
3698                 }
3699
3700                 if (is_cpuid_PSE36())
3701                         /* 36bits PSE 4MB page */
3702                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3703                 else
3704                         /* 32 bits PSE 4MB page */
3705                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3706                 break;
3707         case PT32E_ROOT_LEVEL:
3708                 context->rsvd_bits_mask[0][2] =
3709                         rsvd_bits(maxphyaddr, 63) |
3710                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3711                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3712                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3713                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3714                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3715                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3716                         rsvd_bits(maxphyaddr, 62) |
3717                         rsvd_bits(13, 20);              /* large page */
3718                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3719                 break;
3720         case PT64_ROOT_LEVEL:
3721                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3722                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3723                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3724                         nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3725                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3726                         rsvd_bits(maxphyaddr, 51);
3727                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3728                         rsvd_bits(maxphyaddr, 51);
3729                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3730                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3731                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3732                         rsvd_bits(13, 29);
3733                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3734                         rsvd_bits(maxphyaddr, 51) |
3735                         rsvd_bits(13, 20);              /* large page */
3736                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3737                 break;
3738         }
3739 }
3740
3741 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3742                 struct kvm_mmu *context, bool execonly)
3743 {
3744         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3745         int pte;
3746
3747         context->rsvd_bits_mask[0][3] =
3748                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3749         context->rsvd_bits_mask[0][2] =
3750                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3751         context->rsvd_bits_mask[0][1] =
3752                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3753         context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3754
3755         /* large page */
3756         context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3757         context->rsvd_bits_mask[1][2] =
3758                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3759         context->rsvd_bits_mask[1][1] =
3760                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3761         context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3762
3763         for (pte = 0; pte < 64; pte++) {
3764                 int rwx_bits = pte & 7;
3765                 int mt = pte >> 3;
3766                 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3767                                 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3768                                 (rwx_bits == 0x4 && !execonly))
3769                         context->bad_mt_xwr |= (1ull << pte);
3770         }
3771 }
3772
3773 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3774                                       struct kvm_mmu *mmu, bool ept)
3775 {
3776         unsigned bit, byte, pfec;
3777         u8 map;
3778         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3779
3780         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3781         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3782         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3783                 pfec = byte << 1;
3784                 map = 0;
3785                 wf = pfec & PFERR_WRITE_MASK;
3786                 uf = pfec & PFERR_USER_MASK;
3787                 ff = pfec & PFERR_FETCH_MASK;
3788                 /*
3789                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3790                  * subject to SMAP restrictions, and cleared otherwise. The
3791                  * bit is only meaningful if the SMAP bit is set in CR4.
3792                  */
3793                 smapf = !(pfec & PFERR_RSVD_MASK);
3794                 for (bit = 0; bit < 8; ++bit) {
3795                         x = bit & ACC_EXEC_MASK;
3796                         w = bit & ACC_WRITE_MASK;
3797                         u = bit & ACC_USER_MASK;
3798
3799                         if (!ept) {
3800                                 /* Not really needed: !nx will cause pte.nx to fault */
3801                                 x |= !mmu->nx;
3802                                 /* Allow supervisor writes if !cr0.wp */
3803                                 w |= !is_write_protection(vcpu) && !uf;
3804                                 /* Disallow supervisor fetches of user code if cr4.smep */
3805                                 x &= !(cr4_smep && u && !uf);
3806
3807                                 /*
3808                                  * SMAP:kernel-mode data accesses from user-mode
3809                                  * mappings should fault. A fault is considered
3810                                  * as a SMAP violation if all of the following
3811                                  * conditions are ture:
3812                                  *   - X86_CR4_SMAP is set in CR4
3813                                  *   - An user page is accessed
3814                                  *   - Page fault in kernel mode
3815                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3816                                  *
3817                                  *   Here, we cover the first three conditions.
3818                                  *   The fourth is computed dynamically in
3819                                  *   permission_fault() and is in smapf.
3820                                  *
3821                                  *   Also, SMAP does not affect instruction
3822                                  *   fetches, add the !ff check here to make it
3823                                  *   clearer.
3824                                  */
3825                                 smap = cr4_smap && u && !uf && !ff;
3826                         } else
3827                                 /* Not really needed: no U/S accesses on ept  */
3828                                 u = 1;
3829
3830                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3831                                 (smapf && smap);
3832                         map |= fault << bit;
3833                 }
3834                 mmu->permissions[byte] = map;
3835         }
3836 }
3837
3838 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3839 {
3840         u8 map;
3841         unsigned level, root_level = mmu->root_level;
3842         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3843
3844         if (root_level == PT32E_ROOT_LEVEL)
3845                 --root_level;
3846         /* PT_PAGE_TABLE_LEVEL always terminates */
3847         map = 1 | (1 << ps_set_index);
3848         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3849                 if (level <= PT_PDPE_LEVEL
3850                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3851                         map |= 1 << (ps_set_index | (level - 1));
3852         }
3853         mmu->last_pte_bitmap = map;
3854 }
3855
3856 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3857                                          struct kvm_mmu *context,
3858                                          int level)
3859 {
3860         context->nx = is_nx(vcpu);
3861         context->root_level = level;
3862
3863         reset_rsvds_bits_mask(vcpu, context);
3864         update_permission_bitmask(vcpu, context, false);
3865         update_last_pte_bitmap(vcpu, context);
3866
3867         MMU_WARN_ON(!is_pae(vcpu));
3868         context->page_fault = paging64_page_fault;
3869         context->gva_to_gpa = paging64_gva_to_gpa;
3870         context->sync_page = paging64_sync_page;
3871         context->invlpg = paging64_invlpg;
3872         context->update_pte = paging64_update_pte;
3873         context->shadow_root_level = level;
3874         context->root_hpa = INVALID_PAGE;
3875         context->direct_map = false;
3876 }
3877
3878 static void paging64_init_context(struct kvm_vcpu *vcpu,
3879                                   struct kvm_mmu *context)
3880 {
3881         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3882 }
3883
3884 static void paging32_init_context(struct kvm_vcpu *vcpu,
3885                                   struct kvm_mmu *context)
3886 {
3887         context->nx = false;
3888         context->root_level = PT32_ROOT_LEVEL;
3889
3890         reset_rsvds_bits_mask(vcpu, context);
3891         update_permission_bitmask(vcpu, context, false);
3892         update_last_pte_bitmap(vcpu, context);
3893
3894         context->page_fault = paging32_page_fault;
3895         context->gva_to_gpa = paging32_gva_to_gpa;
3896         context->sync_page = paging32_sync_page;
3897         context->invlpg = paging32_invlpg;
3898         context->update_pte = paging32_update_pte;
3899         context->shadow_root_level = PT32E_ROOT_LEVEL;
3900         context->root_hpa = INVALID_PAGE;
3901         context->direct_map = false;
3902 }
3903
3904 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3905                                    struct kvm_mmu *context)
3906 {
3907         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3908 }
3909
3910 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3911 {
3912         struct kvm_mmu *context = &vcpu->arch.mmu;
3913
3914         context->base_role.word = 0;
3915         context->page_fault = tdp_page_fault;
3916         context->sync_page = nonpaging_sync_page;
3917         context->invlpg = nonpaging_invlpg;
3918         context->update_pte = nonpaging_update_pte;
3919         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3920         context->root_hpa = INVALID_PAGE;
3921         context->direct_map = true;
3922         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3923         context->get_cr3 = get_cr3;
3924         context->get_pdptr = kvm_pdptr_read;
3925         context->inject_page_fault = kvm_inject_page_fault;
3926
3927         if (!is_paging(vcpu)) {
3928                 context->nx = false;
3929                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3930                 context->root_level = 0;
3931         } else if (is_long_mode(vcpu)) {
3932                 context->nx = is_nx(vcpu);
3933                 context->root_level = PT64_ROOT_LEVEL;
3934                 reset_rsvds_bits_mask(vcpu, context);
3935                 context->gva_to_gpa = paging64_gva_to_gpa;
3936         } else if (is_pae(vcpu)) {
3937                 context->nx = is_nx(vcpu);
3938                 context->root_level = PT32E_ROOT_LEVEL;
3939                 reset_rsvds_bits_mask(vcpu, context);
3940                 context->gva_to_gpa = paging64_gva_to_gpa;
3941         } else {
3942                 context->nx = false;
3943                 context->root_level = PT32_ROOT_LEVEL;
3944                 reset_rsvds_bits_mask(vcpu, context);
3945                 context->gva_to_gpa = paging32_gva_to_gpa;
3946         }
3947
3948         update_permission_bitmask(vcpu, context, false);
3949         update_last_pte_bitmap(vcpu, context);
3950 }
3951
3952 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3953 {
3954         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3955         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3956         struct kvm_mmu *context = &vcpu->arch.mmu;
3957
3958         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3959
3960         if (!is_paging(vcpu))
3961                 nonpaging_init_context(vcpu, context);
3962         else if (is_long_mode(vcpu))
3963                 paging64_init_context(vcpu, context);
3964         else if (is_pae(vcpu))
3965                 paging32E_init_context(vcpu, context);
3966         else
3967                 paging32_init_context(vcpu, context);
3968
3969         context->base_role.nxe = is_nx(vcpu);
3970         context->base_role.cr4_pae = !!is_pae(vcpu);
3971         context->base_role.cr0_wp  = is_write_protection(vcpu);
3972         context->base_role.smep_andnot_wp
3973                 = smep && !is_write_protection(vcpu);
3974         context->base_role.smap_andnot_wp
3975                 = smap && !is_write_protection(vcpu);
3976 }
3977 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3978
3979 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
3980 {
3981         struct kvm_mmu *context = &vcpu->arch.mmu;
3982
3983         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3984
3985         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3986
3987         context->nx = true;
3988         context->page_fault = ept_page_fault;
3989         context->gva_to_gpa = ept_gva_to_gpa;
3990         context->sync_page = ept_sync_page;
3991         context->invlpg = ept_invlpg;
3992         context->update_pte = ept_update_pte;
3993         context->root_level = context->shadow_root_level;
3994         context->root_hpa = INVALID_PAGE;
3995         context->direct_map = false;
3996
3997         update_permission_bitmask(vcpu, context, true);
3998         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3999 }
4000 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4001
4002 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4003 {
4004         struct kvm_mmu *context = &vcpu->arch.mmu;
4005
4006         kvm_init_shadow_mmu(vcpu);
4007         context->set_cr3           = kvm_x86_ops->set_cr3;
4008         context->get_cr3           = get_cr3;
4009         context->get_pdptr         = kvm_pdptr_read;
4010         context->inject_page_fault = kvm_inject_page_fault;
4011 }
4012
4013 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4014 {
4015         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4016
4017         g_context->get_cr3           = get_cr3;
4018         g_context->get_pdptr         = kvm_pdptr_read;
4019         g_context->inject_page_fault = kvm_inject_page_fault;
4020
4021         /*
4022          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4023          * translation of l2_gpa to l1_gpa addresses is done using the
4024          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4025          * functions between mmu and nested_mmu are swapped.
4026          */
4027         if (!is_paging(vcpu)) {
4028                 g_context->nx = false;
4029                 g_context->root_level = 0;
4030                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4031         } else if (is_long_mode(vcpu)) {
4032                 g_context->nx = is_nx(vcpu);
4033                 g_context->root_level = PT64_ROOT_LEVEL;
4034                 reset_rsvds_bits_mask(vcpu, g_context);
4035                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4036         } else if (is_pae(vcpu)) {
4037                 g_context->nx = is_nx(vcpu);
4038                 g_context->root_level = PT32E_ROOT_LEVEL;
4039                 reset_rsvds_bits_mask(vcpu, g_context);
4040                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4041         } else {
4042                 g_context->nx = false;
4043                 g_context->root_level = PT32_ROOT_LEVEL;
4044                 reset_rsvds_bits_mask(vcpu, g_context);
4045                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4046         }
4047
4048         update_permission_bitmask(vcpu, g_context, false);
4049         update_last_pte_bitmap(vcpu, g_context);
4050 }
4051
4052 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4053 {
4054         if (mmu_is_nested(vcpu))
4055                 init_kvm_nested_mmu(vcpu);
4056         else if (tdp_enabled)
4057                 init_kvm_tdp_mmu(vcpu);
4058         else
4059                 init_kvm_softmmu(vcpu);
4060 }
4061
4062 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4063 {
4064         kvm_mmu_unload(vcpu);
4065         init_kvm_mmu(vcpu);
4066 }
4067 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4068
4069 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4070 {
4071         int r;
4072
4073         r = mmu_topup_memory_caches(vcpu);
4074         if (r)
4075                 goto out;
4076         r = mmu_alloc_roots(vcpu);
4077         kvm_mmu_sync_roots(vcpu);
4078         if (r)
4079                 goto out;
4080         /* set_cr3() should ensure TLB has been flushed */
4081         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4082 out:
4083         return r;
4084 }
4085 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4086
4087 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4088 {
4089         mmu_free_roots(vcpu);
4090         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4091 }
4092 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4093
4094 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4095                                   struct kvm_mmu_page *sp, u64 *spte,
4096                                   const void *new)
4097 {
4098         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4099                 ++vcpu->kvm->stat.mmu_pde_zapped;
4100                 return;
4101         }
4102
4103         ++vcpu->kvm->stat.mmu_pte_updated;
4104         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4105 }
4106
4107 static bool need_remote_flush(u64 old, u64 new)
4108 {
4109         if (!is_shadow_present_pte(old))
4110                 return false;
4111         if (!is_shadow_present_pte(new))
4112                 return true;
4113         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4114                 return true;
4115         old ^= shadow_nx_mask;
4116         new ^= shadow_nx_mask;
4117         return (old & ~new & PT64_PERM_MASK) != 0;
4118 }
4119
4120 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4121                                     bool remote_flush, bool local_flush)
4122 {
4123         if (zap_page)
4124                 return;
4125
4126         if (remote_flush)
4127                 kvm_flush_remote_tlbs(vcpu->kvm);
4128         else if (local_flush)
4129                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4130 }
4131
4132 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4133                                     const u8 *new, int *bytes)
4134 {
4135         u64 gentry;
4136         int r;
4137
4138         /*
4139          * Assume that the pte write on a page table of the same type
4140          * as the current vcpu paging mode since we update the sptes only
4141          * when they have the same mode.
4142          */
4143         if (is_pae(vcpu) && *bytes == 4) {
4144                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4145                 *gpa &= ~(gpa_t)7;
4146                 *bytes = 8;
4147                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
4148                 if (r)
4149                         gentry = 0;
4150                 new = (const u8 *)&gentry;
4151         }
4152
4153         switch (*bytes) {
4154         case 4:
4155                 gentry = *(const u32 *)new;
4156                 break;
4157         case 8:
4158                 gentry = *(const u64 *)new;
4159                 break;
4160         default:
4161                 gentry = 0;
4162                 break;
4163         }
4164
4165         return gentry;
4166 }
4167
4168 /*
4169  * If we're seeing too many writes to a page, it may no longer be a page table,
4170  * or we may be forking, in which case it is better to unmap the page.
4171  */
4172 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4173 {
4174         /*
4175          * Skip write-flooding detected for the sp whose level is 1, because
4176          * it can become unsync, then the guest page is not write-protected.
4177          */
4178         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4179                 return false;
4180
4181         return ++sp->write_flooding_count >= 3;
4182 }
4183
4184 /*
4185  * Misaligned accesses are too much trouble to fix up; also, they usually
4186  * indicate a page is not used as a page table.
4187  */
4188 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4189                                     int bytes)
4190 {
4191         unsigned offset, pte_size, misaligned;
4192
4193         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4194                  gpa, bytes, sp->role.word);
4195
4196         offset = offset_in_page(gpa);
4197         pte_size = sp->role.cr4_pae ? 8 : 4;
4198
4199         /*
4200          * Sometimes, the OS only writes the last one bytes to update status
4201          * bits, for example, in linux, andb instruction is used in clear_bit().
4202          */
4203         if (!(offset & (pte_size - 1)) && bytes == 1)
4204                 return false;
4205
4206         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4207         misaligned |= bytes < 4;
4208
4209         return misaligned;
4210 }
4211
4212 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4213 {
4214         unsigned page_offset, quadrant;
4215         u64 *spte;
4216         int level;
4217
4218         page_offset = offset_in_page(gpa);
4219         level = sp->role.level;
4220         *nspte = 1;
4221         if (!sp->role.cr4_pae) {
4222                 page_offset <<= 1;      /* 32->64 */
4223                 /*
4224                  * A 32-bit pde maps 4MB while the shadow pdes map
4225                  * only 2MB.  So we need to double the offset again
4226                  * and zap two pdes instead of one.
4227                  */
4228                 if (level == PT32_ROOT_LEVEL) {
4229                         page_offset &= ~7; /* kill rounding error */
4230                         page_offset <<= 1;
4231                         *nspte = 2;
4232                 }
4233                 quadrant = page_offset >> PAGE_SHIFT;
4234                 page_offset &= ~PAGE_MASK;
4235                 if (quadrant != sp->role.quadrant)
4236                         return NULL;
4237         }
4238
4239         spte = &sp->spt[page_offset / sizeof(*spte)];
4240         return spte;
4241 }
4242
4243 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4244                        const u8 *new, int bytes)
4245 {
4246         gfn_t gfn = gpa >> PAGE_SHIFT;
4247         struct kvm_mmu_page *sp;
4248         LIST_HEAD(invalid_list);
4249         u64 entry, gentry, *spte;
4250         int npte;
4251         bool remote_flush, local_flush, zap_page;
4252         union kvm_mmu_page_role mask = (union kvm_mmu_page_role) {
4253                 .cr0_wp = 1,
4254                 .cr4_pae = 1,
4255                 .nxe = 1,
4256                 .smep_andnot_wp = 1,
4257                 .smap_andnot_wp = 1,
4258         };
4259
4260         /*
4261          * If we don't have indirect shadow pages, it means no page is
4262          * write-protected, so we can exit simply.
4263          */
4264         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4265                 return;
4266
4267         zap_page = remote_flush = local_flush = false;
4268
4269         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4270
4271         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4272
4273         /*
4274          * No need to care whether allocation memory is successful
4275          * or not since pte prefetch is skiped if it does not have
4276          * enough objects in the cache.
4277          */
4278         mmu_topup_memory_caches(vcpu);
4279
4280         spin_lock(&vcpu->kvm->mmu_lock);
4281         ++vcpu->kvm->stat.mmu_pte_write;
4282         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4283
4284         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4285                 if (detect_write_misaligned(sp, gpa, bytes) ||
4286                       detect_write_flooding(sp)) {
4287                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4288                                                      &invalid_list);
4289                         ++vcpu->kvm->stat.mmu_flooded;
4290                         continue;
4291                 }
4292
4293                 spte = get_written_sptes(sp, gpa, &npte);
4294                 if (!spte)
4295                         continue;
4296
4297                 local_flush = true;
4298                 while (npte--) {
4299                         entry = *spte;
4300                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4301                         if (gentry &&
4302                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4303                               & mask.word) && rmap_can_add(vcpu))
4304                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4305                         if (need_remote_flush(entry, *spte))
4306                                 remote_flush = true;
4307                         ++spte;
4308                 }
4309         }
4310         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4311         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4312         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4313         spin_unlock(&vcpu->kvm->mmu_lock);
4314 }
4315
4316 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4317 {
4318         gpa_t gpa;
4319         int r;
4320
4321         if (vcpu->arch.mmu.direct_map)
4322                 return 0;
4323
4324         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4325
4326         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4327
4328         return r;
4329 }
4330 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4331
4332 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4333 {
4334         LIST_HEAD(invalid_list);
4335
4336         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4337                 return;
4338
4339         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4340                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4341                         break;
4342
4343                 ++vcpu->kvm->stat.mmu_recycled;
4344         }
4345         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4346 }
4347
4348 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4349 {
4350         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4351                 return vcpu_match_mmio_gpa(vcpu, addr);
4352
4353         return vcpu_match_mmio_gva(vcpu, addr);
4354 }
4355
4356 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4357                        void *insn, int insn_len)
4358 {
4359         int r, emulation_type = EMULTYPE_RETRY;
4360         enum emulation_result er;
4361
4362         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4363         if (r < 0)
4364                 goto out;
4365
4366         if (!r) {
4367                 r = 1;
4368                 goto out;
4369         }
4370
4371         if (is_mmio_page_fault(vcpu, cr2))
4372                 emulation_type = 0;
4373
4374         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4375
4376         switch (er) {
4377         case EMULATE_DONE:
4378                 return 1;
4379         case EMULATE_USER_EXIT:
4380                 ++vcpu->stat.mmio_exits;
4381                 /* fall through */
4382         case EMULATE_FAIL:
4383                 return 0;
4384         default:
4385                 BUG();
4386         }
4387 out:
4388         return r;
4389 }
4390 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4391
4392 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4393 {
4394         vcpu->arch.mmu.invlpg(vcpu, gva);
4395         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4396         ++vcpu->stat.invlpg;
4397 }
4398 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4399
4400 void kvm_enable_tdp(void)
4401 {
4402         tdp_enabled = true;
4403 }
4404 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4405
4406 void kvm_disable_tdp(void)
4407 {
4408         tdp_enabled = false;
4409 }
4410 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4411
4412 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4413 {
4414         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4415         if (vcpu->arch.mmu.lm_root != NULL)
4416                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4417 }
4418
4419 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4420 {
4421         struct page *page;
4422         int i;
4423
4424         /*
4425          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4426          * Therefore we need to allocate shadow page tables in the first
4427          * 4GB of memory, which happens to fit the DMA32 zone.
4428          */
4429         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4430         if (!page)
4431                 return -ENOMEM;
4432
4433         vcpu->arch.mmu.pae_root = page_address(page);
4434         for (i = 0; i < 4; ++i)
4435                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4436
4437         return 0;
4438 }
4439
4440 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4441 {
4442         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4443         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4444         vcpu->arch.mmu.translate_gpa = translate_gpa;
4445         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4446
4447         return alloc_mmu_pages(vcpu);
4448 }
4449
4450 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4451 {
4452         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4453
4454         init_kvm_mmu(vcpu);
4455 }
4456
4457 /* The return value indicates if tlb flush on all vcpus is needed. */
4458 typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4459
4460 /* The caller should hold mmu-lock before calling this function. */
4461 static bool
4462 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4463                         slot_level_handler fn, int start_level, int end_level,
4464                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4465 {
4466         struct slot_rmap_walk_iterator iterator;
4467         bool flush = false;
4468
4469         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4470                         end_gfn, &iterator) {
4471                 if (iterator.rmap)
4472                         flush |= fn(kvm, iterator.rmap);
4473
4474                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4475                         if (flush && lock_flush_tlb) {
4476                                 kvm_flush_remote_tlbs(kvm);
4477                                 flush = false;
4478                         }
4479                         cond_resched_lock(&kvm->mmu_lock);
4480                 }
4481         }
4482
4483         if (flush && lock_flush_tlb) {
4484                 kvm_flush_remote_tlbs(kvm);
4485                 flush = false;
4486         }
4487
4488         return flush;
4489 }
4490
4491 static bool
4492 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4493                   slot_level_handler fn, int start_level, int end_level,
4494                   bool lock_flush_tlb)
4495 {
4496         return slot_handle_level_range(kvm, memslot, fn, start_level,
4497                         end_level, memslot->base_gfn,
4498                         memslot->base_gfn + memslot->npages - 1,
4499                         lock_flush_tlb);
4500 }
4501
4502 static bool
4503 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4504                       slot_level_handler fn, bool lock_flush_tlb)
4505 {
4506         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4507                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4508 }
4509
4510 static bool
4511 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4512                         slot_level_handler fn, bool lock_flush_tlb)
4513 {
4514         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4515                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4516 }
4517
4518 static bool
4519 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4520                  slot_level_handler fn, bool lock_flush_tlb)
4521 {
4522         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4523                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4524 }
4525
4526 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4527                                       struct kvm_memory_slot *memslot)
4528 {
4529         gfn_t last_gfn;
4530         int i;
4531         bool flush = false;
4532
4533         last_gfn = memslot->base_gfn + memslot->npages - 1;
4534
4535         spin_lock(&kvm->mmu_lock);
4536
4537         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
4538                 unsigned long *rmapp;
4539                 unsigned long last_index, index;
4540
4541                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4542                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4543
4544                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4545                         if (*rmapp)
4546                                 flush |= __rmap_write_protect(kvm, rmapp,
4547                                                 false);
4548
4549                         if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4550                                 cond_resched_lock(&kvm->mmu_lock);
4551                 }
4552         }
4553
4554         spin_unlock(&kvm->mmu_lock);
4555
4556         /*
4557          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4558          * which do tlb flush out of mmu-lock should be serialized by
4559          * kvm->slots_lock otherwise tlb flush would be missed.
4560          */
4561         lockdep_assert_held(&kvm->slots_lock);
4562
4563         /*
4564          * We can flush all the TLBs out of the mmu lock without TLB
4565          * corruption since we just change the spte from writable to
4566          * readonly so that we only need to care the case of changing
4567          * spte from present to present (changing the spte from present
4568          * to nonpresent will flush all the TLBs immediately), in other
4569          * words, the only case we care is mmu_spte_update() where we
4570          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4571          * instead of PT_WRITABLE_MASK, that means it does not depend
4572          * on PT_WRITABLE_MASK anymore.
4573          */
4574         if (flush)
4575                 kvm_flush_remote_tlbs(kvm);
4576 }
4577
4578 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4579                 unsigned long *rmapp)
4580 {
4581         u64 *sptep;
4582         struct rmap_iterator iter;
4583         int need_tlb_flush = 0;
4584         pfn_t pfn;
4585         struct kvm_mmu_page *sp;
4586
4587 restart:
4588         for_each_rmap_spte(rmapp, &iter, sptep) {
4589                 sp = page_header(__pa(sptep));
4590                 pfn = spte_to_pfn(*sptep);
4591
4592                 /*
4593                  * We cannot do huge page mapping for indirect shadow pages,
4594                  * which are found on the last rmap (level = 1) when not using
4595                  * tdp; such shadow pages are synced with the page table in
4596                  * the guest, and the guest page table is using 4K page size
4597                  * mapping if the indirect sp has level = 1.
4598                  */
4599                 if (sp->role.direct &&
4600                         !kvm_is_reserved_pfn(pfn) &&
4601                         PageTransCompound(pfn_to_page(pfn))) {
4602                         drop_spte(kvm, sptep);
4603                         need_tlb_flush = 1;
4604                         goto restart;
4605                 }
4606         }
4607
4608         return need_tlb_flush;
4609 }
4610
4611 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4612                         struct kvm_memory_slot *memslot)
4613 {
4614         bool flush = false;
4615         unsigned long *rmapp;
4616         unsigned long last_index, index;
4617
4618         spin_lock(&kvm->mmu_lock);
4619
4620         rmapp = memslot->arch.rmap[0];
4621         last_index = gfn_to_index(memslot->base_gfn + memslot->npages - 1,
4622                                 memslot->base_gfn, PT_PAGE_TABLE_LEVEL);
4623
4624         for (index = 0; index <= last_index; ++index, ++rmapp) {
4625                 if (*rmapp)
4626                         flush |= kvm_mmu_zap_collapsible_spte(kvm, rmapp);
4627
4628                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4629                         if (flush) {
4630                                 kvm_flush_remote_tlbs(kvm);
4631                                 flush = false;
4632                         }
4633                         cond_resched_lock(&kvm->mmu_lock);
4634                 }
4635         }
4636
4637         if (flush)
4638                 kvm_flush_remote_tlbs(kvm);
4639
4640         spin_unlock(&kvm->mmu_lock);
4641 }
4642
4643 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4644                                    struct kvm_memory_slot *memslot)
4645 {
4646         gfn_t last_gfn;
4647         unsigned long *rmapp;
4648         unsigned long last_index, index;
4649         bool flush = false;
4650
4651         last_gfn = memslot->base_gfn + memslot->npages - 1;
4652
4653         spin_lock(&kvm->mmu_lock);
4654
4655         rmapp = memslot->arch.rmap[PT_PAGE_TABLE_LEVEL - 1];
4656         last_index = gfn_to_index(last_gfn, memslot->base_gfn,
4657                         PT_PAGE_TABLE_LEVEL);
4658
4659         for (index = 0; index <= last_index; ++index, ++rmapp) {
4660                 if (*rmapp)
4661                         flush |= __rmap_clear_dirty(kvm, rmapp);
4662
4663                 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4664                         cond_resched_lock(&kvm->mmu_lock);
4665         }
4666
4667         spin_unlock(&kvm->mmu_lock);
4668
4669         lockdep_assert_held(&kvm->slots_lock);
4670
4671         /*
4672          * It's also safe to flush TLBs out of mmu lock here as currently this
4673          * function is only used for dirty logging, in which case flushing TLB
4674          * out of mmu lock also guarantees no dirty pages will be lost in
4675          * dirty_bitmap.
4676          */
4677         if (flush)
4678                 kvm_flush_remote_tlbs(kvm);
4679 }
4680 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4681
4682 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4683                                         struct kvm_memory_slot *memslot)
4684 {
4685         gfn_t last_gfn;
4686         int i;
4687         bool flush = false;
4688
4689         last_gfn = memslot->base_gfn + memslot->npages - 1;
4690
4691         spin_lock(&kvm->mmu_lock);
4692
4693         /* skip rmap for 4K page */
4694         for (i = PT_PAGE_TABLE_LEVEL + 1; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
4695                 unsigned long *rmapp;
4696                 unsigned long last_index, index;
4697
4698                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4699                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4700
4701                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4702                         if (*rmapp)
4703                                 flush |= __rmap_write_protect(kvm, rmapp,
4704                                                 false);
4705
4706                         if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4707                                 cond_resched_lock(&kvm->mmu_lock);
4708                 }
4709         }
4710         spin_unlock(&kvm->mmu_lock);
4711
4712         /* see kvm_mmu_slot_remove_write_access */
4713         lockdep_assert_held(&kvm->slots_lock);
4714
4715         if (flush)
4716                 kvm_flush_remote_tlbs(kvm);
4717 }
4718 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4719
4720 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4721                             struct kvm_memory_slot *memslot)
4722 {
4723         gfn_t last_gfn;
4724         int i;
4725         bool flush = false;
4726
4727         last_gfn = memslot->base_gfn + memslot->npages - 1;
4728
4729         spin_lock(&kvm->mmu_lock);
4730
4731         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
4732                 unsigned long *rmapp;
4733                 unsigned long last_index, index;
4734
4735                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4736                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4737
4738                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4739                         if (*rmapp)
4740                                 flush |= __rmap_set_dirty(kvm, rmapp);
4741
4742                         if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4743                                 cond_resched_lock(&kvm->mmu_lock);
4744                 }
4745         }
4746
4747         spin_unlock(&kvm->mmu_lock);
4748
4749         lockdep_assert_held(&kvm->slots_lock);
4750
4751         /* see kvm_mmu_slot_leaf_clear_dirty */
4752         if (flush)
4753                 kvm_flush_remote_tlbs(kvm);
4754 }
4755 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4756
4757 #define BATCH_ZAP_PAGES 10
4758 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4759 {
4760         struct kvm_mmu_page *sp, *node;
4761         int batch = 0;
4762
4763 restart:
4764         list_for_each_entry_safe_reverse(sp, node,
4765               &kvm->arch.active_mmu_pages, link) {
4766                 int ret;
4767
4768                 /*
4769                  * No obsolete page exists before new created page since
4770                  * active_mmu_pages is the FIFO list.
4771                  */
4772                 if (!is_obsolete_sp(kvm, sp))
4773                         break;
4774
4775                 /*
4776                  * Since we are reversely walking the list and the invalid
4777                  * list will be moved to the head, skip the invalid page
4778                  * can help us to avoid the infinity list walking.
4779                  */
4780                 if (sp->role.invalid)
4781                         continue;
4782
4783                 /*
4784                  * Need not flush tlb since we only zap the sp with invalid
4785                  * generation number.
4786                  */
4787                 if (batch >= BATCH_ZAP_PAGES &&
4788                       cond_resched_lock(&kvm->mmu_lock)) {
4789                         batch = 0;
4790                         goto restart;
4791                 }
4792
4793                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4794                                 &kvm->arch.zapped_obsolete_pages);
4795                 batch += ret;
4796
4797                 if (ret)
4798                         goto restart;
4799         }
4800
4801         /*
4802          * Should flush tlb before free page tables since lockless-walking
4803          * may use the pages.
4804          */
4805         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4806 }
4807
4808 /*
4809  * Fast invalidate all shadow pages and use lock-break technique
4810  * to zap obsolete pages.
4811  *
4812  * It's required when memslot is being deleted or VM is being
4813  * destroyed, in these cases, we should ensure that KVM MMU does
4814  * not use any resource of the being-deleted slot or all slots
4815  * after calling the function.
4816  */
4817 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4818 {
4819         spin_lock(&kvm->mmu_lock);
4820         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4821         kvm->arch.mmu_valid_gen++;
4822
4823         /*
4824          * Notify all vcpus to reload its shadow page table
4825          * and flush TLB. Then all vcpus will switch to new
4826          * shadow page table with the new mmu_valid_gen.
4827          *
4828          * Note: we should do this under the protection of
4829          * mmu-lock, otherwise, vcpu would purge shadow page
4830          * but miss tlb flush.
4831          */
4832         kvm_reload_remote_mmus(kvm);
4833
4834         kvm_zap_obsolete_pages(kvm);
4835         spin_unlock(&kvm->mmu_lock);
4836 }
4837
4838 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4839 {
4840         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4841 }
4842
4843 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4844 {
4845         /*
4846          * The very rare case: if the generation-number is round,
4847          * zap all shadow pages.
4848          */
4849         if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4850                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4851                 kvm_mmu_invalidate_zap_all_pages(kvm);
4852         }
4853 }
4854
4855 static unsigned long
4856 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4857 {
4858         struct kvm *kvm;
4859         int nr_to_scan = sc->nr_to_scan;
4860         unsigned long freed = 0;
4861
4862         spin_lock(&kvm_lock);
4863
4864         list_for_each_entry(kvm, &vm_list, vm_list) {
4865                 int idx;
4866                 LIST_HEAD(invalid_list);
4867
4868                 /*
4869                  * Never scan more than sc->nr_to_scan VM instances.
4870                  * Will not hit this condition practically since we do not try
4871                  * to shrink more than one VM and it is very unlikely to see
4872                  * !n_used_mmu_pages so many times.
4873                  */
4874                 if (!nr_to_scan--)
4875                         break;
4876                 /*
4877                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4878                  * here. We may skip a VM instance errorneosly, but we do not
4879                  * want to shrink a VM that only started to populate its MMU
4880                  * anyway.
4881                  */
4882                 if (!kvm->arch.n_used_mmu_pages &&
4883                       !kvm_has_zapped_obsolete_pages(kvm))
4884                         continue;
4885
4886                 idx = srcu_read_lock(&kvm->srcu);
4887                 spin_lock(&kvm->mmu_lock);
4888
4889                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4890                         kvm_mmu_commit_zap_page(kvm,
4891                               &kvm->arch.zapped_obsolete_pages);
4892                         goto unlock;
4893                 }
4894
4895                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4896                         freed++;
4897                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4898
4899 unlock:
4900                 spin_unlock(&kvm->mmu_lock);
4901                 srcu_read_unlock(&kvm->srcu, idx);
4902
4903                 /*
4904                  * unfair on small ones
4905                  * per-vm shrinkers cry out
4906                  * sadness comes quickly
4907                  */
4908                 list_move_tail(&kvm->vm_list, &vm_list);
4909                 break;
4910         }
4911
4912         spin_unlock(&kvm_lock);
4913         return freed;
4914 }
4915
4916 static unsigned long
4917 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4918 {
4919         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4920 }
4921
4922 static struct shrinker mmu_shrinker = {
4923         .count_objects = mmu_shrink_count,
4924         .scan_objects = mmu_shrink_scan,
4925         .seeks = DEFAULT_SEEKS * 10,
4926 };
4927
4928 static void mmu_destroy_caches(void)
4929 {
4930         if (pte_list_desc_cache)
4931                 kmem_cache_destroy(pte_list_desc_cache);
4932         if (mmu_page_header_cache)
4933                 kmem_cache_destroy(mmu_page_header_cache);
4934 }
4935
4936 int kvm_mmu_module_init(void)
4937 {
4938         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4939                                             sizeof(struct pte_list_desc),
4940                                             0, 0, NULL);
4941         if (!pte_list_desc_cache)
4942                 goto nomem;
4943
4944         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4945                                                   sizeof(struct kvm_mmu_page),
4946                                                   0, 0, NULL);
4947         if (!mmu_page_header_cache)
4948                 goto nomem;
4949
4950         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4951                 goto nomem;
4952
4953         register_shrinker(&mmu_shrinker);
4954
4955         return 0;
4956
4957 nomem:
4958         mmu_destroy_caches();
4959         return -ENOMEM;
4960 }
4961
4962 /*
4963  * Caculate mmu pages needed for kvm.
4964  */
4965 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4966 {
4967         unsigned int nr_mmu_pages;
4968         unsigned int  nr_pages = 0;
4969         struct kvm_memslots *slots;
4970         struct kvm_memory_slot *memslot;
4971
4972         slots = kvm_memslots(kvm);
4973
4974         kvm_for_each_memslot(memslot, slots)
4975                 nr_pages += memslot->npages;
4976
4977         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4978         nr_mmu_pages = max(nr_mmu_pages,
4979                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4980
4981         return nr_mmu_pages;
4982 }
4983
4984 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4985 {
4986         struct kvm_shadow_walk_iterator iterator;
4987         u64 spte;
4988         int nr_sptes = 0;
4989
4990         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4991                 return nr_sptes;
4992
4993         walk_shadow_page_lockless_begin(vcpu);
4994         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4995                 sptes[iterator.level-1] = spte;
4996                 nr_sptes++;
4997                 if (!is_shadow_present_pte(spte))
4998                         break;
4999         }
5000         walk_shadow_page_lockless_end(vcpu);
5001
5002         return nr_sptes;
5003 }
5004 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
5005
5006 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5007 {
5008         kvm_mmu_unload(vcpu);
5009         free_mmu_pages(vcpu);
5010         mmu_free_memory_caches(vcpu);
5011 }
5012
5013 void kvm_mmu_module_exit(void)
5014 {
5015         mmu_destroy_caches();
5016         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5017         unregister_shrinker(&mmu_shrinker);
5018         mmu_audit_disable();
5019 }