KVM: MMU: rename 'pt_write' to 'emulate'
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 char *audit_point_name[] = {
64         "pre page fault",
65         "post page fault",
66         "pre pte write",
67         "post pte write",
68         "pre sync",
69         "post sync"
70 };
71
72 #undef MMU_DEBUG
73
74 #ifdef MMU_DEBUG
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
79 #else
80
81 #define pgprintk(x...) do { } while (0)
82 #define rmap_printk(x...) do { } while (0)
83
84 #endif
85
86 #ifdef MMU_DEBUG
87 static int dbg = 0;
88 module_param(dbg, bool, 0644);
89 #endif
90
91 static int oos_shadow = 1;
92 module_param(oos_shadow, bool, 0644);
93
94 #ifndef MMU_DEBUG
95 #define ASSERT(x) do { } while (0)
96 #else
97 #define ASSERT(x)                                                       \
98         if (!(x)) {                                                     \
99                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
100                        __FILE__, __LINE__, #x);                         \
101         }
102 #endif
103
104 #define PTE_PREFETCH_NUM                8
105
106 #define PT_FIRST_AVAIL_BITS_SHIFT 9
107 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
108
109 #define PT64_LEVEL_BITS 9
110
111 #define PT64_LEVEL_SHIFT(level) \
112                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113
114 #define PT64_INDEX(address, level)\
115         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
116
117
118 #define PT32_LEVEL_BITS 10
119
120 #define PT32_LEVEL_SHIFT(level) \
121                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122
123 #define PT32_LVL_OFFSET_MASK(level) \
124         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125                                                 * PT32_LEVEL_BITS))) - 1))
126
127 #define PT32_INDEX(address, level)\
128         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
129
130
131 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
132 #define PT64_DIR_BASE_ADDR_MASK \
133         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
134 #define PT64_LVL_ADDR_MASK(level) \
135         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136                                                 * PT64_LEVEL_BITS))) - 1))
137 #define PT64_LVL_OFFSET_MASK(level) \
138         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
139                                                 * PT64_LEVEL_BITS))) - 1))
140
141 #define PT32_BASE_ADDR_MASK PAGE_MASK
142 #define PT32_DIR_BASE_ADDR_MASK \
143         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
144 #define PT32_LVL_ADDR_MASK(level) \
145         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
146                                             * PT32_LEVEL_BITS))) - 1))
147
148 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
149                         | PT64_NX_MASK)
150
151 #define PTE_LIST_EXT 4
152
153 #define ACC_EXEC_MASK    1
154 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
155 #define ACC_USER_MASK    PT_USER_MASK
156 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
157
158 #include <trace/events/kvm.h>
159
160 #define CREATE_TRACE_POINTS
161 #include "mmutrace.h"
162
163 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
164
165 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
166
167 struct pte_list_desc {
168         u64 *sptes[PTE_LIST_EXT];
169         struct pte_list_desc *more;
170 };
171
172 struct kvm_shadow_walk_iterator {
173         u64 addr;
174         hpa_t shadow_addr;
175         int level;
176         u64 *sptep;
177         unsigned index;
178 };
179
180 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
181         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
182              shadow_walk_okay(&(_walker));                      \
183              shadow_walk_next(&(_walker)))
184
185 static struct kmem_cache *pte_list_desc_cache;
186 static struct kmem_cache *mmu_page_header_cache;
187 static struct percpu_counter kvm_total_used_mmu_pages;
188
189 static u64 __read_mostly shadow_trap_nonpresent_pte;
190 static u64 __read_mostly shadow_notrap_nonpresent_pte;
191 static u64 __read_mostly shadow_nx_mask;
192 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
193 static u64 __read_mostly shadow_user_mask;
194 static u64 __read_mostly shadow_accessed_mask;
195 static u64 __read_mostly shadow_dirty_mask;
196
197 static inline u64 rsvd_bits(int s, int e)
198 {
199         return ((1ULL << (e - s + 1)) - 1) << s;
200 }
201
202 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
203 {
204         shadow_trap_nonpresent_pte = trap_pte;
205         shadow_notrap_nonpresent_pte = notrap_pte;
206 }
207 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
208
209 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
210                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
211 {
212         shadow_user_mask = user_mask;
213         shadow_accessed_mask = accessed_mask;
214         shadow_dirty_mask = dirty_mask;
215         shadow_nx_mask = nx_mask;
216         shadow_x_mask = x_mask;
217 }
218 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
219
220 static int is_cpuid_PSE36(void)
221 {
222         return 1;
223 }
224
225 static int is_nx(struct kvm_vcpu *vcpu)
226 {
227         return vcpu->arch.efer & EFER_NX;
228 }
229
230 static int is_shadow_present_pte(u64 pte)
231 {
232         return pte != shadow_trap_nonpresent_pte
233                 && pte != shadow_notrap_nonpresent_pte;
234 }
235
236 static int is_large_pte(u64 pte)
237 {
238         return pte & PT_PAGE_SIZE_MASK;
239 }
240
241 static int is_dirty_gpte(unsigned long pte)
242 {
243         return pte & PT_DIRTY_MASK;
244 }
245
246 static int is_rmap_spte(u64 pte)
247 {
248         return is_shadow_present_pte(pte);
249 }
250
251 static int is_last_spte(u64 pte, int level)
252 {
253         if (level == PT_PAGE_TABLE_LEVEL)
254                 return 1;
255         if (is_large_pte(pte))
256                 return 1;
257         return 0;
258 }
259
260 static pfn_t spte_to_pfn(u64 pte)
261 {
262         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
263 }
264
265 static gfn_t pse36_gfn_delta(u32 gpte)
266 {
267         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
268
269         return (gpte & PT32_DIR_PSE36_MASK) << shift;
270 }
271
272 static void __set_spte(u64 *sptep, u64 spte)
273 {
274         set_64bit(sptep, spte);
275 }
276
277 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
278 {
279 #ifdef CONFIG_X86_64
280         return xchg(sptep, new_spte);
281 #else
282         u64 old_spte;
283
284         do {
285                 old_spte = *sptep;
286         } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
287
288         return old_spte;
289 #endif
290 }
291
292 static bool spte_has_volatile_bits(u64 spte)
293 {
294         if (!shadow_accessed_mask)
295                 return false;
296
297         if (!is_shadow_present_pte(spte))
298                 return false;
299
300         if ((spte & shadow_accessed_mask) &&
301               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
302                 return false;
303
304         return true;
305 }
306
307 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
308 {
309         return (old_spte & bit_mask) && !(new_spte & bit_mask);
310 }
311
312 static void update_spte(u64 *sptep, u64 new_spte)
313 {
314         u64 mask, old_spte = *sptep;
315
316         WARN_ON(!is_rmap_spte(new_spte));
317
318         new_spte |= old_spte & shadow_dirty_mask;
319
320         mask = shadow_accessed_mask;
321         if (is_writable_pte(old_spte))
322                 mask |= shadow_dirty_mask;
323
324         if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
325                 __set_spte(sptep, new_spte);
326         else
327                 old_spte = __xchg_spte(sptep, new_spte);
328
329         if (!shadow_accessed_mask)
330                 return;
331
332         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
333                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
334         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
335                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
336 }
337
338 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
339                                   struct kmem_cache *base_cache, int min)
340 {
341         void *obj;
342
343         if (cache->nobjs >= min)
344                 return 0;
345         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
346                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
347                 if (!obj)
348                         return -ENOMEM;
349                 cache->objects[cache->nobjs++] = obj;
350         }
351         return 0;
352 }
353
354 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
355                                   struct kmem_cache *cache)
356 {
357         while (mc->nobjs)
358                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
359 }
360
361 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
362                                        int min)
363 {
364         void *page;
365
366         if (cache->nobjs >= min)
367                 return 0;
368         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
369                 page = (void *)__get_free_page(GFP_KERNEL);
370                 if (!page)
371                         return -ENOMEM;
372                 cache->objects[cache->nobjs++] = page;
373         }
374         return 0;
375 }
376
377 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
378 {
379         while (mc->nobjs)
380                 free_page((unsigned long)mc->objects[--mc->nobjs]);
381 }
382
383 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
384 {
385         int r;
386
387         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
388                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
389         if (r)
390                 goto out;
391         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
392         if (r)
393                 goto out;
394         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
395                                    mmu_page_header_cache, 4);
396 out:
397         return r;
398 }
399
400 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
401 {
402         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
403                                 pte_list_desc_cache);
404         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
405         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
406                                 mmu_page_header_cache);
407 }
408
409 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
410                                     size_t size)
411 {
412         void *p;
413
414         BUG_ON(!mc->nobjs);
415         p = mc->objects[--mc->nobjs];
416         return p;
417 }
418
419 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
420 {
421         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
422                                       sizeof(struct pte_list_desc));
423 }
424
425 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
426 {
427         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
428 }
429
430 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
431 {
432         if (!sp->role.direct)
433                 return sp->gfns[index];
434
435         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
436 }
437
438 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
439 {
440         if (sp->role.direct)
441                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
442         else
443                 sp->gfns[index] = gfn;
444 }
445
446 /*
447  * Return the pointer to the large page information for a given gfn,
448  * handling slots that are not large page aligned.
449  */
450 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
451                                               struct kvm_memory_slot *slot,
452                                               int level)
453 {
454         unsigned long idx;
455
456         idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
457               (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
458         return &slot->lpage_info[level - 2][idx];
459 }
460
461 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
462 {
463         struct kvm_memory_slot *slot;
464         struct kvm_lpage_info *linfo;
465         int i;
466
467         slot = gfn_to_memslot(kvm, gfn);
468         for (i = PT_DIRECTORY_LEVEL;
469              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
470                 linfo = lpage_info_slot(gfn, slot, i);
471                 linfo->write_count += 1;
472         }
473         kvm->arch.indirect_shadow_pages++;
474 }
475
476 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
477 {
478         struct kvm_memory_slot *slot;
479         struct kvm_lpage_info *linfo;
480         int i;
481
482         slot = gfn_to_memslot(kvm, gfn);
483         for (i = PT_DIRECTORY_LEVEL;
484              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
485                 linfo = lpage_info_slot(gfn, slot, i);
486                 linfo->write_count -= 1;
487                 WARN_ON(linfo->write_count < 0);
488         }
489         kvm->arch.indirect_shadow_pages--;
490 }
491
492 static int has_wrprotected_page(struct kvm *kvm,
493                                 gfn_t gfn,
494                                 int level)
495 {
496         struct kvm_memory_slot *slot;
497         struct kvm_lpage_info *linfo;
498
499         slot = gfn_to_memslot(kvm, gfn);
500         if (slot) {
501                 linfo = lpage_info_slot(gfn, slot, level);
502                 return linfo->write_count;
503         }
504
505         return 1;
506 }
507
508 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
509 {
510         unsigned long page_size;
511         int i, ret = 0;
512
513         page_size = kvm_host_page_size(kvm, gfn);
514
515         for (i = PT_PAGE_TABLE_LEVEL;
516              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
517                 if (page_size >= KVM_HPAGE_SIZE(i))
518                         ret = i;
519                 else
520                         break;
521         }
522
523         return ret;
524 }
525
526 static struct kvm_memory_slot *
527 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
528                             bool no_dirty_log)
529 {
530         struct kvm_memory_slot *slot;
531
532         slot = gfn_to_memslot(vcpu->kvm, gfn);
533         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
534               (no_dirty_log && slot->dirty_bitmap))
535                 slot = NULL;
536
537         return slot;
538 }
539
540 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
541 {
542         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
543 }
544
545 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
546 {
547         int host_level, level, max_level;
548
549         host_level = host_mapping_level(vcpu->kvm, large_gfn);
550
551         if (host_level == PT_PAGE_TABLE_LEVEL)
552                 return host_level;
553
554         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
555                 kvm_x86_ops->get_lpage_level() : host_level;
556
557         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
558                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
559                         break;
560
561         return level - 1;
562 }
563
564 /*
565  * Pte mapping structures:
566  *
567  * If pte_list bit zero is zero, then pte_list point to the spte.
568  *
569  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
570  * pte_list_desc containing more mappings.
571  *
572  * Returns the number of pte entries before the spte was added or zero if
573  * the spte was not added.
574  *
575  */
576 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
577                         unsigned long *pte_list)
578 {
579         struct pte_list_desc *desc;
580         int i, count = 0;
581
582         if (!*pte_list) {
583                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
584                 *pte_list = (unsigned long)spte;
585         } else if (!(*pte_list & 1)) {
586                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
587                 desc = mmu_alloc_pte_list_desc(vcpu);
588                 desc->sptes[0] = (u64 *)*pte_list;
589                 desc->sptes[1] = spte;
590                 *pte_list = (unsigned long)desc | 1;
591                 ++count;
592         } else {
593                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
594                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
595                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
596                         desc = desc->more;
597                         count += PTE_LIST_EXT;
598                 }
599                 if (desc->sptes[PTE_LIST_EXT-1]) {
600                         desc->more = mmu_alloc_pte_list_desc(vcpu);
601                         desc = desc->more;
602                 }
603                 for (i = 0; desc->sptes[i]; ++i)
604                         ++count;
605                 desc->sptes[i] = spte;
606         }
607         return count;
608 }
609
610 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
611 {
612         struct pte_list_desc *desc;
613         u64 *prev_spte;
614         int i;
615
616         if (!*pte_list)
617                 return NULL;
618         else if (!(*pte_list & 1)) {
619                 if (!spte)
620                         return (u64 *)*pte_list;
621                 return NULL;
622         }
623         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
624         prev_spte = NULL;
625         while (desc) {
626                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
627                         if (prev_spte == spte)
628                                 return desc->sptes[i];
629                         prev_spte = desc->sptes[i];
630                 }
631                 desc = desc->more;
632         }
633         return NULL;
634 }
635
636 static void
637 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
638                            int i, struct pte_list_desc *prev_desc)
639 {
640         int j;
641
642         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
643                 ;
644         desc->sptes[i] = desc->sptes[j];
645         desc->sptes[j] = NULL;
646         if (j != 0)
647                 return;
648         if (!prev_desc && !desc->more)
649                 *pte_list = (unsigned long)desc->sptes[0];
650         else
651                 if (prev_desc)
652                         prev_desc->more = desc->more;
653                 else
654                         *pte_list = (unsigned long)desc->more | 1;
655         mmu_free_pte_list_desc(desc);
656 }
657
658 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
659 {
660         struct pte_list_desc *desc;
661         struct pte_list_desc *prev_desc;
662         int i;
663
664         if (!*pte_list) {
665                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
666                 BUG();
667         } else if (!(*pte_list & 1)) {
668                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
669                 if ((u64 *)*pte_list != spte) {
670                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
671                         BUG();
672                 }
673                 *pte_list = 0;
674         } else {
675                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
676                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
677                 prev_desc = NULL;
678                 while (desc) {
679                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
680                                 if (desc->sptes[i] == spte) {
681                                         pte_list_desc_remove_entry(pte_list,
682                                                                desc, i,
683                                                                prev_desc);
684                                         return;
685                                 }
686                         prev_desc = desc;
687                         desc = desc->more;
688                 }
689                 pr_err("pte_list_remove: %p many->many\n", spte);
690                 BUG();
691         }
692 }
693
694 typedef void (*pte_list_walk_fn) (u64 *spte);
695 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
696 {
697         struct pte_list_desc *desc;
698         int i;
699
700         if (!*pte_list)
701                 return;
702
703         if (!(*pte_list & 1))
704                 return fn((u64 *)*pte_list);
705
706         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
707         while (desc) {
708                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
709                         fn(desc->sptes[i]);
710                 desc = desc->more;
711         }
712 }
713
714 /*
715  * Take gfn and return the reverse mapping to it.
716  */
717 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
718 {
719         struct kvm_memory_slot *slot;
720         struct kvm_lpage_info *linfo;
721
722         slot = gfn_to_memslot(kvm, gfn);
723         if (likely(level == PT_PAGE_TABLE_LEVEL))
724                 return &slot->rmap[gfn - slot->base_gfn];
725
726         linfo = lpage_info_slot(gfn, slot, level);
727
728         return &linfo->rmap_pde;
729 }
730
731 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
732 {
733         struct kvm_mmu_page *sp;
734         unsigned long *rmapp;
735
736         sp = page_header(__pa(spte));
737         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
738         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
739         return pte_list_add(vcpu, spte, rmapp);
740 }
741
742 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
743 {
744         return pte_list_next(rmapp, spte);
745 }
746
747 static void rmap_remove(struct kvm *kvm, u64 *spte)
748 {
749         struct kvm_mmu_page *sp;
750         gfn_t gfn;
751         unsigned long *rmapp;
752
753         sp = page_header(__pa(spte));
754         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
755         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
756         pte_list_remove(spte, rmapp);
757 }
758
759 static int set_spte_track_bits(u64 *sptep, u64 new_spte)
760 {
761         pfn_t pfn;
762         u64 old_spte = *sptep;
763
764         if (!spte_has_volatile_bits(old_spte))
765                 __set_spte(sptep, new_spte);
766         else
767                 old_spte = __xchg_spte(sptep, new_spte);
768
769         if (!is_rmap_spte(old_spte))
770                 return 0;
771
772         pfn = spte_to_pfn(old_spte);
773         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
774                 kvm_set_pfn_accessed(pfn);
775         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
776                 kvm_set_pfn_dirty(pfn);
777         return 1;
778 }
779
780 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
781 {
782         if (set_spte_track_bits(sptep, new_spte))
783                 rmap_remove(kvm, sptep);
784 }
785
786 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
787 {
788         unsigned long *rmapp;
789         u64 *spte;
790         int i, write_protected = 0;
791
792         rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
793
794         spte = rmap_next(kvm, rmapp, NULL);
795         while (spte) {
796                 BUG_ON(!spte);
797                 BUG_ON(!(*spte & PT_PRESENT_MASK));
798                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
799                 if (is_writable_pte(*spte)) {
800                         update_spte(spte, *spte & ~PT_WRITABLE_MASK);
801                         write_protected = 1;
802                 }
803                 spte = rmap_next(kvm, rmapp, spte);
804         }
805
806         /* check for huge page mappings */
807         for (i = PT_DIRECTORY_LEVEL;
808              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
809                 rmapp = gfn_to_rmap(kvm, gfn, i);
810                 spte = rmap_next(kvm, rmapp, NULL);
811                 while (spte) {
812                         BUG_ON(!spte);
813                         BUG_ON(!(*spte & PT_PRESENT_MASK));
814                         BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
815                         pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
816                         if (is_writable_pte(*spte)) {
817                                 drop_spte(kvm, spte,
818                                           shadow_trap_nonpresent_pte);
819                                 --kvm->stat.lpages;
820                                 spte = NULL;
821                                 write_protected = 1;
822                         }
823                         spte = rmap_next(kvm, rmapp, spte);
824                 }
825         }
826
827         return write_protected;
828 }
829
830 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
831                            unsigned long data)
832 {
833         u64 *spte;
834         int need_tlb_flush = 0;
835
836         while ((spte = rmap_next(kvm, rmapp, NULL))) {
837                 BUG_ON(!(*spte & PT_PRESENT_MASK));
838                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
839                 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
840                 need_tlb_flush = 1;
841         }
842         return need_tlb_flush;
843 }
844
845 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
846                              unsigned long data)
847 {
848         int need_flush = 0;
849         u64 *spte, new_spte;
850         pte_t *ptep = (pte_t *)data;
851         pfn_t new_pfn;
852
853         WARN_ON(pte_huge(*ptep));
854         new_pfn = pte_pfn(*ptep);
855         spte = rmap_next(kvm, rmapp, NULL);
856         while (spte) {
857                 BUG_ON(!is_shadow_present_pte(*spte));
858                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
859                 need_flush = 1;
860                 if (pte_write(*ptep)) {
861                         drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
862                         spte = rmap_next(kvm, rmapp, NULL);
863                 } else {
864                         new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
865                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
866
867                         new_spte &= ~PT_WRITABLE_MASK;
868                         new_spte &= ~SPTE_HOST_WRITEABLE;
869                         new_spte &= ~shadow_accessed_mask;
870                         set_spte_track_bits(spte, new_spte);
871                         spte = rmap_next(kvm, rmapp, spte);
872                 }
873         }
874         if (need_flush)
875                 kvm_flush_remote_tlbs(kvm);
876
877         return 0;
878 }
879
880 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
881                           unsigned long data,
882                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
883                                          unsigned long data))
884 {
885         int i, j;
886         int ret;
887         int retval = 0;
888         struct kvm_memslots *slots;
889
890         slots = kvm_memslots(kvm);
891
892         for (i = 0; i < slots->nmemslots; i++) {
893                 struct kvm_memory_slot *memslot = &slots->memslots[i];
894                 unsigned long start = memslot->userspace_addr;
895                 unsigned long end;
896
897                 end = start + (memslot->npages << PAGE_SHIFT);
898                 if (hva >= start && hva < end) {
899                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
900                         gfn_t gfn = memslot->base_gfn + gfn_offset;
901
902                         ret = handler(kvm, &memslot->rmap[gfn_offset], data);
903
904                         for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
905                                 struct kvm_lpage_info *linfo;
906
907                                 linfo = lpage_info_slot(gfn, memslot,
908                                                         PT_DIRECTORY_LEVEL + j);
909                                 ret |= handler(kvm, &linfo->rmap_pde, data);
910                         }
911                         trace_kvm_age_page(hva, memslot, ret);
912                         retval |= ret;
913                 }
914         }
915
916         return retval;
917 }
918
919 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
920 {
921         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
922 }
923
924 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
925 {
926         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
927 }
928
929 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
930                          unsigned long data)
931 {
932         u64 *spte;
933         int young = 0;
934
935         /*
936          * Emulate the accessed bit for EPT, by checking if this page has
937          * an EPT mapping, and clearing it if it does. On the next access,
938          * a new EPT mapping will be established.
939          * This has some overhead, but not as much as the cost of swapping
940          * out actively used pages or breaking up actively used hugepages.
941          */
942         if (!shadow_accessed_mask)
943                 return kvm_unmap_rmapp(kvm, rmapp, data);
944
945         spte = rmap_next(kvm, rmapp, NULL);
946         while (spte) {
947                 int _young;
948                 u64 _spte = *spte;
949                 BUG_ON(!(_spte & PT_PRESENT_MASK));
950                 _young = _spte & PT_ACCESSED_MASK;
951                 if (_young) {
952                         young = 1;
953                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
954                 }
955                 spte = rmap_next(kvm, rmapp, spte);
956         }
957         return young;
958 }
959
960 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
961                               unsigned long data)
962 {
963         u64 *spte;
964         int young = 0;
965
966         /*
967          * If there's no access bit in the secondary pte set by the
968          * hardware it's up to gup-fast/gup to set the access bit in
969          * the primary pte or in the page structure.
970          */
971         if (!shadow_accessed_mask)
972                 goto out;
973
974         spte = rmap_next(kvm, rmapp, NULL);
975         while (spte) {
976                 u64 _spte = *spte;
977                 BUG_ON(!(_spte & PT_PRESENT_MASK));
978                 young = _spte & PT_ACCESSED_MASK;
979                 if (young) {
980                         young = 1;
981                         break;
982                 }
983                 spte = rmap_next(kvm, rmapp, spte);
984         }
985 out:
986         return young;
987 }
988
989 #define RMAP_RECYCLE_THRESHOLD 1000
990
991 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
992 {
993         unsigned long *rmapp;
994         struct kvm_mmu_page *sp;
995
996         sp = page_header(__pa(spte));
997
998         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
999
1000         kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1001         kvm_flush_remote_tlbs(vcpu->kvm);
1002 }
1003
1004 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1005 {
1006         return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1007 }
1008
1009 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1010 {
1011         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1012 }
1013
1014 #ifdef MMU_DEBUG
1015 static int is_empty_shadow_page(u64 *spt)
1016 {
1017         u64 *pos;
1018         u64 *end;
1019
1020         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1021                 if (is_shadow_present_pte(*pos)) {
1022                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1023                                pos, *pos);
1024                         return 0;
1025                 }
1026         return 1;
1027 }
1028 #endif
1029
1030 /*
1031  * This value is the sum of all of the kvm instances's
1032  * kvm->arch.n_used_mmu_pages values.  We need a global,
1033  * aggregate version in order to make the slab shrinker
1034  * faster
1035  */
1036 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1037 {
1038         kvm->arch.n_used_mmu_pages += nr;
1039         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1040 }
1041
1042 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1043 {
1044         ASSERT(is_empty_shadow_page(sp->spt));
1045         hlist_del(&sp->hash_link);
1046         list_del(&sp->link);
1047         free_page((unsigned long)sp->spt);
1048         if (!sp->role.direct)
1049                 free_page((unsigned long)sp->gfns);
1050         kmem_cache_free(mmu_page_header_cache, sp);
1051         kvm_mod_used_mmu_pages(kvm, -1);
1052 }
1053
1054 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1055 {
1056         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1057 }
1058
1059 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1060                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1061 {
1062         if (!parent_pte)
1063                 return;
1064
1065         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1066 }
1067
1068 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1069                                        u64 *parent_pte)
1070 {
1071         pte_list_remove(parent_pte, &sp->parent_ptes);
1072 }
1073
1074 static void drop_parent_pte(struct kvm_mmu_page *sp,
1075                             u64 *parent_pte)
1076 {
1077         mmu_page_remove_parent_pte(sp, parent_pte);
1078         __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1079 }
1080
1081 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1082                                                u64 *parent_pte, int direct)
1083 {
1084         struct kvm_mmu_page *sp;
1085         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1086                                         sizeof *sp);
1087         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1088         if (!direct)
1089                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1090                                                   PAGE_SIZE);
1091         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1092         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1093         bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1094         sp->parent_ptes = 0;
1095         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1096         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1097         return sp;
1098 }
1099
1100 static void mark_unsync(u64 *spte);
1101 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1102 {
1103         pte_list_walk(&sp->parent_ptes, mark_unsync);
1104 }
1105
1106 static void mark_unsync(u64 *spte)
1107 {
1108         struct kvm_mmu_page *sp;
1109         unsigned int index;
1110
1111         sp = page_header(__pa(spte));
1112         index = spte - sp->spt;
1113         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1114                 return;
1115         if (sp->unsync_children++)
1116                 return;
1117         kvm_mmu_mark_parents_unsync(sp);
1118 }
1119
1120 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1121                                     struct kvm_mmu_page *sp)
1122 {
1123         int i;
1124
1125         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1126                 sp->spt[i] = shadow_trap_nonpresent_pte;
1127 }
1128
1129 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1130                                struct kvm_mmu_page *sp)
1131 {
1132         return 1;
1133 }
1134
1135 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1136 {
1137 }
1138
1139 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1140                                  struct kvm_mmu_page *sp, u64 *spte,
1141                                  const void *pte)
1142 {
1143         WARN_ON(1);
1144 }
1145
1146 #define KVM_PAGE_ARRAY_NR 16
1147
1148 struct kvm_mmu_pages {
1149         struct mmu_page_and_offset {
1150                 struct kvm_mmu_page *sp;
1151                 unsigned int idx;
1152         } page[KVM_PAGE_ARRAY_NR];
1153         unsigned int nr;
1154 };
1155
1156 #define for_each_unsync_children(bitmap, idx)           \
1157         for (idx = find_first_bit(bitmap, 512);         \
1158              idx < 512;                                 \
1159              idx = find_next_bit(bitmap, 512, idx+1))
1160
1161 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1162                          int idx)
1163 {
1164         int i;
1165
1166         if (sp->unsync)
1167                 for (i=0; i < pvec->nr; i++)
1168                         if (pvec->page[i].sp == sp)
1169                                 return 0;
1170
1171         pvec->page[pvec->nr].sp = sp;
1172         pvec->page[pvec->nr].idx = idx;
1173         pvec->nr++;
1174         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1175 }
1176
1177 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1178                            struct kvm_mmu_pages *pvec)
1179 {
1180         int i, ret, nr_unsync_leaf = 0;
1181
1182         for_each_unsync_children(sp->unsync_child_bitmap, i) {
1183                 struct kvm_mmu_page *child;
1184                 u64 ent = sp->spt[i];
1185
1186                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1187                         goto clear_child_bitmap;
1188
1189                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1190
1191                 if (child->unsync_children) {
1192                         if (mmu_pages_add(pvec, child, i))
1193                                 return -ENOSPC;
1194
1195                         ret = __mmu_unsync_walk(child, pvec);
1196                         if (!ret)
1197                                 goto clear_child_bitmap;
1198                         else if (ret > 0)
1199                                 nr_unsync_leaf += ret;
1200                         else
1201                                 return ret;
1202                 } else if (child->unsync) {
1203                         nr_unsync_leaf++;
1204                         if (mmu_pages_add(pvec, child, i))
1205                                 return -ENOSPC;
1206                 } else
1207                          goto clear_child_bitmap;
1208
1209                 continue;
1210
1211 clear_child_bitmap:
1212                 __clear_bit(i, sp->unsync_child_bitmap);
1213                 sp->unsync_children--;
1214                 WARN_ON((int)sp->unsync_children < 0);
1215         }
1216
1217
1218         return nr_unsync_leaf;
1219 }
1220
1221 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1222                            struct kvm_mmu_pages *pvec)
1223 {
1224         if (!sp->unsync_children)
1225                 return 0;
1226
1227         mmu_pages_add(pvec, sp, 0);
1228         return __mmu_unsync_walk(sp, pvec);
1229 }
1230
1231 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1232 {
1233         WARN_ON(!sp->unsync);
1234         trace_kvm_mmu_sync_page(sp);
1235         sp->unsync = 0;
1236         --kvm->stat.mmu_unsync;
1237 }
1238
1239 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1240                                     struct list_head *invalid_list);
1241 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1242                                     struct list_head *invalid_list);
1243
1244 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1245   hlist_for_each_entry(sp, pos,                                         \
1246    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1247         if ((sp)->gfn != (gfn)) {} else
1248
1249 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1250   hlist_for_each_entry(sp, pos,                                         \
1251    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1252                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1253                         (sp)->role.invalid) {} else
1254
1255 /* @sp->gfn should be write-protected at the call site */
1256 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1257                            struct list_head *invalid_list, bool clear_unsync)
1258 {
1259         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1260                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1261                 return 1;
1262         }
1263
1264         if (clear_unsync)
1265                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1266
1267         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1268                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1269                 return 1;
1270         }
1271
1272         kvm_mmu_flush_tlb(vcpu);
1273         return 0;
1274 }
1275
1276 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1277                                    struct kvm_mmu_page *sp)
1278 {
1279         LIST_HEAD(invalid_list);
1280         int ret;
1281
1282         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1283         if (ret)
1284                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1285
1286         return ret;
1287 }
1288
1289 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1290                          struct list_head *invalid_list)
1291 {
1292         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1293 }
1294
1295 /* @gfn should be write-protected at the call site */
1296 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1297 {
1298         struct kvm_mmu_page *s;
1299         struct hlist_node *node;
1300         LIST_HEAD(invalid_list);
1301         bool flush = false;
1302
1303         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1304                 if (!s->unsync)
1305                         continue;
1306
1307                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1308                 kvm_unlink_unsync_page(vcpu->kvm, s);
1309                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1310                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1311                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1312                         continue;
1313                 }
1314                 flush = true;
1315         }
1316
1317         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1318         if (flush)
1319                 kvm_mmu_flush_tlb(vcpu);
1320 }
1321
1322 struct mmu_page_path {
1323         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1324         unsigned int idx[PT64_ROOT_LEVEL-1];
1325 };
1326
1327 #define for_each_sp(pvec, sp, parents, i)                       \
1328                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1329                         sp = pvec.page[i].sp;                   \
1330                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1331                         i = mmu_pages_next(&pvec, &parents, i))
1332
1333 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1334                           struct mmu_page_path *parents,
1335                           int i)
1336 {
1337         int n;
1338
1339         for (n = i+1; n < pvec->nr; n++) {
1340                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1341
1342                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1343                         parents->idx[0] = pvec->page[n].idx;
1344                         return n;
1345                 }
1346
1347                 parents->parent[sp->role.level-2] = sp;
1348                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1349         }
1350
1351         return n;
1352 }
1353
1354 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1355 {
1356         struct kvm_mmu_page *sp;
1357         unsigned int level = 0;
1358
1359         do {
1360                 unsigned int idx = parents->idx[level];
1361
1362                 sp = parents->parent[level];
1363                 if (!sp)
1364                         return;
1365
1366                 --sp->unsync_children;
1367                 WARN_ON((int)sp->unsync_children < 0);
1368                 __clear_bit(idx, sp->unsync_child_bitmap);
1369                 level++;
1370         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1371 }
1372
1373 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1374                                struct mmu_page_path *parents,
1375                                struct kvm_mmu_pages *pvec)
1376 {
1377         parents->parent[parent->role.level-1] = NULL;
1378         pvec->nr = 0;
1379 }
1380
1381 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1382                               struct kvm_mmu_page *parent)
1383 {
1384         int i;
1385         struct kvm_mmu_page *sp;
1386         struct mmu_page_path parents;
1387         struct kvm_mmu_pages pages;
1388         LIST_HEAD(invalid_list);
1389
1390         kvm_mmu_pages_init(parent, &parents, &pages);
1391         while (mmu_unsync_walk(parent, &pages)) {
1392                 int protected = 0;
1393
1394                 for_each_sp(pages, sp, parents, i)
1395                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1396
1397                 if (protected)
1398                         kvm_flush_remote_tlbs(vcpu->kvm);
1399
1400                 for_each_sp(pages, sp, parents, i) {
1401                         kvm_sync_page(vcpu, sp, &invalid_list);
1402                         mmu_pages_clear_parents(&parents);
1403                 }
1404                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1405                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1406                 kvm_mmu_pages_init(parent, &parents, &pages);
1407         }
1408 }
1409
1410 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1411                                              gfn_t gfn,
1412                                              gva_t gaddr,
1413                                              unsigned level,
1414                                              int direct,
1415                                              unsigned access,
1416                                              u64 *parent_pte)
1417 {
1418         union kvm_mmu_page_role role;
1419         unsigned quadrant;
1420         struct kvm_mmu_page *sp;
1421         struct hlist_node *node;
1422         bool need_sync = false;
1423
1424         role = vcpu->arch.mmu.base_role;
1425         role.level = level;
1426         role.direct = direct;
1427         if (role.direct)
1428                 role.cr4_pae = 0;
1429         role.access = access;
1430         if (!vcpu->arch.mmu.direct_map
1431             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1432                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1433                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1434                 role.quadrant = quadrant;
1435         }
1436         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1437                 if (!need_sync && sp->unsync)
1438                         need_sync = true;
1439
1440                 if (sp->role.word != role.word)
1441                         continue;
1442
1443                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1444                         break;
1445
1446                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1447                 if (sp->unsync_children) {
1448                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1449                         kvm_mmu_mark_parents_unsync(sp);
1450                 } else if (sp->unsync)
1451                         kvm_mmu_mark_parents_unsync(sp);
1452
1453                 trace_kvm_mmu_get_page(sp, false);
1454                 return sp;
1455         }
1456         ++vcpu->kvm->stat.mmu_cache_miss;
1457         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1458         if (!sp)
1459                 return sp;
1460         sp->gfn = gfn;
1461         sp->role = role;
1462         hlist_add_head(&sp->hash_link,
1463                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1464         if (!direct) {
1465                 if (rmap_write_protect(vcpu->kvm, gfn))
1466                         kvm_flush_remote_tlbs(vcpu->kvm);
1467                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1468                         kvm_sync_pages(vcpu, gfn);
1469
1470                 account_shadowed(vcpu->kvm, gfn);
1471         }
1472         if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1473                 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1474         else
1475                 nonpaging_prefetch_page(vcpu, sp);
1476         trace_kvm_mmu_get_page(sp, true);
1477         return sp;
1478 }
1479
1480 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1481                              struct kvm_vcpu *vcpu, u64 addr)
1482 {
1483         iterator->addr = addr;
1484         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1485         iterator->level = vcpu->arch.mmu.shadow_root_level;
1486
1487         if (iterator->level == PT64_ROOT_LEVEL &&
1488             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1489             !vcpu->arch.mmu.direct_map)
1490                 --iterator->level;
1491
1492         if (iterator->level == PT32E_ROOT_LEVEL) {
1493                 iterator->shadow_addr
1494                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1495                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1496                 --iterator->level;
1497                 if (!iterator->shadow_addr)
1498                         iterator->level = 0;
1499         }
1500 }
1501
1502 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1503 {
1504         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1505                 return false;
1506
1507         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1508         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1509         return true;
1510 }
1511
1512 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1513 {
1514         if (is_last_spte(*iterator->sptep, iterator->level)) {
1515                 iterator->level = 0;
1516                 return;
1517         }
1518
1519         iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1520         --iterator->level;
1521 }
1522
1523 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1524 {
1525         u64 spte;
1526
1527         spte = __pa(sp->spt)
1528                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1529                 | PT_WRITABLE_MASK | PT_USER_MASK;
1530         __set_spte(sptep, spte);
1531 }
1532
1533 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1534 {
1535         if (is_large_pte(*sptep)) {
1536                 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1537                 kvm_flush_remote_tlbs(vcpu->kvm);
1538         }
1539 }
1540
1541 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1542                                    unsigned direct_access)
1543 {
1544         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1545                 struct kvm_mmu_page *child;
1546
1547                 /*
1548                  * For the direct sp, if the guest pte's dirty bit
1549                  * changed form clean to dirty, it will corrupt the
1550                  * sp's access: allow writable in the read-only sp,
1551                  * so we should update the spte at this point to get
1552                  * a new sp with the correct access.
1553                  */
1554                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1555                 if (child->role.access == direct_access)
1556                         return;
1557
1558                 drop_parent_pte(child, sptep);
1559                 kvm_flush_remote_tlbs(vcpu->kvm);
1560         }
1561 }
1562
1563 static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1564                              u64 *spte)
1565 {
1566         u64 pte;
1567         struct kvm_mmu_page *child;
1568
1569         pte = *spte;
1570         if (is_shadow_present_pte(pte)) {
1571                 if (is_last_spte(pte, sp->role.level))
1572                         drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
1573                 else {
1574                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1575                         drop_parent_pte(child, spte);
1576                 }
1577         }
1578         __set_spte(spte, shadow_trap_nonpresent_pte);
1579         if (is_large_pte(pte))
1580                 --kvm->stat.lpages;
1581 }
1582
1583 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1584                                          struct kvm_mmu_page *sp)
1585 {
1586         unsigned i;
1587
1588         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1589                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1590 }
1591
1592 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1593 {
1594         mmu_page_remove_parent_pte(sp, parent_pte);
1595 }
1596
1597 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1598 {
1599         int i;
1600         struct kvm_vcpu *vcpu;
1601
1602         kvm_for_each_vcpu(i, vcpu, kvm)
1603                 vcpu->arch.last_pte_updated = NULL;
1604 }
1605
1606 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1607 {
1608         u64 *parent_pte;
1609
1610         while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1611                 drop_parent_pte(sp, parent_pte);
1612 }
1613
1614 static int mmu_zap_unsync_children(struct kvm *kvm,
1615                                    struct kvm_mmu_page *parent,
1616                                    struct list_head *invalid_list)
1617 {
1618         int i, zapped = 0;
1619         struct mmu_page_path parents;
1620         struct kvm_mmu_pages pages;
1621
1622         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1623                 return 0;
1624
1625         kvm_mmu_pages_init(parent, &parents, &pages);
1626         while (mmu_unsync_walk(parent, &pages)) {
1627                 struct kvm_mmu_page *sp;
1628
1629                 for_each_sp(pages, sp, parents, i) {
1630                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1631                         mmu_pages_clear_parents(&parents);
1632                         zapped++;
1633                 }
1634                 kvm_mmu_pages_init(parent, &parents, &pages);
1635         }
1636
1637         return zapped;
1638 }
1639
1640 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1641                                     struct list_head *invalid_list)
1642 {
1643         int ret;
1644
1645         trace_kvm_mmu_prepare_zap_page(sp);
1646         ++kvm->stat.mmu_shadow_zapped;
1647         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1648         kvm_mmu_page_unlink_children(kvm, sp);
1649         kvm_mmu_unlink_parents(kvm, sp);
1650         if (!sp->role.invalid && !sp->role.direct)
1651                 unaccount_shadowed(kvm, sp->gfn);
1652         if (sp->unsync)
1653                 kvm_unlink_unsync_page(kvm, sp);
1654         if (!sp->root_count) {
1655                 /* Count self */
1656                 ret++;
1657                 list_move(&sp->link, invalid_list);
1658         } else {
1659                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1660                 kvm_reload_remote_mmus(kvm);
1661         }
1662
1663         sp->role.invalid = 1;
1664         kvm_mmu_reset_last_pte_updated(kvm);
1665         return ret;
1666 }
1667
1668 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1669                                     struct list_head *invalid_list)
1670 {
1671         struct kvm_mmu_page *sp;
1672
1673         if (list_empty(invalid_list))
1674                 return;
1675
1676         kvm_flush_remote_tlbs(kvm);
1677
1678         do {
1679                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1680                 WARN_ON(!sp->role.invalid || sp->root_count);
1681                 kvm_mmu_free_page(kvm, sp);
1682         } while (!list_empty(invalid_list));
1683
1684 }
1685
1686 /*
1687  * Changing the number of mmu pages allocated to the vm
1688  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1689  */
1690 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1691 {
1692         LIST_HEAD(invalid_list);
1693         /*
1694          * If we set the number of mmu pages to be smaller be than the
1695          * number of actived pages , we must to free some mmu pages before we
1696          * change the value
1697          */
1698
1699         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1700                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1701                         !list_empty(&kvm->arch.active_mmu_pages)) {
1702                         struct kvm_mmu_page *page;
1703
1704                         page = container_of(kvm->arch.active_mmu_pages.prev,
1705                                             struct kvm_mmu_page, link);
1706                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1707                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1708                 }
1709                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1710         }
1711
1712         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1713 }
1714
1715 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1716 {
1717         struct kvm_mmu_page *sp;
1718         struct hlist_node *node;
1719         LIST_HEAD(invalid_list);
1720         int r;
1721
1722         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1723         r = 0;
1724
1725         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1726                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1727                          sp->role.word);
1728                 r = 1;
1729                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1730         }
1731         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1732         return r;
1733 }
1734
1735 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1736 {
1737         struct kvm_mmu_page *sp;
1738         struct hlist_node *node;
1739         LIST_HEAD(invalid_list);
1740
1741         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1742                 pgprintk("%s: zap %llx %x\n",
1743                          __func__, gfn, sp->role.word);
1744                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1745         }
1746         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1747 }
1748
1749 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1750 {
1751         int slot = memslot_id(kvm, gfn);
1752         struct kvm_mmu_page *sp = page_header(__pa(pte));
1753
1754         __set_bit(slot, sp->slot_bitmap);
1755 }
1756
1757 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1758 {
1759         int i;
1760         u64 *pt = sp->spt;
1761
1762         if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1763                 return;
1764
1765         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1766                 if (pt[i] == shadow_notrap_nonpresent_pte)
1767                         __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1768         }
1769 }
1770
1771 /*
1772  * The function is based on mtrr_type_lookup() in
1773  * arch/x86/kernel/cpu/mtrr/generic.c
1774  */
1775 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1776                          u64 start, u64 end)
1777 {
1778         int i;
1779         u64 base, mask;
1780         u8 prev_match, curr_match;
1781         int num_var_ranges = KVM_NR_VAR_MTRR;
1782
1783         if (!mtrr_state->enabled)
1784                 return 0xFF;
1785
1786         /* Make end inclusive end, instead of exclusive */
1787         end--;
1788
1789         /* Look in fixed ranges. Just return the type as per start */
1790         if (mtrr_state->have_fixed && (start < 0x100000)) {
1791                 int idx;
1792
1793                 if (start < 0x80000) {
1794                         idx = 0;
1795                         idx += (start >> 16);
1796                         return mtrr_state->fixed_ranges[idx];
1797                 } else if (start < 0xC0000) {
1798                         idx = 1 * 8;
1799                         idx += ((start - 0x80000) >> 14);
1800                         return mtrr_state->fixed_ranges[idx];
1801                 } else if (start < 0x1000000) {
1802                         idx = 3 * 8;
1803                         idx += ((start - 0xC0000) >> 12);
1804                         return mtrr_state->fixed_ranges[idx];
1805                 }
1806         }
1807
1808         /*
1809          * Look in variable ranges
1810          * Look of multiple ranges matching this address and pick type
1811          * as per MTRR precedence
1812          */
1813         if (!(mtrr_state->enabled & 2))
1814                 return mtrr_state->def_type;
1815
1816         prev_match = 0xFF;
1817         for (i = 0; i < num_var_ranges; ++i) {
1818                 unsigned short start_state, end_state;
1819
1820                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1821                         continue;
1822
1823                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1824                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1825                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1826                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1827
1828                 start_state = ((start & mask) == (base & mask));
1829                 end_state = ((end & mask) == (base & mask));
1830                 if (start_state != end_state)
1831                         return 0xFE;
1832
1833                 if ((start & mask) != (base & mask))
1834                         continue;
1835
1836                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1837                 if (prev_match == 0xFF) {
1838                         prev_match = curr_match;
1839                         continue;
1840                 }
1841
1842                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1843                     curr_match == MTRR_TYPE_UNCACHABLE)
1844                         return MTRR_TYPE_UNCACHABLE;
1845
1846                 if ((prev_match == MTRR_TYPE_WRBACK &&
1847                      curr_match == MTRR_TYPE_WRTHROUGH) ||
1848                     (prev_match == MTRR_TYPE_WRTHROUGH &&
1849                      curr_match == MTRR_TYPE_WRBACK)) {
1850                         prev_match = MTRR_TYPE_WRTHROUGH;
1851                         curr_match = MTRR_TYPE_WRTHROUGH;
1852                 }
1853
1854                 if (prev_match != curr_match)
1855                         return MTRR_TYPE_UNCACHABLE;
1856         }
1857
1858         if (prev_match != 0xFF)
1859                 return prev_match;
1860
1861         return mtrr_state->def_type;
1862 }
1863
1864 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1865 {
1866         u8 mtrr;
1867
1868         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1869                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
1870         if (mtrr == 0xfe || mtrr == 0xff)
1871                 mtrr = MTRR_TYPE_WRBACK;
1872         return mtrr;
1873 }
1874 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1875
1876 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1877 {
1878         trace_kvm_mmu_unsync_page(sp);
1879         ++vcpu->kvm->stat.mmu_unsync;
1880         sp->unsync = 1;
1881
1882         kvm_mmu_mark_parents_unsync(sp);
1883         mmu_convert_notrap(sp);
1884 }
1885
1886 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1887 {
1888         struct kvm_mmu_page *s;
1889         struct hlist_node *node;
1890
1891         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1892                 if (s->unsync)
1893                         continue;
1894                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1895                 __kvm_unsync_page(vcpu, s);
1896         }
1897 }
1898
1899 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1900                                   bool can_unsync)
1901 {
1902         struct kvm_mmu_page *s;
1903         struct hlist_node *node;
1904         bool need_unsync = false;
1905
1906         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1907                 if (!can_unsync)
1908                         return 1;
1909
1910                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1911                         return 1;
1912
1913                 if (!need_unsync && !s->unsync) {
1914                         if (!oos_shadow)
1915                                 return 1;
1916                         need_unsync = true;
1917                 }
1918         }
1919         if (need_unsync)
1920                 kvm_unsync_pages(vcpu, gfn);
1921         return 0;
1922 }
1923
1924 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1925                     unsigned pte_access, int user_fault,
1926                     int write_fault, int level,
1927                     gfn_t gfn, pfn_t pfn, bool speculative,
1928                     bool can_unsync, bool host_writable)
1929 {
1930         u64 spte, entry = *sptep;
1931         int ret = 0;
1932
1933         /*
1934          * We don't set the accessed bit, since we sometimes want to see
1935          * whether the guest actually used the pte (in order to detect
1936          * demand paging).
1937          */
1938         spte = PT_PRESENT_MASK;
1939         if (!speculative)
1940                 spte |= shadow_accessed_mask;
1941
1942         if (pte_access & ACC_EXEC_MASK)
1943                 spte |= shadow_x_mask;
1944         else
1945                 spte |= shadow_nx_mask;
1946         if (pte_access & ACC_USER_MASK)
1947                 spte |= shadow_user_mask;
1948         if (level > PT_PAGE_TABLE_LEVEL)
1949                 spte |= PT_PAGE_SIZE_MASK;
1950         if (tdp_enabled)
1951                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1952                         kvm_is_mmio_pfn(pfn));
1953
1954         if (host_writable)
1955                 spte |= SPTE_HOST_WRITEABLE;
1956         else
1957                 pte_access &= ~ACC_WRITE_MASK;
1958
1959         spte |= (u64)pfn << PAGE_SHIFT;
1960
1961         if ((pte_access & ACC_WRITE_MASK)
1962             || (!vcpu->arch.mmu.direct_map && write_fault
1963                 && !is_write_protection(vcpu) && !user_fault)) {
1964
1965                 if (level > PT_PAGE_TABLE_LEVEL &&
1966                     has_wrprotected_page(vcpu->kvm, gfn, level)) {
1967                         ret = 1;
1968                         drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1969                         goto done;
1970                 }
1971
1972                 spte |= PT_WRITABLE_MASK;
1973
1974                 if (!vcpu->arch.mmu.direct_map
1975                     && !(pte_access & ACC_WRITE_MASK)) {
1976                         spte &= ~PT_USER_MASK;
1977                         /*
1978                          * If we converted a user page to a kernel page,
1979                          * so that the kernel can write to it when cr0.wp=0,
1980                          * then we should prevent the kernel from executing it
1981                          * if SMEP is enabled.
1982                          */
1983                         if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
1984                                 spte |= PT64_NX_MASK;
1985                 }
1986
1987                 /*
1988                  * Optimization: for pte sync, if spte was writable the hash
1989                  * lookup is unnecessary (and expensive). Write protection
1990                  * is responsibility of mmu_get_page / kvm_sync_page.
1991                  * Same reasoning can be applied to dirty page accounting.
1992                  */
1993                 if (!can_unsync && is_writable_pte(*sptep))
1994                         goto set_pte;
1995
1996                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1997                         pgprintk("%s: found shadow page for %llx, marking ro\n",
1998                                  __func__, gfn);
1999                         ret = 1;
2000                         pte_access &= ~ACC_WRITE_MASK;
2001                         if (is_writable_pte(spte))
2002                                 spte &= ~PT_WRITABLE_MASK;
2003                 }
2004         }
2005
2006         if (pte_access & ACC_WRITE_MASK)
2007                 mark_page_dirty(vcpu->kvm, gfn);
2008
2009 set_pte:
2010         update_spte(sptep, spte);
2011         /*
2012          * If we overwrite a writable spte with a read-only one we
2013          * should flush remote TLBs. Otherwise rmap_write_protect
2014          * will find a read-only spte, even though the writable spte
2015          * might be cached on a CPU's TLB.
2016          */
2017         if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2018                 kvm_flush_remote_tlbs(vcpu->kvm);
2019 done:
2020         return ret;
2021 }
2022
2023 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2024                          unsigned pt_access, unsigned pte_access,
2025                          int user_fault, int write_fault,
2026                          int *emulate, int level, gfn_t gfn,
2027                          pfn_t pfn, bool speculative,
2028                          bool host_writable)
2029 {
2030         int was_rmapped = 0;
2031         int rmap_count;
2032
2033         pgprintk("%s: spte %llx access %x write_fault %d"
2034                  " user_fault %d gfn %llx\n",
2035                  __func__, *sptep, pt_access,
2036                  write_fault, user_fault, gfn);
2037
2038         if (is_rmap_spte(*sptep)) {
2039                 /*
2040                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2041                  * the parent of the now unreachable PTE.
2042                  */
2043                 if (level > PT_PAGE_TABLE_LEVEL &&
2044                     !is_large_pte(*sptep)) {
2045                         struct kvm_mmu_page *child;
2046                         u64 pte = *sptep;
2047
2048                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2049                         drop_parent_pte(child, sptep);
2050                         kvm_flush_remote_tlbs(vcpu->kvm);
2051                 } else if (pfn != spte_to_pfn(*sptep)) {
2052                         pgprintk("hfn old %llx new %llx\n",
2053                                  spte_to_pfn(*sptep), pfn);
2054                         drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2055                         kvm_flush_remote_tlbs(vcpu->kvm);
2056                 } else
2057                         was_rmapped = 1;
2058         }
2059
2060         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2061                       level, gfn, pfn, speculative, true,
2062                       host_writable)) {
2063                 if (write_fault)
2064                         *emulate = 1;
2065                 kvm_mmu_flush_tlb(vcpu);
2066         }
2067
2068         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2069         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2070                  is_large_pte(*sptep)? "2MB" : "4kB",
2071                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2072                  *sptep, sptep);
2073         if (!was_rmapped && is_large_pte(*sptep))
2074                 ++vcpu->kvm->stat.lpages;
2075
2076         if (is_shadow_present_pte(*sptep)) {
2077                 page_header_update_slot(vcpu->kvm, sptep, gfn);
2078                 if (!was_rmapped) {
2079                         rmap_count = rmap_add(vcpu, sptep, gfn);
2080                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2081                                 rmap_recycle(vcpu, sptep, gfn);
2082                 }
2083         }
2084         kvm_release_pfn_clean(pfn);
2085         if (speculative) {
2086                 vcpu->arch.last_pte_updated = sptep;
2087                 vcpu->arch.last_pte_gfn = gfn;
2088         }
2089 }
2090
2091 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2092 {
2093 }
2094
2095 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2096                                      bool no_dirty_log)
2097 {
2098         struct kvm_memory_slot *slot;
2099         unsigned long hva;
2100
2101         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2102         if (!slot) {
2103                 get_page(bad_page);
2104                 return page_to_pfn(bad_page);
2105         }
2106
2107         hva = gfn_to_hva_memslot(slot, gfn);
2108
2109         return hva_to_pfn_atomic(vcpu->kvm, hva);
2110 }
2111
2112 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2113                                     struct kvm_mmu_page *sp,
2114                                     u64 *start, u64 *end)
2115 {
2116         struct page *pages[PTE_PREFETCH_NUM];
2117         unsigned access = sp->role.access;
2118         int i, ret;
2119         gfn_t gfn;
2120
2121         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2122         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2123                 return -1;
2124
2125         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2126         if (ret <= 0)
2127                 return -1;
2128
2129         for (i = 0; i < ret; i++, gfn++, start++)
2130                 mmu_set_spte(vcpu, start, ACC_ALL,
2131                              access, 0, 0, NULL,
2132                              sp->role.level, gfn,
2133                              page_to_pfn(pages[i]), true, true);
2134
2135         return 0;
2136 }
2137
2138 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2139                                   struct kvm_mmu_page *sp, u64 *sptep)
2140 {
2141         u64 *spte, *start = NULL;
2142         int i;
2143
2144         WARN_ON(!sp->role.direct);
2145
2146         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2147         spte = sp->spt + i;
2148
2149         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2150                 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2151                         if (!start)
2152                                 continue;
2153                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2154                                 break;
2155                         start = NULL;
2156                 } else if (!start)
2157                         start = spte;
2158         }
2159 }
2160
2161 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2162 {
2163         struct kvm_mmu_page *sp;
2164
2165         /*
2166          * Since it's no accessed bit on EPT, it's no way to
2167          * distinguish between actually accessed translations
2168          * and prefetched, so disable pte prefetch if EPT is
2169          * enabled.
2170          */
2171         if (!shadow_accessed_mask)
2172                 return;
2173
2174         sp = page_header(__pa(sptep));
2175         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2176                 return;
2177
2178         __direct_pte_prefetch(vcpu, sp, sptep);
2179 }
2180
2181 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2182                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2183                         bool prefault)
2184 {
2185         struct kvm_shadow_walk_iterator iterator;
2186         struct kvm_mmu_page *sp;
2187         int emulate = 0;
2188         gfn_t pseudo_gfn;
2189
2190         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2191                 if (iterator.level == level) {
2192                         unsigned pte_access = ACC_ALL;
2193
2194                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2195                                      0, write, &emulate,
2196                                      level, gfn, pfn, prefault, map_writable);
2197                         direct_pte_prefetch(vcpu, iterator.sptep);
2198                         ++vcpu->stat.pf_fixed;
2199                         break;
2200                 }
2201
2202                 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2203                         u64 base_addr = iterator.addr;
2204
2205                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2206                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2207                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2208                                               iterator.level - 1,
2209                                               1, ACC_ALL, iterator.sptep);
2210                         if (!sp) {
2211                                 pgprintk("nonpaging_map: ENOMEM\n");
2212                                 kvm_release_pfn_clean(pfn);
2213                                 return -ENOMEM;
2214                         }
2215
2216                         __set_spte(iterator.sptep,
2217                                    __pa(sp->spt)
2218                                    | PT_PRESENT_MASK | PT_WRITABLE_MASK
2219                                    | shadow_user_mask | shadow_x_mask
2220                                    | shadow_accessed_mask);
2221                 }
2222         }
2223         return emulate;
2224 }
2225
2226 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2227 {
2228         siginfo_t info;
2229
2230         info.si_signo   = SIGBUS;
2231         info.si_errno   = 0;
2232         info.si_code    = BUS_MCEERR_AR;
2233         info.si_addr    = (void __user *)address;
2234         info.si_addr_lsb = PAGE_SHIFT;
2235
2236         send_sig_info(SIGBUS, &info, tsk);
2237 }
2238
2239 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gva_t gva,
2240                                unsigned access, gfn_t gfn, pfn_t pfn)
2241 {
2242         kvm_release_pfn_clean(pfn);
2243         if (is_hwpoison_pfn(pfn)) {
2244                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2245                 return 0;
2246         } else if (is_fault_pfn(pfn))
2247                 return -EFAULT;
2248
2249         vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2250         return 1;
2251 }
2252
2253 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2254                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2255 {
2256         pfn_t pfn = *pfnp;
2257         gfn_t gfn = *gfnp;
2258         int level = *levelp;
2259
2260         /*
2261          * Check if it's a transparent hugepage. If this would be an
2262          * hugetlbfs page, level wouldn't be set to
2263          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2264          * here.
2265          */
2266         if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2267             level == PT_PAGE_TABLE_LEVEL &&
2268             PageTransCompound(pfn_to_page(pfn)) &&
2269             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2270                 unsigned long mask;
2271                 /*
2272                  * mmu_notifier_retry was successful and we hold the
2273                  * mmu_lock here, so the pmd can't become splitting
2274                  * from under us, and in turn
2275                  * __split_huge_page_refcount() can't run from under
2276                  * us and we can safely transfer the refcount from
2277                  * PG_tail to PG_head as we switch the pfn to tail to
2278                  * head.
2279                  */
2280                 *levelp = level = PT_DIRECTORY_LEVEL;
2281                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2282                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2283                 if (pfn & mask) {
2284                         gfn &= ~mask;
2285                         *gfnp = gfn;
2286                         kvm_release_pfn_clean(pfn);
2287                         pfn &= ~mask;
2288                         if (!get_page_unless_zero(pfn_to_page(pfn)))
2289                                 BUG();
2290                         *pfnp = pfn;
2291                 }
2292         }
2293 }
2294
2295 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2296                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2297
2298 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2299                          bool prefault)
2300 {
2301         int r;
2302         int level;
2303         int force_pt_level;
2304         pfn_t pfn;
2305         unsigned long mmu_seq;
2306         bool map_writable;
2307
2308         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2309         if (likely(!force_pt_level)) {
2310                 level = mapping_level(vcpu, gfn);
2311                 /*
2312                  * This path builds a PAE pagetable - so we can map
2313                  * 2mb pages at maximum. Therefore check if the level
2314                  * is larger than that.
2315                  */
2316                 if (level > PT_DIRECTORY_LEVEL)
2317                         level = PT_DIRECTORY_LEVEL;
2318
2319                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2320         } else
2321                 level = PT_PAGE_TABLE_LEVEL;
2322
2323         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2324         smp_rmb();
2325
2326         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2327                 return 0;
2328
2329         /* mmio */
2330         if (is_error_pfn(pfn))
2331                 return kvm_handle_bad_page(vcpu, v, ACC_ALL, gfn, pfn);
2332
2333         spin_lock(&vcpu->kvm->mmu_lock);
2334         if (mmu_notifier_retry(vcpu, mmu_seq))
2335                 goto out_unlock;
2336         kvm_mmu_free_some_pages(vcpu);
2337         if (likely(!force_pt_level))
2338                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2339         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2340                          prefault);
2341         spin_unlock(&vcpu->kvm->mmu_lock);
2342
2343
2344         return r;
2345
2346 out_unlock:
2347         spin_unlock(&vcpu->kvm->mmu_lock);
2348         kvm_release_pfn_clean(pfn);
2349         return 0;
2350 }
2351
2352
2353 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2354 {
2355         int i;
2356         struct kvm_mmu_page *sp;
2357         LIST_HEAD(invalid_list);
2358
2359         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2360                 return;
2361         spin_lock(&vcpu->kvm->mmu_lock);
2362         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2363             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2364              vcpu->arch.mmu.direct_map)) {
2365                 hpa_t root = vcpu->arch.mmu.root_hpa;
2366
2367                 sp = page_header(root);
2368                 --sp->root_count;
2369                 if (!sp->root_count && sp->role.invalid) {
2370                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2371                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2372                 }
2373                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2374                 spin_unlock(&vcpu->kvm->mmu_lock);
2375                 return;
2376         }
2377         for (i = 0; i < 4; ++i) {
2378                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2379
2380                 if (root) {
2381                         root &= PT64_BASE_ADDR_MASK;
2382                         sp = page_header(root);
2383                         --sp->root_count;
2384                         if (!sp->root_count && sp->role.invalid)
2385                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2386                                                          &invalid_list);
2387                 }
2388                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2389         }
2390         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2391         spin_unlock(&vcpu->kvm->mmu_lock);
2392         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2393 }
2394
2395 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2396 {
2397         int ret = 0;
2398
2399         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2400                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2401                 ret = 1;
2402         }
2403
2404         return ret;
2405 }
2406
2407 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2408 {
2409         struct kvm_mmu_page *sp;
2410         unsigned i;
2411
2412         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2413                 spin_lock(&vcpu->kvm->mmu_lock);
2414                 kvm_mmu_free_some_pages(vcpu);
2415                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2416                                       1, ACC_ALL, NULL);
2417                 ++sp->root_count;
2418                 spin_unlock(&vcpu->kvm->mmu_lock);
2419                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2420         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2421                 for (i = 0; i < 4; ++i) {
2422                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2423
2424                         ASSERT(!VALID_PAGE(root));
2425                         spin_lock(&vcpu->kvm->mmu_lock);
2426                         kvm_mmu_free_some_pages(vcpu);
2427                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2428                                               i << 30,
2429                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2430                                               NULL);
2431                         root = __pa(sp->spt);
2432                         ++sp->root_count;
2433                         spin_unlock(&vcpu->kvm->mmu_lock);
2434                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2435                 }
2436                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2437         } else
2438                 BUG();
2439
2440         return 0;
2441 }
2442
2443 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2444 {
2445         struct kvm_mmu_page *sp;
2446         u64 pdptr, pm_mask;
2447         gfn_t root_gfn;
2448         int i;
2449
2450         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2451
2452         if (mmu_check_root(vcpu, root_gfn))
2453                 return 1;
2454
2455         /*
2456          * Do we shadow a long mode page table? If so we need to
2457          * write-protect the guests page table root.
2458          */
2459         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2460                 hpa_t root = vcpu->arch.mmu.root_hpa;
2461
2462                 ASSERT(!VALID_PAGE(root));
2463
2464                 spin_lock(&vcpu->kvm->mmu_lock);
2465                 kvm_mmu_free_some_pages(vcpu);
2466                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2467                                       0, ACC_ALL, NULL);
2468                 root = __pa(sp->spt);
2469                 ++sp->root_count;
2470                 spin_unlock(&vcpu->kvm->mmu_lock);
2471                 vcpu->arch.mmu.root_hpa = root;
2472                 return 0;
2473         }
2474
2475         /*
2476          * We shadow a 32 bit page table. This may be a legacy 2-level
2477          * or a PAE 3-level page table. In either case we need to be aware that
2478          * the shadow page table may be a PAE or a long mode page table.
2479          */
2480         pm_mask = PT_PRESENT_MASK;
2481         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2482                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2483
2484         for (i = 0; i < 4; ++i) {
2485                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2486
2487                 ASSERT(!VALID_PAGE(root));
2488                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2489                         pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2490                         if (!is_present_gpte(pdptr)) {
2491                                 vcpu->arch.mmu.pae_root[i] = 0;
2492                                 continue;
2493                         }
2494                         root_gfn = pdptr >> PAGE_SHIFT;
2495                         if (mmu_check_root(vcpu, root_gfn))
2496                                 return 1;
2497                 }
2498                 spin_lock(&vcpu->kvm->mmu_lock);
2499                 kvm_mmu_free_some_pages(vcpu);
2500                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2501                                       PT32_ROOT_LEVEL, 0,
2502                                       ACC_ALL, NULL);
2503                 root = __pa(sp->spt);
2504                 ++sp->root_count;
2505                 spin_unlock(&vcpu->kvm->mmu_lock);
2506
2507                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2508         }
2509         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2510
2511         /*
2512          * If we shadow a 32 bit page table with a long mode page
2513          * table we enter this path.
2514          */
2515         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2516                 if (vcpu->arch.mmu.lm_root == NULL) {
2517                         /*
2518                          * The additional page necessary for this is only
2519                          * allocated on demand.
2520                          */
2521
2522                         u64 *lm_root;
2523
2524                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2525                         if (lm_root == NULL)
2526                                 return 1;
2527
2528                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2529
2530                         vcpu->arch.mmu.lm_root = lm_root;
2531                 }
2532
2533                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2534         }
2535
2536         return 0;
2537 }
2538
2539 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2540 {
2541         if (vcpu->arch.mmu.direct_map)
2542                 return mmu_alloc_direct_roots(vcpu);
2543         else
2544                 return mmu_alloc_shadow_roots(vcpu);
2545 }
2546
2547 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2548 {
2549         int i;
2550         struct kvm_mmu_page *sp;
2551
2552         if (vcpu->arch.mmu.direct_map)
2553                 return;
2554
2555         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2556                 return;
2557
2558         vcpu_clear_mmio_info(vcpu, ~0ul);
2559         trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2560         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2561                 hpa_t root = vcpu->arch.mmu.root_hpa;
2562                 sp = page_header(root);
2563                 mmu_sync_children(vcpu, sp);
2564                 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2565                 return;
2566         }
2567         for (i = 0; i < 4; ++i) {
2568                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2569
2570                 if (root && VALID_PAGE(root)) {
2571                         root &= PT64_BASE_ADDR_MASK;
2572                         sp = page_header(root);
2573                         mmu_sync_children(vcpu, sp);
2574                 }
2575         }
2576         trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2577 }
2578
2579 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2580 {
2581         spin_lock(&vcpu->kvm->mmu_lock);
2582         mmu_sync_roots(vcpu);
2583         spin_unlock(&vcpu->kvm->mmu_lock);
2584 }
2585
2586 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2587                                   u32 access, struct x86_exception *exception)
2588 {
2589         if (exception)
2590                 exception->error_code = 0;
2591         return vaddr;
2592 }
2593
2594 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2595                                          u32 access,
2596                                          struct x86_exception *exception)
2597 {
2598         if (exception)
2599                 exception->error_code = 0;
2600         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2601 }
2602
2603 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2604                                 u32 error_code, bool prefault)
2605 {
2606         gfn_t gfn;
2607         int r;
2608
2609         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2610         r = mmu_topup_memory_caches(vcpu);
2611         if (r)
2612                 return r;
2613
2614         ASSERT(vcpu);
2615         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2616
2617         gfn = gva >> PAGE_SHIFT;
2618
2619         return nonpaging_map(vcpu, gva & PAGE_MASK,
2620                              error_code & PFERR_WRITE_MASK, gfn, prefault);
2621 }
2622
2623 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2624 {
2625         struct kvm_arch_async_pf arch;
2626
2627         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
2628         arch.gfn = gfn;
2629         arch.direct_map = vcpu->arch.mmu.direct_map;
2630         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
2631
2632         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2633 }
2634
2635 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2636 {
2637         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2638                      kvm_event_needs_reinjection(vcpu)))
2639                 return false;
2640
2641         return kvm_x86_ops->interrupt_allowed(vcpu);
2642 }
2643
2644 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2645                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
2646 {
2647         bool async;
2648
2649         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
2650
2651         if (!async)
2652                 return false; /* *pfn has correct page already */
2653
2654         put_page(pfn_to_page(*pfn));
2655
2656         if (!prefault && can_do_async_pf(vcpu)) {
2657                 trace_kvm_try_async_get_page(gva, gfn);
2658                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2659                         trace_kvm_async_pf_doublefault(gva, gfn);
2660                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2661                         return true;
2662                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2663                         return true;
2664         }
2665
2666         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
2667
2668         return false;
2669 }
2670
2671 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2672                           bool prefault)
2673 {
2674         pfn_t pfn;
2675         int r;
2676         int level;
2677         int force_pt_level;
2678         gfn_t gfn = gpa >> PAGE_SHIFT;
2679         unsigned long mmu_seq;
2680         int write = error_code & PFERR_WRITE_MASK;
2681         bool map_writable;
2682
2683         ASSERT(vcpu);
2684         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2685
2686         r = mmu_topup_memory_caches(vcpu);
2687         if (r)
2688                 return r;
2689
2690         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2691         if (likely(!force_pt_level)) {
2692                 level = mapping_level(vcpu, gfn);
2693                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2694         } else
2695                 level = PT_PAGE_TABLE_LEVEL;
2696
2697         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2698         smp_rmb();
2699
2700         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
2701                 return 0;
2702
2703         /* mmio */
2704         if (is_error_pfn(pfn))
2705                 return kvm_handle_bad_page(vcpu, 0, 0, gfn, pfn);
2706         spin_lock(&vcpu->kvm->mmu_lock);
2707         if (mmu_notifier_retry(vcpu, mmu_seq))
2708                 goto out_unlock;
2709         kvm_mmu_free_some_pages(vcpu);
2710         if (likely(!force_pt_level))
2711                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2712         r = __direct_map(vcpu, gpa, write, map_writable,
2713                          level, gfn, pfn, prefault);
2714         spin_unlock(&vcpu->kvm->mmu_lock);
2715
2716         return r;
2717
2718 out_unlock:
2719         spin_unlock(&vcpu->kvm->mmu_lock);
2720         kvm_release_pfn_clean(pfn);
2721         return 0;
2722 }
2723
2724 static void nonpaging_free(struct kvm_vcpu *vcpu)
2725 {
2726         mmu_free_roots(vcpu);
2727 }
2728
2729 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2730                                   struct kvm_mmu *context)
2731 {
2732         context->new_cr3 = nonpaging_new_cr3;
2733         context->page_fault = nonpaging_page_fault;
2734         context->gva_to_gpa = nonpaging_gva_to_gpa;
2735         context->free = nonpaging_free;
2736         context->prefetch_page = nonpaging_prefetch_page;
2737         context->sync_page = nonpaging_sync_page;
2738         context->invlpg = nonpaging_invlpg;
2739         context->update_pte = nonpaging_update_pte;
2740         context->root_level = 0;
2741         context->shadow_root_level = PT32E_ROOT_LEVEL;
2742         context->root_hpa = INVALID_PAGE;
2743         context->direct_map = true;
2744         context->nx = false;
2745         return 0;
2746 }
2747
2748 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2749 {
2750         ++vcpu->stat.tlb_flush;
2751         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2752 }
2753
2754 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2755 {
2756         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
2757         mmu_free_roots(vcpu);
2758 }
2759
2760 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2761 {
2762         return kvm_read_cr3(vcpu);
2763 }
2764
2765 static void inject_page_fault(struct kvm_vcpu *vcpu,
2766                               struct x86_exception *fault)
2767 {
2768         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
2769 }
2770
2771 static void paging_free(struct kvm_vcpu *vcpu)
2772 {
2773         nonpaging_free(vcpu);
2774 }
2775
2776 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2777 {
2778         int bit7;
2779
2780         bit7 = (gpte >> 7) & 1;
2781         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2782 }
2783
2784 #define PTTYPE 64
2785 #include "paging_tmpl.h"
2786 #undef PTTYPE
2787
2788 #define PTTYPE 32
2789 #include "paging_tmpl.h"
2790 #undef PTTYPE
2791
2792 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2793                                   struct kvm_mmu *context,
2794                                   int level)
2795 {
2796         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2797         u64 exb_bit_rsvd = 0;
2798
2799         if (!context->nx)
2800                 exb_bit_rsvd = rsvd_bits(63, 63);
2801         switch (level) {
2802         case PT32_ROOT_LEVEL:
2803                 /* no rsvd bits for 2 level 4K page table entries */
2804                 context->rsvd_bits_mask[0][1] = 0;
2805                 context->rsvd_bits_mask[0][0] = 0;
2806                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2807
2808                 if (!is_pse(vcpu)) {
2809                         context->rsvd_bits_mask[1][1] = 0;
2810                         break;
2811                 }
2812
2813                 if (is_cpuid_PSE36())
2814                         /* 36bits PSE 4MB page */
2815                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2816                 else
2817                         /* 32 bits PSE 4MB page */
2818                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2819                 break;
2820         case PT32E_ROOT_LEVEL:
2821                 context->rsvd_bits_mask[0][2] =
2822                         rsvd_bits(maxphyaddr, 63) |
2823                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
2824                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2825                         rsvd_bits(maxphyaddr, 62);      /* PDE */
2826                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2827                         rsvd_bits(maxphyaddr, 62);      /* PTE */
2828                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2829                         rsvd_bits(maxphyaddr, 62) |
2830                         rsvd_bits(13, 20);              /* large page */
2831                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2832                 break;
2833         case PT64_ROOT_LEVEL:
2834                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2835                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2836                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2837                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2838                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2839                         rsvd_bits(maxphyaddr, 51);
2840                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2841                         rsvd_bits(maxphyaddr, 51);
2842                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2843                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2844                         rsvd_bits(maxphyaddr, 51) |
2845                         rsvd_bits(13, 29);
2846                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2847                         rsvd_bits(maxphyaddr, 51) |
2848                         rsvd_bits(13, 20);              /* large page */
2849                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2850                 break;
2851         }
2852 }
2853
2854 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2855                                         struct kvm_mmu *context,
2856                                         int level)
2857 {
2858         context->nx = is_nx(vcpu);
2859
2860         reset_rsvds_bits_mask(vcpu, context, level);
2861
2862         ASSERT(is_pae(vcpu));
2863         context->new_cr3 = paging_new_cr3;
2864         context->page_fault = paging64_page_fault;
2865         context->gva_to_gpa = paging64_gva_to_gpa;
2866         context->prefetch_page = paging64_prefetch_page;
2867         context->sync_page = paging64_sync_page;
2868         context->invlpg = paging64_invlpg;
2869         context->update_pte = paging64_update_pte;
2870         context->free = paging_free;
2871         context->root_level = level;
2872         context->shadow_root_level = level;
2873         context->root_hpa = INVALID_PAGE;
2874         context->direct_map = false;
2875         return 0;
2876 }
2877
2878 static int paging64_init_context(struct kvm_vcpu *vcpu,
2879                                  struct kvm_mmu *context)
2880 {
2881         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2882 }
2883
2884 static int paging32_init_context(struct kvm_vcpu *vcpu,
2885                                  struct kvm_mmu *context)
2886 {
2887         context->nx = false;
2888
2889         reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2890
2891         context->new_cr3 = paging_new_cr3;
2892         context->page_fault = paging32_page_fault;
2893         context->gva_to_gpa = paging32_gva_to_gpa;
2894         context->free = paging_free;
2895         context->prefetch_page = paging32_prefetch_page;
2896         context->sync_page = paging32_sync_page;
2897         context->invlpg = paging32_invlpg;
2898         context->update_pte = paging32_update_pte;
2899         context->root_level = PT32_ROOT_LEVEL;
2900         context->shadow_root_level = PT32E_ROOT_LEVEL;
2901         context->root_hpa = INVALID_PAGE;
2902         context->direct_map = false;
2903         return 0;
2904 }
2905
2906 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2907                                   struct kvm_mmu *context)
2908 {
2909         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2910 }
2911
2912 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2913 {
2914         struct kvm_mmu *context = vcpu->arch.walk_mmu;
2915
2916         context->base_role.word = 0;
2917         context->new_cr3 = nonpaging_new_cr3;
2918         context->page_fault = tdp_page_fault;
2919         context->free = nonpaging_free;
2920         context->prefetch_page = nonpaging_prefetch_page;
2921         context->sync_page = nonpaging_sync_page;
2922         context->invlpg = nonpaging_invlpg;
2923         context->update_pte = nonpaging_update_pte;
2924         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2925         context->root_hpa = INVALID_PAGE;
2926         context->direct_map = true;
2927         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2928         context->get_cr3 = get_cr3;
2929         context->inject_page_fault = kvm_inject_page_fault;
2930         context->nx = is_nx(vcpu);
2931
2932         if (!is_paging(vcpu)) {
2933                 context->nx = false;
2934                 context->gva_to_gpa = nonpaging_gva_to_gpa;
2935                 context->root_level = 0;
2936         } else if (is_long_mode(vcpu)) {
2937                 context->nx = is_nx(vcpu);
2938                 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
2939                 context->gva_to_gpa = paging64_gva_to_gpa;
2940                 context->root_level = PT64_ROOT_LEVEL;
2941         } else if (is_pae(vcpu)) {
2942                 context->nx = is_nx(vcpu);
2943                 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
2944                 context->gva_to_gpa = paging64_gva_to_gpa;
2945                 context->root_level = PT32E_ROOT_LEVEL;
2946         } else {
2947                 context->nx = false;
2948                 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2949                 context->gva_to_gpa = paging32_gva_to_gpa;
2950                 context->root_level = PT32_ROOT_LEVEL;
2951         }
2952
2953         return 0;
2954 }
2955
2956 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
2957 {
2958         int r;
2959         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
2960         ASSERT(vcpu);
2961         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2962
2963         if (!is_paging(vcpu))
2964                 r = nonpaging_init_context(vcpu, context);
2965         else if (is_long_mode(vcpu))
2966                 r = paging64_init_context(vcpu, context);
2967         else if (is_pae(vcpu))
2968                 r = paging32E_init_context(vcpu, context);
2969         else
2970                 r = paging32_init_context(vcpu, context);
2971
2972         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2973         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
2974         vcpu->arch.mmu.base_role.smep_andnot_wp
2975                 = smep && !is_write_protection(vcpu);
2976
2977         return r;
2978 }
2979 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
2980
2981 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2982 {
2983         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
2984
2985         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
2986         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
2987         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
2988
2989         return r;
2990 }
2991
2992 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
2993 {
2994         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
2995
2996         g_context->get_cr3           = get_cr3;
2997         g_context->inject_page_fault = kvm_inject_page_fault;
2998
2999         /*
3000          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3001          * translation of l2_gpa to l1_gpa addresses is done using the
3002          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3003          * functions between mmu and nested_mmu are swapped.
3004          */
3005         if (!is_paging(vcpu)) {
3006                 g_context->nx = false;
3007                 g_context->root_level = 0;
3008                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3009         } else if (is_long_mode(vcpu)) {
3010                 g_context->nx = is_nx(vcpu);
3011                 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3012                 g_context->root_level = PT64_ROOT_LEVEL;
3013                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3014         } else if (is_pae(vcpu)) {
3015                 g_context->nx = is_nx(vcpu);
3016                 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3017                 g_context->root_level = PT32E_ROOT_LEVEL;
3018                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3019         } else {
3020                 g_context->nx = false;
3021                 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3022                 g_context->root_level = PT32_ROOT_LEVEL;
3023                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3024         }
3025
3026         return 0;
3027 }
3028
3029 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3030 {
3031         if (mmu_is_nested(vcpu))
3032                 return init_kvm_nested_mmu(vcpu);
3033         else if (tdp_enabled)
3034                 return init_kvm_tdp_mmu(vcpu);
3035         else
3036                 return init_kvm_softmmu(vcpu);
3037 }
3038
3039 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3040 {
3041         ASSERT(vcpu);
3042         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3043                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3044                 vcpu->arch.mmu.free(vcpu);
3045 }
3046
3047 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3048 {
3049         destroy_kvm_mmu(vcpu);
3050         return init_kvm_mmu(vcpu);
3051 }
3052 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3053
3054 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3055 {
3056         int r;
3057
3058         r = mmu_topup_memory_caches(vcpu);
3059         if (r)
3060                 goto out;
3061         r = mmu_alloc_roots(vcpu);
3062         spin_lock(&vcpu->kvm->mmu_lock);
3063         mmu_sync_roots(vcpu);
3064         spin_unlock(&vcpu->kvm->mmu_lock);
3065         if (r)
3066                 goto out;
3067         /* set_cr3() should ensure TLB has been flushed */
3068         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3069 out:
3070         return r;
3071 }
3072 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3073
3074 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3075 {
3076         mmu_free_roots(vcpu);
3077 }
3078 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3079
3080 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3081                                   struct kvm_mmu_page *sp, u64 *spte,
3082                                   const void *new)
3083 {
3084         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3085                 ++vcpu->kvm->stat.mmu_pde_zapped;
3086                 return;
3087         }
3088
3089         ++vcpu->kvm->stat.mmu_pte_updated;
3090         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3091 }
3092
3093 static bool need_remote_flush(u64 old, u64 new)
3094 {
3095         if (!is_shadow_present_pte(old))
3096                 return false;
3097         if (!is_shadow_present_pte(new))
3098                 return true;
3099         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3100                 return true;
3101         old ^= PT64_NX_MASK;
3102         new ^= PT64_NX_MASK;
3103         return (old & ~new & PT64_PERM_MASK) != 0;
3104 }
3105
3106 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3107                                     bool remote_flush, bool local_flush)
3108 {
3109         if (zap_page)
3110                 return;
3111
3112         if (remote_flush)
3113                 kvm_flush_remote_tlbs(vcpu->kvm);
3114         else if (local_flush)
3115                 kvm_mmu_flush_tlb(vcpu);
3116 }
3117
3118 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3119 {
3120         u64 *spte = vcpu->arch.last_pte_updated;
3121
3122         return !!(spte && (*spte & shadow_accessed_mask));
3123 }
3124
3125 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3126 {
3127         u64 *spte = vcpu->arch.last_pte_updated;
3128
3129         if (spte
3130             && vcpu->arch.last_pte_gfn == gfn
3131             && shadow_accessed_mask
3132             && !(*spte & shadow_accessed_mask)
3133             && is_shadow_present_pte(*spte))
3134                 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3135 }
3136
3137 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3138                        const u8 *new, int bytes,
3139                        bool guest_initiated)
3140 {
3141         gfn_t gfn = gpa >> PAGE_SHIFT;
3142         union kvm_mmu_page_role mask = { .word = 0 };
3143         struct kvm_mmu_page *sp;
3144         struct hlist_node *node;
3145         LIST_HEAD(invalid_list);
3146         u64 entry, gentry, *spte;
3147         unsigned pte_size, page_offset, misaligned, quadrant, offset;
3148         int level, npte, invlpg_counter, r, flooded = 0;
3149         bool remote_flush, local_flush, zap_page;
3150
3151         /*
3152          * If we don't have indirect shadow pages, it means no page is
3153          * write-protected, so we can exit simply.
3154          */
3155         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3156                 return;
3157
3158         zap_page = remote_flush = local_flush = false;
3159         offset = offset_in_page(gpa);
3160
3161         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3162
3163         invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3164
3165         /*
3166          * Assume that the pte write on a page table of the same type
3167          * as the current vcpu paging mode since we update the sptes only
3168          * when they have the same mode.
3169          */
3170         if ((is_pae(vcpu) && bytes == 4) || !new) {
3171                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3172                 if (is_pae(vcpu)) {
3173                         gpa &= ~(gpa_t)7;
3174                         bytes = 8;
3175                 }
3176                 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3177                 if (r)
3178                         gentry = 0;
3179                 new = (const u8 *)&gentry;
3180         }
3181
3182         switch (bytes) {
3183         case 4:
3184                 gentry = *(const u32 *)new;
3185                 break;
3186         case 8:
3187                 gentry = *(const u64 *)new;
3188                 break;
3189         default:
3190                 gentry = 0;
3191                 break;
3192         }
3193
3194         spin_lock(&vcpu->kvm->mmu_lock);
3195         if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3196                 gentry = 0;
3197         kvm_mmu_free_some_pages(vcpu);
3198         ++vcpu->kvm->stat.mmu_pte_write;
3199         trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3200         if (guest_initiated) {
3201                 kvm_mmu_access_page(vcpu, gfn);
3202                 if (gfn == vcpu->arch.last_pt_write_gfn
3203                     && !last_updated_pte_accessed(vcpu)) {
3204                         ++vcpu->arch.last_pt_write_count;
3205                         if (vcpu->arch.last_pt_write_count >= 3)
3206                                 flooded = 1;
3207                 } else {
3208                         vcpu->arch.last_pt_write_gfn = gfn;
3209                         vcpu->arch.last_pt_write_count = 1;
3210                         vcpu->arch.last_pte_updated = NULL;
3211                 }
3212         }
3213
3214         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3215         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3216                 pte_size = sp->role.cr4_pae ? 8 : 4;
3217                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3218                 misaligned |= bytes < 4;
3219                 if (misaligned || flooded) {
3220                         /*
3221                          * Misaligned accesses are too much trouble to fix
3222                          * up; also, they usually indicate a page is not used
3223                          * as a page table.
3224                          *
3225                          * If we're seeing too many writes to a page,
3226                          * it may no longer be a page table, or we may be
3227                          * forking, in which case it is better to unmap the
3228                          * page.
3229                          */
3230                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3231                                  gpa, bytes, sp->role.word);
3232                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3233                                                      &invalid_list);
3234                         ++vcpu->kvm->stat.mmu_flooded;
3235                         continue;
3236                 }
3237                 page_offset = offset;
3238                 level = sp->role.level;
3239                 npte = 1;
3240                 if (!sp->role.cr4_pae) {
3241                         page_offset <<= 1;      /* 32->64 */
3242                         /*
3243                          * A 32-bit pde maps 4MB while the shadow pdes map
3244                          * only 2MB.  So we need to double the offset again
3245                          * and zap two pdes instead of one.
3246                          */
3247                         if (level == PT32_ROOT_LEVEL) {
3248                                 page_offset &= ~7; /* kill rounding error */
3249                                 page_offset <<= 1;
3250                                 npte = 2;
3251                         }
3252                         quadrant = page_offset >> PAGE_SHIFT;
3253                         page_offset &= ~PAGE_MASK;
3254                         if (quadrant != sp->role.quadrant)
3255                                 continue;
3256                 }
3257                 local_flush = true;
3258                 spte = &sp->spt[page_offset / sizeof(*spte)];
3259                 while (npte--) {
3260                         entry = *spte;
3261                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
3262                         if (gentry &&
3263                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3264                               & mask.word))
3265                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3266                         if (!remote_flush && need_remote_flush(entry, *spte))
3267                                 remote_flush = true;
3268                         ++spte;
3269                 }
3270         }
3271         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3272         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3273         trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3274         spin_unlock(&vcpu->kvm->mmu_lock);
3275 }
3276
3277 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3278 {
3279         gpa_t gpa;
3280         int r;
3281
3282         if (vcpu->arch.mmu.direct_map)
3283                 return 0;
3284
3285         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3286
3287         spin_lock(&vcpu->kvm->mmu_lock);
3288         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3289         spin_unlock(&vcpu->kvm->mmu_lock);
3290         return r;
3291 }
3292 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3293
3294 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3295 {
3296         LIST_HEAD(invalid_list);
3297
3298         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3299                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3300                 struct kvm_mmu_page *sp;
3301
3302                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3303                                   struct kvm_mmu_page, link);
3304                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3305                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3306                 ++vcpu->kvm->stat.mmu_recycled;
3307         }
3308 }
3309
3310 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3311                        void *insn, int insn_len)
3312 {
3313         int r;
3314         enum emulation_result er;
3315
3316         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3317         if (r < 0)
3318                 goto out;
3319
3320         if (!r) {
3321                 r = 1;
3322                 goto out;
3323         }
3324
3325         r = mmu_topup_memory_caches(vcpu);
3326         if (r)
3327                 goto out;
3328
3329         er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3330
3331         switch (er) {
3332         case EMULATE_DONE:
3333                 return 1;
3334         case EMULATE_DO_MMIO:
3335                 ++vcpu->stat.mmio_exits;
3336                 /* fall through */
3337         case EMULATE_FAIL:
3338                 return 0;
3339         default:
3340                 BUG();
3341         }
3342 out:
3343         return r;
3344 }
3345 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3346
3347 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3348 {
3349         vcpu->arch.mmu.invlpg(vcpu, gva);
3350         kvm_mmu_flush_tlb(vcpu);
3351         ++vcpu->stat.invlpg;
3352 }
3353 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3354
3355 void kvm_enable_tdp(void)
3356 {
3357         tdp_enabled = true;
3358 }
3359 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3360
3361 void kvm_disable_tdp(void)
3362 {
3363         tdp_enabled = false;
3364 }
3365 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3366
3367 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3368 {
3369         free_page((unsigned long)vcpu->arch.mmu.pae_root);
3370         if (vcpu->arch.mmu.lm_root != NULL)
3371                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3372 }
3373
3374 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3375 {
3376         struct page *page;
3377         int i;
3378
3379         ASSERT(vcpu);
3380
3381         /*
3382          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3383          * Therefore we need to allocate shadow page tables in the first
3384          * 4GB of memory, which happens to fit the DMA32 zone.
3385          */
3386         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3387         if (!page)
3388                 return -ENOMEM;
3389
3390         vcpu->arch.mmu.pae_root = page_address(page);
3391         for (i = 0; i < 4; ++i)
3392                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3393
3394         return 0;
3395 }
3396
3397 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3398 {
3399         ASSERT(vcpu);
3400         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3401
3402         return alloc_mmu_pages(vcpu);
3403 }
3404
3405 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3406 {
3407         ASSERT(vcpu);
3408         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3409
3410         return init_kvm_mmu(vcpu);
3411 }
3412
3413 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3414 {
3415         struct kvm_mmu_page *sp;
3416
3417         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3418                 int i;
3419                 u64 *pt;
3420
3421                 if (!test_bit(slot, sp->slot_bitmap))
3422                         continue;
3423
3424                 pt = sp->spt;
3425                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3426                         if (!is_shadow_present_pte(pt[i]) ||
3427                               !is_last_spte(pt[i], sp->role.level))
3428                                 continue;
3429
3430                         if (is_large_pte(pt[i])) {
3431                                 drop_spte(kvm, &pt[i],
3432                                           shadow_trap_nonpresent_pte);
3433                                 --kvm->stat.lpages;
3434                                 continue;
3435                         }
3436
3437                         /* avoid RMW */
3438                         if (is_writable_pte(pt[i]))
3439                                 update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
3440                 }
3441         }
3442         kvm_flush_remote_tlbs(kvm);
3443 }
3444
3445 void kvm_mmu_zap_all(struct kvm *kvm)
3446 {
3447         struct kvm_mmu_page *sp, *node;
3448         LIST_HEAD(invalid_list);
3449
3450         spin_lock(&kvm->mmu_lock);
3451 restart:
3452         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3453                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3454                         goto restart;
3455
3456         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3457         spin_unlock(&kvm->mmu_lock);
3458 }
3459
3460 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3461                                                struct list_head *invalid_list)
3462 {
3463         struct kvm_mmu_page *page;
3464
3465         page = container_of(kvm->arch.active_mmu_pages.prev,
3466                             struct kvm_mmu_page, link);
3467         return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3468 }
3469
3470 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3471 {
3472         struct kvm *kvm;
3473         struct kvm *kvm_freed = NULL;
3474         int nr_to_scan = sc->nr_to_scan;
3475
3476         if (nr_to_scan == 0)
3477                 goto out;
3478
3479         raw_spin_lock(&kvm_lock);
3480
3481         list_for_each_entry(kvm, &vm_list, vm_list) {
3482                 int idx, freed_pages;
3483                 LIST_HEAD(invalid_list);
3484
3485                 idx = srcu_read_lock(&kvm->srcu);
3486                 spin_lock(&kvm->mmu_lock);
3487                 if (!kvm_freed && nr_to_scan > 0 &&
3488                     kvm->arch.n_used_mmu_pages > 0) {
3489                         freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3490                                                           &invalid_list);
3491                         kvm_freed = kvm;
3492                 }
3493                 nr_to_scan--;
3494
3495                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3496                 spin_unlock(&kvm->mmu_lock);
3497                 srcu_read_unlock(&kvm->srcu, idx);
3498         }
3499         if (kvm_freed)
3500                 list_move_tail(&kvm_freed->vm_list, &vm_list);
3501
3502         raw_spin_unlock(&kvm_lock);
3503
3504 out:
3505         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3506 }
3507
3508 static struct shrinker mmu_shrinker = {
3509         .shrink = mmu_shrink,
3510         .seeks = DEFAULT_SEEKS * 10,
3511 };
3512
3513 static void mmu_destroy_caches(void)
3514 {
3515         if (pte_list_desc_cache)
3516                 kmem_cache_destroy(pte_list_desc_cache);
3517         if (mmu_page_header_cache)
3518                 kmem_cache_destroy(mmu_page_header_cache);
3519 }
3520
3521 int kvm_mmu_module_init(void)
3522 {
3523         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3524                                             sizeof(struct pte_list_desc),
3525                                             0, 0, NULL);
3526         if (!pte_list_desc_cache)
3527                 goto nomem;
3528
3529         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3530                                                   sizeof(struct kvm_mmu_page),
3531                                                   0, 0, NULL);
3532         if (!mmu_page_header_cache)
3533                 goto nomem;
3534
3535         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3536                 goto nomem;
3537
3538         register_shrinker(&mmu_shrinker);
3539
3540         return 0;
3541
3542 nomem:
3543         mmu_destroy_caches();
3544         return -ENOMEM;
3545 }
3546
3547 /*
3548  * Caculate mmu pages needed for kvm.
3549  */
3550 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3551 {
3552         int i;
3553         unsigned int nr_mmu_pages;
3554         unsigned int  nr_pages = 0;
3555         struct kvm_memslots *slots;
3556
3557         slots = kvm_memslots(kvm);
3558
3559         for (i = 0; i < slots->nmemslots; i++)
3560                 nr_pages += slots->memslots[i].npages;
3561
3562         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3563         nr_mmu_pages = max(nr_mmu_pages,
3564                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3565
3566         return nr_mmu_pages;
3567 }
3568
3569 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3570                                 unsigned len)
3571 {
3572         if (len > buffer->len)
3573                 return NULL;
3574         return buffer->ptr;
3575 }
3576
3577 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3578                                 unsigned len)
3579 {
3580         void *ret;
3581
3582         ret = pv_mmu_peek_buffer(buffer, len);
3583         if (!ret)
3584                 return ret;
3585         buffer->ptr += len;
3586         buffer->len -= len;
3587         buffer->processed += len;
3588         return ret;
3589 }
3590
3591 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3592                              gpa_t addr, gpa_t value)
3593 {
3594         int bytes = 8;
3595         int r;
3596
3597         if (!is_long_mode(vcpu) && !is_pae(vcpu))
3598                 bytes = 4;
3599
3600         r = mmu_topup_memory_caches(vcpu);
3601         if (r)
3602                 return r;
3603
3604         if (!emulator_write_phys(vcpu, addr, &value, bytes))
3605                 return -EFAULT;
3606
3607         return 1;
3608 }
3609
3610 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3611 {
3612         (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
3613         return 1;
3614 }
3615
3616 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3617 {
3618         spin_lock(&vcpu->kvm->mmu_lock);
3619         mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3620         spin_unlock(&vcpu->kvm->mmu_lock);
3621         return 1;
3622 }
3623
3624 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3625                              struct kvm_pv_mmu_op_buffer *buffer)
3626 {
3627         struct kvm_mmu_op_header *header;
3628
3629         header = pv_mmu_peek_buffer(buffer, sizeof *header);
3630         if (!header)
3631                 return 0;
3632         switch (header->op) {
3633         case KVM_MMU_OP_WRITE_PTE: {
3634                 struct kvm_mmu_op_write_pte *wpte;
3635
3636                 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3637                 if (!wpte)
3638                         return 0;
3639                 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3640                                         wpte->pte_val);
3641         }
3642         case KVM_MMU_OP_FLUSH_TLB: {
3643                 struct kvm_mmu_op_flush_tlb *ftlb;
3644
3645                 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3646                 if (!ftlb)
3647                         return 0;
3648                 return kvm_pv_mmu_flush_tlb(vcpu);
3649         }
3650         case KVM_MMU_OP_RELEASE_PT: {
3651                 struct kvm_mmu_op_release_pt *rpt;
3652
3653                 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3654                 if (!rpt)
3655                         return 0;
3656                 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3657         }
3658         default: return 0;
3659         }
3660 }
3661
3662 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3663                   gpa_t addr, unsigned long *ret)
3664 {
3665         int r;
3666         struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3667
3668         buffer->ptr = buffer->buf;
3669         buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3670         buffer->processed = 0;
3671
3672         r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3673         if (r)
3674                 goto out;
3675
3676         while (buffer->len) {
3677                 r = kvm_pv_mmu_op_one(vcpu, buffer);
3678                 if (r < 0)
3679                         goto out;
3680                 if (r == 0)
3681                         break;
3682         }
3683
3684         r = 1;
3685 out:
3686         *ret = buffer->processed;
3687         return r;
3688 }
3689
3690 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3691 {
3692         struct kvm_shadow_walk_iterator iterator;
3693         int nr_sptes = 0;
3694
3695         spin_lock(&vcpu->kvm->mmu_lock);
3696         for_each_shadow_entry(vcpu, addr, iterator) {
3697                 sptes[iterator.level-1] = *iterator.sptep;
3698                 nr_sptes++;
3699                 if (!is_shadow_present_pte(*iterator.sptep))
3700                         break;
3701         }
3702         spin_unlock(&vcpu->kvm->mmu_lock);
3703
3704         return nr_sptes;
3705 }
3706 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3707
3708 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3709 {
3710         ASSERT(vcpu);
3711
3712         destroy_kvm_mmu(vcpu);
3713         free_mmu_pages(vcpu);
3714         mmu_free_memory_caches(vcpu);
3715 }
3716
3717 #ifdef CONFIG_KVM_MMU_AUDIT
3718 #include "mmu_audit.c"
3719 #else
3720 static void mmu_audit_disable(void) { }
3721 #endif
3722
3723 void kvm_mmu_module_exit(void)
3724 {
3725         mmu_destroy_caches();
3726         percpu_counter_destroy(&kvm_total_used_mmu_pages);
3727         unregister_shrinker(&mmu_shrinker);
3728         mmu_audit_disable();
3729 }