3f9fa39f1469d886bd6e867020b2fb9307fb2ec4
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/uaccess.h>
40 #include <linux/hash.h>
41
42 #include <asm/page.h>
43 #include <asm/cmpxchg.h>
44 #include <asm/io.h>
45 #include <asm/vmx.h>
46 #include <asm/kvm_page_track.h>
47
48 /*
49  * When setting this variable to true it enables Two-Dimensional-Paging
50  * where the hardware walks 2 page tables:
51  * 1. the guest-virtual to guest-physical
52  * 2. while doing 1. it walks guest-physical to host-physical
53  * If the hardware supports that we don't need to do shadow paging.
54  */
55 bool tdp_enabled = false;
56
57 enum {
58         AUDIT_PRE_PAGE_FAULT,
59         AUDIT_POST_PAGE_FAULT,
60         AUDIT_PRE_PTE_WRITE,
61         AUDIT_POST_PTE_WRITE,
62         AUDIT_PRE_SYNC,
63         AUDIT_POST_SYNC
64 };
65
66 #undef MMU_DEBUG
67
68 #ifdef MMU_DEBUG
69 static bool dbg = 0;
70 module_param(dbg, bool, 0644);
71
72 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
73 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
74 #define MMU_WARN_ON(x) WARN_ON(x)
75 #else
76 #define pgprintk(x...) do { } while (0)
77 #define rmap_printk(x...) do { } while (0)
78 #define MMU_WARN_ON(x) do { } while (0)
79 #endif
80
81 #define PTE_PREFETCH_NUM                8
82
83 #define PT_FIRST_AVAIL_BITS_SHIFT 10
84 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
85
86 #define PT64_LEVEL_BITS 9
87
88 #define PT64_LEVEL_SHIFT(level) \
89                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
90
91 #define PT64_INDEX(address, level)\
92         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
93
94
95 #define PT32_LEVEL_BITS 10
96
97 #define PT32_LEVEL_SHIFT(level) \
98                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
99
100 #define PT32_LVL_OFFSET_MASK(level) \
101         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
102                                                 * PT32_LEVEL_BITS))) - 1))
103
104 #define PT32_INDEX(address, level)\
105         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
106
107
108 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
109 #define PT64_DIR_BASE_ADDR_MASK \
110         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
111 #define PT64_LVL_ADDR_MASK(level) \
112         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
113                                                 * PT64_LEVEL_BITS))) - 1))
114 #define PT64_LVL_OFFSET_MASK(level) \
115         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
116                                                 * PT64_LEVEL_BITS))) - 1))
117
118 #define PT32_BASE_ADDR_MASK PAGE_MASK
119 #define PT32_DIR_BASE_ADDR_MASK \
120         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
121 #define PT32_LVL_ADDR_MASK(level) \
122         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                             * PT32_LEVEL_BITS))) - 1))
124
125 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
126                         | shadow_x_mask | shadow_nx_mask)
127
128 #define ACC_EXEC_MASK    1
129 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
130 #define ACC_USER_MASK    PT_USER_MASK
131 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
132
133 #include <trace/events/kvm.h>
134
135 #define CREATE_TRACE_POINTS
136 #include "mmutrace.h"
137
138 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
139 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
140
141 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
142
143 /* make pte_list_desc fit well in cache line */
144 #define PTE_LIST_EXT 3
145
146 struct pte_list_desc {
147         u64 *sptes[PTE_LIST_EXT];
148         struct pte_list_desc *more;
149 };
150
151 struct kvm_shadow_walk_iterator {
152         u64 addr;
153         hpa_t shadow_addr;
154         u64 *sptep;
155         int level;
156         unsigned index;
157 };
158
159 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
160         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
161              shadow_walk_okay(&(_walker));                      \
162              shadow_walk_next(&(_walker)))
163
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
165         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
166              shadow_walk_okay(&(_walker)) &&                            \
167                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
168              __shadow_walk_next(&(_walker), spte))
169
170 static struct kmem_cache *pte_list_desc_cache;
171 static struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173
174 static u64 __read_mostly shadow_nx_mask;
175 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
176 static u64 __read_mostly shadow_user_mask;
177 static u64 __read_mostly shadow_accessed_mask;
178 static u64 __read_mostly shadow_dirty_mask;
179 static u64 __read_mostly shadow_mmio_mask;
180 static u64 __read_mostly shadow_present_mask;
181
182 static void mmu_spte_set(u64 *sptep, u64 spte);
183 static void mmu_free_roots(struct kvm_vcpu *vcpu);
184
185 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
186 {
187         shadow_mmio_mask = mmio_mask;
188 }
189 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
190
191 /*
192  * the low bit of the generation number is always presumed to be zero.
193  * This disables mmio caching during memslot updates.  The concept is
194  * similar to a seqcount but instead of retrying the access we just punt
195  * and ignore the cache.
196  *
197  * spte bits 3-11 are used as bits 1-9 of the generation number,
198  * the bits 52-61 are used as bits 10-19 of the generation number.
199  */
200 #define MMIO_SPTE_GEN_LOW_SHIFT         2
201 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
202
203 #define MMIO_GEN_SHIFT                  20
204 #define MMIO_GEN_LOW_SHIFT              10
205 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
206 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
207
208 static u64 generation_mmio_spte_mask(unsigned int gen)
209 {
210         u64 mask;
211
212         WARN_ON(gen & ~MMIO_GEN_MASK);
213
214         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
215         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
216         return mask;
217 }
218
219 static unsigned int get_mmio_spte_generation(u64 spte)
220 {
221         unsigned int gen;
222
223         spte &= ~shadow_mmio_mask;
224
225         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
226         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
227         return gen;
228 }
229
230 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
231 {
232         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
233 }
234
235 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
236                            unsigned access)
237 {
238         unsigned int gen = kvm_current_mmio_generation(vcpu);
239         u64 mask = generation_mmio_spte_mask(gen);
240
241         access &= ACC_WRITE_MASK | ACC_USER_MASK;
242         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
243
244         trace_mark_mmio_spte(sptep, gfn, access, gen);
245         mmu_spte_set(sptep, mask);
246 }
247
248 static bool is_mmio_spte(u64 spte)
249 {
250         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
251 }
252
253 static gfn_t get_mmio_spte_gfn(u64 spte)
254 {
255         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
256         return (spte & ~mask) >> PAGE_SHIFT;
257 }
258
259 static unsigned get_mmio_spte_access(u64 spte)
260 {
261         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
262         return (spte & ~mask) & ~PAGE_MASK;
263 }
264
265 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
266                           kvm_pfn_t pfn, unsigned access)
267 {
268         if (unlikely(is_noslot_pfn(pfn))) {
269                 mark_mmio_spte(vcpu, sptep, gfn, access);
270                 return true;
271         }
272
273         return false;
274 }
275
276 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
277 {
278         unsigned int kvm_gen, spte_gen;
279
280         kvm_gen = kvm_current_mmio_generation(vcpu);
281         spte_gen = get_mmio_spte_generation(spte);
282
283         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
284         return likely(kvm_gen == spte_gen);
285 }
286
287 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
288                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask)
289 {
290         shadow_user_mask = user_mask;
291         shadow_accessed_mask = accessed_mask;
292         shadow_dirty_mask = dirty_mask;
293         shadow_nx_mask = nx_mask;
294         shadow_x_mask = x_mask;
295         shadow_present_mask = p_mask;
296 }
297 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
298
299 static int is_cpuid_PSE36(void)
300 {
301         return 1;
302 }
303
304 static int is_nx(struct kvm_vcpu *vcpu)
305 {
306         return vcpu->arch.efer & EFER_NX;
307 }
308
309 static int is_shadow_present_pte(u64 pte)
310 {
311         return (pte & 0xFFFFFFFFull) && !is_mmio_spte(pte);
312 }
313
314 static int is_large_pte(u64 pte)
315 {
316         return pte & PT_PAGE_SIZE_MASK;
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321         if (level == PT_PAGE_TABLE_LEVEL)
322                 return 1;
323         if (is_large_pte(pte))
324                 return 1;
325         return 0;
326 }
327
328 static kvm_pfn_t spte_to_pfn(u64 pte)
329 {
330         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337         return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343         WRITE_ONCE(*sptep, spte);
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348         WRITE_ONCE(*sptep, spte);
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353         return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358         return ACCESS_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362         struct {
363                 u32 spte_low;
364                 u32 spte_high;
365         };
366         u64 spte;
367 };
368
369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
372
373         if (is_shadow_present_pte(spte))
374                 return;
375
376         /* Ensure the spte is completely set before we increase the count */
377         smp_wmb();
378         sp->clear_spte_count++;
379 }
380
381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383         union split_spte *ssptep, sspte;
384
385         ssptep = (union split_spte *)sptep;
386         sspte = (union split_spte)spte;
387
388         ssptep->spte_high = sspte.spte_high;
389
390         /*
391          * If we map the spte from nonpresent to present, We should store
392          * the high bits firstly, then set present bit, so cpu can not
393          * fetch this spte while we are setting the spte.
394          */
395         smp_wmb();
396
397         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402         union split_spte *ssptep, sspte;
403
404         ssptep = (union split_spte *)sptep;
405         sspte = (union split_spte)spte;
406
407         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
408
409         /*
410          * If we map the spte from present to nonpresent, we should clear
411          * present bit firstly to avoid vcpu fetch the old high bits.
412          */
413         smp_wmb();
414
415         ssptep->spte_high = sspte.spte_high;
416         count_spte_clear(sptep, spte);
417 }
418
419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421         union split_spte *ssptep, sspte, orig;
422
423         ssptep = (union split_spte *)sptep;
424         sspte = (union split_spte)spte;
425
426         /* xchg acts as a barrier before the setting of the high bits */
427         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428         orig.spte_high = ssptep->spte_high;
429         ssptep->spte_high = sspte.spte_high;
430         count_spte_clear(sptep, spte);
431
432         return orig.spte;
433 }
434
435 /*
436  * The idea using the light way get the spte on x86_32 guest is from
437  * gup_get_pte(arch/x86/mm/gup.c).
438  *
439  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440  * coalesces them and we are running out of the MMU lock.  Therefore
441  * we need to protect against in-progress updates of the spte.
442  *
443  * Reading the spte while an update is in progress may get the old value
444  * for the high part of the spte.  The race is fine for a present->non-present
445  * change (because the high part of the spte is ignored for non-present spte),
446  * but for a present->present change we must reread the spte.
447  *
448  * All such changes are done in two steps (present->non-present and
449  * non-present->present), hence it is enough to count the number of
450  * present->non-present updates: if it changed while reading the spte,
451  * we might have hit the race.  This is done using clear_spte_count.
452  */
453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
456         union split_spte spte, *orig = (union split_spte *)sptep;
457         int count;
458
459 retry:
460         count = sp->clear_spte_count;
461         smp_rmb();
462
463         spte.spte_low = orig->spte_low;
464         smp_rmb();
465
466         spte.spte_high = orig->spte_high;
467         smp_rmb();
468
469         if (unlikely(spte.spte_low != orig->spte_low ||
470               count != sp->clear_spte_count))
471                 goto retry;
472
473         return spte.spte;
474 }
475 #endif
476
477 static bool spte_is_locklessly_modifiable(u64 spte)
478 {
479         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
481 }
482
483 static bool spte_has_volatile_bits(u64 spte)
484 {
485         /*
486          * Always atomically update spte if it can be updated
487          * out of mmu-lock, it can ensure dirty bit is not lost,
488          * also, it can help us to get a stable is_writable_pte()
489          * to ensure tlb flush is not missed.
490          */
491         if (spte_is_locklessly_modifiable(spte))
492                 return true;
493
494         if (!shadow_accessed_mask)
495                 return false;
496
497         if (!is_shadow_present_pte(spte))
498                 return false;
499
500         if ((spte & shadow_accessed_mask) &&
501               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
502                 return false;
503
504         return true;
505 }
506
507 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508 {
509         return (old_spte & bit_mask) && !(new_spte & bit_mask);
510 }
511
512 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513 {
514         return (old_spte & bit_mask) != (new_spte & bit_mask);
515 }
516
517 /* Rules for using mmu_spte_set:
518  * Set the sptep from nonpresent to present.
519  * Note: the sptep being assigned *must* be either not present
520  * or in a state where the hardware will not attempt to update
521  * the spte.
522  */
523 static void mmu_spte_set(u64 *sptep, u64 new_spte)
524 {
525         WARN_ON(is_shadow_present_pte(*sptep));
526         __set_spte(sptep, new_spte);
527 }
528
529 /* Rules for using mmu_spte_update:
530  * Update the state bits, it means the mapped pfn is not changed.
531  *
532  * Whenever we overwrite a writable spte with a read-only one we
533  * should flush remote TLBs. Otherwise rmap_write_protect
534  * will find a read-only spte, even though the writable spte
535  * might be cached on a CPU's TLB, the return value indicates this
536  * case.
537  */
538 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
539 {
540         u64 old_spte = *sptep;
541         bool ret = false;
542
543         WARN_ON(!is_shadow_present_pte(new_spte));
544
545         if (!is_shadow_present_pte(old_spte)) {
546                 mmu_spte_set(sptep, new_spte);
547                 return ret;
548         }
549
550         if (!spte_has_volatile_bits(old_spte))
551                 __update_clear_spte_fast(sptep, new_spte);
552         else
553                 old_spte = __update_clear_spte_slow(sptep, new_spte);
554
555         /*
556          * For the spte updated out of mmu-lock is safe, since
557          * we always atomically update it, see the comments in
558          * spte_has_volatile_bits().
559          */
560         if (spte_is_locklessly_modifiable(old_spte) &&
561               !is_writable_pte(new_spte))
562                 ret = true;
563
564         if (!shadow_accessed_mask) {
565                 /*
566                  * We don't set page dirty when dropping non-writable spte.
567                  * So do it now if the new spte is becoming non-writable.
568                  */
569                 if (ret)
570                         kvm_set_pfn_dirty(spte_to_pfn(old_spte));
571                 return ret;
572         }
573
574         /*
575          * Flush TLB when accessed/dirty bits are changed in the page tables,
576          * to guarantee consistency between TLB and page tables.
577          */
578         if (spte_is_bit_changed(old_spte, new_spte,
579                                 shadow_accessed_mask | shadow_dirty_mask))
580                 ret = true;
581
582         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
583                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
584         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
585                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
586
587         return ret;
588 }
589
590 /*
591  * Rules for using mmu_spte_clear_track_bits:
592  * It sets the sptep from present to nonpresent, and track the
593  * state bits, it is used to clear the last level sptep.
594  */
595 static int mmu_spte_clear_track_bits(u64 *sptep)
596 {
597         kvm_pfn_t pfn;
598         u64 old_spte = *sptep;
599
600         if (!spte_has_volatile_bits(old_spte))
601                 __update_clear_spte_fast(sptep, 0ull);
602         else
603                 old_spte = __update_clear_spte_slow(sptep, 0ull);
604
605         if (!is_shadow_present_pte(old_spte))
606                 return 0;
607
608         pfn = spte_to_pfn(old_spte);
609
610         /*
611          * KVM does not hold the refcount of the page used by
612          * kvm mmu, before reclaiming the page, we should
613          * unmap it from mmu first.
614          */
615         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
616
617         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
618                 kvm_set_pfn_accessed(pfn);
619         if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
620                                             PT_WRITABLE_MASK))
621                 kvm_set_pfn_dirty(pfn);
622         return 1;
623 }
624
625 /*
626  * Rules for using mmu_spte_clear_no_track:
627  * Directly clear spte without caring the state bits of sptep,
628  * it is used to set the upper level spte.
629  */
630 static void mmu_spte_clear_no_track(u64 *sptep)
631 {
632         __update_clear_spte_fast(sptep, 0ull);
633 }
634
635 static u64 mmu_spte_get_lockless(u64 *sptep)
636 {
637         return __get_spte_lockless(sptep);
638 }
639
640 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
641 {
642         /*
643          * Prevent page table teardown by making any free-er wait during
644          * kvm_flush_remote_tlbs() IPI to all active vcpus.
645          */
646         local_irq_disable();
647
648         /*
649          * Make sure a following spte read is not reordered ahead of the write
650          * to vcpu->mode.
651          */
652         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
653 }
654
655 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
656 {
657         /*
658          * Make sure the write to vcpu->mode is not reordered in front of
659          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
660          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
661          */
662         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
663         local_irq_enable();
664 }
665
666 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
667                                   struct kmem_cache *base_cache, int min)
668 {
669         void *obj;
670
671         if (cache->nobjs >= min)
672                 return 0;
673         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
674                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
675                 if (!obj)
676                         return -ENOMEM;
677                 cache->objects[cache->nobjs++] = obj;
678         }
679         return 0;
680 }
681
682 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
683 {
684         return cache->nobjs;
685 }
686
687 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
688                                   struct kmem_cache *cache)
689 {
690         while (mc->nobjs)
691                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
692 }
693
694 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
695                                        int min)
696 {
697         void *page;
698
699         if (cache->nobjs >= min)
700                 return 0;
701         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
702                 page = (void *)__get_free_page(GFP_KERNEL);
703                 if (!page)
704                         return -ENOMEM;
705                 cache->objects[cache->nobjs++] = page;
706         }
707         return 0;
708 }
709
710 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
711 {
712         while (mc->nobjs)
713                 free_page((unsigned long)mc->objects[--mc->nobjs]);
714 }
715
716 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
717 {
718         int r;
719
720         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
721                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
722         if (r)
723                 goto out;
724         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
725         if (r)
726                 goto out;
727         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
728                                    mmu_page_header_cache, 4);
729 out:
730         return r;
731 }
732
733 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
734 {
735         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
736                                 pte_list_desc_cache);
737         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
738         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
739                                 mmu_page_header_cache);
740 }
741
742 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
743 {
744         void *p;
745
746         BUG_ON(!mc->nobjs);
747         p = mc->objects[--mc->nobjs];
748         return p;
749 }
750
751 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
752 {
753         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
754 }
755
756 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
757 {
758         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
759 }
760
761 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
762 {
763         if (!sp->role.direct)
764                 return sp->gfns[index];
765
766         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
767 }
768
769 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
770 {
771         if (sp->role.direct)
772                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
773         else
774                 sp->gfns[index] = gfn;
775 }
776
777 /*
778  * Return the pointer to the large page information for a given gfn,
779  * handling slots that are not large page aligned.
780  */
781 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
782                                               struct kvm_memory_slot *slot,
783                                               int level)
784 {
785         unsigned long idx;
786
787         idx = gfn_to_index(gfn, slot->base_gfn, level);
788         return &slot->arch.lpage_info[level - 2][idx];
789 }
790
791 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
792                                             gfn_t gfn, int count)
793 {
794         struct kvm_lpage_info *linfo;
795         int i;
796
797         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
798                 linfo = lpage_info_slot(gfn, slot, i);
799                 linfo->disallow_lpage += count;
800                 WARN_ON(linfo->disallow_lpage < 0);
801         }
802 }
803
804 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
805 {
806         update_gfn_disallow_lpage_count(slot, gfn, 1);
807 }
808
809 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
810 {
811         update_gfn_disallow_lpage_count(slot, gfn, -1);
812 }
813
814 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
815 {
816         struct kvm_memslots *slots;
817         struct kvm_memory_slot *slot;
818         gfn_t gfn;
819
820         kvm->arch.indirect_shadow_pages++;
821         gfn = sp->gfn;
822         slots = kvm_memslots_for_spte_role(kvm, sp->role);
823         slot = __gfn_to_memslot(slots, gfn);
824
825         /* the non-leaf shadow pages are keeping readonly. */
826         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
827                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
828                                                     KVM_PAGE_TRACK_WRITE);
829
830         kvm_mmu_gfn_disallow_lpage(slot, gfn);
831 }
832
833 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
834 {
835         struct kvm_memslots *slots;
836         struct kvm_memory_slot *slot;
837         gfn_t gfn;
838
839         kvm->arch.indirect_shadow_pages--;
840         gfn = sp->gfn;
841         slots = kvm_memslots_for_spte_role(kvm, sp->role);
842         slot = __gfn_to_memslot(slots, gfn);
843         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
844                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
845                                                        KVM_PAGE_TRACK_WRITE);
846
847         kvm_mmu_gfn_allow_lpage(slot, gfn);
848 }
849
850 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
851                                           struct kvm_memory_slot *slot)
852 {
853         struct kvm_lpage_info *linfo;
854
855         if (slot) {
856                 linfo = lpage_info_slot(gfn, slot, level);
857                 return !!linfo->disallow_lpage;
858         }
859
860         return true;
861 }
862
863 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
864                                         int level)
865 {
866         struct kvm_memory_slot *slot;
867
868         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
869         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
870 }
871
872 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
873 {
874         unsigned long page_size;
875         int i, ret = 0;
876
877         page_size = kvm_host_page_size(kvm, gfn);
878
879         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
880                 if (page_size >= KVM_HPAGE_SIZE(i))
881                         ret = i;
882                 else
883                         break;
884         }
885
886         return ret;
887 }
888
889 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
890                                           bool no_dirty_log)
891 {
892         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
893                 return false;
894         if (no_dirty_log && slot->dirty_bitmap)
895                 return false;
896
897         return true;
898 }
899
900 static struct kvm_memory_slot *
901 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
902                             bool no_dirty_log)
903 {
904         struct kvm_memory_slot *slot;
905
906         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
907         if (!memslot_valid_for_gpte(slot, no_dirty_log))
908                 slot = NULL;
909
910         return slot;
911 }
912
913 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
914                          bool *force_pt_level)
915 {
916         int host_level, level, max_level;
917         struct kvm_memory_slot *slot;
918
919         if (unlikely(*force_pt_level))
920                 return PT_PAGE_TABLE_LEVEL;
921
922         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
923         *force_pt_level = !memslot_valid_for_gpte(slot, true);
924         if (unlikely(*force_pt_level))
925                 return PT_PAGE_TABLE_LEVEL;
926
927         host_level = host_mapping_level(vcpu->kvm, large_gfn);
928
929         if (host_level == PT_PAGE_TABLE_LEVEL)
930                 return host_level;
931
932         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
933
934         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
935                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
936                         break;
937
938         return level - 1;
939 }
940
941 /*
942  * About rmap_head encoding:
943  *
944  * If the bit zero of rmap_head->val is clear, then it points to the only spte
945  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
946  * pte_list_desc containing more mappings.
947  */
948
949 /*
950  * Returns the number of pointers in the rmap chain, not counting the new one.
951  */
952 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
953                         struct kvm_rmap_head *rmap_head)
954 {
955         struct pte_list_desc *desc;
956         int i, count = 0;
957
958         if (!rmap_head->val) {
959                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
960                 rmap_head->val = (unsigned long)spte;
961         } else if (!(rmap_head->val & 1)) {
962                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
963                 desc = mmu_alloc_pte_list_desc(vcpu);
964                 desc->sptes[0] = (u64 *)rmap_head->val;
965                 desc->sptes[1] = spte;
966                 rmap_head->val = (unsigned long)desc | 1;
967                 ++count;
968         } else {
969                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
970                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
971                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
972                         desc = desc->more;
973                         count += PTE_LIST_EXT;
974                 }
975                 if (desc->sptes[PTE_LIST_EXT-1]) {
976                         desc->more = mmu_alloc_pte_list_desc(vcpu);
977                         desc = desc->more;
978                 }
979                 for (i = 0; desc->sptes[i]; ++i)
980                         ++count;
981                 desc->sptes[i] = spte;
982         }
983         return count;
984 }
985
986 static void
987 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
988                            struct pte_list_desc *desc, int i,
989                            struct pte_list_desc *prev_desc)
990 {
991         int j;
992
993         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
994                 ;
995         desc->sptes[i] = desc->sptes[j];
996         desc->sptes[j] = NULL;
997         if (j != 0)
998                 return;
999         if (!prev_desc && !desc->more)
1000                 rmap_head->val = (unsigned long)desc->sptes[0];
1001         else
1002                 if (prev_desc)
1003                         prev_desc->more = desc->more;
1004                 else
1005                         rmap_head->val = (unsigned long)desc->more | 1;
1006         mmu_free_pte_list_desc(desc);
1007 }
1008
1009 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1010 {
1011         struct pte_list_desc *desc;
1012         struct pte_list_desc *prev_desc;
1013         int i;
1014
1015         if (!rmap_head->val) {
1016                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1017                 BUG();
1018         } else if (!(rmap_head->val & 1)) {
1019                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1020                 if ((u64 *)rmap_head->val != spte) {
1021                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1022                         BUG();
1023                 }
1024                 rmap_head->val = 0;
1025         } else {
1026                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1027                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1028                 prev_desc = NULL;
1029                 while (desc) {
1030                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1031                                 if (desc->sptes[i] == spte) {
1032                                         pte_list_desc_remove_entry(rmap_head,
1033                                                         desc, i, prev_desc);
1034                                         return;
1035                                 }
1036                         }
1037                         prev_desc = desc;
1038                         desc = desc->more;
1039                 }
1040                 pr_err("pte_list_remove: %p many->many\n", spte);
1041                 BUG();
1042         }
1043 }
1044
1045 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1046                                            struct kvm_memory_slot *slot)
1047 {
1048         unsigned long idx;
1049
1050         idx = gfn_to_index(gfn, slot->base_gfn, level);
1051         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1052 }
1053
1054 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1055                                          struct kvm_mmu_page *sp)
1056 {
1057         struct kvm_memslots *slots;
1058         struct kvm_memory_slot *slot;
1059
1060         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1061         slot = __gfn_to_memslot(slots, gfn);
1062         return __gfn_to_rmap(gfn, sp->role.level, slot);
1063 }
1064
1065 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1066 {
1067         struct kvm_mmu_memory_cache *cache;
1068
1069         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1070         return mmu_memory_cache_free_objects(cache);
1071 }
1072
1073 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1074 {
1075         struct kvm_mmu_page *sp;
1076         struct kvm_rmap_head *rmap_head;
1077
1078         sp = page_header(__pa(spte));
1079         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1080         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1081         return pte_list_add(vcpu, spte, rmap_head);
1082 }
1083
1084 static void rmap_remove(struct kvm *kvm, u64 *spte)
1085 {
1086         struct kvm_mmu_page *sp;
1087         gfn_t gfn;
1088         struct kvm_rmap_head *rmap_head;
1089
1090         sp = page_header(__pa(spte));
1091         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1092         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1093         pte_list_remove(spte, rmap_head);
1094 }
1095
1096 /*
1097  * Used by the following functions to iterate through the sptes linked by a
1098  * rmap.  All fields are private and not assumed to be used outside.
1099  */
1100 struct rmap_iterator {
1101         /* private fields */
1102         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1103         int pos;                        /* index of the sptep */
1104 };
1105
1106 /*
1107  * Iteration must be started by this function.  This should also be used after
1108  * removing/dropping sptes from the rmap link because in such cases the
1109  * information in the itererator may not be valid.
1110  *
1111  * Returns sptep if found, NULL otherwise.
1112  */
1113 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1114                            struct rmap_iterator *iter)
1115 {
1116         u64 *sptep;
1117
1118         if (!rmap_head->val)
1119                 return NULL;
1120
1121         if (!(rmap_head->val & 1)) {
1122                 iter->desc = NULL;
1123                 sptep = (u64 *)rmap_head->val;
1124                 goto out;
1125         }
1126
1127         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1128         iter->pos = 0;
1129         sptep = iter->desc->sptes[iter->pos];
1130 out:
1131         BUG_ON(!is_shadow_present_pte(*sptep));
1132         return sptep;
1133 }
1134
1135 /*
1136  * Must be used with a valid iterator: e.g. after rmap_get_first().
1137  *
1138  * Returns sptep if found, NULL otherwise.
1139  */
1140 static u64 *rmap_get_next(struct rmap_iterator *iter)
1141 {
1142         u64 *sptep;
1143
1144         if (iter->desc) {
1145                 if (iter->pos < PTE_LIST_EXT - 1) {
1146                         ++iter->pos;
1147                         sptep = iter->desc->sptes[iter->pos];
1148                         if (sptep)
1149                                 goto out;
1150                 }
1151
1152                 iter->desc = iter->desc->more;
1153
1154                 if (iter->desc) {
1155                         iter->pos = 0;
1156                         /* desc->sptes[0] cannot be NULL */
1157                         sptep = iter->desc->sptes[iter->pos];
1158                         goto out;
1159                 }
1160         }
1161
1162         return NULL;
1163 out:
1164         BUG_ON(!is_shadow_present_pte(*sptep));
1165         return sptep;
1166 }
1167
1168 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1169         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1170              _spte_; _spte_ = rmap_get_next(_iter_))
1171
1172 static void drop_spte(struct kvm *kvm, u64 *sptep)
1173 {
1174         if (mmu_spte_clear_track_bits(sptep))
1175                 rmap_remove(kvm, sptep);
1176 }
1177
1178
1179 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1180 {
1181         if (is_large_pte(*sptep)) {
1182                 WARN_ON(page_header(__pa(sptep))->role.level ==
1183                         PT_PAGE_TABLE_LEVEL);
1184                 drop_spte(kvm, sptep);
1185                 --kvm->stat.lpages;
1186                 return true;
1187         }
1188
1189         return false;
1190 }
1191
1192 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1193 {
1194         if (__drop_large_spte(vcpu->kvm, sptep))
1195                 kvm_flush_remote_tlbs(vcpu->kvm);
1196 }
1197
1198 /*
1199  * Write-protect on the specified @sptep, @pt_protect indicates whether
1200  * spte write-protection is caused by protecting shadow page table.
1201  *
1202  * Note: write protection is difference between dirty logging and spte
1203  * protection:
1204  * - for dirty logging, the spte can be set to writable at anytime if
1205  *   its dirty bitmap is properly set.
1206  * - for spte protection, the spte can be writable only after unsync-ing
1207  *   shadow page.
1208  *
1209  * Return true if tlb need be flushed.
1210  */
1211 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1212 {
1213         u64 spte = *sptep;
1214
1215         if (!is_writable_pte(spte) &&
1216               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1217                 return false;
1218
1219         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1220
1221         if (pt_protect)
1222                 spte &= ~SPTE_MMU_WRITEABLE;
1223         spte = spte & ~PT_WRITABLE_MASK;
1224
1225         return mmu_spte_update(sptep, spte);
1226 }
1227
1228 static bool __rmap_write_protect(struct kvm *kvm,
1229                                  struct kvm_rmap_head *rmap_head,
1230                                  bool pt_protect)
1231 {
1232         u64 *sptep;
1233         struct rmap_iterator iter;
1234         bool flush = false;
1235
1236         for_each_rmap_spte(rmap_head, &iter, sptep)
1237                 flush |= spte_write_protect(sptep, pt_protect);
1238
1239         return flush;
1240 }
1241
1242 static bool spte_clear_dirty(u64 *sptep)
1243 {
1244         u64 spte = *sptep;
1245
1246         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1247
1248         spte &= ~shadow_dirty_mask;
1249
1250         return mmu_spte_update(sptep, spte);
1251 }
1252
1253 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1254 {
1255         u64 *sptep;
1256         struct rmap_iterator iter;
1257         bool flush = false;
1258
1259         for_each_rmap_spte(rmap_head, &iter, sptep)
1260                 flush |= spte_clear_dirty(sptep);
1261
1262         return flush;
1263 }
1264
1265 static bool spte_set_dirty(u64 *sptep)
1266 {
1267         u64 spte = *sptep;
1268
1269         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1270
1271         spte |= shadow_dirty_mask;
1272
1273         return mmu_spte_update(sptep, spte);
1274 }
1275
1276 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1277 {
1278         u64 *sptep;
1279         struct rmap_iterator iter;
1280         bool flush = false;
1281
1282         for_each_rmap_spte(rmap_head, &iter, sptep)
1283                 flush |= spte_set_dirty(sptep);
1284
1285         return flush;
1286 }
1287
1288 /**
1289  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1290  * @kvm: kvm instance
1291  * @slot: slot to protect
1292  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1293  * @mask: indicates which pages we should protect
1294  *
1295  * Used when we do not need to care about huge page mappings: e.g. during dirty
1296  * logging we do not have any such mappings.
1297  */
1298 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1299                                      struct kvm_memory_slot *slot,
1300                                      gfn_t gfn_offset, unsigned long mask)
1301 {
1302         struct kvm_rmap_head *rmap_head;
1303
1304         while (mask) {
1305                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1306                                           PT_PAGE_TABLE_LEVEL, slot);
1307                 __rmap_write_protect(kvm, rmap_head, false);
1308
1309                 /* clear the first set bit */
1310                 mask &= mask - 1;
1311         }
1312 }
1313
1314 /**
1315  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1316  * @kvm: kvm instance
1317  * @slot: slot to clear D-bit
1318  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1319  * @mask: indicates which pages we should clear D-bit
1320  *
1321  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1322  */
1323 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1324                                      struct kvm_memory_slot *slot,
1325                                      gfn_t gfn_offset, unsigned long mask)
1326 {
1327         struct kvm_rmap_head *rmap_head;
1328
1329         while (mask) {
1330                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1331                                           PT_PAGE_TABLE_LEVEL, slot);
1332                 __rmap_clear_dirty(kvm, rmap_head);
1333
1334                 /* clear the first set bit */
1335                 mask &= mask - 1;
1336         }
1337 }
1338 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1339
1340 /**
1341  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1342  * PT level pages.
1343  *
1344  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1345  * enable dirty logging for them.
1346  *
1347  * Used when we do not need to care about huge page mappings: e.g. during dirty
1348  * logging we do not have any such mappings.
1349  */
1350 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1351                                 struct kvm_memory_slot *slot,
1352                                 gfn_t gfn_offset, unsigned long mask)
1353 {
1354         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1355                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1356                                 mask);
1357         else
1358                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1359 }
1360
1361 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1362                                     struct kvm_memory_slot *slot, u64 gfn)
1363 {
1364         struct kvm_rmap_head *rmap_head;
1365         int i;
1366         bool write_protected = false;
1367
1368         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1369                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1370                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1371         }
1372
1373         return write_protected;
1374 }
1375
1376 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1377 {
1378         struct kvm_memory_slot *slot;
1379
1380         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1381         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1382 }
1383
1384 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1385 {
1386         u64 *sptep;
1387         struct rmap_iterator iter;
1388         bool flush = false;
1389
1390         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1391                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1392
1393                 drop_spte(kvm, sptep);
1394                 flush = true;
1395         }
1396
1397         return flush;
1398 }
1399
1400 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1401                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1402                            unsigned long data)
1403 {
1404         return kvm_zap_rmapp(kvm, rmap_head);
1405 }
1406
1407 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1408                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1409                              unsigned long data)
1410 {
1411         u64 *sptep;
1412         struct rmap_iterator iter;
1413         int need_flush = 0;
1414         u64 new_spte;
1415         pte_t *ptep = (pte_t *)data;
1416         kvm_pfn_t new_pfn;
1417
1418         WARN_ON(pte_huge(*ptep));
1419         new_pfn = pte_pfn(*ptep);
1420
1421 restart:
1422         for_each_rmap_spte(rmap_head, &iter, sptep) {
1423                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1424                              sptep, *sptep, gfn, level);
1425
1426                 need_flush = 1;
1427
1428                 if (pte_write(*ptep)) {
1429                         drop_spte(kvm, sptep);
1430                         goto restart;
1431                 } else {
1432                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1433                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1434
1435                         new_spte &= ~PT_WRITABLE_MASK;
1436                         new_spte &= ~SPTE_HOST_WRITEABLE;
1437                         new_spte &= ~shadow_accessed_mask;
1438
1439                         mmu_spte_clear_track_bits(sptep);
1440                         mmu_spte_set(sptep, new_spte);
1441                 }
1442         }
1443
1444         if (need_flush)
1445                 kvm_flush_remote_tlbs(kvm);
1446
1447         return 0;
1448 }
1449
1450 struct slot_rmap_walk_iterator {
1451         /* input fields. */
1452         struct kvm_memory_slot *slot;
1453         gfn_t start_gfn;
1454         gfn_t end_gfn;
1455         int start_level;
1456         int end_level;
1457
1458         /* output fields. */
1459         gfn_t gfn;
1460         struct kvm_rmap_head *rmap;
1461         int level;
1462
1463         /* private field. */
1464         struct kvm_rmap_head *end_rmap;
1465 };
1466
1467 static void
1468 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1469 {
1470         iterator->level = level;
1471         iterator->gfn = iterator->start_gfn;
1472         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1473         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1474                                            iterator->slot);
1475 }
1476
1477 static void
1478 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1479                     struct kvm_memory_slot *slot, int start_level,
1480                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1481 {
1482         iterator->slot = slot;
1483         iterator->start_level = start_level;
1484         iterator->end_level = end_level;
1485         iterator->start_gfn = start_gfn;
1486         iterator->end_gfn = end_gfn;
1487
1488         rmap_walk_init_level(iterator, iterator->start_level);
1489 }
1490
1491 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1492 {
1493         return !!iterator->rmap;
1494 }
1495
1496 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1497 {
1498         if (++iterator->rmap <= iterator->end_rmap) {
1499                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1500                 return;
1501         }
1502
1503         if (++iterator->level > iterator->end_level) {
1504                 iterator->rmap = NULL;
1505                 return;
1506         }
1507
1508         rmap_walk_init_level(iterator, iterator->level);
1509 }
1510
1511 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1512            _start_gfn, _end_gfn, _iter_)                                \
1513         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1514                                  _end_level_, _start_gfn, _end_gfn);    \
1515              slot_rmap_walk_okay(_iter_);                               \
1516              slot_rmap_walk_next(_iter_))
1517
1518 static int kvm_handle_hva_range(struct kvm *kvm,
1519                                 unsigned long start,
1520                                 unsigned long end,
1521                                 unsigned long data,
1522                                 int (*handler)(struct kvm *kvm,
1523                                                struct kvm_rmap_head *rmap_head,
1524                                                struct kvm_memory_slot *slot,
1525                                                gfn_t gfn,
1526                                                int level,
1527                                                unsigned long data))
1528 {
1529         struct kvm_memslots *slots;
1530         struct kvm_memory_slot *memslot;
1531         struct slot_rmap_walk_iterator iterator;
1532         int ret = 0;
1533         int i;
1534
1535         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1536                 slots = __kvm_memslots(kvm, i);
1537                 kvm_for_each_memslot(memslot, slots) {
1538                         unsigned long hva_start, hva_end;
1539                         gfn_t gfn_start, gfn_end;
1540
1541                         hva_start = max(start, memslot->userspace_addr);
1542                         hva_end = min(end, memslot->userspace_addr +
1543                                       (memslot->npages << PAGE_SHIFT));
1544                         if (hva_start >= hva_end)
1545                                 continue;
1546                         /*
1547                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1548                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1549                          */
1550                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1551                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1552
1553                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1554                                                  PT_MAX_HUGEPAGE_LEVEL,
1555                                                  gfn_start, gfn_end - 1,
1556                                                  &iterator)
1557                                 ret |= handler(kvm, iterator.rmap, memslot,
1558                                                iterator.gfn, iterator.level, data);
1559                 }
1560         }
1561
1562         return ret;
1563 }
1564
1565 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1566                           unsigned long data,
1567                           int (*handler)(struct kvm *kvm,
1568                                          struct kvm_rmap_head *rmap_head,
1569                                          struct kvm_memory_slot *slot,
1570                                          gfn_t gfn, int level,
1571                                          unsigned long data))
1572 {
1573         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1574 }
1575
1576 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1577 {
1578         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1579 }
1580
1581 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1582 {
1583         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1584 }
1585
1586 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1587 {
1588         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1589 }
1590
1591 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1592                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1593                          unsigned long data)
1594 {
1595         u64 *sptep;
1596         struct rmap_iterator uninitialized_var(iter);
1597         int young = 0;
1598
1599         BUG_ON(!shadow_accessed_mask);
1600
1601         for_each_rmap_spte(rmap_head, &iter, sptep) {
1602                 if (*sptep & shadow_accessed_mask) {
1603                         young = 1;
1604                         clear_bit((ffs(shadow_accessed_mask) - 1),
1605                                  (unsigned long *)sptep);
1606                 }
1607         }
1608
1609         trace_kvm_age_page(gfn, level, slot, young);
1610         return young;
1611 }
1612
1613 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1614                               struct kvm_memory_slot *slot, gfn_t gfn,
1615                               int level, unsigned long data)
1616 {
1617         u64 *sptep;
1618         struct rmap_iterator iter;
1619         int young = 0;
1620
1621         /*
1622          * If there's no access bit in the secondary pte set by the
1623          * hardware it's up to gup-fast/gup to set the access bit in
1624          * the primary pte or in the page structure.
1625          */
1626         if (!shadow_accessed_mask)
1627                 goto out;
1628
1629         for_each_rmap_spte(rmap_head, &iter, sptep) {
1630                 if (*sptep & shadow_accessed_mask) {
1631                         young = 1;
1632                         break;
1633                 }
1634         }
1635 out:
1636         return young;
1637 }
1638
1639 #define RMAP_RECYCLE_THRESHOLD 1000
1640
1641 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1642 {
1643         struct kvm_rmap_head *rmap_head;
1644         struct kvm_mmu_page *sp;
1645
1646         sp = page_header(__pa(spte));
1647
1648         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1649
1650         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1651         kvm_flush_remote_tlbs(vcpu->kvm);
1652 }
1653
1654 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1655 {
1656         /*
1657          * In case of absence of EPT Access and Dirty Bits supports,
1658          * emulate the accessed bit for EPT, by checking if this page has
1659          * an EPT mapping, and clearing it if it does. On the next access,
1660          * a new EPT mapping will be established.
1661          * This has some overhead, but not as much as the cost of swapping
1662          * out actively used pages or breaking up actively used hugepages.
1663          */
1664         if (!shadow_accessed_mask)
1665                 return kvm_handle_hva_range(kvm, start, end, 0,
1666                                             kvm_unmap_rmapp);
1667
1668         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1669 }
1670
1671 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1672 {
1673         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1674 }
1675
1676 #ifdef MMU_DEBUG
1677 static int is_empty_shadow_page(u64 *spt)
1678 {
1679         u64 *pos;
1680         u64 *end;
1681
1682         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1683                 if (is_shadow_present_pte(*pos)) {
1684                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1685                                pos, *pos);
1686                         return 0;
1687                 }
1688         return 1;
1689 }
1690 #endif
1691
1692 /*
1693  * This value is the sum of all of the kvm instances's
1694  * kvm->arch.n_used_mmu_pages values.  We need a global,
1695  * aggregate version in order to make the slab shrinker
1696  * faster
1697  */
1698 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1699 {
1700         kvm->arch.n_used_mmu_pages += nr;
1701         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1702 }
1703
1704 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1705 {
1706         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1707         hlist_del(&sp->hash_link);
1708         list_del(&sp->link);
1709         free_page((unsigned long)sp->spt);
1710         if (!sp->role.direct)
1711                 free_page((unsigned long)sp->gfns);
1712         kmem_cache_free(mmu_page_header_cache, sp);
1713 }
1714
1715 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1716 {
1717         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1718 }
1719
1720 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1721                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1722 {
1723         if (!parent_pte)
1724                 return;
1725
1726         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1727 }
1728
1729 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1730                                        u64 *parent_pte)
1731 {
1732         pte_list_remove(parent_pte, &sp->parent_ptes);
1733 }
1734
1735 static void drop_parent_pte(struct kvm_mmu_page *sp,
1736                             u64 *parent_pte)
1737 {
1738         mmu_page_remove_parent_pte(sp, parent_pte);
1739         mmu_spte_clear_no_track(parent_pte);
1740 }
1741
1742 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1743 {
1744         struct kvm_mmu_page *sp;
1745
1746         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1747         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1748         if (!direct)
1749                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1750         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1751
1752         /*
1753          * The active_mmu_pages list is the FIFO list, do not move the
1754          * page until it is zapped. kvm_zap_obsolete_pages depends on
1755          * this feature. See the comments in kvm_zap_obsolete_pages().
1756          */
1757         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1758         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1759         return sp;
1760 }
1761
1762 static void mark_unsync(u64 *spte);
1763 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1764 {
1765         u64 *sptep;
1766         struct rmap_iterator iter;
1767
1768         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1769                 mark_unsync(sptep);
1770         }
1771 }
1772
1773 static void mark_unsync(u64 *spte)
1774 {
1775         struct kvm_mmu_page *sp;
1776         unsigned int index;
1777
1778         sp = page_header(__pa(spte));
1779         index = spte - sp->spt;
1780         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1781                 return;
1782         if (sp->unsync_children++)
1783                 return;
1784         kvm_mmu_mark_parents_unsync(sp);
1785 }
1786
1787 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1788                                struct kvm_mmu_page *sp)
1789 {
1790         return 0;
1791 }
1792
1793 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1794 {
1795 }
1796
1797 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1798                                  struct kvm_mmu_page *sp, u64 *spte,
1799                                  const void *pte)
1800 {
1801         WARN_ON(1);
1802 }
1803
1804 #define KVM_PAGE_ARRAY_NR 16
1805
1806 struct kvm_mmu_pages {
1807         struct mmu_page_and_offset {
1808                 struct kvm_mmu_page *sp;
1809                 unsigned int idx;
1810         } page[KVM_PAGE_ARRAY_NR];
1811         unsigned int nr;
1812 };
1813
1814 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1815                          int idx)
1816 {
1817         int i;
1818
1819         if (sp->unsync)
1820                 for (i=0; i < pvec->nr; i++)
1821                         if (pvec->page[i].sp == sp)
1822                                 return 0;
1823
1824         pvec->page[pvec->nr].sp = sp;
1825         pvec->page[pvec->nr].idx = idx;
1826         pvec->nr++;
1827         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1828 }
1829
1830 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1831 {
1832         --sp->unsync_children;
1833         WARN_ON((int)sp->unsync_children < 0);
1834         __clear_bit(idx, sp->unsync_child_bitmap);
1835 }
1836
1837 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1838                            struct kvm_mmu_pages *pvec)
1839 {
1840         int i, ret, nr_unsync_leaf = 0;
1841
1842         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1843                 struct kvm_mmu_page *child;
1844                 u64 ent = sp->spt[i];
1845
1846                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1847                         clear_unsync_child_bit(sp, i);
1848                         continue;
1849                 }
1850
1851                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1852
1853                 if (child->unsync_children) {
1854                         if (mmu_pages_add(pvec, child, i))
1855                                 return -ENOSPC;
1856
1857                         ret = __mmu_unsync_walk(child, pvec);
1858                         if (!ret) {
1859                                 clear_unsync_child_bit(sp, i);
1860                                 continue;
1861                         } else if (ret > 0) {
1862                                 nr_unsync_leaf += ret;
1863                         } else
1864                                 return ret;
1865                 } else if (child->unsync) {
1866                         nr_unsync_leaf++;
1867                         if (mmu_pages_add(pvec, child, i))
1868                                 return -ENOSPC;
1869                 } else
1870                         clear_unsync_child_bit(sp, i);
1871         }
1872
1873         return nr_unsync_leaf;
1874 }
1875
1876 #define INVALID_INDEX (-1)
1877
1878 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1879                            struct kvm_mmu_pages *pvec)
1880 {
1881         pvec->nr = 0;
1882         if (!sp->unsync_children)
1883                 return 0;
1884
1885         mmu_pages_add(pvec, sp, INVALID_INDEX);
1886         return __mmu_unsync_walk(sp, pvec);
1887 }
1888
1889 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1890 {
1891         WARN_ON(!sp->unsync);
1892         trace_kvm_mmu_sync_page(sp);
1893         sp->unsync = 0;
1894         --kvm->stat.mmu_unsync;
1895 }
1896
1897 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1898                                     struct list_head *invalid_list);
1899 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1900                                     struct list_head *invalid_list);
1901
1902 /*
1903  * NOTE: we should pay more attention on the zapped-obsolete page
1904  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1905  * since it has been deleted from active_mmu_pages but still can be found
1906  * at hast list.
1907  *
1908  * for_each_valid_sp() has skipped that kind of pages.
1909  */
1910 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
1911         hlist_for_each_entry(_sp,                                       \
1912           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1913                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
1914                 } else
1915
1916 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1917         for_each_valid_sp(_kvm, _sp, _gfn)                              \
1918                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1919
1920 /* @sp->gfn should be write-protected at the call site */
1921 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1922                             struct list_head *invalid_list)
1923 {
1924         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1925                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1926                 return false;
1927         }
1928
1929         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1930                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1931                 return false;
1932         }
1933
1934         return true;
1935 }
1936
1937 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1938                                  struct list_head *invalid_list,
1939                                  bool remote_flush, bool local_flush)
1940 {
1941         if (!list_empty(invalid_list)) {
1942                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1943                 return;
1944         }
1945
1946         if (remote_flush)
1947                 kvm_flush_remote_tlbs(vcpu->kvm);
1948         else if (local_flush)
1949                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1950 }
1951
1952 #ifdef CONFIG_KVM_MMU_AUDIT
1953 #include "mmu_audit.c"
1954 #else
1955 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1956 static void mmu_audit_disable(void) { }
1957 #endif
1958
1959 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1960 {
1961         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1962 }
1963
1964 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1965                          struct list_head *invalid_list)
1966 {
1967         kvm_unlink_unsync_page(vcpu->kvm, sp);
1968         return __kvm_sync_page(vcpu, sp, invalid_list);
1969 }
1970
1971 /* @gfn should be write-protected at the call site */
1972 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1973                            struct list_head *invalid_list)
1974 {
1975         struct kvm_mmu_page *s;
1976         bool ret = false;
1977
1978         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1979                 if (!s->unsync)
1980                         continue;
1981
1982                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1983                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1984         }
1985
1986         return ret;
1987 }
1988
1989 struct mmu_page_path {
1990         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1991         unsigned int idx[PT64_ROOT_LEVEL];
1992 };
1993
1994 #define for_each_sp(pvec, sp, parents, i)                       \
1995                 for (i = mmu_pages_first(&pvec, &parents);      \
1996                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1997                         i = mmu_pages_next(&pvec, &parents, i))
1998
1999 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2000                           struct mmu_page_path *parents,
2001                           int i)
2002 {
2003         int n;
2004
2005         for (n = i+1; n < pvec->nr; n++) {
2006                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2007                 unsigned idx = pvec->page[n].idx;
2008                 int level = sp->role.level;
2009
2010                 parents->idx[level-1] = idx;
2011                 if (level == PT_PAGE_TABLE_LEVEL)
2012                         break;
2013
2014                 parents->parent[level-2] = sp;
2015         }
2016
2017         return n;
2018 }
2019
2020 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2021                            struct mmu_page_path *parents)
2022 {
2023         struct kvm_mmu_page *sp;
2024         int level;
2025
2026         if (pvec->nr == 0)
2027                 return 0;
2028
2029         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2030
2031         sp = pvec->page[0].sp;
2032         level = sp->role.level;
2033         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2034
2035         parents->parent[level-2] = sp;
2036
2037         /* Also set up a sentinel.  Further entries in pvec are all
2038          * children of sp, so this element is never overwritten.
2039          */
2040         parents->parent[level-1] = NULL;
2041         return mmu_pages_next(pvec, parents, 0);
2042 }
2043
2044 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2045 {
2046         struct kvm_mmu_page *sp;
2047         unsigned int level = 0;
2048
2049         do {
2050                 unsigned int idx = parents->idx[level];
2051                 sp = parents->parent[level];
2052                 if (!sp)
2053                         return;
2054
2055                 WARN_ON(idx == INVALID_INDEX);
2056                 clear_unsync_child_bit(sp, idx);
2057                 level++;
2058         } while (!sp->unsync_children);
2059 }
2060
2061 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2062                               struct kvm_mmu_page *parent)
2063 {
2064         int i;
2065         struct kvm_mmu_page *sp;
2066         struct mmu_page_path parents;
2067         struct kvm_mmu_pages pages;
2068         LIST_HEAD(invalid_list);
2069         bool flush = false;
2070
2071         while (mmu_unsync_walk(parent, &pages)) {
2072                 bool protected = false;
2073
2074                 for_each_sp(pages, sp, parents, i)
2075                         protected |= rmap_write_protect(vcpu, sp->gfn);
2076
2077                 if (protected) {
2078                         kvm_flush_remote_tlbs(vcpu->kvm);
2079                         flush = false;
2080                 }
2081
2082                 for_each_sp(pages, sp, parents, i) {
2083                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2084                         mmu_pages_clear_parents(&parents);
2085                 }
2086                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2087                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2088                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2089                         flush = false;
2090                 }
2091         }
2092
2093         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2094 }
2095
2096 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2097 {
2098         atomic_set(&sp->write_flooding_count,  0);
2099 }
2100
2101 static void clear_sp_write_flooding_count(u64 *spte)
2102 {
2103         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2104
2105         __clear_sp_write_flooding_count(sp);
2106 }
2107
2108 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2109                                              gfn_t gfn,
2110                                              gva_t gaddr,
2111                                              unsigned level,
2112                                              int direct,
2113                                              unsigned access)
2114 {
2115         union kvm_mmu_page_role role;
2116         unsigned quadrant;
2117         struct kvm_mmu_page *sp;
2118         bool need_sync = false;
2119         bool flush = false;
2120         int collisions = 0;
2121         LIST_HEAD(invalid_list);
2122
2123         role = vcpu->arch.mmu.base_role;
2124         role.level = level;
2125         role.direct = direct;
2126         if (role.direct)
2127                 role.cr4_pae = 0;
2128         role.access = access;
2129         if (!vcpu->arch.mmu.direct_map
2130             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2131                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2132                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2133                 role.quadrant = quadrant;
2134         }
2135         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2136                 if (sp->gfn != gfn) {
2137                         collisions++;
2138                         continue;
2139                 }
2140
2141                 if (!need_sync && sp->unsync)
2142                         need_sync = true;
2143
2144                 if (sp->role.word != role.word)
2145                         continue;
2146
2147                 if (sp->unsync) {
2148                         /* The page is good, but __kvm_sync_page might still end
2149                          * up zapping it.  If so, break in order to rebuild it.
2150                          */
2151                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2152                                 break;
2153
2154                         WARN_ON(!list_empty(&invalid_list));
2155                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2156                 }
2157
2158                 if (sp->unsync_children)
2159                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2160
2161                 __clear_sp_write_flooding_count(sp);
2162                 trace_kvm_mmu_get_page(sp, false);
2163                 goto out;
2164         }
2165
2166         ++vcpu->kvm->stat.mmu_cache_miss;
2167
2168         sp = kvm_mmu_alloc_page(vcpu, direct);
2169
2170         sp->gfn = gfn;
2171         sp->role = role;
2172         hlist_add_head(&sp->hash_link,
2173                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2174         if (!direct) {
2175                 /*
2176                  * we should do write protection before syncing pages
2177                  * otherwise the content of the synced shadow page may
2178                  * be inconsistent with guest page table.
2179                  */
2180                 account_shadowed(vcpu->kvm, sp);
2181                 if (level == PT_PAGE_TABLE_LEVEL &&
2182                       rmap_write_protect(vcpu, gfn))
2183                         kvm_flush_remote_tlbs(vcpu->kvm);
2184
2185                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2186                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2187         }
2188         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2189         clear_page(sp->spt);
2190         trace_kvm_mmu_get_page(sp, true);
2191
2192         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2193 out:
2194         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2195                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2196         return sp;
2197 }
2198
2199 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2200                              struct kvm_vcpu *vcpu, u64 addr)
2201 {
2202         iterator->addr = addr;
2203         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2204         iterator->level = vcpu->arch.mmu.shadow_root_level;
2205
2206         if (iterator->level == PT64_ROOT_LEVEL &&
2207             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2208             !vcpu->arch.mmu.direct_map)
2209                 --iterator->level;
2210
2211         if (iterator->level == PT32E_ROOT_LEVEL) {
2212                 iterator->shadow_addr
2213                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2214                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2215                 --iterator->level;
2216                 if (!iterator->shadow_addr)
2217                         iterator->level = 0;
2218         }
2219 }
2220
2221 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2222 {
2223         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2224                 return false;
2225
2226         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2227         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2228         return true;
2229 }
2230
2231 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2232                                u64 spte)
2233 {
2234         if (is_last_spte(spte, iterator->level)) {
2235                 iterator->level = 0;
2236                 return;
2237         }
2238
2239         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2240         --iterator->level;
2241 }
2242
2243 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2244 {
2245         return __shadow_walk_next(iterator, *iterator->sptep);
2246 }
2247
2248 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2249                              struct kvm_mmu_page *sp)
2250 {
2251         u64 spte;
2252
2253         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2254
2255         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2256                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2257
2258         mmu_spte_set(sptep, spte);
2259
2260         mmu_page_add_parent_pte(vcpu, sp, sptep);
2261
2262         if (sp->unsync_children || sp->unsync)
2263                 mark_unsync(sptep);
2264 }
2265
2266 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2267                                    unsigned direct_access)
2268 {
2269         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2270                 struct kvm_mmu_page *child;
2271
2272                 /*
2273                  * For the direct sp, if the guest pte's dirty bit
2274                  * changed form clean to dirty, it will corrupt the
2275                  * sp's access: allow writable in the read-only sp,
2276                  * so we should update the spte at this point to get
2277                  * a new sp with the correct access.
2278                  */
2279                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2280                 if (child->role.access == direct_access)
2281                         return;
2282
2283                 drop_parent_pte(child, sptep);
2284                 kvm_flush_remote_tlbs(vcpu->kvm);
2285         }
2286 }
2287
2288 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2289                              u64 *spte)
2290 {
2291         u64 pte;
2292         struct kvm_mmu_page *child;
2293
2294         pte = *spte;
2295         if (is_shadow_present_pte(pte)) {
2296                 if (is_last_spte(pte, sp->role.level)) {
2297                         drop_spte(kvm, spte);
2298                         if (is_large_pte(pte))
2299                                 --kvm->stat.lpages;
2300                 } else {
2301                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2302                         drop_parent_pte(child, spte);
2303                 }
2304                 return true;
2305         }
2306
2307         if (is_mmio_spte(pte))
2308                 mmu_spte_clear_no_track(spte);
2309
2310         return false;
2311 }
2312
2313 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2314                                          struct kvm_mmu_page *sp)
2315 {
2316         unsigned i;
2317
2318         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2319                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2320 }
2321
2322 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2323 {
2324         u64 *sptep;
2325         struct rmap_iterator iter;
2326
2327         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2328                 drop_parent_pte(sp, sptep);
2329 }
2330
2331 static int mmu_zap_unsync_children(struct kvm *kvm,
2332                                    struct kvm_mmu_page *parent,
2333                                    struct list_head *invalid_list)
2334 {
2335         int i, zapped = 0;
2336         struct mmu_page_path parents;
2337         struct kvm_mmu_pages pages;
2338
2339         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2340                 return 0;
2341
2342         while (mmu_unsync_walk(parent, &pages)) {
2343                 struct kvm_mmu_page *sp;
2344
2345                 for_each_sp(pages, sp, parents, i) {
2346                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2347                         mmu_pages_clear_parents(&parents);
2348                         zapped++;
2349                 }
2350         }
2351
2352         return zapped;
2353 }
2354
2355 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2356                                     struct list_head *invalid_list)
2357 {
2358         int ret;
2359
2360         trace_kvm_mmu_prepare_zap_page(sp);
2361         ++kvm->stat.mmu_shadow_zapped;
2362         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2363         kvm_mmu_page_unlink_children(kvm, sp);
2364         kvm_mmu_unlink_parents(kvm, sp);
2365
2366         if (!sp->role.invalid && !sp->role.direct)
2367                 unaccount_shadowed(kvm, sp);
2368
2369         if (sp->unsync)
2370                 kvm_unlink_unsync_page(kvm, sp);
2371         if (!sp->root_count) {
2372                 /* Count self */
2373                 ret++;
2374                 list_move(&sp->link, invalid_list);
2375                 kvm_mod_used_mmu_pages(kvm, -1);
2376         } else {
2377                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2378
2379                 /*
2380                  * The obsolete pages can not be used on any vcpus.
2381                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2382                  */
2383                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2384                         kvm_reload_remote_mmus(kvm);
2385         }
2386
2387         sp->role.invalid = 1;
2388         return ret;
2389 }
2390
2391 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2392                                     struct list_head *invalid_list)
2393 {
2394         struct kvm_mmu_page *sp, *nsp;
2395
2396         if (list_empty(invalid_list))
2397                 return;
2398
2399         /*
2400          * We need to make sure everyone sees our modifications to
2401          * the page tables and see changes to vcpu->mode here. The barrier
2402          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2403          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2404          *
2405          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2406          * guest mode and/or lockless shadow page table walks.
2407          */
2408         kvm_flush_remote_tlbs(kvm);
2409
2410         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2411                 WARN_ON(!sp->role.invalid || sp->root_count);
2412                 kvm_mmu_free_page(sp);
2413         }
2414 }
2415
2416 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2417                                         struct list_head *invalid_list)
2418 {
2419         struct kvm_mmu_page *sp;
2420
2421         if (list_empty(&kvm->arch.active_mmu_pages))
2422                 return false;
2423
2424         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2425                              struct kvm_mmu_page, link);
2426         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2427
2428         return true;
2429 }
2430
2431 /*
2432  * Changing the number of mmu pages allocated to the vm
2433  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2434  */
2435 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2436 {
2437         LIST_HEAD(invalid_list);
2438
2439         spin_lock(&kvm->mmu_lock);
2440
2441         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2442                 /* Need to free some mmu pages to achieve the goal. */
2443                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2444                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2445                                 break;
2446
2447                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2448                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2449         }
2450
2451         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2452
2453         spin_unlock(&kvm->mmu_lock);
2454 }
2455
2456 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2457 {
2458         struct kvm_mmu_page *sp;
2459         LIST_HEAD(invalid_list);
2460         int r;
2461
2462         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2463         r = 0;
2464         spin_lock(&kvm->mmu_lock);
2465         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2466                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2467                          sp->role.word);
2468                 r = 1;
2469                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2470         }
2471         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2472         spin_unlock(&kvm->mmu_lock);
2473
2474         return r;
2475 }
2476 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2477
2478 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2479 {
2480         trace_kvm_mmu_unsync_page(sp);
2481         ++vcpu->kvm->stat.mmu_unsync;
2482         sp->unsync = 1;
2483
2484         kvm_mmu_mark_parents_unsync(sp);
2485 }
2486
2487 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2488                                    bool can_unsync)
2489 {
2490         struct kvm_mmu_page *sp;
2491
2492         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2493                 return true;
2494
2495         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2496                 if (!can_unsync)
2497                         return true;
2498
2499                 if (sp->unsync)
2500                         continue;
2501
2502                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2503                 kvm_unsync_page(vcpu, sp);
2504         }
2505
2506         return false;
2507 }
2508
2509 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2510 {
2511         if (pfn_valid(pfn))
2512                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2513
2514         return true;
2515 }
2516
2517 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2518                     unsigned pte_access, int level,
2519                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2520                     bool can_unsync, bool host_writable)
2521 {
2522         u64 spte = 0;
2523         int ret = 0;
2524
2525         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2526                 return 0;
2527
2528         /*
2529          * For the EPT case, shadow_present_mask is 0 if hardware
2530          * supports exec-only page table entries.  In that case,
2531          * ACC_USER_MASK and shadow_user_mask are used to represent
2532          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2533          */
2534         spte |= shadow_present_mask;
2535         if (!speculative)
2536                 spte |= shadow_accessed_mask;
2537
2538         if (pte_access & ACC_EXEC_MASK)
2539                 spte |= shadow_x_mask;
2540         else
2541                 spte |= shadow_nx_mask;
2542
2543         if (pte_access & ACC_USER_MASK)
2544                 spte |= shadow_user_mask;
2545
2546         if (level > PT_PAGE_TABLE_LEVEL)
2547                 spte |= PT_PAGE_SIZE_MASK;
2548         if (tdp_enabled)
2549                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2550                         kvm_is_mmio_pfn(pfn));
2551
2552         if (host_writable)
2553                 spte |= SPTE_HOST_WRITEABLE;
2554         else
2555                 pte_access &= ~ACC_WRITE_MASK;
2556
2557         spte |= (u64)pfn << PAGE_SHIFT;
2558
2559         if (pte_access & ACC_WRITE_MASK) {
2560
2561                 /*
2562                  * Other vcpu creates new sp in the window between
2563                  * mapping_level() and acquiring mmu-lock. We can
2564                  * allow guest to retry the access, the mapping can
2565                  * be fixed if guest refault.
2566                  */
2567                 if (level > PT_PAGE_TABLE_LEVEL &&
2568                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2569                         goto done;
2570
2571                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2572
2573                 /*
2574                  * Optimization: for pte sync, if spte was writable the hash
2575                  * lookup is unnecessary (and expensive). Write protection
2576                  * is responsibility of mmu_get_page / kvm_sync_page.
2577                  * Same reasoning can be applied to dirty page accounting.
2578                  */
2579                 if (!can_unsync && is_writable_pte(*sptep))
2580                         goto set_pte;
2581
2582                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2583                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2584                                  __func__, gfn);
2585                         ret = 1;
2586                         pte_access &= ~ACC_WRITE_MASK;
2587                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2588                 }
2589         }
2590
2591         if (pte_access & ACC_WRITE_MASK) {
2592                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2593                 spte |= shadow_dirty_mask;
2594         }
2595
2596 set_pte:
2597         if (mmu_spte_update(sptep, spte))
2598                 kvm_flush_remote_tlbs(vcpu->kvm);
2599 done:
2600         return ret;
2601 }
2602
2603 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2604                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2605                          bool speculative, bool host_writable)
2606 {
2607         int was_rmapped = 0;
2608         int rmap_count;
2609         bool emulate = false;
2610
2611         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2612                  *sptep, write_fault, gfn);
2613
2614         if (is_shadow_present_pte(*sptep)) {
2615                 /*
2616                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2617                  * the parent of the now unreachable PTE.
2618                  */
2619                 if (level > PT_PAGE_TABLE_LEVEL &&
2620                     !is_large_pte(*sptep)) {
2621                         struct kvm_mmu_page *child;
2622                         u64 pte = *sptep;
2623
2624                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2625                         drop_parent_pte(child, sptep);
2626                         kvm_flush_remote_tlbs(vcpu->kvm);
2627                 } else if (pfn != spte_to_pfn(*sptep)) {
2628                         pgprintk("hfn old %llx new %llx\n",
2629                                  spte_to_pfn(*sptep), pfn);
2630                         drop_spte(vcpu->kvm, sptep);
2631                         kvm_flush_remote_tlbs(vcpu->kvm);
2632                 } else
2633                         was_rmapped = 1;
2634         }
2635
2636         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2637               true, host_writable)) {
2638                 if (write_fault)
2639                         emulate = true;
2640                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2641         }
2642
2643         if (unlikely(is_mmio_spte(*sptep)))
2644                 emulate = true;
2645
2646         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2647         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2648                  is_large_pte(*sptep)? "2MB" : "4kB",
2649                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2650                  *sptep, sptep);
2651         if (!was_rmapped && is_large_pte(*sptep))
2652                 ++vcpu->kvm->stat.lpages;
2653
2654         if (is_shadow_present_pte(*sptep)) {
2655                 if (!was_rmapped) {
2656                         rmap_count = rmap_add(vcpu, sptep, gfn);
2657                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2658                                 rmap_recycle(vcpu, sptep, gfn);
2659                 }
2660         }
2661
2662         kvm_release_pfn_clean(pfn);
2663
2664         return emulate;
2665 }
2666
2667 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2668                                      bool no_dirty_log)
2669 {
2670         struct kvm_memory_slot *slot;
2671
2672         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2673         if (!slot)
2674                 return KVM_PFN_ERR_FAULT;
2675
2676         return gfn_to_pfn_memslot_atomic(slot, gfn);
2677 }
2678
2679 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2680                                     struct kvm_mmu_page *sp,
2681                                     u64 *start, u64 *end)
2682 {
2683         struct page *pages[PTE_PREFETCH_NUM];
2684         struct kvm_memory_slot *slot;
2685         unsigned access = sp->role.access;
2686         int i, ret;
2687         gfn_t gfn;
2688
2689         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2690         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2691         if (!slot)
2692                 return -1;
2693
2694         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2695         if (ret <= 0)
2696                 return -1;
2697
2698         for (i = 0; i < ret; i++, gfn++, start++)
2699                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2700                              page_to_pfn(pages[i]), true, true);
2701
2702         return 0;
2703 }
2704
2705 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2706                                   struct kvm_mmu_page *sp, u64 *sptep)
2707 {
2708         u64 *spte, *start = NULL;
2709         int i;
2710
2711         WARN_ON(!sp->role.direct);
2712
2713         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2714         spte = sp->spt + i;
2715
2716         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2717                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2718                         if (!start)
2719                                 continue;
2720                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2721                                 break;
2722                         start = NULL;
2723                 } else if (!start)
2724                         start = spte;
2725         }
2726 }
2727
2728 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2729 {
2730         struct kvm_mmu_page *sp;
2731
2732         /*
2733          * Since it's no accessed bit on EPT, it's no way to
2734          * distinguish between actually accessed translations
2735          * and prefetched, so disable pte prefetch if EPT is
2736          * enabled.
2737          */
2738         if (!shadow_accessed_mask)
2739                 return;
2740
2741         sp = page_header(__pa(sptep));
2742         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2743                 return;
2744
2745         __direct_pte_prefetch(vcpu, sp, sptep);
2746 }
2747
2748 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2749                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2750 {
2751         struct kvm_shadow_walk_iterator iterator;
2752         struct kvm_mmu_page *sp;
2753         int emulate = 0;
2754         gfn_t pseudo_gfn;
2755
2756         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2757                 return 0;
2758
2759         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2760                 if (iterator.level == level) {
2761                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2762                                                write, level, gfn, pfn, prefault,
2763                                                map_writable);
2764                         direct_pte_prefetch(vcpu, iterator.sptep);
2765                         ++vcpu->stat.pf_fixed;
2766                         break;
2767                 }
2768
2769                 drop_large_spte(vcpu, iterator.sptep);
2770                 if (!is_shadow_present_pte(*iterator.sptep)) {
2771                         u64 base_addr = iterator.addr;
2772
2773                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2774                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2775                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2776                                               iterator.level - 1, 1, ACC_ALL);
2777
2778                         link_shadow_page(vcpu, iterator.sptep, sp);
2779                 }
2780         }
2781         return emulate;
2782 }
2783
2784 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2785 {
2786         siginfo_t info;
2787
2788         info.si_signo   = SIGBUS;
2789         info.si_errno   = 0;
2790         info.si_code    = BUS_MCEERR_AR;
2791         info.si_addr    = (void __user *)address;
2792         info.si_addr_lsb = PAGE_SHIFT;
2793
2794         send_sig_info(SIGBUS, &info, tsk);
2795 }
2796
2797 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2798 {
2799         /*
2800          * Do not cache the mmio info caused by writing the readonly gfn
2801          * into the spte otherwise read access on readonly gfn also can
2802          * caused mmio page fault and treat it as mmio access.
2803          * Return 1 to tell kvm to emulate it.
2804          */
2805         if (pfn == KVM_PFN_ERR_RO_FAULT)
2806                 return 1;
2807
2808         if (pfn == KVM_PFN_ERR_HWPOISON) {
2809                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2810                 return 0;
2811         }
2812
2813         return -EFAULT;
2814 }
2815
2816 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2817                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2818                                         int *levelp)
2819 {
2820         kvm_pfn_t pfn = *pfnp;
2821         gfn_t gfn = *gfnp;
2822         int level = *levelp;
2823
2824         /*
2825          * Check if it's a transparent hugepage. If this would be an
2826          * hugetlbfs page, level wouldn't be set to
2827          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2828          * here.
2829          */
2830         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2831             level == PT_PAGE_TABLE_LEVEL &&
2832             PageTransCompoundMap(pfn_to_page(pfn)) &&
2833             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2834                 unsigned long mask;
2835                 /*
2836                  * mmu_notifier_retry was successful and we hold the
2837                  * mmu_lock here, so the pmd can't become splitting
2838                  * from under us, and in turn
2839                  * __split_huge_page_refcount() can't run from under
2840                  * us and we can safely transfer the refcount from
2841                  * PG_tail to PG_head as we switch the pfn to tail to
2842                  * head.
2843                  */
2844                 *levelp = level = PT_DIRECTORY_LEVEL;
2845                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2846                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2847                 if (pfn & mask) {
2848                         gfn &= ~mask;
2849                         *gfnp = gfn;
2850                         kvm_release_pfn_clean(pfn);
2851                         pfn &= ~mask;
2852                         kvm_get_pfn(pfn);
2853                         *pfnp = pfn;
2854                 }
2855         }
2856 }
2857
2858 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2859                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2860 {
2861         /* The pfn is invalid, report the error! */
2862         if (unlikely(is_error_pfn(pfn))) {
2863                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2864                 return true;
2865         }
2866
2867         if (unlikely(is_noslot_pfn(pfn)))
2868                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2869
2870         return false;
2871 }
2872
2873 static bool page_fault_can_be_fast(u32 error_code)
2874 {
2875         /*
2876          * Do not fix the mmio spte with invalid generation number which
2877          * need to be updated by slow page fault path.
2878          */
2879         if (unlikely(error_code & PFERR_RSVD_MASK))
2880                 return false;
2881
2882         /*
2883          * #PF can be fast only if the shadow page table is present and it
2884          * is caused by write-protect, that means we just need change the
2885          * W bit of the spte which can be done out of mmu-lock.
2886          */
2887         if (!(error_code & PFERR_PRESENT_MASK) ||
2888               !(error_code & PFERR_WRITE_MASK))
2889                 return false;
2890
2891         return true;
2892 }
2893
2894 static bool
2895 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2896                         u64 *sptep, u64 spte)
2897 {
2898         gfn_t gfn;
2899
2900         WARN_ON(!sp->role.direct);
2901
2902         /*
2903          * The gfn of direct spte is stable since it is calculated
2904          * by sp->gfn.
2905          */
2906         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2907
2908         /*
2909          * Theoretically we could also set dirty bit (and flush TLB) here in
2910          * order to eliminate unnecessary PML logging. See comments in
2911          * set_spte. But fast_page_fault is very unlikely to happen with PML
2912          * enabled, so we do not do this. This might result in the same GPA
2913          * to be logged in PML buffer again when the write really happens, and
2914          * eventually to be called by mark_page_dirty twice. But it's also no
2915          * harm. This also avoids the TLB flush needed after setting dirty bit
2916          * so non-PML cases won't be impacted.
2917          *
2918          * Compare with set_spte where instead shadow_dirty_mask is set.
2919          */
2920         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2921                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2922
2923         return true;
2924 }
2925
2926 /*
2927  * Return value:
2928  * - true: let the vcpu to access on the same address again.
2929  * - false: let the real page fault path to fix it.
2930  */
2931 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2932                             u32 error_code)
2933 {
2934         struct kvm_shadow_walk_iterator iterator;
2935         struct kvm_mmu_page *sp;
2936         bool ret = false;
2937         u64 spte = 0ull;
2938
2939         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2940                 return false;
2941
2942         if (!page_fault_can_be_fast(error_code))
2943                 return false;
2944
2945         walk_shadow_page_lockless_begin(vcpu);
2946         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2947                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2948                         break;
2949
2950         /*
2951          * If the mapping has been changed, let the vcpu fault on the
2952          * same address again.
2953          */
2954         if (!is_shadow_present_pte(spte)) {
2955                 ret = true;
2956                 goto exit;
2957         }
2958
2959         sp = page_header(__pa(iterator.sptep));
2960         if (!is_last_spte(spte, sp->role.level))
2961                 goto exit;
2962
2963         /*
2964          * Check if it is a spurious fault caused by TLB lazily flushed.
2965          *
2966          * Need not check the access of upper level table entries since
2967          * they are always ACC_ALL.
2968          */
2969          if (is_writable_pte(spte)) {
2970                 ret = true;
2971                 goto exit;
2972         }
2973
2974         /*
2975          * Currently, to simplify the code, only the spte write-protected
2976          * by dirty-log can be fast fixed.
2977          */
2978         if (!spte_is_locklessly_modifiable(spte))
2979                 goto exit;
2980
2981         /*
2982          * Do not fix write-permission on the large spte since we only dirty
2983          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2984          * that means other pages are missed if its slot is dirty-logged.
2985          *
2986          * Instead, we let the slow page fault path create a normal spte to
2987          * fix the access.
2988          *
2989          * See the comments in kvm_arch_commit_memory_region().
2990          */
2991         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2992                 goto exit;
2993
2994         /*
2995          * Currently, fast page fault only works for direct mapping since
2996          * the gfn is not stable for indirect shadow page.
2997          * See Documentation/virtual/kvm/locking.txt to get more detail.
2998          */
2999         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
3000 exit:
3001         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3002                               spte, ret);
3003         walk_shadow_page_lockless_end(vcpu);
3004
3005         return ret;
3006 }
3007
3008 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3009                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3010 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3011
3012 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3013                          gfn_t gfn, bool prefault)
3014 {
3015         int r;
3016         int level;
3017         bool force_pt_level = false;
3018         kvm_pfn_t pfn;
3019         unsigned long mmu_seq;
3020         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3021
3022         level = mapping_level(vcpu, gfn, &force_pt_level);
3023         if (likely(!force_pt_level)) {
3024                 /*
3025                  * This path builds a PAE pagetable - so we can map
3026                  * 2mb pages at maximum. Therefore check if the level
3027                  * is larger than that.
3028                  */
3029                 if (level > PT_DIRECTORY_LEVEL)
3030                         level = PT_DIRECTORY_LEVEL;
3031
3032                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3033         }
3034
3035         if (fast_page_fault(vcpu, v, level, error_code))
3036                 return 0;
3037
3038         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3039         smp_rmb();
3040
3041         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3042                 return 0;
3043
3044         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3045                 return r;
3046
3047         spin_lock(&vcpu->kvm->mmu_lock);
3048         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3049                 goto out_unlock;
3050         make_mmu_pages_available(vcpu);
3051         if (likely(!force_pt_level))
3052                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3053         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3054         spin_unlock(&vcpu->kvm->mmu_lock);
3055
3056         return r;
3057
3058 out_unlock:
3059         spin_unlock(&vcpu->kvm->mmu_lock);
3060         kvm_release_pfn_clean(pfn);
3061         return 0;
3062 }
3063
3064
3065 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3066 {
3067         int i;
3068         struct kvm_mmu_page *sp;
3069         LIST_HEAD(invalid_list);
3070
3071         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3072                 return;
3073
3074         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3075             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3076              vcpu->arch.mmu.direct_map)) {
3077                 hpa_t root = vcpu->arch.mmu.root_hpa;
3078
3079                 spin_lock(&vcpu->kvm->mmu_lock);
3080                 sp = page_header(root);
3081                 --sp->root_count;
3082                 if (!sp->root_count && sp->role.invalid) {
3083                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3084                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3085                 }
3086                 spin_unlock(&vcpu->kvm->mmu_lock);
3087                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3088                 return;
3089         }
3090
3091         spin_lock(&vcpu->kvm->mmu_lock);
3092         for (i = 0; i < 4; ++i) {
3093                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3094
3095                 if (root) {
3096                         root &= PT64_BASE_ADDR_MASK;
3097                         sp = page_header(root);
3098                         --sp->root_count;
3099                         if (!sp->root_count && sp->role.invalid)
3100                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3101                                                          &invalid_list);
3102                 }
3103                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3104         }
3105         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3106         spin_unlock(&vcpu->kvm->mmu_lock);
3107         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3108 }
3109
3110 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3111 {
3112         int ret = 0;
3113
3114         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3115                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3116                 ret = 1;
3117         }
3118
3119         return ret;
3120 }
3121
3122 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3123 {
3124         struct kvm_mmu_page *sp;
3125         unsigned i;
3126
3127         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3128                 spin_lock(&vcpu->kvm->mmu_lock);
3129                 make_mmu_pages_available(vcpu);
3130                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3131                 ++sp->root_count;
3132                 spin_unlock(&vcpu->kvm->mmu_lock);
3133                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3134         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3135                 for (i = 0; i < 4; ++i) {
3136                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3137
3138                         MMU_WARN_ON(VALID_PAGE(root));
3139                         spin_lock(&vcpu->kvm->mmu_lock);
3140                         make_mmu_pages_available(vcpu);
3141                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3142                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3143                         root = __pa(sp->spt);
3144                         ++sp->root_count;
3145                         spin_unlock(&vcpu->kvm->mmu_lock);
3146                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3147                 }
3148                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3149         } else
3150                 BUG();
3151
3152         return 0;
3153 }
3154
3155 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3156 {
3157         struct kvm_mmu_page *sp;
3158         u64 pdptr, pm_mask;
3159         gfn_t root_gfn;
3160         int i;
3161
3162         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3163
3164         if (mmu_check_root(vcpu, root_gfn))
3165                 return 1;
3166
3167         /*
3168          * Do we shadow a long mode page table? If so we need to
3169          * write-protect the guests page table root.
3170          */
3171         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3172                 hpa_t root = vcpu->arch.mmu.root_hpa;
3173
3174                 MMU_WARN_ON(VALID_PAGE(root));
3175
3176                 spin_lock(&vcpu->kvm->mmu_lock);
3177                 make_mmu_pages_available(vcpu);
3178                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3179                                       0, ACC_ALL);
3180                 root = __pa(sp->spt);
3181                 ++sp->root_count;
3182                 spin_unlock(&vcpu->kvm->mmu_lock);
3183                 vcpu->arch.mmu.root_hpa = root;
3184                 return 0;
3185         }
3186
3187         /*
3188          * We shadow a 32 bit page table. This may be a legacy 2-level
3189          * or a PAE 3-level page table. In either case we need to be aware that
3190          * the shadow page table may be a PAE or a long mode page table.
3191          */
3192         pm_mask = PT_PRESENT_MASK;
3193         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3194                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3195
3196         for (i = 0; i < 4; ++i) {
3197                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3198
3199                 MMU_WARN_ON(VALID_PAGE(root));
3200                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3201                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3202                         if (!(pdptr & PT_PRESENT_MASK)) {
3203                                 vcpu->arch.mmu.pae_root[i] = 0;
3204                                 continue;
3205                         }
3206                         root_gfn = pdptr >> PAGE_SHIFT;
3207                         if (mmu_check_root(vcpu, root_gfn))
3208                                 return 1;
3209                 }
3210                 spin_lock(&vcpu->kvm->mmu_lock);
3211                 make_mmu_pages_available(vcpu);
3212                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3213                                       0, ACC_ALL);
3214                 root = __pa(sp->spt);
3215                 ++sp->root_count;
3216                 spin_unlock(&vcpu->kvm->mmu_lock);
3217
3218                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3219         }
3220         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3221
3222         /*
3223          * If we shadow a 32 bit page table with a long mode page
3224          * table we enter this path.
3225          */
3226         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3227                 if (vcpu->arch.mmu.lm_root == NULL) {
3228                         /*
3229                          * The additional page necessary for this is only
3230                          * allocated on demand.
3231                          */
3232
3233                         u64 *lm_root;
3234
3235                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3236                         if (lm_root == NULL)
3237                                 return 1;
3238
3239                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3240
3241                         vcpu->arch.mmu.lm_root = lm_root;
3242                 }
3243
3244                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3245         }
3246
3247         return 0;
3248 }
3249
3250 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3251 {
3252         if (vcpu->arch.mmu.direct_map)
3253                 return mmu_alloc_direct_roots(vcpu);
3254         else
3255                 return mmu_alloc_shadow_roots(vcpu);
3256 }
3257
3258 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3259 {
3260         int i;
3261         struct kvm_mmu_page *sp;
3262
3263         if (vcpu->arch.mmu.direct_map)
3264                 return;
3265
3266         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3267                 return;
3268
3269         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3270         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3271         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3272                 hpa_t root = vcpu->arch.mmu.root_hpa;
3273                 sp = page_header(root);
3274                 mmu_sync_children(vcpu, sp);
3275                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3276                 return;
3277         }
3278         for (i = 0; i < 4; ++i) {
3279                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3280
3281                 if (root && VALID_PAGE(root)) {
3282                         root &= PT64_BASE_ADDR_MASK;
3283                         sp = page_header(root);
3284                         mmu_sync_children(vcpu, sp);
3285                 }
3286         }
3287         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3288 }
3289
3290 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3291 {
3292         spin_lock(&vcpu->kvm->mmu_lock);
3293         mmu_sync_roots(vcpu);
3294         spin_unlock(&vcpu->kvm->mmu_lock);
3295 }
3296 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3297
3298 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3299                                   u32 access, struct x86_exception *exception)
3300 {
3301         if (exception)
3302                 exception->error_code = 0;
3303         return vaddr;
3304 }
3305
3306 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3307                                          u32 access,
3308                                          struct x86_exception *exception)
3309 {
3310         if (exception)
3311                 exception->error_code = 0;
3312         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3313 }
3314
3315 static bool
3316 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3317 {
3318         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3319
3320         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3321                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3322 }
3323
3324 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3325 {
3326         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3327 }
3328
3329 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3330 {
3331         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3332 }
3333
3334 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3335 {
3336         if (direct)
3337                 return vcpu_match_mmio_gpa(vcpu, addr);
3338
3339         return vcpu_match_mmio_gva(vcpu, addr);
3340 }
3341
3342 /* return true if reserved bit is detected on spte. */
3343 static bool
3344 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3345 {
3346         struct kvm_shadow_walk_iterator iterator;
3347         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3348         int root, leaf;
3349         bool reserved = false;
3350
3351         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3352                 goto exit;
3353
3354         walk_shadow_page_lockless_begin(vcpu);
3355
3356         for (shadow_walk_init(&iterator, vcpu, addr),
3357                  leaf = root = iterator.level;
3358              shadow_walk_okay(&iterator);
3359              __shadow_walk_next(&iterator, spte)) {
3360                 spte = mmu_spte_get_lockless(iterator.sptep);
3361
3362                 sptes[leaf - 1] = spte;
3363                 leaf--;
3364
3365                 if (!is_shadow_present_pte(spte))
3366                         break;
3367
3368                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3369                                                     iterator.level);
3370         }
3371
3372         walk_shadow_page_lockless_end(vcpu);
3373
3374         if (reserved) {
3375                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3376                        __func__, addr);
3377                 while (root > leaf) {
3378                         pr_err("------ spte 0x%llx level %d.\n",
3379                                sptes[root - 1], root);
3380                         root--;
3381                 }
3382         }
3383 exit:
3384         *sptep = spte;
3385         return reserved;
3386 }
3387
3388 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3389 {
3390         u64 spte;
3391         bool reserved;
3392
3393         if (mmio_info_in_cache(vcpu, addr, direct))
3394                 return RET_MMIO_PF_EMULATE;
3395
3396         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3397         if (WARN_ON(reserved))
3398                 return RET_MMIO_PF_BUG;
3399
3400         if (is_mmio_spte(spte)) {
3401                 gfn_t gfn = get_mmio_spte_gfn(spte);
3402                 unsigned access = get_mmio_spte_access(spte);
3403
3404                 if (!check_mmio_spte(vcpu, spte))
3405                         return RET_MMIO_PF_INVALID;
3406
3407                 if (direct)
3408                         addr = 0;
3409
3410                 trace_handle_mmio_page_fault(addr, gfn, access);
3411                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3412                 return RET_MMIO_PF_EMULATE;
3413         }
3414
3415         /*
3416          * If the page table is zapped by other cpus, let CPU fault again on
3417          * the address.
3418          */
3419         return RET_MMIO_PF_RETRY;
3420 }
3421 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3422
3423 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3424                                          u32 error_code, gfn_t gfn)
3425 {
3426         if (unlikely(error_code & PFERR_RSVD_MASK))
3427                 return false;
3428
3429         if (!(error_code & PFERR_PRESENT_MASK) ||
3430               !(error_code & PFERR_WRITE_MASK))
3431                 return false;
3432
3433         /*
3434          * guest is writing the page which is write tracked which can
3435          * not be fixed by page fault handler.
3436          */
3437         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3438                 return true;
3439
3440         return false;
3441 }
3442
3443 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3444 {
3445         struct kvm_shadow_walk_iterator iterator;
3446         u64 spte;
3447
3448         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3449                 return;
3450
3451         walk_shadow_page_lockless_begin(vcpu);
3452         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3453                 clear_sp_write_flooding_count(iterator.sptep);
3454                 if (!is_shadow_present_pte(spte))
3455                         break;
3456         }
3457         walk_shadow_page_lockless_end(vcpu);
3458 }
3459
3460 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3461                                 u32 error_code, bool prefault)
3462 {
3463         gfn_t gfn = gva >> PAGE_SHIFT;
3464         int r;
3465
3466         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3467
3468         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3469                 return 1;
3470
3471         r = mmu_topup_memory_caches(vcpu);
3472         if (r)
3473                 return r;
3474
3475         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3476
3477
3478         return nonpaging_map(vcpu, gva & PAGE_MASK,
3479                              error_code, gfn, prefault);
3480 }
3481
3482 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3483 {
3484         struct kvm_arch_async_pf arch;
3485
3486         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3487         arch.gfn = gfn;
3488         arch.direct_map = vcpu->arch.mmu.direct_map;
3489         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3490
3491         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3492 }
3493
3494 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3495 {
3496         if (unlikely(!lapic_in_kernel(vcpu) ||
3497                      kvm_event_needs_reinjection(vcpu)))
3498                 return false;
3499
3500         return kvm_x86_ops->interrupt_allowed(vcpu);
3501 }
3502
3503 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3504                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3505 {
3506         struct kvm_memory_slot *slot;
3507         bool async;
3508
3509         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3510         async = false;
3511         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3512         if (!async)
3513                 return false; /* *pfn has correct page already */
3514
3515         if (!prefault && can_do_async_pf(vcpu)) {
3516                 trace_kvm_try_async_get_page(gva, gfn);
3517                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3518                         trace_kvm_async_pf_doublefault(gva, gfn);
3519                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3520                         return true;
3521                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3522                         return true;
3523         }
3524
3525         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3526         return false;
3527 }
3528
3529 static bool
3530 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3531 {
3532         int page_num = KVM_PAGES_PER_HPAGE(level);
3533
3534         gfn &= ~(page_num - 1);
3535
3536         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3537 }
3538
3539 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3540                           bool prefault)
3541 {
3542         kvm_pfn_t pfn;
3543         int r;
3544         int level;
3545         bool force_pt_level;
3546         gfn_t gfn = gpa >> PAGE_SHIFT;
3547         unsigned long mmu_seq;
3548         int write = error_code & PFERR_WRITE_MASK;
3549         bool map_writable;
3550
3551         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3552
3553         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3554                 return 1;
3555
3556         r = mmu_topup_memory_caches(vcpu);
3557         if (r)
3558                 return r;
3559
3560         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3561                                                            PT_DIRECTORY_LEVEL);
3562         level = mapping_level(vcpu, gfn, &force_pt_level);
3563         if (likely(!force_pt_level)) {
3564                 if (level > PT_DIRECTORY_LEVEL &&
3565                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3566                         level = PT_DIRECTORY_LEVEL;
3567                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3568         }
3569
3570         if (fast_page_fault(vcpu, gpa, level, error_code))
3571                 return 0;
3572
3573         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3574         smp_rmb();
3575
3576         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3577                 return 0;
3578
3579         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3580                 return r;
3581
3582         spin_lock(&vcpu->kvm->mmu_lock);
3583         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3584                 goto out_unlock;
3585         make_mmu_pages_available(vcpu);
3586         if (likely(!force_pt_level))
3587                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3588         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3589         spin_unlock(&vcpu->kvm->mmu_lock);
3590
3591         return r;
3592
3593 out_unlock:
3594         spin_unlock(&vcpu->kvm->mmu_lock);
3595         kvm_release_pfn_clean(pfn);
3596         return 0;
3597 }
3598
3599 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3600                                    struct kvm_mmu *context)
3601 {
3602         context->page_fault = nonpaging_page_fault;
3603         context->gva_to_gpa = nonpaging_gva_to_gpa;
3604         context->sync_page = nonpaging_sync_page;
3605         context->invlpg = nonpaging_invlpg;
3606         context->update_pte = nonpaging_update_pte;
3607         context->root_level = 0;
3608         context->shadow_root_level = PT32E_ROOT_LEVEL;
3609         context->root_hpa = INVALID_PAGE;
3610         context->direct_map = true;
3611         context->nx = false;
3612 }
3613
3614 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3615 {
3616         mmu_free_roots(vcpu);
3617 }
3618
3619 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3620 {
3621         return kvm_read_cr3(vcpu);
3622 }
3623
3624 static void inject_page_fault(struct kvm_vcpu *vcpu,
3625                               struct x86_exception *fault)
3626 {
3627         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3628 }
3629
3630 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3631                            unsigned access, int *nr_present)
3632 {
3633         if (unlikely(is_mmio_spte(*sptep))) {
3634                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3635                         mmu_spte_clear_no_track(sptep);
3636                         return true;
3637                 }
3638
3639                 (*nr_present)++;
3640                 mark_mmio_spte(vcpu, sptep, gfn, access);
3641                 return true;
3642         }
3643
3644         return false;
3645 }
3646
3647 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3648                                 unsigned level, unsigned gpte)
3649 {
3650         /*
3651          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3652          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3653          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3654          */
3655         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3656
3657         /*
3658          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3659          * If it is clear, there are no large pages at this level, so clear
3660          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3661          */
3662         gpte &= level - mmu->last_nonleaf_level;
3663
3664         return gpte & PT_PAGE_SIZE_MASK;
3665 }
3666
3667 #define PTTYPE_EPT 18 /* arbitrary */
3668 #define PTTYPE PTTYPE_EPT
3669 #include "paging_tmpl.h"
3670 #undef PTTYPE
3671
3672 #define PTTYPE 64
3673 #include "paging_tmpl.h"
3674 #undef PTTYPE
3675
3676 #define PTTYPE 32
3677 #include "paging_tmpl.h"
3678 #undef PTTYPE
3679
3680 static void
3681 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3682                         struct rsvd_bits_validate *rsvd_check,
3683                         int maxphyaddr, int level, bool nx, bool gbpages,
3684                         bool pse, bool amd)
3685 {
3686         u64 exb_bit_rsvd = 0;
3687         u64 gbpages_bit_rsvd = 0;
3688         u64 nonleaf_bit8_rsvd = 0;
3689
3690         rsvd_check->bad_mt_xwr = 0;
3691
3692         if (!nx)
3693                 exb_bit_rsvd = rsvd_bits(63, 63);
3694         if (!gbpages)
3695                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3696
3697         /*
3698          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3699          * leaf entries) on AMD CPUs only.
3700          */
3701         if (amd)
3702                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3703
3704         switch (level) {
3705         case PT32_ROOT_LEVEL:
3706                 /* no rsvd bits for 2 level 4K page table entries */
3707                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3708                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3709                 rsvd_check->rsvd_bits_mask[1][0] =
3710                         rsvd_check->rsvd_bits_mask[0][0];
3711
3712                 if (!pse) {
3713                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3714                         break;
3715                 }
3716
3717                 if (is_cpuid_PSE36())
3718                         /* 36bits PSE 4MB page */
3719                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3720                 else
3721                         /* 32 bits PSE 4MB page */
3722                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3723                 break;
3724         case PT32E_ROOT_LEVEL:
3725                 rsvd_check->rsvd_bits_mask[0][2] =
3726                         rsvd_bits(maxphyaddr, 63) |
3727                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3728                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3729                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3730                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3731                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3732                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3733                         rsvd_bits(maxphyaddr, 62) |
3734                         rsvd_bits(13, 20);              /* large page */
3735                 rsvd_check->rsvd_bits_mask[1][0] =
3736                         rsvd_check->rsvd_bits_mask[0][0];
3737                 break;
3738         case PT64_ROOT_LEVEL:
3739                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3740                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3741                         rsvd_bits(maxphyaddr, 51);
3742                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3743                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3744                         rsvd_bits(maxphyaddr, 51);
3745                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3746                         rsvd_bits(maxphyaddr, 51);
3747                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3748                         rsvd_bits(maxphyaddr, 51);
3749                 rsvd_check->rsvd_bits_mask[1][3] =
3750                         rsvd_check->rsvd_bits_mask[0][3];
3751                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3752                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3753                         rsvd_bits(13, 29);
3754                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3755                         rsvd_bits(maxphyaddr, 51) |
3756                         rsvd_bits(13, 20);              /* large page */
3757                 rsvd_check->rsvd_bits_mask[1][0] =
3758                         rsvd_check->rsvd_bits_mask[0][0];
3759                 break;
3760         }
3761 }
3762
3763 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3764                                   struct kvm_mmu *context)
3765 {
3766         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3767                                 cpuid_maxphyaddr(vcpu), context->root_level,
3768                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3769                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3770 }
3771
3772 static void
3773 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3774                             int maxphyaddr, bool execonly)
3775 {
3776         u64 bad_mt_xwr;
3777
3778         rsvd_check->rsvd_bits_mask[0][3] =
3779                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3780         rsvd_check->rsvd_bits_mask[0][2] =
3781                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3782         rsvd_check->rsvd_bits_mask[0][1] =
3783                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3784         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3785
3786         /* large page */
3787         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3788         rsvd_check->rsvd_bits_mask[1][2] =
3789                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3790         rsvd_check->rsvd_bits_mask[1][1] =
3791                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3792         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3793
3794         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3795         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3796         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3797         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3798         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3799         if (!execonly) {
3800                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3801                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3802         }
3803         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3804 }
3805
3806 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3807                 struct kvm_mmu *context, bool execonly)
3808 {
3809         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3810                                     cpuid_maxphyaddr(vcpu), execonly);
3811 }
3812
3813 /*
3814  * the page table on host is the shadow page table for the page
3815  * table in guest or amd nested guest, its mmu features completely
3816  * follow the features in guest.
3817  */
3818 void
3819 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3820 {
3821         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3822
3823         /*
3824          * Passing "true" to the last argument is okay; it adds a check
3825          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3826          */
3827         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3828                                 boot_cpu_data.x86_phys_bits,
3829                                 context->shadow_root_level, uses_nx,
3830                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3831                                 true);
3832 }
3833 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3834
3835 static inline bool boot_cpu_is_amd(void)
3836 {
3837         WARN_ON_ONCE(!tdp_enabled);
3838         return shadow_x_mask == 0;
3839 }
3840
3841 /*
3842  * the direct page table on host, use as much mmu features as
3843  * possible, however, kvm currently does not do execution-protection.
3844  */
3845 static void
3846 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3847                                 struct kvm_mmu *context)
3848 {
3849         if (boot_cpu_is_amd())
3850                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3851                                         boot_cpu_data.x86_phys_bits,
3852                                         context->shadow_root_level, false,
3853                                         boot_cpu_has(X86_FEATURE_GBPAGES),
3854                                         true, true);
3855         else
3856                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3857                                             boot_cpu_data.x86_phys_bits,
3858                                             false);
3859
3860 }
3861
3862 /*
3863  * as the comments in reset_shadow_zero_bits_mask() except it
3864  * is the shadow page table for intel nested guest.
3865  */
3866 static void
3867 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3868                                 struct kvm_mmu *context, bool execonly)
3869 {
3870         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3871                                     boot_cpu_data.x86_phys_bits, execonly);
3872 }
3873
3874 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3875                                       struct kvm_mmu *mmu, bool ept)
3876 {
3877         unsigned bit, byte, pfec;
3878         u8 map;
3879         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3880
3881         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3882         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3883         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3884                 pfec = byte << 1;
3885                 map = 0;
3886                 wf = pfec & PFERR_WRITE_MASK;
3887                 uf = pfec & PFERR_USER_MASK;
3888                 ff = pfec & PFERR_FETCH_MASK;
3889                 /*
3890                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3891                  * subject to SMAP restrictions, and cleared otherwise. The
3892                  * bit is only meaningful if the SMAP bit is set in CR4.
3893                  */
3894                 smapf = !(pfec & PFERR_RSVD_MASK);
3895                 for (bit = 0; bit < 8; ++bit) {
3896                         x = bit & ACC_EXEC_MASK;
3897                         w = bit & ACC_WRITE_MASK;
3898                         u = bit & ACC_USER_MASK;
3899
3900                         if (!ept) {
3901                                 /* Not really needed: !nx will cause pte.nx to fault */
3902                                 x |= !mmu->nx;
3903                                 /* Allow supervisor writes if !cr0.wp */
3904                                 w |= !is_write_protection(vcpu) && !uf;
3905                                 /* Disallow supervisor fetches of user code if cr4.smep */
3906                                 x &= !(cr4_smep && u && !uf);
3907
3908                                 /*
3909                                  * SMAP:kernel-mode data accesses from user-mode
3910                                  * mappings should fault. A fault is considered
3911                                  * as a SMAP violation if all of the following
3912                                  * conditions are ture:
3913                                  *   - X86_CR4_SMAP is set in CR4
3914                                  *   - An user page is accessed
3915                                  *   - Page fault in kernel mode
3916                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3917                                  *
3918                                  *   Here, we cover the first three conditions.
3919                                  *   The fourth is computed dynamically in
3920                                  *   permission_fault() and is in smapf.
3921                                  *
3922                                  *   Also, SMAP does not affect instruction
3923                                  *   fetches, add the !ff check here to make it
3924                                  *   clearer.
3925                                  */
3926                                 smap = cr4_smap && u && !uf && !ff;
3927                         }
3928
3929                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3930                                 (smapf && smap);
3931                         map |= fault << bit;
3932                 }
3933                 mmu->permissions[byte] = map;
3934         }
3935 }
3936
3937 /*
3938 * PKU is an additional mechanism by which the paging controls access to
3939 * user-mode addresses based on the value in the PKRU register.  Protection
3940 * key violations are reported through a bit in the page fault error code.
3941 * Unlike other bits of the error code, the PK bit is not known at the
3942 * call site of e.g. gva_to_gpa; it must be computed directly in
3943 * permission_fault based on two bits of PKRU, on some machine state (CR4,
3944 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
3945 *
3946 * In particular the following conditions come from the error code, the
3947 * page tables and the machine state:
3948 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3949 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3950 * - PK is always zero if U=0 in the page tables
3951 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3952 *
3953 * The PKRU bitmask caches the result of these four conditions.  The error
3954 * code (minus the P bit) and the page table's U bit form an index into the
3955 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
3956 * with the two bits of the PKRU register corresponding to the protection key.
3957 * For the first three conditions above the bits will be 00, thus masking
3958 * away both AD and WD.  For all reads or if the last condition holds, WD
3959 * only will be masked away.
3960 */
3961 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3962                                 bool ept)
3963 {
3964         unsigned bit;
3965         bool wp;
3966
3967         if (ept) {
3968                 mmu->pkru_mask = 0;
3969                 return;
3970         }
3971
3972         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3973         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3974                 mmu->pkru_mask = 0;
3975                 return;
3976         }
3977
3978         wp = is_write_protection(vcpu);
3979
3980         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3981                 unsigned pfec, pkey_bits;
3982                 bool check_pkey, check_write, ff, uf, wf, pte_user;
3983
3984                 pfec = bit << 1;
3985                 ff = pfec & PFERR_FETCH_MASK;
3986                 uf = pfec & PFERR_USER_MASK;
3987                 wf = pfec & PFERR_WRITE_MASK;
3988
3989                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3990                 pte_user = pfec & PFERR_RSVD_MASK;
3991
3992                 /*
3993                  * Only need to check the access which is not an
3994                  * instruction fetch and is to a user page.
3995                  */
3996                 check_pkey = (!ff && pte_user);
3997                 /*
3998                  * write access is controlled by PKRU if it is a
3999                  * user access or CR0.WP = 1.
4000                  */
4001                 check_write = check_pkey && wf && (uf || wp);
4002
4003                 /* PKRU.AD stops both read and write access. */
4004                 pkey_bits = !!check_pkey;
4005                 /* PKRU.WD stops write access. */
4006                 pkey_bits |= (!!check_write) << 1;
4007
4008                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4009         }
4010 }
4011
4012 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4013 {
4014         unsigned root_level = mmu->root_level;
4015
4016         mmu->last_nonleaf_level = root_level;
4017         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4018                 mmu->last_nonleaf_level++;
4019 }
4020
4021 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4022                                          struct kvm_mmu *context,
4023                                          int level)
4024 {
4025         context->nx = is_nx(vcpu);
4026         context->root_level = level;
4027
4028         reset_rsvds_bits_mask(vcpu, context);
4029         update_permission_bitmask(vcpu, context, false);
4030         update_pkru_bitmask(vcpu, context, false);
4031         update_last_nonleaf_level(vcpu, context);
4032
4033         MMU_WARN_ON(!is_pae(vcpu));
4034         context->page_fault = paging64_page_fault;
4035         context->gva_to_gpa = paging64_gva_to_gpa;
4036         context->sync_page = paging64_sync_page;
4037         context->invlpg = paging64_invlpg;
4038         context->update_pte = paging64_update_pte;
4039         context->shadow_root_level = level;
4040         context->root_hpa = INVALID_PAGE;
4041         context->direct_map = false;
4042 }
4043
4044 static void paging64_init_context(struct kvm_vcpu *vcpu,
4045                                   struct kvm_mmu *context)
4046 {
4047         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4048 }
4049
4050 static void paging32_init_context(struct kvm_vcpu *vcpu,
4051                                   struct kvm_mmu *context)
4052 {
4053         context->nx = false;
4054         context->root_level = PT32_ROOT_LEVEL;
4055
4056         reset_rsvds_bits_mask(vcpu, context);
4057         update_permission_bitmask(vcpu, context, false);
4058         update_pkru_bitmask(vcpu, context, false);
4059         update_last_nonleaf_level(vcpu, context);
4060
4061         context->page_fault = paging32_page_fault;
4062         context->gva_to_gpa = paging32_gva_to_gpa;
4063         context->sync_page = paging32_sync_page;
4064         context->invlpg = paging32_invlpg;
4065         context->update_pte = paging32_update_pte;
4066         context->shadow_root_level = PT32E_ROOT_LEVEL;
4067         context->root_hpa = INVALID_PAGE;
4068         context->direct_map = false;
4069 }
4070
4071 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4072                                    struct kvm_mmu *context)
4073 {
4074         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4075 }
4076
4077 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4078 {
4079         struct kvm_mmu *context = &vcpu->arch.mmu;
4080
4081         context->base_role.word = 0;
4082         context->base_role.smm = is_smm(vcpu);
4083         context->page_fault = tdp_page_fault;
4084         context->sync_page = nonpaging_sync_page;
4085         context->invlpg = nonpaging_invlpg;
4086         context->update_pte = nonpaging_update_pte;
4087         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4088         context->root_hpa = INVALID_PAGE;
4089         context->direct_map = true;
4090         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4091         context->get_cr3 = get_cr3;
4092         context->get_pdptr = kvm_pdptr_read;
4093         context->inject_page_fault = kvm_inject_page_fault;
4094
4095         if (!is_paging(vcpu)) {
4096                 context->nx = false;
4097                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4098                 context->root_level = 0;
4099         } else if (is_long_mode(vcpu)) {
4100                 context->nx = is_nx(vcpu);
4101                 context->root_level = PT64_ROOT_LEVEL;
4102                 reset_rsvds_bits_mask(vcpu, context);
4103                 context->gva_to_gpa = paging64_gva_to_gpa;
4104         } else if (is_pae(vcpu)) {
4105                 context->nx = is_nx(vcpu);
4106                 context->root_level = PT32E_ROOT_LEVEL;
4107                 reset_rsvds_bits_mask(vcpu, context);
4108                 context->gva_to_gpa = paging64_gva_to_gpa;
4109         } else {
4110                 context->nx = false;
4111                 context->root_level = PT32_ROOT_LEVEL;
4112                 reset_rsvds_bits_mask(vcpu, context);
4113                 context->gva_to_gpa = paging32_gva_to_gpa;
4114         }
4115
4116         update_permission_bitmask(vcpu, context, false);
4117         update_pkru_bitmask(vcpu, context, false);
4118         update_last_nonleaf_level(vcpu, context);
4119         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4120 }
4121
4122 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4123 {
4124         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4125         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4126         struct kvm_mmu *context = &vcpu->arch.mmu;
4127
4128         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4129
4130         if (!is_paging(vcpu))
4131                 nonpaging_init_context(vcpu, context);
4132         else if (is_long_mode(vcpu))
4133                 paging64_init_context(vcpu, context);
4134         else if (is_pae(vcpu))
4135                 paging32E_init_context(vcpu, context);
4136         else
4137                 paging32_init_context(vcpu, context);
4138
4139         context->base_role.nxe = is_nx(vcpu);
4140         context->base_role.cr4_pae = !!is_pae(vcpu);
4141         context->base_role.cr0_wp  = is_write_protection(vcpu);
4142         context->base_role.smep_andnot_wp
4143                 = smep && !is_write_protection(vcpu);
4144         context->base_role.smap_andnot_wp
4145                 = smap && !is_write_protection(vcpu);
4146         context->base_role.smm = is_smm(vcpu);
4147         reset_shadow_zero_bits_mask(vcpu, context);
4148 }
4149 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4150
4151 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4152 {
4153         struct kvm_mmu *context = &vcpu->arch.mmu;
4154
4155         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4156
4157         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4158
4159         context->nx = true;
4160         context->page_fault = ept_page_fault;
4161         context->gva_to_gpa = ept_gva_to_gpa;
4162         context->sync_page = ept_sync_page;
4163         context->invlpg = ept_invlpg;
4164         context->update_pte = ept_update_pte;
4165         context->root_level = context->shadow_root_level;
4166         context->root_hpa = INVALID_PAGE;
4167         context->direct_map = false;
4168
4169         update_permission_bitmask(vcpu, context, true);
4170         update_pkru_bitmask(vcpu, context, true);
4171         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4172         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4173 }
4174 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4175
4176 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4177 {
4178         struct kvm_mmu *context = &vcpu->arch.mmu;
4179
4180         kvm_init_shadow_mmu(vcpu);
4181         context->set_cr3           = kvm_x86_ops->set_cr3;
4182         context->get_cr3           = get_cr3;
4183         context->get_pdptr         = kvm_pdptr_read;
4184         context->inject_page_fault = kvm_inject_page_fault;
4185 }
4186
4187 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4188 {
4189         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4190
4191         g_context->get_cr3           = get_cr3;
4192         g_context->get_pdptr         = kvm_pdptr_read;
4193         g_context->inject_page_fault = kvm_inject_page_fault;
4194
4195         /*
4196          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4197          * L1's nested page tables (e.g. EPT12). The nested translation
4198          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4199          * L2's page tables as the first level of translation and L1's
4200          * nested page tables as the second level of translation. Basically
4201          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4202          */
4203         if (!is_paging(vcpu)) {
4204                 g_context->nx = false;
4205                 g_context->root_level = 0;
4206                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4207         } else if (is_long_mode(vcpu)) {
4208                 g_context->nx = is_nx(vcpu);
4209                 g_context->root_level = PT64_ROOT_LEVEL;
4210                 reset_rsvds_bits_mask(vcpu, g_context);
4211                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4212         } else if (is_pae(vcpu)) {
4213                 g_context->nx = is_nx(vcpu);
4214                 g_context->root_level = PT32E_ROOT_LEVEL;
4215                 reset_rsvds_bits_mask(vcpu, g_context);
4216                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4217         } else {
4218                 g_context->nx = false;
4219                 g_context->root_level = PT32_ROOT_LEVEL;
4220                 reset_rsvds_bits_mask(vcpu, g_context);
4221                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4222         }
4223
4224         update_permission_bitmask(vcpu, g_context, false);
4225         update_pkru_bitmask(vcpu, g_context, false);
4226         update_last_nonleaf_level(vcpu, g_context);
4227 }
4228
4229 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4230 {
4231         if (mmu_is_nested(vcpu))
4232                 init_kvm_nested_mmu(vcpu);
4233         else if (tdp_enabled)
4234                 init_kvm_tdp_mmu(vcpu);
4235         else
4236                 init_kvm_softmmu(vcpu);
4237 }
4238
4239 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4240 {
4241         kvm_mmu_unload(vcpu);
4242         init_kvm_mmu(vcpu);
4243 }
4244 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4245
4246 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4247 {
4248         int r;
4249
4250         r = mmu_topup_memory_caches(vcpu);
4251         if (r)
4252                 goto out;
4253         r = mmu_alloc_roots(vcpu);
4254         kvm_mmu_sync_roots(vcpu);
4255         if (r)
4256                 goto out;
4257         /* set_cr3() should ensure TLB has been flushed */
4258         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4259 out:
4260         return r;
4261 }
4262 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4263
4264 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4265 {
4266         mmu_free_roots(vcpu);
4267         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4268 }
4269 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4270
4271 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4272                                   struct kvm_mmu_page *sp, u64 *spte,
4273                                   const void *new)
4274 {
4275         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4276                 ++vcpu->kvm->stat.mmu_pde_zapped;
4277                 return;
4278         }
4279
4280         ++vcpu->kvm->stat.mmu_pte_updated;
4281         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4282 }
4283
4284 static bool need_remote_flush(u64 old, u64 new)
4285 {
4286         if (!is_shadow_present_pte(old))
4287                 return false;
4288         if (!is_shadow_present_pte(new))
4289                 return true;
4290         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4291                 return true;
4292         old ^= shadow_nx_mask;
4293         new ^= shadow_nx_mask;
4294         return (old & ~new & PT64_PERM_MASK) != 0;
4295 }
4296
4297 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4298                                     const u8 *new, int *bytes)
4299 {
4300         u64 gentry;
4301         int r;
4302
4303         /*
4304          * Assume that the pte write on a page table of the same type
4305          * as the current vcpu paging mode since we update the sptes only
4306          * when they have the same mode.
4307          */
4308         if (is_pae(vcpu) && *bytes == 4) {
4309                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4310                 *gpa &= ~(gpa_t)7;
4311                 *bytes = 8;
4312                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4313                 if (r)
4314                         gentry = 0;
4315                 new = (const u8 *)&gentry;
4316         }
4317
4318         switch (*bytes) {
4319         case 4:
4320                 gentry = *(const u32 *)new;
4321                 break;
4322         case 8:
4323                 gentry = *(const u64 *)new;
4324                 break;
4325         default:
4326                 gentry = 0;
4327                 break;
4328         }
4329
4330         return gentry;
4331 }
4332
4333 /*
4334  * If we're seeing too many writes to a page, it may no longer be a page table,
4335  * or we may be forking, in which case it is better to unmap the page.
4336  */
4337 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4338 {
4339         /*
4340          * Skip write-flooding detected for the sp whose level is 1, because
4341          * it can become unsync, then the guest page is not write-protected.
4342          */
4343         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4344                 return false;
4345
4346         atomic_inc(&sp->write_flooding_count);
4347         return atomic_read(&sp->write_flooding_count) >= 3;
4348 }
4349
4350 /*
4351  * Misaligned accesses are too much trouble to fix up; also, they usually
4352  * indicate a page is not used as a page table.
4353  */
4354 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4355                                     int bytes)
4356 {
4357         unsigned offset, pte_size, misaligned;
4358
4359         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4360                  gpa, bytes, sp->role.word);
4361
4362         offset = offset_in_page(gpa);
4363         pte_size = sp->role.cr4_pae ? 8 : 4;
4364
4365         /*
4366          * Sometimes, the OS only writes the last one bytes to update status
4367          * bits, for example, in linux, andb instruction is used in clear_bit().
4368          */
4369         if (!(offset & (pte_size - 1)) && bytes == 1)
4370                 return false;
4371
4372         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4373         misaligned |= bytes < 4;
4374
4375         return misaligned;
4376 }
4377
4378 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4379 {
4380         unsigned page_offset, quadrant;
4381         u64 *spte;
4382         int level;
4383
4384         page_offset = offset_in_page(gpa);
4385         level = sp->role.level;
4386         *nspte = 1;
4387         if (!sp->role.cr4_pae) {
4388                 page_offset <<= 1;      /* 32->64 */
4389                 /*
4390                  * A 32-bit pde maps 4MB while the shadow pdes map
4391                  * only 2MB.  So we need to double the offset again
4392                  * and zap two pdes instead of one.
4393                  */
4394                 if (level == PT32_ROOT_LEVEL) {
4395                         page_offset &= ~7; /* kill rounding error */
4396                         page_offset <<= 1;
4397                         *nspte = 2;
4398                 }
4399                 quadrant = page_offset >> PAGE_SHIFT;
4400                 page_offset &= ~PAGE_MASK;
4401                 if (quadrant != sp->role.quadrant)
4402                         return NULL;
4403         }
4404
4405         spte = &sp->spt[page_offset / sizeof(*spte)];
4406         return spte;
4407 }
4408
4409 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4410                               const u8 *new, int bytes,
4411                               struct kvm_page_track_notifier_node *node)
4412 {
4413         gfn_t gfn = gpa >> PAGE_SHIFT;
4414         struct kvm_mmu_page *sp;
4415         LIST_HEAD(invalid_list);
4416         u64 entry, gentry, *spte;
4417         int npte;
4418         bool remote_flush, local_flush;
4419         union kvm_mmu_page_role mask = { };
4420
4421         mask.cr0_wp = 1;
4422         mask.cr4_pae = 1;
4423         mask.nxe = 1;
4424         mask.smep_andnot_wp = 1;
4425         mask.smap_andnot_wp = 1;
4426         mask.smm = 1;
4427
4428         /*
4429          * If we don't have indirect shadow pages, it means no page is
4430          * write-protected, so we can exit simply.
4431          */
4432         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4433                 return;
4434
4435         remote_flush = local_flush = false;
4436
4437         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4438
4439         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4440
4441         /*
4442          * No need to care whether allocation memory is successful
4443          * or not since pte prefetch is skiped if it does not have
4444          * enough objects in the cache.
4445          */
4446         mmu_topup_memory_caches(vcpu);
4447
4448         spin_lock(&vcpu->kvm->mmu_lock);
4449         ++vcpu->kvm->stat.mmu_pte_write;
4450         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4451
4452         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4453                 if (detect_write_misaligned(sp, gpa, bytes) ||
4454                       detect_write_flooding(sp)) {
4455                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4456                         ++vcpu->kvm->stat.mmu_flooded;
4457                         continue;
4458                 }
4459
4460                 spte = get_written_sptes(sp, gpa, &npte);
4461                 if (!spte)
4462                         continue;
4463
4464                 local_flush = true;
4465                 while (npte--) {
4466                         entry = *spte;
4467                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4468                         if (gentry &&
4469                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4470                               & mask.word) && rmap_can_add(vcpu))
4471                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4472                         if (need_remote_flush(entry, *spte))
4473                                 remote_flush = true;
4474                         ++spte;
4475                 }
4476         }
4477         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4478         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4479         spin_unlock(&vcpu->kvm->mmu_lock);
4480 }
4481
4482 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4483 {
4484         gpa_t gpa;
4485         int r;
4486
4487         if (vcpu->arch.mmu.direct_map)
4488                 return 0;
4489
4490         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4491
4492         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4493
4494         return r;
4495 }
4496 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4497
4498 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4499 {
4500         LIST_HEAD(invalid_list);
4501
4502         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4503                 return;
4504
4505         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4506                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4507                         break;
4508
4509                 ++vcpu->kvm->stat.mmu_recycled;
4510         }
4511         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4512 }
4513
4514 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4515                        void *insn, int insn_len)
4516 {
4517         int r, emulation_type = EMULTYPE_RETRY;
4518         enum emulation_result er;
4519         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4520
4521         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4522                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4523                 if (r == RET_MMIO_PF_EMULATE) {
4524                         emulation_type = 0;
4525                         goto emulate;
4526                 }
4527                 if (r == RET_MMIO_PF_RETRY)
4528                         return 1;
4529                 if (r < 0)
4530                         return r;
4531         }
4532
4533         r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4534                                       false);
4535         if (r < 0)
4536                 return r;
4537         if (!r)
4538                 return 1;
4539
4540         /*
4541          * Before emulating the instruction, check if the error code
4542          * was due to a RO violation while translating the guest page.
4543          * This can occur when using nested virtualization with nested
4544          * paging in both guests. If true, we simply unprotect the page
4545          * and resume the guest.
4546          *
4547          * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
4548          *       in PFERR_NEXT_GUEST_PAGE)
4549          */
4550         if (error_code == PFERR_NESTED_GUEST_PAGE) {
4551                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4552                 return 1;
4553         }
4554
4555         if (mmio_info_in_cache(vcpu, cr2, direct))
4556                 emulation_type = 0;
4557 emulate:
4558         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4559
4560         switch (er) {
4561         case EMULATE_DONE:
4562                 return 1;
4563         case EMULATE_USER_EXIT:
4564                 ++vcpu->stat.mmio_exits;
4565                 /* fall through */
4566         case EMULATE_FAIL:
4567                 return 0;
4568         default:
4569                 BUG();
4570         }
4571 }
4572 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4573
4574 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4575 {
4576         vcpu->arch.mmu.invlpg(vcpu, gva);
4577         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4578         ++vcpu->stat.invlpg;
4579 }
4580 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4581
4582 void kvm_enable_tdp(void)
4583 {
4584         tdp_enabled = true;
4585 }
4586 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4587
4588 void kvm_disable_tdp(void)
4589 {
4590         tdp_enabled = false;
4591 }
4592 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4593
4594 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4595 {
4596         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4597         if (vcpu->arch.mmu.lm_root != NULL)
4598                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4599 }
4600
4601 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4602 {
4603         struct page *page;
4604         int i;
4605
4606         /*
4607          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4608          * Therefore we need to allocate shadow page tables in the first
4609          * 4GB of memory, which happens to fit the DMA32 zone.
4610          */
4611         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4612         if (!page)
4613                 return -ENOMEM;
4614
4615         vcpu->arch.mmu.pae_root = page_address(page);
4616         for (i = 0; i < 4; ++i)
4617                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4618
4619         return 0;
4620 }
4621
4622 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4623 {
4624         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4625         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4626         vcpu->arch.mmu.translate_gpa = translate_gpa;
4627         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4628
4629         return alloc_mmu_pages(vcpu);
4630 }
4631
4632 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4633 {
4634         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4635
4636         init_kvm_mmu(vcpu);
4637 }
4638
4639 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
4640                         struct kvm_memory_slot *slot,
4641                         struct kvm_page_track_notifier_node *node)
4642 {
4643         kvm_mmu_invalidate_zap_all_pages(kvm);
4644 }
4645
4646 void kvm_mmu_init_vm(struct kvm *kvm)
4647 {
4648         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4649
4650         node->track_write = kvm_mmu_pte_write;
4651         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
4652         kvm_page_track_register_notifier(kvm, node);
4653 }
4654
4655 void kvm_mmu_uninit_vm(struct kvm *kvm)
4656 {
4657         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4658
4659         kvm_page_track_unregister_notifier(kvm, node);
4660 }
4661
4662 /* The return value indicates if tlb flush on all vcpus is needed. */
4663 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4664
4665 /* The caller should hold mmu-lock before calling this function. */
4666 static bool
4667 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4668                         slot_level_handler fn, int start_level, int end_level,
4669                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4670 {
4671         struct slot_rmap_walk_iterator iterator;
4672         bool flush = false;
4673
4674         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4675                         end_gfn, &iterator) {
4676                 if (iterator.rmap)
4677                         flush |= fn(kvm, iterator.rmap);
4678
4679                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4680                         if (flush && lock_flush_tlb) {
4681                                 kvm_flush_remote_tlbs(kvm);
4682                                 flush = false;
4683                         }
4684                         cond_resched_lock(&kvm->mmu_lock);
4685                 }
4686         }
4687
4688         if (flush && lock_flush_tlb) {
4689                 kvm_flush_remote_tlbs(kvm);
4690                 flush = false;
4691         }
4692
4693         return flush;
4694 }
4695
4696 static bool
4697 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4698                   slot_level_handler fn, int start_level, int end_level,
4699                   bool lock_flush_tlb)
4700 {
4701         return slot_handle_level_range(kvm, memslot, fn, start_level,
4702                         end_level, memslot->base_gfn,
4703                         memslot->base_gfn + memslot->npages - 1,
4704                         lock_flush_tlb);
4705 }
4706
4707 static bool
4708 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4709                       slot_level_handler fn, bool lock_flush_tlb)
4710 {
4711         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4712                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4713 }
4714
4715 static bool
4716 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4717                         slot_level_handler fn, bool lock_flush_tlb)
4718 {
4719         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4720                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4721 }
4722
4723 static bool
4724 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4725                  slot_level_handler fn, bool lock_flush_tlb)
4726 {
4727         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4728                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4729 }
4730
4731 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4732 {
4733         struct kvm_memslots *slots;
4734         struct kvm_memory_slot *memslot;
4735         int i;
4736
4737         spin_lock(&kvm->mmu_lock);
4738         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4739                 slots = __kvm_memslots(kvm, i);
4740                 kvm_for_each_memslot(memslot, slots) {
4741                         gfn_t start, end;
4742
4743                         start = max(gfn_start, memslot->base_gfn);
4744                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4745                         if (start >= end)
4746                                 continue;
4747
4748                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4749                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4750                                                 start, end - 1, true);
4751                 }
4752         }
4753
4754         spin_unlock(&kvm->mmu_lock);
4755 }
4756
4757 static bool slot_rmap_write_protect(struct kvm *kvm,
4758                                     struct kvm_rmap_head *rmap_head)
4759 {
4760         return __rmap_write_protect(kvm, rmap_head, false);
4761 }
4762
4763 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4764                                       struct kvm_memory_slot *memslot)
4765 {
4766         bool flush;
4767
4768         spin_lock(&kvm->mmu_lock);
4769         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4770                                       false);
4771         spin_unlock(&kvm->mmu_lock);
4772
4773         /*
4774          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4775          * which do tlb flush out of mmu-lock should be serialized by
4776          * kvm->slots_lock otherwise tlb flush would be missed.
4777          */
4778         lockdep_assert_held(&kvm->slots_lock);
4779
4780         /*
4781          * We can flush all the TLBs out of the mmu lock without TLB
4782          * corruption since we just change the spte from writable to
4783          * readonly so that we only need to care the case of changing
4784          * spte from present to present (changing the spte from present
4785          * to nonpresent will flush all the TLBs immediately), in other
4786          * words, the only case we care is mmu_spte_update() where we
4787          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4788          * instead of PT_WRITABLE_MASK, that means it does not depend
4789          * on PT_WRITABLE_MASK anymore.
4790          */
4791         if (flush)
4792                 kvm_flush_remote_tlbs(kvm);
4793 }
4794
4795 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4796                                          struct kvm_rmap_head *rmap_head)
4797 {
4798         u64 *sptep;
4799         struct rmap_iterator iter;
4800         int need_tlb_flush = 0;
4801         kvm_pfn_t pfn;
4802         struct kvm_mmu_page *sp;
4803
4804 restart:
4805         for_each_rmap_spte(rmap_head, &iter, sptep) {
4806                 sp = page_header(__pa(sptep));
4807                 pfn = spte_to_pfn(*sptep);
4808
4809                 /*
4810                  * We cannot do huge page mapping for indirect shadow pages,
4811                  * which are found on the last rmap (level = 1) when not using
4812                  * tdp; such shadow pages are synced with the page table in
4813                  * the guest, and the guest page table is using 4K page size
4814                  * mapping if the indirect sp has level = 1.
4815                  */
4816                 if (sp->role.direct &&
4817                         !kvm_is_reserved_pfn(pfn) &&
4818                         PageTransCompoundMap(pfn_to_page(pfn))) {
4819                         drop_spte(kvm, sptep);
4820                         need_tlb_flush = 1;
4821                         goto restart;
4822                 }
4823         }
4824
4825         return need_tlb_flush;
4826 }
4827
4828 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4829                                    const struct kvm_memory_slot *memslot)
4830 {
4831         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4832         spin_lock(&kvm->mmu_lock);
4833         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4834                          kvm_mmu_zap_collapsible_spte, true);
4835         spin_unlock(&kvm->mmu_lock);
4836 }
4837
4838 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4839                                    struct kvm_memory_slot *memslot)
4840 {
4841         bool flush;
4842
4843         spin_lock(&kvm->mmu_lock);
4844         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4845         spin_unlock(&kvm->mmu_lock);
4846
4847         lockdep_assert_held(&kvm->slots_lock);
4848
4849         /*
4850          * It's also safe to flush TLBs out of mmu lock here as currently this
4851          * function is only used for dirty logging, in which case flushing TLB
4852          * out of mmu lock also guarantees no dirty pages will be lost in
4853          * dirty_bitmap.
4854          */
4855         if (flush)
4856                 kvm_flush_remote_tlbs(kvm);
4857 }
4858 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4859
4860 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4861                                         struct kvm_memory_slot *memslot)
4862 {
4863         bool flush;
4864
4865         spin_lock(&kvm->mmu_lock);
4866         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4867                                         false);
4868         spin_unlock(&kvm->mmu_lock);
4869
4870         /* see kvm_mmu_slot_remove_write_access */
4871         lockdep_assert_held(&kvm->slots_lock);
4872
4873         if (flush)
4874                 kvm_flush_remote_tlbs(kvm);
4875 }
4876 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4877
4878 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4879                             struct kvm_memory_slot *memslot)
4880 {
4881         bool flush;
4882
4883         spin_lock(&kvm->mmu_lock);
4884         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4885         spin_unlock(&kvm->mmu_lock);
4886
4887         lockdep_assert_held(&kvm->slots_lock);
4888
4889         /* see kvm_mmu_slot_leaf_clear_dirty */
4890         if (flush)
4891                 kvm_flush_remote_tlbs(kvm);
4892 }
4893 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4894
4895 #define BATCH_ZAP_PAGES 10
4896 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4897 {
4898         struct kvm_mmu_page *sp, *node;
4899         int batch = 0;
4900
4901 restart:
4902         list_for_each_entry_safe_reverse(sp, node,
4903               &kvm->arch.active_mmu_pages, link) {
4904                 int ret;
4905
4906                 /*
4907                  * No obsolete page exists before new created page since
4908                  * active_mmu_pages is the FIFO list.
4909                  */
4910                 if (!is_obsolete_sp(kvm, sp))
4911                         break;
4912
4913                 /*
4914                  * Since we are reversely walking the list and the invalid
4915                  * list will be moved to the head, skip the invalid page
4916                  * can help us to avoid the infinity list walking.
4917                  */
4918                 if (sp->role.invalid)
4919                         continue;
4920
4921                 /*
4922                  * Need not flush tlb since we only zap the sp with invalid
4923                  * generation number.
4924                  */
4925                 if (batch >= BATCH_ZAP_PAGES &&
4926                       cond_resched_lock(&kvm->mmu_lock)) {
4927                         batch = 0;
4928                         goto restart;
4929                 }
4930
4931                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4932                                 &kvm->arch.zapped_obsolete_pages);
4933                 batch += ret;
4934
4935                 if (ret)
4936                         goto restart;
4937         }
4938
4939         /*
4940          * Should flush tlb before free page tables since lockless-walking
4941          * may use the pages.
4942          */
4943         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4944 }
4945
4946 /*
4947  * Fast invalidate all shadow pages and use lock-break technique
4948  * to zap obsolete pages.
4949  *
4950  * It's required when memslot is being deleted or VM is being
4951  * destroyed, in these cases, we should ensure that KVM MMU does
4952  * not use any resource of the being-deleted slot or all slots
4953  * after calling the function.
4954  */
4955 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4956 {
4957         spin_lock(&kvm->mmu_lock);
4958         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4959         kvm->arch.mmu_valid_gen++;
4960
4961         /*
4962          * Notify all vcpus to reload its shadow page table
4963          * and flush TLB. Then all vcpus will switch to new
4964          * shadow page table with the new mmu_valid_gen.
4965          *
4966          * Note: we should do this under the protection of
4967          * mmu-lock, otherwise, vcpu would purge shadow page
4968          * but miss tlb flush.
4969          */
4970         kvm_reload_remote_mmus(kvm);
4971
4972         kvm_zap_obsolete_pages(kvm);
4973         spin_unlock(&kvm->mmu_lock);
4974 }
4975
4976 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4977 {
4978         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4979 }
4980
4981 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4982 {
4983         /*
4984          * The very rare case: if the generation-number is round,
4985          * zap all shadow pages.
4986          */
4987         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4988                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
4989                 kvm_mmu_invalidate_zap_all_pages(kvm);
4990         }
4991 }
4992
4993 static unsigned long
4994 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4995 {
4996         struct kvm *kvm;
4997         int nr_to_scan = sc->nr_to_scan;
4998         unsigned long freed = 0;
4999
5000         spin_lock(&kvm_lock);
5001
5002         list_for_each_entry(kvm, &vm_list, vm_list) {
5003                 int idx;
5004                 LIST_HEAD(invalid_list);
5005
5006                 /*
5007                  * Never scan more than sc->nr_to_scan VM instances.
5008                  * Will not hit this condition practically since we do not try
5009                  * to shrink more than one VM and it is very unlikely to see
5010                  * !n_used_mmu_pages so many times.
5011                  */
5012                 if (!nr_to_scan--)
5013                         break;
5014                 /*
5015                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5016                  * here. We may skip a VM instance errorneosly, but we do not
5017                  * want to shrink a VM that only started to populate its MMU
5018                  * anyway.
5019                  */
5020                 if (!kvm->arch.n_used_mmu_pages &&
5021                       !kvm_has_zapped_obsolete_pages(kvm))
5022                         continue;
5023
5024                 idx = srcu_read_lock(&kvm->srcu);
5025                 spin_lock(&kvm->mmu_lock);
5026
5027                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5028                         kvm_mmu_commit_zap_page(kvm,
5029                               &kvm->arch.zapped_obsolete_pages);
5030                         goto unlock;
5031                 }
5032
5033                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5034                         freed++;
5035                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5036
5037 unlock:
5038                 spin_unlock(&kvm->mmu_lock);
5039                 srcu_read_unlock(&kvm->srcu, idx);
5040
5041                 /*
5042                  * unfair on small ones
5043                  * per-vm shrinkers cry out
5044                  * sadness comes quickly
5045                  */
5046                 list_move_tail(&kvm->vm_list, &vm_list);
5047                 break;
5048         }
5049
5050         spin_unlock(&kvm_lock);
5051         return freed;
5052 }
5053
5054 static unsigned long
5055 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5056 {
5057         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5058 }
5059
5060 static struct shrinker mmu_shrinker = {
5061         .count_objects = mmu_shrink_count,
5062         .scan_objects = mmu_shrink_scan,
5063         .seeks = DEFAULT_SEEKS * 10,
5064 };
5065
5066 static void mmu_destroy_caches(void)
5067 {
5068         if (pte_list_desc_cache)
5069                 kmem_cache_destroy(pte_list_desc_cache);
5070         if (mmu_page_header_cache)
5071                 kmem_cache_destroy(mmu_page_header_cache);
5072 }
5073
5074 int kvm_mmu_module_init(void)
5075 {
5076         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5077                                             sizeof(struct pte_list_desc),
5078                                             0, 0, NULL);
5079         if (!pte_list_desc_cache)
5080                 goto nomem;
5081
5082         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5083                                                   sizeof(struct kvm_mmu_page),
5084                                                   0, 0, NULL);
5085         if (!mmu_page_header_cache)
5086                 goto nomem;
5087
5088         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5089                 goto nomem;
5090
5091         register_shrinker(&mmu_shrinker);
5092
5093         return 0;
5094
5095 nomem:
5096         mmu_destroy_caches();
5097         return -ENOMEM;
5098 }
5099
5100 /*
5101  * Caculate mmu pages needed for kvm.
5102  */
5103 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5104 {
5105         unsigned int nr_mmu_pages;
5106         unsigned int  nr_pages = 0;
5107         struct kvm_memslots *slots;
5108         struct kvm_memory_slot *memslot;
5109         int i;
5110
5111         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5112                 slots = __kvm_memslots(kvm, i);
5113
5114                 kvm_for_each_memslot(memslot, slots)
5115                         nr_pages += memslot->npages;
5116         }
5117
5118         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5119         nr_mmu_pages = max(nr_mmu_pages,
5120                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5121
5122         return nr_mmu_pages;
5123 }
5124
5125 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5126 {
5127         kvm_mmu_unload(vcpu);
5128         free_mmu_pages(vcpu);
5129         mmu_free_memory_caches(vcpu);
5130 }
5131
5132 void kvm_mmu_module_exit(void)
5133 {
5134         mmu_destroy_caches();
5135         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5136         unregister_shrinker(&mmu_shrinker);
5137         mmu_audit_disable();
5138 }