nEPT: Add EPT tables support to paging_tmpl.h
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 /*
201  * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202  * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203  * number.
204  */
205 #define MMIO_SPTE_GEN_LOW_SHIFT         3
206 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
207
208 #define MMIO_GEN_SHIFT                  19
209 #define MMIO_GEN_LOW_SHIFT              9
210 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 1)
211 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
212 #define MMIO_MAX_GEN                    ((1 << MMIO_GEN_SHIFT) - 1)
213
214 static u64 generation_mmio_spte_mask(unsigned int gen)
215 {
216         u64 mask;
217
218         WARN_ON(gen > MMIO_MAX_GEN);
219
220         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
221         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
222         return mask;
223 }
224
225 static unsigned int get_mmio_spte_generation(u64 spte)
226 {
227         unsigned int gen;
228
229         spte &= ~shadow_mmio_mask;
230
231         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
232         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
233         return gen;
234 }
235
236 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
237 {
238         /*
239          * Init kvm generation close to MMIO_MAX_GEN to easily test the
240          * code of handling generation number wrap-around.
241          */
242         return (kvm_memslots(kvm)->generation +
243                       MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
244 }
245
246 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247                            unsigned access)
248 {
249         unsigned int gen = kvm_current_mmio_generation(kvm);
250         u64 mask = generation_mmio_spte_mask(gen);
251
252         access &= ACC_WRITE_MASK | ACC_USER_MASK;
253         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
254
255         trace_mark_mmio_spte(sptep, gfn, access, gen);
256         mmu_spte_set(sptep, mask);
257 }
258
259 static bool is_mmio_spte(u64 spte)
260 {
261         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262 }
263
264 static gfn_t get_mmio_spte_gfn(u64 spte)
265 {
266         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267         return (spte & ~mask) >> PAGE_SHIFT;
268 }
269
270 static unsigned get_mmio_spte_access(u64 spte)
271 {
272         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273         return (spte & ~mask) & ~PAGE_MASK;
274 }
275
276 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277                           pfn_t pfn, unsigned access)
278 {
279         if (unlikely(is_noslot_pfn(pfn))) {
280                 mark_mmio_spte(kvm, sptep, gfn, access);
281                 return true;
282         }
283
284         return false;
285 }
286
287 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288 {
289         unsigned int kvm_gen, spte_gen;
290
291         kvm_gen = kvm_current_mmio_generation(kvm);
292         spte_gen = get_mmio_spte_generation(spte);
293
294         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295         return likely(kvm_gen == spte_gen);
296 }
297
298 static inline u64 rsvd_bits(int s, int e)
299 {
300         return ((1ULL << (e - s + 1)) - 1) << s;
301 }
302
303 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
304                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
305 {
306         shadow_user_mask = user_mask;
307         shadow_accessed_mask = accessed_mask;
308         shadow_dirty_mask = dirty_mask;
309         shadow_nx_mask = nx_mask;
310         shadow_x_mask = x_mask;
311 }
312 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
313
314 static int is_cpuid_PSE36(void)
315 {
316         return 1;
317 }
318
319 static int is_nx(struct kvm_vcpu *vcpu)
320 {
321         return vcpu->arch.efer & EFER_NX;
322 }
323
324 static int is_shadow_present_pte(u64 pte)
325 {
326         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
327 }
328
329 static int is_large_pte(u64 pte)
330 {
331         return pte & PT_PAGE_SIZE_MASK;
332 }
333
334 static int is_rmap_spte(u64 pte)
335 {
336         return is_shadow_present_pte(pte);
337 }
338
339 static int is_last_spte(u64 pte, int level)
340 {
341         if (level == PT_PAGE_TABLE_LEVEL)
342                 return 1;
343         if (is_large_pte(pte))
344                 return 1;
345         return 0;
346 }
347
348 static pfn_t spte_to_pfn(u64 pte)
349 {
350         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
351 }
352
353 static gfn_t pse36_gfn_delta(u32 gpte)
354 {
355         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
356
357         return (gpte & PT32_DIR_PSE36_MASK) << shift;
358 }
359
360 #ifdef CONFIG_X86_64
361 static void __set_spte(u64 *sptep, u64 spte)
362 {
363         *sptep = spte;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368         *sptep = spte;
369 }
370
371 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
372 {
373         return xchg(sptep, spte);
374 }
375
376 static u64 __get_spte_lockless(u64 *sptep)
377 {
378         return ACCESS_ONCE(*sptep);
379 }
380
381 static bool __check_direct_spte_mmio_pf(u64 spte)
382 {
383         /* It is valid if the spte is zapped. */
384         return spte == 0ull;
385 }
386 #else
387 union split_spte {
388         struct {
389                 u32 spte_low;
390                 u32 spte_high;
391         };
392         u64 spte;
393 };
394
395 static void count_spte_clear(u64 *sptep, u64 spte)
396 {
397         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
398
399         if (is_shadow_present_pte(spte))
400                 return;
401
402         /* Ensure the spte is completely set before we increase the count */
403         smp_wmb();
404         sp->clear_spte_count++;
405 }
406
407 static void __set_spte(u64 *sptep, u64 spte)
408 {
409         union split_spte *ssptep, sspte;
410
411         ssptep = (union split_spte *)sptep;
412         sspte = (union split_spte)spte;
413
414         ssptep->spte_high = sspte.spte_high;
415
416         /*
417          * If we map the spte from nonpresent to present, We should store
418          * the high bits firstly, then set present bit, so cpu can not
419          * fetch this spte while we are setting the spte.
420          */
421         smp_wmb();
422
423         ssptep->spte_low = sspte.spte_low;
424 }
425
426 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
427 {
428         union split_spte *ssptep, sspte;
429
430         ssptep = (union split_spte *)sptep;
431         sspte = (union split_spte)spte;
432
433         ssptep->spte_low = sspte.spte_low;
434
435         /*
436          * If we map the spte from present to nonpresent, we should clear
437          * present bit firstly to avoid vcpu fetch the old high bits.
438          */
439         smp_wmb();
440
441         ssptep->spte_high = sspte.spte_high;
442         count_spte_clear(sptep, spte);
443 }
444
445 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
446 {
447         union split_spte *ssptep, sspte, orig;
448
449         ssptep = (union split_spte *)sptep;
450         sspte = (union split_spte)spte;
451
452         /* xchg acts as a barrier before the setting of the high bits */
453         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
454         orig.spte_high = ssptep->spte_high;
455         ssptep->spte_high = sspte.spte_high;
456         count_spte_clear(sptep, spte);
457
458         return orig.spte;
459 }
460
461 /*
462  * The idea using the light way get the spte on x86_32 guest is from
463  * gup_get_pte(arch/x86/mm/gup.c).
464  *
465  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
466  * coalesces them and we are running out of the MMU lock.  Therefore
467  * we need to protect against in-progress updates of the spte.
468  *
469  * Reading the spte while an update is in progress may get the old value
470  * for the high part of the spte.  The race is fine for a present->non-present
471  * change (because the high part of the spte is ignored for non-present spte),
472  * but for a present->present change we must reread the spte.
473  *
474  * All such changes are done in two steps (present->non-present and
475  * non-present->present), hence it is enough to count the number of
476  * present->non-present updates: if it changed while reading the spte,
477  * we might have hit the race.  This is done using clear_spte_count.
478  */
479 static u64 __get_spte_lockless(u64 *sptep)
480 {
481         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
482         union split_spte spte, *orig = (union split_spte *)sptep;
483         int count;
484
485 retry:
486         count = sp->clear_spte_count;
487         smp_rmb();
488
489         spte.spte_low = orig->spte_low;
490         smp_rmb();
491
492         spte.spte_high = orig->spte_high;
493         smp_rmb();
494
495         if (unlikely(spte.spte_low != orig->spte_low ||
496               count != sp->clear_spte_count))
497                 goto retry;
498
499         return spte.spte;
500 }
501
502 static bool __check_direct_spte_mmio_pf(u64 spte)
503 {
504         union split_spte sspte = (union split_spte)spte;
505         u32 high_mmio_mask = shadow_mmio_mask >> 32;
506
507         /* It is valid if the spte is zapped. */
508         if (spte == 0ull)
509                 return true;
510
511         /* It is valid if the spte is being zapped. */
512         if (sspte.spte_low == 0ull &&
513             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
514                 return true;
515
516         return false;
517 }
518 #endif
519
520 static bool spte_is_locklessly_modifiable(u64 spte)
521 {
522         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
523                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
524 }
525
526 static bool spte_has_volatile_bits(u64 spte)
527 {
528         /*
529          * Always atomicly update spte if it can be updated
530          * out of mmu-lock, it can ensure dirty bit is not lost,
531          * also, it can help us to get a stable is_writable_pte()
532          * to ensure tlb flush is not missed.
533          */
534         if (spte_is_locklessly_modifiable(spte))
535                 return true;
536
537         if (!shadow_accessed_mask)
538                 return false;
539
540         if (!is_shadow_present_pte(spte))
541                 return false;
542
543         if ((spte & shadow_accessed_mask) &&
544               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
545                 return false;
546
547         return true;
548 }
549
550 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
551 {
552         return (old_spte & bit_mask) && !(new_spte & bit_mask);
553 }
554
555 /* Rules for using mmu_spte_set:
556  * Set the sptep from nonpresent to present.
557  * Note: the sptep being assigned *must* be either not present
558  * or in a state where the hardware will not attempt to update
559  * the spte.
560  */
561 static void mmu_spte_set(u64 *sptep, u64 new_spte)
562 {
563         WARN_ON(is_shadow_present_pte(*sptep));
564         __set_spte(sptep, new_spte);
565 }
566
567 /* Rules for using mmu_spte_update:
568  * Update the state bits, it means the mapped pfn is not changged.
569  *
570  * Whenever we overwrite a writable spte with a read-only one we
571  * should flush remote TLBs. Otherwise rmap_write_protect
572  * will find a read-only spte, even though the writable spte
573  * might be cached on a CPU's TLB, the return value indicates this
574  * case.
575  */
576 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
577 {
578         u64 old_spte = *sptep;
579         bool ret = false;
580
581         WARN_ON(!is_rmap_spte(new_spte));
582
583         if (!is_shadow_present_pte(old_spte)) {
584                 mmu_spte_set(sptep, new_spte);
585                 return ret;
586         }
587
588         if (!spte_has_volatile_bits(old_spte))
589                 __update_clear_spte_fast(sptep, new_spte);
590         else
591                 old_spte = __update_clear_spte_slow(sptep, new_spte);
592
593         /*
594          * For the spte updated out of mmu-lock is safe, since
595          * we always atomicly update it, see the comments in
596          * spte_has_volatile_bits().
597          */
598         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
599                 ret = true;
600
601         if (!shadow_accessed_mask)
602                 return ret;
603
604         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
605                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
606         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
607                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
608
609         return ret;
610 }
611
612 /*
613  * Rules for using mmu_spte_clear_track_bits:
614  * It sets the sptep from present to nonpresent, and track the
615  * state bits, it is used to clear the last level sptep.
616  */
617 static int mmu_spte_clear_track_bits(u64 *sptep)
618 {
619         pfn_t pfn;
620         u64 old_spte = *sptep;
621
622         if (!spte_has_volatile_bits(old_spte))
623                 __update_clear_spte_fast(sptep, 0ull);
624         else
625                 old_spte = __update_clear_spte_slow(sptep, 0ull);
626
627         if (!is_rmap_spte(old_spte))
628                 return 0;
629
630         pfn = spte_to_pfn(old_spte);
631
632         /*
633          * KVM does not hold the refcount of the page used by
634          * kvm mmu, before reclaiming the page, we should
635          * unmap it from mmu first.
636          */
637         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
638
639         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
640                 kvm_set_pfn_accessed(pfn);
641         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
642                 kvm_set_pfn_dirty(pfn);
643         return 1;
644 }
645
646 /*
647  * Rules for using mmu_spte_clear_no_track:
648  * Directly clear spte without caring the state bits of sptep,
649  * it is used to set the upper level spte.
650  */
651 static void mmu_spte_clear_no_track(u64 *sptep)
652 {
653         __update_clear_spte_fast(sptep, 0ull);
654 }
655
656 static u64 mmu_spte_get_lockless(u64 *sptep)
657 {
658         return __get_spte_lockless(sptep);
659 }
660
661 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
662 {
663         /*
664          * Prevent page table teardown by making any free-er wait during
665          * kvm_flush_remote_tlbs() IPI to all active vcpus.
666          */
667         local_irq_disable();
668         vcpu->mode = READING_SHADOW_PAGE_TABLES;
669         /*
670          * Make sure a following spte read is not reordered ahead of the write
671          * to vcpu->mode.
672          */
673         smp_mb();
674 }
675
676 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
677 {
678         /*
679          * Make sure the write to vcpu->mode is not reordered in front of
680          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
681          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
682          */
683         smp_mb();
684         vcpu->mode = OUTSIDE_GUEST_MODE;
685         local_irq_enable();
686 }
687
688 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
689                                   struct kmem_cache *base_cache, int min)
690 {
691         void *obj;
692
693         if (cache->nobjs >= min)
694                 return 0;
695         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
696                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
697                 if (!obj)
698                         return -ENOMEM;
699                 cache->objects[cache->nobjs++] = obj;
700         }
701         return 0;
702 }
703
704 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
705 {
706         return cache->nobjs;
707 }
708
709 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
710                                   struct kmem_cache *cache)
711 {
712         while (mc->nobjs)
713                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714 }
715
716 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
717                                        int min)
718 {
719         void *page;
720
721         if (cache->nobjs >= min)
722                 return 0;
723         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
724                 page = (void *)__get_free_page(GFP_KERNEL);
725                 if (!page)
726                         return -ENOMEM;
727                 cache->objects[cache->nobjs++] = page;
728         }
729         return 0;
730 }
731
732 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
733 {
734         while (mc->nobjs)
735                 free_page((unsigned long)mc->objects[--mc->nobjs]);
736 }
737
738 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
739 {
740         int r;
741
742         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
743                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
744         if (r)
745                 goto out;
746         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
747         if (r)
748                 goto out;
749         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
750                                    mmu_page_header_cache, 4);
751 out:
752         return r;
753 }
754
755 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
756 {
757         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
758                                 pte_list_desc_cache);
759         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
760         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
761                                 mmu_page_header_cache);
762 }
763
764 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
765 {
766         void *p;
767
768         BUG_ON(!mc->nobjs);
769         p = mc->objects[--mc->nobjs];
770         return p;
771 }
772
773 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
774 {
775         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
776 }
777
778 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
779 {
780         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
781 }
782
783 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
784 {
785         if (!sp->role.direct)
786                 return sp->gfns[index];
787
788         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
789 }
790
791 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
792 {
793         if (sp->role.direct)
794                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
795         else
796                 sp->gfns[index] = gfn;
797 }
798
799 /*
800  * Return the pointer to the large page information for a given gfn,
801  * handling slots that are not large page aligned.
802  */
803 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
804                                               struct kvm_memory_slot *slot,
805                                               int level)
806 {
807         unsigned long idx;
808
809         idx = gfn_to_index(gfn, slot->base_gfn, level);
810         return &slot->arch.lpage_info[level - 2][idx];
811 }
812
813 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
814 {
815         struct kvm_memory_slot *slot;
816         struct kvm_lpage_info *linfo;
817         int i;
818
819         slot = gfn_to_memslot(kvm, gfn);
820         for (i = PT_DIRECTORY_LEVEL;
821              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
822                 linfo = lpage_info_slot(gfn, slot, i);
823                 linfo->write_count += 1;
824         }
825         kvm->arch.indirect_shadow_pages++;
826 }
827
828 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
829 {
830         struct kvm_memory_slot *slot;
831         struct kvm_lpage_info *linfo;
832         int i;
833
834         slot = gfn_to_memslot(kvm, gfn);
835         for (i = PT_DIRECTORY_LEVEL;
836              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
837                 linfo = lpage_info_slot(gfn, slot, i);
838                 linfo->write_count -= 1;
839                 WARN_ON(linfo->write_count < 0);
840         }
841         kvm->arch.indirect_shadow_pages--;
842 }
843
844 static int has_wrprotected_page(struct kvm *kvm,
845                                 gfn_t gfn,
846                                 int level)
847 {
848         struct kvm_memory_slot *slot;
849         struct kvm_lpage_info *linfo;
850
851         slot = gfn_to_memslot(kvm, gfn);
852         if (slot) {
853                 linfo = lpage_info_slot(gfn, slot, level);
854                 return linfo->write_count;
855         }
856
857         return 1;
858 }
859
860 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
861 {
862         unsigned long page_size;
863         int i, ret = 0;
864
865         page_size = kvm_host_page_size(kvm, gfn);
866
867         for (i = PT_PAGE_TABLE_LEVEL;
868              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
869                 if (page_size >= KVM_HPAGE_SIZE(i))
870                         ret = i;
871                 else
872                         break;
873         }
874
875         return ret;
876 }
877
878 static struct kvm_memory_slot *
879 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
880                             bool no_dirty_log)
881 {
882         struct kvm_memory_slot *slot;
883
884         slot = gfn_to_memslot(vcpu->kvm, gfn);
885         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
886               (no_dirty_log && slot->dirty_bitmap))
887                 slot = NULL;
888
889         return slot;
890 }
891
892 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
893 {
894         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
895 }
896
897 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
898 {
899         int host_level, level, max_level;
900
901         host_level = host_mapping_level(vcpu->kvm, large_gfn);
902
903         if (host_level == PT_PAGE_TABLE_LEVEL)
904                 return host_level;
905
906         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
907
908         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
909                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
910                         break;
911
912         return level - 1;
913 }
914
915 /*
916  * Pte mapping structures:
917  *
918  * If pte_list bit zero is zero, then pte_list point to the spte.
919  *
920  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
921  * pte_list_desc containing more mappings.
922  *
923  * Returns the number of pte entries before the spte was added or zero if
924  * the spte was not added.
925  *
926  */
927 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
928                         unsigned long *pte_list)
929 {
930         struct pte_list_desc *desc;
931         int i, count = 0;
932
933         if (!*pte_list) {
934                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
935                 *pte_list = (unsigned long)spte;
936         } else if (!(*pte_list & 1)) {
937                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
938                 desc = mmu_alloc_pte_list_desc(vcpu);
939                 desc->sptes[0] = (u64 *)*pte_list;
940                 desc->sptes[1] = spte;
941                 *pte_list = (unsigned long)desc | 1;
942                 ++count;
943         } else {
944                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
945                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
946                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
947                         desc = desc->more;
948                         count += PTE_LIST_EXT;
949                 }
950                 if (desc->sptes[PTE_LIST_EXT-1]) {
951                         desc->more = mmu_alloc_pte_list_desc(vcpu);
952                         desc = desc->more;
953                 }
954                 for (i = 0; desc->sptes[i]; ++i)
955                         ++count;
956                 desc->sptes[i] = spte;
957         }
958         return count;
959 }
960
961 static void
962 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
963                            int i, struct pte_list_desc *prev_desc)
964 {
965         int j;
966
967         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
968                 ;
969         desc->sptes[i] = desc->sptes[j];
970         desc->sptes[j] = NULL;
971         if (j != 0)
972                 return;
973         if (!prev_desc && !desc->more)
974                 *pte_list = (unsigned long)desc->sptes[0];
975         else
976                 if (prev_desc)
977                         prev_desc->more = desc->more;
978                 else
979                         *pte_list = (unsigned long)desc->more | 1;
980         mmu_free_pte_list_desc(desc);
981 }
982
983 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
984 {
985         struct pte_list_desc *desc;
986         struct pte_list_desc *prev_desc;
987         int i;
988
989         if (!*pte_list) {
990                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
991                 BUG();
992         } else if (!(*pte_list & 1)) {
993                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
994                 if ((u64 *)*pte_list != spte) {
995                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
996                         BUG();
997                 }
998                 *pte_list = 0;
999         } else {
1000                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1001                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1002                 prev_desc = NULL;
1003                 while (desc) {
1004                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1005                                 if (desc->sptes[i] == spte) {
1006                                         pte_list_desc_remove_entry(pte_list,
1007                                                                desc, i,
1008                                                                prev_desc);
1009                                         return;
1010                                 }
1011                         prev_desc = desc;
1012                         desc = desc->more;
1013                 }
1014                 pr_err("pte_list_remove: %p many->many\n", spte);
1015                 BUG();
1016         }
1017 }
1018
1019 typedef void (*pte_list_walk_fn) (u64 *spte);
1020 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1021 {
1022         struct pte_list_desc *desc;
1023         int i;
1024
1025         if (!*pte_list)
1026                 return;
1027
1028         if (!(*pte_list & 1))
1029                 return fn((u64 *)*pte_list);
1030
1031         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1032         while (desc) {
1033                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1034                         fn(desc->sptes[i]);
1035                 desc = desc->more;
1036         }
1037 }
1038
1039 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1040                                     struct kvm_memory_slot *slot)
1041 {
1042         unsigned long idx;
1043
1044         idx = gfn_to_index(gfn, slot->base_gfn, level);
1045         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1046 }
1047
1048 /*
1049  * Take gfn and return the reverse mapping to it.
1050  */
1051 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1052 {
1053         struct kvm_memory_slot *slot;
1054
1055         slot = gfn_to_memslot(kvm, gfn);
1056         return __gfn_to_rmap(gfn, level, slot);
1057 }
1058
1059 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1060 {
1061         struct kvm_mmu_memory_cache *cache;
1062
1063         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1064         return mmu_memory_cache_free_objects(cache);
1065 }
1066
1067 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1068 {
1069         struct kvm_mmu_page *sp;
1070         unsigned long *rmapp;
1071
1072         sp = page_header(__pa(spte));
1073         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1074         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1075         return pte_list_add(vcpu, spte, rmapp);
1076 }
1077
1078 static void rmap_remove(struct kvm *kvm, u64 *spte)
1079 {
1080         struct kvm_mmu_page *sp;
1081         gfn_t gfn;
1082         unsigned long *rmapp;
1083
1084         sp = page_header(__pa(spte));
1085         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1086         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1087         pte_list_remove(spte, rmapp);
1088 }
1089
1090 /*
1091  * Used by the following functions to iterate through the sptes linked by a
1092  * rmap.  All fields are private and not assumed to be used outside.
1093  */
1094 struct rmap_iterator {
1095         /* private fields */
1096         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1097         int pos;                        /* index of the sptep */
1098 };
1099
1100 /*
1101  * Iteration must be started by this function.  This should also be used after
1102  * removing/dropping sptes from the rmap link because in such cases the
1103  * information in the itererator may not be valid.
1104  *
1105  * Returns sptep if found, NULL otherwise.
1106  */
1107 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1108 {
1109         if (!rmap)
1110                 return NULL;
1111
1112         if (!(rmap & 1)) {
1113                 iter->desc = NULL;
1114                 return (u64 *)rmap;
1115         }
1116
1117         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1118         iter->pos = 0;
1119         return iter->desc->sptes[iter->pos];
1120 }
1121
1122 /*
1123  * Must be used with a valid iterator: e.g. after rmap_get_first().
1124  *
1125  * Returns sptep if found, NULL otherwise.
1126  */
1127 static u64 *rmap_get_next(struct rmap_iterator *iter)
1128 {
1129         if (iter->desc) {
1130                 if (iter->pos < PTE_LIST_EXT - 1) {
1131                         u64 *sptep;
1132
1133                         ++iter->pos;
1134                         sptep = iter->desc->sptes[iter->pos];
1135                         if (sptep)
1136                                 return sptep;
1137                 }
1138
1139                 iter->desc = iter->desc->more;
1140
1141                 if (iter->desc) {
1142                         iter->pos = 0;
1143                         /* desc->sptes[0] cannot be NULL */
1144                         return iter->desc->sptes[iter->pos];
1145                 }
1146         }
1147
1148         return NULL;
1149 }
1150
1151 static void drop_spte(struct kvm *kvm, u64 *sptep)
1152 {
1153         if (mmu_spte_clear_track_bits(sptep))
1154                 rmap_remove(kvm, sptep);
1155 }
1156
1157
1158 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1159 {
1160         if (is_large_pte(*sptep)) {
1161                 WARN_ON(page_header(__pa(sptep))->role.level ==
1162                         PT_PAGE_TABLE_LEVEL);
1163                 drop_spte(kvm, sptep);
1164                 --kvm->stat.lpages;
1165                 return true;
1166         }
1167
1168         return false;
1169 }
1170
1171 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1172 {
1173         if (__drop_large_spte(vcpu->kvm, sptep))
1174                 kvm_flush_remote_tlbs(vcpu->kvm);
1175 }
1176
1177 /*
1178  * Write-protect on the specified @sptep, @pt_protect indicates whether
1179  * spte writ-protection is caused by protecting shadow page table.
1180  * @flush indicates whether tlb need be flushed.
1181  *
1182  * Note: write protection is difference between drity logging and spte
1183  * protection:
1184  * - for dirty logging, the spte can be set to writable at anytime if
1185  *   its dirty bitmap is properly set.
1186  * - for spte protection, the spte can be writable only after unsync-ing
1187  *   shadow page.
1188  *
1189  * Return true if the spte is dropped.
1190  */
1191 static bool
1192 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1193 {
1194         u64 spte = *sptep;
1195
1196         if (!is_writable_pte(spte) &&
1197               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1198                 return false;
1199
1200         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1201
1202         if (__drop_large_spte(kvm, sptep)) {
1203                 *flush |= true;
1204                 return true;
1205         }
1206
1207         if (pt_protect)
1208                 spte &= ~SPTE_MMU_WRITEABLE;
1209         spte = spte & ~PT_WRITABLE_MASK;
1210
1211         *flush |= mmu_spte_update(sptep, spte);
1212         return false;
1213 }
1214
1215 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1216                                  bool pt_protect)
1217 {
1218         u64 *sptep;
1219         struct rmap_iterator iter;
1220         bool flush = false;
1221
1222         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1223                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1224                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1225                         sptep = rmap_get_first(*rmapp, &iter);
1226                         continue;
1227                 }
1228
1229                 sptep = rmap_get_next(&iter);
1230         }
1231
1232         return flush;
1233 }
1234
1235 /**
1236  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1237  * @kvm: kvm instance
1238  * @slot: slot to protect
1239  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1240  * @mask: indicates which pages we should protect
1241  *
1242  * Used when we do not need to care about huge page mappings: e.g. during dirty
1243  * logging we do not have any such mappings.
1244  */
1245 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1246                                      struct kvm_memory_slot *slot,
1247                                      gfn_t gfn_offset, unsigned long mask)
1248 {
1249         unsigned long *rmapp;
1250
1251         while (mask) {
1252                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1253                                       PT_PAGE_TABLE_LEVEL, slot);
1254                 __rmap_write_protect(kvm, rmapp, false);
1255
1256                 /* clear the first set bit */
1257                 mask &= mask - 1;
1258         }
1259 }
1260
1261 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1262 {
1263         struct kvm_memory_slot *slot;
1264         unsigned long *rmapp;
1265         int i;
1266         bool write_protected = false;
1267
1268         slot = gfn_to_memslot(kvm, gfn);
1269
1270         for (i = PT_PAGE_TABLE_LEVEL;
1271              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1272                 rmapp = __gfn_to_rmap(gfn, i, slot);
1273                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1274         }
1275
1276         return write_protected;
1277 }
1278
1279 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1280                            struct kvm_memory_slot *slot, unsigned long data)
1281 {
1282         u64 *sptep;
1283         struct rmap_iterator iter;
1284         int need_tlb_flush = 0;
1285
1286         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1287                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1288                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1289
1290                 drop_spte(kvm, sptep);
1291                 need_tlb_flush = 1;
1292         }
1293
1294         return need_tlb_flush;
1295 }
1296
1297 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1298                              struct kvm_memory_slot *slot, unsigned long data)
1299 {
1300         u64 *sptep;
1301         struct rmap_iterator iter;
1302         int need_flush = 0;
1303         u64 new_spte;
1304         pte_t *ptep = (pte_t *)data;
1305         pfn_t new_pfn;
1306
1307         WARN_ON(pte_huge(*ptep));
1308         new_pfn = pte_pfn(*ptep);
1309
1310         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1311                 BUG_ON(!is_shadow_present_pte(*sptep));
1312                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1313
1314                 need_flush = 1;
1315
1316                 if (pte_write(*ptep)) {
1317                         drop_spte(kvm, sptep);
1318                         sptep = rmap_get_first(*rmapp, &iter);
1319                 } else {
1320                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1321                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1322
1323                         new_spte &= ~PT_WRITABLE_MASK;
1324                         new_spte &= ~SPTE_HOST_WRITEABLE;
1325                         new_spte &= ~shadow_accessed_mask;
1326
1327                         mmu_spte_clear_track_bits(sptep);
1328                         mmu_spte_set(sptep, new_spte);
1329                         sptep = rmap_get_next(&iter);
1330                 }
1331         }
1332
1333         if (need_flush)
1334                 kvm_flush_remote_tlbs(kvm);
1335
1336         return 0;
1337 }
1338
1339 static int kvm_handle_hva_range(struct kvm *kvm,
1340                                 unsigned long start,
1341                                 unsigned long end,
1342                                 unsigned long data,
1343                                 int (*handler)(struct kvm *kvm,
1344                                                unsigned long *rmapp,
1345                                                struct kvm_memory_slot *slot,
1346                                                unsigned long data))
1347 {
1348         int j;
1349         int ret = 0;
1350         struct kvm_memslots *slots;
1351         struct kvm_memory_slot *memslot;
1352
1353         slots = kvm_memslots(kvm);
1354
1355         kvm_for_each_memslot(memslot, slots) {
1356                 unsigned long hva_start, hva_end;
1357                 gfn_t gfn_start, gfn_end;
1358
1359                 hva_start = max(start, memslot->userspace_addr);
1360                 hva_end = min(end, memslot->userspace_addr +
1361                                         (memslot->npages << PAGE_SHIFT));
1362                 if (hva_start >= hva_end)
1363                         continue;
1364                 /*
1365                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1366                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1367                  */
1368                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1369                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1370
1371                 for (j = PT_PAGE_TABLE_LEVEL;
1372                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1373                         unsigned long idx, idx_end;
1374                         unsigned long *rmapp;
1375
1376                         /*
1377                          * {idx(page_j) | page_j intersects with
1378                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1379                          */
1380                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1381                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1382
1383                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1384
1385                         for (; idx <= idx_end; ++idx)
1386                                 ret |= handler(kvm, rmapp++, memslot, data);
1387                 }
1388         }
1389
1390         return ret;
1391 }
1392
1393 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1394                           unsigned long data,
1395                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1396                                          struct kvm_memory_slot *slot,
1397                                          unsigned long data))
1398 {
1399         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1400 }
1401
1402 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1403 {
1404         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1405 }
1406
1407 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1408 {
1409         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1410 }
1411
1412 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1413 {
1414         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1415 }
1416
1417 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1418                          struct kvm_memory_slot *slot, unsigned long data)
1419 {
1420         u64 *sptep;
1421         struct rmap_iterator uninitialized_var(iter);
1422         int young = 0;
1423
1424         /*
1425          * In case of absence of EPT Access and Dirty Bits supports,
1426          * emulate the accessed bit for EPT, by checking if this page has
1427          * an EPT mapping, and clearing it if it does. On the next access,
1428          * a new EPT mapping will be established.
1429          * This has some overhead, but not as much as the cost of swapping
1430          * out actively used pages or breaking up actively used hugepages.
1431          */
1432         if (!shadow_accessed_mask) {
1433                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1434                 goto out;
1435         }
1436
1437         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1438              sptep = rmap_get_next(&iter)) {
1439                 BUG_ON(!is_shadow_present_pte(*sptep));
1440
1441                 if (*sptep & shadow_accessed_mask) {
1442                         young = 1;
1443                         clear_bit((ffs(shadow_accessed_mask) - 1),
1444                                  (unsigned long *)sptep);
1445                 }
1446         }
1447 out:
1448         /* @data has hva passed to kvm_age_hva(). */
1449         trace_kvm_age_page(data, slot, young);
1450         return young;
1451 }
1452
1453 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1454                               struct kvm_memory_slot *slot, unsigned long data)
1455 {
1456         u64 *sptep;
1457         struct rmap_iterator iter;
1458         int young = 0;
1459
1460         /*
1461          * If there's no access bit in the secondary pte set by the
1462          * hardware it's up to gup-fast/gup to set the access bit in
1463          * the primary pte or in the page structure.
1464          */
1465         if (!shadow_accessed_mask)
1466                 goto out;
1467
1468         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1469              sptep = rmap_get_next(&iter)) {
1470                 BUG_ON(!is_shadow_present_pte(*sptep));
1471
1472                 if (*sptep & shadow_accessed_mask) {
1473                         young = 1;
1474                         break;
1475                 }
1476         }
1477 out:
1478         return young;
1479 }
1480
1481 #define RMAP_RECYCLE_THRESHOLD 1000
1482
1483 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1484 {
1485         unsigned long *rmapp;
1486         struct kvm_mmu_page *sp;
1487
1488         sp = page_header(__pa(spte));
1489
1490         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1491
1492         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1493         kvm_flush_remote_tlbs(vcpu->kvm);
1494 }
1495
1496 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1497 {
1498         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1499 }
1500
1501 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1502 {
1503         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1504 }
1505
1506 #ifdef MMU_DEBUG
1507 static int is_empty_shadow_page(u64 *spt)
1508 {
1509         u64 *pos;
1510         u64 *end;
1511
1512         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1513                 if (is_shadow_present_pte(*pos)) {
1514                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1515                                pos, *pos);
1516                         return 0;
1517                 }
1518         return 1;
1519 }
1520 #endif
1521
1522 /*
1523  * This value is the sum of all of the kvm instances's
1524  * kvm->arch.n_used_mmu_pages values.  We need a global,
1525  * aggregate version in order to make the slab shrinker
1526  * faster
1527  */
1528 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1529 {
1530         kvm->arch.n_used_mmu_pages += nr;
1531         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1532 }
1533
1534 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1535 {
1536         ASSERT(is_empty_shadow_page(sp->spt));
1537         hlist_del(&sp->hash_link);
1538         list_del(&sp->link);
1539         free_page((unsigned long)sp->spt);
1540         if (!sp->role.direct)
1541                 free_page((unsigned long)sp->gfns);
1542         kmem_cache_free(mmu_page_header_cache, sp);
1543 }
1544
1545 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1546 {
1547         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1548 }
1549
1550 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1551                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1552 {
1553         if (!parent_pte)
1554                 return;
1555
1556         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1557 }
1558
1559 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1560                                        u64 *parent_pte)
1561 {
1562         pte_list_remove(parent_pte, &sp->parent_ptes);
1563 }
1564
1565 static void drop_parent_pte(struct kvm_mmu_page *sp,
1566                             u64 *parent_pte)
1567 {
1568         mmu_page_remove_parent_pte(sp, parent_pte);
1569         mmu_spte_clear_no_track(parent_pte);
1570 }
1571
1572 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1573                                                u64 *parent_pte, int direct)
1574 {
1575         struct kvm_mmu_page *sp;
1576
1577         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1578         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1579         if (!direct)
1580                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1581         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1582
1583         /*
1584          * The active_mmu_pages list is the FIFO list, do not move the
1585          * page until it is zapped. kvm_zap_obsolete_pages depends on
1586          * this feature. See the comments in kvm_zap_obsolete_pages().
1587          */
1588         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1589         sp->parent_ptes = 0;
1590         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1591         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1592         return sp;
1593 }
1594
1595 static void mark_unsync(u64 *spte);
1596 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1597 {
1598         pte_list_walk(&sp->parent_ptes, mark_unsync);
1599 }
1600
1601 static void mark_unsync(u64 *spte)
1602 {
1603         struct kvm_mmu_page *sp;
1604         unsigned int index;
1605
1606         sp = page_header(__pa(spte));
1607         index = spte - sp->spt;
1608         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1609                 return;
1610         if (sp->unsync_children++)
1611                 return;
1612         kvm_mmu_mark_parents_unsync(sp);
1613 }
1614
1615 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1616                                struct kvm_mmu_page *sp)
1617 {
1618         return 1;
1619 }
1620
1621 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1622 {
1623 }
1624
1625 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1626                                  struct kvm_mmu_page *sp, u64 *spte,
1627                                  const void *pte)
1628 {
1629         WARN_ON(1);
1630 }
1631
1632 #define KVM_PAGE_ARRAY_NR 16
1633
1634 struct kvm_mmu_pages {
1635         struct mmu_page_and_offset {
1636                 struct kvm_mmu_page *sp;
1637                 unsigned int idx;
1638         } page[KVM_PAGE_ARRAY_NR];
1639         unsigned int nr;
1640 };
1641
1642 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1643                          int idx)
1644 {
1645         int i;
1646
1647         if (sp->unsync)
1648                 for (i=0; i < pvec->nr; i++)
1649                         if (pvec->page[i].sp == sp)
1650                                 return 0;
1651
1652         pvec->page[pvec->nr].sp = sp;
1653         pvec->page[pvec->nr].idx = idx;
1654         pvec->nr++;
1655         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1656 }
1657
1658 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1659                            struct kvm_mmu_pages *pvec)
1660 {
1661         int i, ret, nr_unsync_leaf = 0;
1662
1663         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1664                 struct kvm_mmu_page *child;
1665                 u64 ent = sp->spt[i];
1666
1667                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1668                         goto clear_child_bitmap;
1669
1670                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1671
1672                 if (child->unsync_children) {
1673                         if (mmu_pages_add(pvec, child, i))
1674                                 return -ENOSPC;
1675
1676                         ret = __mmu_unsync_walk(child, pvec);
1677                         if (!ret)
1678                                 goto clear_child_bitmap;
1679                         else if (ret > 0)
1680                                 nr_unsync_leaf += ret;
1681                         else
1682                                 return ret;
1683                 } else if (child->unsync) {
1684                         nr_unsync_leaf++;
1685                         if (mmu_pages_add(pvec, child, i))
1686                                 return -ENOSPC;
1687                 } else
1688                          goto clear_child_bitmap;
1689
1690                 continue;
1691
1692 clear_child_bitmap:
1693                 __clear_bit(i, sp->unsync_child_bitmap);
1694                 sp->unsync_children--;
1695                 WARN_ON((int)sp->unsync_children < 0);
1696         }
1697
1698
1699         return nr_unsync_leaf;
1700 }
1701
1702 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1703                            struct kvm_mmu_pages *pvec)
1704 {
1705         if (!sp->unsync_children)
1706                 return 0;
1707
1708         mmu_pages_add(pvec, sp, 0);
1709         return __mmu_unsync_walk(sp, pvec);
1710 }
1711
1712 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1713 {
1714         WARN_ON(!sp->unsync);
1715         trace_kvm_mmu_sync_page(sp);
1716         sp->unsync = 0;
1717         --kvm->stat.mmu_unsync;
1718 }
1719
1720 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1721                                     struct list_head *invalid_list);
1722 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1723                                     struct list_head *invalid_list);
1724
1725 /*
1726  * NOTE: we should pay more attention on the zapped-obsolete page
1727  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1728  * since it has been deleted from active_mmu_pages but still can be found
1729  * at hast list.
1730  *
1731  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1732  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1733  * all the obsolete pages.
1734  */
1735 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1736         hlist_for_each_entry(_sp,                                       \
1737           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1738                 if ((_sp)->gfn != (_gfn)) {} else
1739
1740 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1741         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1742                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1743
1744 /* @sp->gfn should be write-protected at the call site */
1745 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1746                            struct list_head *invalid_list, bool clear_unsync)
1747 {
1748         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1749                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1750                 return 1;
1751         }
1752
1753         if (clear_unsync)
1754                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1755
1756         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1757                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1758                 return 1;
1759         }
1760
1761         kvm_mmu_flush_tlb(vcpu);
1762         return 0;
1763 }
1764
1765 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1766                                    struct kvm_mmu_page *sp)
1767 {
1768         LIST_HEAD(invalid_list);
1769         int ret;
1770
1771         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1772         if (ret)
1773                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1774
1775         return ret;
1776 }
1777
1778 #ifdef CONFIG_KVM_MMU_AUDIT
1779 #include "mmu_audit.c"
1780 #else
1781 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1782 static void mmu_audit_disable(void) { }
1783 #endif
1784
1785 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1786                          struct list_head *invalid_list)
1787 {
1788         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1789 }
1790
1791 /* @gfn should be write-protected at the call site */
1792 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1793 {
1794         struct kvm_mmu_page *s;
1795         LIST_HEAD(invalid_list);
1796         bool flush = false;
1797
1798         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1799                 if (!s->unsync)
1800                         continue;
1801
1802                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1803                 kvm_unlink_unsync_page(vcpu->kvm, s);
1804                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1805                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1806                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1807                         continue;
1808                 }
1809                 flush = true;
1810         }
1811
1812         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1813         if (flush)
1814                 kvm_mmu_flush_tlb(vcpu);
1815 }
1816
1817 struct mmu_page_path {
1818         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1819         unsigned int idx[PT64_ROOT_LEVEL-1];
1820 };
1821
1822 #define for_each_sp(pvec, sp, parents, i)                       \
1823                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1824                         sp = pvec.page[i].sp;                   \
1825                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1826                         i = mmu_pages_next(&pvec, &parents, i))
1827
1828 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1829                           struct mmu_page_path *parents,
1830                           int i)
1831 {
1832         int n;
1833
1834         for (n = i+1; n < pvec->nr; n++) {
1835                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1836
1837                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1838                         parents->idx[0] = pvec->page[n].idx;
1839                         return n;
1840                 }
1841
1842                 parents->parent[sp->role.level-2] = sp;
1843                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1844         }
1845
1846         return n;
1847 }
1848
1849 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1850 {
1851         struct kvm_mmu_page *sp;
1852         unsigned int level = 0;
1853
1854         do {
1855                 unsigned int idx = parents->idx[level];
1856
1857                 sp = parents->parent[level];
1858                 if (!sp)
1859                         return;
1860
1861                 --sp->unsync_children;
1862                 WARN_ON((int)sp->unsync_children < 0);
1863                 __clear_bit(idx, sp->unsync_child_bitmap);
1864                 level++;
1865         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1866 }
1867
1868 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1869                                struct mmu_page_path *parents,
1870                                struct kvm_mmu_pages *pvec)
1871 {
1872         parents->parent[parent->role.level-1] = NULL;
1873         pvec->nr = 0;
1874 }
1875
1876 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1877                               struct kvm_mmu_page *parent)
1878 {
1879         int i;
1880         struct kvm_mmu_page *sp;
1881         struct mmu_page_path parents;
1882         struct kvm_mmu_pages pages;
1883         LIST_HEAD(invalid_list);
1884
1885         kvm_mmu_pages_init(parent, &parents, &pages);
1886         while (mmu_unsync_walk(parent, &pages)) {
1887                 bool protected = false;
1888
1889                 for_each_sp(pages, sp, parents, i)
1890                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1891
1892                 if (protected)
1893                         kvm_flush_remote_tlbs(vcpu->kvm);
1894
1895                 for_each_sp(pages, sp, parents, i) {
1896                         kvm_sync_page(vcpu, sp, &invalid_list);
1897                         mmu_pages_clear_parents(&parents);
1898                 }
1899                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1900                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1901                 kvm_mmu_pages_init(parent, &parents, &pages);
1902         }
1903 }
1904
1905 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1906 {
1907         int i;
1908
1909         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1910                 sp->spt[i] = 0ull;
1911 }
1912
1913 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1914 {
1915         sp->write_flooding_count = 0;
1916 }
1917
1918 static void clear_sp_write_flooding_count(u64 *spte)
1919 {
1920         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1921
1922         __clear_sp_write_flooding_count(sp);
1923 }
1924
1925 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1926 {
1927         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1928 }
1929
1930 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1931                                              gfn_t gfn,
1932                                              gva_t gaddr,
1933                                              unsigned level,
1934                                              int direct,
1935                                              unsigned access,
1936                                              u64 *parent_pte)
1937 {
1938         union kvm_mmu_page_role role;
1939         unsigned quadrant;
1940         struct kvm_mmu_page *sp;
1941         bool need_sync = false;
1942
1943         role = vcpu->arch.mmu.base_role;
1944         role.level = level;
1945         role.direct = direct;
1946         if (role.direct)
1947                 role.cr4_pae = 0;
1948         role.access = access;
1949         if (!vcpu->arch.mmu.direct_map
1950             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1951                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1952                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1953                 role.quadrant = quadrant;
1954         }
1955         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1956                 if (is_obsolete_sp(vcpu->kvm, sp))
1957                         continue;
1958
1959                 if (!need_sync && sp->unsync)
1960                         need_sync = true;
1961
1962                 if (sp->role.word != role.word)
1963                         continue;
1964
1965                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1966                         break;
1967
1968                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1969                 if (sp->unsync_children) {
1970                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1971                         kvm_mmu_mark_parents_unsync(sp);
1972                 } else if (sp->unsync)
1973                         kvm_mmu_mark_parents_unsync(sp);
1974
1975                 __clear_sp_write_flooding_count(sp);
1976                 trace_kvm_mmu_get_page(sp, false);
1977                 return sp;
1978         }
1979         ++vcpu->kvm->stat.mmu_cache_miss;
1980         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1981         if (!sp)
1982                 return sp;
1983         sp->gfn = gfn;
1984         sp->role = role;
1985         hlist_add_head(&sp->hash_link,
1986                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1987         if (!direct) {
1988                 if (rmap_write_protect(vcpu->kvm, gfn))
1989                         kvm_flush_remote_tlbs(vcpu->kvm);
1990                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1991                         kvm_sync_pages(vcpu, gfn);
1992
1993                 account_shadowed(vcpu->kvm, gfn);
1994         }
1995         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1996         init_shadow_page_table(sp);
1997         trace_kvm_mmu_get_page(sp, true);
1998         return sp;
1999 }
2000
2001 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2002                              struct kvm_vcpu *vcpu, u64 addr)
2003 {
2004         iterator->addr = addr;
2005         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2006         iterator->level = vcpu->arch.mmu.shadow_root_level;
2007
2008         if (iterator->level == PT64_ROOT_LEVEL &&
2009             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2010             !vcpu->arch.mmu.direct_map)
2011                 --iterator->level;
2012
2013         if (iterator->level == PT32E_ROOT_LEVEL) {
2014                 iterator->shadow_addr
2015                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2016                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2017                 --iterator->level;
2018                 if (!iterator->shadow_addr)
2019                         iterator->level = 0;
2020         }
2021 }
2022
2023 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2024 {
2025         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2026                 return false;
2027
2028         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2029         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2030         return true;
2031 }
2032
2033 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2034                                u64 spte)
2035 {
2036         if (is_last_spte(spte, iterator->level)) {
2037                 iterator->level = 0;
2038                 return;
2039         }
2040
2041         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2042         --iterator->level;
2043 }
2044
2045 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2046 {
2047         return __shadow_walk_next(iterator, *iterator->sptep);
2048 }
2049
2050 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
2051 {
2052         u64 spte;
2053
2054         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2055                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2056
2057         mmu_spte_set(sptep, spte);
2058 }
2059
2060 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2061                                    unsigned direct_access)
2062 {
2063         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2064                 struct kvm_mmu_page *child;
2065
2066                 /*
2067                  * For the direct sp, if the guest pte's dirty bit
2068                  * changed form clean to dirty, it will corrupt the
2069                  * sp's access: allow writable in the read-only sp,
2070                  * so we should update the spte at this point to get
2071                  * a new sp with the correct access.
2072                  */
2073                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2074                 if (child->role.access == direct_access)
2075                         return;
2076
2077                 drop_parent_pte(child, sptep);
2078                 kvm_flush_remote_tlbs(vcpu->kvm);
2079         }
2080 }
2081
2082 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2083                              u64 *spte)
2084 {
2085         u64 pte;
2086         struct kvm_mmu_page *child;
2087
2088         pte = *spte;
2089         if (is_shadow_present_pte(pte)) {
2090                 if (is_last_spte(pte, sp->role.level)) {
2091                         drop_spte(kvm, spte);
2092                         if (is_large_pte(pte))
2093                                 --kvm->stat.lpages;
2094                 } else {
2095                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2096                         drop_parent_pte(child, spte);
2097                 }
2098                 return true;
2099         }
2100
2101         if (is_mmio_spte(pte))
2102                 mmu_spte_clear_no_track(spte);
2103
2104         return false;
2105 }
2106
2107 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2108                                          struct kvm_mmu_page *sp)
2109 {
2110         unsigned i;
2111
2112         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2113                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2114 }
2115
2116 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2117 {
2118         mmu_page_remove_parent_pte(sp, parent_pte);
2119 }
2120
2121 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2122 {
2123         u64 *sptep;
2124         struct rmap_iterator iter;
2125
2126         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2127                 drop_parent_pte(sp, sptep);
2128 }
2129
2130 static int mmu_zap_unsync_children(struct kvm *kvm,
2131                                    struct kvm_mmu_page *parent,
2132                                    struct list_head *invalid_list)
2133 {
2134         int i, zapped = 0;
2135         struct mmu_page_path parents;
2136         struct kvm_mmu_pages pages;
2137
2138         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2139                 return 0;
2140
2141         kvm_mmu_pages_init(parent, &parents, &pages);
2142         while (mmu_unsync_walk(parent, &pages)) {
2143                 struct kvm_mmu_page *sp;
2144
2145                 for_each_sp(pages, sp, parents, i) {
2146                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2147                         mmu_pages_clear_parents(&parents);
2148                         zapped++;
2149                 }
2150                 kvm_mmu_pages_init(parent, &parents, &pages);
2151         }
2152
2153         return zapped;
2154 }
2155
2156 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2157                                     struct list_head *invalid_list)
2158 {
2159         int ret;
2160
2161         trace_kvm_mmu_prepare_zap_page(sp);
2162         ++kvm->stat.mmu_shadow_zapped;
2163         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2164         kvm_mmu_page_unlink_children(kvm, sp);
2165         kvm_mmu_unlink_parents(kvm, sp);
2166
2167         if (!sp->role.invalid && !sp->role.direct)
2168                 unaccount_shadowed(kvm, sp->gfn);
2169
2170         if (sp->unsync)
2171                 kvm_unlink_unsync_page(kvm, sp);
2172         if (!sp->root_count) {
2173                 /* Count self */
2174                 ret++;
2175                 list_move(&sp->link, invalid_list);
2176                 kvm_mod_used_mmu_pages(kvm, -1);
2177         } else {
2178                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2179
2180                 /*
2181                  * The obsolete pages can not be used on any vcpus.
2182                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2183                  */
2184                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2185                         kvm_reload_remote_mmus(kvm);
2186         }
2187
2188         sp->role.invalid = 1;
2189         return ret;
2190 }
2191
2192 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2193                                     struct list_head *invalid_list)
2194 {
2195         struct kvm_mmu_page *sp, *nsp;
2196
2197         if (list_empty(invalid_list))
2198                 return;
2199
2200         /*
2201          * wmb: make sure everyone sees our modifications to the page tables
2202          * rmb: make sure we see changes to vcpu->mode
2203          */
2204         smp_mb();
2205
2206         /*
2207          * Wait for all vcpus to exit guest mode and/or lockless shadow
2208          * page table walks.
2209          */
2210         kvm_flush_remote_tlbs(kvm);
2211
2212         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2213                 WARN_ON(!sp->role.invalid || sp->root_count);
2214                 kvm_mmu_free_page(sp);
2215         }
2216 }
2217
2218 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2219                                         struct list_head *invalid_list)
2220 {
2221         struct kvm_mmu_page *sp;
2222
2223         if (list_empty(&kvm->arch.active_mmu_pages))
2224                 return false;
2225
2226         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2227                         struct kvm_mmu_page, link);
2228         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2229
2230         return true;
2231 }
2232
2233 /*
2234  * Changing the number of mmu pages allocated to the vm
2235  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2236  */
2237 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2238 {
2239         LIST_HEAD(invalid_list);
2240
2241         spin_lock(&kvm->mmu_lock);
2242
2243         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2244                 /* Need to free some mmu pages to achieve the goal. */
2245                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2246                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2247                                 break;
2248
2249                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2250                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2251         }
2252
2253         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2254
2255         spin_unlock(&kvm->mmu_lock);
2256 }
2257
2258 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2259 {
2260         struct kvm_mmu_page *sp;
2261         LIST_HEAD(invalid_list);
2262         int r;
2263
2264         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2265         r = 0;
2266         spin_lock(&kvm->mmu_lock);
2267         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2268                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2269                          sp->role.word);
2270                 r = 1;
2271                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2272         }
2273         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2274         spin_unlock(&kvm->mmu_lock);
2275
2276         return r;
2277 }
2278 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2279
2280 /*
2281  * The function is based on mtrr_type_lookup() in
2282  * arch/x86/kernel/cpu/mtrr/generic.c
2283  */
2284 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2285                          u64 start, u64 end)
2286 {
2287         int i;
2288         u64 base, mask;
2289         u8 prev_match, curr_match;
2290         int num_var_ranges = KVM_NR_VAR_MTRR;
2291
2292         if (!mtrr_state->enabled)
2293                 return 0xFF;
2294
2295         /* Make end inclusive end, instead of exclusive */
2296         end--;
2297
2298         /* Look in fixed ranges. Just return the type as per start */
2299         if (mtrr_state->have_fixed && (start < 0x100000)) {
2300                 int idx;
2301
2302                 if (start < 0x80000) {
2303                         idx = 0;
2304                         idx += (start >> 16);
2305                         return mtrr_state->fixed_ranges[idx];
2306                 } else if (start < 0xC0000) {
2307                         idx = 1 * 8;
2308                         idx += ((start - 0x80000) >> 14);
2309                         return mtrr_state->fixed_ranges[idx];
2310                 } else if (start < 0x1000000) {
2311                         idx = 3 * 8;
2312                         idx += ((start - 0xC0000) >> 12);
2313                         return mtrr_state->fixed_ranges[idx];
2314                 }
2315         }
2316
2317         /*
2318          * Look in variable ranges
2319          * Look of multiple ranges matching this address and pick type
2320          * as per MTRR precedence
2321          */
2322         if (!(mtrr_state->enabled & 2))
2323                 return mtrr_state->def_type;
2324
2325         prev_match = 0xFF;
2326         for (i = 0; i < num_var_ranges; ++i) {
2327                 unsigned short start_state, end_state;
2328
2329                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2330                         continue;
2331
2332                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2333                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2334                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2335                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2336
2337                 start_state = ((start & mask) == (base & mask));
2338                 end_state = ((end & mask) == (base & mask));
2339                 if (start_state != end_state)
2340                         return 0xFE;
2341
2342                 if ((start & mask) != (base & mask))
2343                         continue;
2344
2345                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2346                 if (prev_match == 0xFF) {
2347                         prev_match = curr_match;
2348                         continue;
2349                 }
2350
2351                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2352                     curr_match == MTRR_TYPE_UNCACHABLE)
2353                         return MTRR_TYPE_UNCACHABLE;
2354
2355                 if ((prev_match == MTRR_TYPE_WRBACK &&
2356                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2357                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2358                      curr_match == MTRR_TYPE_WRBACK)) {
2359                         prev_match = MTRR_TYPE_WRTHROUGH;
2360                         curr_match = MTRR_TYPE_WRTHROUGH;
2361                 }
2362
2363                 if (prev_match != curr_match)
2364                         return MTRR_TYPE_UNCACHABLE;
2365         }
2366
2367         if (prev_match != 0xFF)
2368                 return prev_match;
2369
2370         return mtrr_state->def_type;
2371 }
2372
2373 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2374 {
2375         u8 mtrr;
2376
2377         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2378                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2379         if (mtrr == 0xfe || mtrr == 0xff)
2380                 mtrr = MTRR_TYPE_WRBACK;
2381         return mtrr;
2382 }
2383 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2384
2385 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2386 {
2387         trace_kvm_mmu_unsync_page(sp);
2388         ++vcpu->kvm->stat.mmu_unsync;
2389         sp->unsync = 1;
2390
2391         kvm_mmu_mark_parents_unsync(sp);
2392 }
2393
2394 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2395 {
2396         struct kvm_mmu_page *s;
2397
2398         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2399                 if (s->unsync)
2400                         continue;
2401                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2402                 __kvm_unsync_page(vcpu, s);
2403         }
2404 }
2405
2406 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2407                                   bool can_unsync)
2408 {
2409         struct kvm_mmu_page *s;
2410         bool need_unsync = false;
2411
2412         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2413                 if (!can_unsync)
2414                         return 1;
2415
2416                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2417                         return 1;
2418
2419                 if (!s->unsync)
2420                         need_unsync = true;
2421         }
2422         if (need_unsync)
2423                 kvm_unsync_pages(vcpu, gfn);
2424         return 0;
2425 }
2426
2427 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2428                     unsigned pte_access, int level,
2429                     gfn_t gfn, pfn_t pfn, bool speculative,
2430                     bool can_unsync, bool host_writable)
2431 {
2432         u64 spte;
2433         int ret = 0;
2434
2435         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2436                 return 0;
2437
2438         spte = PT_PRESENT_MASK;
2439         if (!speculative)
2440                 spte |= shadow_accessed_mask;
2441
2442         if (pte_access & ACC_EXEC_MASK)
2443                 spte |= shadow_x_mask;
2444         else
2445                 spte |= shadow_nx_mask;
2446
2447         if (pte_access & ACC_USER_MASK)
2448                 spte |= shadow_user_mask;
2449
2450         if (level > PT_PAGE_TABLE_LEVEL)
2451                 spte |= PT_PAGE_SIZE_MASK;
2452         if (tdp_enabled)
2453                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2454                         kvm_is_mmio_pfn(pfn));
2455
2456         if (host_writable)
2457                 spte |= SPTE_HOST_WRITEABLE;
2458         else
2459                 pte_access &= ~ACC_WRITE_MASK;
2460
2461         spte |= (u64)pfn << PAGE_SHIFT;
2462
2463         if (pte_access & ACC_WRITE_MASK) {
2464
2465                 /*
2466                  * Other vcpu creates new sp in the window between
2467                  * mapping_level() and acquiring mmu-lock. We can
2468                  * allow guest to retry the access, the mapping can
2469                  * be fixed if guest refault.
2470                  */
2471                 if (level > PT_PAGE_TABLE_LEVEL &&
2472                     has_wrprotected_page(vcpu->kvm, gfn, level))
2473                         goto done;
2474
2475                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2476
2477                 /*
2478                  * Optimization: for pte sync, if spte was writable the hash
2479                  * lookup is unnecessary (and expensive). Write protection
2480                  * is responsibility of mmu_get_page / kvm_sync_page.
2481                  * Same reasoning can be applied to dirty page accounting.
2482                  */
2483                 if (!can_unsync && is_writable_pte(*sptep))
2484                         goto set_pte;
2485
2486                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2487                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2488                                  __func__, gfn);
2489                         ret = 1;
2490                         pte_access &= ~ACC_WRITE_MASK;
2491                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2492                 }
2493         }
2494
2495         if (pte_access & ACC_WRITE_MASK)
2496                 mark_page_dirty(vcpu->kvm, gfn);
2497
2498 set_pte:
2499         if (mmu_spte_update(sptep, spte))
2500                 kvm_flush_remote_tlbs(vcpu->kvm);
2501 done:
2502         return ret;
2503 }
2504
2505 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2506                          unsigned pte_access, int write_fault, int *emulate,
2507                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2508                          bool host_writable)
2509 {
2510         int was_rmapped = 0;
2511         int rmap_count;
2512
2513         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2514                  *sptep, write_fault, gfn);
2515
2516         if (is_rmap_spte(*sptep)) {
2517                 /*
2518                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2519                  * the parent of the now unreachable PTE.
2520                  */
2521                 if (level > PT_PAGE_TABLE_LEVEL &&
2522                     !is_large_pte(*sptep)) {
2523                         struct kvm_mmu_page *child;
2524                         u64 pte = *sptep;
2525
2526                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2527                         drop_parent_pte(child, sptep);
2528                         kvm_flush_remote_tlbs(vcpu->kvm);
2529                 } else if (pfn != spte_to_pfn(*sptep)) {
2530                         pgprintk("hfn old %llx new %llx\n",
2531                                  spte_to_pfn(*sptep), pfn);
2532                         drop_spte(vcpu->kvm, sptep);
2533                         kvm_flush_remote_tlbs(vcpu->kvm);
2534                 } else
2535                         was_rmapped = 1;
2536         }
2537
2538         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2539               true, host_writable)) {
2540                 if (write_fault)
2541                         *emulate = 1;
2542                 kvm_mmu_flush_tlb(vcpu);
2543         }
2544
2545         if (unlikely(is_mmio_spte(*sptep) && emulate))
2546                 *emulate = 1;
2547
2548         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2549         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2550                  is_large_pte(*sptep)? "2MB" : "4kB",
2551                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2552                  *sptep, sptep);
2553         if (!was_rmapped && is_large_pte(*sptep))
2554                 ++vcpu->kvm->stat.lpages;
2555
2556         if (is_shadow_present_pte(*sptep)) {
2557                 if (!was_rmapped) {
2558                         rmap_count = rmap_add(vcpu, sptep, gfn);
2559                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2560                                 rmap_recycle(vcpu, sptep, gfn);
2561                 }
2562         }
2563
2564         kvm_release_pfn_clean(pfn);
2565 }
2566
2567 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2568 {
2569         mmu_free_roots(vcpu);
2570 }
2571
2572 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2573                                      bool no_dirty_log)
2574 {
2575         struct kvm_memory_slot *slot;
2576
2577         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2578         if (!slot)
2579                 return KVM_PFN_ERR_FAULT;
2580
2581         return gfn_to_pfn_memslot_atomic(slot, gfn);
2582 }
2583
2584 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2585                                     struct kvm_mmu_page *sp,
2586                                     u64 *start, u64 *end)
2587 {
2588         struct page *pages[PTE_PREFETCH_NUM];
2589         unsigned access = sp->role.access;
2590         int i, ret;
2591         gfn_t gfn;
2592
2593         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2594         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2595                 return -1;
2596
2597         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2598         if (ret <= 0)
2599                 return -1;
2600
2601         for (i = 0; i < ret; i++, gfn++, start++)
2602                 mmu_set_spte(vcpu, start, access, 0, NULL,
2603                              sp->role.level, gfn, page_to_pfn(pages[i]),
2604                              true, true);
2605
2606         return 0;
2607 }
2608
2609 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2610                                   struct kvm_mmu_page *sp, u64 *sptep)
2611 {
2612         u64 *spte, *start = NULL;
2613         int i;
2614
2615         WARN_ON(!sp->role.direct);
2616
2617         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2618         spte = sp->spt + i;
2619
2620         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2621                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2622                         if (!start)
2623                                 continue;
2624                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2625                                 break;
2626                         start = NULL;
2627                 } else if (!start)
2628                         start = spte;
2629         }
2630 }
2631
2632 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2633 {
2634         struct kvm_mmu_page *sp;
2635
2636         /*
2637          * Since it's no accessed bit on EPT, it's no way to
2638          * distinguish between actually accessed translations
2639          * and prefetched, so disable pte prefetch if EPT is
2640          * enabled.
2641          */
2642         if (!shadow_accessed_mask)
2643                 return;
2644
2645         sp = page_header(__pa(sptep));
2646         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2647                 return;
2648
2649         __direct_pte_prefetch(vcpu, sp, sptep);
2650 }
2651
2652 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2653                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2654                         bool prefault)
2655 {
2656         struct kvm_shadow_walk_iterator iterator;
2657         struct kvm_mmu_page *sp;
2658         int emulate = 0;
2659         gfn_t pseudo_gfn;
2660
2661         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2662                 if (iterator.level == level) {
2663                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2664                                      write, &emulate, level, gfn, pfn,
2665                                      prefault, map_writable);
2666                         direct_pte_prefetch(vcpu, iterator.sptep);
2667                         ++vcpu->stat.pf_fixed;
2668                         break;
2669                 }
2670
2671                 if (!is_shadow_present_pte(*iterator.sptep)) {
2672                         u64 base_addr = iterator.addr;
2673
2674                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2675                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2676                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2677                                               iterator.level - 1,
2678                                               1, ACC_ALL, iterator.sptep);
2679
2680                         link_shadow_page(iterator.sptep, sp);
2681                 }
2682         }
2683         return emulate;
2684 }
2685
2686 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2687 {
2688         siginfo_t info;
2689
2690         info.si_signo   = SIGBUS;
2691         info.si_errno   = 0;
2692         info.si_code    = BUS_MCEERR_AR;
2693         info.si_addr    = (void __user *)address;
2694         info.si_addr_lsb = PAGE_SHIFT;
2695
2696         send_sig_info(SIGBUS, &info, tsk);
2697 }
2698
2699 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2700 {
2701         /*
2702          * Do not cache the mmio info caused by writing the readonly gfn
2703          * into the spte otherwise read access on readonly gfn also can
2704          * caused mmio page fault and treat it as mmio access.
2705          * Return 1 to tell kvm to emulate it.
2706          */
2707         if (pfn == KVM_PFN_ERR_RO_FAULT)
2708                 return 1;
2709
2710         if (pfn == KVM_PFN_ERR_HWPOISON) {
2711                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2712                 return 0;
2713         }
2714
2715         return -EFAULT;
2716 }
2717
2718 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2719                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2720 {
2721         pfn_t pfn = *pfnp;
2722         gfn_t gfn = *gfnp;
2723         int level = *levelp;
2724
2725         /*
2726          * Check if it's a transparent hugepage. If this would be an
2727          * hugetlbfs page, level wouldn't be set to
2728          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2729          * here.
2730          */
2731         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2732             level == PT_PAGE_TABLE_LEVEL &&
2733             PageTransCompound(pfn_to_page(pfn)) &&
2734             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2735                 unsigned long mask;
2736                 /*
2737                  * mmu_notifier_retry was successful and we hold the
2738                  * mmu_lock here, so the pmd can't become splitting
2739                  * from under us, and in turn
2740                  * __split_huge_page_refcount() can't run from under
2741                  * us and we can safely transfer the refcount from
2742                  * PG_tail to PG_head as we switch the pfn to tail to
2743                  * head.
2744                  */
2745                 *levelp = level = PT_DIRECTORY_LEVEL;
2746                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2747                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2748                 if (pfn & mask) {
2749                         gfn &= ~mask;
2750                         *gfnp = gfn;
2751                         kvm_release_pfn_clean(pfn);
2752                         pfn &= ~mask;
2753                         kvm_get_pfn(pfn);
2754                         *pfnp = pfn;
2755                 }
2756         }
2757 }
2758
2759 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2760                                 pfn_t pfn, unsigned access, int *ret_val)
2761 {
2762         bool ret = true;
2763
2764         /* The pfn is invalid, report the error! */
2765         if (unlikely(is_error_pfn(pfn))) {
2766                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2767                 goto exit;
2768         }
2769
2770         if (unlikely(is_noslot_pfn(pfn)))
2771                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2772
2773         ret = false;
2774 exit:
2775         return ret;
2776 }
2777
2778 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2779 {
2780         /*
2781          * Do not fix the mmio spte with invalid generation number which
2782          * need to be updated by slow page fault path.
2783          */
2784         if (unlikely(error_code & PFERR_RSVD_MASK))
2785                 return false;
2786
2787         /*
2788          * #PF can be fast only if the shadow page table is present and it
2789          * is caused by write-protect, that means we just need change the
2790          * W bit of the spte which can be done out of mmu-lock.
2791          */
2792         if (!(error_code & PFERR_PRESENT_MASK) ||
2793               !(error_code & PFERR_WRITE_MASK))
2794                 return false;
2795
2796         return true;
2797 }
2798
2799 static bool
2800 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2801 {
2802         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2803         gfn_t gfn;
2804
2805         WARN_ON(!sp->role.direct);
2806
2807         /*
2808          * The gfn of direct spte is stable since it is calculated
2809          * by sp->gfn.
2810          */
2811         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2812
2813         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2814                 mark_page_dirty(vcpu->kvm, gfn);
2815
2816         return true;
2817 }
2818
2819 /*
2820  * Return value:
2821  * - true: let the vcpu to access on the same address again.
2822  * - false: let the real page fault path to fix it.
2823  */
2824 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2825                             u32 error_code)
2826 {
2827         struct kvm_shadow_walk_iterator iterator;
2828         bool ret = false;
2829         u64 spte = 0ull;
2830
2831         if (!page_fault_can_be_fast(vcpu, error_code))
2832                 return false;
2833
2834         walk_shadow_page_lockless_begin(vcpu);
2835         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2836                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2837                         break;
2838
2839         /*
2840          * If the mapping has been changed, let the vcpu fault on the
2841          * same address again.
2842          */
2843         if (!is_rmap_spte(spte)) {
2844                 ret = true;
2845                 goto exit;
2846         }
2847
2848         if (!is_last_spte(spte, level))
2849                 goto exit;
2850
2851         /*
2852          * Check if it is a spurious fault caused by TLB lazily flushed.
2853          *
2854          * Need not check the access of upper level table entries since
2855          * they are always ACC_ALL.
2856          */
2857          if (is_writable_pte(spte)) {
2858                 ret = true;
2859                 goto exit;
2860         }
2861
2862         /*
2863          * Currently, to simplify the code, only the spte write-protected
2864          * by dirty-log can be fast fixed.
2865          */
2866         if (!spte_is_locklessly_modifiable(spte))
2867                 goto exit;
2868
2869         /*
2870          * Currently, fast page fault only works for direct mapping since
2871          * the gfn is not stable for indirect shadow page.
2872          * See Documentation/virtual/kvm/locking.txt to get more detail.
2873          */
2874         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2875 exit:
2876         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2877                               spte, ret);
2878         walk_shadow_page_lockless_end(vcpu);
2879
2880         return ret;
2881 }
2882
2883 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2884                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2885 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2886
2887 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2888                          gfn_t gfn, bool prefault)
2889 {
2890         int r;
2891         int level;
2892         int force_pt_level;
2893         pfn_t pfn;
2894         unsigned long mmu_seq;
2895         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2896
2897         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2898         if (likely(!force_pt_level)) {
2899                 level = mapping_level(vcpu, gfn);
2900                 /*
2901                  * This path builds a PAE pagetable - so we can map
2902                  * 2mb pages at maximum. Therefore check if the level
2903                  * is larger than that.
2904                  */
2905                 if (level > PT_DIRECTORY_LEVEL)
2906                         level = PT_DIRECTORY_LEVEL;
2907
2908                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2909         } else
2910                 level = PT_PAGE_TABLE_LEVEL;
2911
2912         if (fast_page_fault(vcpu, v, level, error_code))
2913                 return 0;
2914
2915         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2916         smp_rmb();
2917
2918         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2919                 return 0;
2920
2921         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2922                 return r;
2923
2924         spin_lock(&vcpu->kvm->mmu_lock);
2925         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2926                 goto out_unlock;
2927         make_mmu_pages_available(vcpu);
2928         if (likely(!force_pt_level))
2929                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2930         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2931                          prefault);
2932         spin_unlock(&vcpu->kvm->mmu_lock);
2933
2934
2935         return r;
2936
2937 out_unlock:
2938         spin_unlock(&vcpu->kvm->mmu_lock);
2939         kvm_release_pfn_clean(pfn);
2940         return 0;
2941 }
2942
2943
2944 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2945 {
2946         int i;
2947         struct kvm_mmu_page *sp;
2948         LIST_HEAD(invalid_list);
2949
2950         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2951                 return;
2952
2953         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2954             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2955              vcpu->arch.mmu.direct_map)) {
2956                 hpa_t root = vcpu->arch.mmu.root_hpa;
2957
2958                 spin_lock(&vcpu->kvm->mmu_lock);
2959                 sp = page_header(root);
2960                 --sp->root_count;
2961                 if (!sp->root_count && sp->role.invalid) {
2962                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2963                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2964                 }
2965                 spin_unlock(&vcpu->kvm->mmu_lock);
2966                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2967                 return;
2968         }
2969
2970         spin_lock(&vcpu->kvm->mmu_lock);
2971         for (i = 0; i < 4; ++i) {
2972                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2973
2974                 if (root) {
2975                         root &= PT64_BASE_ADDR_MASK;
2976                         sp = page_header(root);
2977                         --sp->root_count;
2978                         if (!sp->root_count && sp->role.invalid)
2979                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2980                                                          &invalid_list);
2981                 }
2982                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2983         }
2984         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2985         spin_unlock(&vcpu->kvm->mmu_lock);
2986         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2987 }
2988
2989 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2990 {
2991         int ret = 0;
2992
2993         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2994                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2995                 ret = 1;
2996         }
2997
2998         return ret;
2999 }
3000
3001 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3002 {
3003         struct kvm_mmu_page *sp;
3004         unsigned i;
3005
3006         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3007                 spin_lock(&vcpu->kvm->mmu_lock);
3008                 make_mmu_pages_available(vcpu);
3009                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3010                                       1, ACC_ALL, NULL);
3011                 ++sp->root_count;
3012                 spin_unlock(&vcpu->kvm->mmu_lock);
3013                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3014         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3015                 for (i = 0; i < 4; ++i) {
3016                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3017
3018                         ASSERT(!VALID_PAGE(root));
3019                         spin_lock(&vcpu->kvm->mmu_lock);
3020                         make_mmu_pages_available(vcpu);
3021                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3022                                               i << 30,
3023                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3024                                               NULL);
3025                         root = __pa(sp->spt);
3026                         ++sp->root_count;
3027                         spin_unlock(&vcpu->kvm->mmu_lock);
3028                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3029                 }
3030                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3031         } else
3032                 BUG();
3033
3034         return 0;
3035 }
3036
3037 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3038 {
3039         struct kvm_mmu_page *sp;
3040         u64 pdptr, pm_mask;
3041         gfn_t root_gfn;
3042         int i;
3043
3044         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3045
3046         if (mmu_check_root(vcpu, root_gfn))
3047                 return 1;
3048
3049         /*
3050          * Do we shadow a long mode page table? If so we need to
3051          * write-protect the guests page table root.
3052          */
3053         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3054                 hpa_t root = vcpu->arch.mmu.root_hpa;
3055
3056                 ASSERT(!VALID_PAGE(root));
3057
3058                 spin_lock(&vcpu->kvm->mmu_lock);
3059                 make_mmu_pages_available(vcpu);
3060                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3061                                       0, ACC_ALL, NULL);
3062                 root = __pa(sp->spt);
3063                 ++sp->root_count;
3064                 spin_unlock(&vcpu->kvm->mmu_lock);
3065                 vcpu->arch.mmu.root_hpa = root;
3066                 return 0;
3067         }
3068
3069         /*
3070          * We shadow a 32 bit page table. This may be a legacy 2-level
3071          * or a PAE 3-level page table. In either case we need to be aware that
3072          * the shadow page table may be a PAE or a long mode page table.
3073          */
3074         pm_mask = PT_PRESENT_MASK;
3075         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3076                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3077
3078         for (i = 0; i < 4; ++i) {
3079                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3080
3081                 ASSERT(!VALID_PAGE(root));
3082                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3083                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3084                         if (!is_present_gpte(pdptr)) {
3085                                 vcpu->arch.mmu.pae_root[i] = 0;
3086                                 continue;
3087                         }
3088                         root_gfn = pdptr >> PAGE_SHIFT;
3089                         if (mmu_check_root(vcpu, root_gfn))
3090                                 return 1;
3091                 }
3092                 spin_lock(&vcpu->kvm->mmu_lock);
3093                 make_mmu_pages_available(vcpu);
3094                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3095                                       PT32_ROOT_LEVEL, 0,
3096                                       ACC_ALL, NULL);
3097                 root = __pa(sp->spt);
3098                 ++sp->root_count;
3099                 spin_unlock(&vcpu->kvm->mmu_lock);
3100
3101                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3102         }
3103         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3104
3105         /*
3106          * If we shadow a 32 bit page table with a long mode page
3107          * table we enter this path.
3108          */
3109         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3110                 if (vcpu->arch.mmu.lm_root == NULL) {
3111                         /*
3112                          * The additional page necessary for this is only
3113                          * allocated on demand.
3114                          */
3115
3116                         u64 *lm_root;
3117
3118                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3119                         if (lm_root == NULL)
3120                                 return 1;
3121
3122                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3123
3124                         vcpu->arch.mmu.lm_root = lm_root;
3125                 }
3126
3127                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3128         }
3129
3130         return 0;
3131 }
3132
3133 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3134 {
3135         if (vcpu->arch.mmu.direct_map)
3136                 return mmu_alloc_direct_roots(vcpu);
3137         else
3138                 return mmu_alloc_shadow_roots(vcpu);
3139 }
3140
3141 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3142 {
3143         int i;
3144         struct kvm_mmu_page *sp;
3145
3146         if (vcpu->arch.mmu.direct_map)
3147                 return;
3148
3149         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3150                 return;
3151
3152         vcpu_clear_mmio_info(vcpu, ~0ul);
3153         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3154         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3155                 hpa_t root = vcpu->arch.mmu.root_hpa;
3156                 sp = page_header(root);
3157                 mmu_sync_children(vcpu, sp);
3158                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3159                 return;
3160         }
3161         for (i = 0; i < 4; ++i) {
3162                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3163
3164                 if (root && VALID_PAGE(root)) {
3165                         root &= PT64_BASE_ADDR_MASK;
3166                         sp = page_header(root);
3167                         mmu_sync_children(vcpu, sp);
3168                 }
3169         }
3170         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3171 }
3172
3173 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3174 {
3175         spin_lock(&vcpu->kvm->mmu_lock);
3176         mmu_sync_roots(vcpu);
3177         spin_unlock(&vcpu->kvm->mmu_lock);
3178 }
3179
3180 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3181                                   u32 access, struct x86_exception *exception)
3182 {
3183         if (exception)
3184                 exception->error_code = 0;
3185         return vaddr;
3186 }
3187
3188 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3189                                          u32 access,
3190                                          struct x86_exception *exception)
3191 {
3192         if (exception)
3193                 exception->error_code = 0;
3194         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3195 }
3196
3197 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3198 {
3199         if (direct)
3200                 return vcpu_match_mmio_gpa(vcpu, addr);
3201
3202         return vcpu_match_mmio_gva(vcpu, addr);
3203 }
3204
3205
3206 /*
3207  * On direct hosts, the last spte is only allows two states
3208  * for mmio page fault:
3209  *   - It is the mmio spte
3210  *   - It is zapped or it is being zapped.
3211  *
3212  * This function completely checks the spte when the last spte
3213  * is not the mmio spte.
3214  */
3215 static bool check_direct_spte_mmio_pf(u64 spte)
3216 {
3217         return __check_direct_spte_mmio_pf(spte);
3218 }
3219
3220 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3221 {
3222         struct kvm_shadow_walk_iterator iterator;
3223         u64 spte = 0ull;
3224
3225         walk_shadow_page_lockless_begin(vcpu);
3226         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3227                 if (!is_shadow_present_pte(spte))
3228                         break;
3229         walk_shadow_page_lockless_end(vcpu);
3230
3231         return spte;
3232 }
3233
3234 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3235 {
3236         u64 spte;
3237
3238         if (quickly_check_mmio_pf(vcpu, addr, direct))
3239                 return RET_MMIO_PF_EMULATE;
3240
3241         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3242
3243         if (is_mmio_spte(spte)) {
3244                 gfn_t gfn = get_mmio_spte_gfn(spte);
3245                 unsigned access = get_mmio_spte_access(spte);
3246
3247                 if (!check_mmio_spte(vcpu->kvm, spte))
3248                         return RET_MMIO_PF_INVALID;
3249
3250                 if (direct)
3251                         addr = 0;
3252
3253                 trace_handle_mmio_page_fault(addr, gfn, access);
3254                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3255                 return RET_MMIO_PF_EMULATE;
3256         }
3257
3258         /*
3259          * It's ok if the gva is remapped by other cpus on shadow guest,
3260          * it's a BUG if the gfn is not a mmio page.
3261          */
3262         if (direct && !check_direct_spte_mmio_pf(spte))
3263                 return RET_MMIO_PF_BUG;
3264
3265         /*
3266          * If the page table is zapped by other cpus, let CPU fault again on
3267          * the address.
3268          */
3269         return RET_MMIO_PF_RETRY;
3270 }
3271 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3272
3273 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3274                                   u32 error_code, bool direct)
3275 {
3276         int ret;
3277
3278         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3279         WARN_ON(ret == RET_MMIO_PF_BUG);
3280         return ret;
3281 }
3282
3283 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3284                                 u32 error_code, bool prefault)
3285 {
3286         gfn_t gfn;
3287         int r;
3288
3289         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3290
3291         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3292                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3293
3294                 if (likely(r != RET_MMIO_PF_INVALID))
3295                         return r;
3296         }
3297
3298         r = mmu_topup_memory_caches(vcpu);
3299         if (r)
3300                 return r;
3301
3302         ASSERT(vcpu);
3303         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3304
3305         gfn = gva >> PAGE_SHIFT;
3306
3307         return nonpaging_map(vcpu, gva & PAGE_MASK,
3308                              error_code, gfn, prefault);
3309 }
3310
3311 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3312 {
3313         struct kvm_arch_async_pf arch;
3314
3315         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3316         arch.gfn = gfn;
3317         arch.direct_map = vcpu->arch.mmu.direct_map;
3318         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3319
3320         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3321 }
3322
3323 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3324 {
3325         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3326                      kvm_event_needs_reinjection(vcpu)))
3327                 return false;
3328
3329         return kvm_x86_ops->interrupt_allowed(vcpu);
3330 }
3331
3332 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3333                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3334 {
3335         bool async;
3336
3337         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3338
3339         if (!async)
3340                 return false; /* *pfn has correct page already */
3341
3342         if (!prefault && can_do_async_pf(vcpu)) {
3343                 trace_kvm_try_async_get_page(gva, gfn);
3344                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3345                         trace_kvm_async_pf_doublefault(gva, gfn);
3346                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3347                         return true;
3348                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3349                         return true;
3350         }
3351
3352         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3353
3354         return false;
3355 }
3356
3357 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3358                           bool prefault)
3359 {
3360         pfn_t pfn;
3361         int r;
3362         int level;
3363         int force_pt_level;
3364         gfn_t gfn = gpa >> PAGE_SHIFT;
3365         unsigned long mmu_seq;
3366         int write = error_code & PFERR_WRITE_MASK;
3367         bool map_writable;
3368
3369         ASSERT(vcpu);
3370         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3371
3372         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3373                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3374
3375                 if (likely(r != RET_MMIO_PF_INVALID))
3376                         return r;
3377         }
3378
3379         r = mmu_topup_memory_caches(vcpu);
3380         if (r)
3381                 return r;
3382
3383         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3384         if (likely(!force_pt_level)) {
3385                 level = mapping_level(vcpu, gfn);
3386                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3387         } else
3388                 level = PT_PAGE_TABLE_LEVEL;
3389
3390         if (fast_page_fault(vcpu, gpa, level, error_code))
3391                 return 0;
3392
3393         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3394         smp_rmb();
3395
3396         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3397                 return 0;
3398
3399         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3400                 return r;
3401
3402         spin_lock(&vcpu->kvm->mmu_lock);
3403         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3404                 goto out_unlock;
3405         make_mmu_pages_available(vcpu);
3406         if (likely(!force_pt_level))
3407                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3408         r = __direct_map(vcpu, gpa, write, map_writable,
3409                          level, gfn, pfn, prefault);
3410         spin_unlock(&vcpu->kvm->mmu_lock);
3411
3412         return r;
3413
3414 out_unlock:
3415         spin_unlock(&vcpu->kvm->mmu_lock);
3416         kvm_release_pfn_clean(pfn);
3417         return 0;
3418 }
3419
3420 static void nonpaging_free(struct kvm_vcpu *vcpu)
3421 {
3422         mmu_free_roots(vcpu);
3423 }
3424
3425 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3426                                   struct kvm_mmu *context)
3427 {
3428         context->new_cr3 = nonpaging_new_cr3;
3429         context->page_fault = nonpaging_page_fault;
3430         context->gva_to_gpa = nonpaging_gva_to_gpa;
3431         context->free = nonpaging_free;
3432         context->sync_page = nonpaging_sync_page;
3433         context->invlpg = nonpaging_invlpg;
3434         context->update_pte = nonpaging_update_pte;
3435         context->root_level = 0;
3436         context->shadow_root_level = PT32E_ROOT_LEVEL;
3437         context->root_hpa = INVALID_PAGE;
3438         context->direct_map = true;
3439         context->nx = false;
3440         return 0;
3441 }
3442
3443 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3444 {
3445         ++vcpu->stat.tlb_flush;
3446         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3447 }
3448
3449 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3450 {
3451         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3452         mmu_free_roots(vcpu);
3453 }
3454
3455 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3456 {
3457         return kvm_read_cr3(vcpu);
3458 }
3459
3460 static void inject_page_fault(struct kvm_vcpu *vcpu,
3461                               struct x86_exception *fault)
3462 {
3463         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3464 }
3465
3466 static void paging_free(struct kvm_vcpu *vcpu)
3467 {
3468         nonpaging_free(vcpu);
3469 }
3470
3471 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3472                            unsigned access, int *nr_present)
3473 {
3474         if (unlikely(is_mmio_spte(*sptep))) {
3475                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3476                         mmu_spte_clear_no_track(sptep);
3477                         return true;
3478                 }
3479
3480                 (*nr_present)++;
3481                 mark_mmio_spte(kvm, sptep, gfn, access);
3482                 return true;
3483         }
3484
3485         return false;
3486 }
3487
3488 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3489 {
3490         unsigned index;
3491
3492         index = level - 1;
3493         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3494         return mmu->last_pte_bitmap & (1 << index);
3495 }
3496
3497 #define PTTYPE_EPT 18 /* arbitrary */
3498 #define PTTYPE PTTYPE_EPT
3499 #include "paging_tmpl.h"
3500 #undef PTTYPE
3501
3502 #define PTTYPE 64
3503 #include "paging_tmpl.h"
3504 #undef PTTYPE
3505
3506 #define PTTYPE 32
3507 #include "paging_tmpl.h"
3508 #undef PTTYPE
3509
3510 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3511                                   struct kvm_mmu *context)
3512 {
3513         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3514         u64 exb_bit_rsvd = 0;
3515
3516         if (!context->nx)
3517                 exb_bit_rsvd = rsvd_bits(63, 63);
3518         switch (context->root_level) {
3519         case PT32_ROOT_LEVEL:
3520                 /* no rsvd bits for 2 level 4K page table entries */
3521                 context->rsvd_bits_mask[0][1] = 0;
3522                 context->rsvd_bits_mask[0][0] = 0;
3523                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3524
3525                 if (!is_pse(vcpu)) {
3526                         context->rsvd_bits_mask[1][1] = 0;
3527                         break;
3528                 }
3529
3530                 if (is_cpuid_PSE36())
3531                         /* 36bits PSE 4MB page */
3532                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3533                 else
3534                         /* 32 bits PSE 4MB page */
3535                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3536                 break;
3537         case PT32E_ROOT_LEVEL:
3538                 context->rsvd_bits_mask[0][2] =
3539                         rsvd_bits(maxphyaddr, 63) |
3540                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3541                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3542                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3543                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3544                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3545                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3546                         rsvd_bits(maxphyaddr, 62) |
3547                         rsvd_bits(13, 20);              /* large page */
3548                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3549                 break;
3550         case PT64_ROOT_LEVEL:
3551                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3552                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3553                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3554                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3555                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3556                         rsvd_bits(maxphyaddr, 51);
3557                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3558                         rsvd_bits(maxphyaddr, 51);
3559                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3560                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3561                         rsvd_bits(maxphyaddr, 51) |
3562                         rsvd_bits(13, 29);
3563                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3564                         rsvd_bits(maxphyaddr, 51) |
3565                         rsvd_bits(13, 20);              /* large page */
3566                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3567                 break;
3568         }
3569 }
3570
3571 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3572 {
3573         unsigned bit, byte, pfec;
3574         u8 map;
3575         bool fault, x, w, u, wf, uf, ff, smep;
3576
3577         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3578         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3579                 pfec = byte << 1;
3580                 map = 0;
3581                 wf = pfec & PFERR_WRITE_MASK;
3582                 uf = pfec & PFERR_USER_MASK;
3583                 ff = pfec & PFERR_FETCH_MASK;
3584                 for (bit = 0; bit < 8; ++bit) {
3585                         x = bit & ACC_EXEC_MASK;
3586                         w = bit & ACC_WRITE_MASK;
3587                         u = bit & ACC_USER_MASK;
3588
3589                         /* Not really needed: !nx will cause pte.nx to fault */
3590                         x |= !mmu->nx;
3591                         /* Allow supervisor writes if !cr0.wp */
3592                         w |= !is_write_protection(vcpu) && !uf;
3593                         /* Disallow supervisor fetches of user code if cr4.smep */
3594                         x &= !(smep && u && !uf);
3595
3596                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3597                         map |= fault << bit;
3598                 }
3599                 mmu->permissions[byte] = map;
3600         }
3601 }
3602
3603 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3604 {
3605         u8 map;
3606         unsigned level, root_level = mmu->root_level;
3607         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3608
3609         if (root_level == PT32E_ROOT_LEVEL)
3610                 --root_level;
3611         /* PT_PAGE_TABLE_LEVEL always terminates */
3612         map = 1 | (1 << ps_set_index);
3613         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3614                 if (level <= PT_PDPE_LEVEL
3615                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3616                         map |= 1 << (ps_set_index | (level - 1));
3617         }
3618         mmu->last_pte_bitmap = map;
3619 }
3620
3621 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3622                                         struct kvm_mmu *context,
3623                                         int level)
3624 {
3625         context->nx = is_nx(vcpu);
3626         context->root_level = level;
3627
3628         reset_rsvds_bits_mask(vcpu, context);
3629         update_permission_bitmask(vcpu, context);
3630         update_last_pte_bitmap(vcpu, context);
3631
3632         ASSERT(is_pae(vcpu));
3633         context->new_cr3 = paging_new_cr3;
3634         context->page_fault = paging64_page_fault;
3635         context->gva_to_gpa = paging64_gva_to_gpa;
3636         context->sync_page = paging64_sync_page;
3637         context->invlpg = paging64_invlpg;
3638         context->update_pte = paging64_update_pte;
3639         context->free = paging_free;
3640         context->shadow_root_level = level;
3641         context->root_hpa = INVALID_PAGE;
3642         context->direct_map = false;
3643         return 0;
3644 }
3645
3646 static int paging64_init_context(struct kvm_vcpu *vcpu,
3647                                  struct kvm_mmu *context)
3648 {
3649         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3650 }
3651
3652 static int paging32_init_context(struct kvm_vcpu *vcpu,
3653                                  struct kvm_mmu *context)
3654 {
3655         context->nx = false;
3656         context->root_level = PT32_ROOT_LEVEL;
3657
3658         reset_rsvds_bits_mask(vcpu, context);
3659         update_permission_bitmask(vcpu, context);
3660         update_last_pte_bitmap(vcpu, context);
3661
3662         context->new_cr3 = paging_new_cr3;
3663         context->page_fault = paging32_page_fault;
3664         context->gva_to_gpa = paging32_gva_to_gpa;
3665         context->free = paging_free;
3666         context->sync_page = paging32_sync_page;
3667         context->invlpg = paging32_invlpg;
3668         context->update_pte = paging32_update_pte;
3669         context->shadow_root_level = PT32E_ROOT_LEVEL;
3670         context->root_hpa = INVALID_PAGE;
3671         context->direct_map = false;
3672         return 0;
3673 }
3674
3675 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3676                                   struct kvm_mmu *context)
3677 {
3678         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3679 }
3680
3681 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3682 {
3683         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3684
3685         context->base_role.word = 0;
3686         context->new_cr3 = nonpaging_new_cr3;
3687         context->page_fault = tdp_page_fault;
3688         context->free = nonpaging_free;
3689         context->sync_page = nonpaging_sync_page;
3690         context->invlpg = nonpaging_invlpg;
3691         context->update_pte = nonpaging_update_pte;
3692         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3693         context->root_hpa = INVALID_PAGE;
3694         context->direct_map = true;
3695         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3696         context->get_cr3 = get_cr3;
3697         context->get_pdptr = kvm_pdptr_read;
3698         context->inject_page_fault = kvm_inject_page_fault;
3699
3700         if (!is_paging(vcpu)) {
3701                 context->nx = false;
3702                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3703                 context->root_level = 0;
3704         } else if (is_long_mode(vcpu)) {
3705                 context->nx = is_nx(vcpu);
3706                 context->root_level = PT64_ROOT_LEVEL;
3707                 reset_rsvds_bits_mask(vcpu, context);
3708                 context->gva_to_gpa = paging64_gva_to_gpa;
3709         } else if (is_pae(vcpu)) {
3710                 context->nx = is_nx(vcpu);
3711                 context->root_level = PT32E_ROOT_LEVEL;
3712                 reset_rsvds_bits_mask(vcpu, context);
3713                 context->gva_to_gpa = paging64_gva_to_gpa;
3714         } else {
3715                 context->nx = false;
3716                 context->root_level = PT32_ROOT_LEVEL;
3717                 reset_rsvds_bits_mask(vcpu, context);
3718                 context->gva_to_gpa = paging32_gva_to_gpa;
3719         }
3720
3721         update_permission_bitmask(vcpu, context);
3722         update_last_pte_bitmap(vcpu, context);
3723
3724         return 0;
3725 }
3726
3727 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3728 {
3729         int r;
3730         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3731         ASSERT(vcpu);
3732         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3733
3734         if (!is_paging(vcpu))
3735                 r = nonpaging_init_context(vcpu, context);
3736         else if (is_long_mode(vcpu))
3737                 r = paging64_init_context(vcpu, context);
3738         else if (is_pae(vcpu))
3739                 r = paging32E_init_context(vcpu, context);
3740         else
3741                 r = paging32_init_context(vcpu, context);
3742
3743         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3744         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3745         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3746         vcpu->arch.mmu.base_role.smep_andnot_wp
3747                 = smep && !is_write_protection(vcpu);
3748
3749         return r;
3750 }
3751 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3752
3753 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3754 {
3755         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3756
3757         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3758         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3759         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3760         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3761
3762         return r;
3763 }
3764
3765 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3766 {
3767         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3768
3769         g_context->get_cr3           = get_cr3;
3770         g_context->get_pdptr         = kvm_pdptr_read;
3771         g_context->inject_page_fault = kvm_inject_page_fault;
3772
3773         /*
3774          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3775          * translation of l2_gpa to l1_gpa addresses is done using the
3776          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3777          * functions between mmu and nested_mmu are swapped.
3778          */
3779         if (!is_paging(vcpu)) {
3780                 g_context->nx = false;
3781                 g_context->root_level = 0;
3782                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3783         } else if (is_long_mode(vcpu)) {
3784                 g_context->nx = is_nx(vcpu);
3785                 g_context->root_level = PT64_ROOT_LEVEL;
3786                 reset_rsvds_bits_mask(vcpu, g_context);
3787                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3788         } else if (is_pae(vcpu)) {
3789                 g_context->nx = is_nx(vcpu);
3790                 g_context->root_level = PT32E_ROOT_LEVEL;
3791                 reset_rsvds_bits_mask(vcpu, g_context);
3792                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3793         } else {
3794                 g_context->nx = false;
3795                 g_context->root_level = PT32_ROOT_LEVEL;
3796                 reset_rsvds_bits_mask(vcpu, g_context);
3797                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3798         }
3799
3800         update_permission_bitmask(vcpu, g_context);
3801         update_last_pte_bitmap(vcpu, g_context);
3802
3803         return 0;
3804 }
3805
3806 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3807 {
3808         if (mmu_is_nested(vcpu))
3809                 return init_kvm_nested_mmu(vcpu);
3810         else if (tdp_enabled)
3811                 return init_kvm_tdp_mmu(vcpu);
3812         else
3813                 return init_kvm_softmmu(vcpu);
3814 }
3815
3816 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3817 {
3818         ASSERT(vcpu);
3819         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3820                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3821                 vcpu->arch.mmu.free(vcpu);
3822 }
3823
3824 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3825 {
3826         destroy_kvm_mmu(vcpu);
3827         return init_kvm_mmu(vcpu);
3828 }
3829 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3830
3831 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3832 {
3833         int r;
3834
3835         r = mmu_topup_memory_caches(vcpu);
3836         if (r)
3837                 goto out;
3838         r = mmu_alloc_roots(vcpu);
3839         kvm_mmu_sync_roots(vcpu);
3840         if (r)
3841                 goto out;
3842         /* set_cr3() should ensure TLB has been flushed */
3843         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3844 out:
3845         return r;
3846 }
3847 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3848
3849 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3850 {
3851         mmu_free_roots(vcpu);
3852 }
3853 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3854
3855 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3856                                   struct kvm_mmu_page *sp, u64 *spte,
3857                                   const void *new)
3858 {
3859         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3860                 ++vcpu->kvm->stat.mmu_pde_zapped;
3861                 return;
3862         }
3863
3864         ++vcpu->kvm->stat.mmu_pte_updated;
3865         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3866 }
3867
3868 static bool need_remote_flush(u64 old, u64 new)
3869 {
3870         if (!is_shadow_present_pte(old))
3871                 return false;
3872         if (!is_shadow_present_pte(new))
3873                 return true;
3874         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3875                 return true;
3876         old ^= PT64_NX_MASK;
3877         new ^= PT64_NX_MASK;
3878         return (old & ~new & PT64_PERM_MASK) != 0;
3879 }
3880
3881 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3882                                     bool remote_flush, bool local_flush)
3883 {
3884         if (zap_page)
3885                 return;
3886
3887         if (remote_flush)
3888                 kvm_flush_remote_tlbs(vcpu->kvm);
3889         else if (local_flush)
3890                 kvm_mmu_flush_tlb(vcpu);
3891 }
3892
3893 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3894                                     const u8 *new, int *bytes)
3895 {
3896         u64 gentry;
3897         int r;
3898
3899         /*
3900          * Assume that the pte write on a page table of the same type
3901          * as the current vcpu paging mode since we update the sptes only
3902          * when they have the same mode.
3903          */
3904         if (is_pae(vcpu) && *bytes == 4) {
3905                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3906                 *gpa &= ~(gpa_t)7;
3907                 *bytes = 8;
3908                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3909                 if (r)
3910                         gentry = 0;
3911                 new = (const u8 *)&gentry;
3912         }
3913
3914         switch (*bytes) {
3915         case 4:
3916                 gentry = *(const u32 *)new;
3917                 break;
3918         case 8:
3919                 gentry = *(const u64 *)new;
3920                 break;
3921         default:
3922                 gentry = 0;
3923                 break;
3924         }
3925
3926         return gentry;
3927 }
3928
3929 /*
3930  * If we're seeing too many writes to a page, it may no longer be a page table,
3931  * or we may be forking, in which case it is better to unmap the page.
3932  */
3933 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3934 {
3935         /*
3936          * Skip write-flooding detected for the sp whose level is 1, because
3937          * it can become unsync, then the guest page is not write-protected.
3938          */
3939         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3940                 return false;
3941
3942         return ++sp->write_flooding_count >= 3;
3943 }
3944
3945 /*
3946  * Misaligned accesses are too much trouble to fix up; also, they usually
3947  * indicate a page is not used as a page table.
3948  */
3949 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3950                                     int bytes)
3951 {
3952         unsigned offset, pte_size, misaligned;
3953
3954         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3955                  gpa, bytes, sp->role.word);
3956
3957         offset = offset_in_page(gpa);
3958         pte_size = sp->role.cr4_pae ? 8 : 4;
3959
3960         /*
3961          * Sometimes, the OS only writes the last one bytes to update status
3962          * bits, for example, in linux, andb instruction is used in clear_bit().
3963          */
3964         if (!(offset & (pte_size - 1)) && bytes == 1)
3965                 return false;
3966
3967         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3968         misaligned |= bytes < 4;
3969
3970         return misaligned;
3971 }
3972
3973 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3974 {
3975         unsigned page_offset, quadrant;
3976         u64 *spte;
3977         int level;
3978
3979         page_offset = offset_in_page(gpa);
3980         level = sp->role.level;
3981         *nspte = 1;
3982         if (!sp->role.cr4_pae) {
3983                 page_offset <<= 1;      /* 32->64 */
3984                 /*
3985                  * A 32-bit pde maps 4MB while the shadow pdes map
3986                  * only 2MB.  So we need to double the offset again
3987                  * and zap two pdes instead of one.
3988                  */
3989                 if (level == PT32_ROOT_LEVEL) {
3990                         page_offset &= ~7; /* kill rounding error */
3991                         page_offset <<= 1;
3992                         *nspte = 2;
3993                 }
3994                 quadrant = page_offset >> PAGE_SHIFT;
3995                 page_offset &= ~PAGE_MASK;
3996                 if (quadrant != sp->role.quadrant)
3997                         return NULL;
3998         }
3999
4000         spte = &sp->spt[page_offset / sizeof(*spte)];
4001         return spte;
4002 }
4003
4004 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4005                        const u8 *new, int bytes)
4006 {
4007         gfn_t gfn = gpa >> PAGE_SHIFT;
4008         union kvm_mmu_page_role mask = { .word = 0 };
4009         struct kvm_mmu_page *sp;
4010         LIST_HEAD(invalid_list);
4011         u64 entry, gentry, *spte;
4012         int npte;
4013         bool remote_flush, local_flush, zap_page;
4014
4015         /*
4016          * If we don't have indirect shadow pages, it means no page is
4017          * write-protected, so we can exit simply.
4018          */
4019         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4020                 return;
4021
4022         zap_page = remote_flush = local_flush = false;
4023
4024         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4025
4026         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4027
4028         /*
4029          * No need to care whether allocation memory is successful
4030          * or not since pte prefetch is skiped if it does not have
4031          * enough objects in the cache.
4032          */
4033         mmu_topup_memory_caches(vcpu);
4034
4035         spin_lock(&vcpu->kvm->mmu_lock);
4036         ++vcpu->kvm->stat.mmu_pte_write;
4037         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4038
4039         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4040         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4041                 if (detect_write_misaligned(sp, gpa, bytes) ||
4042                       detect_write_flooding(sp)) {
4043                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4044                                                      &invalid_list);
4045                         ++vcpu->kvm->stat.mmu_flooded;
4046                         continue;
4047                 }
4048
4049                 spte = get_written_sptes(sp, gpa, &npte);
4050                 if (!spte)
4051                         continue;
4052
4053                 local_flush = true;
4054                 while (npte--) {
4055                         entry = *spte;
4056                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4057                         if (gentry &&
4058                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4059                               & mask.word) && rmap_can_add(vcpu))
4060                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4061                         if (need_remote_flush(entry, *spte))
4062                                 remote_flush = true;
4063                         ++spte;
4064                 }
4065         }
4066         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4067         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4068         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4069         spin_unlock(&vcpu->kvm->mmu_lock);
4070 }
4071
4072 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4073 {
4074         gpa_t gpa;
4075         int r;
4076
4077         if (vcpu->arch.mmu.direct_map)
4078                 return 0;
4079
4080         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4081
4082         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4083
4084         return r;
4085 }
4086 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4087
4088 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4089 {
4090         LIST_HEAD(invalid_list);
4091
4092         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4093                 return;
4094
4095         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4096                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4097                         break;
4098
4099                 ++vcpu->kvm->stat.mmu_recycled;
4100         }
4101         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4102 }
4103
4104 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4105 {
4106         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4107                 return vcpu_match_mmio_gpa(vcpu, addr);
4108
4109         return vcpu_match_mmio_gva(vcpu, addr);
4110 }
4111
4112 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4113                        void *insn, int insn_len)
4114 {
4115         int r, emulation_type = EMULTYPE_RETRY;
4116         enum emulation_result er;
4117
4118         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4119         if (r < 0)
4120                 goto out;
4121
4122         if (!r) {
4123                 r = 1;
4124                 goto out;
4125         }
4126
4127         if (is_mmio_page_fault(vcpu, cr2))
4128                 emulation_type = 0;
4129
4130         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4131
4132         switch (er) {
4133         case EMULATE_DONE:
4134                 return 1;
4135         case EMULATE_USER_EXIT:
4136                 ++vcpu->stat.mmio_exits;
4137                 /* fall through */
4138         case EMULATE_FAIL:
4139                 return 0;
4140         default:
4141                 BUG();
4142         }
4143 out:
4144         return r;
4145 }
4146 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4147
4148 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4149 {
4150         vcpu->arch.mmu.invlpg(vcpu, gva);
4151         kvm_mmu_flush_tlb(vcpu);
4152         ++vcpu->stat.invlpg;
4153 }
4154 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4155
4156 void kvm_enable_tdp(void)
4157 {
4158         tdp_enabled = true;
4159 }
4160 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4161
4162 void kvm_disable_tdp(void)
4163 {
4164         tdp_enabled = false;
4165 }
4166 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4167
4168 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4169 {
4170         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4171         if (vcpu->arch.mmu.lm_root != NULL)
4172                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4173 }
4174
4175 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4176 {
4177         struct page *page;
4178         int i;
4179
4180         ASSERT(vcpu);
4181
4182         /*
4183          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4184          * Therefore we need to allocate shadow page tables in the first
4185          * 4GB of memory, which happens to fit the DMA32 zone.
4186          */
4187         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4188         if (!page)
4189                 return -ENOMEM;
4190
4191         vcpu->arch.mmu.pae_root = page_address(page);
4192         for (i = 0; i < 4; ++i)
4193                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4194
4195         return 0;
4196 }
4197
4198 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4199 {
4200         ASSERT(vcpu);
4201
4202         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4203         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4204         vcpu->arch.mmu.translate_gpa = translate_gpa;
4205         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4206
4207         return alloc_mmu_pages(vcpu);
4208 }
4209
4210 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4211 {
4212         ASSERT(vcpu);
4213         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4214
4215         return init_kvm_mmu(vcpu);
4216 }
4217
4218 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4219 {
4220         struct kvm_memory_slot *memslot;
4221         gfn_t last_gfn;
4222         int i;
4223
4224         memslot = id_to_memslot(kvm->memslots, slot);
4225         last_gfn = memslot->base_gfn + memslot->npages - 1;
4226
4227         spin_lock(&kvm->mmu_lock);
4228
4229         for (i = PT_PAGE_TABLE_LEVEL;
4230              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4231                 unsigned long *rmapp;
4232                 unsigned long last_index, index;
4233
4234                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4235                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4236
4237                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4238                         if (*rmapp)
4239                                 __rmap_write_protect(kvm, rmapp, false);
4240
4241                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4242                                 kvm_flush_remote_tlbs(kvm);
4243                                 cond_resched_lock(&kvm->mmu_lock);
4244                         }
4245                 }
4246         }
4247
4248         kvm_flush_remote_tlbs(kvm);
4249         spin_unlock(&kvm->mmu_lock);
4250 }
4251
4252 #define BATCH_ZAP_PAGES 10
4253 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4254 {
4255         struct kvm_mmu_page *sp, *node;
4256         int batch = 0;
4257
4258 restart:
4259         list_for_each_entry_safe_reverse(sp, node,
4260               &kvm->arch.active_mmu_pages, link) {
4261                 int ret;
4262
4263                 /*
4264                  * No obsolete page exists before new created page since
4265                  * active_mmu_pages is the FIFO list.
4266                  */
4267                 if (!is_obsolete_sp(kvm, sp))
4268                         break;
4269
4270                 /*
4271                  * Since we are reversely walking the list and the invalid
4272                  * list will be moved to the head, skip the invalid page
4273                  * can help us to avoid the infinity list walking.
4274                  */
4275                 if (sp->role.invalid)
4276                         continue;
4277
4278                 /*
4279                  * Need not flush tlb since we only zap the sp with invalid
4280                  * generation number.
4281                  */
4282                 if (batch >= BATCH_ZAP_PAGES &&
4283                       cond_resched_lock(&kvm->mmu_lock)) {
4284                         batch = 0;
4285                         goto restart;
4286                 }
4287
4288                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4289                                 &kvm->arch.zapped_obsolete_pages);
4290                 batch += ret;
4291
4292                 if (ret)
4293                         goto restart;
4294         }
4295
4296         /*
4297          * Should flush tlb before free page tables since lockless-walking
4298          * may use the pages.
4299          */
4300         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4301 }
4302
4303 /*
4304  * Fast invalidate all shadow pages and use lock-break technique
4305  * to zap obsolete pages.
4306  *
4307  * It's required when memslot is being deleted or VM is being
4308  * destroyed, in these cases, we should ensure that KVM MMU does
4309  * not use any resource of the being-deleted slot or all slots
4310  * after calling the function.
4311  */
4312 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4313 {
4314         spin_lock(&kvm->mmu_lock);
4315         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4316         kvm->arch.mmu_valid_gen++;
4317
4318         /*
4319          * Notify all vcpus to reload its shadow page table
4320          * and flush TLB. Then all vcpus will switch to new
4321          * shadow page table with the new mmu_valid_gen.
4322          *
4323          * Note: we should do this under the protection of
4324          * mmu-lock, otherwise, vcpu would purge shadow page
4325          * but miss tlb flush.
4326          */
4327         kvm_reload_remote_mmus(kvm);
4328
4329         kvm_zap_obsolete_pages(kvm);
4330         spin_unlock(&kvm->mmu_lock);
4331 }
4332
4333 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4334 {
4335         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4336 }
4337
4338 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4339 {
4340         /*
4341          * The very rare case: if the generation-number is round,
4342          * zap all shadow pages.
4343          */
4344         if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
4345                 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4346                 kvm_mmu_invalidate_zap_all_pages(kvm);
4347         }
4348 }
4349
4350 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4351 {
4352         struct kvm *kvm;
4353         int nr_to_scan = sc->nr_to_scan;
4354
4355         if (nr_to_scan == 0)
4356                 goto out;
4357
4358         raw_spin_lock(&kvm_lock);
4359
4360         list_for_each_entry(kvm, &vm_list, vm_list) {
4361                 int idx;
4362                 LIST_HEAD(invalid_list);
4363
4364                 /*
4365                  * Never scan more than sc->nr_to_scan VM instances.
4366                  * Will not hit this condition practically since we do not try
4367                  * to shrink more than one VM and it is very unlikely to see
4368                  * !n_used_mmu_pages so many times.
4369                  */
4370                 if (!nr_to_scan--)
4371                         break;
4372                 /*
4373                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4374                  * here. We may skip a VM instance errorneosly, but we do not
4375                  * want to shrink a VM that only started to populate its MMU
4376                  * anyway.
4377                  */
4378                 if (!kvm->arch.n_used_mmu_pages &&
4379                       !kvm_has_zapped_obsolete_pages(kvm))
4380                         continue;
4381
4382                 idx = srcu_read_lock(&kvm->srcu);
4383                 spin_lock(&kvm->mmu_lock);
4384
4385                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4386                         kvm_mmu_commit_zap_page(kvm,
4387                               &kvm->arch.zapped_obsolete_pages);
4388                         goto unlock;
4389                 }
4390
4391                 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4392                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4393
4394 unlock:
4395                 spin_unlock(&kvm->mmu_lock);
4396                 srcu_read_unlock(&kvm->srcu, idx);
4397
4398                 list_move_tail(&kvm->vm_list, &vm_list);
4399                 break;
4400         }
4401
4402         raw_spin_unlock(&kvm_lock);
4403
4404 out:
4405         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4406 }
4407
4408 static struct shrinker mmu_shrinker = {
4409         .shrink = mmu_shrink,
4410         .seeks = DEFAULT_SEEKS * 10,
4411 };
4412
4413 static void mmu_destroy_caches(void)
4414 {
4415         if (pte_list_desc_cache)
4416                 kmem_cache_destroy(pte_list_desc_cache);
4417         if (mmu_page_header_cache)
4418                 kmem_cache_destroy(mmu_page_header_cache);
4419 }
4420
4421 int kvm_mmu_module_init(void)
4422 {
4423         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4424                                             sizeof(struct pte_list_desc),
4425                                             0, 0, NULL);
4426         if (!pte_list_desc_cache)
4427                 goto nomem;
4428
4429         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4430                                                   sizeof(struct kvm_mmu_page),
4431                                                   0, 0, NULL);
4432         if (!mmu_page_header_cache)
4433                 goto nomem;
4434
4435         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4436                 goto nomem;
4437
4438         register_shrinker(&mmu_shrinker);
4439
4440         return 0;
4441
4442 nomem:
4443         mmu_destroy_caches();
4444         return -ENOMEM;
4445 }
4446
4447 /*
4448  * Caculate mmu pages needed for kvm.
4449  */
4450 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4451 {
4452         unsigned int nr_mmu_pages;
4453         unsigned int  nr_pages = 0;
4454         struct kvm_memslots *slots;
4455         struct kvm_memory_slot *memslot;
4456
4457         slots = kvm_memslots(kvm);
4458
4459         kvm_for_each_memslot(memslot, slots)
4460                 nr_pages += memslot->npages;
4461
4462         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4463         nr_mmu_pages = max(nr_mmu_pages,
4464                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4465
4466         return nr_mmu_pages;
4467 }
4468
4469 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4470 {
4471         struct kvm_shadow_walk_iterator iterator;
4472         u64 spte;
4473         int nr_sptes = 0;
4474
4475         walk_shadow_page_lockless_begin(vcpu);
4476         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4477                 sptes[iterator.level-1] = spte;
4478                 nr_sptes++;
4479                 if (!is_shadow_present_pte(spte))
4480                         break;
4481         }
4482         walk_shadow_page_lockless_end(vcpu);
4483
4484         return nr_sptes;
4485 }
4486 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4487
4488 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4489 {
4490         ASSERT(vcpu);
4491
4492         destroy_kvm_mmu(vcpu);
4493         free_mmu_pages(vcpu);
4494         mmu_free_memory_caches(vcpu);
4495 }
4496
4497 void kvm_mmu_module_exit(void)
4498 {
4499         mmu_destroy_caches();
4500         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4501         unregister_shrinker(&mmu_shrinker);
4502         mmu_audit_disable();
4503 }