Merge remote-tracking branch 'spi/for-5.10' into spi-5.11
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / tdp_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "mmu.h"
4 #include "mmu_internal.h"
5 #include "mmutrace.h"
6 #include "tdp_iter.h"
7 #include "tdp_mmu.h"
8 #include "spte.h"
9
10 #ifdef CONFIG_X86_64
11 static bool __read_mostly tdp_mmu_enabled = false;
12 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
13 #endif
14
15 static bool is_tdp_mmu_enabled(void)
16 {
17 #ifdef CONFIG_X86_64
18         return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
19 #else
20         return false;
21 #endif /* CONFIG_X86_64 */
22 }
23
24 /* Initializes the TDP MMU for the VM, if enabled. */
25 void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
26 {
27         if (!is_tdp_mmu_enabled())
28                 return;
29
30         /* This should not be changed for the lifetime of the VM. */
31         kvm->arch.tdp_mmu_enabled = true;
32
33         INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
34         INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
35 }
36
37 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
38 {
39         if (!kvm->arch.tdp_mmu_enabled)
40                 return;
41
42         WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
43 }
44
45 #define for_each_tdp_mmu_root(_kvm, _root)                          \
46         list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
47
48 bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
49 {
50         struct kvm_mmu_page *sp;
51
52         if (!kvm->arch.tdp_mmu_enabled)
53                 return false;
54         if (WARN_ON(!VALID_PAGE(hpa)))
55                 return false;
56
57         sp = to_shadow_page(hpa);
58         if (WARN_ON(!sp))
59                 return false;
60
61         return sp->tdp_mmu_page && sp->root_count;
62 }
63
64 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
65                           gfn_t start, gfn_t end, bool can_yield);
66
67 void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
68 {
69         gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT);
70
71         lockdep_assert_held(&kvm->mmu_lock);
72
73         WARN_ON(root->root_count);
74         WARN_ON(!root->tdp_mmu_page);
75
76         list_del(&root->link);
77
78         zap_gfn_range(kvm, root, 0, max_gfn, false);
79
80         free_page((unsigned long)root->spt);
81         kmem_cache_free(mmu_page_header_cache, root);
82 }
83
84 static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
85                                                    int level)
86 {
87         union kvm_mmu_page_role role;
88
89         role = vcpu->arch.mmu->mmu_role.base;
90         role.level = level;
91         role.direct = true;
92         role.gpte_is_8_bytes = true;
93         role.access = ACC_ALL;
94
95         return role;
96 }
97
98 static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
99                                                int level)
100 {
101         struct kvm_mmu_page *sp;
102
103         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
104         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
105         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
106
107         sp->role.word = page_role_for_level(vcpu, level).word;
108         sp->gfn = gfn;
109         sp->tdp_mmu_page = true;
110
111         return sp;
112 }
113
114 static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
115 {
116         union kvm_mmu_page_role role;
117         struct kvm *kvm = vcpu->kvm;
118         struct kvm_mmu_page *root;
119
120         role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
121
122         spin_lock(&kvm->mmu_lock);
123
124         /* Check for an existing root before allocating a new one. */
125         for_each_tdp_mmu_root(kvm, root) {
126                 if (root->role.word == role.word) {
127                         kvm_mmu_get_root(kvm, root);
128                         spin_unlock(&kvm->mmu_lock);
129                         return root;
130                 }
131         }
132
133         root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
134         root->root_count = 1;
135
136         list_add(&root->link, &kvm->arch.tdp_mmu_roots);
137
138         spin_unlock(&kvm->mmu_lock);
139
140         return root;
141 }
142
143 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
144 {
145         struct kvm_mmu_page *root;
146
147         root = get_tdp_mmu_vcpu_root(vcpu);
148         if (!root)
149                 return INVALID_PAGE;
150
151         return __pa(root->spt);
152 }
153
154 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
155                                 u64 old_spte, u64 new_spte, int level);
156
157 static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
158 {
159         return sp->role.smm ? 1 : 0;
160 }
161
162 static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
163 {
164         bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
165
166         if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
167                 return;
168
169         if (is_accessed_spte(old_spte) &&
170             (!is_accessed_spte(new_spte) || pfn_changed))
171                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
172 }
173
174 static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
175                                           u64 old_spte, u64 new_spte, int level)
176 {
177         bool pfn_changed;
178         struct kvm_memory_slot *slot;
179
180         if (level > PG_LEVEL_4K)
181                 return;
182
183         pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
184
185         if ((!is_writable_pte(old_spte) || pfn_changed) &&
186             is_writable_pte(new_spte)) {
187                 slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
188                 mark_page_dirty_in_slot(slot, gfn);
189         }
190 }
191
192 /**
193  * handle_changed_spte - handle bookkeeping associated with an SPTE change
194  * @kvm: kvm instance
195  * @as_id: the address space of the paging structure the SPTE was a part of
196  * @gfn: the base GFN that was mapped by the SPTE
197  * @old_spte: The value of the SPTE before the change
198  * @new_spte: The value of the SPTE after the change
199  * @level: the level of the PT the SPTE is part of in the paging structure
200  *
201  * Handle bookkeeping that might result from the modification of a SPTE.
202  * This function must be called for all TDP SPTE modifications.
203  */
204 static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
205                                 u64 old_spte, u64 new_spte, int level)
206 {
207         bool was_present = is_shadow_present_pte(old_spte);
208         bool is_present = is_shadow_present_pte(new_spte);
209         bool was_leaf = was_present && is_last_spte(old_spte, level);
210         bool is_leaf = is_present && is_last_spte(new_spte, level);
211         bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
212         u64 *pt;
213         struct kvm_mmu_page *sp;
214         u64 old_child_spte;
215         int i;
216
217         WARN_ON(level > PT64_ROOT_MAX_LEVEL);
218         WARN_ON(level < PG_LEVEL_4K);
219         WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
220
221         /*
222          * If this warning were to trigger it would indicate that there was a
223          * missing MMU notifier or a race with some notifier handler.
224          * A present, leaf SPTE should never be directly replaced with another
225          * present leaf SPTE pointing to a differnt PFN. A notifier handler
226          * should be zapping the SPTE before the main MM's page table is
227          * changed, or the SPTE should be zeroed, and the TLBs flushed by the
228          * thread before replacement.
229          */
230         if (was_leaf && is_leaf && pfn_changed) {
231                 pr_err("Invalid SPTE change: cannot replace a present leaf\n"
232                        "SPTE with another present leaf SPTE mapping a\n"
233                        "different PFN!\n"
234                        "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
235                        as_id, gfn, old_spte, new_spte, level);
236
237                 /*
238                  * Crash the host to prevent error propagation and guest data
239                  * courruption.
240                  */
241                 BUG();
242         }
243
244         if (old_spte == new_spte)
245                 return;
246
247         /*
248          * The only times a SPTE should be changed from a non-present to
249          * non-present state is when an MMIO entry is installed/modified/
250          * removed. In that case, there is nothing to do here.
251          */
252         if (!was_present && !is_present) {
253                 /*
254                  * If this change does not involve a MMIO SPTE, it is
255                  * unexpected. Log the change, though it should not impact the
256                  * guest since both the former and current SPTEs are nonpresent.
257                  */
258                 if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
259                         pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
260                                "should not be replaced with another,\n"
261                                "different nonpresent SPTE, unless one or both\n"
262                                "are MMIO SPTEs.\n"
263                                "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
264                                as_id, gfn, old_spte, new_spte, level);
265                 return;
266         }
267
268
269         if (was_leaf && is_dirty_spte(old_spte) &&
270             (!is_dirty_spte(new_spte) || pfn_changed))
271                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
272
273         /*
274          * Recursively handle child PTs if the change removed a subtree from
275          * the paging structure.
276          */
277         if (was_present && !was_leaf && (pfn_changed || !is_present)) {
278                 pt = spte_to_child_pt(old_spte, level);
279                 sp = sptep_to_sp(pt);
280
281                 list_del(&sp->link);
282
283                 if (sp->lpage_disallowed)
284                         unaccount_huge_nx_page(kvm, sp);
285
286                 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
287                         old_child_spte = READ_ONCE(*(pt + i));
288                         WRITE_ONCE(*(pt + i), 0);
289                         handle_changed_spte(kvm, as_id,
290                                 gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
291                                 old_child_spte, 0, level - 1);
292                 }
293
294                 kvm_flush_remote_tlbs_with_address(kvm, gfn,
295                                                    KVM_PAGES_PER_HPAGE(level));
296
297                 free_page((unsigned long)pt);
298                 kmem_cache_free(mmu_page_header_cache, sp);
299         }
300 }
301
302 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
303                                 u64 old_spte, u64 new_spte, int level)
304 {
305         __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
306         handle_changed_spte_acc_track(old_spte, new_spte, level);
307         handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
308                                       new_spte, level);
309 }
310
311 static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
312                                       u64 new_spte, bool record_acc_track,
313                                       bool record_dirty_log)
314 {
315         u64 *root_pt = tdp_iter_root_pt(iter);
316         struct kvm_mmu_page *root = sptep_to_sp(root_pt);
317         int as_id = kvm_mmu_page_as_id(root);
318
319         WRITE_ONCE(*iter->sptep, new_spte);
320
321         __handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
322                               iter->level);
323         if (record_acc_track)
324                 handle_changed_spte_acc_track(iter->old_spte, new_spte,
325                                               iter->level);
326         if (record_dirty_log)
327                 handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
328                                               iter->old_spte, new_spte,
329                                               iter->level);
330 }
331
332 static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
333                                     u64 new_spte)
334 {
335         __tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
336 }
337
338 static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
339                                                  struct tdp_iter *iter,
340                                                  u64 new_spte)
341 {
342         __tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
343 }
344
345 static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
346                                                  struct tdp_iter *iter,
347                                                  u64 new_spte)
348 {
349         __tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
350 }
351
352 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
353         for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
354
355 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)  \
356         tdp_root_for_each_pte(_iter, _root, _start, _end)               \
357                 if (!is_shadow_present_pte(_iter.old_spte) ||           \
358                     !is_last_spte(_iter.old_spte, _iter.level))         \
359                         continue;                                       \
360                 else
361
362 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)         \
363         for_each_tdp_pte(_iter, __va(_mmu->root_hpa),           \
364                          _mmu->shadow_root_level, _start, _end)
365
366 /*
367  * Flush the TLB if the process should drop kvm->mmu_lock.
368  * Return whether the caller still needs to flush the tlb.
369  */
370 static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
371 {
372         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
373                 kvm_flush_remote_tlbs(kvm);
374                 cond_resched_lock(&kvm->mmu_lock);
375                 tdp_iter_refresh_walk(iter);
376                 return false;
377         } else {
378                 return true;
379         }
380 }
381
382 static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
383 {
384         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
385                 cond_resched_lock(&kvm->mmu_lock);
386                 tdp_iter_refresh_walk(iter);
387         }
388 }
389
390 /*
391  * Tears down the mappings for the range of gfns, [start, end), and frees the
392  * non-root pages mapping GFNs strictly within that range. Returns true if
393  * SPTEs have been cleared and a TLB flush is needed before releasing the
394  * MMU lock.
395  * If can_yield is true, will release the MMU lock and reschedule if the
396  * scheduler needs the CPU or there is contention on the MMU lock. If this
397  * function cannot yield, it will not release the MMU lock or reschedule and
398  * the caller must ensure it does not supply too large a GFN range, or the
399  * operation can cause a soft lockup.
400  */
401 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
402                           gfn_t start, gfn_t end, bool can_yield)
403 {
404         struct tdp_iter iter;
405         bool flush_needed = false;
406
407         tdp_root_for_each_pte(iter, root, start, end) {
408                 if (!is_shadow_present_pte(iter.old_spte))
409                         continue;
410
411                 /*
412                  * If this is a non-last-level SPTE that covers a larger range
413                  * than should be zapped, continue, and zap the mappings at a
414                  * lower level.
415                  */
416                 if ((iter.gfn < start ||
417                      iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
418                     !is_last_spte(iter.old_spte, iter.level))
419                         continue;
420
421                 tdp_mmu_set_spte(kvm, &iter, 0);
422
423                 if (can_yield)
424                         flush_needed = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
425                 else
426                         flush_needed = true;
427         }
428         return flush_needed;
429 }
430
431 /*
432  * Tears down the mappings for the range of gfns, [start, end), and frees the
433  * non-root pages mapping GFNs strictly within that range. Returns true if
434  * SPTEs have been cleared and a TLB flush is needed before releasing the
435  * MMU lock.
436  */
437 bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
438 {
439         struct kvm_mmu_page *root;
440         bool flush = false;
441
442         for_each_tdp_mmu_root(kvm, root) {
443                 /*
444                  * Take a reference on the root so that it cannot be freed if
445                  * this thread releases the MMU lock and yields in this loop.
446                  */
447                 kvm_mmu_get_root(kvm, root);
448
449                 flush |= zap_gfn_range(kvm, root, start, end, true);
450
451                 kvm_mmu_put_root(kvm, root);
452         }
453
454         return flush;
455 }
456
457 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
458 {
459         gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT);
460         bool flush;
461
462         flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
463         if (flush)
464                 kvm_flush_remote_tlbs(kvm);
465 }
466
467 /*
468  * Installs a last-level SPTE to handle a TDP page fault.
469  * (NPT/EPT violation/misconfiguration)
470  */
471 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
472                                           int map_writable,
473                                           struct tdp_iter *iter,
474                                           kvm_pfn_t pfn, bool prefault)
475 {
476         u64 new_spte;
477         int ret = 0;
478         int make_spte_ret = 0;
479
480         if (unlikely(is_noslot_pfn(pfn))) {
481                 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
482                 trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
483         } else
484                 make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
485                                          pfn, iter->old_spte, prefault, true,
486                                          map_writable, !shadow_accessed_mask,
487                                          &new_spte);
488
489         if (new_spte == iter->old_spte)
490                 ret = RET_PF_SPURIOUS;
491         else
492                 tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
493
494         /*
495          * If the page fault was caused by a write but the page is write
496          * protected, emulation is needed. If the emulation was skipped,
497          * the vCPU would have the same fault again.
498          */
499         if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
500                 if (write)
501                         ret = RET_PF_EMULATE;
502                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
503         }
504
505         /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
506         if (unlikely(is_mmio_spte(new_spte)))
507                 ret = RET_PF_EMULATE;
508
509         trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
510         if (!prefault)
511                 vcpu->stat.pf_fixed++;
512
513         return ret;
514 }
515
516 /*
517  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
518  * page tables and SPTEs to translate the faulting guest physical address.
519  */
520 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
521                     int map_writable, int max_level, kvm_pfn_t pfn,
522                     bool prefault)
523 {
524         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
525         bool write = error_code & PFERR_WRITE_MASK;
526         bool exec = error_code & PFERR_FETCH_MASK;
527         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
528         struct kvm_mmu *mmu = vcpu->arch.mmu;
529         struct tdp_iter iter;
530         struct kvm_mmu_page *sp;
531         u64 *child_pt;
532         u64 new_spte;
533         int ret;
534         gfn_t gfn = gpa >> PAGE_SHIFT;
535         int level;
536         int req_level;
537
538         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
539                 return RET_PF_RETRY;
540         if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
541                 return RET_PF_RETRY;
542
543         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
544                                         huge_page_disallowed, &req_level);
545
546         trace_kvm_mmu_spte_requested(gpa, level, pfn);
547         tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
548                 if (nx_huge_page_workaround_enabled)
549                         disallowed_hugepage_adjust(iter.old_spte, gfn,
550                                                    iter.level, &pfn, &level);
551
552                 if (iter.level == level)
553                         break;
554
555                 /*
556                  * If there is an SPTE mapping a large page at a higher level
557                  * than the target, that SPTE must be cleared and replaced
558                  * with a non-leaf SPTE.
559                  */
560                 if (is_shadow_present_pte(iter.old_spte) &&
561                     is_large_pte(iter.old_spte)) {
562                         tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
563
564                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
565                                         KVM_PAGES_PER_HPAGE(iter.level));
566
567                         /*
568                          * The iter must explicitly re-read the spte here
569                          * because the new value informs the !present
570                          * path below.
571                          */
572                         iter.old_spte = READ_ONCE(*iter.sptep);
573                 }
574
575                 if (!is_shadow_present_pte(iter.old_spte)) {
576                         sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
577                         list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
578                         child_pt = sp->spt;
579                         clear_page(child_pt);
580                         new_spte = make_nonleaf_spte(child_pt,
581                                                      !shadow_accessed_mask);
582
583                         trace_kvm_mmu_get_page(sp, true);
584                         if (huge_page_disallowed && req_level >= iter.level)
585                                 account_huge_nx_page(vcpu->kvm, sp);
586
587                         tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
588                 }
589         }
590
591         if (WARN_ON(iter.level != level))
592                 return RET_PF_RETRY;
593
594         ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
595                                               pfn, prefault);
596
597         return ret;
598 }
599
600 static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
601                 unsigned long end, unsigned long data,
602                 int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
603                                struct kvm_mmu_page *root, gfn_t start,
604                                gfn_t end, unsigned long data))
605 {
606         struct kvm_memslots *slots;
607         struct kvm_memory_slot *memslot;
608         struct kvm_mmu_page *root;
609         int ret = 0;
610         int as_id;
611
612         for_each_tdp_mmu_root(kvm, root) {
613                 /*
614                  * Take a reference on the root so that it cannot be freed if
615                  * this thread releases the MMU lock and yields in this loop.
616                  */
617                 kvm_mmu_get_root(kvm, root);
618
619                 as_id = kvm_mmu_page_as_id(root);
620                 slots = __kvm_memslots(kvm, as_id);
621                 kvm_for_each_memslot(memslot, slots) {
622                         unsigned long hva_start, hva_end;
623                         gfn_t gfn_start, gfn_end;
624
625                         hva_start = max(start, memslot->userspace_addr);
626                         hva_end = min(end, memslot->userspace_addr +
627                                       (memslot->npages << PAGE_SHIFT));
628                         if (hva_start >= hva_end)
629                                 continue;
630                         /*
631                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
632                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
633                          */
634                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
635                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
636
637                         ret |= handler(kvm, memslot, root, gfn_start,
638                                        gfn_end, data);
639                 }
640
641                 kvm_mmu_put_root(kvm, root);
642         }
643
644         return ret;
645 }
646
647 static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
648                                      struct kvm_memory_slot *slot,
649                                      struct kvm_mmu_page *root, gfn_t start,
650                                      gfn_t end, unsigned long unused)
651 {
652         return zap_gfn_range(kvm, root, start, end, false);
653 }
654
655 int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
656                               unsigned long end)
657 {
658         return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
659                                             zap_gfn_range_hva_wrapper);
660 }
661
662 /*
663  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
664  * if any of the GFNs in the range have been accessed.
665  */
666 static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
667                          struct kvm_mmu_page *root, gfn_t start, gfn_t end,
668                          unsigned long unused)
669 {
670         struct tdp_iter iter;
671         int young = 0;
672         u64 new_spte = 0;
673
674         tdp_root_for_each_leaf_pte(iter, root, start, end) {
675                 /*
676                  * If we have a non-accessed entry we don't need to change the
677                  * pte.
678                  */
679                 if (!is_accessed_spte(iter.old_spte))
680                         continue;
681
682                 new_spte = iter.old_spte;
683
684                 if (spte_ad_enabled(new_spte)) {
685                         clear_bit((ffs(shadow_accessed_mask) - 1),
686                                   (unsigned long *)&new_spte);
687                 } else {
688                         /*
689                          * Capture the dirty status of the page, so that it doesn't get
690                          * lost when the SPTE is marked for access tracking.
691                          */
692                         if (is_writable_pte(new_spte))
693                                 kvm_set_pfn_dirty(spte_to_pfn(new_spte));
694
695                         new_spte = mark_spte_for_access_track(new_spte);
696                 }
697                 new_spte &= ~shadow_dirty_mask;
698
699                 tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
700                 young = 1;
701         }
702
703         return young;
704 }
705
706 int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
707                               unsigned long end)
708 {
709         return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
710                                             age_gfn_range);
711 }
712
713 static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
714                         struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
715                         unsigned long unused2)
716 {
717         struct tdp_iter iter;
718
719         tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
720                 if (is_accessed_spte(iter.old_spte))
721                         return 1;
722
723         return 0;
724 }
725
726 int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
727 {
728         return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
729                                             test_age_gfn);
730 }
731
732 /*
733  * Handle the changed_pte MMU notifier for the TDP MMU.
734  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
735  * notifier.
736  * Returns non-zero if a flush is needed before releasing the MMU lock.
737  */
738 static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
739                         struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
740                         unsigned long data)
741 {
742         struct tdp_iter iter;
743         pte_t *ptep = (pte_t *)data;
744         kvm_pfn_t new_pfn;
745         u64 new_spte;
746         int need_flush = 0;
747
748         WARN_ON(pte_huge(*ptep));
749
750         new_pfn = pte_pfn(*ptep);
751
752         tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
753                 if (iter.level != PG_LEVEL_4K)
754                         continue;
755
756                 if (!is_shadow_present_pte(iter.old_spte))
757                         break;
758
759                 tdp_mmu_set_spte(kvm, &iter, 0);
760
761                 kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
762
763                 if (!pte_write(*ptep)) {
764                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
765                                         iter.old_spte, new_pfn);
766
767                         tdp_mmu_set_spte(kvm, &iter, new_spte);
768                 }
769
770                 need_flush = 1;
771         }
772
773         if (need_flush)
774                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
775
776         return 0;
777 }
778
779 int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
780                              pte_t *host_ptep)
781 {
782         return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
783                                             (unsigned long)host_ptep,
784                                             set_tdp_spte);
785 }
786
787 /*
788  * Remove write access from all the SPTEs mapping GFNs [start, end). If
789  * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
790  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
791  */
792 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
793                              gfn_t start, gfn_t end, int min_level)
794 {
795         struct tdp_iter iter;
796         u64 new_spte;
797         bool spte_set = false;
798
799         BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
800
801         for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
802                                    min_level, start, end) {
803                 if (!is_shadow_present_pte(iter.old_spte) ||
804                     !is_last_spte(iter.old_spte, iter.level))
805                         continue;
806
807                 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
808
809                 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
810                 spte_set = true;
811
812                 tdp_mmu_iter_cond_resched(kvm, &iter);
813         }
814         return spte_set;
815 }
816
817 /*
818  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
819  * only affect leaf SPTEs down to min_level.
820  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
821  */
822 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
823                              int min_level)
824 {
825         struct kvm_mmu_page *root;
826         int root_as_id;
827         bool spte_set = false;
828
829         for_each_tdp_mmu_root(kvm, root) {
830                 root_as_id = kvm_mmu_page_as_id(root);
831                 if (root_as_id != slot->as_id)
832                         continue;
833
834                 /*
835                  * Take a reference on the root so that it cannot be freed if
836                  * this thread releases the MMU lock and yields in this loop.
837                  */
838                 kvm_mmu_get_root(kvm, root);
839
840                 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
841                              slot->base_gfn + slot->npages, min_level);
842
843                 kvm_mmu_put_root(kvm, root);
844         }
845
846         return spte_set;
847 }
848
849 /*
850  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
851  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
852  * If AD bits are not enabled, this will require clearing the writable bit on
853  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
854  * be flushed.
855  */
856 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
857                            gfn_t start, gfn_t end)
858 {
859         struct tdp_iter iter;
860         u64 new_spte;
861         bool spte_set = false;
862
863         tdp_root_for_each_leaf_pte(iter, root, start, end) {
864                 if (spte_ad_need_write_protect(iter.old_spte)) {
865                         if (is_writable_pte(iter.old_spte))
866                                 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
867                         else
868                                 continue;
869                 } else {
870                         if (iter.old_spte & shadow_dirty_mask)
871                                 new_spte = iter.old_spte & ~shadow_dirty_mask;
872                         else
873                                 continue;
874                 }
875
876                 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
877                 spte_set = true;
878
879                 tdp_mmu_iter_cond_resched(kvm, &iter);
880         }
881         return spte_set;
882 }
883
884 /*
885  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
886  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
887  * If AD bits are not enabled, this will require clearing the writable bit on
888  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
889  * be flushed.
890  */
891 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
892 {
893         struct kvm_mmu_page *root;
894         int root_as_id;
895         bool spte_set = false;
896
897         for_each_tdp_mmu_root(kvm, root) {
898                 root_as_id = kvm_mmu_page_as_id(root);
899                 if (root_as_id != slot->as_id)
900                         continue;
901
902                 /*
903                  * Take a reference on the root so that it cannot be freed if
904                  * this thread releases the MMU lock and yields in this loop.
905                  */
906                 kvm_mmu_get_root(kvm, root);
907
908                 spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
909                                 slot->base_gfn + slot->npages);
910
911                 kvm_mmu_put_root(kvm, root);
912         }
913
914         return spte_set;
915 }
916
917 /*
918  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
919  * set in mask, starting at gfn. The given memslot is expected to contain all
920  * the GFNs represented by set bits in the mask. If AD bits are enabled,
921  * clearing the dirty status will involve clearing the dirty bit on each SPTE
922  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
923  */
924 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
925                                   gfn_t gfn, unsigned long mask, bool wrprot)
926 {
927         struct tdp_iter iter;
928         u64 new_spte;
929
930         tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
931                                     gfn + BITS_PER_LONG) {
932                 if (!mask)
933                         break;
934
935                 if (iter.level > PG_LEVEL_4K ||
936                     !(mask & (1UL << (iter.gfn - gfn))))
937                         continue;
938
939                 if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
940                         if (is_writable_pte(iter.old_spte))
941                                 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
942                         else
943                                 continue;
944                 } else {
945                         if (iter.old_spte & shadow_dirty_mask)
946                                 new_spte = iter.old_spte & ~shadow_dirty_mask;
947                         else
948                                 continue;
949                 }
950
951                 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
952
953                 mask &= ~(1UL << (iter.gfn - gfn));
954         }
955 }
956
957 /*
958  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
959  * set in mask, starting at gfn. The given memslot is expected to contain all
960  * the GFNs represented by set bits in the mask. If AD bits are enabled,
961  * clearing the dirty status will involve clearing the dirty bit on each SPTE
962  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
963  */
964 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
965                                        struct kvm_memory_slot *slot,
966                                        gfn_t gfn, unsigned long mask,
967                                        bool wrprot)
968 {
969         struct kvm_mmu_page *root;
970         int root_as_id;
971
972         lockdep_assert_held(&kvm->mmu_lock);
973         for_each_tdp_mmu_root(kvm, root) {
974                 root_as_id = kvm_mmu_page_as_id(root);
975                 if (root_as_id != slot->as_id)
976                         continue;
977
978                 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
979         }
980 }
981
982 /*
983  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
984  * only used for PML, and so will involve setting the dirty bit on each SPTE.
985  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
986  */
987 static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
988                                 gfn_t start, gfn_t end)
989 {
990         struct tdp_iter iter;
991         u64 new_spte;
992         bool spte_set = false;
993
994         tdp_root_for_each_pte(iter, root, start, end) {
995                 if (!is_shadow_present_pte(iter.old_spte))
996                         continue;
997
998                 new_spte = iter.old_spte | shadow_dirty_mask;
999
1000                 tdp_mmu_set_spte(kvm, &iter, new_spte);
1001                 spte_set = true;
1002
1003                 tdp_mmu_iter_cond_resched(kvm, &iter);
1004         }
1005
1006         return spte_set;
1007 }
1008
1009 /*
1010  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1011  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1012  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1013  */
1014 bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
1015 {
1016         struct kvm_mmu_page *root;
1017         int root_as_id;
1018         bool spte_set = false;
1019
1020         for_each_tdp_mmu_root(kvm, root) {
1021                 root_as_id = kvm_mmu_page_as_id(root);
1022                 if (root_as_id != slot->as_id)
1023                         continue;
1024
1025                 /*
1026                  * Take a reference on the root so that it cannot be freed if
1027                  * this thread releases the MMU lock and yields in this loop.
1028                  */
1029                 kvm_mmu_get_root(kvm, root);
1030
1031                 spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
1032                                 slot->base_gfn + slot->npages);
1033
1034                 kvm_mmu_put_root(kvm, root);
1035         }
1036         return spte_set;
1037 }
1038
1039 /*
1040  * Clear non-leaf entries (and free associated page tables) which could
1041  * be replaced by large mappings, for GFNs within the slot.
1042  */
1043 static void zap_collapsible_spte_range(struct kvm *kvm,
1044                                        struct kvm_mmu_page *root,
1045                                        gfn_t start, gfn_t end)
1046 {
1047         struct tdp_iter iter;
1048         kvm_pfn_t pfn;
1049         bool spte_set = false;
1050
1051         tdp_root_for_each_pte(iter, root, start, end) {
1052                 if (!is_shadow_present_pte(iter.old_spte) ||
1053                     is_last_spte(iter.old_spte, iter.level))
1054                         continue;
1055
1056                 pfn = spte_to_pfn(iter.old_spte);
1057                 if (kvm_is_reserved_pfn(pfn) ||
1058                     !PageTransCompoundMap(pfn_to_page(pfn)))
1059                         continue;
1060
1061                 tdp_mmu_set_spte(kvm, &iter, 0);
1062
1063                 spte_set = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
1064         }
1065
1066         if (spte_set)
1067                 kvm_flush_remote_tlbs(kvm);
1068 }
1069
1070 /*
1071  * Clear non-leaf entries (and free associated page tables) which could
1072  * be replaced by large mappings, for GFNs within the slot.
1073  */
1074 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1075                                        const struct kvm_memory_slot *slot)
1076 {
1077         struct kvm_mmu_page *root;
1078         int root_as_id;
1079
1080         for_each_tdp_mmu_root(kvm, root) {
1081                 root_as_id = kvm_mmu_page_as_id(root);
1082                 if (root_as_id != slot->as_id)
1083                         continue;
1084
1085                 /*
1086                  * Take a reference on the root so that it cannot be freed if
1087                  * this thread releases the MMU lock and yields in this loop.
1088                  */
1089                 kvm_mmu_get_root(kvm, root);
1090
1091                 zap_collapsible_spte_range(kvm, root, slot->base_gfn,
1092                                            slot->base_gfn + slot->npages);
1093
1094                 kvm_mmu_put_root(kvm, root);
1095         }
1096 }
1097
1098 /*
1099  * Removes write access on the last level SPTE mapping this GFN and unsets the
1100  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1101  * Returns true if an SPTE was set and a TLB flush is needed.
1102  */
1103 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1104                               gfn_t gfn)
1105 {
1106         struct tdp_iter iter;
1107         u64 new_spte;
1108         bool spte_set = false;
1109
1110         tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
1111                 if (!is_writable_pte(iter.old_spte))
1112                         break;
1113
1114                 new_spte = iter.old_spte &
1115                         ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1116
1117                 tdp_mmu_set_spte(kvm, &iter, new_spte);
1118                 spte_set = true;
1119         }
1120
1121         return spte_set;
1122 }
1123
1124 /*
1125  * Removes write access on the last level SPTE mapping this GFN and unsets the
1126  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1127  * Returns true if an SPTE was set and a TLB flush is needed.
1128  */
1129 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1130                                    struct kvm_memory_slot *slot, gfn_t gfn)
1131 {
1132         struct kvm_mmu_page *root;
1133         int root_as_id;
1134         bool spte_set = false;
1135
1136         lockdep_assert_held(&kvm->mmu_lock);
1137         for_each_tdp_mmu_root(kvm, root) {
1138                 root_as_id = kvm_mmu_page_as_id(root);
1139                 if (root_as_id != slot->as_id)
1140                         continue;
1141
1142                 spte_set |= write_protect_gfn(kvm, root, gfn);
1143         }
1144         return spte_set;
1145 }
1146
1147 /*
1148  * Return the level of the lowest level SPTE added to sptes.
1149  * That SPTE may be non-present.
1150  */
1151 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
1152 {
1153         struct tdp_iter iter;
1154         struct kvm_mmu *mmu = vcpu->arch.mmu;
1155         int leaf = vcpu->arch.mmu->shadow_root_level;
1156         gfn_t gfn = addr >> PAGE_SHIFT;
1157
1158         tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1159                 leaf = iter.level;
1160                 sptes[leaf - 1] = iter.old_spte;
1161         }
1162
1163         return leaf;
1164 }