Merge tag 'amlogic-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/khilman...
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / tdp_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "mmu.h"
4 #include "mmu_internal.h"
5 #include "mmutrace.h"
6 #include "tdp_iter.h"
7 #include "tdp_mmu.h"
8 #include "spte.h"
9
10 #include <trace/events/kvm.h>
11
12 #ifdef CONFIG_X86_64
13 static bool __read_mostly tdp_mmu_enabled = false;
14 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
15 #endif
16
17 static bool is_tdp_mmu_enabled(void)
18 {
19 #ifdef CONFIG_X86_64
20         return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
21 #else
22         return false;
23 #endif /* CONFIG_X86_64 */
24 }
25
26 /* Initializes the TDP MMU for the VM, if enabled. */
27 void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
28 {
29         if (!is_tdp_mmu_enabled())
30                 return;
31
32         /* This should not be changed for the lifetime of the VM. */
33         kvm->arch.tdp_mmu_enabled = true;
34
35         INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
36         INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
37 }
38
39 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
40 {
41         if (!kvm->arch.tdp_mmu_enabled)
42                 return;
43
44         WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
45 }
46
47 static void tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
48 {
49         if (kvm_mmu_put_root(kvm, root))
50                 kvm_tdp_mmu_free_root(kvm, root);
51 }
52
53 static inline bool tdp_mmu_next_root_valid(struct kvm *kvm,
54                                            struct kvm_mmu_page *root)
55 {
56         lockdep_assert_held(&kvm->mmu_lock);
57
58         if (list_entry_is_head(root, &kvm->arch.tdp_mmu_roots, link))
59                 return false;
60
61         kvm_mmu_get_root(kvm, root);
62         return true;
63
64 }
65
66 static inline struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
67                                                      struct kvm_mmu_page *root)
68 {
69         struct kvm_mmu_page *next_root;
70
71         next_root = list_next_entry(root, link);
72         tdp_mmu_put_root(kvm, root);
73         return next_root;
74 }
75
76 /*
77  * Note: this iterator gets and puts references to the roots it iterates over.
78  * This makes it safe to release the MMU lock and yield within the loop, but
79  * if exiting the loop early, the caller must drop the reference to the most
80  * recent root. (Unless keeping a live reference is desirable.)
81  */
82 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root)                           \
83         for (_root = list_first_entry(&_kvm->arch.tdp_mmu_roots,        \
84                                       typeof(*_root), link);            \
85              tdp_mmu_next_root_valid(_kvm, _root);                      \
86              _root = tdp_mmu_next_root(_kvm, _root))
87
88 #define for_each_tdp_mmu_root(_kvm, _root)                              \
89         list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
90
91 bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
92 {
93         struct kvm_mmu_page *sp;
94
95         if (!kvm->arch.tdp_mmu_enabled)
96                 return false;
97         if (WARN_ON(!VALID_PAGE(hpa)))
98                 return false;
99
100         sp = to_shadow_page(hpa);
101         if (WARN_ON(!sp))
102                 return false;
103
104         return sp->tdp_mmu_page && sp->root_count;
105 }
106
107 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
108                           gfn_t start, gfn_t end, bool can_yield);
109
110 void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
111 {
112         gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
113
114         lockdep_assert_held(&kvm->mmu_lock);
115
116         WARN_ON(root->root_count);
117         WARN_ON(!root->tdp_mmu_page);
118
119         list_del(&root->link);
120
121         zap_gfn_range(kvm, root, 0, max_gfn, false);
122
123         free_page((unsigned long)root->spt);
124         kmem_cache_free(mmu_page_header_cache, root);
125 }
126
127 static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
128                                                    int level)
129 {
130         union kvm_mmu_page_role role;
131
132         role = vcpu->arch.mmu->mmu_role.base;
133         role.level = level;
134         role.direct = true;
135         role.gpte_is_8_bytes = true;
136         role.access = ACC_ALL;
137
138         return role;
139 }
140
141 static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
142                                                int level)
143 {
144         struct kvm_mmu_page *sp;
145
146         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
147         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
148         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
149
150         sp->role.word = page_role_for_level(vcpu, level).word;
151         sp->gfn = gfn;
152         sp->tdp_mmu_page = true;
153
154         trace_kvm_mmu_get_page(sp, true);
155
156         return sp;
157 }
158
159 static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
160 {
161         union kvm_mmu_page_role role;
162         struct kvm *kvm = vcpu->kvm;
163         struct kvm_mmu_page *root;
164
165         role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
166
167         spin_lock(&kvm->mmu_lock);
168
169         /* Check for an existing root before allocating a new one. */
170         for_each_tdp_mmu_root(kvm, root) {
171                 if (root->role.word == role.word) {
172                         kvm_mmu_get_root(kvm, root);
173                         spin_unlock(&kvm->mmu_lock);
174                         return root;
175                 }
176         }
177
178         root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
179         root->root_count = 1;
180
181         list_add(&root->link, &kvm->arch.tdp_mmu_roots);
182
183         spin_unlock(&kvm->mmu_lock);
184
185         return root;
186 }
187
188 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
189 {
190         struct kvm_mmu_page *root;
191
192         root = get_tdp_mmu_vcpu_root(vcpu);
193         if (!root)
194                 return INVALID_PAGE;
195
196         return __pa(root->spt);
197 }
198
199 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
200                                 u64 old_spte, u64 new_spte, int level);
201
202 static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
203 {
204         return sp->role.smm ? 1 : 0;
205 }
206
207 static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
208 {
209         bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
210
211         if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
212                 return;
213
214         if (is_accessed_spte(old_spte) &&
215             (!is_accessed_spte(new_spte) || pfn_changed))
216                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
217 }
218
219 static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
220                                           u64 old_spte, u64 new_spte, int level)
221 {
222         bool pfn_changed;
223         struct kvm_memory_slot *slot;
224
225         if (level > PG_LEVEL_4K)
226                 return;
227
228         pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
229
230         if ((!is_writable_pte(old_spte) || pfn_changed) &&
231             is_writable_pte(new_spte)) {
232                 slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
233                 mark_page_dirty_in_slot(kvm, slot, gfn);
234         }
235 }
236
237 /**
238  * handle_changed_spte - handle bookkeeping associated with an SPTE change
239  * @kvm: kvm instance
240  * @as_id: the address space of the paging structure the SPTE was a part of
241  * @gfn: the base GFN that was mapped by the SPTE
242  * @old_spte: The value of the SPTE before the change
243  * @new_spte: The value of the SPTE after the change
244  * @level: the level of the PT the SPTE is part of in the paging structure
245  *
246  * Handle bookkeeping that might result from the modification of a SPTE.
247  * This function must be called for all TDP SPTE modifications.
248  */
249 static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
250                                 u64 old_spte, u64 new_spte, int level)
251 {
252         bool was_present = is_shadow_present_pte(old_spte);
253         bool is_present = is_shadow_present_pte(new_spte);
254         bool was_leaf = was_present && is_last_spte(old_spte, level);
255         bool is_leaf = is_present && is_last_spte(new_spte, level);
256         bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
257         u64 *pt;
258         struct kvm_mmu_page *sp;
259         u64 old_child_spte;
260         int i;
261
262         WARN_ON(level > PT64_ROOT_MAX_LEVEL);
263         WARN_ON(level < PG_LEVEL_4K);
264         WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
265
266         /*
267          * If this warning were to trigger it would indicate that there was a
268          * missing MMU notifier or a race with some notifier handler.
269          * A present, leaf SPTE should never be directly replaced with another
270          * present leaf SPTE pointing to a differnt PFN. A notifier handler
271          * should be zapping the SPTE before the main MM's page table is
272          * changed, or the SPTE should be zeroed, and the TLBs flushed by the
273          * thread before replacement.
274          */
275         if (was_leaf && is_leaf && pfn_changed) {
276                 pr_err("Invalid SPTE change: cannot replace a present leaf\n"
277                        "SPTE with another present leaf SPTE mapping a\n"
278                        "different PFN!\n"
279                        "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
280                        as_id, gfn, old_spte, new_spte, level);
281
282                 /*
283                  * Crash the host to prevent error propagation and guest data
284                  * courruption.
285                  */
286                 BUG();
287         }
288
289         if (old_spte == new_spte)
290                 return;
291
292         trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
293
294         /*
295          * The only times a SPTE should be changed from a non-present to
296          * non-present state is when an MMIO entry is installed/modified/
297          * removed. In that case, there is nothing to do here.
298          */
299         if (!was_present && !is_present) {
300                 /*
301                  * If this change does not involve a MMIO SPTE, it is
302                  * unexpected. Log the change, though it should not impact the
303                  * guest since both the former and current SPTEs are nonpresent.
304                  */
305                 if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
306                         pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
307                                "should not be replaced with another,\n"
308                                "different nonpresent SPTE, unless one or both\n"
309                                "are MMIO SPTEs.\n"
310                                "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
311                                as_id, gfn, old_spte, new_spte, level);
312                 return;
313         }
314
315
316         if (was_leaf && is_dirty_spte(old_spte) &&
317             (!is_dirty_spte(new_spte) || pfn_changed))
318                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
319
320         /*
321          * Recursively handle child PTs if the change removed a subtree from
322          * the paging structure.
323          */
324         if (was_present && !was_leaf && (pfn_changed || !is_present)) {
325                 pt = spte_to_child_pt(old_spte, level);
326                 sp = sptep_to_sp(pt);
327
328                 trace_kvm_mmu_prepare_zap_page(sp);
329
330                 list_del(&sp->link);
331
332                 if (sp->lpage_disallowed)
333                         unaccount_huge_nx_page(kvm, sp);
334
335                 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
336                         old_child_spte = READ_ONCE(*(pt + i));
337                         WRITE_ONCE(*(pt + i), 0);
338                         handle_changed_spte(kvm, as_id,
339                                 gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
340                                 old_child_spte, 0, level - 1);
341                 }
342
343                 kvm_flush_remote_tlbs_with_address(kvm, gfn,
344                                                    KVM_PAGES_PER_HPAGE(level));
345
346                 free_page((unsigned long)pt);
347                 kmem_cache_free(mmu_page_header_cache, sp);
348         }
349 }
350
351 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
352                                 u64 old_spte, u64 new_spte, int level)
353 {
354         __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
355         handle_changed_spte_acc_track(old_spte, new_spte, level);
356         handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
357                                       new_spte, level);
358 }
359
360 static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
361                                       u64 new_spte, bool record_acc_track,
362                                       bool record_dirty_log)
363 {
364         u64 *root_pt = tdp_iter_root_pt(iter);
365         struct kvm_mmu_page *root = sptep_to_sp(root_pt);
366         int as_id = kvm_mmu_page_as_id(root);
367
368         WRITE_ONCE(*iter->sptep, new_spte);
369
370         __handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
371                               iter->level);
372         if (record_acc_track)
373                 handle_changed_spte_acc_track(iter->old_spte, new_spte,
374                                               iter->level);
375         if (record_dirty_log)
376                 handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
377                                               iter->old_spte, new_spte,
378                                               iter->level);
379 }
380
381 static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
382                                     u64 new_spte)
383 {
384         __tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
385 }
386
387 static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
388                                                  struct tdp_iter *iter,
389                                                  u64 new_spte)
390 {
391         __tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
392 }
393
394 static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
395                                                  struct tdp_iter *iter,
396                                                  u64 new_spte)
397 {
398         __tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
399 }
400
401 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
402         for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
403
404 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)  \
405         tdp_root_for_each_pte(_iter, _root, _start, _end)               \
406                 if (!is_shadow_present_pte(_iter.old_spte) ||           \
407                     !is_last_spte(_iter.old_spte, _iter.level))         \
408                         continue;                                       \
409                 else
410
411 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)         \
412         for_each_tdp_pte(_iter, __va(_mmu->root_hpa),           \
413                          _mmu->shadow_root_level, _start, _end)
414
415 /*
416  * Flush the TLB if the process should drop kvm->mmu_lock.
417  * Return whether the caller still needs to flush the tlb.
418  */
419 static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
420 {
421         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
422                 kvm_flush_remote_tlbs(kvm);
423                 cond_resched_lock(&kvm->mmu_lock);
424                 tdp_iter_refresh_walk(iter);
425                 return false;
426         } else {
427                 return true;
428         }
429 }
430
431 static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
432 {
433         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
434                 cond_resched_lock(&kvm->mmu_lock);
435                 tdp_iter_refresh_walk(iter);
436         }
437 }
438
439 /*
440  * Tears down the mappings for the range of gfns, [start, end), and frees the
441  * non-root pages mapping GFNs strictly within that range. Returns true if
442  * SPTEs have been cleared and a TLB flush is needed before releasing the
443  * MMU lock.
444  * If can_yield is true, will release the MMU lock and reschedule if the
445  * scheduler needs the CPU or there is contention on the MMU lock. If this
446  * function cannot yield, it will not release the MMU lock or reschedule and
447  * the caller must ensure it does not supply too large a GFN range, or the
448  * operation can cause a soft lockup.
449  */
450 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
451                           gfn_t start, gfn_t end, bool can_yield)
452 {
453         struct tdp_iter iter;
454         bool flush_needed = false;
455
456         tdp_root_for_each_pte(iter, root, start, end) {
457                 if (!is_shadow_present_pte(iter.old_spte))
458                         continue;
459
460                 /*
461                  * If this is a non-last-level SPTE that covers a larger range
462                  * than should be zapped, continue, and zap the mappings at a
463                  * lower level.
464                  */
465                 if ((iter.gfn < start ||
466                      iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
467                     !is_last_spte(iter.old_spte, iter.level))
468                         continue;
469
470                 tdp_mmu_set_spte(kvm, &iter, 0);
471
472                 if (can_yield)
473                         flush_needed = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
474                 else
475                         flush_needed = true;
476         }
477         return flush_needed;
478 }
479
480 /*
481  * Tears down the mappings for the range of gfns, [start, end), and frees the
482  * non-root pages mapping GFNs strictly within that range. Returns true if
483  * SPTEs have been cleared and a TLB flush is needed before releasing the
484  * MMU lock.
485  */
486 bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
487 {
488         struct kvm_mmu_page *root;
489         bool flush = false;
490
491         for_each_tdp_mmu_root_yield_safe(kvm, root)
492                 flush |= zap_gfn_range(kvm, root, start, end, true);
493
494         return flush;
495 }
496
497 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
498 {
499         gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
500         bool flush;
501
502         flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
503         if (flush)
504                 kvm_flush_remote_tlbs(kvm);
505 }
506
507 /*
508  * Installs a last-level SPTE to handle a TDP page fault.
509  * (NPT/EPT violation/misconfiguration)
510  */
511 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
512                                           int map_writable,
513                                           struct tdp_iter *iter,
514                                           kvm_pfn_t pfn, bool prefault)
515 {
516         u64 new_spte;
517         int ret = 0;
518         int make_spte_ret = 0;
519
520         if (unlikely(is_noslot_pfn(pfn))) {
521                 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
522                 trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
523         } else {
524                 make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
525                                          pfn, iter->old_spte, prefault, true,
526                                          map_writable, !shadow_accessed_mask,
527                                          &new_spte);
528                 trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
529         }
530
531         if (new_spte == iter->old_spte)
532                 ret = RET_PF_SPURIOUS;
533         else
534                 tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
535
536         /*
537          * If the page fault was caused by a write but the page is write
538          * protected, emulation is needed. If the emulation was skipped,
539          * the vCPU would have the same fault again.
540          */
541         if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
542                 if (write)
543                         ret = RET_PF_EMULATE;
544                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
545         }
546
547         /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
548         if (unlikely(is_mmio_spte(new_spte)))
549                 ret = RET_PF_EMULATE;
550
551         trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
552         if (!prefault)
553                 vcpu->stat.pf_fixed++;
554
555         return ret;
556 }
557
558 /*
559  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
560  * page tables and SPTEs to translate the faulting guest physical address.
561  */
562 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
563                     int map_writable, int max_level, kvm_pfn_t pfn,
564                     bool prefault)
565 {
566         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
567         bool write = error_code & PFERR_WRITE_MASK;
568         bool exec = error_code & PFERR_FETCH_MASK;
569         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
570         struct kvm_mmu *mmu = vcpu->arch.mmu;
571         struct tdp_iter iter;
572         struct kvm_mmu_page *sp;
573         u64 *child_pt;
574         u64 new_spte;
575         int ret;
576         gfn_t gfn = gpa >> PAGE_SHIFT;
577         int level;
578         int req_level;
579
580         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
581                 return RET_PF_RETRY;
582         if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
583                 return RET_PF_RETRY;
584
585         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
586                                         huge_page_disallowed, &req_level);
587
588         trace_kvm_mmu_spte_requested(gpa, level, pfn);
589         tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
590                 if (nx_huge_page_workaround_enabled)
591                         disallowed_hugepage_adjust(iter.old_spte, gfn,
592                                                    iter.level, &pfn, &level);
593
594                 if (iter.level == level)
595                         break;
596
597                 /*
598                  * If there is an SPTE mapping a large page at a higher level
599                  * than the target, that SPTE must be cleared and replaced
600                  * with a non-leaf SPTE.
601                  */
602                 if (is_shadow_present_pte(iter.old_spte) &&
603                     is_large_pte(iter.old_spte)) {
604                         tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
605
606                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
607                                         KVM_PAGES_PER_HPAGE(iter.level));
608
609                         /*
610                          * The iter must explicitly re-read the spte here
611                          * because the new value informs the !present
612                          * path below.
613                          */
614                         iter.old_spte = READ_ONCE(*iter.sptep);
615                 }
616
617                 if (!is_shadow_present_pte(iter.old_spte)) {
618                         sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
619                         list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
620                         child_pt = sp->spt;
621                         clear_page(child_pt);
622                         new_spte = make_nonleaf_spte(child_pt,
623                                                      !shadow_accessed_mask);
624
625                         trace_kvm_mmu_get_page(sp, true);
626                         if (huge_page_disallowed && req_level >= iter.level)
627                                 account_huge_nx_page(vcpu->kvm, sp);
628
629                         tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
630                 }
631         }
632
633         if (WARN_ON(iter.level != level))
634                 return RET_PF_RETRY;
635
636         ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
637                                               pfn, prefault);
638
639         return ret;
640 }
641
642 static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
643                 unsigned long end, unsigned long data,
644                 int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
645                                struct kvm_mmu_page *root, gfn_t start,
646                                gfn_t end, unsigned long data))
647 {
648         struct kvm_memslots *slots;
649         struct kvm_memory_slot *memslot;
650         struct kvm_mmu_page *root;
651         int ret = 0;
652         int as_id;
653
654         for_each_tdp_mmu_root_yield_safe(kvm, root) {
655                 as_id = kvm_mmu_page_as_id(root);
656                 slots = __kvm_memslots(kvm, as_id);
657                 kvm_for_each_memslot(memslot, slots) {
658                         unsigned long hva_start, hva_end;
659                         gfn_t gfn_start, gfn_end;
660
661                         hva_start = max(start, memslot->userspace_addr);
662                         hva_end = min(end, memslot->userspace_addr +
663                                       (memslot->npages << PAGE_SHIFT));
664                         if (hva_start >= hva_end)
665                                 continue;
666                         /*
667                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
668                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
669                          */
670                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
671                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
672
673                         ret |= handler(kvm, memslot, root, gfn_start,
674                                        gfn_end, data);
675                 }
676         }
677
678         return ret;
679 }
680
681 static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
682                                      struct kvm_memory_slot *slot,
683                                      struct kvm_mmu_page *root, gfn_t start,
684                                      gfn_t end, unsigned long unused)
685 {
686         return zap_gfn_range(kvm, root, start, end, false);
687 }
688
689 int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
690                               unsigned long end)
691 {
692         return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
693                                             zap_gfn_range_hva_wrapper);
694 }
695
696 /*
697  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
698  * if any of the GFNs in the range have been accessed.
699  */
700 static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
701                          struct kvm_mmu_page *root, gfn_t start, gfn_t end,
702                          unsigned long unused)
703 {
704         struct tdp_iter iter;
705         int young = 0;
706         u64 new_spte = 0;
707
708         tdp_root_for_each_leaf_pte(iter, root, start, end) {
709                 /*
710                  * If we have a non-accessed entry we don't need to change the
711                  * pte.
712                  */
713                 if (!is_accessed_spte(iter.old_spte))
714                         continue;
715
716                 new_spte = iter.old_spte;
717
718                 if (spte_ad_enabled(new_spte)) {
719                         clear_bit((ffs(shadow_accessed_mask) - 1),
720                                   (unsigned long *)&new_spte);
721                 } else {
722                         /*
723                          * Capture the dirty status of the page, so that it doesn't get
724                          * lost when the SPTE is marked for access tracking.
725                          */
726                         if (is_writable_pte(new_spte))
727                                 kvm_set_pfn_dirty(spte_to_pfn(new_spte));
728
729                         new_spte = mark_spte_for_access_track(new_spte);
730                 }
731                 new_spte &= ~shadow_dirty_mask;
732
733                 tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
734                 young = 1;
735
736                 trace_kvm_age_page(iter.gfn, iter.level, slot, young);
737         }
738
739         return young;
740 }
741
742 int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
743                               unsigned long end)
744 {
745         return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
746                                             age_gfn_range);
747 }
748
749 static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
750                         struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
751                         unsigned long unused2)
752 {
753         struct tdp_iter iter;
754
755         tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
756                 if (is_accessed_spte(iter.old_spte))
757                         return 1;
758
759         return 0;
760 }
761
762 int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
763 {
764         return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
765                                             test_age_gfn);
766 }
767
768 /*
769  * Handle the changed_pte MMU notifier for the TDP MMU.
770  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
771  * notifier.
772  * Returns non-zero if a flush is needed before releasing the MMU lock.
773  */
774 static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
775                         struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
776                         unsigned long data)
777 {
778         struct tdp_iter iter;
779         pte_t *ptep = (pte_t *)data;
780         kvm_pfn_t new_pfn;
781         u64 new_spte;
782         int need_flush = 0;
783
784         WARN_ON(pte_huge(*ptep));
785
786         new_pfn = pte_pfn(*ptep);
787
788         tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
789                 if (iter.level != PG_LEVEL_4K)
790                         continue;
791
792                 if (!is_shadow_present_pte(iter.old_spte))
793                         break;
794
795                 tdp_mmu_set_spte(kvm, &iter, 0);
796
797                 kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
798
799                 if (!pte_write(*ptep)) {
800                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
801                                         iter.old_spte, new_pfn);
802
803                         tdp_mmu_set_spte(kvm, &iter, new_spte);
804                 }
805
806                 need_flush = 1;
807         }
808
809         if (need_flush)
810                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
811
812         return 0;
813 }
814
815 int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
816                              pte_t *host_ptep)
817 {
818         return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
819                                             (unsigned long)host_ptep,
820                                             set_tdp_spte);
821 }
822
823 /*
824  * Remove write access from all the SPTEs mapping GFNs [start, end). If
825  * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
826  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
827  */
828 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
829                              gfn_t start, gfn_t end, int min_level)
830 {
831         struct tdp_iter iter;
832         u64 new_spte;
833         bool spte_set = false;
834
835         BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
836
837         for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
838                                    min_level, start, end) {
839                 if (!is_shadow_present_pte(iter.old_spte) ||
840                     !is_last_spte(iter.old_spte, iter.level))
841                         continue;
842
843                 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
844
845                 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
846                 spte_set = true;
847
848                 tdp_mmu_iter_cond_resched(kvm, &iter);
849         }
850         return spte_set;
851 }
852
853 /*
854  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
855  * only affect leaf SPTEs down to min_level.
856  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
857  */
858 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
859                              int min_level)
860 {
861         struct kvm_mmu_page *root;
862         int root_as_id;
863         bool spte_set = false;
864
865         for_each_tdp_mmu_root_yield_safe(kvm, root) {
866                 root_as_id = kvm_mmu_page_as_id(root);
867                 if (root_as_id != slot->as_id)
868                         continue;
869
870                 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
871                              slot->base_gfn + slot->npages, min_level);
872         }
873
874         return spte_set;
875 }
876
877 /*
878  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
879  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
880  * If AD bits are not enabled, this will require clearing the writable bit on
881  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
882  * be flushed.
883  */
884 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
885                            gfn_t start, gfn_t end)
886 {
887         struct tdp_iter iter;
888         u64 new_spte;
889         bool spte_set = false;
890
891         tdp_root_for_each_leaf_pte(iter, root, start, end) {
892                 if (spte_ad_need_write_protect(iter.old_spte)) {
893                         if (is_writable_pte(iter.old_spte))
894                                 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
895                         else
896                                 continue;
897                 } else {
898                         if (iter.old_spte & shadow_dirty_mask)
899                                 new_spte = iter.old_spte & ~shadow_dirty_mask;
900                         else
901                                 continue;
902                 }
903
904                 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
905                 spte_set = true;
906
907                 tdp_mmu_iter_cond_resched(kvm, &iter);
908         }
909         return spte_set;
910 }
911
912 /*
913  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
914  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
915  * If AD bits are not enabled, this will require clearing the writable bit on
916  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
917  * be flushed.
918  */
919 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
920 {
921         struct kvm_mmu_page *root;
922         int root_as_id;
923         bool spte_set = false;
924
925         for_each_tdp_mmu_root_yield_safe(kvm, root) {
926                 root_as_id = kvm_mmu_page_as_id(root);
927                 if (root_as_id != slot->as_id)
928                         continue;
929
930                 spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
931                                 slot->base_gfn + slot->npages);
932         }
933
934         return spte_set;
935 }
936
937 /*
938  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
939  * set in mask, starting at gfn. The given memslot is expected to contain all
940  * the GFNs represented by set bits in the mask. If AD bits are enabled,
941  * clearing the dirty status will involve clearing the dirty bit on each SPTE
942  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
943  */
944 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
945                                   gfn_t gfn, unsigned long mask, bool wrprot)
946 {
947         struct tdp_iter iter;
948         u64 new_spte;
949
950         tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
951                                     gfn + BITS_PER_LONG) {
952                 if (!mask)
953                         break;
954
955                 if (iter.level > PG_LEVEL_4K ||
956                     !(mask & (1UL << (iter.gfn - gfn))))
957                         continue;
958
959                 if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
960                         if (is_writable_pte(iter.old_spte))
961                                 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
962                         else
963                                 continue;
964                 } else {
965                         if (iter.old_spte & shadow_dirty_mask)
966                                 new_spte = iter.old_spte & ~shadow_dirty_mask;
967                         else
968                                 continue;
969                 }
970
971                 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
972
973                 mask &= ~(1UL << (iter.gfn - gfn));
974         }
975 }
976
977 /*
978  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
979  * set in mask, starting at gfn. The given memslot is expected to contain all
980  * the GFNs represented by set bits in the mask. If AD bits are enabled,
981  * clearing the dirty status will involve clearing the dirty bit on each SPTE
982  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
983  */
984 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
985                                        struct kvm_memory_slot *slot,
986                                        gfn_t gfn, unsigned long mask,
987                                        bool wrprot)
988 {
989         struct kvm_mmu_page *root;
990         int root_as_id;
991
992         lockdep_assert_held(&kvm->mmu_lock);
993         for_each_tdp_mmu_root(kvm, root) {
994                 root_as_id = kvm_mmu_page_as_id(root);
995                 if (root_as_id != slot->as_id)
996                         continue;
997
998                 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
999         }
1000 }
1001
1002 /*
1003  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1004  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1005  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1006  */
1007 static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1008                                 gfn_t start, gfn_t end)
1009 {
1010         struct tdp_iter iter;
1011         u64 new_spte;
1012         bool spte_set = false;
1013
1014         tdp_root_for_each_pte(iter, root, start, end) {
1015                 if (!is_shadow_present_pte(iter.old_spte))
1016                         continue;
1017
1018                 new_spte = iter.old_spte | shadow_dirty_mask;
1019
1020                 tdp_mmu_set_spte(kvm, &iter, new_spte);
1021                 spte_set = true;
1022
1023                 tdp_mmu_iter_cond_resched(kvm, &iter);
1024         }
1025
1026         return spte_set;
1027 }
1028
1029 /*
1030  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1031  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1032  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1033  */
1034 bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
1035 {
1036         struct kvm_mmu_page *root;
1037         int root_as_id;
1038         bool spte_set = false;
1039
1040         for_each_tdp_mmu_root_yield_safe(kvm, root) {
1041                 root_as_id = kvm_mmu_page_as_id(root);
1042                 if (root_as_id != slot->as_id)
1043                         continue;
1044
1045                 spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
1046                                 slot->base_gfn + slot->npages);
1047         }
1048         return spte_set;
1049 }
1050
1051 /*
1052  * Clear non-leaf entries (and free associated page tables) which could
1053  * be replaced by large mappings, for GFNs within the slot.
1054  */
1055 static void zap_collapsible_spte_range(struct kvm *kvm,
1056                                        struct kvm_mmu_page *root,
1057                                        gfn_t start, gfn_t end)
1058 {
1059         struct tdp_iter iter;
1060         kvm_pfn_t pfn;
1061         bool spte_set = false;
1062
1063         tdp_root_for_each_pte(iter, root, start, end) {
1064                 if (!is_shadow_present_pte(iter.old_spte) ||
1065                     is_last_spte(iter.old_spte, iter.level))
1066                         continue;
1067
1068                 pfn = spte_to_pfn(iter.old_spte);
1069                 if (kvm_is_reserved_pfn(pfn) ||
1070                     !PageTransCompoundMap(pfn_to_page(pfn)))
1071                         continue;
1072
1073                 tdp_mmu_set_spte(kvm, &iter, 0);
1074
1075                 spte_set = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
1076         }
1077
1078         if (spte_set)
1079                 kvm_flush_remote_tlbs(kvm);
1080 }
1081
1082 /*
1083  * Clear non-leaf entries (and free associated page tables) which could
1084  * be replaced by large mappings, for GFNs within the slot.
1085  */
1086 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1087                                        const struct kvm_memory_slot *slot)
1088 {
1089         struct kvm_mmu_page *root;
1090         int root_as_id;
1091
1092         for_each_tdp_mmu_root_yield_safe(kvm, root) {
1093                 root_as_id = kvm_mmu_page_as_id(root);
1094                 if (root_as_id != slot->as_id)
1095                         continue;
1096
1097                 zap_collapsible_spte_range(kvm, root, slot->base_gfn,
1098                                            slot->base_gfn + slot->npages);
1099         }
1100 }
1101
1102 /*
1103  * Removes write access on the last level SPTE mapping this GFN and unsets the
1104  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1105  * Returns true if an SPTE was set and a TLB flush is needed.
1106  */
1107 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1108                               gfn_t gfn)
1109 {
1110         struct tdp_iter iter;
1111         u64 new_spte;
1112         bool spte_set = false;
1113
1114         tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
1115                 if (!is_writable_pte(iter.old_spte))
1116                         break;
1117
1118                 new_spte = iter.old_spte &
1119                         ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1120
1121                 tdp_mmu_set_spte(kvm, &iter, new_spte);
1122                 spte_set = true;
1123         }
1124
1125         return spte_set;
1126 }
1127
1128 /*
1129  * Removes write access on the last level SPTE mapping this GFN and unsets the
1130  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1131  * Returns true if an SPTE was set and a TLB flush is needed.
1132  */
1133 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1134                                    struct kvm_memory_slot *slot, gfn_t gfn)
1135 {
1136         struct kvm_mmu_page *root;
1137         int root_as_id;
1138         bool spte_set = false;
1139
1140         lockdep_assert_held(&kvm->mmu_lock);
1141         for_each_tdp_mmu_root(kvm, root) {
1142                 root_as_id = kvm_mmu_page_as_id(root);
1143                 if (root_as_id != slot->as_id)
1144                         continue;
1145
1146                 spte_set |= write_protect_gfn(kvm, root, gfn);
1147         }
1148         return spte_set;
1149 }
1150
1151 /*
1152  * Return the level of the lowest level SPTE added to sptes.
1153  * That SPTE may be non-present.
1154  */
1155 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1156                          int *root_level)
1157 {
1158         struct tdp_iter iter;
1159         struct kvm_mmu *mmu = vcpu->arch.mmu;
1160         gfn_t gfn = addr >> PAGE_SHIFT;
1161         int leaf = -1;
1162
1163         *root_level = vcpu->arch.mmu->shadow_root_level;
1164
1165         tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1166                 leaf = iter.level;
1167                 sptes[leaf] = iter.old_spte;
1168         }
1169
1170         return leaf;
1171 }