Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 #include "paging.h"
57
58 extern bool itlb_multihit_kvm_mitigation;
59
60 int __read_mostly nx_huge_pages = -1;
61 static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 #ifdef CONFIG_PREEMPT_RT
63 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
64 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
65 #else
66 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67 #endif
68
69 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
71
72 static const struct kernel_param_ops nx_huge_pages_ops = {
73         .set = set_nx_huge_pages,
74         .get = param_get_bool,
75 };
76
77 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
78         .set = set_nx_huge_pages_recovery_param,
79         .get = param_get_uint,
80 };
81
82 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
84 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85                 &nx_huge_pages_recovery_ratio, 0644);
86 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
88                 &nx_huge_pages_recovery_period_ms, 0644);
89 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
90
91 static bool __read_mostly force_flush_and_sync_on_reuse;
92 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
93
94 /*
95  * When setting this variable to true it enables Two-Dimensional-Paging
96  * where the hardware walks 2 page tables:
97  * 1. the guest-virtual to guest-physical
98  * 2. while doing 1. it walks guest-physical to host-physical
99  * If the hardware supports that we don't need to do shadow paging.
100  */
101 bool tdp_enabled = false;
102
103 static int max_huge_page_level __read_mostly;
104 static int tdp_root_level __read_mostly;
105 static int max_tdp_level __read_mostly;
106
107 enum {
108         AUDIT_PRE_PAGE_FAULT,
109         AUDIT_POST_PAGE_FAULT,
110         AUDIT_PRE_PTE_WRITE,
111         AUDIT_POST_PTE_WRITE,
112         AUDIT_PRE_SYNC,
113         AUDIT_POST_SYNC
114 };
115
116 #ifdef MMU_DEBUG
117 bool dbg = 0;
118 module_param(dbg, bool, 0644);
119 #endif
120
121 #define PTE_PREFETCH_NUM                8
122
123 #define PT32_LEVEL_BITS 10
124
125 #define PT32_LEVEL_SHIFT(level) \
126                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
127
128 #define PT32_LVL_OFFSET_MASK(level) \
129         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130                                                 * PT32_LEVEL_BITS))) - 1))
131
132 #define PT32_INDEX(address, level)\
133         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
134
135
136 #define PT32_BASE_ADDR_MASK PAGE_MASK
137 #define PT32_DIR_BASE_ADDR_MASK \
138         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139 #define PT32_LVL_ADDR_MASK(level) \
140         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
141                                             * PT32_LEVEL_BITS))) - 1))
142
143 #include <trace/events/kvm.h>
144
145 /* make pte_list_desc fit well in cache lines */
146 #define PTE_LIST_EXT 14
147
148 /*
149  * Slight optimization of cacheline layout, by putting `more' and `spte_count'
150  * at the start; then accessing it will only use one single cacheline for
151  * either full (entries==PTE_LIST_EXT) case or entries<=6.
152  */
153 struct pte_list_desc {
154         struct pte_list_desc *more;
155         /*
156          * Stores number of entries stored in the pte_list_desc.  No need to be
157          * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
158          */
159         u64 spte_count;
160         u64 *sptes[PTE_LIST_EXT];
161 };
162
163 struct kvm_shadow_walk_iterator {
164         u64 addr;
165         hpa_t shadow_addr;
166         u64 *sptep;
167         int level;
168         unsigned index;
169 };
170
171 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
172         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
173                                          (_root), (_addr));                \
174              shadow_walk_okay(&(_walker));                                 \
175              shadow_walk_next(&(_walker)))
176
177 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
178         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
179              shadow_walk_okay(&(_walker));                      \
180              shadow_walk_next(&(_walker)))
181
182 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
183         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
184              shadow_walk_okay(&(_walker)) &&                            \
185                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
186              __shadow_walk_next(&(_walker), spte))
187
188 static struct kmem_cache *pte_list_desc_cache;
189 struct kmem_cache *mmu_page_header_cache;
190 static struct percpu_counter kvm_total_used_mmu_pages;
191
192 static void mmu_spte_set(u64 *sptep, u64 spte);
193 static union kvm_mmu_page_role
194 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
195
196 struct kvm_mmu_role_regs {
197         const unsigned long cr0;
198         const unsigned long cr4;
199         const u64 efer;
200 };
201
202 #define CREATE_TRACE_POINTS
203 #include "mmutrace.h"
204
205 /*
206  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
207  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
208  * the single source of truth for the MMU's state.
209  */
210 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)                   \
211 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
212 {                                                                       \
213         return !!(regs->reg & flag);                                    \
214 }
215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
218 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
219 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
220 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
221 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
222 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
223 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
224 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
225
226 /*
227  * The MMU itself (with a valid role) is the single source of truth for the
228  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
229  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
230  * and the vCPU may be incorrect/irrelevant.
231  */
232 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)         \
233 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)        \
234 {                                                               \
235         return !!(mmu->mmu_role. base_or_ext . reg##_##name);   \
236 }
237 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
238 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
239 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
240 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
241 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
242 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
243 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
244 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
245 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
246
247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
248 {
249         struct kvm_mmu_role_regs regs = {
250                 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
251                 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
252                 .efer = vcpu->arch.efer,
253         };
254
255         return regs;
256 }
257
258 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
259 {
260         if (!____is_cr0_pg(regs))
261                 return 0;
262         else if (____is_efer_lma(regs))
263                 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
264                                                PT64_ROOT_4LEVEL;
265         else if (____is_cr4_pae(regs))
266                 return PT32E_ROOT_LEVEL;
267         else
268                 return PT32_ROOT_LEVEL;
269 }
270
271 static inline bool kvm_available_flush_tlb_with_range(void)
272 {
273         return kvm_x86_ops.tlb_remote_flush_with_range;
274 }
275
276 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
277                 struct kvm_tlb_range *range)
278 {
279         int ret = -ENOTSUPP;
280
281         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
282                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
283
284         if (ret)
285                 kvm_flush_remote_tlbs(kvm);
286 }
287
288 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
289                 u64 start_gfn, u64 pages)
290 {
291         struct kvm_tlb_range range;
292
293         range.start_gfn = start_gfn;
294         range.pages = pages;
295
296         kvm_flush_remote_tlbs_with_range(kvm, &range);
297 }
298
299 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
300                            unsigned int access)
301 {
302         u64 spte = make_mmio_spte(vcpu, gfn, access);
303
304         trace_mark_mmio_spte(sptep, gfn, spte);
305         mmu_spte_set(sptep, spte);
306 }
307
308 static gfn_t get_mmio_spte_gfn(u64 spte)
309 {
310         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
311
312         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
313                & shadow_nonpresent_or_rsvd_mask;
314
315         return gpa >> PAGE_SHIFT;
316 }
317
318 static unsigned get_mmio_spte_access(u64 spte)
319 {
320         return spte & shadow_mmio_access_mask;
321 }
322
323 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
324 {
325         u64 kvm_gen, spte_gen, gen;
326
327         gen = kvm_vcpu_memslots(vcpu)->generation;
328         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
329                 return false;
330
331         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
332         spte_gen = get_mmio_spte_generation(spte);
333
334         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
335         return likely(kvm_gen == spte_gen);
336 }
337
338 static int is_cpuid_PSE36(void)
339 {
340         return 1;
341 }
342
343 static gfn_t pse36_gfn_delta(u32 gpte)
344 {
345         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
346
347         return (gpte & PT32_DIR_PSE36_MASK) << shift;
348 }
349
350 #ifdef CONFIG_X86_64
351 static void __set_spte(u64 *sptep, u64 spte)
352 {
353         WRITE_ONCE(*sptep, spte);
354 }
355
356 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
357 {
358         WRITE_ONCE(*sptep, spte);
359 }
360
361 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
362 {
363         return xchg(sptep, spte);
364 }
365
366 static u64 __get_spte_lockless(u64 *sptep)
367 {
368         return READ_ONCE(*sptep);
369 }
370 #else
371 union split_spte {
372         struct {
373                 u32 spte_low;
374                 u32 spte_high;
375         };
376         u64 spte;
377 };
378
379 static void count_spte_clear(u64 *sptep, u64 spte)
380 {
381         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
382
383         if (is_shadow_present_pte(spte))
384                 return;
385
386         /* Ensure the spte is completely set before we increase the count */
387         smp_wmb();
388         sp->clear_spte_count++;
389 }
390
391 static void __set_spte(u64 *sptep, u64 spte)
392 {
393         union split_spte *ssptep, sspte;
394
395         ssptep = (union split_spte *)sptep;
396         sspte = (union split_spte)spte;
397
398         ssptep->spte_high = sspte.spte_high;
399
400         /*
401          * If we map the spte from nonpresent to present, We should store
402          * the high bits firstly, then set present bit, so cpu can not
403          * fetch this spte while we are setting the spte.
404          */
405         smp_wmb();
406
407         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
408 }
409
410 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
411 {
412         union split_spte *ssptep, sspte;
413
414         ssptep = (union split_spte *)sptep;
415         sspte = (union split_spte)spte;
416
417         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
418
419         /*
420          * If we map the spte from present to nonpresent, we should clear
421          * present bit firstly to avoid vcpu fetch the old high bits.
422          */
423         smp_wmb();
424
425         ssptep->spte_high = sspte.spte_high;
426         count_spte_clear(sptep, spte);
427 }
428
429 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
430 {
431         union split_spte *ssptep, sspte, orig;
432
433         ssptep = (union split_spte *)sptep;
434         sspte = (union split_spte)spte;
435
436         /* xchg acts as a barrier before the setting of the high bits */
437         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
438         orig.spte_high = ssptep->spte_high;
439         ssptep->spte_high = sspte.spte_high;
440         count_spte_clear(sptep, spte);
441
442         return orig.spte;
443 }
444
445 /*
446  * The idea using the light way get the spte on x86_32 guest is from
447  * gup_get_pte (mm/gup.c).
448  *
449  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
450  * coalesces them and we are running out of the MMU lock.  Therefore
451  * we need to protect against in-progress updates of the spte.
452  *
453  * Reading the spte while an update is in progress may get the old value
454  * for the high part of the spte.  The race is fine for a present->non-present
455  * change (because the high part of the spte is ignored for non-present spte),
456  * but for a present->present change we must reread the spte.
457  *
458  * All such changes are done in two steps (present->non-present and
459  * non-present->present), hence it is enough to count the number of
460  * present->non-present updates: if it changed while reading the spte,
461  * we might have hit the race.  This is done using clear_spte_count.
462  */
463 static u64 __get_spte_lockless(u64 *sptep)
464 {
465         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
466         union split_spte spte, *orig = (union split_spte *)sptep;
467         int count;
468
469 retry:
470         count = sp->clear_spte_count;
471         smp_rmb();
472
473         spte.spte_low = orig->spte_low;
474         smp_rmb();
475
476         spte.spte_high = orig->spte_high;
477         smp_rmb();
478
479         if (unlikely(spte.spte_low != orig->spte_low ||
480               count != sp->clear_spte_count))
481                 goto retry;
482
483         return spte.spte;
484 }
485 #endif
486
487 static bool spte_has_volatile_bits(u64 spte)
488 {
489         if (!is_shadow_present_pte(spte))
490                 return false;
491
492         /*
493          * Always atomically update spte if it can be updated
494          * out of mmu-lock, it can ensure dirty bit is not lost,
495          * also, it can help us to get a stable is_writable_pte()
496          * to ensure tlb flush is not missed.
497          */
498         if (spte_can_locklessly_be_made_writable(spte) ||
499             is_access_track_spte(spte))
500                 return true;
501
502         if (spte_ad_enabled(spte)) {
503                 if ((spte & shadow_accessed_mask) == 0 ||
504                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
505                         return true;
506         }
507
508         return false;
509 }
510
511 /* Rules for using mmu_spte_set:
512  * Set the sptep from nonpresent to present.
513  * Note: the sptep being assigned *must* be either not present
514  * or in a state where the hardware will not attempt to update
515  * the spte.
516  */
517 static void mmu_spte_set(u64 *sptep, u64 new_spte)
518 {
519         WARN_ON(is_shadow_present_pte(*sptep));
520         __set_spte(sptep, new_spte);
521 }
522
523 /*
524  * Update the SPTE (excluding the PFN), but do not track changes in its
525  * accessed/dirty status.
526  */
527 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
528 {
529         u64 old_spte = *sptep;
530
531         WARN_ON(!is_shadow_present_pte(new_spte));
532
533         if (!is_shadow_present_pte(old_spte)) {
534                 mmu_spte_set(sptep, new_spte);
535                 return old_spte;
536         }
537
538         if (!spte_has_volatile_bits(old_spte))
539                 __update_clear_spte_fast(sptep, new_spte);
540         else
541                 old_spte = __update_clear_spte_slow(sptep, new_spte);
542
543         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
544
545         return old_spte;
546 }
547
548 /* Rules for using mmu_spte_update:
549  * Update the state bits, it means the mapped pfn is not changed.
550  *
551  * Whenever we overwrite a writable spte with a read-only one we
552  * should flush remote TLBs. Otherwise rmap_write_protect
553  * will find a read-only spte, even though the writable spte
554  * might be cached on a CPU's TLB, the return value indicates this
555  * case.
556  *
557  * Returns true if the TLB needs to be flushed
558  */
559 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
560 {
561         bool flush = false;
562         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
563
564         if (!is_shadow_present_pte(old_spte))
565                 return false;
566
567         /*
568          * For the spte updated out of mmu-lock is safe, since
569          * we always atomically update it, see the comments in
570          * spte_has_volatile_bits().
571          */
572         if (spte_can_locklessly_be_made_writable(old_spte) &&
573               !is_writable_pte(new_spte))
574                 flush = true;
575
576         /*
577          * Flush TLB when accessed/dirty states are changed in the page tables,
578          * to guarantee consistency between TLB and page tables.
579          */
580
581         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
582                 flush = true;
583                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
584         }
585
586         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
587                 flush = true;
588                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
589         }
590
591         return flush;
592 }
593
594 /*
595  * Rules for using mmu_spte_clear_track_bits:
596  * It sets the sptep from present to nonpresent, and track the
597  * state bits, it is used to clear the last level sptep.
598  * Returns the old PTE.
599  */
600 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
601 {
602         kvm_pfn_t pfn;
603         u64 old_spte = *sptep;
604         int level = sptep_to_sp(sptep)->role.level;
605
606         if (!spte_has_volatile_bits(old_spte))
607                 __update_clear_spte_fast(sptep, 0ull);
608         else
609                 old_spte = __update_clear_spte_slow(sptep, 0ull);
610
611         if (!is_shadow_present_pte(old_spte))
612                 return old_spte;
613
614         kvm_update_page_stats(kvm, level, -1);
615
616         pfn = spte_to_pfn(old_spte);
617
618         /*
619          * KVM does not hold the refcount of the page used by
620          * kvm mmu, before reclaiming the page, we should
621          * unmap it from mmu first.
622          */
623         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
624
625         if (is_accessed_spte(old_spte))
626                 kvm_set_pfn_accessed(pfn);
627
628         if (is_dirty_spte(old_spte))
629                 kvm_set_pfn_dirty(pfn);
630
631         return old_spte;
632 }
633
634 /*
635  * Rules for using mmu_spte_clear_no_track:
636  * Directly clear spte without caring the state bits of sptep,
637  * it is used to set the upper level spte.
638  */
639 static void mmu_spte_clear_no_track(u64 *sptep)
640 {
641         __update_clear_spte_fast(sptep, 0ull);
642 }
643
644 static u64 mmu_spte_get_lockless(u64 *sptep)
645 {
646         return __get_spte_lockless(sptep);
647 }
648
649 /* Restore an acc-track PTE back to a regular PTE */
650 static u64 restore_acc_track_spte(u64 spte)
651 {
652         u64 new_spte = spte;
653         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
654                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
655
656         WARN_ON_ONCE(spte_ad_enabled(spte));
657         WARN_ON_ONCE(!is_access_track_spte(spte));
658
659         new_spte &= ~shadow_acc_track_mask;
660         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
661                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
662         new_spte |= saved_bits;
663
664         return new_spte;
665 }
666
667 /* Returns the Accessed status of the PTE and resets it at the same time. */
668 static bool mmu_spte_age(u64 *sptep)
669 {
670         u64 spte = mmu_spte_get_lockless(sptep);
671
672         if (!is_accessed_spte(spte))
673                 return false;
674
675         if (spte_ad_enabled(spte)) {
676                 clear_bit((ffs(shadow_accessed_mask) - 1),
677                           (unsigned long *)sptep);
678         } else {
679                 /*
680                  * Capture the dirty status of the page, so that it doesn't get
681                  * lost when the SPTE is marked for access tracking.
682                  */
683                 if (is_writable_pte(spte))
684                         kvm_set_pfn_dirty(spte_to_pfn(spte));
685
686                 spte = mark_spte_for_access_track(spte);
687                 mmu_spte_update_no_track(sptep, spte);
688         }
689
690         return true;
691 }
692
693 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
694 {
695         if (is_tdp_mmu(vcpu->arch.mmu)) {
696                 kvm_tdp_mmu_walk_lockless_begin();
697         } else {
698                 /*
699                  * Prevent page table teardown by making any free-er wait during
700                  * kvm_flush_remote_tlbs() IPI to all active vcpus.
701                  */
702                 local_irq_disable();
703
704                 /*
705                  * Make sure a following spte read is not reordered ahead of the write
706                  * to vcpu->mode.
707                  */
708                 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
709         }
710 }
711
712 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
713 {
714         if (is_tdp_mmu(vcpu->arch.mmu)) {
715                 kvm_tdp_mmu_walk_lockless_end();
716         } else {
717                 /*
718                  * Make sure the write to vcpu->mode is not reordered in front of
719                  * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
720                  * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
721                  */
722                 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
723                 local_irq_enable();
724         }
725 }
726
727 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
728 {
729         int r;
730
731         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
732         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
733                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
734         if (r)
735                 return r;
736         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
737                                        PT64_ROOT_MAX_LEVEL);
738         if (r)
739                 return r;
740         if (maybe_indirect) {
741                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
742                                                PT64_ROOT_MAX_LEVEL);
743                 if (r)
744                         return r;
745         }
746         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
747                                           PT64_ROOT_MAX_LEVEL);
748 }
749
750 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
751 {
752         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
753         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
754         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
755         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
756 }
757
758 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
759 {
760         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
761 }
762
763 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
764 {
765         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
766 }
767
768 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
769 {
770         if (!sp->role.direct)
771                 return sp->gfns[index];
772
773         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
774 }
775
776 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
777 {
778         if (!sp->role.direct) {
779                 sp->gfns[index] = gfn;
780                 return;
781         }
782
783         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
784                 pr_err_ratelimited("gfn mismatch under direct page %llx "
785                                    "(expected %llx, got %llx)\n",
786                                    sp->gfn,
787                                    kvm_mmu_page_get_gfn(sp, index), gfn);
788 }
789
790 /*
791  * Return the pointer to the large page information for a given gfn,
792  * handling slots that are not large page aligned.
793  */
794 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
795                 const struct kvm_memory_slot *slot, int level)
796 {
797         unsigned long idx;
798
799         idx = gfn_to_index(gfn, slot->base_gfn, level);
800         return &slot->arch.lpage_info[level - 2][idx];
801 }
802
803 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
804                                             gfn_t gfn, int count)
805 {
806         struct kvm_lpage_info *linfo;
807         int i;
808
809         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
810                 linfo = lpage_info_slot(gfn, slot, i);
811                 linfo->disallow_lpage += count;
812                 WARN_ON(linfo->disallow_lpage < 0);
813         }
814 }
815
816 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
817 {
818         update_gfn_disallow_lpage_count(slot, gfn, 1);
819 }
820
821 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
822 {
823         update_gfn_disallow_lpage_count(slot, gfn, -1);
824 }
825
826 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
827 {
828         struct kvm_memslots *slots;
829         struct kvm_memory_slot *slot;
830         gfn_t gfn;
831
832         kvm->arch.indirect_shadow_pages++;
833         gfn = sp->gfn;
834         slots = kvm_memslots_for_spte_role(kvm, sp->role);
835         slot = __gfn_to_memslot(slots, gfn);
836
837         /* the non-leaf shadow pages are keeping readonly. */
838         if (sp->role.level > PG_LEVEL_4K)
839                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
840                                                     KVM_PAGE_TRACK_WRITE);
841
842         kvm_mmu_gfn_disallow_lpage(slot, gfn);
843 }
844
845 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
846 {
847         if (sp->lpage_disallowed)
848                 return;
849
850         ++kvm->stat.nx_lpage_splits;
851         list_add_tail(&sp->lpage_disallowed_link,
852                       &kvm->arch.lpage_disallowed_mmu_pages);
853         sp->lpage_disallowed = true;
854 }
855
856 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
857 {
858         struct kvm_memslots *slots;
859         struct kvm_memory_slot *slot;
860         gfn_t gfn;
861
862         kvm->arch.indirect_shadow_pages--;
863         gfn = sp->gfn;
864         slots = kvm_memslots_for_spte_role(kvm, sp->role);
865         slot = __gfn_to_memslot(slots, gfn);
866         if (sp->role.level > PG_LEVEL_4K)
867                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
868                                                        KVM_PAGE_TRACK_WRITE);
869
870         kvm_mmu_gfn_allow_lpage(slot, gfn);
871 }
872
873 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
874 {
875         --kvm->stat.nx_lpage_splits;
876         sp->lpage_disallowed = false;
877         list_del(&sp->lpage_disallowed_link);
878 }
879
880 static struct kvm_memory_slot *
881 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
882                             bool no_dirty_log)
883 {
884         struct kvm_memory_slot *slot;
885
886         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
887         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
888                 return NULL;
889         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
890                 return NULL;
891
892         return slot;
893 }
894
895 /*
896  * About rmap_head encoding:
897  *
898  * If the bit zero of rmap_head->val is clear, then it points to the only spte
899  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
900  * pte_list_desc containing more mappings.
901  */
902
903 /*
904  * Returns the number of pointers in the rmap chain, not counting the new one.
905  */
906 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
907                         struct kvm_rmap_head *rmap_head)
908 {
909         struct pte_list_desc *desc;
910         int count = 0;
911
912         if (!rmap_head->val) {
913                 rmap_printk("%p %llx 0->1\n", spte, *spte);
914                 rmap_head->val = (unsigned long)spte;
915         } else if (!(rmap_head->val & 1)) {
916                 rmap_printk("%p %llx 1->many\n", spte, *spte);
917                 desc = mmu_alloc_pte_list_desc(vcpu);
918                 desc->sptes[0] = (u64 *)rmap_head->val;
919                 desc->sptes[1] = spte;
920                 desc->spte_count = 2;
921                 rmap_head->val = (unsigned long)desc | 1;
922                 ++count;
923         } else {
924                 rmap_printk("%p %llx many->many\n", spte, *spte);
925                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
926                 while (desc->spte_count == PTE_LIST_EXT) {
927                         count += PTE_LIST_EXT;
928                         if (!desc->more) {
929                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
930                                 desc = desc->more;
931                                 desc->spte_count = 0;
932                                 break;
933                         }
934                         desc = desc->more;
935                 }
936                 count += desc->spte_count;
937                 desc->sptes[desc->spte_count++] = spte;
938         }
939         return count;
940 }
941
942 static void
943 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
944                            struct pte_list_desc *desc, int i,
945                            struct pte_list_desc *prev_desc)
946 {
947         int j = desc->spte_count - 1;
948
949         desc->sptes[i] = desc->sptes[j];
950         desc->sptes[j] = NULL;
951         desc->spte_count--;
952         if (desc->spte_count)
953                 return;
954         if (!prev_desc && !desc->more)
955                 rmap_head->val = 0;
956         else
957                 if (prev_desc)
958                         prev_desc->more = desc->more;
959                 else
960                         rmap_head->val = (unsigned long)desc->more | 1;
961         mmu_free_pte_list_desc(desc);
962 }
963
964 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
965 {
966         struct pte_list_desc *desc;
967         struct pte_list_desc *prev_desc;
968         int i;
969
970         if (!rmap_head->val) {
971                 pr_err("%s: %p 0->BUG\n", __func__, spte);
972                 BUG();
973         } else if (!(rmap_head->val & 1)) {
974                 rmap_printk("%p 1->0\n", spte);
975                 if ((u64 *)rmap_head->val != spte) {
976                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
977                         BUG();
978                 }
979                 rmap_head->val = 0;
980         } else {
981                 rmap_printk("%p many->many\n", spte);
982                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
983                 prev_desc = NULL;
984                 while (desc) {
985                         for (i = 0; i < desc->spte_count; ++i) {
986                                 if (desc->sptes[i] == spte) {
987                                         pte_list_desc_remove_entry(rmap_head,
988                                                         desc, i, prev_desc);
989                                         return;
990                                 }
991                         }
992                         prev_desc = desc;
993                         desc = desc->more;
994                 }
995                 pr_err("%s: %p many->many\n", __func__, spte);
996                 BUG();
997         }
998 }
999
1000 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1001                             u64 *sptep)
1002 {
1003         mmu_spte_clear_track_bits(kvm, sptep);
1004         __pte_list_remove(sptep, rmap_head);
1005 }
1006
1007 /* Return true if rmap existed, false otherwise */
1008 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1009 {
1010         struct pte_list_desc *desc, *next;
1011         int i;
1012
1013         if (!rmap_head->val)
1014                 return false;
1015
1016         if (!(rmap_head->val & 1)) {
1017                 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1018                 goto out;
1019         }
1020
1021         desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1022
1023         for (; desc; desc = next) {
1024                 for (i = 0; i < desc->spte_count; i++)
1025                         mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1026                 next = desc->more;
1027                 mmu_free_pte_list_desc(desc);
1028         }
1029 out:
1030         /* rmap_head is meaningless now, remember to reset it */
1031         rmap_head->val = 0;
1032         return true;
1033 }
1034
1035 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1036 {
1037         struct pte_list_desc *desc;
1038         unsigned int count = 0;
1039
1040         if (!rmap_head->val)
1041                 return 0;
1042         else if (!(rmap_head->val & 1))
1043                 return 1;
1044
1045         desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1046
1047         while (desc) {
1048                 count += desc->spte_count;
1049                 desc = desc->more;
1050         }
1051
1052         return count;
1053 }
1054
1055 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1056                                          const struct kvm_memory_slot *slot)
1057 {
1058         unsigned long idx;
1059
1060         idx = gfn_to_index(gfn, slot->base_gfn, level);
1061         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1062 }
1063
1064 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1065 {
1066         struct kvm_mmu_memory_cache *mc;
1067
1068         mc = &vcpu->arch.mmu_pte_list_desc_cache;
1069         return kvm_mmu_memory_cache_nr_free_objects(mc);
1070 }
1071
1072 static void rmap_remove(struct kvm *kvm, u64 *spte)
1073 {
1074         struct kvm_memslots *slots;
1075         struct kvm_memory_slot *slot;
1076         struct kvm_mmu_page *sp;
1077         gfn_t gfn;
1078         struct kvm_rmap_head *rmap_head;
1079
1080         sp = sptep_to_sp(spte);
1081         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1082
1083         /*
1084          * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1085          * so we have to determine which memslots to use based on context
1086          * information in sp->role.
1087          */
1088         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1089
1090         slot = __gfn_to_memslot(slots, gfn);
1091         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1092
1093         __pte_list_remove(spte, rmap_head);
1094 }
1095
1096 /*
1097  * Used by the following functions to iterate through the sptes linked by a
1098  * rmap.  All fields are private and not assumed to be used outside.
1099  */
1100 struct rmap_iterator {
1101         /* private fields */
1102         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1103         int pos;                        /* index of the sptep */
1104 };
1105
1106 /*
1107  * Iteration must be started by this function.  This should also be used after
1108  * removing/dropping sptes from the rmap link because in such cases the
1109  * information in the iterator may not be valid.
1110  *
1111  * Returns sptep if found, NULL otherwise.
1112  */
1113 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1114                            struct rmap_iterator *iter)
1115 {
1116         u64 *sptep;
1117
1118         if (!rmap_head->val)
1119                 return NULL;
1120
1121         if (!(rmap_head->val & 1)) {
1122                 iter->desc = NULL;
1123                 sptep = (u64 *)rmap_head->val;
1124                 goto out;
1125         }
1126
1127         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1128         iter->pos = 0;
1129         sptep = iter->desc->sptes[iter->pos];
1130 out:
1131         BUG_ON(!is_shadow_present_pte(*sptep));
1132         return sptep;
1133 }
1134
1135 /*
1136  * Must be used with a valid iterator: e.g. after rmap_get_first().
1137  *
1138  * Returns sptep if found, NULL otherwise.
1139  */
1140 static u64 *rmap_get_next(struct rmap_iterator *iter)
1141 {
1142         u64 *sptep;
1143
1144         if (iter->desc) {
1145                 if (iter->pos < PTE_LIST_EXT - 1) {
1146                         ++iter->pos;
1147                         sptep = iter->desc->sptes[iter->pos];
1148                         if (sptep)
1149                                 goto out;
1150                 }
1151
1152                 iter->desc = iter->desc->more;
1153
1154                 if (iter->desc) {
1155                         iter->pos = 0;
1156                         /* desc->sptes[0] cannot be NULL */
1157                         sptep = iter->desc->sptes[iter->pos];
1158                         goto out;
1159                 }
1160         }
1161
1162         return NULL;
1163 out:
1164         BUG_ON(!is_shadow_present_pte(*sptep));
1165         return sptep;
1166 }
1167
1168 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1169         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1170              _spte_; _spte_ = rmap_get_next(_iter_))
1171
1172 static void drop_spte(struct kvm *kvm, u64 *sptep)
1173 {
1174         u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1175
1176         if (is_shadow_present_pte(old_spte))
1177                 rmap_remove(kvm, sptep);
1178 }
1179
1180
1181 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1182 {
1183         if (is_large_pte(*sptep)) {
1184                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1185                 drop_spte(kvm, sptep);
1186                 return true;
1187         }
1188
1189         return false;
1190 }
1191
1192 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1193 {
1194         if (__drop_large_spte(vcpu->kvm, sptep)) {
1195                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1196
1197                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1198                         KVM_PAGES_PER_HPAGE(sp->role.level));
1199         }
1200 }
1201
1202 /*
1203  * Write-protect on the specified @sptep, @pt_protect indicates whether
1204  * spte write-protection is caused by protecting shadow page table.
1205  *
1206  * Note: write protection is difference between dirty logging and spte
1207  * protection:
1208  * - for dirty logging, the spte can be set to writable at anytime if
1209  *   its dirty bitmap is properly set.
1210  * - for spte protection, the spte can be writable only after unsync-ing
1211  *   shadow page.
1212  *
1213  * Return true if tlb need be flushed.
1214  */
1215 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1216 {
1217         u64 spte = *sptep;
1218
1219         if (!is_writable_pte(spte) &&
1220               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1221                 return false;
1222
1223         rmap_printk("spte %p %llx\n", sptep, *sptep);
1224
1225         if (pt_protect)
1226                 spte &= ~shadow_mmu_writable_mask;
1227         spte = spte & ~PT_WRITABLE_MASK;
1228
1229         return mmu_spte_update(sptep, spte);
1230 }
1231
1232 static bool __rmap_write_protect(struct kvm *kvm,
1233                                  struct kvm_rmap_head *rmap_head,
1234                                  bool pt_protect)
1235 {
1236         u64 *sptep;
1237         struct rmap_iterator iter;
1238         bool flush = false;
1239
1240         for_each_rmap_spte(rmap_head, &iter, sptep)
1241                 flush |= spte_write_protect(sptep, pt_protect);
1242
1243         return flush;
1244 }
1245
1246 static bool spte_clear_dirty(u64 *sptep)
1247 {
1248         u64 spte = *sptep;
1249
1250         rmap_printk("spte %p %llx\n", sptep, *sptep);
1251
1252         MMU_WARN_ON(!spte_ad_enabled(spte));
1253         spte &= ~shadow_dirty_mask;
1254         return mmu_spte_update(sptep, spte);
1255 }
1256
1257 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1258 {
1259         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1260                                                (unsigned long *)sptep);
1261         if (was_writable && !spte_ad_enabled(*sptep))
1262                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1263
1264         return was_writable;
1265 }
1266
1267 /*
1268  * Gets the GFN ready for another round of dirty logging by clearing the
1269  *      - D bit on ad-enabled SPTEs, and
1270  *      - W bit on ad-disabled SPTEs.
1271  * Returns true iff any D or W bits were cleared.
1272  */
1273 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1274                                const struct kvm_memory_slot *slot)
1275 {
1276         u64 *sptep;
1277         struct rmap_iterator iter;
1278         bool flush = false;
1279
1280         for_each_rmap_spte(rmap_head, &iter, sptep)
1281                 if (spte_ad_need_write_protect(*sptep))
1282                         flush |= spte_wrprot_for_clear_dirty(sptep);
1283                 else
1284                         flush |= spte_clear_dirty(sptep);
1285
1286         return flush;
1287 }
1288
1289 /**
1290  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1291  * @kvm: kvm instance
1292  * @slot: slot to protect
1293  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1294  * @mask: indicates which pages we should protect
1295  *
1296  * Used when we do not need to care about huge page mappings.
1297  */
1298 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1299                                      struct kvm_memory_slot *slot,
1300                                      gfn_t gfn_offset, unsigned long mask)
1301 {
1302         struct kvm_rmap_head *rmap_head;
1303
1304         if (is_tdp_mmu_enabled(kvm))
1305                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1306                                 slot->base_gfn + gfn_offset, mask, true);
1307
1308         if (!kvm_memslots_have_rmaps(kvm))
1309                 return;
1310
1311         while (mask) {
1312                 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1313                                         PG_LEVEL_4K, slot);
1314                 __rmap_write_protect(kvm, rmap_head, false);
1315
1316                 /* clear the first set bit */
1317                 mask &= mask - 1;
1318         }
1319 }
1320
1321 /**
1322  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1323  * protect the page if the D-bit isn't supported.
1324  * @kvm: kvm instance
1325  * @slot: slot to clear D-bit
1326  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1327  * @mask: indicates which pages we should clear D-bit
1328  *
1329  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1330  */
1331 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1332                                          struct kvm_memory_slot *slot,
1333                                          gfn_t gfn_offset, unsigned long mask)
1334 {
1335         struct kvm_rmap_head *rmap_head;
1336
1337         if (is_tdp_mmu_enabled(kvm))
1338                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1339                                 slot->base_gfn + gfn_offset, mask, false);
1340
1341         if (!kvm_memslots_have_rmaps(kvm))
1342                 return;
1343
1344         while (mask) {
1345                 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1346                                         PG_LEVEL_4K, slot);
1347                 __rmap_clear_dirty(kvm, rmap_head, slot);
1348
1349                 /* clear the first set bit */
1350                 mask &= mask - 1;
1351         }
1352 }
1353
1354 /**
1355  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1356  * PT level pages.
1357  *
1358  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1359  * enable dirty logging for them.
1360  *
1361  * We need to care about huge page mappings: e.g. during dirty logging we may
1362  * have such mappings.
1363  */
1364 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1365                                 struct kvm_memory_slot *slot,
1366                                 gfn_t gfn_offset, unsigned long mask)
1367 {
1368         /*
1369          * Huge pages are NOT write protected when we start dirty logging in
1370          * initially-all-set mode; must write protect them here so that they
1371          * are split to 4K on the first write.
1372          *
1373          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1374          * of memslot has no such restriction, so the range can cross two large
1375          * pages.
1376          */
1377         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1378                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1379                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1380
1381                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1382
1383                 /* Cross two large pages? */
1384                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1385                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1386                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1387                                                        PG_LEVEL_2M);
1388         }
1389
1390         /* Now handle 4K PTEs.  */
1391         if (kvm_x86_ops.cpu_dirty_log_size)
1392                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1393         else
1394                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1395 }
1396
1397 int kvm_cpu_dirty_log_size(void)
1398 {
1399         return kvm_x86_ops.cpu_dirty_log_size;
1400 }
1401
1402 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1403                                     struct kvm_memory_slot *slot, u64 gfn,
1404                                     int min_level)
1405 {
1406         struct kvm_rmap_head *rmap_head;
1407         int i;
1408         bool write_protected = false;
1409
1410         if (kvm_memslots_have_rmaps(kvm)) {
1411                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1412                         rmap_head = gfn_to_rmap(gfn, i, slot);
1413                         write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1414                 }
1415         }
1416
1417         if (is_tdp_mmu_enabled(kvm))
1418                 write_protected |=
1419                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1420
1421         return write_protected;
1422 }
1423
1424 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1425 {
1426         struct kvm_memory_slot *slot;
1427
1428         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1429         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1430 }
1431
1432 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1433                           const struct kvm_memory_slot *slot)
1434 {
1435         return pte_list_destroy(kvm, rmap_head);
1436 }
1437
1438 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1439                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1440                             pte_t unused)
1441 {
1442         return kvm_zap_rmapp(kvm, rmap_head, slot);
1443 }
1444
1445 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1446                               struct kvm_memory_slot *slot, gfn_t gfn, int level,
1447                               pte_t pte)
1448 {
1449         u64 *sptep;
1450         struct rmap_iterator iter;
1451         bool need_flush = false;
1452         u64 new_spte;
1453         kvm_pfn_t new_pfn;
1454
1455         WARN_ON(pte_huge(pte));
1456         new_pfn = pte_pfn(pte);
1457
1458 restart:
1459         for_each_rmap_spte(rmap_head, &iter, sptep) {
1460                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1461                             sptep, *sptep, gfn, level);
1462
1463                 need_flush = true;
1464
1465                 if (pte_write(pte)) {
1466                         pte_list_remove(kvm, rmap_head, sptep);
1467                         goto restart;
1468                 } else {
1469                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1470                                         *sptep, new_pfn);
1471
1472                         mmu_spte_clear_track_bits(kvm, sptep);
1473                         mmu_spte_set(sptep, new_spte);
1474                 }
1475         }
1476
1477         if (need_flush && kvm_available_flush_tlb_with_range()) {
1478                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1479                 return false;
1480         }
1481
1482         return need_flush;
1483 }
1484
1485 struct slot_rmap_walk_iterator {
1486         /* input fields. */
1487         const struct kvm_memory_slot *slot;
1488         gfn_t start_gfn;
1489         gfn_t end_gfn;
1490         int start_level;
1491         int end_level;
1492
1493         /* output fields. */
1494         gfn_t gfn;
1495         struct kvm_rmap_head *rmap;
1496         int level;
1497
1498         /* private field. */
1499         struct kvm_rmap_head *end_rmap;
1500 };
1501
1502 static void
1503 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1504 {
1505         iterator->level = level;
1506         iterator->gfn = iterator->start_gfn;
1507         iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1508         iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1509 }
1510
1511 static void
1512 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1513                     const struct kvm_memory_slot *slot, int start_level,
1514                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1515 {
1516         iterator->slot = slot;
1517         iterator->start_level = start_level;
1518         iterator->end_level = end_level;
1519         iterator->start_gfn = start_gfn;
1520         iterator->end_gfn = end_gfn;
1521
1522         rmap_walk_init_level(iterator, iterator->start_level);
1523 }
1524
1525 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1526 {
1527         return !!iterator->rmap;
1528 }
1529
1530 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1531 {
1532         if (++iterator->rmap <= iterator->end_rmap) {
1533                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1534                 return;
1535         }
1536
1537         if (++iterator->level > iterator->end_level) {
1538                 iterator->rmap = NULL;
1539                 return;
1540         }
1541
1542         rmap_walk_init_level(iterator, iterator->level);
1543 }
1544
1545 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1546            _start_gfn, _end_gfn, _iter_)                                \
1547         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1548                                  _end_level_, _start_gfn, _end_gfn);    \
1549              slot_rmap_walk_okay(_iter_);                               \
1550              slot_rmap_walk_next(_iter_))
1551
1552 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1553                                struct kvm_memory_slot *slot, gfn_t gfn,
1554                                int level, pte_t pte);
1555
1556 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1557                                                  struct kvm_gfn_range *range,
1558                                                  rmap_handler_t handler)
1559 {
1560         struct slot_rmap_walk_iterator iterator;
1561         bool ret = false;
1562
1563         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1564                                  range->start, range->end - 1, &iterator)
1565                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1566                                iterator.level, range->pte);
1567
1568         return ret;
1569 }
1570
1571 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1572 {
1573         bool flush = false;
1574
1575         if (kvm_memslots_have_rmaps(kvm))
1576                 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1577
1578         if (is_tdp_mmu_enabled(kvm))
1579                 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1580
1581         return flush;
1582 }
1583
1584 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1585 {
1586         bool flush = false;
1587
1588         if (kvm_memslots_have_rmaps(kvm))
1589                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1590
1591         if (is_tdp_mmu_enabled(kvm))
1592                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1593
1594         return flush;
1595 }
1596
1597 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1598                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1599                           pte_t unused)
1600 {
1601         u64 *sptep;
1602         struct rmap_iterator iter;
1603         int young = 0;
1604
1605         for_each_rmap_spte(rmap_head, &iter, sptep)
1606                 young |= mmu_spte_age(sptep);
1607
1608         return young;
1609 }
1610
1611 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1612                                struct kvm_memory_slot *slot, gfn_t gfn,
1613                                int level, pte_t unused)
1614 {
1615         u64 *sptep;
1616         struct rmap_iterator iter;
1617
1618         for_each_rmap_spte(rmap_head, &iter, sptep)
1619                 if (is_accessed_spte(*sptep))
1620                         return true;
1621         return false;
1622 }
1623
1624 #define RMAP_RECYCLE_THRESHOLD 1000
1625
1626 static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
1627                      u64 *spte, gfn_t gfn)
1628 {
1629         struct kvm_mmu_page *sp;
1630         struct kvm_rmap_head *rmap_head;
1631         int rmap_count;
1632
1633         sp = sptep_to_sp(spte);
1634         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1635         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1636         rmap_count = pte_list_add(vcpu, spte, rmap_head);
1637
1638         if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1639                 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1640                 kvm_flush_remote_tlbs_with_address(
1641                                 vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
1642         }
1643 }
1644
1645 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1646 {
1647         bool young = false;
1648
1649         if (kvm_memslots_have_rmaps(kvm))
1650                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1651
1652         if (is_tdp_mmu_enabled(kvm))
1653                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1654
1655         return young;
1656 }
1657
1658 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1659 {
1660         bool young = false;
1661
1662         if (kvm_memslots_have_rmaps(kvm))
1663                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1664
1665         if (is_tdp_mmu_enabled(kvm))
1666                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1667
1668         return young;
1669 }
1670
1671 #ifdef MMU_DEBUG
1672 static int is_empty_shadow_page(u64 *spt)
1673 {
1674         u64 *pos;
1675         u64 *end;
1676
1677         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1678                 if (is_shadow_present_pte(*pos)) {
1679                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1680                                pos, *pos);
1681                         return 0;
1682                 }
1683         return 1;
1684 }
1685 #endif
1686
1687 /*
1688  * This value is the sum of all of the kvm instances's
1689  * kvm->arch.n_used_mmu_pages values.  We need a global,
1690  * aggregate version in order to make the slab shrinker
1691  * faster
1692  */
1693 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1694 {
1695         kvm->arch.n_used_mmu_pages += nr;
1696         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1697 }
1698
1699 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1700 {
1701         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1702         hlist_del(&sp->hash_link);
1703         list_del(&sp->link);
1704         free_page((unsigned long)sp->spt);
1705         if (!sp->role.direct)
1706                 free_page((unsigned long)sp->gfns);
1707         kmem_cache_free(mmu_page_header_cache, sp);
1708 }
1709
1710 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1711 {
1712         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1713 }
1714
1715 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1716                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1717 {
1718         if (!parent_pte)
1719                 return;
1720
1721         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1722 }
1723
1724 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1725                                        u64 *parent_pte)
1726 {
1727         __pte_list_remove(parent_pte, &sp->parent_ptes);
1728 }
1729
1730 static void drop_parent_pte(struct kvm_mmu_page *sp,
1731                             u64 *parent_pte)
1732 {
1733         mmu_page_remove_parent_pte(sp, parent_pte);
1734         mmu_spte_clear_no_track(parent_pte);
1735 }
1736
1737 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1738 {
1739         struct kvm_mmu_page *sp;
1740
1741         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1742         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1743         if (!direct)
1744                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1745         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1746
1747         /*
1748          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1749          * depends on valid pages being added to the head of the list.  See
1750          * comments in kvm_zap_obsolete_pages().
1751          */
1752         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1753         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1754         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1755         return sp;
1756 }
1757
1758 static void mark_unsync(u64 *spte);
1759 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1760 {
1761         u64 *sptep;
1762         struct rmap_iterator iter;
1763
1764         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1765                 mark_unsync(sptep);
1766         }
1767 }
1768
1769 static void mark_unsync(u64 *spte)
1770 {
1771         struct kvm_mmu_page *sp;
1772         unsigned int index;
1773
1774         sp = sptep_to_sp(spte);
1775         index = spte - sp->spt;
1776         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1777                 return;
1778         if (sp->unsync_children++)
1779                 return;
1780         kvm_mmu_mark_parents_unsync(sp);
1781 }
1782
1783 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1784                                struct kvm_mmu_page *sp)
1785 {
1786         return -1;
1787 }
1788
1789 #define KVM_PAGE_ARRAY_NR 16
1790
1791 struct kvm_mmu_pages {
1792         struct mmu_page_and_offset {
1793                 struct kvm_mmu_page *sp;
1794                 unsigned int idx;
1795         } page[KVM_PAGE_ARRAY_NR];
1796         unsigned int nr;
1797 };
1798
1799 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1800                          int idx)
1801 {
1802         int i;
1803
1804         if (sp->unsync)
1805                 for (i=0; i < pvec->nr; i++)
1806                         if (pvec->page[i].sp == sp)
1807                                 return 0;
1808
1809         pvec->page[pvec->nr].sp = sp;
1810         pvec->page[pvec->nr].idx = idx;
1811         pvec->nr++;
1812         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1813 }
1814
1815 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1816 {
1817         --sp->unsync_children;
1818         WARN_ON((int)sp->unsync_children < 0);
1819         __clear_bit(idx, sp->unsync_child_bitmap);
1820 }
1821
1822 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1823                            struct kvm_mmu_pages *pvec)
1824 {
1825         int i, ret, nr_unsync_leaf = 0;
1826
1827         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1828                 struct kvm_mmu_page *child;
1829                 u64 ent = sp->spt[i];
1830
1831                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1832                         clear_unsync_child_bit(sp, i);
1833                         continue;
1834                 }
1835
1836                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1837
1838                 if (child->unsync_children) {
1839                         if (mmu_pages_add(pvec, child, i))
1840                                 return -ENOSPC;
1841
1842                         ret = __mmu_unsync_walk(child, pvec);
1843                         if (!ret) {
1844                                 clear_unsync_child_bit(sp, i);
1845                                 continue;
1846                         } else if (ret > 0) {
1847                                 nr_unsync_leaf += ret;
1848                         } else
1849                                 return ret;
1850                 } else if (child->unsync) {
1851                         nr_unsync_leaf++;
1852                         if (mmu_pages_add(pvec, child, i))
1853                                 return -ENOSPC;
1854                 } else
1855                         clear_unsync_child_bit(sp, i);
1856         }
1857
1858         return nr_unsync_leaf;
1859 }
1860
1861 #define INVALID_INDEX (-1)
1862
1863 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1864                            struct kvm_mmu_pages *pvec)
1865 {
1866         pvec->nr = 0;
1867         if (!sp->unsync_children)
1868                 return 0;
1869
1870         mmu_pages_add(pvec, sp, INVALID_INDEX);
1871         return __mmu_unsync_walk(sp, pvec);
1872 }
1873
1874 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1875 {
1876         WARN_ON(!sp->unsync);
1877         trace_kvm_mmu_sync_page(sp);
1878         sp->unsync = 0;
1879         --kvm->stat.mmu_unsync;
1880 }
1881
1882 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1883                                      struct list_head *invalid_list);
1884 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1885                                     struct list_head *invalid_list);
1886
1887 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1888         hlist_for_each_entry(_sp, _list, hash_link)                     \
1889                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1890                 } else
1891
1892 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1893         for_each_valid_sp(_kvm, _sp,                                    \
1894           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1895                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1896
1897 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1898                          struct list_head *invalid_list)
1899 {
1900         int ret = vcpu->arch.mmu->sync_page(vcpu, sp);
1901
1902         if (ret < 0) {
1903                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1904                 return false;
1905         }
1906
1907         return !!ret;
1908 }
1909
1910 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1911                                         struct list_head *invalid_list,
1912                                         bool remote_flush)
1913 {
1914         if (!remote_flush && list_empty(invalid_list))
1915                 return false;
1916
1917         if (!list_empty(invalid_list))
1918                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1919         else
1920                 kvm_flush_remote_tlbs(kvm);
1921         return true;
1922 }
1923
1924 #ifdef CONFIG_KVM_MMU_AUDIT
1925 #include "mmu_audit.c"
1926 #else
1927 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1928 static void mmu_audit_disable(void) { }
1929 #endif
1930
1931 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1932 {
1933         if (sp->role.invalid)
1934                 return true;
1935
1936         /* TDP MMU pages due not use the MMU generation. */
1937         return !sp->tdp_mmu_page &&
1938                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1939 }
1940
1941 struct mmu_page_path {
1942         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1943         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1944 };
1945
1946 #define for_each_sp(pvec, sp, parents, i)                       \
1947                 for (i = mmu_pages_first(&pvec, &parents);      \
1948                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1949                         i = mmu_pages_next(&pvec, &parents, i))
1950
1951 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1952                           struct mmu_page_path *parents,
1953                           int i)
1954 {
1955         int n;
1956
1957         for (n = i+1; n < pvec->nr; n++) {
1958                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1959                 unsigned idx = pvec->page[n].idx;
1960                 int level = sp->role.level;
1961
1962                 parents->idx[level-1] = idx;
1963                 if (level == PG_LEVEL_4K)
1964                         break;
1965
1966                 parents->parent[level-2] = sp;
1967         }
1968
1969         return n;
1970 }
1971
1972 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1973                            struct mmu_page_path *parents)
1974 {
1975         struct kvm_mmu_page *sp;
1976         int level;
1977
1978         if (pvec->nr == 0)
1979                 return 0;
1980
1981         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1982
1983         sp = pvec->page[0].sp;
1984         level = sp->role.level;
1985         WARN_ON(level == PG_LEVEL_4K);
1986
1987         parents->parent[level-2] = sp;
1988
1989         /* Also set up a sentinel.  Further entries in pvec are all
1990          * children of sp, so this element is never overwritten.
1991          */
1992         parents->parent[level-1] = NULL;
1993         return mmu_pages_next(pvec, parents, 0);
1994 }
1995
1996 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1997 {
1998         struct kvm_mmu_page *sp;
1999         unsigned int level = 0;
2000
2001         do {
2002                 unsigned int idx = parents->idx[level];
2003                 sp = parents->parent[level];
2004                 if (!sp)
2005                         return;
2006
2007                 WARN_ON(idx == INVALID_INDEX);
2008                 clear_unsync_child_bit(sp, idx);
2009                 level++;
2010         } while (!sp->unsync_children);
2011 }
2012
2013 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2014                              struct kvm_mmu_page *parent, bool can_yield)
2015 {
2016         int i;
2017         struct kvm_mmu_page *sp;
2018         struct mmu_page_path parents;
2019         struct kvm_mmu_pages pages;
2020         LIST_HEAD(invalid_list);
2021         bool flush = false;
2022
2023         while (mmu_unsync_walk(parent, &pages)) {
2024                 bool protected = false;
2025
2026                 for_each_sp(pages, sp, parents, i)
2027                         protected |= rmap_write_protect(vcpu, sp->gfn);
2028
2029                 if (protected) {
2030                         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2031                         flush = false;
2032                 }
2033
2034                 for_each_sp(pages, sp, parents, i) {
2035                         kvm_unlink_unsync_page(vcpu->kvm, sp);
2036                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2037                         mmu_pages_clear_parents(&parents);
2038                 }
2039                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2040                         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2041                         if (!can_yield) {
2042                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2043                                 return -EINTR;
2044                         }
2045
2046                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2047                         flush = false;
2048                 }
2049         }
2050
2051         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2052         return 0;
2053 }
2054
2055 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2056 {
2057         atomic_set(&sp->write_flooding_count,  0);
2058 }
2059
2060 static void clear_sp_write_flooding_count(u64 *spte)
2061 {
2062         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2063 }
2064
2065 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2066                                              gfn_t gfn,
2067                                              gva_t gaddr,
2068                                              unsigned level,
2069                                              int direct,
2070                                              unsigned int access)
2071 {
2072         bool direct_mmu = vcpu->arch.mmu->direct_map;
2073         union kvm_mmu_page_role role;
2074         struct hlist_head *sp_list;
2075         unsigned quadrant;
2076         struct kvm_mmu_page *sp;
2077         int collisions = 0;
2078         LIST_HEAD(invalid_list);
2079
2080         role = vcpu->arch.mmu->mmu_role.base;
2081         role.level = level;
2082         role.direct = direct;
2083         role.access = access;
2084         if (role.has_4_byte_gpte) {
2085                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2086                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2087                 role.quadrant = quadrant;
2088         }
2089
2090         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2091         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2092                 if (sp->gfn != gfn) {
2093                         collisions++;
2094                         continue;
2095                 }
2096
2097                 if (sp->role.word != role.word) {
2098                         /*
2099                          * If the guest is creating an upper-level page, zap
2100                          * unsync pages for the same gfn.  While it's possible
2101                          * the guest is using recursive page tables, in all
2102                          * likelihood the guest has stopped using the unsync
2103                          * page and is installing a completely unrelated page.
2104                          * Unsync pages must not be left as is, because the new
2105                          * upper-level page will be write-protected.
2106                          */
2107                         if (level > PG_LEVEL_4K && sp->unsync)
2108                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2109                                                          &invalid_list);
2110                         continue;
2111                 }
2112
2113                 if (direct_mmu)
2114                         goto trace_get_page;
2115
2116                 if (sp->unsync) {
2117                         /*
2118                          * The page is good, but is stale.  kvm_sync_page does
2119                          * get the latest guest state, but (unlike mmu_unsync_children)
2120                          * it doesn't write-protect the page or mark it synchronized!
2121                          * This way the validity of the mapping is ensured, but the
2122                          * overhead of write protection is not incurred until the
2123                          * guest invalidates the TLB mapping.  This allows multiple
2124                          * SPs for a single gfn to be unsync.
2125                          *
2126                          * If the sync fails, the page is zapped.  If so, break
2127                          * in order to rebuild it.
2128                          */
2129                         if (!kvm_sync_page(vcpu, sp, &invalid_list))
2130                                 break;
2131
2132                         WARN_ON(!list_empty(&invalid_list));
2133                         kvm_flush_remote_tlbs(vcpu->kvm);
2134                 }
2135
2136                 __clear_sp_write_flooding_count(sp);
2137
2138 trace_get_page:
2139                 trace_kvm_mmu_get_page(sp, false);
2140                 goto out;
2141         }
2142
2143         ++vcpu->kvm->stat.mmu_cache_miss;
2144
2145         sp = kvm_mmu_alloc_page(vcpu, direct);
2146
2147         sp->gfn = gfn;
2148         sp->role = role;
2149         hlist_add_head(&sp->hash_link, sp_list);
2150         if (!direct) {
2151                 account_shadowed(vcpu->kvm, sp);
2152                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2153                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2154         }
2155         trace_kvm_mmu_get_page(sp, true);
2156 out:
2157         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2158
2159         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2160                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2161         return sp;
2162 }
2163
2164 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2165                                         struct kvm_vcpu *vcpu, hpa_t root,
2166                                         u64 addr)
2167 {
2168         iterator->addr = addr;
2169         iterator->shadow_addr = root;
2170         iterator->level = vcpu->arch.mmu->shadow_root_level;
2171
2172         if (iterator->level >= PT64_ROOT_4LEVEL &&
2173             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2174             !vcpu->arch.mmu->direct_map)
2175                 iterator->level = PT32E_ROOT_LEVEL;
2176
2177         if (iterator->level == PT32E_ROOT_LEVEL) {
2178                 /*
2179                  * prev_root is currently only used for 64-bit hosts. So only
2180                  * the active root_hpa is valid here.
2181                  */
2182                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2183
2184                 iterator->shadow_addr
2185                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2186                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2187                 --iterator->level;
2188                 if (!iterator->shadow_addr)
2189                         iterator->level = 0;
2190         }
2191 }
2192
2193 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2194                              struct kvm_vcpu *vcpu, u64 addr)
2195 {
2196         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2197                                     addr);
2198 }
2199
2200 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2201 {
2202         if (iterator->level < PG_LEVEL_4K)
2203                 return false;
2204
2205         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2206         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2207         return true;
2208 }
2209
2210 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2211                                u64 spte)
2212 {
2213         if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2214                 iterator->level = 0;
2215                 return;
2216         }
2217
2218         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2219         --iterator->level;
2220 }
2221
2222 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2223 {
2224         __shadow_walk_next(iterator, *iterator->sptep);
2225 }
2226
2227 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2228                              struct kvm_mmu_page *sp)
2229 {
2230         u64 spte;
2231
2232         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2233
2234         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2235
2236         mmu_spte_set(sptep, spte);
2237
2238         mmu_page_add_parent_pte(vcpu, sp, sptep);
2239
2240         if (sp->unsync_children || sp->unsync)
2241                 mark_unsync(sptep);
2242 }
2243
2244 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2245                                    unsigned direct_access)
2246 {
2247         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2248                 struct kvm_mmu_page *child;
2249
2250                 /*
2251                  * For the direct sp, if the guest pte's dirty bit
2252                  * changed form clean to dirty, it will corrupt the
2253                  * sp's access: allow writable in the read-only sp,
2254                  * so we should update the spte at this point to get
2255                  * a new sp with the correct access.
2256                  */
2257                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2258                 if (child->role.access == direct_access)
2259                         return;
2260
2261                 drop_parent_pte(child, sptep);
2262                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2263         }
2264 }
2265
2266 /* Returns the number of zapped non-leaf child shadow pages. */
2267 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2268                             u64 *spte, struct list_head *invalid_list)
2269 {
2270         u64 pte;
2271         struct kvm_mmu_page *child;
2272
2273         pte = *spte;
2274         if (is_shadow_present_pte(pte)) {
2275                 if (is_last_spte(pte, sp->role.level)) {
2276                         drop_spte(kvm, spte);
2277                 } else {
2278                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2279                         drop_parent_pte(child, spte);
2280
2281                         /*
2282                          * Recursively zap nested TDP SPs, parentless SPs are
2283                          * unlikely to be used again in the near future.  This
2284                          * avoids retaining a large number of stale nested SPs.
2285                          */
2286                         if (tdp_enabled && invalid_list &&
2287                             child->role.guest_mode && !child->parent_ptes.val)
2288                                 return kvm_mmu_prepare_zap_page(kvm, child,
2289                                                                 invalid_list);
2290                 }
2291         } else if (is_mmio_spte(pte)) {
2292                 mmu_spte_clear_no_track(spte);
2293         }
2294         return 0;
2295 }
2296
2297 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2298                                         struct kvm_mmu_page *sp,
2299                                         struct list_head *invalid_list)
2300 {
2301         int zapped = 0;
2302         unsigned i;
2303
2304         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2305                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2306
2307         return zapped;
2308 }
2309
2310 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2311 {
2312         u64 *sptep;
2313         struct rmap_iterator iter;
2314
2315         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2316                 drop_parent_pte(sp, sptep);
2317 }
2318
2319 static int mmu_zap_unsync_children(struct kvm *kvm,
2320                                    struct kvm_mmu_page *parent,
2321                                    struct list_head *invalid_list)
2322 {
2323         int i, zapped = 0;
2324         struct mmu_page_path parents;
2325         struct kvm_mmu_pages pages;
2326
2327         if (parent->role.level == PG_LEVEL_4K)
2328                 return 0;
2329
2330         while (mmu_unsync_walk(parent, &pages)) {
2331                 struct kvm_mmu_page *sp;
2332
2333                 for_each_sp(pages, sp, parents, i) {
2334                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2335                         mmu_pages_clear_parents(&parents);
2336                         zapped++;
2337                 }
2338         }
2339
2340         return zapped;
2341 }
2342
2343 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2344                                        struct kvm_mmu_page *sp,
2345                                        struct list_head *invalid_list,
2346                                        int *nr_zapped)
2347 {
2348         bool list_unstable;
2349
2350         trace_kvm_mmu_prepare_zap_page(sp);
2351         ++kvm->stat.mmu_shadow_zapped;
2352         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2353         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2354         kvm_mmu_unlink_parents(kvm, sp);
2355
2356         /* Zapping children means active_mmu_pages has become unstable. */
2357         list_unstable = *nr_zapped;
2358
2359         if (!sp->role.invalid && !sp->role.direct)
2360                 unaccount_shadowed(kvm, sp);
2361
2362         if (sp->unsync)
2363                 kvm_unlink_unsync_page(kvm, sp);
2364         if (!sp->root_count) {
2365                 /* Count self */
2366                 (*nr_zapped)++;
2367
2368                 /*
2369                  * Already invalid pages (previously active roots) are not on
2370                  * the active page list.  See list_del() in the "else" case of
2371                  * !sp->root_count.
2372                  */
2373                 if (sp->role.invalid)
2374                         list_add(&sp->link, invalid_list);
2375                 else
2376                         list_move(&sp->link, invalid_list);
2377                 kvm_mod_used_mmu_pages(kvm, -1);
2378         } else {
2379                 /*
2380                  * Remove the active root from the active page list, the root
2381                  * will be explicitly freed when the root_count hits zero.
2382                  */
2383                 list_del(&sp->link);
2384
2385                 /*
2386                  * Obsolete pages cannot be used on any vCPUs, see the comment
2387                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2388                  * treats invalid shadow pages as being obsolete.
2389                  */
2390                 if (!is_obsolete_sp(kvm, sp))
2391                         kvm_reload_remote_mmus(kvm);
2392         }
2393
2394         if (sp->lpage_disallowed)
2395                 unaccount_huge_nx_page(kvm, sp);
2396
2397         sp->role.invalid = 1;
2398         return list_unstable;
2399 }
2400
2401 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2402                                      struct list_head *invalid_list)
2403 {
2404         int nr_zapped;
2405
2406         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2407         return nr_zapped;
2408 }
2409
2410 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2411                                     struct list_head *invalid_list)
2412 {
2413         struct kvm_mmu_page *sp, *nsp;
2414
2415         if (list_empty(invalid_list))
2416                 return;
2417
2418         /*
2419          * We need to make sure everyone sees our modifications to
2420          * the page tables and see changes to vcpu->mode here. The barrier
2421          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2422          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2423          *
2424          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2425          * guest mode and/or lockless shadow page table walks.
2426          */
2427         kvm_flush_remote_tlbs(kvm);
2428
2429         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2430                 WARN_ON(!sp->role.invalid || sp->root_count);
2431                 kvm_mmu_free_page(sp);
2432         }
2433 }
2434
2435 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2436                                                   unsigned long nr_to_zap)
2437 {
2438         unsigned long total_zapped = 0;
2439         struct kvm_mmu_page *sp, *tmp;
2440         LIST_HEAD(invalid_list);
2441         bool unstable;
2442         int nr_zapped;
2443
2444         if (list_empty(&kvm->arch.active_mmu_pages))
2445                 return 0;
2446
2447 restart:
2448         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2449                 /*
2450                  * Don't zap active root pages, the page itself can't be freed
2451                  * and zapping it will just force vCPUs to realloc and reload.
2452                  */
2453                 if (sp->root_count)
2454                         continue;
2455
2456                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2457                                                       &nr_zapped);
2458                 total_zapped += nr_zapped;
2459                 if (total_zapped >= nr_to_zap)
2460                         break;
2461
2462                 if (unstable)
2463                         goto restart;
2464         }
2465
2466         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2467
2468         kvm->stat.mmu_recycled += total_zapped;
2469         return total_zapped;
2470 }
2471
2472 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2473 {
2474         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2475                 return kvm->arch.n_max_mmu_pages -
2476                         kvm->arch.n_used_mmu_pages;
2477
2478         return 0;
2479 }
2480
2481 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2482 {
2483         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2484
2485         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2486                 return 0;
2487
2488         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2489
2490         /*
2491          * Note, this check is intentionally soft, it only guarantees that one
2492          * page is available, while the caller may end up allocating as many as
2493          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2494          * exceeding the (arbitrary by default) limit will not harm the host,
2495          * being too aggressive may unnecessarily kill the guest, and getting an
2496          * exact count is far more trouble than it's worth, especially in the
2497          * page fault paths.
2498          */
2499         if (!kvm_mmu_available_pages(vcpu->kvm))
2500                 return -ENOSPC;
2501         return 0;
2502 }
2503
2504 /*
2505  * Changing the number of mmu pages allocated to the vm
2506  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2507  */
2508 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2509 {
2510         write_lock(&kvm->mmu_lock);
2511
2512         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2513                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2514                                                   goal_nr_mmu_pages);
2515
2516                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2517         }
2518
2519         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2520
2521         write_unlock(&kvm->mmu_lock);
2522 }
2523
2524 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2525 {
2526         struct kvm_mmu_page *sp;
2527         LIST_HEAD(invalid_list);
2528         int r;
2529
2530         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2531         r = 0;
2532         write_lock(&kvm->mmu_lock);
2533         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2534                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2535                          sp->role.word);
2536                 r = 1;
2537                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2538         }
2539         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2540         write_unlock(&kvm->mmu_lock);
2541
2542         return r;
2543 }
2544
2545 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2546 {
2547         gpa_t gpa;
2548         int r;
2549
2550         if (vcpu->arch.mmu->direct_map)
2551                 return 0;
2552
2553         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2554
2555         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2556
2557         return r;
2558 }
2559
2560 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2561 {
2562         trace_kvm_mmu_unsync_page(sp);
2563         ++kvm->stat.mmu_unsync;
2564         sp->unsync = 1;
2565
2566         kvm_mmu_mark_parents_unsync(sp);
2567 }
2568
2569 /*
2570  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2571  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2572  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2573  * be write-protected.
2574  */
2575 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2576                             gfn_t gfn, bool can_unsync, bool prefetch)
2577 {
2578         struct kvm_mmu_page *sp;
2579         bool locked = false;
2580
2581         /*
2582          * Force write-protection if the page is being tracked.  Note, the page
2583          * track machinery is used to write-protect upper-level shadow pages,
2584          * i.e. this guards the role.level == 4K assertion below!
2585          */
2586         if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2587                 return -EPERM;
2588
2589         /*
2590          * The page is not write-tracked, mark existing shadow pages unsync
2591          * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2592          * that case, KVM must complete emulation of the guest TLB flush before
2593          * allowing shadow pages to become unsync (writable by the guest).
2594          */
2595         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2596                 if (!can_unsync)
2597                         return -EPERM;
2598
2599                 if (sp->unsync)
2600                         continue;
2601
2602                 if (prefetch)
2603                         return -EEXIST;
2604
2605                 /*
2606                  * TDP MMU page faults require an additional spinlock as they
2607                  * run with mmu_lock held for read, not write, and the unsync
2608                  * logic is not thread safe.  Take the spinklock regardless of
2609                  * the MMU type to avoid extra conditionals/parameters, there's
2610                  * no meaningful penalty if mmu_lock is held for write.
2611                  */
2612                 if (!locked) {
2613                         locked = true;
2614                         spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2615
2616                         /*
2617                          * Recheck after taking the spinlock, a different vCPU
2618                          * may have since marked the page unsync.  A false
2619                          * positive on the unprotected check above is not
2620                          * possible as clearing sp->unsync _must_ hold mmu_lock
2621                          * for write, i.e. unsync cannot transition from 0->1
2622                          * while this CPU holds mmu_lock for read (or write).
2623                          */
2624                         if (READ_ONCE(sp->unsync))
2625                                 continue;
2626                 }
2627
2628                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2629                 kvm_unsync_page(kvm, sp);
2630         }
2631         if (locked)
2632                 spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2633
2634         /*
2635          * We need to ensure that the marking of unsync pages is visible
2636          * before the SPTE is updated to allow writes because
2637          * kvm_mmu_sync_roots() checks the unsync flags without holding
2638          * the MMU lock and so can race with this. If the SPTE was updated
2639          * before the page had been marked as unsync-ed, something like the
2640          * following could happen:
2641          *
2642          * CPU 1                    CPU 2
2643          * ---------------------------------------------------------------------
2644          * 1.2 Host updates SPTE
2645          *     to be writable
2646          *                      2.1 Guest writes a GPTE for GVA X.
2647          *                          (GPTE being in the guest page table shadowed
2648          *                           by the SP from CPU 1.)
2649          *                          This reads SPTE during the page table walk.
2650          *                          Since SPTE.W is read as 1, there is no
2651          *                          fault.
2652          *
2653          *                      2.2 Guest issues TLB flush.
2654          *                          That causes a VM Exit.
2655          *
2656          *                      2.3 Walking of unsync pages sees sp->unsync is
2657          *                          false and skips the page.
2658          *
2659          *                      2.4 Guest accesses GVA X.
2660          *                          Since the mapping in the SP was not updated,
2661          *                          so the old mapping for GVA X incorrectly
2662          *                          gets used.
2663          * 1.1 Host marks SP
2664          *     as unsync
2665          *     (sp->unsync = true)
2666          *
2667          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2668          * the situation in 2.4 does not arise.  It pairs with the read barrier
2669          * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2670          */
2671         smp_wmb();
2672
2673         return 0;
2674 }
2675
2676 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2677                         u64 *sptep, unsigned int pte_access, gfn_t gfn,
2678                         kvm_pfn_t pfn, struct kvm_page_fault *fault)
2679 {
2680         struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2681         int level = sp->role.level;
2682         int was_rmapped = 0;
2683         int ret = RET_PF_FIXED;
2684         bool flush = false;
2685         bool wrprot;
2686         u64 spte;
2687
2688         /* Prefetching always gets a writable pfn.  */
2689         bool host_writable = !fault || fault->map_writable;
2690         bool prefetch = !fault || fault->prefetch;
2691         bool write_fault = fault && fault->write;
2692
2693         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2694                  *sptep, write_fault, gfn);
2695
2696         if (unlikely(is_noslot_pfn(pfn))) {
2697                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2698                 return RET_PF_EMULATE;
2699         }
2700
2701         if (is_shadow_present_pte(*sptep)) {
2702                 /*
2703                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2704                  * the parent of the now unreachable PTE.
2705                  */
2706                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2707                         struct kvm_mmu_page *child;
2708                         u64 pte = *sptep;
2709
2710                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2711                         drop_parent_pte(child, sptep);
2712                         flush = true;
2713                 } else if (pfn != spte_to_pfn(*sptep)) {
2714                         pgprintk("hfn old %llx new %llx\n",
2715                                  spte_to_pfn(*sptep), pfn);
2716                         drop_spte(vcpu->kvm, sptep);
2717                         flush = true;
2718                 } else
2719                         was_rmapped = 1;
2720         }
2721
2722         wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2723                            true, host_writable, &spte);
2724
2725         if (*sptep == spte) {
2726                 ret = RET_PF_SPURIOUS;
2727         } else {
2728                 trace_kvm_mmu_set_spte(level, gfn, sptep);
2729                 flush |= mmu_spte_update(sptep, spte);
2730         }
2731
2732         if (wrprot) {
2733                 if (write_fault)
2734                         ret = RET_PF_EMULATE;
2735         }
2736
2737         if (flush)
2738                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2739                                 KVM_PAGES_PER_HPAGE(level));
2740
2741         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2742
2743         if (!was_rmapped) {
2744                 WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2745                 kvm_update_page_stats(vcpu->kvm, level, 1);
2746                 rmap_add(vcpu, slot, sptep, gfn);
2747         }
2748
2749         return ret;
2750 }
2751
2752 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2753                                     struct kvm_mmu_page *sp,
2754                                     u64 *start, u64 *end)
2755 {
2756         struct page *pages[PTE_PREFETCH_NUM];
2757         struct kvm_memory_slot *slot;
2758         unsigned int access = sp->role.access;
2759         int i, ret;
2760         gfn_t gfn;
2761
2762         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2763         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2764         if (!slot)
2765                 return -1;
2766
2767         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2768         if (ret <= 0)
2769                 return -1;
2770
2771         for (i = 0; i < ret; i++, gfn++, start++) {
2772                 mmu_set_spte(vcpu, slot, start, access, gfn,
2773                              page_to_pfn(pages[i]), NULL);
2774                 put_page(pages[i]);
2775         }
2776
2777         return 0;
2778 }
2779
2780 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2781                                   struct kvm_mmu_page *sp, u64 *sptep)
2782 {
2783         u64 *spte, *start = NULL;
2784         int i;
2785
2786         WARN_ON(!sp->role.direct);
2787
2788         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2789         spte = sp->spt + i;
2790
2791         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2792                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2793                         if (!start)
2794                                 continue;
2795                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2796                                 return;
2797                         start = NULL;
2798                 } else if (!start)
2799                         start = spte;
2800         }
2801         if (start)
2802                 direct_pte_prefetch_many(vcpu, sp, start, spte);
2803 }
2804
2805 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2806 {
2807         struct kvm_mmu_page *sp;
2808
2809         sp = sptep_to_sp(sptep);
2810
2811         /*
2812          * Without accessed bits, there's no way to distinguish between
2813          * actually accessed translations and prefetched, so disable pte
2814          * prefetch if accessed bits aren't available.
2815          */
2816         if (sp_ad_disabled(sp))
2817                 return;
2818
2819         if (sp->role.level > PG_LEVEL_4K)
2820                 return;
2821
2822         /*
2823          * If addresses are being invalidated, skip prefetching to avoid
2824          * accidentally prefetching those addresses.
2825          */
2826         if (unlikely(vcpu->kvm->mmu_notifier_count))
2827                 return;
2828
2829         __direct_pte_prefetch(vcpu, sp, sptep);
2830 }
2831
2832 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2833                                   const struct kvm_memory_slot *slot)
2834 {
2835         unsigned long hva;
2836         pte_t *pte;
2837         int level;
2838
2839         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2840                 return PG_LEVEL_4K;
2841
2842         /*
2843          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2844          * is not solely for performance, it's also necessary to avoid the
2845          * "writable" check in __gfn_to_hva_many(), which will always fail on
2846          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2847          * page fault steps have already verified the guest isn't writing a
2848          * read-only memslot.
2849          */
2850         hva = __gfn_to_hva_memslot(slot, gfn);
2851
2852         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2853         if (unlikely(!pte))
2854                 return PG_LEVEL_4K;
2855
2856         return level;
2857 }
2858
2859 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2860                               const struct kvm_memory_slot *slot, gfn_t gfn,
2861                               kvm_pfn_t pfn, int max_level)
2862 {
2863         struct kvm_lpage_info *linfo;
2864         int host_level;
2865
2866         max_level = min(max_level, max_huge_page_level);
2867         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2868                 linfo = lpage_info_slot(gfn, slot, max_level);
2869                 if (!linfo->disallow_lpage)
2870                         break;
2871         }
2872
2873         if (max_level == PG_LEVEL_4K)
2874                 return PG_LEVEL_4K;
2875
2876         host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
2877         return min(host_level, max_level);
2878 }
2879
2880 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2881 {
2882         struct kvm_memory_slot *slot = fault->slot;
2883         kvm_pfn_t mask;
2884
2885         fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2886
2887         if (unlikely(fault->max_level == PG_LEVEL_4K))
2888                 return;
2889
2890         if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
2891                 return;
2892
2893         if (kvm_slot_dirty_track_enabled(slot))
2894                 return;
2895
2896         /*
2897          * Enforce the iTLB multihit workaround after capturing the requested
2898          * level, which will be used to do precise, accurate accounting.
2899          */
2900         fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
2901                                                      fault->gfn, fault->pfn,
2902                                                      fault->max_level);
2903         if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
2904                 return;
2905
2906         /*
2907          * mmu_notifier_retry() was successful and mmu_lock is held, so
2908          * the pmd can't be split from under us.
2909          */
2910         fault->goal_level = fault->req_level;
2911         mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
2912         VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
2913         fault->pfn &= ~mask;
2914 }
2915
2916 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
2917 {
2918         if (cur_level > PG_LEVEL_4K &&
2919             cur_level == fault->goal_level &&
2920             is_shadow_present_pte(spte) &&
2921             !is_large_pte(spte)) {
2922                 /*
2923                  * A small SPTE exists for this pfn, but FNAME(fetch)
2924                  * and __direct_map would like to create a large PTE
2925                  * instead: just force them to go down another level,
2926                  * patching back for them into pfn the next 9 bits of
2927                  * the address.
2928                  */
2929                 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
2930                                 KVM_PAGES_PER_HPAGE(cur_level - 1);
2931                 fault->pfn |= fault->gfn & page_mask;
2932                 fault->goal_level--;
2933         }
2934 }
2935
2936 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2937 {
2938         struct kvm_shadow_walk_iterator it;
2939         struct kvm_mmu_page *sp;
2940         int ret;
2941         gfn_t base_gfn = fault->gfn;
2942
2943         kvm_mmu_hugepage_adjust(vcpu, fault);
2944
2945         trace_kvm_mmu_spte_requested(fault);
2946         for_each_shadow_entry(vcpu, fault->addr, it) {
2947                 /*
2948                  * We cannot overwrite existing page tables with an NX
2949                  * large page, as the leaf could be executable.
2950                  */
2951                 if (fault->nx_huge_page_workaround_enabled)
2952                         disallowed_hugepage_adjust(fault, *it.sptep, it.level);
2953
2954                 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2955                 if (it.level == fault->goal_level)
2956                         break;
2957
2958                 drop_large_spte(vcpu, it.sptep);
2959                 if (is_shadow_present_pte(*it.sptep))
2960                         continue;
2961
2962                 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2963                                       it.level - 1, true, ACC_ALL);
2964
2965                 link_shadow_page(vcpu, it.sptep, sp);
2966                 if (fault->is_tdp && fault->huge_page_disallowed &&
2967                     fault->req_level >= it.level)
2968                         account_huge_nx_page(vcpu->kvm, sp);
2969         }
2970
2971         if (WARN_ON_ONCE(it.level != fault->goal_level))
2972                 return -EFAULT;
2973
2974         ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2975                            base_gfn, fault->pfn, fault);
2976         if (ret == RET_PF_SPURIOUS)
2977                 return ret;
2978
2979         direct_pte_prefetch(vcpu, it.sptep);
2980         ++vcpu->stat.pf_fixed;
2981         return ret;
2982 }
2983
2984 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2985 {
2986         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2987 }
2988
2989 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2990 {
2991         /*
2992          * Do not cache the mmio info caused by writing the readonly gfn
2993          * into the spte otherwise read access on readonly gfn also can
2994          * caused mmio page fault and treat it as mmio access.
2995          */
2996         if (pfn == KVM_PFN_ERR_RO_FAULT)
2997                 return RET_PF_EMULATE;
2998
2999         if (pfn == KVM_PFN_ERR_HWPOISON) {
3000                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3001                 return RET_PF_RETRY;
3002         }
3003
3004         return -EFAULT;
3005 }
3006
3007 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3008                                 unsigned int access, int *ret_val)
3009 {
3010         /* The pfn is invalid, report the error! */
3011         if (unlikely(is_error_pfn(fault->pfn))) {
3012                 *ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3013                 return true;
3014         }
3015
3016         if (unlikely(!fault->slot)) {
3017                 gva_t gva = fault->is_tdp ? 0 : fault->addr;
3018
3019                 vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3020                                      access & shadow_mmio_access_mask);
3021                 /*
3022                  * If MMIO caching is disabled, emulate immediately without
3023                  * touching the shadow page tables as attempting to install an
3024                  * MMIO SPTE will just be an expensive nop.
3025                  */
3026                 if (unlikely(!shadow_mmio_value)) {
3027                         *ret_val = RET_PF_EMULATE;
3028                         return true;
3029                 }
3030         }
3031
3032         return false;
3033 }
3034
3035 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3036 {
3037         /*
3038          * Do not fix the mmio spte with invalid generation number which
3039          * need to be updated by slow page fault path.
3040          */
3041         if (fault->rsvd)
3042                 return false;
3043
3044         /* See if the page fault is due to an NX violation */
3045         if (unlikely(fault->exec && fault->present))
3046                 return false;
3047
3048         /*
3049          * #PF can be fast if:
3050          * 1. The shadow page table entry is not present, which could mean that
3051          *    the fault is potentially caused by access tracking (if enabled).
3052          * 2. The shadow page table entry is present and the fault
3053          *    is caused by write-protect, that means we just need change the W
3054          *    bit of the spte which can be done out of mmu-lock.
3055          *
3056          * However, if access tracking is disabled we know that a non-present
3057          * page must be a genuine page fault where we have to create a new SPTE.
3058          * So, if access tracking is disabled, we return true only for write
3059          * accesses to a present page.
3060          */
3061
3062         return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3063 }
3064
3065 /*
3066  * Returns true if the SPTE was fixed successfully. Otherwise,
3067  * someone else modified the SPTE from its original value.
3068  */
3069 static bool
3070 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3071                         u64 *sptep, u64 old_spte, u64 new_spte)
3072 {
3073         /*
3074          * Theoretically we could also set dirty bit (and flush TLB) here in
3075          * order to eliminate unnecessary PML logging. See comments in
3076          * set_spte. But fast_page_fault is very unlikely to happen with PML
3077          * enabled, so we do not do this. This might result in the same GPA
3078          * to be logged in PML buffer again when the write really happens, and
3079          * eventually to be called by mark_page_dirty twice. But it's also no
3080          * harm. This also avoids the TLB flush needed after setting dirty bit
3081          * so non-PML cases won't be impacted.
3082          *
3083          * Compare with set_spte where instead shadow_dirty_mask is set.
3084          */
3085         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3086                 return false;
3087
3088         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3089                 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3090
3091         return true;
3092 }
3093
3094 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3095 {
3096         if (fault->exec)
3097                 return is_executable_pte(spte);
3098
3099         if (fault->write)
3100                 return is_writable_pte(spte);
3101
3102         /* Fault was on Read access */
3103         return spte & PT_PRESENT_MASK;
3104 }
3105
3106 /*
3107  * Returns the last level spte pointer of the shadow page walk for the given
3108  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3109  * walk could be performed, returns NULL and *spte does not contain valid data.
3110  *
3111  * Contract:
3112  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3113  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3114  */
3115 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3116 {
3117         struct kvm_shadow_walk_iterator iterator;
3118         u64 old_spte;
3119         u64 *sptep = NULL;
3120
3121         for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3122                 sptep = iterator.sptep;
3123                 *spte = old_spte;
3124         }
3125
3126         return sptep;
3127 }
3128
3129 /*
3130  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3131  */
3132 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3133 {
3134         struct kvm_mmu_page *sp;
3135         int ret = RET_PF_INVALID;
3136         u64 spte = 0ull;
3137         u64 *sptep = NULL;
3138         uint retry_count = 0;
3139
3140         if (!page_fault_can_be_fast(fault))
3141                 return ret;
3142
3143         walk_shadow_page_lockless_begin(vcpu);
3144
3145         do {
3146                 u64 new_spte;
3147
3148                 if (is_tdp_mmu(vcpu->arch.mmu))
3149                         sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3150                 else
3151                         sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3152
3153                 if (!is_shadow_present_pte(spte))
3154                         break;
3155
3156                 sp = sptep_to_sp(sptep);
3157                 if (!is_last_spte(spte, sp->role.level))
3158                         break;
3159
3160                 /*
3161                  * Check whether the memory access that caused the fault would
3162                  * still cause it if it were to be performed right now. If not,
3163                  * then this is a spurious fault caused by TLB lazily flushed,
3164                  * or some other CPU has already fixed the PTE after the
3165                  * current CPU took the fault.
3166                  *
3167                  * Need not check the access of upper level table entries since
3168                  * they are always ACC_ALL.
3169                  */
3170                 if (is_access_allowed(fault, spte)) {
3171                         ret = RET_PF_SPURIOUS;
3172                         break;
3173                 }
3174
3175                 new_spte = spte;
3176
3177                 if (is_access_track_spte(spte))
3178                         new_spte = restore_acc_track_spte(new_spte);
3179
3180                 /*
3181                  * Currently, to simplify the code, write-protection can
3182                  * be removed in the fast path only if the SPTE was
3183                  * write-protected for dirty-logging or access tracking.
3184                  */
3185                 if (fault->write &&
3186                     spte_can_locklessly_be_made_writable(spte)) {
3187                         new_spte |= PT_WRITABLE_MASK;
3188
3189                         /*
3190                          * Do not fix write-permission on the large spte when
3191                          * dirty logging is enabled. Since we only dirty the
3192                          * first page into the dirty-bitmap in
3193                          * fast_pf_fix_direct_spte(), other pages are missed
3194                          * if its slot has dirty logging enabled.
3195                          *
3196                          * Instead, we let the slow page fault path create a
3197                          * normal spte to fix the access.
3198                          */
3199                         if (sp->role.level > PG_LEVEL_4K &&
3200                             kvm_slot_dirty_track_enabled(fault->slot))
3201                                 break;
3202                 }
3203
3204                 /* Verify that the fault can be handled in the fast path */
3205                 if (new_spte == spte ||
3206                     !is_access_allowed(fault, new_spte))
3207                         break;
3208
3209                 /*
3210                  * Currently, fast page fault only works for direct mapping
3211                  * since the gfn is not stable for indirect shadow page. See
3212                  * Documentation/virt/kvm/locking.rst to get more detail.
3213                  */
3214                 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3215                         ret = RET_PF_FIXED;
3216                         break;
3217                 }
3218
3219                 if (++retry_count > 4) {
3220                         printk_once(KERN_WARNING
3221                                 "kvm: Fast #PF retrying more than 4 times.\n");
3222                         break;
3223                 }
3224
3225         } while (true);
3226
3227         trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3228         walk_shadow_page_lockless_end(vcpu);
3229
3230         return ret;
3231 }
3232
3233 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3234                                struct list_head *invalid_list)
3235 {
3236         struct kvm_mmu_page *sp;
3237
3238         if (!VALID_PAGE(*root_hpa))
3239                 return;
3240
3241         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3242
3243         if (is_tdp_mmu_page(sp))
3244                 kvm_tdp_mmu_put_root(kvm, sp, false);
3245         else if (!--sp->root_count && sp->role.invalid)
3246                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3247
3248         *root_hpa = INVALID_PAGE;
3249 }
3250
3251 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3252 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3253                         ulong roots_to_free)
3254 {
3255         struct kvm *kvm = vcpu->kvm;
3256         int i;
3257         LIST_HEAD(invalid_list);
3258         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3259
3260         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3261
3262         /* Before acquiring the MMU lock, see if we need to do any real work. */
3263         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3264                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3265                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3266                             VALID_PAGE(mmu->prev_roots[i].hpa))
3267                                 break;
3268
3269                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3270                         return;
3271         }
3272
3273         write_lock(&kvm->mmu_lock);
3274
3275         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3276                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3277                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3278                                            &invalid_list);
3279
3280         if (free_active_root) {
3281                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3282                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3283                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3284                 } else if (mmu->pae_root) {
3285                         for (i = 0; i < 4; ++i) {
3286                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3287                                         continue;
3288
3289                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3290                                                    &invalid_list);
3291                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3292                         }
3293                 }
3294                 mmu->root_hpa = INVALID_PAGE;
3295                 mmu->root_pgd = 0;
3296         }
3297
3298         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3299         write_unlock(&kvm->mmu_lock);
3300 }
3301 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3302
3303 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3304 {
3305         unsigned long roots_to_free = 0;
3306         hpa_t root_hpa;
3307         int i;
3308
3309         /*
3310          * This should not be called while L2 is active, L2 can't invalidate
3311          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3312          */
3313         WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3314
3315         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3316                 root_hpa = mmu->prev_roots[i].hpa;
3317                 if (!VALID_PAGE(root_hpa))
3318                         continue;
3319
3320                 if (!to_shadow_page(root_hpa) ||
3321                         to_shadow_page(root_hpa)->role.guest_mode)
3322                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3323         }
3324
3325         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3326 }
3327 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3328
3329
3330 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3331 {
3332         int ret = 0;
3333
3334         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3335                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3336                 ret = 1;
3337         }
3338
3339         return ret;
3340 }
3341
3342 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3343                             u8 level, bool direct)
3344 {
3345         struct kvm_mmu_page *sp;
3346
3347         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3348         ++sp->root_count;
3349
3350         return __pa(sp->spt);
3351 }
3352
3353 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3354 {
3355         struct kvm_mmu *mmu = vcpu->arch.mmu;
3356         u8 shadow_root_level = mmu->shadow_root_level;
3357         hpa_t root;
3358         unsigned i;
3359         int r;
3360
3361         write_lock(&vcpu->kvm->mmu_lock);
3362         r = make_mmu_pages_available(vcpu);
3363         if (r < 0)
3364                 goto out_unlock;
3365
3366         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3367                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3368                 mmu->root_hpa = root;
3369         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3370                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3371                 mmu->root_hpa = root;
3372         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3373                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3374                         r = -EIO;
3375                         goto out_unlock;
3376                 }
3377
3378                 for (i = 0; i < 4; ++i) {
3379                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3380
3381                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3382                                               i << 30, PT32_ROOT_LEVEL, true);
3383                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3384                                            shadow_me_mask;
3385                 }
3386                 mmu->root_hpa = __pa(mmu->pae_root);
3387         } else {
3388                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3389                 r = -EIO;
3390                 goto out_unlock;
3391         }
3392
3393         /* root_pgd is ignored for direct MMUs. */
3394         mmu->root_pgd = 0;
3395 out_unlock:
3396         write_unlock(&vcpu->kvm->mmu_lock);
3397         return r;
3398 }
3399
3400 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3401 {
3402         struct kvm_memslots *slots;
3403         struct kvm_memory_slot *slot;
3404         int r = 0, i, bkt;
3405
3406         /*
3407          * Check if this is the first shadow root being allocated before
3408          * taking the lock.
3409          */
3410         if (kvm_shadow_root_allocated(kvm))
3411                 return 0;
3412
3413         mutex_lock(&kvm->slots_arch_lock);
3414
3415         /* Recheck, under the lock, whether this is the first shadow root. */
3416         if (kvm_shadow_root_allocated(kvm))
3417                 goto out_unlock;
3418
3419         /*
3420          * Check if anything actually needs to be allocated, e.g. all metadata
3421          * will be allocated upfront if TDP is disabled.
3422          */
3423         if (kvm_memslots_have_rmaps(kvm) &&
3424             kvm_page_track_write_tracking_enabled(kvm))
3425                 goto out_success;
3426
3427         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
3428                 slots = __kvm_memslots(kvm, i);
3429                 kvm_for_each_memslot(slot, bkt, slots) {
3430                         /*
3431                          * Both of these functions are no-ops if the target is
3432                          * already allocated, so unconditionally calling both
3433                          * is safe.  Intentionally do NOT free allocations on
3434                          * failure to avoid having to track which allocations
3435                          * were made now versus when the memslot was created.
3436                          * The metadata is guaranteed to be freed when the slot
3437                          * is freed, and will be kept/used if userspace retries
3438                          * KVM_RUN instead of killing the VM.
3439                          */
3440                         r = memslot_rmap_alloc(slot, slot->npages);
3441                         if (r)
3442                                 goto out_unlock;
3443                         r = kvm_page_track_write_tracking_alloc(slot);
3444                         if (r)
3445                                 goto out_unlock;
3446                 }
3447         }
3448
3449         /*
3450          * Ensure that shadow_root_allocated becomes true strictly after
3451          * all the related pointers are set.
3452          */
3453 out_success:
3454         smp_store_release(&kvm->arch.shadow_root_allocated, true);
3455
3456 out_unlock:
3457         mutex_unlock(&kvm->slots_arch_lock);
3458         return r;
3459 }
3460
3461 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3462 {
3463         struct kvm_mmu *mmu = vcpu->arch.mmu;
3464         u64 pdptrs[4], pm_mask;
3465         gfn_t root_gfn, root_pgd;
3466         hpa_t root;
3467         unsigned i;
3468         int r;
3469
3470         root_pgd = mmu->get_guest_pgd(vcpu);
3471         root_gfn = root_pgd >> PAGE_SHIFT;
3472
3473         if (mmu_check_root(vcpu, root_gfn))
3474                 return 1;
3475
3476         /*
3477          * On SVM, reading PDPTRs might access guest memory, which might fault
3478          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3479          */
3480         if (mmu->root_level == PT32E_ROOT_LEVEL) {
3481                 for (i = 0; i < 4; ++i) {
3482                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3483                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3484                                 continue;
3485
3486                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3487                                 return 1;
3488                 }
3489         }
3490
3491         r = mmu_first_shadow_root_alloc(vcpu->kvm);
3492         if (r)
3493                 return r;
3494
3495         write_lock(&vcpu->kvm->mmu_lock);
3496         r = make_mmu_pages_available(vcpu);
3497         if (r < 0)
3498                 goto out_unlock;
3499
3500         /*
3501          * Do we shadow a long mode page table? If so we need to
3502          * write-protect the guests page table root.
3503          */
3504         if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3505                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3506                                       mmu->shadow_root_level, false);
3507                 mmu->root_hpa = root;
3508                 goto set_root_pgd;
3509         }
3510
3511         if (WARN_ON_ONCE(!mmu->pae_root)) {
3512                 r = -EIO;
3513                 goto out_unlock;
3514         }
3515
3516         /*
3517          * We shadow a 32 bit page table. This may be a legacy 2-level
3518          * or a PAE 3-level page table. In either case we need to be aware that
3519          * the shadow page table may be a PAE or a long mode page table.
3520          */
3521         pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3522         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3523                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3524
3525                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3526                         r = -EIO;
3527                         goto out_unlock;
3528                 }
3529                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3530
3531                 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
3532                         if (WARN_ON_ONCE(!mmu->pml5_root)) {
3533                                 r = -EIO;
3534                                 goto out_unlock;
3535                         }
3536                         mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3537                 }
3538         }
3539
3540         for (i = 0; i < 4; ++i) {
3541                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3542
3543                 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3544                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3545                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3546                                 continue;
3547                         }
3548                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3549                 }
3550
3551                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3552                                       PT32_ROOT_LEVEL, false);
3553                 mmu->pae_root[i] = root | pm_mask;
3554         }
3555
3556         if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
3557                 mmu->root_hpa = __pa(mmu->pml5_root);
3558         else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3559                 mmu->root_hpa = __pa(mmu->pml4_root);
3560         else
3561                 mmu->root_hpa = __pa(mmu->pae_root);
3562
3563 set_root_pgd:
3564         mmu->root_pgd = root_pgd;
3565 out_unlock:
3566         write_unlock(&vcpu->kvm->mmu_lock);
3567
3568         return 0;
3569 }
3570
3571 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3572 {
3573         struct kvm_mmu *mmu = vcpu->arch.mmu;
3574         bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3575         u64 *pml5_root = NULL;
3576         u64 *pml4_root = NULL;
3577         u64 *pae_root;
3578
3579         /*
3580          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3581          * tables are allocated and initialized at root creation as there is no
3582          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3583          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3584          */
3585         if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3586             mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3587                 return 0;
3588
3589         /*
3590          * NPT, the only paging mode that uses this horror, uses a fixed number
3591          * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3592          * all MMus are 5-level.  Thus, this can safely require that pml5_root
3593          * is allocated if the other roots are valid and pml5 is needed, as any
3594          * prior MMU would also have required pml5.
3595          */
3596         if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3597                 return 0;
3598
3599         /*
3600          * The special roots should always be allocated in concert.  Yell and
3601          * bail if KVM ends up in a state where only one of the roots is valid.
3602          */
3603         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3604                          (need_pml5 && mmu->pml5_root)))
3605                 return -EIO;
3606
3607         /*
3608          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3609          * doesn't need to be decrypted.
3610          */
3611         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3612         if (!pae_root)
3613                 return -ENOMEM;
3614
3615 #ifdef CONFIG_X86_64
3616         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3617         if (!pml4_root)
3618                 goto err_pml4;
3619
3620         if (need_pml5) {
3621                 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3622                 if (!pml5_root)
3623                         goto err_pml5;
3624         }
3625 #endif
3626
3627         mmu->pae_root = pae_root;
3628         mmu->pml4_root = pml4_root;
3629         mmu->pml5_root = pml5_root;
3630
3631         return 0;
3632
3633 #ifdef CONFIG_X86_64
3634 err_pml5:
3635         free_page((unsigned long)pml4_root);
3636 err_pml4:
3637         free_page((unsigned long)pae_root);
3638         return -ENOMEM;
3639 #endif
3640 }
3641
3642 static bool is_unsync_root(hpa_t root)
3643 {
3644         struct kvm_mmu_page *sp;
3645
3646         if (!VALID_PAGE(root))
3647                 return false;
3648
3649         /*
3650          * The read barrier orders the CPU's read of SPTE.W during the page table
3651          * walk before the reads of sp->unsync/sp->unsync_children here.
3652          *
3653          * Even if another CPU was marking the SP as unsync-ed simultaneously,
3654          * any guest page table changes are not guaranteed to be visible anyway
3655          * until this VCPU issues a TLB flush strictly after those changes are
3656          * made.  We only need to ensure that the other CPU sets these flags
3657          * before any actual changes to the page tables are made.  The comments
3658          * in mmu_try_to_unsync_pages() describe what could go wrong if this
3659          * requirement isn't satisfied.
3660          */
3661         smp_rmb();
3662         sp = to_shadow_page(root);
3663         if (sp->unsync || sp->unsync_children)
3664                 return true;
3665
3666         return false;
3667 }
3668
3669 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3670 {
3671         int i;
3672         struct kvm_mmu_page *sp;
3673
3674         if (vcpu->arch.mmu->direct_map)
3675                 return;
3676
3677         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3678                 return;
3679
3680         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3681
3682         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3683                 hpa_t root = vcpu->arch.mmu->root_hpa;
3684                 sp = to_shadow_page(root);
3685
3686                 if (!is_unsync_root(root))
3687                         return;
3688
3689                 write_lock(&vcpu->kvm->mmu_lock);
3690                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3691
3692                 mmu_sync_children(vcpu, sp, true);
3693
3694                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3695                 write_unlock(&vcpu->kvm->mmu_lock);
3696                 return;
3697         }
3698
3699         write_lock(&vcpu->kvm->mmu_lock);
3700         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3701
3702         for (i = 0; i < 4; ++i) {
3703                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3704
3705                 if (IS_VALID_PAE_ROOT(root)) {
3706                         root &= PT64_BASE_ADDR_MASK;
3707                         sp = to_shadow_page(root);
3708                         mmu_sync_children(vcpu, sp, true);
3709                 }
3710         }
3711
3712         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3713         write_unlock(&vcpu->kvm->mmu_lock);
3714 }
3715
3716 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
3717 {
3718         unsigned long roots_to_free = 0;
3719         int i;
3720
3721         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3722                 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
3723                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3724
3725         /* sync prev_roots by simply freeing them */
3726         kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
3727 }
3728
3729 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3730                                   gpa_t vaddr, u32 access,
3731                                   struct x86_exception *exception)
3732 {
3733         if (exception)
3734                 exception->error_code = 0;
3735         return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3736 }
3737
3738 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3739 {
3740         /*
3741          * A nested guest cannot use the MMIO cache if it is using nested
3742          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3743          */
3744         if (mmu_is_nested(vcpu))
3745                 return false;
3746
3747         if (direct)
3748                 return vcpu_match_mmio_gpa(vcpu, addr);
3749
3750         return vcpu_match_mmio_gva(vcpu, addr);
3751 }
3752
3753 /*
3754  * Return the level of the lowest level SPTE added to sptes.
3755  * That SPTE may be non-present.
3756  *
3757  * Must be called between walk_shadow_page_lockless_{begin,end}.
3758  */
3759 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3760 {
3761         struct kvm_shadow_walk_iterator iterator;
3762         int leaf = -1;
3763         u64 spte;
3764
3765         for (shadow_walk_init(&iterator, vcpu, addr),
3766              *root_level = iterator.level;
3767              shadow_walk_okay(&iterator);
3768              __shadow_walk_next(&iterator, spte)) {
3769                 leaf = iterator.level;
3770                 spte = mmu_spte_get_lockless(iterator.sptep);
3771
3772                 sptes[leaf] = spte;
3773         }
3774
3775         return leaf;
3776 }
3777
3778 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3779 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3780 {
3781         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3782         struct rsvd_bits_validate *rsvd_check;
3783         int root, leaf, level;
3784         bool reserved = false;
3785
3786         walk_shadow_page_lockless_begin(vcpu);
3787
3788         if (is_tdp_mmu(vcpu->arch.mmu))
3789                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3790         else
3791                 leaf = get_walk(vcpu, addr, sptes, &root);
3792
3793         walk_shadow_page_lockless_end(vcpu);
3794
3795         if (unlikely(leaf < 0)) {
3796                 *sptep = 0ull;
3797                 return reserved;
3798         }
3799
3800         *sptep = sptes[leaf];
3801
3802         /*
3803          * Skip reserved bits checks on the terminal leaf if it's not a valid
3804          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3805          * design, always have reserved bits set.  The purpose of the checks is
3806          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3807          */
3808         if (!is_shadow_present_pte(sptes[leaf]))
3809                 leaf++;
3810
3811         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3812
3813         for (level = root; level >= leaf; level--)
3814                 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3815
3816         if (reserved) {
3817                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3818                        __func__, addr);
3819                 for (level = root; level >= leaf; level--)
3820                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3821                                sptes[level], level,
3822                                get_rsvd_bits(rsvd_check, sptes[level], level));
3823         }
3824
3825         return reserved;
3826 }
3827
3828 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3829 {
3830         u64 spte;
3831         bool reserved;
3832
3833         if (mmio_info_in_cache(vcpu, addr, direct))
3834                 return RET_PF_EMULATE;
3835
3836         reserved = get_mmio_spte(vcpu, addr, &spte);
3837         if (WARN_ON(reserved))
3838                 return -EINVAL;
3839
3840         if (is_mmio_spte(spte)) {
3841                 gfn_t gfn = get_mmio_spte_gfn(spte);
3842                 unsigned int access = get_mmio_spte_access(spte);
3843
3844                 if (!check_mmio_spte(vcpu, spte))
3845                         return RET_PF_INVALID;
3846
3847                 if (direct)
3848                         addr = 0;
3849
3850                 trace_handle_mmio_page_fault(addr, gfn, access);
3851                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3852                 return RET_PF_EMULATE;
3853         }
3854
3855         /*
3856          * If the page table is zapped by other cpus, let CPU fault again on
3857          * the address.
3858          */
3859         return RET_PF_RETRY;
3860 }
3861
3862 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3863                                          struct kvm_page_fault *fault)
3864 {
3865         if (unlikely(fault->rsvd))
3866                 return false;
3867
3868         if (!fault->present || !fault->write)
3869                 return false;
3870
3871         /*
3872          * guest is writing the page which is write tracked which can
3873          * not be fixed by page fault handler.
3874          */
3875         if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3876                 return true;
3877
3878         return false;
3879 }
3880
3881 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3882 {
3883         struct kvm_shadow_walk_iterator iterator;
3884         u64 spte;
3885
3886         walk_shadow_page_lockless_begin(vcpu);
3887         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3888                 clear_sp_write_flooding_count(iterator.sptep);
3889         walk_shadow_page_lockless_end(vcpu);
3890 }
3891
3892 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3893                                     gfn_t gfn)
3894 {
3895         struct kvm_arch_async_pf arch;
3896
3897         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3898         arch.gfn = gfn;
3899         arch.direct_map = vcpu->arch.mmu->direct_map;
3900         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3901
3902         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3903                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3904 }
3905
3906 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3907 {
3908         struct kvm_memory_slot *slot = fault->slot;
3909         bool async;
3910
3911         /*
3912          * Retry the page fault if the gfn hit a memslot that is being deleted
3913          * or moved.  This ensures any existing SPTEs for the old memslot will
3914          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3915          */
3916         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3917                 goto out_retry;
3918
3919         if (!kvm_is_visible_memslot(slot)) {
3920                 /* Don't expose private memslots to L2. */
3921                 if (is_guest_mode(vcpu)) {
3922                         fault->slot = NULL;
3923                         fault->pfn = KVM_PFN_NOSLOT;
3924                         fault->map_writable = false;
3925                         return false;
3926                 }
3927                 /*
3928                  * If the APIC access page exists but is disabled, go directly
3929                  * to emulation without caching the MMIO access or creating a
3930                  * MMIO SPTE.  That way the cache doesn't need to be purged
3931                  * when the AVIC is re-enabled.
3932                  */
3933                 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
3934                     !kvm_apicv_activated(vcpu->kvm)) {
3935                         *r = RET_PF_EMULATE;
3936                         return true;
3937                 }
3938         }
3939
3940         async = false;
3941         fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
3942                                           fault->write, &fault->map_writable,
3943                                           &fault->hva);
3944         if (!async)
3945                 return false; /* *pfn has correct page already */
3946
3947         if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
3948                 trace_kvm_try_async_get_page(fault->addr, fault->gfn);
3949                 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
3950                         trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3951                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3952                         goto out_retry;
3953                 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3954                         goto out_retry;
3955         }
3956
3957         fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
3958                                           fault->write, &fault->map_writable,
3959                                           &fault->hva);
3960         return false;
3961
3962 out_retry:
3963         *r = RET_PF_RETRY;
3964         return true;
3965 }
3966
3967 /*
3968  * Returns true if the page fault is stale and needs to be retried, i.e. if the
3969  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
3970  */
3971 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
3972                                 struct kvm_page_fault *fault, int mmu_seq)
3973 {
3974         struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root_hpa);
3975
3976         /* Special roots, e.g. pae_root, are not backed by shadow pages. */
3977         if (sp && is_obsolete_sp(vcpu->kvm, sp))
3978                 return true;
3979
3980         /*
3981          * Roots without an associated shadow page are considered invalid if
3982          * there is a pending request to free obsolete roots.  The request is
3983          * only a hint that the current root _may_ be obsolete and needs to be
3984          * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
3985          * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
3986          * to reload even if no vCPU is actively using the root.
3987          */
3988         if (!sp && kvm_test_request(KVM_REQ_MMU_RELOAD, vcpu))
3989                 return true;
3990
3991         return fault->slot &&
3992                mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
3993 }
3994
3995 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3996 {
3997         bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3998
3999         unsigned long mmu_seq;
4000         int r;
4001
4002         fault->gfn = fault->addr >> PAGE_SHIFT;
4003         fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
4004
4005         if (page_fault_handle_page_track(vcpu, fault))
4006                 return RET_PF_EMULATE;
4007
4008         r = fast_page_fault(vcpu, fault);
4009         if (r != RET_PF_INVALID)
4010                 return r;
4011
4012         r = mmu_topup_memory_caches(vcpu, false);
4013         if (r)
4014                 return r;
4015
4016         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4017         smp_rmb();
4018
4019         if (kvm_faultin_pfn(vcpu, fault, &r))
4020                 return r;
4021
4022         if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
4023                 return r;
4024
4025         r = RET_PF_RETRY;
4026
4027         if (is_tdp_mmu_fault)
4028                 read_lock(&vcpu->kvm->mmu_lock);
4029         else
4030                 write_lock(&vcpu->kvm->mmu_lock);
4031
4032         if (is_page_fault_stale(vcpu, fault, mmu_seq))
4033                 goto out_unlock;
4034
4035         r = make_mmu_pages_available(vcpu);
4036         if (r)
4037                 goto out_unlock;
4038
4039         if (is_tdp_mmu_fault)
4040                 r = kvm_tdp_mmu_map(vcpu, fault);
4041         else
4042                 r = __direct_map(vcpu, fault);
4043
4044 out_unlock:
4045         if (is_tdp_mmu_fault)
4046                 read_unlock(&vcpu->kvm->mmu_lock);
4047         else
4048                 write_unlock(&vcpu->kvm->mmu_lock);
4049         kvm_release_pfn_clean(fault->pfn);
4050         return r;
4051 }
4052
4053 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4054                                 struct kvm_page_fault *fault)
4055 {
4056         pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4057
4058         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4059         fault->max_level = PG_LEVEL_2M;
4060         return direct_page_fault(vcpu, fault);
4061 }
4062
4063 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4064                                 u64 fault_address, char *insn, int insn_len)
4065 {
4066         int r = 1;
4067         u32 flags = vcpu->arch.apf.host_apf_flags;
4068
4069 #ifndef CONFIG_X86_64
4070         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4071         if (WARN_ON_ONCE(fault_address >> 32))
4072                 return -EFAULT;
4073 #endif
4074
4075         vcpu->arch.l1tf_flush_l1d = true;
4076         if (!flags) {
4077                 trace_kvm_page_fault(fault_address, error_code);
4078
4079                 if (kvm_event_needs_reinjection(vcpu))
4080                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4081                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4082                                 insn_len);
4083         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4084                 vcpu->arch.apf.host_apf_flags = 0;
4085                 local_irq_disable();
4086                 kvm_async_pf_task_wait_schedule(fault_address);
4087                 local_irq_enable();
4088         } else {
4089                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4090         }
4091
4092         return r;
4093 }
4094 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4095
4096 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4097 {
4098         while (fault->max_level > PG_LEVEL_4K) {
4099                 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4100                 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4101
4102                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4103                         break;
4104
4105                 --fault->max_level;
4106         }
4107
4108         return direct_page_fault(vcpu, fault);
4109 }
4110
4111 static void nonpaging_init_context(struct kvm_mmu *context)
4112 {
4113         context->page_fault = nonpaging_page_fault;
4114         context->gva_to_gpa = nonpaging_gva_to_gpa;
4115         context->sync_page = nonpaging_sync_page;
4116         context->invlpg = NULL;
4117         context->direct_map = true;
4118 }
4119
4120 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4121                                   union kvm_mmu_page_role role)
4122 {
4123         return (role.direct || pgd == root->pgd) &&
4124                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4125                role.word == to_shadow_page(root->hpa)->role.word;
4126 }
4127
4128 /*
4129  * Find out if a previously cached root matching the new pgd/role is available.
4130  * The current root is also inserted into the cache.
4131  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4132  * returned.
4133  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4134  * false is returned. This root should now be freed by the caller.
4135  */
4136 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4137                                   union kvm_mmu_page_role new_role)
4138 {
4139         uint i;
4140         struct kvm_mmu_root_info root;
4141         struct kvm_mmu *mmu = vcpu->arch.mmu;
4142
4143         root.pgd = mmu->root_pgd;
4144         root.hpa = mmu->root_hpa;
4145
4146         if (is_root_usable(&root, new_pgd, new_role))
4147                 return true;
4148
4149         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4150                 swap(root, mmu->prev_roots[i]);
4151
4152                 if (is_root_usable(&root, new_pgd, new_role))
4153                         break;
4154         }
4155
4156         mmu->root_hpa = root.hpa;
4157         mmu->root_pgd = root.pgd;
4158
4159         return i < KVM_MMU_NUM_PREV_ROOTS;
4160 }
4161
4162 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4163                             union kvm_mmu_page_role new_role)
4164 {
4165         struct kvm_mmu *mmu = vcpu->arch.mmu;
4166
4167         /*
4168          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4169          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4170          * later if necessary.
4171          */
4172         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4173             mmu->root_level >= PT64_ROOT_4LEVEL)
4174                 return cached_root_available(vcpu, new_pgd, new_role);
4175
4176         return false;
4177 }
4178
4179 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4180                               union kvm_mmu_page_role new_role)
4181 {
4182         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4183                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4184                 return;
4185         }
4186
4187         /*
4188          * It's possible that the cached previous root page is obsolete because
4189          * of a change in the MMU generation number. However, changing the
4190          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4191          * free the root set here and allocate a new one.
4192          */
4193         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4194
4195         if (force_flush_and_sync_on_reuse) {
4196                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4197                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4198         }
4199
4200         /*
4201          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4202          * switching to a new CR3, that GVA->GPA mapping may no longer be
4203          * valid. So clear any cached MMIO info even when we don't need to sync
4204          * the shadow page tables.
4205          */
4206         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4207
4208         /*
4209          * If this is a direct root page, it doesn't have a write flooding
4210          * count. Otherwise, clear the write flooding count.
4211          */
4212         if (!new_role.direct)
4213                 __clear_sp_write_flooding_count(
4214                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
4215 }
4216
4217 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4218 {
4219         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4220 }
4221 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4222
4223 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4224 {
4225         return kvm_read_cr3(vcpu);
4226 }
4227
4228 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4229                            unsigned int access)
4230 {
4231         if (unlikely(is_mmio_spte(*sptep))) {
4232                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4233                         mmu_spte_clear_no_track(sptep);
4234                         return true;
4235                 }
4236
4237                 mark_mmio_spte(vcpu, sptep, gfn, access);
4238                 return true;
4239         }
4240
4241         return false;
4242 }
4243
4244 #define PTTYPE_EPT 18 /* arbitrary */
4245 #define PTTYPE PTTYPE_EPT
4246 #include "paging_tmpl.h"
4247 #undef PTTYPE
4248
4249 #define PTTYPE 64
4250 #include "paging_tmpl.h"
4251 #undef PTTYPE
4252
4253 #define PTTYPE 32
4254 #include "paging_tmpl.h"
4255 #undef PTTYPE
4256
4257 static void
4258 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4259                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4260                         bool pse, bool amd)
4261 {
4262         u64 gbpages_bit_rsvd = 0;
4263         u64 nonleaf_bit8_rsvd = 0;
4264         u64 high_bits_rsvd;
4265
4266         rsvd_check->bad_mt_xwr = 0;
4267
4268         if (!gbpages)
4269                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4270
4271         if (level == PT32E_ROOT_LEVEL)
4272                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4273         else
4274                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4275
4276         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4277         if (!nx)
4278                 high_bits_rsvd |= rsvd_bits(63, 63);
4279
4280         /*
4281          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4282          * leaf entries) on AMD CPUs only.
4283          */
4284         if (amd)
4285                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4286
4287         switch (level) {
4288         case PT32_ROOT_LEVEL:
4289                 /* no rsvd bits for 2 level 4K page table entries */
4290                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4291                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4292                 rsvd_check->rsvd_bits_mask[1][0] =
4293                         rsvd_check->rsvd_bits_mask[0][0];
4294
4295                 if (!pse) {
4296                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4297                         break;
4298                 }
4299
4300                 if (is_cpuid_PSE36())
4301                         /* 36bits PSE 4MB page */
4302                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4303                 else
4304                         /* 32 bits PSE 4MB page */
4305                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4306                 break;
4307         case PT32E_ROOT_LEVEL:
4308                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4309                                                    high_bits_rsvd |
4310                                                    rsvd_bits(5, 8) |
4311                                                    rsvd_bits(1, 2);     /* PDPTE */
4312                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4313                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4314                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4315                                                    rsvd_bits(13, 20);   /* large page */
4316                 rsvd_check->rsvd_bits_mask[1][0] =
4317                         rsvd_check->rsvd_bits_mask[0][0];
4318                 break;
4319         case PT64_ROOT_5LEVEL:
4320                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4321                                                    nonleaf_bit8_rsvd |
4322                                                    rsvd_bits(7, 7);
4323                 rsvd_check->rsvd_bits_mask[1][4] =
4324                         rsvd_check->rsvd_bits_mask[0][4];
4325                 fallthrough;
4326         case PT64_ROOT_4LEVEL:
4327                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4328                                                    nonleaf_bit8_rsvd |
4329                                                    rsvd_bits(7, 7);
4330                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4331                                                    gbpages_bit_rsvd;
4332                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4333                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4334                 rsvd_check->rsvd_bits_mask[1][3] =
4335                         rsvd_check->rsvd_bits_mask[0][3];
4336                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4337                                                    gbpages_bit_rsvd |
4338                                                    rsvd_bits(13, 29);
4339                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4340                                                    rsvd_bits(13, 20); /* large page */
4341                 rsvd_check->rsvd_bits_mask[1][0] =
4342                         rsvd_check->rsvd_bits_mask[0][0];
4343                 break;
4344         }
4345 }
4346
4347 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4348 {
4349         /*
4350          * If TDP is enabled, let the guest use GBPAGES if they're supported in
4351          * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4352          * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4353          * walk for performance and complexity reasons.  Not to mention KVM
4354          * _can't_ solve the problem because GVA->GPA walks aren't visible to
4355          * KVM once a TDP translation is installed.  Mimic hardware behavior so
4356          * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4357          */
4358         return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4359                              guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4360 }
4361
4362 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4363                                   struct kvm_mmu *context)
4364 {
4365         __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4366                                 vcpu->arch.reserved_gpa_bits,
4367                                 context->root_level, is_efer_nx(context),
4368                                 guest_can_use_gbpages(vcpu),
4369                                 is_cr4_pse(context),
4370                                 guest_cpuid_is_amd_or_hygon(vcpu));
4371 }
4372
4373 static void
4374 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4375                             u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4376 {
4377         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4378         u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4379         u64 bad_mt_xwr;
4380
4381         if (huge_page_level < PG_LEVEL_1G)
4382                 large_1g_rsvd = rsvd_bits(7, 7);
4383         if (huge_page_level < PG_LEVEL_2M)
4384                 large_2m_rsvd = rsvd_bits(7, 7);
4385
4386         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4387         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4388         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4389         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4390         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4391
4392         /* large page */
4393         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4394         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4395         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4396         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4397         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4398
4399         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4400         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4401         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4402         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4403         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4404         if (!execonly) {
4405                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4406                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4407         }
4408         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4409 }
4410
4411 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4412                 struct kvm_mmu *context, bool execonly, int huge_page_level)
4413 {
4414         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4415                                     vcpu->arch.reserved_gpa_bits, execonly,
4416                                     huge_page_level);
4417 }
4418
4419 static inline u64 reserved_hpa_bits(void)
4420 {
4421         return rsvd_bits(shadow_phys_bits, 63);
4422 }
4423
4424 /*
4425  * the page table on host is the shadow page table for the page
4426  * table in guest or amd nested guest, its mmu features completely
4427  * follow the features in guest.
4428  */
4429 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4430                                         struct kvm_mmu *context)
4431 {
4432         /*
4433          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4434          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4435          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4436          * The iTLB multi-hit workaround can be toggled at any time, so assume
4437          * NX can be used by any non-nested shadow MMU to avoid having to reset
4438          * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4439          */
4440         bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4441
4442         /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4443         bool is_amd = true;
4444         /* KVM doesn't use 2-level page tables for the shadow MMU. */
4445         bool is_pse = false;
4446         struct rsvd_bits_validate *shadow_zero_check;
4447         int i;
4448
4449         WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4450
4451         shadow_zero_check = &context->shadow_zero_check;
4452         __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4453                                 context->shadow_root_level, uses_nx,
4454                                 guest_can_use_gbpages(vcpu), is_pse, is_amd);
4455
4456         if (!shadow_me_mask)
4457                 return;
4458
4459         for (i = context->shadow_root_level; --i >= 0;) {
4460                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4461                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4462         }
4463
4464 }
4465
4466 static inline bool boot_cpu_is_amd(void)
4467 {
4468         WARN_ON_ONCE(!tdp_enabled);
4469         return shadow_x_mask == 0;
4470 }
4471
4472 /*
4473  * the direct page table on host, use as much mmu features as
4474  * possible, however, kvm currently does not do execution-protection.
4475  */
4476 static void
4477 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4478                                 struct kvm_mmu *context)
4479 {
4480         struct rsvd_bits_validate *shadow_zero_check;
4481         int i;
4482
4483         shadow_zero_check = &context->shadow_zero_check;
4484
4485         if (boot_cpu_is_amd())
4486                 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4487                                         context->shadow_root_level, false,
4488                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4489                                         false, true);
4490         else
4491                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4492                                             reserved_hpa_bits(), false,
4493                                             max_huge_page_level);
4494
4495         if (!shadow_me_mask)
4496                 return;
4497
4498         for (i = context->shadow_root_level; --i >= 0;) {
4499                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4500                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4501         }
4502 }
4503
4504 /*
4505  * as the comments in reset_shadow_zero_bits_mask() except it
4506  * is the shadow page table for intel nested guest.
4507  */
4508 static void
4509 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4510                                 struct kvm_mmu *context, bool execonly)
4511 {
4512         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4513                                     reserved_hpa_bits(), execonly,
4514                                     max_huge_page_level);
4515 }
4516
4517 #define BYTE_MASK(access) \
4518         ((1 & (access) ? 2 : 0) | \
4519          (2 & (access) ? 4 : 0) | \
4520          (3 & (access) ? 8 : 0) | \
4521          (4 & (access) ? 16 : 0) | \
4522          (5 & (access) ? 32 : 0) | \
4523          (6 & (access) ? 64 : 0) | \
4524          (7 & (access) ? 128 : 0))
4525
4526
4527 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4528 {
4529         unsigned byte;
4530
4531         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4532         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4533         const u8 u = BYTE_MASK(ACC_USER_MASK);
4534
4535         bool cr4_smep = is_cr4_smep(mmu);
4536         bool cr4_smap = is_cr4_smap(mmu);
4537         bool cr0_wp = is_cr0_wp(mmu);
4538         bool efer_nx = is_efer_nx(mmu);
4539
4540         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4541                 unsigned pfec = byte << 1;
4542
4543                 /*
4544                  * Each "*f" variable has a 1 bit for each UWX value
4545                  * that causes a fault with the given PFEC.
4546                  */
4547
4548                 /* Faults from writes to non-writable pages */
4549                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4550                 /* Faults from user mode accesses to supervisor pages */
4551                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4552                 /* Faults from fetches of non-executable pages*/
4553                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4554                 /* Faults from kernel mode fetches of user pages */
4555                 u8 smepf = 0;
4556                 /* Faults from kernel mode accesses of user pages */
4557                 u8 smapf = 0;
4558
4559                 if (!ept) {
4560                         /* Faults from kernel mode accesses to user pages */
4561                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4562
4563                         /* Not really needed: !nx will cause pte.nx to fault */
4564                         if (!efer_nx)
4565                                 ff = 0;
4566
4567                         /* Allow supervisor writes if !cr0.wp */
4568                         if (!cr0_wp)
4569                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4570
4571                         /* Disallow supervisor fetches of user code if cr4.smep */
4572                         if (cr4_smep)
4573                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4574
4575                         /*
4576                          * SMAP:kernel-mode data accesses from user-mode
4577                          * mappings should fault. A fault is considered
4578                          * as a SMAP violation if all of the following
4579                          * conditions are true:
4580                          *   - X86_CR4_SMAP is set in CR4
4581                          *   - A user page is accessed
4582                          *   - The access is not a fetch
4583                          *   - Page fault in kernel mode
4584                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4585                          *
4586                          * Here, we cover the first three conditions.
4587                          * The fourth is computed dynamically in permission_fault();
4588                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4589                          * *not* subject to SMAP restrictions.
4590                          */
4591                         if (cr4_smap)
4592                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4593                 }
4594
4595                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4596         }
4597 }
4598
4599 /*
4600 * PKU is an additional mechanism by which the paging controls access to
4601 * user-mode addresses based on the value in the PKRU register.  Protection
4602 * key violations are reported through a bit in the page fault error code.
4603 * Unlike other bits of the error code, the PK bit is not known at the
4604 * call site of e.g. gva_to_gpa; it must be computed directly in
4605 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4606 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4607 *
4608 * In particular the following conditions come from the error code, the
4609 * page tables and the machine state:
4610 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4611 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4612 * - PK is always zero if U=0 in the page tables
4613 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4614 *
4615 * The PKRU bitmask caches the result of these four conditions.  The error
4616 * code (minus the P bit) and the page table's U bit form an index into the
4617 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4618 * with the two bits of the PKRU register corresponding to the protection key.
4619 * For the first three conditions above the bits will be 00, thus masking
4620 * away both AD and WD.  For all reads or if the last condition holds, WD
4621 * only will be masked away.
4622 */
4623 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4624 {
4625         unsigned bit;
4626         bool wp;
4627
4628         mmu->pkru_mask = 0;
4629
4630         if (!is_cr4_pke(mmu))
4631                 return;
4632
4633         wp = is_cr0_wp(mmu);
4634
4635         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4636                 unsigned pfec, pkey_bits;
4637                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4638
4639                 pfec = bit << 1;
4640                 ff = pfec & PFERR_FETCH_MASK;
4641                 uf = pfec & PFERR_USER_MASK;
4642                 wf = pfec & PFERR_WRITE_MASK;
4643
4644                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4645                 pte_user = pfec & PFERR_RSVD_MASK;
4646
4647                 /*
4648                  * Only need to check the access which is not an
4649                  * instruction fetch and is to a user page.
4650                  */
4651                 check_pkey = (!ff && pte_user);
4652                 /*
4653                  * write access is controlled by PKRU if it is a
4654                  * user access or CR0.WP = 1.
4655                  */
4656                 check_write = check_pkey && wf && (uf || wp);
4657
4658                 /* PKRU.AD stops both read and write access. */
4659                 pkey_bits = !!check_pkey;
4660                 /* PKRU.WD stops write access. */
4661                 pkey_bits |= (!!check_write) << 1;
4662
4663                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4664         }
4665 }
4666
4667 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4668                                         struct kvm_mmu *mmu)
4669 {
4670         if (!is_cr0_pg(mmu))
4671                 return;
4672
4673         reset_rsvds_bits_mask(vcpu, mmu);
4674         update_permission_bitmask(mmu, false);
4675         update_pkru_bitmask(mmu);
4676 }
4677
4678 static void paging64_init_context(struct kvm_mmu *context)
4679 {
4680         context->page_fault = paging64_page_fault;
4681         context->gva_to_gpa = paging64_gva_to_gpa;
4682         context->sync_page = paging64_sync_page;
4683         context->invlpg = paging64_invlpg;
4684         context->direct_map = false;
4685 }
4686
4687 static void paging32_init_context(struct kvm_mmu *context)
4688 {
4689         context->page_fault = paging32_page_fault;
4690         context->gva_to_gpa = paging32_gva_to_gpa;
4691         context->sync_page = paging32_sync_page;
4692         context->invlpg = paging32_invlpg;
4693         context->direct_map = false;
4694 }
4695
4696 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4697                                                          struct kvm_mmu_role_regs *regs)
4698 {
4699         union kvm_mmu_extended_role ext = {0};
4700
4701         if (____is_cr0_pg(regs)) {
4702                 ext.cr0_pg = 1;
4703                 ext.cr4_pae = ____is_cr4_pae(regs);
4704                 ext.cr4_smep = ____is_cr4_smep(regs);
4705                 ext.cr4_smap = ____is_cr4_smap(regs);
4706                 ext.cr4_pse = ____is_cr4_pse(regs);
4707
4708                 /* PKEY and LA57 are active iff long mode is active. */
4709                 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4710                 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4711                 ext.efer_lma = ____is_efer_lma(regs);
4712         }
4713
4714         ext.valid = 1;
4715
4716         return ext;
4717 }
4718
4719 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4720                                                    struct kvm_mmu_role_regs *regs,
4721                                                    bool base_only)
4722 {
4723         union kvm_mmu_role role = {0};
4724
4725         role.base.access = ACC_ALL;
4726         if (____is_cr0_pg(regs)) {
4727                 role.base.efer_nx = ____is_efer_nx(regs);
4728                 role.base.cr0_wp = ____is_cr0_wp(regs);
4729         }
4730         role.base.smm = is_smm(vcpu);
4731         role.base.guest_mode = is_guest_mode(vcpu);
4732
4733         if (base_only)
4734                 return role;
4735
4736         role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4737
4738         return role;
4739 }
4740
4741 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4742 {
4743         /* tdp_root_level is architecture forced level, use it if nonzero */
4744         if (tdp_root_level)
4745                 return tdp_root_level;
4746
4747         /* Use 5-level TDP if and only if it's useful/necessary. */
4748         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4749                 return 4;
4750
4751         return max_tdp_level;
4752 }
4753
4754 static union kvm_mmu_role
4755 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4756                                 struct kvm_mmu_role_regs *regs, bool base_only)
4757 {
4758         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4759
4760         role.base.ad_disabled = (shadow_accessed_mask == 0);
4761         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4762         role.base.direct = true;
4763         role.base.has_4_byte_gpte = false;
4764
4765         return role;
4766 }
4767
4768 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4769 {
4770         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4771         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4772         union kvm_mmu_role new_role =
4773                 kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4774
4775         if (new_role.as_u64 == context->mmu_role.as_u64)
4776                 return;
4777
4778         context->mmu_role.as_u64 = new_role.as_u64;
4779         context->page_fault = kvm_tdp_page_fault;
4780         context->sync_page = nonpaging_sync_page;
4781         context->invlpg = NULL;
4782         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4783         context->direct_map = true;
4784         context->get_guest_pgd = get_cr3;
4785         context->get_pdptr = kvm_pdptr_read;
4786         context->inject_page_fault = kvm_inject_page_fault;
4787         context->root_level = role_regs_to_root_level(&regs);
4788
4789         if (!is_cr0_pg(context))
4790                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4791         else if (is_cr4_pae(context))
4792                 context->gva_to_gpa = paging64_gva_to_gpa;
4793         else
4794                 context->gva_to_gpa = paging32_gva_to_gpa;
4795
4796         reset_guest_paging_metadata(vcpu, context);
4797         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4798 }
4799
4800 static union kvm_mmu_role
4801 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4802                                       struct kvm_mmu_role_regs *regs, bool base_only)
4803 {
4804         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4805
4806         role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4807         role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4808         role.base.has_4_byte_gpte = ____is_cr0_pg(regs) && !____is_cr4_pae(regs);
4809
4810         return role;
4811 }
4812
4813 static union kvm_mmu_role
4814 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4815                                    struct kvm_mmu_role_regs *regs, bool base_only)
4816 {
4817         union kvm_mmu_role role =
4818                 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4819
4820         role.base.direct = !____is_cr0_pg(regs);
4821
4822         if (!____is_efer_lma(regs))
4823                 role.base.level = PT32E_ROOT_LEVEL;
4824         else if (____is_cr4_la57(regs))
4825                 role.base.level = PT64_ROOT_5LEVEL;
4826         else
4827                 role.base.level = PT64_ROOT_4LEVEL;
4828
4829         return role;
4830 }
4831
4832 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4833                                     struct kvm_mmu_role_regs *regs,
4834                                     union kvm_mmu_role new_role)
4835 {
4836         if (new_role.as_u64 == context->mmu_role.as_u64)
4837                 return;
4838
4839         context->mmu_role.as_u64 = new_role.as_u64;
4840
4841         if (!is_cr0_pg(context))
4842                 nonpaging_init_context(context);
4843         else if (is_cr4_pae(context))
4844                 paging64_init_context(context);
4845         else
4846                 paging32_init_context(context);
4847         context->root_level = role_regs_to_root_level(regs);
4848
4849         reset_guest_paging_metadata(vcpu, context);
4850         context->shadow_root_level = new_role.base.level;
4851
4852         reset_shadow_zero_bits_mask(vcpu, context);
4853 }
4854
4855 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4856                                 struct kvm_mmu_role_regs *regs)
4857 {
4858         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4859         union kvm_mmu_role new_role =
4860                 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4861
4862         shadow_mmu_init_context(vcpu, context, regs, new_role);
4863 }
4864
4865 static union kvm_mmu_role
4866 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4867                                    struct kvm_mmu_role_regs *regs)
4868 {
4869         union kvm_mmu_role role =
4870                 kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4871
4872         role.base.direct = false;
4873         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4874
4875         return role;
4876 }
4877
4878 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4879                              unsigned long cr4, u64 efer, gpa_t nested_cr3)
4880 {
4881         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4882         struct kvm_mmu_role_regs regs = {
4883                 .cr0 = cr0,
4884                 .cr4 = cr4 & ~X86_CR4_PKE,
4885                 .efer = efer,
4886         };
4887         union kvm_mmu_role new_role;
4888
4889         new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4890
4891         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4892
4893         shadow_mmu_init_context(vcpu, context, &regs, new_role);
4894 }
4895 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4896
4897 static union kvm_mmu_role
4898 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4899                                    bool execonly, u8 level)
4900 {
4901         union kvm_mmu_role role = {0};
4902
4903         /* SMM flag is inherited from root_mmu */
4904         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4905
4906         role.base.level = level;
4907         role.base.has_4_byte_gpte = false;
4908         role.base.direct = false;
4909         role.base.ad_disabled = !accessed_dirty;
4910         role.base.guest_mode = true;
4911         role.base.access = ACC_ALL;
4912
4913         /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4914         role.ext.word = 0;
4915         role.ext.execonly = execonly;
4916         role.ext.valid = 1;
4917
4918         return role;
4919 }
4920
4921 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4922                              int huge_page_level, bool accessed_dirty,
4923                              gpa_t new_eptp)
4924 {
4925         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4926         u8 level = vmx_eptp_page_walk_level(new_eptp);
4927         union kvm_mmu_role new_role =
4928                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4929                                                    execonly, level);
4930
4931         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4932
4933         if (new_role.as_u64 == context->mmu_role.as_u64)
4934                 return;
4935
4936         context->mmu_role.as_u64 = new_role.as_u64;
4937
4938         context->shadow_root_level = level;
4939
4940         context->ept_ad = accessed_dirty;
4941         context->page_fault = ept_page_fault;
4942         context->gva_to_gpa = ept_gva_to_gpa;
4943         context->sync_page = ept_sync_page;
4944         context->invlpg = ept_invlpg;
4945         context->root_level = level;
4946         context->direct_map = false;
4947
4948         update_permission_bitmask(context, true);
4949         context->pkru_mask = 0;
4950         reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
4951         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4952 }
4953 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4954
4955 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4956 {
4957         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4958         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4959
4960         kvm_init_shadow_mmu(vcpu, &regs);
4961
4962         context->get_guest_pgd     = get_cr3;
4963         context->get_pdptr         = kvm_pdptr_read;
4964         context->inject_page_fault = kvm_inject_page_fault;
4965 }
4966
4967 static union kvm_mmu_role
4968 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4969 {
4970         union kvm_mmu_role role;
4971
4972         role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4973
4974         /*
4975          * Nested MMUs are used only for walking L2's gva->gpa, they never have
4976          * shadow pages of their own and so "direct" has no meaning.   Set it
4977          * to "true" to try to detect bogus usage of the nested MMU.
4978          */
4979         role.base.direct = true;
4980         role.base.level = role_regs_to_root_level(regs);
4981         return role;
4982 }
4983
4984 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4985 {
4986         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4987         union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4988         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4989
4990         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4991                 return;
4992
4993         g_context->mmu_role.as_u64 = new_role.as_u64;
4994         g_context->get_guest_pgd     = get_cr3;
4995         g_context->get_pdptr         = kvm_pdptr_read;
4996         g_context->inject_page_fault = kvm_inject_page_fault;
4997         g_context->root_level        = new_role.base.level;
4998
4999         /*
5000          * L2 page tables are never shadowed, so there is no need to sync
5001          * SPTEs.
5002          */
5003         g_context->invlpg            = NULL;
5004
5005         /*
5006          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5007          * L1's nested page tables (e.g. EPT12). The nested translation
5008          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5009          * L2's page tables as the first level of translation and L1's
5010          * nested page tables as the second level of translation. Basically
5011          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5012          */
5013         if (!is_paging(vcpu))
5014                 g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5015         else if (is_long_mode(vcpu))
5016                 g_context->gva_to_gpa = paging64_gva_to_gpa;
5017         else if (is_pae(vcpu))
5018                 g_context->gva_to_gpa = paging64_gva_to_gpa;
5019         else
5020                 g_context->gva_to_gpa = paging32_gva_to_gpa;
5021
5022         reset_guest_paging_metadata(vcpu, g_context);
5023 }
5024
5025 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5026 {
5027         if (mmu_is_nested(vcpu))
5028                 init_kvm_nested_mmu(vcpu);
5029         else if (tdp_enabled)
5030                 init_kvm_tdp_mmu(vcpu);
5031         else
5032                 init_kvm_softmmu(vcpu);
5033 }
5034 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5035
5036 static union kvm_mmu_page_role
5037 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5038 {
5039         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5040         union kvm_mmu_role role;
5041
5042         if (tdp_enabled)
5043                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5044         else
5045                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5046
5047         return role.base;
5048 }
5049
5050 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5051 {
5052         /*
5053          * Invalidate all MMU roles to force them to reinitialize as CPUID
5054          * information is factored into reserved bit calculations.
5055          *
5056          * Correctly handling multiple vCPU models with respect to paging and
5057          * physical address properties) in a single VM would require tracking
5058          * all relevant CPUID information in kvm_mmu_page_role. That is very
5059          * undesirable as it would increase the memory requirements for
5060          * gfn_track (see struct kvm_mmu_page_role comments).  For now that
5061          * problem is swept under the rug; KVM's CPUID API is horrific and
5062          * it's all but impossible to solve it without introducing a new API.
5063          */
5064         vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
5065         vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
5066         vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
5067         kvm_mmu_reset_context(vcpu);
5068
5069         /*
5070          * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5071          * kvm_arch_vcpu_ioctl().
5072          */
5073         KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5074 }
5075
5076 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5077 {
5078         kvm_mmu_unload(vcpu);
5079         kvm_init_mmu(vcpu);
5080 }
5081 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5082
5083 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5084 {
5085         int r;
5086
5087         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5088         if (r)
5089                 goto out;
5090         r = mmu_alloc_special_roots(vcpu);
5091         if (r)
5092                 goto out;
5093         if (vcpu->arch.mmu->direct_map)
5094                 r = mmu_alloc_direct_roots(vcpu);
5095         else
5096                 r = mmu_alloc_shadow_roots(vcpu);
5097         if (r)
5098                 goto out;
5099
5100         kvm_mmu_sync_roots(vcpu);
5101
5102         kvm_mmu_load_pgd(vcpu);
5103         static_call(kvm_x86_tlb_flush_current)(vcpu);
5104 out:
5105         return r;
5106 }
5107
5108 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5109 {
5110         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5111         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5112         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5113         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5114 }
5115
5116 static bool need_remote_flush(u64 old, u64 new)
5117 {
5118         if (!is_shadow_present_pte(old))
5119                 return false;
5120         if (!is_shadow_present_pte(new))
5121                 return true;
5122         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5123                 return true;
5124         old ^= shadow_nx_mask;
5125         new ^= shadow_nx_mask;
5126         return (old & ~new & PT64_PERM_MASK) != 0;
5127 }
5128
5129 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5130                                     int *bytes)
5131 {
5132         u64 gentry = 0;
5133         int r;
5134
5135         /*
5136          * Assume that the pte write on a page table of the same type
5137          * as the current vcpu paging mode since we update the sptes only
5138          * when they have the same mode.
5139          */
5140         if (is_pae(vcpu) && *bytes == 4) {
5141                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5142                 *gpa &= ~(gpa_t)7;
5143                 *bytes = 8;
5144         }
5145
5146         if (*bytes == 4 || *bytes == 8) {
5147                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5148                 if (r)
5149                         gentry = 0;
5150         }
5151
5152         return gentry;
5153 }
5154
5155 /*
5156  * If we're seeing too many writes to a page, it may no longer be a page table,
5157  * or we may be forking, in which case it is better to unmap the page.
5158  */
5159 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5160 {
5161         /*
5162          * Skip write-flooding detected for the sp whose level is 1, because
5163          * it can become unsync, then the guest page is not write-protected.
5164          */
5165         if (sp->role.level == PG_LEVEL_4K)
5166                 return false;
5167
5168         atomic_inc(&sp->write_flooding_count);
5169         return atomic_read(&sp->write_flooding_count) >= 3;
5170 }
5171
5172 /*
5173  * Misaligned accesses are too much trouble to fix up; also, they usually
5174  * indicate a page is not used as a page table.
5175  */
5176 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5177                                     int bytes)
5178 {
5179         unsigned offset, pte_size, misaligned;
5180
5181         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5182                  gpa, bytes, sp->role.word);
5183
5184         offset = offset_in_page(gpa);
5185         pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5186
5187         /*
5188          * Sometimes, the OS only writes the last one bytes to update status
5189          * bits, for example, in linux, andb instruction is used in clear_bit().
5190          */
5191         if (!(offset & (pte_size - 1)) && bytes == 1)
5192                 return false;
5193
5194         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5195         misaligned |= bytes < 4;
5196
5197         return misaligned;
5198 }
5199
5200 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5201 {
5202         unsigned page_offset, quadrant;
5203         u64 *spte;
5204         int level;
5205
5206         page_offset = offset_in_page(gpa);
5207         level = sp->role.level;
5208         *nspte = 1;
5209         if (sp->role.has_4_byte_gpte) {
5210                 page_offset <<= 1;      /* 32->64 */
5211                 /*
5212                  * A 32-bit pde maps 4MB while the shadow pdes map
5213                  * only 2MB.  So we need to double the offset again
5214                  * and zap two pdes instead of one.
5215                  */
5216                 if (level == PT32_ROOT_LEVEL) {
5217                         page_offset &= ~7; /* kill rounding error */
5218                         page_offset <<= 1;
5219                         *nspte = 2;
5220                 }
5221                 quadrant = page_offset >> PAGE_SHIFT;
5222                 page_offset &= ~PAGE_MASK;
5223                 if (quadrant != sp->role.quadrant)
5224                         return NULL;
5225         }
5226
5227         spte = &sp->spt[page_offset / sizeof(*spte)];
5228         return spte;
5229 }
5230
5231 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5232                               const u8 *new, int bytes,
5233                               struct kvm_page_track_notifier_node *node)
5234 {
5235         gfn_t gfn = gpa >> PAGE_SHIFT;
5236         struct kvm_mmu_page *sp;
5237         LIST_HEAD(invalid_list);
5238         u64 entry, gentry, *spte;
5239         int npte;
5240         bool flush = false;
5241
5242         /*
5243          * If we don't have indirect shadow pages, it means no page is
5244          * write-protected, so we can exit simply.
5245          */
5246         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5247                 return;
5248
5249         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5250
5251         /*
5252          * No need to care whether allocation memory is successful
5253          * or not since pte prefetch is skipped if it does not have
5254          * enough objects in the cache.
5255          */
5256         mmu_topup_memory_caches(vcpu, true);
5257
5258         write_lock(&vcpu->kvm->mmu_lock);
5259
5260         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5261
5262         ++vcpu->kvm->stat.mmu_pte_write;
5263         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5264
5265         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5266                 if (detect_write_misaligned(sp, gpa, bytes) ||
5267                       detect_write_flooding(sp)) {
5268                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5269                         ++vcpu->kvm->stat.mmu_flooded;
5270                         continue;
5271                 }
5272
5273                 spte = get_written_sptes(sp, gpa, &npte);
5274                 if (!spte)
5275                         continue;
5276
5277                 while (npte--) {
5278                         entry = *spte;
5279                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5280                         if (gentry && sp->role.level != PG_LEVEL_4K)
5281                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5282                         if (need_remote_flush(entry, *spte))
5283                                 flush = true;
5284                         ++spte;
5285                 }
5286         }
5287         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5288         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5289         write_unlock(&vcpu->kvm->mmu_lock);
5290 }
5291
5292 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5293                        void *insn, int insn_len)
5294 {
5295         int r, emulation_type = EMULTYPE_PF;
5296         bool direct = vcpu->arch.mmu->direct_map;
5297
5298         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5299                 return RET_PF_RETRY;
5300
5301         r = RET_PF_INVALID;
5302         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5303                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5304                 if (r == RET_PF_EMULATE)
5305                         goto emulate;
5306         }
5307
5308         if (r == RET_PF_INVALID) {
5309                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5310                                           lower_32_bits(error_code), false);
5311                 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5312                         return -EIO;
5313         }
5314
5315         if (r < 0)
5316                 return r;
5317         if (r != RET_PF_EMULATE)
5318                 return 1;
5319
5320         /*
5321          * Before emulating the instruction, check if the error code
5322          * was due to a RO violation while translating the guest page.
5323          * This can occur when using nested virtualization with nested
5324          * paging in both guests. If true, we simply unprotect the page
5325          * and resume the guest.
5326          */
5327         if (vcpu->arch.mmu->direct_map &&
5328             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5329                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5330                 return 1;
5331         }
5332
5333         /*
5334          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5335          * optimistically try to just unprotect the page and let the processor
5336          * re-execute the instruction that caused the page fault.  Do not allow
5337          * retrying MMIO emulation, as it's not only pointless but could also
5338          * cause us to enter an infinite loop because the processor will keep
5339          * faulting on the non-existent MMIO address.  Retrying an instruction
5340          * from a nested guest is also pointless and dangerous as we are only
5341          * explicitly shadowing L1's page tables, i.e. unprotecting something
5342          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5343          */
5344         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5345                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5346 emulate:
5347         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5348                                        insn_len);
5349 }
5350 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5351
5352 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5353                             gva_t gva, hpa_t root_hpa)
5354 {
5355         int i;
5356
5357         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5358         if (mmu != &vcpu->arch.guest_mmu) {
5359                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5360                 if (is_noncanonical_address(gva, vcpu))
5361                         return;
5362
5363                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5364         }
5365
5366         if (!mmu->invlpg)
5367                 return;
5368
5369         if (root_hpa == INVALID_PAGE) {
5370                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5371
5372                 /*
5373                  * INVLPG is required to invalidate any global mappings for the VA,
5374                  * irrespective of PCID. Since it would take us roughly similar amount
5375                  * of work to determine whether any of the prev_root mappings of the VA
5376                  * is marked global, or to just sync it blindly, so we might as well
5377                  * just always sync it.
5378                  *
5379                  * Mappings not reachable via the current cr3 or the prev_roots will be
5380                  * synced when switching to that cr3, so nothing needs to be done here
5381                  * for them.
5382                  */
5383                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5384                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5385                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5386         } else {
5387                 mmu->invlpg(vcpu, gva, root_hpa);
5388         }
5389 }
5390
5391 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5392 {
5393         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5394         ++vcpu->stat.invlpg;
5395 }
5396 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5397
5398
5399 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5400 {
5401         struct kvm_mmu *mmu = vcpu->arch.mmu;
5402         bool tlb_flush = false;
5403         uint i;
5404
5405         if (pcid == kvm_get_active_pcid(vcpu)) {
5406                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5407                 tlb_flush = true;
5408         }
5409
5410         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5411                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5412                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5413                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5414                         tlb_flush = true;
5415                 }
5416         }
5417
5418         if (tlb_flush)
5419                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5420
5421         ++vcpu->stat.invlpg;
5422
5423         /*
5424          * Mappings not reachable via the current cr3 or the prev_roots will be
5425          * synced when switching to that cr3, so nothing needs to be done here
5426          * for them.
5427          */
5428 }
5429
5430 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5431                        int tdp_max_root_level, int tdp_huge_page_level)
5432 {
5433         tdp_enabled = enable_tdp;
5434         tdp_root_level = tdp_forced_root_level;
5435         max_tdp_level = tdp_max_root_level;
5436
5437         /*
5438          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5439          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5440          * the kernel is not.  But, KVM never creates a page size greater than
5441          * what is used by the kernel for any given HVA, i.e. the kernel's
5442          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5443          */
5444         if (tdp_enabled)
5445                 max_huge_page_level = tdp_huge_page_level;
5446         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5447                 max_huge_page_level = PG_LEVEL_1G;
5448         else
5449                 max_huge_page_level = PG_LEVEL_2M;
5450 }
5451 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5452
5453 /* The return value indicates if tlb flush on all vcpus is needed. */
5454 typedef bool (*slot_level_handler) (struct kvm *kvm,
5455                                     struct kvm_rmap_head *rmap_head,
5456                                     const struct kvm_memory_slot *slot);
5457
5458 /* The caller should hold mmu-lock before calling this function. */
5459 static __always_inline bool
5460 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5461                         slot_level_handler fn, int start_level, int end_level,
5462                         gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5463                         bool flush)
5464 {
5465         struct slot_rmap_walk_iterator iterator;
5466
5467         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5468                         end_gfn, &iterator) {
5469                 if (iterator.rmap)
5470                         flush |= fn(kvm, iterator.rmap, memslot);
5471
5472                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5473                         if (flush && flush_on_yield) {
5474                                 kvm_flush_remote_tlbs_with_address(kvm,
5475                                                 start_gfn,
5476                                                 iterator.gfn - start_gfn + 1);
5477                                 flush = false;
5478                         }
5479                         cond_resched_rwlock_write(&kvm->mmu_lock);
5480                 }
5481         }
5482
5483         return flush;
5484 }
5485
5486 static __always_inline bool
5487 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5488                   slot_level_handler fn, int start_level, int end_level,
5489                   bool flush_on_yield)
5490 {
5491         return slot_handle_level_range(kvm, memslot, fn, start_level,
5492                         end_level, memslot->base_gfn,
5493                         memslot->base_gfn + memslot->npages - 1,
5494                         flush_on_yield, false);
5495 }
5496
5497 static __always_inline bool
5498 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5499                      slot_level_handler fn, bool flush_on_yield)
5500 {
5501         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5502                                  PG_LEVEL_4K, flush_on_yield);
5503 }
5504
5505 static void free_mmu_pages(struct kvm_mmu *mmu)
5506 {
5507         if (!tdp_enabled && mmu->pae_root)
5508                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5509         free_page((unsigned long)mmu->pae_root);
5510         free_page((unsigned long)mmu->pml4_root);
5511         free_page((unsigned long)mmu->pml5_root);
5512 }
5513
5514 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5515 {
5516         struct page *page;
5517         int i;
5518
5519         mmu->root_hpa = INVALID_PAGE;
5520         mmu->root_pgd = 0;
5521         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5522                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5523
5524         /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
5525         if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
5526                 return 0;
5527
5528         /*
5529          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5530          * while the PDP table is a per-vCPU construct that's allocated at MMU
5531          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5532          * x86_64.  Therefore we need to allocate the PDP table in the first
5533          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5534          * generally doesn't use PAE paging and can skip allocating the PDP
5535          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5536          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5537          * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5538          */
5539         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5540                 return 0;
5541
5542         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5543         if (!page)
5544                 return -ENOMEM;
5545
5546         mmu->pae_root = page_address(page);
5547
5548         /*
5549          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5550          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5551          * that KVM's writes and the CPU's reads get along.  Note, this is
5552          * only necessary when using shadow paging, as 64-bit NPT can get at
5553          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5554          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5555          */
5556         if (!tdp_enabled)
5557                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5558         else
5559                 WARN_ON_ONCE(shadow_me_mask);
5560
5561         for (i = 0; i < 4; ++i)
5562                 mmu->pae_root[i] = INVALID_PAE_ROOT;
5563
5564         return 0;
5565 }
5566
5567 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5568 {
5569         int ret;
5570
5571         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5572         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5573
5574         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5575         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5576
5577         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5578
5579         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5580         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5581
5582         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5583         if (ret)
5584                 return ret;
5585
5586         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5587         if (ret)
5588                 goto fail_allocate_root;
5589
5590         return ret;
5591  fail_allocate_root:
5592         free_mmu_pages(&vcpu->arch.guest_mmu);
5593         return ret;
5594 }
5595
5596 #define BATCH_ZAP_PAGES 10
5597 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5598 {
5599         struct kvm_mmu_page *sp, *node;
5600         int nr_zapped, batch = 0;
5601
5602 restart:
5603         list_for_each_entry_safe_reverse(sp, node,
5604               &kvm->arch.active_mmu_pages, link) {
5605                 /*
5606                  * No obsolete valid page exists before a newly created page
5607                  * since active_mmu_pages is a FIFO list.
5608                  */
5609                 if (!is_obsolete_sp(kvm, sp))
5610                         break;
5611
5612                 /*
5613                  * Invalid pages should never land back on the list of active
5614                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5615                  * infinite loop if the page gets put back on the list (again).
5616                  */
5617                 if (WARN_ON(sp->role.invalid))
5618                         continue;
5619
5620                 /*
5621                  * No need to flush the TLB since we're only zapping shadow
5622                  * pages with an obsolete generation number and all vCPUS have
5623                  * loaded a new root, i.e. the shadow pages being zapped cannot
5624                  * be in active use by the guest.
5625                  */
5626                 if (batch >= BATCH_ZAP_PAGES &&
5627                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5628                         batch = 0;
5629                         goto restart;
5630                 }
5631
5632                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5633                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5634                         batch += nr_zapped;
5635                         goto restart;
5636                 }
5637         }
5638
5639         /*
5640          * Trigger a remote TLB flush before freeing the page tables to ensure
5641          * KVM is not in the middle of a lockless shadow page table walk, which
5642          * may reference the pages.
5643          */
5644         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5645 }
5646
5647 /*
5648  * Fast invalidate all shadow pages and use lock-break technique
5649  * to zap obsolete pages.
5650  *
5651  * It's required when memslot is being deleted or VM is being
5652  * destroyed, in these cases, we should ensure that KVM MMU does
5653  * not use any resource of the being-deleted slot or all slots
5654  * after calling the function.
5655  */
5656 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5657 {
5658         lockdep_assert_held(&kvm->slots_lock);
5659
5660         write_lock(&kvm->mmu_lock);
5661         trace_kvm_mmu_zap_all_fast(kvm);
5662
5663         /*
5664          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5665          * held for the entire duration of zapping obsolete pages, it's
5666          * impossible for there to be multiple invalid generations associated
5667          * with *valid* shadow pages at any given time, i.e. there is exactly
5668          * one valid generation and (at most) one invalid generation.
5669          */
5670         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5671
5672         /* In order to ensure all threads see this change when
5673          * handling the MMU reload signal, this must happen in the
5674          * same critical section as kvm_reload_remote_mmus, and
5675          * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5676          * could drop the MMU lock and yield.
5677          */
5678         if (is_tdp_mmu_enabled(kvm))
5679                 kvm_tdp_mmu_invalidate_all_roots(kvm);
5680
5681         /*
5682          * Notify all vcpus to reload its shadow page table and flush TLB.
5683          * Then all vcpus will switch to new shadow page table with the new
5684          * mmu_valid_gen.
5685          *
5686          * Note: we need to do this under the protection of mmu_lock,
5687          * otherwise, vcpu would purge shadow page but miss tlb flush.
5688          */
5689         kvm_reload_remote_mmus(kvm);
5690
5691         kvm_zap_obsolete_pages(kvm);
5692
5693         write_unlock(&kvm->mmu_lock);
5694
5695         if (is_tdp_mmu_enabled(kvm)) {
5696                 read_lock(&kvm->mmu_lock);
5697                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5698                 read_unlock(&kvm->mmu_lock);
5699         }
5700 }
5701
5702 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5703 {
5704         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5705 }
5706
5707 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5708                         struct kvm_memory_slot *slot,
5709                         struct kvm_page_track_notifier_node *node)
5710 {
5711         kvm_mmu_zap_all_fast(kvm);
5712 }
5713
5714 void kvm_mmu_init_vm(struct kvm *kvm)
5715 {
5716         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5717
5718         spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5719
5720         kvm_mmu_init_tdp_mmu(kvm);
5721
5722         node->track_write = kvm_mmu_pte_write;
5723         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5724         kvm_page_track_register_notifier(kvm, node);
5725 }
5726
5727 void kvm_mmu_uninit_vm(struct kvm *kvm)
5728 {
5729         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5730
5731         kvm_page_track_unregister_notifier(kvm, node);
5732
5733         kvm_mmu_uninit_tdp_mmu(kvm);
5734 }
5735
5736 static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5737 {
5738         const struct kvm_memory_slot *memslot;
5739         struct kvm_memslots *slots;
5740         struct kvm_memslot_iter iter;
5741         bool flush = false;
5742         gfn_t start, end;
5743         int i;
5744
5745         if (!kvm_memslots_have_rmaps(kvm))
5746                 return flush;
5747
5748         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5749                 slots = __kvm_memslots(kvm, i);
5750
5751                 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
5752                         memslot = iter.slot;
5753                         start = max(gfn_start, memslot->base_gfn);
5754                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5755                         if (WARN_ON_ONCE(start >= end))
5756                                 continue;
5757
5758                         flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5759                                                         PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
5760                                                         start, end - 1, true, flush);
5761                 }
5762         }
5763
5764         return flush;
5765 }
5766
5767 /*
5768  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
5769  * (not including it)
5770  */
5771 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5772 {
5773         bool flush;
5774         int i;
5775
5776         if (WARN_ON_ONCE(gfn_end <= gfn_start))
5777                 return;
5778
5779         write_lock(&kvm->mmu_lock);
5780
5781         kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
5782
5783         flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
5784
5785         if (is_tdp_mmu_enabled(kvm)) {
5786                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5787                         flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5788                                                           gfn_end, flush);
5789         }
5790
5791         if (flush)
5792                 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5793                                                    gfn_end - gfn_start);
5794
5795         kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
5796
5797         write_unlock(&kvm->mmu_lock);
5798 }
5799
5800 static bool slot_rmap_write_protect(struct kvm *kvm,
5801                                     struct kvm_rmap_head *rmap_head,
5802                                     const struct kvm_memory_slot *slot)
5803 {
5804         return __rmap_write_protect(kvm, rmap_head, false);
5805 }
5806
5807 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5808                                       const struct kvm_memory_slot *memslot,
5809                                       int start_level)
5810 {
5811         bool flush = false;
5812
5813         if (kvm_memslots_have_rmaps(kvm)) {
5814                 write_lock(&kvm->mmu_lock);
5815                 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5816                                           start_level, KVM_MAX_HUGEPAGE_LEVEL,
5817                                           false);
5818                 write_unlock(&kvm->mmu_lock);
5819         }
5820
5821         if (is_tdp_mmu_enabled(kvm)) {
5822                 read_lock(&kvm->mmu_lock);
5823                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5824                 read_unlock(&kvm->mmu_lock);
5825         }
5826
5827         /*
5828          * We can flush all the TLBs out of the mmu lock without TLB
5829          * corruption since we just change the spte from writable to
5830          * readonly so that we only need to care the case of changing
5831          * spte from present to present (changing the spte from present
5832          * to nonpresent will flush all the TLBs immediately), in other
5833          * words, the only case we care is mmu_spte_update() where we
5834          * have checked Host-writable | MMU-writable instead of
5835          * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5836          * anymore.
5837          */
5838         if (flush)
5839                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5840 }
5841
5842 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5843                                          struct kvm_rmap_head *rmap_head,
5844                                          const struct kvm_memory_slot *slot)
5845 {
5846         u64 *sptep;
5847         struct rmap_iterator iter;
5848         int need_tlb_flush = 0;
5849         kvm_pfn_t pfn;
5850         struct kvm_mmu_page *sp;
5851
5852 restart:
5853         for_each_rmap_spte(rmap_head, &iter, sptep) {
5854                 sp = sptep_to_sp(sptep);
5855                 pfn = spte_to_pfn(*sptep);
5856
5857                 /*
5858                  * We cannot do huge page mapping for indirect shadow pages,
5859                  * which are found on the last rmap (level = 1) when not using
5860                  * tdp; such shadow pages are synced with the page table in
5861                  * the guest, and the guest page table is using 4K page size
5862                  * mapping if the indirect sp has level = 1.
5863                  */
5864                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5865                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5866                                                                pfn, PG_LEVEL_NUM)) {
5867                         pte_list_remove(kvm, rmap_head, sptep);
5868
5869                         if (kvm_available_flush_tlb_with_range())
5870                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5871                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5872                         else
5873                                 need_tlb_flush = 1;
5874
5875                         goto restart;
5876                 }
5877         }
5878
5879         return need_tlb_flush;
5880 }
5881
5882 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5883                                    const struct kvm_memory_slot *slot)
5884 {
5885         if (kvm_memslots_have_rmaps(kvm)) {
5886                 write_lock(&kvm->mmu_lock);
5887                 /*
5888                  * Zap only 4k SPTEs since the legacy MMU only supports dirty
5889                  * logging at a 4k granularity and never creates collapsible
5890                  * 2m SPTEs during dirty logging.
5891                  */
5892                 if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
5893                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5894                 write_unlock(&kvm->mmu_lock);
5895         }
5896
5897         if (is_tdp_mmu_enabled(kvm)) {
5898                 read_lock(&kvm->mmu_lock);
5899                 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5900                 read_unlock(&kvm->mmu_lock);
5901         }
5902 }
5903
5904 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5905                                         const struct kvm_memory_slot *memslot)
5906 {
5907         /*
5908          * All current use cases for flushing the TLBs for a specific memslot
5909          * related to dirty logging, and many do the TLB flush out of mmu_lock.
5910          * The interaction between the various operations on memslot must be
5911          * serialized by slots_locks to ensure the TLB flush from one operation
5912          * is observed by any other operation on the same memslot.
5913          */
5914         lockdep_assert_held(&kvm->slots_lock);
5915         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5916                                            memslot->npages);
5917 }
5918
5919 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5920                                    const struct kvm_memory_slot *memslot)
5921 {
5922         bool flush = false;
5923
5924         if (kvm_memslots_have_rmaps(kvm)) {
5925                 write_lock(&kvm->mmu_lock);
5926                 /*
5927                  * Clear dirty bits only on 4k SPTEs since the legacy MMU only
5928                  * support dirty logging at a 4k granularity.
5929                  */
5930                 flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
5931                 write_unlock(&kvm->mmu_lock);
5932         }
5933
5934         if (is_tdp_mmu_enabled(kvm)) {
5935                 read_lock(&kvm->mmu_lock);
5936                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5937                 read_unlock(&kvm->mmu_lock);
5938         }
5939
5940         /*
5941          * It's also safe to flush TLBs out of mmu lock here as currently this
5942          * function is only used for dirty logging, in which case flushing TLB
5943          * out of mmu lock also guarantees no dirty pages will be lost in
5944          * dirty_bitmap.
5945          */
5946         if (flush)
5947                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5948 }
5949
5950 void kvm_mmu_zap_all(struct kvm *kvm)
5951 {
5952         struct kvm_mmu_page *sp, *node;
5953         LIST_HEAD(invalid_list);
5954         int ign;
5955
5956         write_lock(&kvm->mmu_lock);
5957 restart:
5958         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5959                 if (WARN_ON(sp->role.invalid))
5960                         continue;
5961                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5962                         goto restart;
5963                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5964                         goto restart;
5965         }
5966
5967         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5968
5969         if (is_tdp_mmu_enabled(kvm))
5970                 kvm_tdp_mmu_zap_all(kvm);
5971
5972         write_unlock(&kvm->mmu_lock);
5973 }
5974
5975 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5976 {
5977         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5978
5979         gen &= MMIO_SPTE_GEN_MASK;
5980
5981         /*
5982          * Generation numbers are incremented in multiples of the number of
5983          * address spaces in order to provide unique generations across all
5984          * address spaces.  Strip what is effectively the address space
5985          * modifier prior to checking for a wrap of the MMIO generation so
5986          * that a wrap in any address space is detected.
5987          */
5988         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5989
5990         /*
5991          * The very rare case: if the MMIO generation number has wrapped,
5992          * zap all shadow pages.
5993          */
5994         if (unlikely(gen == 0)) {
5995                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5996                 kvm_mmu_zap_all_fast(kvm);
5997         }
5998 }
5999
6000 static unsigned long
6001 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6002 {
6003         struct kvm *kvm;
6004         int nr_to_scan = sc->nr_to_scan;
6005         unsigned long freed = 0;
6006
6007         mutex_lock(&kvm_lock);
6008
6009         list_for_each_entry(kvm, &vm_list, vm_list) {
6010                 int idx;
6011                 LIST_HEAD(invalid_list);
6012
6013                 /*
6014                  * Never scan more than sc->nr_to_scan VM instances.
6015                  * Will not hit this condition practically since we do not try
6016                  * to shrink more than one VM and it is very unlikely to see
6017                  * !n_used_mmu_pages so many times.
6018                  */
6019                 if (!nr_to_scan--)
6020                         break;
6021                 /*
6022                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6023                  * here. We may skip a VM instance errorneosly, but we do not
6024                  * want to shrink a VM that only started to populate its MMU
6025                  * anyway.
6026                  */
6027                 if (!kvm->arch.n_used_mmu_pages &&
6028                     !kvm_has_zapped_obsolete_pages(kvm))
6029                         continue;
6030
6031                 idx = srcu_read_lock(&kvm->srcu);
6032                 write_lock(&kvm->mmu_lock);
6033
6034                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6035                         kvm_mmu_commit_zap_page(kvm,
6036                               &kvm->arch.zapped_obsolete_pages);
6037                         goto unlock;
6038                 }
6039
6040                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6041
6042 unlock:
6043                 write_unlock(&kvm->mmu_lock);
6044                 srcu_read_unlock(&kvm->srcu, idx);
6045
6046                 /*
6047                  * unfair on small ones
6048                  * per-vm shrinkers cry out
6049                  * sadness comes quickly
6050                  */
6051                 list_move_tail(&kvm->vm_list, &vm_list);
6052                 break;
6053         }
6054
6055         mutex_unlock(&kvm_lock);
6056         return freed;
6057 }
6058
6059 static unsigned long
6060 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6061 {
6062         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6063 }
6064
6065 static struct shrinker mmu_shrinker = {
6066         .count_objects = mmu_shrink_count,
6067         .scan_objects = mmu_shrink_scan,
6068         .seeks = DEFAULT_SEEKS * 10,
6069 };
6070
6071 static void mmu_destroy_caches(void)
6072 {
6073         kmem_cache_destroy(pte_list_desc_cache);
6074         kmem_cache_destroy(mmu_page_header_cache);
6075 }
6076
6077 static bool get_nx_auto_mode(void)
6078 {
6079         /* Return true when CPU has the bug, and mitigations are ON */
6080         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6081 }
6082
6083 static void __set_nx_huge_pages(bool val)
6084 {
6085         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6086 }
6087
6088 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6089 {
6090         bool old_val = nx_huge_pages;
6091         bool new_val;
6092
6093         /* In "auto" mode deploy workaround only if CPU has the bug. */
6094         if (sysfs_streq(val, "off"))
6095                 new_val = 0;
6096         else if (sysfs_streq(val, "force"))
6097                 new_val = 1;
6098         else if (sysfs_streq(val, "auto"))
6099                 new_val = get_nx_auto_mode();
6100         else if (strtobool(val, &new_val) < 0)
6101                 return -EINVAL;
6102
6103         __set_nx_huge_pages(new_val);
6104
6105         if (new_val != old_val) {
6106                 struct kvm *kvm;
6107
6108                 mutex_lock(&kvm_lock);
6109
6110                 list_for_each_entry(kvm, &vm_list, vm_list) {
6111                         mutex_lock(&kvm->slots_lock);
6112                         kvm_mmu_zap_all_fast(kvm);
6113                         mutex_unlock(&kvm->slots_lock);
6114
6115                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6116                 }
6117                 mutex_unlock(&kvm_lock);
6118         }
6119
6120         return 0;
6121 }
6122
6123 int kvm_mmu_module_init(void)
6124 {
6125         int ret = -ENOMEM;
6126
6127         if (nx_huge_pages == -1)
6128                 __set_nx_huge_pages(get_nx_auto_mode());
6129
6130         /*
6131          * MMU roles use union aliasing which is, generally speaking, an
6132          * undefined behavior. However, we supposedly know how compilers behave
6133          * and the current status quo is unlikely to change. Guardians below are
6134          * supposed to let us know if the assumption becomes false.
6135          */
6136         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6137         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6138         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6139
6140         kvm_mmu_reset_all_pte_masks();
6141
6142         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6143                                             sizeof(struct pte_list_desc),
6144                                             0, SLAB_ACCOUNT, NULL);
6145         if (!pte_list_desc_cache)
6146                 goto out;
6147
6148         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6149                                                   sizeof(struct kvm_mmu_page),
6150                                                   0, SLAB_ACCOUNT, NULL);
6151         if (!mmu_page_header_cache)
6152                 goto out;
6153
6154         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6155                 goto out;
6156
6157         ret = register_shrinker(&mmu_shrinker);
6158         if (ret)
6159                 goto out;
6160
6161         return 0;
6162
6163 out:
6164         mmu_destroy_caches();
6165         return ret;
6166 }
6167
6168 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6169 {
6170         kvm_mmu_unload(vcpu);
6171         free_mmu_pages(&vcpu->arch.root_mmu);
6172         free_mmu_pages(&vcpu->arch.guest_mmu);
6173         mmu_free_memory_caches(vcpu);
6174 }
6175
6176 void kvm_mmu_module_exit(void)
6177 {
6178         mmu_destroy_caches();
6179         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6180         unregister_shrinker(&mmu_shrinker);
6181         mmu_audit_disable();
6182 }
6183
6184 /*
6185  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
6186  * select a halving time of 1 hour".  Returns true if recovery is enabled.
6187  */
6188 static bool calc_nx_huge_pages_recovery_period(uint *period)
6189 {
6190         /*
6191          * Use READ_ONCE to get the params, this may be called outside of the
6192          * param setters, e.g. by the kthread to compute its next timeout.
6193          */
6194         bool enabled = READ_ONCE(nx_huge_pages);
6195         uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6196
6197         if (!enabled || !ratio)
6198                 return false;
6199
6200         *period = READ_ONCE(nx_huge_pages_recovery_period_ms);
6201         if (!*period) {
6202                 /* Make sure the period is not less than one second.  */
6203                 ratio = min(ratio, 3600u);
6204                 *period = 60 * 60 * 1000 / ratio;
6205         }
6206         return true;
6207 }
6208
6209 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6210 {
6211         bool was_recovery_enabled, is_recovery_enabled;
6212         uint old_period, new_period;
6213         int err;
6214
6215         was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6216
6217         err = param_set_uint(val, kp);
6218         if (err)
6219                 return err;
6220
6221         is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6222
6223         if (is_recovery_enabled &&
6224             (!was_recovery_enabled || old_period > new_period)) {
6225                 struct kvm *kvm;
6226
6227                 mutex_lock(&kvm_lock);
6228
6229                 list_for_each_entry(kvm, &vm_list, vm_list)
6230                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6231
6232                 mutex_unlock(&kvm_lock);
6233         }
6234
6235         return err;
6236 }
6237
6238 static void kvm_recover_nx_lpages(struct kvm *kvm)
6239 {
6240         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6241         int rcu_idx;
6242         struct kvm_mmu_page *sp;
6243         unsigned int ratio;
6244         LIST_HEAD(invalid_list);
6245         bool flush = false;
6246         ulong to_zap;
6247
6248         rcu_idx = srcu_read_lock(&kvm->srcu);
6249         write_lock(&kvm->mmu_lock);
6250
6251         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6252         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6253         for ( ; to_zap; --to_zap) {
6254                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6255                         break;
6256
6257                 /*
6258                  * We use a separate list instead of just using active_mmu_pages
6259                  * because the number of lpage_disallowed pages is expected to
6260                  * be relatively small compared to the total.
6261                  */
6262                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6263                                       struct kvm_mmu_page,
6264                                       lpage_disallowed_link);
6265                 WARN_ON_ONCE(!sp->lpage_disallowed);
6266                 if (is_tdp_mmu_page(sp)) {
6267                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6268                 } else {
6269                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6270                         WARN_ON_ONCE(sp->lpage_disallowed);
6271                 }
6272
6273                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6274                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6275                         cond_resched_rwlock_write(&kvm->mmu_lock);
6276                         flush = false;
6277                 }
6278         }
6279         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6280
6281         write_unlock(&kvm->mmu_lock);
6282         srcu_read_unlock(&kvm->srcu, rcu_idx);
6283 }
6284
6285 static long get_nx_lpage_recovery_timeout(u64 start_time)
6286 {
6287         bool enabled;
6288         uint period;
6289
6290         enabled = calc_nx_huge_pages_recovery_period(&period);
6291
6292         return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
6293                        : MAX_SCHEDULE_TIMEOUT;
6294 }
6295
6296 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6297 {
6298         u64 start_time;
6299         long remaining_time;
6300
6301         while (true) {
6302                 start_time = get_jiffies_64();
6303                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6304
6305                 set_current_state(TASK_INTERRUPTIBLE);
6306                 while (!kthread_should_stop() && remaining_time > 0) {
6307                         schedule_timeout(remaining_time);
6308                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6309                         set_current_state(TASK_INTERRUPTIBLE);
6310                 }
6311
6312                 set_current_state(TASK_RUNNING);
6313
6314                 if (kthread_should_stop())
6315                         return 0;
6316
6317                 kvm_recover_nx_lpages(kvm);
6318         }
6319 }
6320
6321 int kvm_mmu_post_init_vm(struct kvm *kvm)
6322 {
6323         int err;
6324
6325         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6326                                           "kvm-nx-lpage-recovery",
6327                                           &kvm->arch.nx_lpage_recovery_thread);
6328         if (!err)
6329                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6330
6331         return err;
6332 }
6333
6334 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6335 {
6336         if (kvm->arch.nx_lpage_recovery_thread)
6337                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6338 }