Merge branch 'for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54
55 extern bool itlb_multihit_kvm_mitigation;
56
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69         .set = set_nx_huge_pages,
70         .get = param_get_bool,
71 };
72
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74         .set = set_nx_huge_pages_recovery_ratio,
75         .get = param_get_uint,
76 };
77
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81                 &nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
87 /*
88  * When setting this variable to true it enables Two-Dimensional-Paging
89  * where the hardware walks 2 page tables:
90  * 1. the guest-virtual to guest-physical
91  * 2. while doing 1. it walks guest-physical to host-physical
92  * If the hardware supports that we don't need to do shadow paging.
93  */
94 bool tdp_enabled = false;
95
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98
99 enum {
100         AUDIT_PRE_PAGE_FAULT,
101         AUDIT_POST_PAGE_FAULT,
102         AUDIT_PRE_PTE_WRITE,
103         AUDIT_POST_PTE_WRITE,
104         AUDIT_PRE_SYNC,
105         AUDIT_POST_SYNC
106 };
107
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112
113 #define PTE_PREFETCH_NUM                8
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119
120 #define PT32_LVL_OFFSET_MASK(level) \
121         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122                                                 * PT32_LEVEL_BITS))) - 1))
123
124 #define PT32_INDEX(address, level)\
125         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #include <trace/events/kvm.h>
136
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139
140 struct pte_list_desc {
141         u64 *sptes[PTE_LIST_EXT];
142         struct pte_list_desc *more;
143 };
144
145 struct kvm_shadow_walk_iterator {
146         u64 addr;
147         hpa_t shadow_addr;
148         u64 *sptep;
149         int level;
150         unsigned index;
151 };
152
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
154         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
155                                          (_root), (_addr));                \
156              shadow_walk_okay(&(_walker));                                 \
157              shadow_walk_next(&(_walker)))
158
159 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
161              shadow_walk_okay(&(_walker));                      \
162              shadow_walk_next(&(_walker)))
163
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
165         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
166              shadow_walk_okay(&(_walker)) &&                            \
167                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
168              __shadow_walk_next(&(_walker), spte))
169
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180
181
182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184         return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188                 struct kvm_tlb_range *range)
189 {
190         int ret = -ENOTSUPP;
191
192         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
194
195         if (ret)
196                 kvm_flush_remote_tlbs(kvm);
197 }
198
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200                 u64 start_gfn, u64 pages)
201 {
202         struct kvm_tlb_range range;
203
204         range.start_gfn = start_gfn;
205         range.pages = pages;
206
207         kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209
210 bool is_nx_huge_page_enabled(void)
211 {
212         return READ_ONCE(nx_huge_pages);
213 }
214
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216                            unsigned int access)
217 {
218         u64 mask = make_mmio_spte(vcpu, gfn, access);
219
220         trace_mark_mmio_spte(sptep, gfn, mask);
221         mmu_spte_set(sptep, mask);
222 }
223
224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227
228         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229                & shadow_nonpresent_or_rsvd_mask;
230
231         return gpa >> PAGE_SHIFT;
232 }
233
234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236         return spte & shadow_mmio_access_mask;
237 }
238
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240                           kvm_pfn_t pfn, unsigned int access)
241 {
242         if (unlikely(is_noslot_pfn(pfn))) {
243                 mark_mmio_spte(vcpu, sptep, gfn, access);
244                 return true;
245         }
246
247         return false;
248 }
249
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252         u64 kvm_gen, spte_gen, gen;
253
254         gen = kvm_vcpu_memslots(vcpu)->generation;
255         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256                 return false;
257
258         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259         spte_gen = get_mmio_spte_generation(spte);
260
261         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262         return likely(kvm_gen == spte_gen);
263 }
264
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266                                   struct x86_exception *exception)
267 {
268         /* Check if guest physical address doesn't exceed guest maximum */
269         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270                 exception->error_code |= PFERR_RSVD_MASK;
271                 return UNMAPPED_GVA;
272         }
273
274         return gpa;
275 }
276
277 static int is_cpuid_PSE36(void)
278 {
279         return 1;
280 }
281
282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284         return vcpu->arch.efer & EFER_NX;
285 }
286
287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291         return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297         WRITE_ONCE(*sptep, spte);
298 }
299
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302         WRITE_ONCE(*sptep, spte);
303 }
304
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307         return xchg(sptep, spte);
308 }
309
310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312         return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316         struct {
317                 u32 spte_low;
318                 u32 spte_high;
319         };
320         u64 spte;
321 };
322
323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326
327         if (is_shadow_present_pte(spte))
328                 return;
329
330         /* Ensure the spte is completely set before we increase the count */
331         smp_wmb();
332         sp->clear_spte_count++;
333 }
334
335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337         union split_spte *ssptep, sspte;
338
339         ssptep = (union split_spte *)sptep;
340         sspte = (union split_spte)spte;
341
342         ssptep->spte_high = sspte.spte_high;
343
344         /*
345          * If we map the spte from nonpresent to present, We should store
346          * the high bits firstly, then set present bit, so cpu can not
347          * fetch this spte while we are setting the spte.
348          */
349         smp_wmb();
350
351         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356         union split_spte *ssptep, sspte;
357
358         ssptep = (union split_spte *)sptep;
359         sspte = (union split_spte)spte;
360
361         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362
363         /*
364          * If we map the spte from present to nonpresent, we should clear
365          * present bit firstly to avoid vcpu fetch the old high bits.
366          */
367         smp_wmb();
368
369         ssptep->spte_high = sspte.spte_high;
370         count_spte_clear(sptep, spte);
371 }
372
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375         union split_spte *ssptep, sspte, orig;
376
377         ssptep = (union split_spte *)sptep;
378         sspte = (union split_spte)spte;
379
380         /* xchg acts as a barrier before the setting of the high bits */
381         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382         orig.spte_high = ssptep->spte_high;
383         ssptep->spte_high = sspte.spte_high;
384         count_spte_clear(sptep, spte);
385
386         return orig.spte;
387 }
388
389 /*
390  * The idea using the light way get the spte on x86_32 guest is from
391  * gup_get_pte (mm/gup.c).
392  *
393  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394  * coalesces them and we are running out of the MMU lock.  Therefore
395  * we need to protect against in-progress updates of the spte.
396  *
397  * Reading the spte while an update is in progress may get the old value
398  * for the high part of the spte.  The race is fine for a present->non-present
399  * change (because the high part of the spte is ignored for non-present spte),
400  * but for a present->present change we must reread the spte.
401  *
402  * All such changes are done in two steps (present->non-present and
403  * non-present->present), hence it is enough to count the number of
404  * present->non-present updates: if it changed while reading the spte,
405  * we might have hit the race.  This is done using clear_spte_count.
406  */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410         union split_spte spte, *orig = (union split_spte *)sptep;
411         int count;
412
413 retry:
414         count = sp->clear_spte_count;
415         smp_rmb();
416
417         spte.spte_low = orig->spte_low;
418         smp_rmb();
419
420         spte.spte_high = orig->spte_high;
421         smp_rmb();
422
423         if (unlikely(spte.spte_low != orig->spte_low ||
424               count != sp->clear_spte_count))
425                 goto retry;
426
427         return spte.spte;
428 }
429 #endif
430
431 static bool spte_has_volatile_bits(u64 spte)
432 {
433         if (!is_shadow_present_pte(spte))
434                 return false;
435
436         /*
437          * Always atomically update spte if it can be updated
438          * out of mmu-lock, it can ensure dirty bit is not lost,
439          * also, it can help us to get a stable is_writable_pte()
440          * to ensure tlb flush is not missed.
441          */
442         if (spte_can_locklessly_be_made_writable(spte) ||
443             is_access_track_spte(spte))
444                 return true;
445
446         if (spte_ad_enabled(spte)) {
447                 if ((spte & shadow_accessed_mask) == 0 ||
448                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449                         return true;
450         }
451
452         return false;
453 }
454
455 /* Rules for using mmu_spte_set:
456  * Set the sptep from nonpresent to present.
457  * Note: the sptep being assigned *must* be either not present
458  * or in a state where the hardware will not attempt to update
459  * the spte.
460  */
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463         WARN_ON(is_shadow_present_pte(*sptep));
464         __set_spte(sptep, new_spte);
465 }
466
467 /*
468  * Update the SPTE (excluding the PFN), but do not track changes in its
469  * accessed/dirty status.
470  */
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473         u64 old_spte = *sptep;
474
475         WARN_ON(!is_shadow_present_pte(new_spte));
476
477         if (!is_shadow_present_pte(old_spte)) {
478                 mmu_spte_set(sptep, new_spte);
479                 return old_spte;
480         }
481
482         if (!spte_has_volatile_bits(old_spte))
483                 __update_clear_spte_fast(sptep, new_spte);
484         else
485                 old_spte = __update_clear_spte_slow(sptep, new_spte);
486
487         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
489         return old_spte;
490 }
491
492 /* Rules for using mmu_spte_update:
493  * Update the state bits, it means the mapped pfn is not changed.
494  *
495  * Whenever we overwrite a writable spte with a read-only one we
496  * should flush remote TLBs. Otherwise rmap_write_protect
497  * will find a read-only spte, even though the writable spte
498  * might be cached on a CPU's TLB, the return value indicates this
499  * case.
500  *
501  * Returns true if the TLB needs to be flushed
502  */
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505         bool flush = false;
506         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508         if (!is_shadow_present_pte(old_spte))
509                 return false;
510
511         /*
512          * For the spte updated out of mmu-lock is safe, since
513          * we always atomically update it, see the comments in
514          * spte_has_volatile_bits().
515          */
516         if (spte_can_locklessly_be_made_writable(old_spte) &&
517               !is_writable_pte(new_spte))
518                 flush = true;
519
520         /*
521          * Flush TLB when accessed/dirty states are changed in the page tables,
522          * to guarantee consistency between TLB and page tables.
523          */
524
525         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526                 flush = true;
527                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528         }
529
530         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531                 flush = true;
532                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533         }
534
535         return flush;
536 }
537
538 /*
539  * Rules for using mmu_spte_clear_track_bits:
540  * It sets the sptep from present to nonpresent, and track the
541  * state bits, it is used to clear the last level sptep.
542  * Returns non-zero if the PTE was previously valid.
543  */
544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546         kvm_pfn_t pfn;
547         u64 old_spte = *sptep;
548
549         if (!spte_has_volatile_bits(old_spte))
550                 __update_clear_spte_fast(sptep, 0ull);
551         else
552                 old_spte = __update_clear_spte_slow(sptep, 0ull);
553
554         if (!is_shadow_present_pte(old_spte))
555                 return 0;
556
557         pfn = spte_to_pfn(old_spte);
558
559         /*
560          * KVM does not hold the refcount of the page used by
561          * kvm mmu, before reclaiming the page, we should
562          * unmap it from mmu first.
563          */
564         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565
566         if (is_accessed_spte(old_spte))
567                 kvm_set_pfn_accessed(pfn);
568
569         if (is_dirty_spte(old_spte))
570                 kvm_set_pfn_dirty(pfn);
571
572         return 1;
573 }
574
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582         __update_clear_spte_fast(sptep, 0ull);
583 }
584
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587         return __get_spte_lockless(sptep);
588 }
589
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
592 {
593         u64 new_spte = spte;
594         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596
597         WARN_ON_ONCE(spte_ad_enabled(spte));
598         WARN_ON_ONCE(!is_access_track_spte(spte));
599
600         new_spte &= ~shadow_acc_track_mask;
601         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603         new_spte |= saved_bits;
604
605         return new_spte;
606 }
607
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
610 {
611         u64 spte = mmu_spte_get_lockless(sptep);
612
613         if (!is_accessed_spte(spte))
614                 return false;
615
616         if (spte_ad_enabled(spte)) {
617                 clear_bit((ffs(shadow_accessed_mask) - 1),
618                           (unsigned long *)sptep);
619         } else {
620                 /*
621                  * Capture the dirty status of the page, so that it doesn't get
622                  * lost when the SPTE is marked for access tracking.
623                  */
624                 if (is_writable_pte(spte))
625                         kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627                 spte = mark_spte_for_access_track(spte);
628                 mmu_spte_update_no_track(sptep, spte);
629         }
630
631         return true;
632 }
633
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636         /*
637          * Prevent page table teardown by making any free-er wait during
638          * kvm_flush_remote_tlbs() IPI to all active vcpus.
639          */
640         local_irq_disable();
641
642         /*
643          * Make sure a following spte read is not reordered ahead of the write
644          * to vcpu->mode.
645          */
646         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651         /*
652          * Make sure the write to vcpu->mode is not reordered in front of
653          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655          */
656         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657         local_irq_enable();
658 }
659
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662         int r;
663
664         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667         if (r)
668                 return r;
669         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670                                        PT64_ROOT_MAX_LEVEL);
671         if (r)
672                 return r;
673         if (maybe_indirect) {
674                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675                                                PT64_ROOT_MAX_LEVEL);
676                 if (r)
677                         return r;
678         }
679         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680                                           PT64_ROOT_MAX_LEVEL);
681 }
682
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703         if (!sp->role.direct)
704                 return sp->gfns[index];
705
706         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711         if (!sp->role.direct) {
712                 sp->gfns[index] = gfn;
713                 return;
714         }
715
716         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717                 pr_err_ratelimited("gfn mismatch under direct page %llx "
718                                    "(expected %llx, got %llx)\n",
719                                    sp->gfn,
720                                    kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722
723 /*
724  * Return the pointer to the large page information for a given gfn,
725  * handling slots that are not large page aligned.
726  */
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728                                               struct kvm_memory_slot *slot,
729                                               int level)
730 {
731         unsigned long idx;
732
733         idx = gfn_to_index(gfn, slot->base_gfn, level);
734         return &slot->arch.lpage_info[level - 2][idx];
735 }
736
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738                                             gfn_t gfn, int count)
739 {
740         struct kvm_lpage_info *linfo;
741         int i;
742
743         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744                 linfo = lpage_info_slot(gfn, slot, i);
745                 linfo->disallow_lpage += count;
746                 WARN_ON(linfo->disallow_lpage < 0);
747         }
748 }
749
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752         update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757         update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762         struct kvm_memslots *slots;
763         struct kvm_memory_slot *slot;
764         gfn_t gfn;
765
766         kvm->arch.indirect_shadow_pages++;
767         gfn = sp->gfn;
768         slots = kvm_memslots_for_spte_role(kvm, sp->role);
769         slot = __gfn_to_memslot(slots, gfn);
770
771         /* the non-leaf shadow pages are keeping readonly. */
772         if (sp->role.level > PG_LEVEL_4K)
773                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774                                                     KVM_PAGE_TRACK_WRITE);
775
776         kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778
779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781         if (sp->lpage_disallowed)
782                 return;
783
784         ++kvm->stat.nx_lpage_splits;
785         list_add_tail(&sp->lpage_disallowed_link,
786                       &kvm->arch.lpage_disallowed_mmu_pages);
787         sp->lpage_disallowed = true;
788 }
789
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792         struct kvm_memslots *slots;
793         struct kvm_memory_slot *slot;
794         gfn_t gfn;
795
796         kvm->arch.indirect_shadow_pages--;
797         gfn = sp->gfn;
798         slots = kvm_memslots_for_spte_role(kvm, sp->role);
799         slot = __gfn_to_memslot(slots, gfn);
800         if (sp->role.level > PG_LEVEL_4K)
801                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802                                                        KVM_PAGE_TRACK_WRITE);
803
804         kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806
807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809         --kvm->stat.nx_lpage_splits;
810         sp->lpage_disallowed = false;
811         list_del(&sp->lpage_disallowed_link);
812 }
813
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816                             bool no_dirty_log)
817 {
818         struct kvm_memory_slot *slot;
819
820         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822                 return NULL;
823         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
824                 return NULL;
825
826         return slot;
827 }
828
829 /*
830  * About rmap_head encoding:
831  *
832  * If the bit zero of rmap_head->val is clear, then it points to the only spte
833  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834  * pte_list_desc containing more mappings.
835  */
836
837 /*
838  * Returns the number of pointers in the rmap chain, not counting the new one.
839  */
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841                         struct kvm_rmap_head *rmap_head)
842 {
843         struct pte_list_desc *desc;
844         int i, count = 0;
845
846         if (!rmap_head->val) {
847                 rmap_printk("%p %llx 0->1\n", spte, *spte);
848                 rmap_head->val = (unsigned long)spte;
849         } else if (!(rmap_head->val & 1)) {
850                 rmap_printk("%p %llx 1->many\n", spte, *spte);
851                 desc = mmu_alloc_pte_list_desc(vcpu);
852                 desc->sptes[0] = (u64 *)rmap_head->val;
853                 desc->sptes[1] = spte;
854                 rmap_head->val = (unsigned long)desc | 1;
855                 ++count;
856         } else {
857                 rmap_printk("%p %llx many->many\n", spte, *spte);
858                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859                 while (desc->sptes[PTE_LIST_EXT-1]) {
860                         count += PTE_LIST_EXT;
861
862                         if (!desc->more) {
863                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
864                                 desc = desc->more;
865                                 break;
866                         }
867                         desc = desc->more;
868                 }
869                 for (i = 0; desc->sptes[i]; ++i)
870                         ++count;
871                 desc->sptes[i] = spte;
872         }
873         return count;
874 }
875
876 static void
877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878                            struct pte_list_desc *desc, int i,
879                            struct pte_list_desc *prev_desc)
880 {
881         int j;
882
883         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884                 ;
885         desc->sptes[i] = desc->sptes[j];
886         desc->sptes[j] = NULL;
887         if (j != 0)
888                 return;
889         if (!prev_desc && !desc->more)
890                 rmap_head->val = 0;
891         else
892                 if (prev_desc)
893                         prev_desc->more = desc->more;
894                 else
895                         rmap_head->val = (unsigned long)desc->more | 1;
896         mmu_free_pte_list_desc(desc);
897 }
898
899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900 {
901         struct pte_list_desc *desc;
902         struct pte_list_desc *prev_desc;
903         int i;
904
905         if (!rmap_head->val) {
906                 pr_err("%s: %p 0->BUG\n", __func__, spte);
907                 BUG();
908         } else if (!(rmap_head->val & 1)) {
909                 rmap_printk("%p 1->0\n", spte);
910                 if ((u64 *)rmap_head->val != spte) {
911                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
912                         BUG();
913                 }
914                 rmap_head->val = 0;
915         } else {
916                 rmap_printk("%p many->many\n", spte);
917                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918                 prev_desc = NULL;
919                 while (desc) {
920                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921                                 if (desc->sptes[i] == spte) {
922                                         pte_list_desc_remove_entry(rmap_head,
923                                                         desc, i, prev_desc);
924                                         return;
925                                 }
926                         }
927                         prev_desc = desc;
928                         desc = desc->more;
929                 }
930                 pr_err("%s: %p many->many\n", __func__, spte);
931                 BUG();
932         }
933 }
934
935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936 {
937         mmu_spte_clear_track_bits(sptep);
938         __pte_list_remove(sptep, rmap_head);
939 }
940
941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942                                            struct kvm_memory_slot *slot)
943 {
944         unsigned long idx;
945
946         idx = gfn_to_index(gfn, slot->base_gfn, level);
947         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 }
949
950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951                                          struct kvm_mmu_page *sp)
952 {
953         struct kvm_memslots *slots;
954         struct kvm_memory_slot *slot;
955
956         slots = kvm_memslots_for_spte_role(kvm, sp->role);
957         slot = __gfn_to_memslot(slots, gfn);
958         return __gfn_to_rmap(gfn, sp->role.level, slot);
959 }
960
961 static bool rmap_can_add(struct kvm_vcpu *vcpu)
962 {
963         struct kvm_mmu_memory_cache *mc;
964
965         mc = &vcpu->arch.mmu_pte_list_desc_cache;
966         return kvm_mmu_memory_cache_nr_free_objects(mc);
967 }
968
969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970 {
971         struct kvm_mmu_page *sp;
972         struct kvm_rmap_head *rmap_head;
973
974         sp = sptep_to_sp(spte);
975         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977         return pte_list_add(vcpu, spte, rmap_head);
978 }
979
980 static void rmap_remove(struct kvm *kvm, u64 *spte)
981 {
982         struct kvm_mmu_page *sp;
983         gfn_t gfn;
984         struct kvm_rmap_head *rmap_head;
985
986         sp = sptep_to_sp(spte);
987         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988         rmap_head = gfn_to_rmap(kvm, gfn, sp);
989         __pte_list_remove(spte, rmap_head);
990 }
991
992 /*
993  * Used by the following functions to iterate through the sptes linked by a
994  * rmap.  All fields are private and not assumed to be used outside.
995  */
996 struct rmap_iterator {
997         /* private fields */
998         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
999         int pos;                        /* index of the sptep */
1000 };
1001
1002 /*
1003  * Iteration must be started by this function.  This should also be used after
1004  * removing/dropping sptes from the rmap link because in such cases the
1005  * information in the iterator may not be valid.
1006  *
1007  * Returns sptep if found, NULL otherwise.
1008  */
1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010                            struct rmap_iterator *iter)
1011 {
1012         u64 *sptep;
1013
1014         if (!rmap_head->val)
1015                 return NULL;
1016
1017         if (!(rmap_head->val & 1)) {
1018                 iter->desc = NULL;
1019                 sptep = (u64 *)rmap_head->val;
1020                 goto out;
1021         }
1022
1023         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024         iter->pos = 0;
1025         sptep = iter->desc->sptes[iter->pos];
1026 out:
1027         BUG_ON(!is_shadow_present_pte(*sptep));
1028         return sptep;
1029 }
1030
1031 /*
1032  * Must be used with a valid iterator: e.g. after rmap_get_first().
1033  *
1034  * Returns sptep if found, NULL otherwise.
1035  */
1036 static u64 *rmap_get_next(struct rmap_iterator *iter)
1037 {
1038         u64 *sptep;
1039
1040         if (iter->desc) {
1041                 if (iter->pos < PTE_LIST_EXT - 1) {
1042                         ++iter->pos;
1043                         sptep = iter->desc->sptes[iter->pos];
1044                         if (sptep)
1045                                 goto out;
1046                 }
1047
1048                 iter->desc = iter->desc->more;
1049
1050                 if (iter->desc) {
1051                         iter->pos = 0;
1052                         /* desc->sptes[0] cannot be NULL */
1053                         sptep = iter->desc->sptes[iter->pos];
1054                         goto out;
1055                 }
1056         }
1057
1058         return NULL;
1059 out:
1060         BUG_ON(!is_shadow_present_pte(*sptep));
1061         return sptep;
1062 }
1063
1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1065         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1066              _spte_; _spte_ = rmap_get_next(_iter_))
1067
1068 static void drop_spte(struct kvm *kvm, u64 *sptep)
1069 {
1070         if (mmu_spte_clear_track_bits(sptep))
1071                 rmap_remove(kvm, sptep);
1072 }
1073
1074
1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077         if (is_large_pte(*sptep)) {
1078                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079                 drop_spte(kvm, sptep);
1080                 --kvm->stat.lpages;
1081                 return true;
1082         }
1083
1084         return false;
1085 }
1086
1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088 {
1089         if (__drop_large_spte(vcpu->kvm, sptep)) {
1090                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091
1092                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093                         KVM_PAGES_PER_HPAGE(sp->role.level));
1094         }
1095 }
1096
1097 /*
1098  * Write-protect on the specified @sptep, @pt_protect indicates whether
1099  * spte write-protection is caused by protecting shadow page table.
1100  *
1101  * Note: write protection is difference between dirty logging and spte
1102  * protection:
1103  * - for dirty logging, the spte can be set to writable at anytime if
1104  *   its dirty bitmap is properly set.
1105  * - for spte protection, the spte can be writable only after unsync-ing
1106  *   shadow page.
1107  *
1108  * Return true if tlb need be flushed.
1109  */
1110 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 {
1112         u64 spte = *sptep;
1113
1114         if (!is_writable_pte(spte) &&
1115               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116                 return false;
1117
1118         rmap_printk("spte %p %llx\n", sptep, *sptep);
1119
1120         if (pt_protect)
1121                 spte &= ~SPTE_MMU_WRITEABLE;
1122         spte = spte & ~PT_WRITABLE_MASK;
1123
1124         return mmu_spte_update(sptep, spte);
1125 }
1126
1127 static bool __rmap_write_protect(struct kvm *kvm,
1128                                  struct kvm_rmap_head *rmap_head,
1129                                  bool pt_protect)
1130 {
1131         u64 *sptep;
1132         struct rmap_iterator iter;
1133         bool flush = false;
1134
1135         for_each_rmap_spte(rmap_head, &iter, sptep)
1136                 flush |= spte_write_protect(sptep, pt_protect);
1137
1138         return flush;
1139 }
1140
1141 static bool spte_clear_dirty(u64 *sptep)
1142 {
1143         u64 spte = *sptep;
1144
1145         rmap_printk("spte %p %llx\n", sptep, *sptep);
1146
1147         MMU_WARN_ON(!spte_ad_enabled(spte));
1148         spte &= ~shadow_dirty_mask;
1149         return mmu_spte_update(sptep, spte);
1150 }
1151
1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 {
1154         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155                                                (unsigned long *)sptep);
1156         if (was_writable && !spte_ad_enabled(*sptep))
1157                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158
1159         return was_writable;
1160 }
1161
1162 /*
1163  * Gets the GFN ready for another round of dirty logging by clearing the
1164  *      - D bit on ad-enabled SPTEs, and
1165  *      - W bit on ad-disabled SPTEs.
1166  * Returns true iff any D or W bits were cleared.
1167  */
1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1169 {
1170         u64 *sptep;
1171         struct rmap_iterator iter;
1172         bool flush = false;
1173
1174         for_each_rmap_spte(rmap_head, &iter, sptep)
1175                 if (spte_ad_need_write_protect(*sptep))
1176                         flush |= spte_wrprot_for_clear_dirty(sptep);
1177                 else
1178                         flush |= spte_clear_dirty(sptep);
1179
1180         return flush;
1181 }
1182
1183 static bool spte_set_dirty(u64 *sptep)
1184 {
1185         u64 spte = *sptep;
1186
1187         rmap_printk("spte %p %llx\n", sptep, *sptep);
1188
1189         /*
1190          * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1191          * do not bother adding back write access to pages marked
1192          * SPTE_AD_WRPROT_ONLY_MASK.
1193          */
1194         spte |= shadow_dirty_mask;
1195
1196         return mmu_spte_update(sptep, spte);
1197 }
1198
1199 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1200 {
1201         u64 *sptep;
1202         struct rmap_iterator iter;
1203         bool flush = false;
1204
1205         for_each_rmap_spte(rmap_head, &iter, sptep)
1206                 if (spte_ad_enabled(*sptep))
1207                         flush |= spte_set_dirty(sptep);
1208
1209         return flush;
1210 }
1211
1212 /**
1213  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1214  * @kvm: kvm instance
1215  * @slot: slot to protect
1216  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217  * @mask: indicates which pages we should protect
1218  *
1219  * Used when we do not need to care about huge page mappings: e.g. during dirty
1220  * logging we do not have any such mappings.
1221  */
1222 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1223                                      struct kvm_memory_slot *slot,
1224                                      gfn_t gfn_offset, unsigned long mask)
1225 {
1226         struct kvm_rmap_head *rmap_head;
1227
1228         if (is_tdp_mmu_enabled(kvm))
1229                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230                                 slot->base_gfn + gfn_offset, mask, true);
1231         while (mask) {
1232                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1233                                           PG_LEVEL_4K, slot);
1234                 __rmap_write_protect(kvm, rmap_head, false);
1235
1236                 /* clear the first set bit */
1237                 mask &= mask - 1;
1238         }
1239 }
1240
1241 /**
1242  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243  * protect the page if the D-bit isn't supported.
1244  * @kvm: kvm instance
1245  * @slot: slot to clear D-bit
1246  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247  * @mask: indicates which pages we should clear D-bit
1248  *
1249  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1250  */
1251 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252                                      struct kvm_memory_slot *slot,
1253                                      gfn_t gfn_offset, unsigned long mask)
1254 {
1255         struct kvm_rmap_head *rmap_head;
1256
1257         if (is_tdp_mmu_enabled(kvm))
1258                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259                                 slot->base_gfn + gfn_offset, mask, false);
1260         while (mask) {
1261                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262                                           PG_LEVEL_4K, slot);
1263                 __rmap_clear_dirty(kvm, rmap_head);
1264
1265                 /* clear the first set bit */
1266                 mask &= mask - 1;
1267         }
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1270
1271 /**
1272  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273  * PT level pages.
1274  *
1275  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276  * enable dirty logging for them.
1277  *
1278  * Used when we do not need to care about huge page mappings: e.g. during dirty
1279  * logging we do not have any such mappings.
1280  */
1281 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282                                 struct kvm_memory_slot *slot,
1283                                 gfn_t gfn_offset, unsigned long mask)
1284 {
1285         if (kvm_x86_ops.enable_log_dirty_pt_masked)
1286                 static_call(kvm_x86_enable_log_dirty_pt_masked)(kvm, slot,
1287                                                                 gfn_offset,
1288                                                                 mask);
1289         else
1290                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1291 }
1292
1293 int kvm_cpu_dirty_log_size(void)
1294 {
1295         if (kvm_x86_ops.cpu_dirty_log_size)
1296                 return static_call(kvm_x86_cpu_dirty_log_size)();
1297
1298         return 0;
1299 }
1300
1301 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1302                                     struct kvm_memory_slot *slot, u64 gfn)
1303 {
1304         struct kvm_rmap_head *rmap_head;
1305         int i;
1306         bool write_protected = false;
1307
1308         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1309                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1310                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1311         }
1312
1313         if (is_tdp_mmu_enabled(kvm))
1314                 write_protected |=
1315                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1316
1317         return write_protected;
1318 }
1319
1320 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1321 {
1322         struct kvm_memory_slot *slot;
1323
1324         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1325         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1326 }
1327
1328 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1329 {
1330         u64 *sptep;
1331         struct rmap_iterator iter;
1332         bool flush = false;
1333
1334         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1335                 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1336
1337                 pte_list_remove(rmap_head, sptep);
1338                 flush = true;
1339         }
1340
1341         return flush;
1342 }
1343
1344 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1345                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1346                            unsigned long data)
1347 {
1348         return kvm_zap_rmapp(kvm, rmap_head);
1349 }
1350
1351 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1352                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1353                              unsigned long data)
1354 {
1355         u64 *sptep;
1356         struct rmap_iterator iter;
1357         int need_flush = 0;
1358         u64 new_spte;
1359         pte_t *ptep = (pte_t *)data;
1360         kvm_pfn_t new_pfn;
1361
1362         WARN_ON(pte_huge(*ptep));
1363         new_pfn = pte_pfn(*ptep);
1364
1365 restart:
1366         for_each_rmap_spte(rmap_head, &iter, sptep) {
1367                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1368                             sptep, *sptep, gfn, level);
1369
1370                 need_flush = 1;
1371
1372                 if (pte_write(*ptep)) {
1373                         pte_list_remove(rmap_head, sptep);
1374                         goto restart;
1375                 } else {
1376                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1377                                         *sptep, new_pfn);
1378
1379                         mmu_spte_clear_track_bits(sptep);
1380                         mmu_spte_set(sptep, new_spte);
1381                 }
1382         }
1383
1384         if (need_flush && kvm_available_flush_tlb_with_range()) {
1385                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1386                 return 0;
1387         }
1388
1389         return need_flush;
1390 }
1391
1392 struct slot_rmap_walk_iterator {
1393         /* input fields. */
1394         struct kvm_memory_slot *slot;
1395         gfn_t start_gfn;
1396         gfn_t end_gfn;
1397         int start_level;
1398         int end_level;
1399
1400         /* output fields. */
1401         gfn_t gfn;
1402         struct kvm_rmap_head *rmap;
1403         int level;
1404
1405         /* private field. */
1406         struct kvm_rmap_head *end_rmap;
1407 };
1408
1409 static void
1410 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1411 {
1412         iterator->level = level;
1413         iterator->gfn = iterator->start_gfn;
1414         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1415         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1416                                            iterator->slot);
1417 }
1418
1419 static void
1420 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1421                     struct kvm_memory_slot *slot, int start_level,
1422                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1423 {
1424         iterator->slot = slot;
1425         iterator->start_level = start_level;
1426         iterator->end_level = end_level;
1427         iterator->start_gfn = start_gfn;
1428         iterator->end_gfn = end_gfn;
1429
1430         rmap_walk_init_level(iterator, iterator->start_level);
1431 }
1432
1433 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1434 {
1435         return !!iterator->rmap;
1436 }
1437
1438 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1439 {
1440         if (++iterator->rmap <= iterator->end_rmap) {
1441                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1442                 return;
1443         }
1444
1445         if (++iterator->level > iterator->end_level) {
1446                 iterator->rmap = NULL;
1447                 return;
1448         }
1449
1450         rmap_walk_init_level(iterator, iterator->level);
1451 }
1452
1453 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1454            _start_gfn, _end_gfn, _iter_)                                \
1455         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1456                                  _end_level_, _start_gfn, _end_gfn);    \
1457              slot_rmap_walk_okay(_iter_);                               \
1458              slot_rmap_walk_next(_iter_))
1459
1460 static __always_inline int
1461 kvm_handle_hva_range(struct kvm *kvm,
1462                      unsigned long start,
1463                      unsigned long end,
1464                      unsigned long data,
1465                      int (*handler)(struct kvm *kvm,
1466                                     struct kvm_rmap_head *rmap_head,
1467                                     struct kvm_memory_slot *slot,
1468                                     gfn_t gfn,
1469                                     int level,
1470                                     unsigned long data))
1471 {
1472         struct kvm_memslots *slots;
1473         struct kvm_memory_slot *memslot;
1474         struct slot_rmap_walk_iterator iterator;
1475         int ret = 0;
1476         int i;
1477
1478         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1479                 slots = __kvm_memslots(kvm, i);
1480                 kvm_for_each_memslot(memslot, slots) {
1481                         unsigned long hva_start, hva_end;
1482                         gfn_t gfn_start, gfn_end;
1483
1484                         hva_start = max(start, memslot->userspace_addr);
1485                         hva_end = min(end, memslot->userspace_addr +
1486                                       (memslot->npages << PAGE_SHIFT));
1487                         if (hva_start >= hva_end)
1488                                 continue;
1489                         /*
1490                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1491                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1492                          */
1493                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1494                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1495
1496                         for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1497                                                  KVM_MAX_HUGEPAGE_LEVEL,
1498                                                  gfn_start, gfn_end - 1,
1499                                                  &iterator)
1500                                 ret |= handler(kvm, iterator.rmap, memslot,
1501                                                iterator.gfn, iterator.level, data);
1502                 }
1503         }
1504
1505         return ret;
1506 }
1507
1508 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1509                           unsigned long data,
1510                           int (*handler)(struct kvm *kvm,
1511                                          struct kvm_rmap_head *rmap_head,
1512                                          struct kvm_memory_slot *slot,
1513                                          gfn_t gfn, int level,
1514                                          unsigned long data))
1515 {
1516         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1517 }
1518
1519 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1520                         unsigned flags)
1521 {
1522         int r;
1523
1524         r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1525
1526         if (is_tdp_mmu_enabled(kvm))
1527                 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1528
1529         return r;
1530 }
1531
1532 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1533 {
1534         int r;
1535
1536         r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1537
1538         if (is_tdp_mmu_enabled(kvm))
1539                 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1540
1541         return r;
1542 }
1543
1544 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1545                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1546                          unsigned long data)
1547 {
1548         u64 *sptep;
1549         struct rmap_iterator iter;
1550         int young = 0;
1551
1552         for_each_rmap_spte(rmap_head, &iter, sptep)
1553                 young |= mmu_spte_age(sptep);
1554
1555         trace_kvm_age_page(gfn, level, slot, young);
1556         return young;
1557 }
1558
1559 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1560                               struct kvm_memory_slot *slot, gfn_t gfn,
1561                               int level, unsigned long data)
1562 {
1563         u64 *sptep;
1564         struct rmap_iterator iter;
1565
1566         for_each_rmap_spte(rmap_head, &iter, sptep)
1567                 if (is_accessed_spte(*sptep))
1568                         return 1;
1569         return 0;
1570 }
1571
1572 #define RMAP_RECYCLE_THRESHOLD 1000
1573
1574 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1575 {
1576         struct kvm_rmap_head *rmap_head;
1577         struct kvm_mmu_page *sp;
1578
1579         sp = sptep_to_sp(spte);
1580
1581         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1582
1583         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1584         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1585                         KVM_PAGES_PER_HPAGE(sp->role.level));
1586 }
1587
1588 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1589 {
1590         int young = false;
1591
1592         young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1593         if (is_tdp_mmu_enabled(kvm))
1594                 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1595
1596         return young;
1597 }
1598
1599 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1600 {
1601         int young = false;
1602
1603         young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1604         if (is_tdp_mmu_enabled(kvm))
1605                 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1606
1607         return young;
1608 }
1609
1610 #ifdef MMU_DEBUG
1611 static int is_empty_shadow_page(u64 *spt)
1612 {
1613         u64 *pos;
1614         u64 *end;
1615
1616         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1617                 if (is_shadow_present_pte(*pos)) {
1618                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1619                                pos, *pos);
1620                         return 0;
1621                 }
1622         return 1;
1623 }
1624 #endif
1625
1626 /*
1627  * This value is the sum of all of the kvm instances's
1628  * kvm->arch.n_used_mmu_pages values.  We need a global,
1629  * aggregate version in order to make the slab shrinker
1630  * faster
1631  */
1632 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1633 {
1634         kvm->arch.n_used_mmu_pages += nr;
1635         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1636 }
1637
1638 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1639 {
1640         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1641         hlist_del(&sp->hash_link);
1642         list_del(&sp->link);
1643         free_page((unsigned long)sp->spt);
1644         if (!sp->role.direct)
1645                 free_page((unsigned long)sp->gfns);
1646         kmem_cache_free(mmu_page_header_cache, sp);
1647 }
1648
1649 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1650 {
1651         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1652 }
1653
1654 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1655                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1656 {
1657         if (!parent_pte)
1658                 return;
1659
1660         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1661 }
1662
1663 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1664                                        u64 *parent_pte)
1665 {
1666         __pte_list_remove(parent_pte, &sp->parent_ptes);
1667 }
1668
1669 static void drop_parent_pte(struct kvm_mmu_page *sp,
1670                             u64 *parent_pte)
1671 {
1672         mmu_page_remove_parent_pte(sp, parent_pte);
1673         mmu_spte_clear_no_track(parent_pte);
1674 }
1675
1676 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1677 {
1678         struct kvm_mmu_page *sp;
1679
1680         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1681         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1682         if (!direct)
1683                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1684         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1685
1686         /*
1687          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1688          * depends on valid pages being added to the head of the list.  See
1689          * comments in kvm_zap_obsolete_pages().
1690          */
1691         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1692         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1693         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1694         return sp;
1695 }
1696
1697 static void mark_unsync(u64 *spte);
1698 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1699 {
1700         u64 *sptep;
1701         struct rmap_iterator iter;
1702
1703         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1704                 mark_unsync(sptep);
1705         }
1706 }
1707
1708 static void mark_unsync(u64 *spte)
1709 {
1710         struct kvm_mmu_page *sp;
1711         unsigned int index;
1712
1713         sp = sptep_to_sp(spte);
1714         index = spte - sp->spt;
1715         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1716                 return;
1717         if (sp->unsync_children++)
1718                 return;
1719         kvm_mmu_mark_parents_unsync(sp);
1720 }
1721
1722 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1723                                struct kvm_mmu_page *sp)
1724 {
1725         return 0;
1726 }
1727
1728 #define KVM_PAGE_ARRAY_NR 16
1729
1730 struct kvm_mmu_pages {
1731         struct mmu_page_and_offset {
1732                 struct kvm_mmu_page *sp;
1733                 unsigned int idx;
1734         } page[KVM_PAGE_ARRAY_NR];
1735         unsigned int nr;
1736 };
1737
1738 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1739                          int idx)
1740 {
1741         int i;
1742
1743         if (sp->unsync)
1744                 for (i=0; i < pvec->nr; i++)
1745                         if (pvec->page[i].sp == sp)
1746                                 return 0;
1747
1748         pvec->page[pvec->nr].sp = sp;
1749         pvec->page[pvec->nr].idx = idx;
1750         pvec->nr++;
1751         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1752 }
1753
1754 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1755 {
1756         --sp->unsync_children;
1757         WARN_ON((int)sp->unsync_children < 0);
1758         __clear_bit(idx, sp->unsync_child_bitmap);
1759 }
1760
1761 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1762                            struct kvm_mmu_pages *pvec)
1763 {
1764         int i, ret, nr_unsync_leaf = 0;
1765
1766         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1767                 struct kvm_mmu_page *child;
1768                 u64 ent = sp->spt[i];
1769
1770                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1771                         clear_unsync_child_bit(sp, i);
1772                         continue;
1773                 }
1774
1775                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1776
1777                 if (child->unsync_children) {
1778                         if (mmu_pages_add(pvec, child, i))
1779                                 return -ENOSPC;
1780
1781                         ret = __mmu_unsync_walk(child, pvec);
1782                         if (!ret) {
1783                                 clear_unsync_child_bit(sp, i);
1784                                 continue;
1785                         } else if (ret > 0) {
1786                                 nr_unsync_leaf += ret;
1787                         } else
1788                                 return ret;
1789                 } else if (child->unsync) {
1790                         nr_unsync_leaf++;
1791                         if (mmu_pages_add(pvec, child, i))
1792                                 return -ENOSPC;
1793                 } else
1794                         clear_unsync_child_bit(sp, i);
1795         }
1796
1797         return nr_unsync_leaf;
1798 }
1799
1800 #define INVALID_INDEX (-1)
1801
1802 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1803                            struct kvm_mmu_pages *pvec)
1804 {
1805         pvec->nr = 0;
1806         if (!sp->unsync_children)
1807                 return 0;
1808
1809         mmu_pages_add(pvec, sp, INVALID_INDEX);
1810         return __mmu_unsync_walk(sp, pvec);
1811 }
1812
1813 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1814 {
1815         WARN_ON(!sp->unsync);
1816         trace_kvm_mmu_sync_page(sp);
1817         sp->unsync = 0;
1818         --kvm->stat.mmu_unsync;
1819 }
1820
1821 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1822                                      struct list_head *invalid_list);
1823 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1824                                     struct list_head *invalid_list);
1825
1826 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1827         hlist_for_each_entry(_sp, _list, hash_link)                     \
1828                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1829                 } else
1830
1831 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1832         for_each_valid_sp(_kvm, _sp,                                    \
1833           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1834                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1835
1836 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1837 {
1838         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1839 }
1840
1841 /* @sp->gfn should be write-protected at the call site */
1842 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1843                             struct list_head *invalid_list)
1844 {
1845         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1846             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1847                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1848                 return false;
1849         }
1850
1851         return true;
1852 }
1853
1854 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1855                                         struct list_head *invalid_list,
1856                                         bool remote_flush)
1857 {
1858         if (!remote_flush && list_empty(invalid_list))
1859                 return false;
1860
1861         if (!list_empty(invalid_list))
1862                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1863         else
1864                 kvm_flush_remote_tlbs(kvm);
1865         return true;
1866 }
1867
1868 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1869                                  struct list_head *invalid_list,
1870                                  bool remote_flush, bool local_flush)
1871 {
1872         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1873                 return;
1874
1875         if (local_flush)
1876                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1877 }
1878
1879 #ifdef CONFIG_KVM_MMU_AUDIT
1880 #include "mmu_audit.c"
1881 #else
1882 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1883 static void mmu_audit_disable(void) { }
1884 #endif
1885
1886 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1887 {
1888         return sp->role.invalid ||
1889                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1890 }
1891
1892 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1893                          struct list_head *invalid_list)
1894 {
1895         kvm_unlink_unsync_page(vcpu->kvm, sp);
1896         return __kvm_sync_page(vcpu, sp, invalid_list);
1897 }
1898
1899 /* @gfn should be write-protected at the call site */
1900 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1901                            struct list_head *invalid_list)
1902 {
1903         struct kvm_mmu_page *s;
1904         bool ret = false;
1905
1906         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1907                 if (!s->unsync)
1908                         continue;
1909
1910                 WARN_ON(s->role.level != PG_LEVEL_4K);
1911                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1912         }
1913
1914         return ret;
1915 }
1916
1917 struct mmu_page_path {
1918         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1919         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1920 };
1921
1922 #define for_each_sp(pvec, sp, parents, i)                       \
1923                 for (i = mmu_pages_first(&pvec, &parents);      \
1924                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1925                         i = mmu_pages_next(&pvec, &parents, i))
1926
1927 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1928                           struct mmu_page_path *parents,
1929                           int i)
1930 {
1931         int n;
1932
1933         for (n = i+1; n < pvec->nr; n++) {
1934                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1935                 unsigned idx = pvec->page[n].idx;
1936                 int level = sp->role.level;
1937
1938                 parents->idx[level-1] = idx;
1939                 if (level == PG_LEVEL_4K)
1940                         break;
1941
1942                 parents->parent[level-2] = sp;
1943         }
1944
1945         return n;
1946 }
1947
1948 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1949                            struct mmu_page_path *parents)
1950 {
1951         struct kvm_mmu_page *sp;
1952         int level;
1953
1954         if (pvec->nr == 0)
1955                 return 0;
1956
1957         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1958
1959         sp = pvec->page[0].sp;
1960         level = sp->role.level;
1961         WARN_ON(level == PG_LEVEL_4K);
1962
1963         parents->parent[level-2] = sp;
1964
1965         /* Also set up a sentinel.  Further entries in pvec are all
1966          * children of sp, so this element is never overwritten.
1967          */
1968         parents->parent[level-1] = NULL;
1969         return mmu_pages_next(pvec, parents, 0);
1970 }
1971
1972 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1973 {
1974         struct kvm_mmu_page *sp;
1975         unsigned int level = 0;
1976
1977         do {
1978                 unsigned int idx = parents->idx[level];
1979                 sp = parents->parent[level];
1980                 if (!sp)
1981                         return;
1982
1983                 WARN_ON(idx == INVALID_INDEX);
1984                 clear_unsync_child_bit(sp, idx);
1985                 level++;
1986         } while (!sp->unsync_children);
1987 }
1988
1989 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1990                               struct kvm_mmu_page *parent)
1991 {
1992         int i;
1993         struct kvm_mmu_page *sp;
1994         struct mmu_page_path parents;
1995         struct kvm_mmu_pages pages;
1996         LIST_HEAD(invalid_list);
1997         bool flush = false;
1998
1999         while (mmu_unsync_walk(parent, &pages)) {
2000                 bool protected = false;
2001
2002                 for_each_sp(pages, sp, parents, i)
2003                         protected |= rmap_write_protect(vcpu, sp->gfn);
2004
2005                 if (protected) {
2006                         kvm_flush_remote_tlbs(vcpu->kvm);
2007                         flush = false;
2008                 }
2009
2010                 for_each_sp(pages, sp, parents, i) {
2011                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2012                         mmu_pages_clear_parents(&parents);
2013                 }
2014                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2015                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2016                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2017                         flush = false;
2018                 }
2019         }
2020
2021         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2022 }
2023
2024 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2025 {
2026         atomic_set(&sp->write_flooding_count,  0);
2027 }
2028
2029 static void clear_sp_write_flooding_count(u64 *spte)
2030 {
2031         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2032 }
2033
2034 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2035                                              gfn_t gfn,
2036                                              gva_t gaddr,
2037                                              unsigned level,
2038                                              int direct,
2039                                              unsigned int access)
2040 {
2041         bool direct_mmu = vcpu->arch.mmu->direct_map;
2042         union kvm_mmu_page_role role;
2043         struct hlist_head *sp_list;
2044         unsigned quadrant;
2045         struct kvm_mmu_page *sp;
2046         bool need_sync = false;
2047         bool flush = false;
2048         int collisions = 0;
2049         LIST_HEAD(invalid_list);
2050
2051         role = vcpu->arch.mmu->mmu_role.base;
2052         role.level = level;
2053         role.direct = direct;
2054         if (role.direct)
2055                 role.gpte_is_8_bytes = true;
2056         role.access = access;
2057         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2058                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2059                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2060                 role.quadrant = quadrant;
2061         }
2062
2063         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2064         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2065                 if (sp->gfn != gfn) {
2066                         collisions++;
2067                         continue;
2068                 }
2069
2070                 if (!need_sync && sp->unsync)
2071                         need_sync = true;
2072
2073                 if (sp->role.word != role.word)
2074                         continue;
2075
2076                 if (direct_mmu)
2077                         goto trace_get_page;
2078
2079                 if (sp->unsync) {
2080                         /* The page is good, but __kvm_sync_page might still end
2081                          * up zapping it.  If so, break in order to rebuild it.
2082                          */
2083                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2084                                 break;
2085
2086                         WARN_ON(!list_empty(&invalid_list));
2087                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2088                 }
2089
2090                 if (sp->unsync_children)
2091                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2092
2093                 __clear_sp_write_flooding_count(sp);
2094
2095 trace_get_page:
2096                 trace_kvm_mmu_get_page(sp, false);
2097                 goto out;
2098         }
2099
2100         ++vcpu->kvm->stat.mmu_cache_miss;
2101
2102         sp = kvm_mmu_alloc_page(vcpu, direct);
2103
2104         sp->gfn = gfn;
2105         sp->role = role;
2106         hlist_add_head(&sp->hash_link, sp_list);
2107         if (!direct) {
2108                 /*
2109                  * we should do write protection before syncing pages
2110                  * otherwise the content of the synced shadow page may
2111                  * be inconsistent with guest page table.
2112                  */
2113                 account_shadowed(vcpu->kvm, sp);
2114                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2115                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2116
2117                 if (level > PG_LEVEL_4K && need_sync)
2118                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2119         }
2120         trace_kvm_mmu_get_page(sp, true);
2121
2122         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2123 out:
2124         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2125                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2126         return sp;
2127 }
2128
2129 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2130                                         struct kvm_vcpu *vcpu, hpa_t root,
2131                                         u64 addr)
2132 {
2133         iterator->addr = addr;
2134         iterator->shadow_addr = root;
2135         iterator->level = vcpu->arch.mmu->shadow_root_level;
2136
2137         if (iterator->level == PT64_ROOT_4LEVEL &&
2138             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2139             !vcpu->arch.mmu->direct_map)
2140                 --iterator->level;
2141
2142         if (iterator->level == PT32E_ROOT_LEVEL) {
2143                 /*
2144                  * prev_root is currently only used for 64-bit hosts. So only
2145                  * the active root_hpa is valid here.
2146                  */
2147                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2148
2149                 iterator->shadow_addr
2150                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2151                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2152                 --iterator->level;
2153                 if (!iterator->shadow_addr)
2154                         iterator->level = 0;
2155         }
2156 }
2157
2158 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2159                              struct kvm_vcpu *vcpu, u64 addr)
2160 {
2161         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2162                                     addr);
2163 }
2164
2165 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2166 {
2167         if (iterator->level < PG_LEVEL_4K)
2168                 return false;
2169
2170         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2171         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2172         return true;
2173 }
2174
2175 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2176                                u64 spte)
2177 {
2178         if (is_last_spte(spte, iterator->level)) {
2179                 iterator->level = 0;
2180                 return;
2181         }
2182
2183         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2184         --iterator->level;
2185 }
2186
2187 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2188 {
2189         __shadow_walk_next(iterator, *iterator->sptep);
2190 }
2191
2192 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2193                              struct kvm_mmu_page *sp)
2194 {
2195         u64 spte;
2196
2197         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2198
2199         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2200
2201         mmu_spte_set(sptep, spte);
2202
2203         mmu_page_add_parent_pte(vcpu, sp, sptep);
2204
2205         if (sp->unsync_children || sp->unsync)
2206                 mark_unsync(sptep);
2207 }
2208
2209 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2210                                    unsigned direct_access)
2211 {
2212         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2213                 struct kvm_mmu_page *child;
2214
2215                 /*
2216                  * For the direct sp, if the guest pte's dirty bit
2217                  * changed form clean to dirty, it will corrupt the
2218                  * sp's access: allow writable in the read-only sp,
2219                  * so we should update the spte at this point to get
2220                  * a new sp with the correct access.
2221                  */
2222                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2223                 if (child->role.access == direct_access)
2224                         return;
2225
2226                 drop_parent_pte(child, sptep);
2227                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2228         }
2229 }
2230
2231 /* Returns the number of zapped non-leaf child shadow pages. */
2232 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2233                             u64 *spte, struct list_head *invalid_list)
2234 {
2235         u64 pte;
2236         struct kvm_mmu_page *child;
2237
2238         pte = *spte;
2239         if (is_shadow_present_pte(pte)) {
2240                 if (is_last_spte(pte, sp->role.level)) {
2241                         drop_spte(kvm, spte);
2242                         if (is_large_pte(pte))
2243                                 --kvm->stat.lpages;
2244                 } else {
2245                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2246                         drop_parent_pte(child, spte);
2247
2248                         /*
2249                          * Recursively zap nested TDP SPs, parentless SPs are
2250                          * unlikely to be used again in the near future.  This
2251                          * avoids retaining a large number of stale nested SPs.
2252                          */
2253                         if (tdp_enabled && invalid_list &&
2254                             child->role.guest_mode && !child->parent_ptes.val)
2255                                 return kvm_mmu_prepare_zap_page(kvm, child,
2256                                                                 invalid_list);
2257                 }
2258         } else if (is_mmio_spte(pte)) {
2259                 mmu_spte_clear_no_track(spte);
2260         }
2261         return 0;
2262 }
2263
2264 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2265                                         struct kvm_mmu_page *sp,
2266                                         struct list_head *invalid_list)
2267 {
2268         int zapped = 0;
2269         unsigned i;
2270
2271         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2272                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2273
2274         return zapped;
2275 }
2276
2277 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2278 {
2279         u64 *sptep;
2280         struct rmap_iterator iter;
2281
2282         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2283                 drop_parent_pte(sp, sptep);
2284 }
2285
2286 static int mmu_zap_unsync_children(struct kvm *kvm,
2287                                    struct kvm_mmu_page *parent,
2288                                    struct list_head *invalid_list)
2289 {
2290         int i, zapped = 0;
2291         struct mmu_page_path parents;
2292         struct kvm_mmu_pages pages;
2293
2294         if (parent->role.level == PG_LEVEL_4K)
2295                 return 0;
2296
2297         while (mmu_unsync_walk(parent, &pages)) {
2298                 struct kvm_mmu_page *sp;
2299
2300                 for_each_sp(pages, sp, parents, i) {
2301                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2302                         mmu_pages_clear_parents(&parents);
2303                         zapped++;
2304                 }
2305         }
2306
2307         return zapped;
2308 }
2309
2310 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2311                                        struct kvm_mmu_page *sp,
2312                                        struct list_head *invalid_list,
2313                                        int *nr_zapped)
2314 {
2315         bool list_unstable;
2316
2317         trace_kvm_mmu_prepare_zap_page(sp);
2318         ++kvm->stat.mmu_shadow_zapped;
2319         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2320         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2321         kvm_mmu_unlink_parents(kvm, sp);
2322
2323         /* Zapping children means active_mmu_pages has become unstable. */
2324         list_unstable = *nr_zapped;
2325
2326         if (!sp->role.invalid && !sp->role.direct)
2327                 unaccount_shadowed(kvm, sp);
2328
2329         if (sp->unsync)
2330                 kvm_unlink_unsync_page(kvm, sp);
2331         if (!sp->root_count) {
2332                 /* Count self */
2333                 (*nr_zapped)++;
2334
2335                 /*
2336                  * Already invalid pages (previously active roots) are not on
2337                  * the active page list.  See list_del() in the "else" case of
2338                  * !sp->root_count.
2339                  */
2340                 if (sp->role.invalid)
2341                         list_add(&sp->link, invalid_list);
2342                 else
2343                         list_move(&sp->link, invalid_list);
2344                 kvm_mod_used_mmu_pages(kvm, -1);
2345         } else {
2346                 /*
2347                  * Remove the active root from the active page list, the root
2348                  * will be explicitly freed when the root_count hits zero.
2349                  */
2350                 list_del(&sp->link);
2351
2352                 /*
2353                  * Obsolete pages cannot be used on any vCPUs, see the comment
2354                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2355                  * treats invalid shadow pages as being obsolete.
2356                  */
2357                 if (!is_obsolete_sp(kvm, sp))
2358                         kvm_reload_remote_mmus(kvm);
2359         }
2360
2361         if (sp->lpage_disallowed)
2362                 unaccount_huge_nx_page(kvm, sp);
2363
2364         sp->role.invalid = 1;
2365         return list_unstable;
2366 }
2367
2368 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2369                                      struct list_head *invalid_list)
2370 {
2371         int nr_zapped;
2372
2373         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2374         return nr_zapped;
2375 }
2376
2377 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2378                                     struct list_head *invalid_list)
2379 {
2380         struct kvm_mmu_page *sp, *nsp;
2381
2382         if (list_empty(invalid_list))
2383                 return;
2384
2385         /*
2386          * We need to make sure everyone sees our modifications to
2387          * the page tables and see changes to vcpu->mode here. The barrier
2388          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2389          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2390          *
2391          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2392          * guest mode and/or lockless shadow page table walks.
2393          */
2394         kvm_flush_remote_tlbs(kvm);
2395
2396         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2397                 WARN_ON(!sp->role.invalid || sp->root_count);
2398                 kvm_mmu_free_page(sp);
2399         }
2400 }
2401
2402 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2403                                                   unsigned long nr_to_zap)
2404 {
2405         unsigned long total_zapped = 0;
2406         struct kvm_mmu_page *sp, *tmp;
2407         LIST_HEAD(invalid_list);
2408         bool unstable;
2409         int nr_zapped;
2410
2411         if (list_empty(&kvm->arch.active_mmu_pages))
2412                 return 0;
2413
2414 restart:
2415         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2416                 /*
2417                  * Don't zap active root pages, the page itself can't be freed
2418                  * and zapping it will just force vCPUs to realloc and reload.
2419                  */
2420                 if (sp->root_count)
2421                         continue;
2422
2423                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2424                                                       &nr_zapped);
2425                 total_zapped += nr_zapped;
2426                 if (total_zapped >= nr_to_zap)
2427                         break;
2428
2429                 if (unstable)
2430                         goto restart;
2431         }
2432
2433         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2434
2435         kvm->stat.mmu_recycled += total_zapped;
2436         return total_zapped;
2437 }
2438
2439 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2440 {
2441         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2442                 return kvm->arch.n_max_mmu_pages -
2443                         kvm->arch.n_used_mmu_pages;
2444
2445         return 0;
2446 }
2447
2448 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2449 {
2450         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2451
2452         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2453                 return 0;
2454
2455         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2456
2457         if (!kvm_mmu_available_pages(vcpu->kvm))
2458                 return -ENOSPC;
2459         return 0;
2460 }
2461
2462 /*
2463  * Changing the number of mmu pages allocated to the vm
2464  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2465  */
2466 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2467 {
2468         write_lock(&kvm->mmu_lock);
2469
2470         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2471                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2472                                                   goal_nr_mmu_pages);
2473
2474                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2475         }
2476
2477         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2478
2479         write_unlock(&kvm->mmu_lock);
2480 }
2481
2482 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2483 {
2484         struct kvm_mmu_page *sp;
2485         LIST_HEAD(invalid_list);
2486         int r;
2487
2488         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2489         r = 0;
2490         write_lock(&kvm->mmu_lock);
2491         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2492                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2493                          sp->role.word);
2494                 r = 1;
2495                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2496         }
2497         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2498         write_unlock(&kvm->mmu_lock);
2499
2500         return r;
2501 }
2502 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2503
2504 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2505 {
2506         trace_kvm_mmu_unsync_page(sp);
2507         ++vcpu->kvm->stat.mmu_unsync;
2508         sp->unsync = 1;
2509
2510         kvm_mmu_mark_parents_unsync(sp);
2511 }
2512
2513 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2514                             bool can_unsync)
2515 {
2516         struct kvm_mmu_page *sp;
2517
2518         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2519                 return true;
2520
2521         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2522                 if (!can_unsync)
2523                         return true;
2524
2525                 if (sp->unsync)
2526                         continue;
2527
2528                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2529                 kvm_unsync_page(vcpu, sp);
2530         }
2531
2532         /*
2533          * We need to ensure that the marking of unsync pages is visible
2534          * before the SPTE is updated to allow writes because
2535          * kvm_mmu_sync_roots() checks the unsync flags without holding
2536          * the MMU lock and so can race with this. If the SPTE was updated
2537          * before the page had been marked as unsync-ed, something like the
2538          * following could happen:
2539          *
2540          * CPU 1                    CPU 2
2541          * ---------------------------------------------------------------------
2542          * 1.2 Host updates SPTE
2543          *     to be writable
2544          *                      2.1 Guest writes a GPTE for GVA X.
2545          *                          (GPTE being in the guest page table shadowed
2546          *                           by the SP from CPU 1.)
2547          *                          This reads SPTE during the page table walk.
2548          *                          Since SPTE.W is read as 1, there is no
2549          *                          fault.
2550          *
2551          *                      2.2 Guest issues TLB flush.
2552          *                          That causes a VM Exit.
2553          *
2554          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2555          *                          Since it is false, so it just returns.
2556          *
2557          *                      2.4 Guest accesses GVA X.
2558          *                          Since the mapping in the SP was not updated,
2559          *                          so the old mapping for GVA X incorrectly
2560          *                          gets used.
2561          * 1.1 Host marks SP
2562          *     as unsync
2563          *     (sp->unsync = true)
2564          *
2565          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2566          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2567          * pairs with this write barrier.
2568          */
2569         smp_wmb();
2570
2571         return false;
2572 }
2573
2574 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2575                     unsigned int pte_access, int level,
2576                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2577                     bool can_unsync, bool host_writable)
2578 {
2579         u64 spte;
2580         struct kvm_mmu_page *sp;
2581         int ret;
2582
2583         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2584                 return 0;
2585
2586         sp = sptep_to_sp(sptep);
2587
2588         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2589                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2590
2591         if (spte & PT_WRITABLE_MASK)
2592                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2593
2594         if (*sptep == spte)
2595                 ret |= SET_SPTE_SPURIOUS;
2596         else if (mmu_spte_update(sptep, spte))
2597                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2598         return ret;
2599 }
2600
2601 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2602                         unsigned int pte_access, bool write_fault, int level,
2603                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2604                         bool host_writable)
2605 {
2606         int was_rmapped = 0;
2607         int rmap_count;
2608         int set_spte_ret;
2609         int ret = RET_PF_FIXED;
2610         bool flush = false;
2611
2612         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2613                  *sptep, write_fault, gfn);
2614
2615         if (is_shadow_present_pte(*sptep)) {
2616                 /*
2617                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2618                  * the parent of the now unreachable PTE.
2619                  */
2620                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2621                         struct kvm_mmu_page *child;
2622                         u64 pte = *sptep;
2623
2624                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2625                         drop_parent_pte(child, sptep);
2626                         flush = true;
2627                 } else if (pfn != spte_to_pfn(*sptep)) {
2628                         pgprintk("hfn old %llx new %llx\n",
2629                                  spte_to_pfn(*sptep), pfn);
2630                         drop_spte(vcpu->kvm, sptep);
2631                         flush = true;
2632                 } else
2633                         was_rmapped = 1;
2634         }
2635
2636         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2637                                 speculative, true, host_writable);
2638         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2639                 if (write_fault)
2640                         ret = RET_PF_EMULATE;
2641                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2642         }
2643
2644         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2645                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2646                                 KVM_PAGES_PER_HPAGE(level));
2647
2648         if (unlikely(is_mmio_spte(*sptep)))
2649                 ret = RET_PF_EMULATE;
2650
2651         /*
2652          * The fault is fully spurious if and only if the new SPTE and old SPTE
2653          * are identical, and emulation is not required.
2654          */
2655         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2656                 WARN_ON_ONCE(!was_rmapped);
2657                 return RET_PF_SPURIOUS;
2658         }
2659
2660         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2661         trace_kvm_mmu_set_spte(level, gfn, sptep);
2662         if (!was_rmapped && is_large_pte(*sptep))
2663                 ++vcpu->kvm->stat.lpages;
2664
2665         if (is_shadow_present_pte(*sptep)) {
2666                 if (!was_rmapped) {
2667                         rmap_count = rmap_add(vcpu, sptep, gfn);
2668                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2669                                 rmap_recycle(vcpu, sptep, gfn);
2670                 }
2671         }
2672
2673         return ret;
2674 }
2675
2676 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2677                                      bool no_dirty_log)
2678 {
2679         struct kvm_memory_slot *slot;
2680
2681         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2682         if (!slot)
2683                 return KVM_PFN_ERR_FAULT;
2684
2685         return gfn_to_pfn_memslot_atomic(slot, gfn);
2686 }
2687
2688 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2689                                     struct kvm_mmu_page *sp,
2690                                     u64 *start, u64 *end)
2691 {
2692         struct page *pages[PTE_PREFETCH_NUM];
2693         struct kvm_memory_slot *slot;
2694         unsigned int access = sp->role.access;
2695         int i, ret;
2696         gfn_t gfn;
2697
2698         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2699         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2700         if (!slot)
2701                 return -1;
2702
2703         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2704         if (ret <= 0)
2705                 return -1;
2706
2707         for (i = 0; i < ret; i++, gfn++, start++) {
2708                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2709                              page_to_pfn(pages[i]), true, true);
2710                 put_page(pages[i]);
2711         }
2712
2713         return 0;
2714 }
2715
2716 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2717                                   struct kvm_mmu_page *sp, u64 *sptep)
2718 {
2719         u64 *spte, *start = NULL;
2720         int i;
2721
2722         WARN_ON(!sp->role.direct);
2723
2724         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2725         spte = sp->spt + i;
2726
2727         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2728                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2729                         if (!start)
2730                                 continue;
2731                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2732                                 break;
2733                         start = NULL;
2734                 } else if (!start)
2735                         start = spte;
2736         }
2737 }
2738
2739 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2740 {
2741         struct kvm_mmu_page *sp;
2742
2743         sp = sptep_to_sp(sptep);
2744
2745         /*
2746          * Without accessed bits, there's no way to distinguish between
2747          * actually accessed translations and prefetched, so disable pte
2748          * prefetch if accessed bits aren't available.
2749          */
2750         if (sp_ad_disabled(sp))
2751                 return;
2752
2753         if (sp->role.level > PG_LEVEL_4K)
2754                 return;
2755
2756         __direct_pte_prefetch(vcpu, sp, sptep);
2757 }
2758
2759 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2760                                   kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2761 {
2762         unsigned long hva;
2763         pte_t *pte;
2764         int level;
2765
2766         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2767                 return PG_LEVEL_4K;
2768
2769         /*
2770          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2771          * is not solely for performance, it's also necessary to avoid the
2772          * "writable" check in __gfn_to_hva_many(), which will always fail on
2773          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2774          * page fault steps have already verified the guest isn't writing a
2775          * read-only memslot.
2776          */
2777         hva = __gfn_to_hva_memslot(slot, gfn);
2778
2779         pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2780         if (unlikely(!pte))
2781                 return PG_LEVEL_4K;
2782
2783         return level;
2784 }
2785
2786 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2787                             int max_level, kvm_pfn_t *pfnp,
2788                             bool huge_page_disallowed, int *req_level)
2789 {
2790         struct kvm_memory_slot *slot;
2791         struct kvm_lpage_info *linfo;
2792         kvm_pfn_t pfn = *pfnp;
2793         kvm_pfn_t mask;
2794         int level;
2795
2796         *req_level = PG_LEVEL_4K;
2797
2798         if (unlikely(max_level == PG_LEVEL_4K))
2799                 return PG_LEVEL_4K;
2800
2801         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2802                 return PG_LEVEL_4K;
2803
2804         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2805         if (!slot)
2806                 return PG_LEVEL_4K;
2807
2808         max_level = min(max_level, max_huge_page_level);
2809         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2810                 linfo = lpage_info_slot(gfn, slot, max_level);
2811                 if (!linfo->disallow_lpage)
2812                         break;
2813         }
2814
2815         if (max_level == PG_LEVEL_4K)
2816                 return PG_LEVEL_4K;
2817
2818         level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2819         if (level == PG_LEVEL_4K)
2820                 return level;
2821
2822         *req_level = level = min(level, max_level);
2823
2824         /*
2825          * Enforce the iTLB multihit workaround after capturing the requested
2826          * level, which will be used to do precise, accurate accounting.
2827          */
2828         if (huge_page_disallowed)
2829                 return PG_LEVEL_4K;
2830
2831         /*
2832          * mmu_notifier_retry() was successful and mmu_lock is held, so
2833          * the pmd can't be split from under us.
2834          */
2835         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2836         VM_BUG_ON((gfn & mask) != (pfn & mask));
2837         *pfnp = pfn & ~mask;
2838
2839         return level;
2840 }
2841
2842 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2843                                 kvm_pfn_t *pfnp, int *goal_levelp)
2844 {
2845         int level = *goal_levelp;
2846
2847         if (cur_level == level && level > PG_LEVEL_4K &&
2848             is_shadow_present_pte(spte) &&
2849             !is_large_pte(spte)) {
2850                 /*
2851                  * A small SPTE exists for this pfn, but FNAME(fetch)
2852                  * and __direct_map would like to create a large PTE
2853                  * instead: just force them to go down another level,
2854                  * patching back for them into pfn the next 9 bits of
2855                  * the address.
2856                  */
2857                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2858                                 KVM_PAGES_PER_HPAGE(level - 1);
2859                 *pfnp |= gfn & page_mask;
2860                 (*goal_levelp)--;
2861         }
2862 }
2863
2864 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2865                         int map_writable, int max_level, kvm_pfn_t pfn,
2866                         bool prefault, bool is_tdp)
2867 {
2868         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2869         bool write = error_code & PFERR_WRITE_MASK;
2870         bool exec = error_code & PFERR_FETCH_MASK;
2871         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2872         struct kvm_shadow_walk_iterator it;
2873         struct kvm_mmu_page *sp;
2874         int level, req_level, ret;
2875         gfn_t gfn = gpa >> PAGE_SHIFT;
2876         gfn_t base_gfn = gfn;
2877
2878         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2879                 return RET_PF_RETRY;
2880
2881         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2882                                         huge_page_disallowed, &req_level);
2883
2884         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2885         for_each_shadow_entry(vcpu, gpa, it) {
2886                 /*
2887                  * We cannot overwrite existing page tables with an NX
2888                  * large page, as the leaf could be executable.
2889                  */
2890                 if (nx_huge_page_workaround_enabled)
2891                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2892                                                    &pfn, &level);
2893
2894                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2895                 if (it.level == level)
2896                         break;
2897
2898                 drop_large_spte(vcpu, it.sptep);
2899                 if (!is_shadow_present_pte(*it.sptep)) {
2900                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2901                                               it.level - 1, true, ACC_ALL);
2902
2903                         link_shadow_page(vcpu, it.sptep, sp);
2904                         if (is_tdp && huge_page_disallowed &&
2905                             req_level >= it.level)
2906                                 account_huge_nx_page(vcpu->kvm, sp);
2907                 }
2908         }
2909
2910         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2911                            write, level, base_gfn, pfn, prefault,
2912                            map_writable);
2913         if (ret == RET_PF_SPURIOUS)
2914                 return ret;
2915
2916         direct_pte_prefetch(vcpu, it.sptep);
2917         ++vcpu->stat.pf_fixed;
2918         return ret;
2919 }
2920
2921 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2922 {
2923         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2924 }
2925
2926 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2927 {
2928         /*
2929          * Do not cache the mmio info caused by writing the readonly gfn
2930          * into the spte otherwise read access on readonly gfn also can
2931          * caused mmio page fault and treat it as mmio access.
2932          */
2933         if (pfn == KVM_PFN_ERR_RO_FAULT)
2934                 return RET_PF_EMULATE;
2935
2936         if (pfn == KVM_PFN_ERR_HWPOISON) {
2937                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2938                 return RET_PF_RETRY;
2939         }
2940
2941         return -EFAULT;
2942 }
2943
2944 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2945                                 kvm_pfn_t pfn, unsigned int access,
2946                                 int *ret_val)
2947 {
2948         /* The pfn is invalid, report the error! */
2949         if (unlikely(is_error_pfn(pfn))) {
2950                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2951                 return true;
2952         }
2953
2954         if (unlikely(is_noslot_pfn(pfn)))
2955                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2956                                      access & shadow_mmio_access_mask);
2957
2958         return false;
2959 }
2960
2961 static bool page_fault_can_be_fast(u32 error_code)
2962 {
2963         /*
2964          * Do not fix the mmio spte with invalid generation number which
2965          * need to be updated by slow page fault path.
2966          */
2967         if (unlikely(error_code & PFERR_RSVD_MASK))
2968                 return false;
2969
2970         /* See if the page fault is due to an NX violation */
2971         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2972                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2973                 return false;
2974
2975         /*
2976          * #PF can be fast if:
2977          * 1. The shadow page table entry is not present, which could mean that
2978          *    the fault is potentially caused by access tracking (if enabled).
2979          * 2. The shadow page table entry is present and the fault
2980          *    is caused by write-protect, that means we just need change the W
2981          *    bit of the spte which can be done out of mmu-lock.
2982          *
2983          * However, if access tracking is disabled we know that a non-present
2984          * page must be a genuine page fault where we have to create a new SPTE.
2985          * So, if access tracking is disabled, we return true only for write
2986          * accesses to a present page.
2987          */
2988
2989         return shadow_acc_track_mask != 0 ||
2990                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2991                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2992 }
2993
2994 /*
2995  * Returns true if the SPTE was fixed successfully. Otherwise,
2996  * someone else modified the SPTE from its original value.
2997  */
2998 static bool
2999 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3000                         u64 *sptep, u64 old_spte, u64 new_spte)
3001 {
3002         gfn_t gfn;
3003
3004         WARN_ON(!sp->role.direct);
3005
3006         /*
3007          * Theoretically we could also set dirty bit (and flush TLB) here in
3008          * order to eliminate unnecessary PML logging. See comments in
3009          * set_spte. But fast_page_fault is very unlikely to happen with PML
3010          * enabled, so we do not do this. This might result in the same GPA
3011          * to be logged in PML buffer again when the write really happens, and
3012          * eventually to be called by mark_page_dirty twice. But it's also no
3013          * harm. This also avoids the TLB flush needed after setting dirty bit
3014          * so non-PML cases won't be impacted.
3015          *
3016          * Compare with set_spte where instead shadow_dirty_mask is set.
3017          */
3018         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3019                 return false;
3020
3021         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3022                 /*
3023                  * The gfn of direct spte is stable since it is
3024                  * calculated by sp->gfn.
3025                  */
3026                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3027                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3028         }
3029
3030         return true;
3031 }
3032
3033 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3034 {
3035         if (fault_err_code & PFERR_FETCH_MASK)
3036                 return is_executable_pte(spte);
3037
3038         if (fault_err_code & PFERR_WRITE_MASK)
3039                 return is_writable_pte(spte);
3040
3041         /* Fault was on Read access */
3042         return spte & PT_PRESENT_MASK;
3043 }
3044
3045 /*
3046  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3047  */
3048 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3049                            u32 error_code)
3050 {
3051         struct kvm_shadow_walk_iterator iterator;
3052         struct kvm_mmu_page *sp;
3053         int ret = RET_PF_INVALID;
3054         u64 spte = 0ull;
3055         uint retry_count = 0;
3056
3057         if (!page_fault_can_be_fast(error_code))
3058                 return ret;
3059
3060         walk_shadow_page_lockless_begin(vcpu);
3061
3062         do {
3063                 u64 new_spte;
3064
3065                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3066                         if (!is_shadow_present_pte(spte))
3067                                 break;
3068
3069                 sp = sptep_to_sp(iterator.sptep);
3070                 if (!is_last_spte(spte, sp->role.level))
3071                         break;
3072
3073                 /*
3074                  * Check whether the memory access that caused the fault would
3075                  * still cause it if it were to be performed right now. If not,
3076                  * then this is a spurious fault caused by TLB lazily flushed,
3077                  * or some other CPU has already fixed the PTE after the
3078                  * current CPU took the fault.
3079                  *
3080                  * Need not check the access of upper level table entries since
3081                  * they are always ACC_ALL.
3082                  */
3083                 if (is_access_allowed(error_code, spte)) {
3084                         ret = RET_PF_SPURIOUS;
3085                         break;
3086                 }
3087
3088                 new_spte = spte;
3089
3090                 if (is_access_track_spte(spte))
3091                         new_spte = restore_acc_track_spte(new_spte);
3092
3093                 /*
3094                  * Currently, to simplify the code, write-protection can
3095                  * be removed in the fast path only if the SPTE was
3096                  * write-protected for dirty-logging or access tracking.
3097                  */
3098                 if ((error_code & PFERR_WRITE_MASK) &&
3099                     spte_can_locklessly_be_made_writable(spte)) {
3100                         new_spte |= PT_WRITABLE_MASK;
3101
3102                         /*
3103                          * Do not fix write-permission on the large spte.  Since
3104                          * we only dirty the first page into the dirty-bitmap in
3105                          * fast_pf_fix_direct_spte(), other pages are missed
3106                          * if its slot has dirty logging enabled.
3107                          *
3108                          * Instead, we let the slow page fault path create a
3109                          * normal spte to fix the access.
3110                          *
3111                          * See the comments in kvm_arch_commit_memory_region().
3112                          */
3113                         if (sp->role.level > PG_LEVEL_4K)
3114                                 break;
3115                 }
3116
3117                 /* Verify that the fault can be handled in the fast path */
3118                 if (new_spte == spte ||
3119                     !is_access_allowed(error_code, new_spte))
3120                         break;
3121
3122                 /*
3123                  * Currently, fast page fault only works for direct mapping
3124                  * since the gfn is not stable for indirect shadow page. See
3125                  * Documentation/virt/kvm/locking.rst to get more detail.
3126                  */
3127                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3128                                             new_spte)) {
3129                         ret = RET_PF_FIXED;
3130                         break;
3131                 }
3132
3133                 if (++retry_count > 4) {
3134                         printk_once(KERN_WARNING
3135                                 "kvm: Fast #PF retrying more than 4 times.\n");
3136                         break;
3137                 }
3138
3139         } while (true);
3140
3141         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3142                               spte, ret);
3143         walk_shadow_page_lockless_end(vcpu);
3144
3145         return ret;
3146 }
3147
3148 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3149                                struct list_head *invalid_list)
3150 {
3151         struct kvm_mmu_page *sp;
3152
3153         if (!VALID_PAGE(*root_hpa))
3154                 return;
3155
3156         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3157
3158         if (kvm_mmu_put_root(kvm, sp)) {
3159                 if (is_tdp_mmu_page(sp))
3160                         kvm_tdp_mmu_free_root(kvm, sp);
3161                 else if (sp->role.invalid)
3162                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3163         }
3164
3165         *root_hpa = INVALID_PAGE;
3166 }
3167
3168 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3169 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3170                         ulong roots_to_free)
3171 {
3172         struct kvm *kvm = vcpu->kvm;
3173         int i;
3174         LIST_HEAD(invalid_list);
3175         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3176
3177         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3178
3179         /* Before acquiring the MMU lock, see if we need to do any real work. */
3180         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3181                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3182                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3183                             VALID_PAGE(mmu->prev_roots[i].hpa))
3184                                 break;
3185
3186                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3187                         return;
3188         }
3189
3190         write_lock(&kvm->mmu_lock);
3191
3192         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3193                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3194                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3195                                            &invalid_list);
3196
3197         if (free_active_root) {
3198                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3199                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3200                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3201                 } else {
3202                         for (i = 0; i < 4; ++i)
3203                                 if (mmu->pae_root[i] != 0)
3204                                         mmu_free_root_page(kvm,
3205                                                            &mmu->pae_root[i],
3206                                                            &invalid_list);
3207                         mmu->root_hpa = INVALID_PAGE;
3208                 }
3209                 mmu->root_pgd = 0;
3210         }
3211
3212         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3213         write_unlock(&kvm->mmu_lock);
3214 }
3215 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3216
3217 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3218 {
3219         int ret = 0;
3220
3221         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3222                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3223                 ret = 1;
3224         }
3225
3226         return ret;
3227 }
3228
3229 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3230                             u8 level, bool direct)
3231 {
3232         struct kvm_mmu_page *sp;
3233
3234         write_lock(&vcpu->kvm->mmu_lock);
3235
3236         if (make_mmu_pages_available(vcpu)) {
3237                 write_unlock(&vcpu->kvm->mmu_lock);
3238                 return INVALID_PAGE;
3239         }
3240         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3241         ++sp->root_count;
3242
3243         write_unlock(&vcpu->kvm->mmu_lock);
3244         return __pa(sp->spt);
3245 }
3246
3247 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3248 {
3249         u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3250         hpa_t root;
3251         unsigned i;
3252
3253         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3254                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3255
3256                 if (!VALID_PAGE(root))
3257                         return -ENOSPC;
3258                 vcpu->arch.mmu->root_hpa = root;
3259         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3260                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3261                                       true);
3262
3263                 if (!VALID_PAGE(root))
3264                         return -ENOSPC;
3265                 vcpu->arch.mmu->root_hpa = root;
3266         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3267                 for (i = 0; i < 4; ++i) {
3268                         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3269
3270                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3271                                               i << 30, PT32_ROOT_LEVEL, true);
3272                         if (!VALID_PAGE(root))
3273                                 return -ENOSPC;
3274                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3275                 }
3276                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3277         } else
3278                 BUG();
3279
3280         /* root_pgd is ignored for direct MMUs. */
3281         vcpu->arch.mmu->root_pgd = 0;
3282
3283         return 0;
3284 }
3285
3286 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3287 {
3288         u64 pdptr, pm_mask;
3289         gfn_t root_gfn, root_pgd;
3290         hpa_t root;
3291         int i;
3292
3293         root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3294         root_gfn = root_pgd >> PAGE_SHIFT;
3295
3296         if (mmu_check_root(vcpu, root_gfn))
3297                 return 1;
3298
3299         /*
3300          * Do we shadow a long mode page table? If so we need to
3301          * write-protect the guests page table root.
3302          */
3303         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3304                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3305
3306                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3307                                       vcpu->arch.mmu->shadow_root_level, false);
3308                 if (!VALID_PAGE(root))
3309                         return -ENOSPC;
3310                 vcpu->arch.mmu->root_hpa = root;
3311                 goto set_root_pgd;
3312         }
3313
3314         /*
3315          * We shadow a 32 bit page table. This may be a legacy 2-level
3316          * or a PAE 3-level page table. In either case we need to be aware that
3317          * the shadow page table may be a PAE or a long mode page table.
3318          */
3319         pm_mask = PT_PRESENT_MASK;
3320         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3321                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3322
3323         for (i = 0; i < 4; ++i) {
3324                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3325                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3326                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3327                         if (!(pdptr & PT_PRESENT_MASK)) {
3328                                 vcpu->arch.mmu->pae_root[i] = 0;
3329                                 continue;
3330                         }
3331                         root_gfn = pdptr >> PAGE_SHIFT;
3332                         if (mmu_check_root(vcpu, root_gfn))
3333                                 return 1;
3334                 }
3335
3336                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3337                                       PT32_ROOT_LEVEL, false);
3338                 if (!VALID_PAGE(root))
3339                         return -ENOSPC;
3340                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3341         }
3342         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3343
3344         /*
3345          * If we shadow a 32 bit page table with a long mode page
3346          * table we enter this path.
3347          */
3348         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3349                 if (vcpu->arch.mmu->lm_root == NULL) {
3350                         /*
3351                          * The additional page necessary for this is only
3352                          * allocated on demand.
3353                          */
3354
3355                         u64 *lm_root;
3356
3357                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3358                         if (lm_root == NULL)
3359                                 return 1;
3360
3361                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3362
3363                         vcpu->arch.mmu->lm_root = lm_root;
3364                 }
3365
3366                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3367         }
3368
3369 set_root_pgd:
3370         vcpu->arch.mmu->root_pgd = root_pgd;
3371
3372         return 0;
3373 }
3374
3375 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3376 {
3377         if (vcpu->arch.mmu->direct_map)
3378                 return mmu_alloc_direct_roots(vcpu);
3379         else
3380                 return mmu_alloc_shadow_roots(vcpu);
3381 }
3382
3383 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3384 {
3385         int i;
3386         struct kvm_mmu_page *sp;
3387
3388         if (vcpu->arch.mmu->direct_map)
3389                 return;
3390
3391         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3392                 return;
3393
3394         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3395
3396         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3397                 hpa_t root = vcpu->arch.mmu->root_hpa;
3398                 sp = to_shadow_page(root);
3399
3400                 /*
3401                  * Even if another CPU was marking the SP as unsync-ed
3402                  * simultaneously, any guest page table changes are not
3403                  * guaranteed to be visible anyway until this VCPU issues a TLB
3404                  * flush strictly after those changes are made. We only need to
3405                  * ensure that the other CPU sets these flags before any actual
3406                  * changes to the page tables are made. The comments in
3407                  * mmu_need_write_protect() describe what could go wrong if this
3408                  * requirement isn't satisfied.
3409                  */
3410                 if (!smp_load_acquire(&sp->unsync) &&
3411                     !smp_load_acquire(&sp->unsync_children))
3412                         return;
3413
3414                 write_lock(&vcpu->kvm->mmu_lock);
3415                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3416
3417                 mmu_sync_children(vcpu, sp);
3418
3419                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3420                 write_unlock(&vcpu->kvm->mmu_lock);
3421                 return;
3422         }
3423
3424         write_lock(&vcpu->kvm->mmu_lock);
3425         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3426
3427         for (i = 0; i < 4; ++i) {
3428                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3429
3430                 if (root && VALID_PAGE(root)) {
3431                         root &= PT64_BASE_ADDR_MASK;
3432                         sp = to_shadow_page(root);
3433                         mmu_sync_children(vcpu, sp);
3434                 }
3435         }
3436
3437         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3438         write_unlock(&vcpu->kvm->mmu_lock);
3439 }
3440 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3441
3442 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3443                                   u32 access, struct x86_exception *exception)
3444 {
3445         if (exception)
3446                 exception->error_code = 0;
3447         return vaddr;
3448 }
3449
3450 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3451                                          u32 access,
3452                                          struct x86_exception *exception)
3453 {
3454         if (exception)
3455                 exception->error_code = 0;
3456         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3457 }
3458
3459 static bool
3460 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3461 {
3462         int bit7 = (pte >> 7) & 1;
3463
3464         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3465 }
3466
3467 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3468 {
3469         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3470 }
3471
3472 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3473 {
3474         /*
3475          * A nested guest cannot use the MMIO cache if it is using nested
3476          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3477          */
3478         if (mmu_is_nested(vcpu))
3479                 return false;
3480
3481         if (direct)
3482                 return vcpu_match_mmio_gpa(vcpu, addr);
3483
3484         return vcpu_match_mmio_gva(vcpu, addr);
3485 }
3486
3487 /*
3488  * Return the level of the lowest level SPTE added to sptes.
3489  * That SPTE may be non-present.
3490  */
3491 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3492 {
3493         struct kvm_shadow_walk_iterator iterator;
3494         int leaf = -1;
3495         u64 spte;
3496
3497         walk_shadow_page_lockless_begin(vcpu);
3498
3499         for (shadow_walk_init(&iterator, vcpu, addr),
3500              *root_level = iterator.level;
3501              shadow_walk_okay(&iterator);
3502              __shadow_walk_next(&iterator, spte)) {
3503                 leaf = iterator.level;
3504                 spte = mmu_spte_get_lockless(iterator.sptep);
3505
3506                 sptes[leaf] = spte;
3507
3508                 if (!is_shadow_present_pte(spte))
3509                         break;
3510         }
3511
3512         walk_shadow_page_lockless_end(vcpu);
3513
3514         return leaf;
3515 }
3516
3517 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3518 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3519 {
3520         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3521         struct rsvd_bits_validate *rsvd_check;
3522         int root, leaf, level;
3523         bool reserved = false;
3524
3525         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3526                 *sptep = 0ull;
3527                 return reserved;
3528         }
3529
3530         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3531                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3532         else
3533                 leaf = get_walk(vcpu, addr, sptes, &root);
3534
3535         if (unlikely(leaf < 0)) {
3536                 *sptep = 0ull;
3537                 return reserved;
3538         }
3539
3540         *sptep = sptes[leaf];
3541
3542         /*
3543          * Skip reserved bits checks on the terminal leaf if it's not a valid
3544          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3545          * design, always have reserved bits set.  The purpose of the checks is
3546          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3547          */
3548         if (!is_shadow_present_pte(sptes[leaf]))
3549                 leaf++;
3550
3551         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3552
3553         for (level = root; level >= leaf; level--)
3554                 /*
3555                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3556                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3557                  * adding a Jcc in the loop.
3558                  */
3559                 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3560                             __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3561
3562         if (reserved) {
3563                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3564                        __func__, addr);
3565                 for (level = root; level >= leaf; level--)
3566                         pr_err("------ spte 0x%llx level %d.\n",
3567                                sptes[level], level);
3568         }
3569
3570         return reserved;
3571 }
3572
3573 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3574 {
3575         u64 spte;
3576         bool reserved;
3577
3578         if (mmio_info_in_cache(vcpu, addr, direct))
3579                 return RET_PF_EMULATE;
3580
3581         reserved = get_mmio_spte(vcpu, addr, &spte);
3582         if (WARN_ON(reserved))
3583                 return -EINVAL;
3584
3585         if (is_mmio_spte(spte)) {
3586                 gfn_t gfn = get_mmio_spte_gfn(spte);
3587                 unsigned int access = get_mmio_spte_access(spte);
3588
3589                 if (!check_mmio_spte(vcpu, spte))
3590                         return RET_PF_INVALID;
3591
3592                 if (direct)
3593                         addr = 0;
3594
3595                 trace_handle_mmio_page_fault(addr, gfn, access);
3596                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3597                 return RET_PF_EMULATE;
3598         }
3599
3600         /*
3601          * If the page table is zapped by other cpus, let CPU fault again on
3602          * the address.
3603          */
3604         return RET_PF_RETRY;
3605 }
3606
3607 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3608                                          u32 error_code, gfn_t gfn)
3609 {
3610         if (unlikely(error_code & PFERR_RSVD_MASK))
3611                 return false;
3612
3613         if (!(error_code & PFERR_PRESENT_MASK) ||
3614               !(error_code & PFERR_WRITE_MASK))
3615                 return false;
3616
3617         /*
3618          * guest is writing the page which is write tracked which can
3619          * not be fixed by page fault handler.
3620          */
3621         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3622                 return true;
3623
3624         return false;
3625 }
3626
3627 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3628 {
3629         struct kvm_shadow_walk_iterator iterator;
3630         u64 spte;
3631
3632         walk_shadow_page_lockless_begin(vcpu);
3633         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3634                 clear_sp_write_flooding_count(iterator.sptep);
3635                 if (!is_shadow_present_pte(spte))
3636                         break;
3637         }
3638         walk_shadow_page_lockless_end(vcpu);
3639 }
3640
3641 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3642                                     gfn_t gfn)
3643 {
3644         struct kvm_arch_async_pf arch;
3645
3646         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3647         arch.gfn = gfn;
3648         arch.direct_map = vcpu->arch.mmu->direct_map;
3649         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3650
3651         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3652                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3653 }
3654
3655 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3656                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3657                          bool *writable)
3658 {
3659         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3660         bool async;
3661
3662         /* Don't expose private memslots to L2. */
3663         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3664                 *pfn = KVM_PFN_NOSLOT;
3665                 *writable = false;
3666                 return false;
3667         }
3668
3669         async = false;
3670         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3671         if (!async)
3672                 return false; /* *pfn has correct page already */
3673
3674         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3675                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3676                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3677                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3678                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3679                         return true;
3680                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3681                         return true;
3682         }
3683
3684         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3685         return false;
3686 }
3687
3688 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3689                              bool prefault, int max_level, bool is_tdp)
3690 {
3691         bool write = error_code & PFERR_WRITE_MASK;
3692         bool map_writable;
3693
3694         gfn_t gfn = gpa >> PAGE_SHIFT;
3695         unsigned long mmu_seq;
3696         kvm_pfn_t pfn;
3697         int r;
3698
3699         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3700                 return RET_PF_EMULATE;
3701
3702         if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3703                 r = fast_page_fault(vcpu, gpa, error_code);
3704                 if (r != RET_PF_INVALID)
3705                         return r;
3706         }
3707
3708         r = mmu_topup_memory_caches(vcpu, false);
3709         if (r)
3710                 return r;
3711
3712         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3713         smp_rmb();
3714
3715         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3716                 return RET_PF_RETRY;
3717
3718         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3719                 return r;
3720
3721         r = RET_PF_RETRY;
3722
3723         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3724                 read_lock(&vcpu->kvm->mmu_lock);
3725         else
3726                 write_lock(&vcpu->kvm->mmu_lock);
3727
3728         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3729                 goto out_unlock;
3730         r = make_mmu_pages_available(vcpu);
3731         if (r)
3732                 goto out_unlock;
3733
3734         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3735                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3736                                     pfn, prefault);
3737         else
3738                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3739                                  prefault, is_tdp);
3740
3741 out_unlock:
3742         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3743                 read_unlock(&vcpu->kvm->mmu_lock);
3744         else
3745                 write_unlock(&vcpu->kvm->mmu_lock);
3746         kvm_release_pfn_clean(pfn);
3747         return r;
3748 }
3749
3750 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3751                                 u32 error_code, bool prefault)
3752 {
3753         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3754
3755         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3756         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3757                                  PG_LEVEL_2M, false);
3758 }
3759
3760 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3761                                 u64 fault_address, char *insn, int insn_len)
3762 {
3763         int r = 1;
3764         u32 flags = vcpu->arch.apf.host_apf_flags;
3765
3766 #ifndef CONFIG_X86_64
3767         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3768         if (WARN_ON_ONCE(fault_address >> 32))
3769                 return -EFAULT;
3770 #endif
3771
3772         vcpu->arch.l1tf_flush_l1d = true;
3773         if (!flags) {
3774                 trace_kvm_page_fault(fault_address, error_code);
3775
3776                 if (kvm_event_needs_reinjection(vcpu))
3777                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3778                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3779                                 insn_len);
3780         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3781                 vcpu->arch.apf.host_apf_flags = 0;
3782                 local_irq_disable();
3783                 kvm_async_pf_task_wait_schedule(fault_address);
3784                 local_irq_enable();
3785         } else {
3786                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3787         }
3788
3789         return r;
3790 }
3791 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3792
3793 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3794                        bool prefault)
3795 {
3796         int max_level;
3797
3798         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3799              max_level > PG_LEVEL_4K;
3800              max_level--) {
3801                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3802                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3803
3804                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3805                         break;
3806         }
3807
3808         return direct_page_fault(vcpu, gpa, error_code, prefault,
3809                                  max_level, true);
3810 }
3811
3812 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3813                                    struct kvm_mmu *context)
3814 {
3815         context->page_fault = nonpaging_page_fault;
3816         context->gva_to_gpa = nonpaging_gva_to_gpa;
3817         context->sync_page = nonpaging_sync_page;
3818         context->invlpg = NULL;
3819         context->root_level = 0;
3820         context->shadow_root_level = PT32E_ROOT_LEVEL;
3821         context->direct_map = true;
3822         context->nx = false;
3823 }
3824
3825 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3826                                   union kvm_mmu_page_role role)
3827 {
3828         return (role.direct || pgd == root->pgd) &&
3829                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3830                role.word == to_shadow_page(root->hpa)->role.word;
3831 }
3832
3833 /*
3834  * Find out if a previously cached root matching the new pgd/role is available.
3835  * The current root is also inserted into the cache.
3836  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3837  * returned.
3838  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3839  * false is returned. This root should now be freed by the caller.
3840  */
3841 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3842                                   union kvm_mmu_page_role new_role)
3843 {
3844         uint i;
3845         struct kvm_mmu_root_info root;
3846         struct kvm_mmu *mmu = vcpu->arch.mmu;
3847
3848         root.pgd = mmu->root_pgd;
3849         root.hpa = mmu->root_hpa;
3850
3851         if (is_root_usable(&root, new_pgd, new_role))
3852                 return true;
3853
3854         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3855                 swap(root, mmu->prev_roots[i]);
3856
3857                 if (is_root_usable(&root, new_pgd, new_role))
3858                         break;
3859         }
3860
3861         mmu->root_hpa = root.hpa;
3862         mmu->root_pgd = root.pgd;
3863
3864         return i < KVM_MMU_NUM_PREV_ROOTS;
3865 }
3866
3867 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3868                             union kvm_mmu_page_role new_role)
3869 {
3870         struct kvm_mmu *mmu = vcpu->arch.mmu;
3871
3872         /*
3873          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3874          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3875          * later if necessary.
3876          */
3877         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3878             mmu->root_level >= PT64_ROOT_4LEVEL)
3879                 return cached_root_available(vcpu, new_pgd, new_role);
3880
3881         return false;
3882 }
3883
3884 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3885                               union kvm_mmu_page_role new_role,
3886                               bool skip_tlb_flush, bool skip_mmu_sync)
3887 {
3888         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3889                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3890                 return;
3891         }
3892
3893         /*
3894          * It's possible that the cached previous root page is obsolete because
3895          * of a change in the MMU generation number. However, changing the
3896          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3897          * free the root set here and allocate a new one.
3898          */
3899         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3900
3901         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3902                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3903         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3904                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3905
3906         /*
3907          * The last MMIO access's GVA and GPA are cached in the VCPU. When
3908          * switching to a new CR3, that GVA->GPA mapping may no longer be
3909          * valid. So clear any cached MMIO info even when we don't need to sync
3910          * the shadow page tables.
3911          */
3912         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3913
3914         /*
3915          * If this is a direct root page, it doesn't have a write flooding
3916          * count. Otherwise, clear the write flooding count.
3917          */
3918         if (!new_role.direct)
3919                 __clear_sp_write_flooding_count(
3920                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
3921 }
3922
3923 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3924                      bool skip_mmu_sync)
3925 {
3926         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3927                           skip_tlb_flush, skip_mmu_sync);
3928 }
3929 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3930
3931 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3932 {
3933         return kvm_read_cr3(vcpu);
3934 }
3935
3936 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3937                            unsigned int access, int *nr_present)
3938 {
3939         if (unlikely(is_mmio_spte(*sptep))) {
3940                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3941                         mmu_spte_clear_no_track(sptep);
3942                         return true;
3943                 }
3944
3945                 (*nr_present)++;
3946                 mark_mmio_spte(vcpu, sptep, gfn, access);
3947                 return true;
3948         }
3949
3950         return false;
3951 }
3952
3953 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3954                                 unsigned level, unsigned gpte)
3955 {
3956         /*
3957          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3958          * If it is clear, there are no large pages at this level, so clear
3959          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3960          */
3961         gpte &= level - mmu->last_nonleaf_level;
3962
3963         /*
3964          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3965          * iff level <= PG_LEVEL_4K, which for our purpose means
3966          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3967          */
3968         gpte |= level - PG_LEVEL_4K - 1;
3969
3970         return gpte & PT_PAGE_SIZE_MASK;
3971 }
3972
3973 #define PTTYPE_EPT 18 /* arbitrary */
3974 #define PTTYPE PTTYPE_EPT
3975 #include "paging_tmpl.h"
3976 #undef PTTYPE
3977
3978 #define PTTYPE 64
3979 #include "paging_tmpl.h"
3980 #undef PTTYPE
3981
3982 #define PTTYPE 32
3983 #include "paging_tmpl.h"
3984 #undef PTTYPE
3985
3986 static void
3987 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3988                         struct rsvd_bits_validate *rsvd_check,
3989                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
3990                         bool pse, bool amd)
3991 {
3992         u64 gbpages_bit_rsvd = 0;
3993         u64 nonleaf_bit8_rsvd = 0;
3994         u64 high_bits_rsvd;
3995
3996         rsvd_check->bad_mt_xwr = 0;
3997
3998         if (!gbpages)
3999                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4000
4001         if (level == PT32E_ROOT_LEVEL)
4002                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4003         else
4004                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4005
4006         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4007         if (!nx)
4008                 high_bits_rsvd |= rsvd_bits(63, 63);
4009
4010         /*
4011          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4012          * leaf entries) on AMD CPUs only.
4013          */
4014         if (amd)
4015                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4016
4017         switch (level) {
4018         case PT32_ROOT_LEVEL:
4019                 /* no rsvd bits for 2 level 4K page table entries */
4020                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4021                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4022                 rsvd_check->rsvd_bits_mask[1][0] =
4023                         rsvd_check->rsvd_bits_mask[0][0];
4024
4025                 if (!pse) {
4026                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4027                         break;
4028                 }
4029
4030                 if (is_cpuid_PSE36())
4031                         /* 36bits PSE 4MB page */
4032                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4033                 else
4034                         /* 32 bits PSE 4MB page */
4035                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4036                 break;
4037         case PT32E_ROOT_LEVEL:
4038                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4039                                                    high_bits_rsvd |
4040                                                    rsvd_bits(5, 8) |
4041                                                    rsvd_bits(1, 2);     /* PDPTE */
4042                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4043                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4044                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4045                                                    rsvd_bits(13, 20);   /* large page */
4046                 rsvd_check->rsvd_bits_mask[1][0] =
4047                         rsvd_check->rsvd_bits_mask[0][0];
4048                 break;
4049         case PT64_ROOT_5LEVEL:
4050                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4051                                                    nonleaf_bit8_rsvd |
4052                                                    rsvd_bits(7, 7);
4053                 rsvd_check->rsvd_bits_mask[1][4] =
4054                         rsvd_check->rsvd_bits_mask[0][4];
4055                 fallthrough;
4056         case PT64_ROOT_4LEVEL:
4057                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4058                                                    nonleaf_bit8_rsvd |
4059                                                    rsvd_bits(7, 7);
4060                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4061                                                    gbpages_bit_rsvd;
4062                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4063                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4064                 rsvd_check->rsvd_bits_mask[1][3] =
4065                         rsvd_check->rsvd_bits_mask[0][3];
4066                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4067                                                    gbpages_bit_rsvd |
4068                                                    rsvd_bits(13, 29);
4069                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4070                                                    rsvd_bits(13, 20); /* large page */
4071                 rsvd_check->rsvd_bits_mask[1][0] =
4072                         rsvd_check->rsvd_bits_mask[0][0];
4073                 break;
4074         }
4075 }
4076
4077 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4078                                   struct kvm_mmu *context)
4079 {
4080         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4081                                 vcpu->arch.reserved_gpa_bits,
4082                                 context->root_level, context->nx,
4083                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4084                                 is_pse(vcpu),
4085                                 guest_cpuid_is_amd_or_hygon(vcpu));
4086 }
4087
4088 static void
4089 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4090                             u64 pa_bits_rsvd, bool execonly)
4091 {
4092         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4093         u64 bad_mt_xwr;
4094
4095         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4096         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4097         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4098         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4099         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4100
4101         /* large page */
4102         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4103         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4104         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4105         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4106         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4107
4108         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4109         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4110         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4111         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4112         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4113         if (!execonly) {
4114                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4115                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4116         }
4117         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4118 }
4119
4120 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4121                 struct kvm_mmu *context, bool execonly)
4122 {
4123         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4124                                     vcpu->arch.reserved_gpa_bits, execonly);
4125 }
4126
4127 static inline u64 reserved_hpa_bits(void)
4128 {
4129         return rsvd_bits(shadow_phys_bits, 63);
4130 }
4131
4132 /*
4133  * the page table on host is the shadow page table for the page
4134  * table in guest or amd nested guest, its mmu features completely
4135  * follow the features in guest.
4136  */
4137 void
4138 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4139 {
4140         bool uses_nx = context->nx ||
4141                 context->mmu_role.base.smep_andnot_wp;
4142         struct rsvd_bits_validate *shadow_zero_check;
4143         int i;
4144
4145         /*
4146          * Passing "true" to the last argument is okay; it adds a check
4147          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4148          */
4149         shadow_zero_check = &context->shadow_zero_check;
4150         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4151                                 reserved_hpa_bits(),
4152                                 context->shadow_root_level, uses_nx,
4153                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4154                                 is_pse(vcpu), true);
4155
4156         if (!shadow_me_mask)
4157                 return;
4158
4159         for (i = context->shadow_root_level; --i >= 0;) {
4160                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4161                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4162         }
4163
4164 }
4165 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4166
4167 static inline bool boot_cpu_is_amd(void)
4168 {
4169         WARN_ON_ONCE(!tdp_enabled);
4170         return shadow_x_mask == 0;
4171 }
4172
4173 /*
4174  * the direct page table on host, use as much mmu features as
4175  * possible, however, kvm currently does not do execution-protection.
4176  */
4177 static void
4178 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4179                                 struct kvm_mmu *context)
4180 {
4181         struct rsvd_bits_validate *shadow_zero_check;
4182         int i;
4183
4184         shadow_zero_check = &context->shadow_zero_check;
4185
4186         if (boot_cpu_is_amd())
4187                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4188                                         reserved_hpa_bits(),
4189                                         context->shadow_root_level, false,
4190                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4191                                         true, true);
4192         else
4193                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4194                                             reserved_hpa_bits(), false);
4195
4196         if (!shadow_me_mask)
4197                 return;
4198
4199         for (i = context->shadow_root_level; --i >= 0;) {
4200                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4201                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4202         }
4203 }
4204
4205 /*
4206  * as the comments in reset_shadow_zero_bits_mask() except it
4207  * is the shadow page table for intel nested guest.
4208  */
4209 static void
4210 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4211                                 struct kvm_mmu *context, bool execonly)
4212 {
4213         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4214                                     reserved_hpa_bits(), execonly);
4215 }
4216
4217 #define BYTE_MASK(access) \
4218         ((1 & (access) ? 2 : 0) | \
4219          (2 & (access) ? 4 : 0) | \
4220          (3 & (access) ? 8 : 0) | \
4221          (4 & (access) ? 16 : 0) | \
4222          (5 & (access) ? 32 : 0) | \
4223          (6 & (access) ? 64 : 0) | \
4224          (7 & (access) ? 128 : 0))
4225
4226
4227 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4228                                       struct kvm_mmu *mmu, bool ept)
4229 {
4230         unsigned byte;
4231
4232         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4233         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4234         const u8 u = BYTE_MASK(ACC_USER_MASK);
4235
4236         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4237         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4238         bool cr0_wp = is_write_protection(vcpu);
4239
4240         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4241                 unsigned pfec = byte << 1;
4242
4243                 /*
4244                  * Each "*f" variable has a 1 bit for each UWX value
4245                  * that causes a fault with the given PFEC.
4246                  */
4247
4248                 /* Faults from writes to non-writable pages */
4249                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4250                 /* Faults from user mode accesses to supervisor pages */
4251                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4252                 /* Faults from fetches of non-executable pages*/
4253                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4254                 /* Faults from kernel mode fetches of user pages */
4255                 u8 smepf = 0;
4256                 /* Faults from kernel mode accesses of user pages */
4257                 u8 smapf = 0;
4258
4259                 if (!ept) {
4260                         /* Faults from kernel mode accesses to user pages */
4261                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4262
4263                         /* Not really needed: !nx will cause pte.nx to fault */
4264                         if (!mmu->nx)
4265                                 ff = 0;
4266
4267                         /* Allow supervisor writes if !cr0.wp */
4268                         if (!cr0_wp)
4269                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4270
4271                         /* Disallow supervisor fetches of user code if cr4.smep */
4272                         if (cr4_smep)
4273                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4274
4275                         /*
4276                          * SMAP:kernel-mode data accesses from user-mode
4277                          * mappings should fault. A fault is considered
4278                          * as a SMAP violation if all of the following
4279                          * conditions are true:
4280                          *   - X86_CR4_SMAP is set in CR4
4281                          *   - A user page is accessed
4282                          *   - The access is not a fetch
4283                          *   - Page fault in kernel mode
4284                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4285                          *
4286                          * Here, we cover the first three conditions.
4287                          * The fourth is computed dynamically in permission_fault();
4288                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4289                          * *not* subject to SMAP restrictions.
4290                          */
4291                         if (cr4_smap)
4292                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4293                 }
4294
4295                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4296         }
4297 }
4298
4299 /*
4300 * PKU is an additional mechanism by which the paging controls access to
4301 * user-mode addresses based on the value in the PKRU register.  Protection
4302 * key violations are reported through a bit in the page fault error code.
4303 * Unlike other bits of the error code, the PK bit is not known at the
4304 * call site of e.g. gva_to_gpa; it must be computed directly in
4305 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4306 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4307 *
4308 * In particular the following conditions come from the error code, the
4309 * page tables and the machine state:
4310 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4311 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4312 * - PK is always zero if U=0 in the page tables
4313 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4314 *
4315 * The PKRU bitmask caches the result of these four conditions.  The error
4316 * code (minus the P bit) and the page table's U bit form an index into the
4317 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4318 * with the two bits of the PKRU register corresponding to the protection key.
4319 * For the first three conditions above the bits will be 00, thus masking
4320 * away both AD and WD.  For all reads or if the last condition holds, WD
4321 * only will be masked away.
4322 */
4323 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4324                                 bool ept)
4325 {
4326         unsigned bit;
4327         bool wp;
4328
4329         if (ept) {
4330                 mmu->pkru_mask = 0;
4331                 return;
4332         }
4333
4334         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4335         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4336                 mmu->pkru_mask = 0;
4337                 return;
4338         }
4339
4340         wp = is_write_protection(vcpu);
4341
4342         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4343                 unsigned pfec, pkey_bits;
4344                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4345
4346                 pfec = bit << 1;
4347                 ff = pfec & PFERR_FETCH_MASK;
4348                 uf = pfec & PFERR_USER_MASK;
4349                 wf = pfec & PFERR_WRITE_MASK;
4350
4351                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4352                 pte_user = pfec & PFERR_RSVD_MASK;
4353
4354                 /*
4355                  * Only need to check the access which is not an
4356                  * instruction fetch and is to a user page.
4357                  */
4358                 check_pkey = (!ff && pte_user);
4359                 /*
4360                  * write access is controlled by PKRU if it is a
4361                  * user access or CR0.WP = 1.
4362                  */
4363                 check_write = check_pkey && wf && (uf || wp);
4364
4365                 /* PKRU.AD stops both read and write access. */
4366                 pkey_bits = !!check_pkey;
4367                 /* PKRU.WD stops write access. */
4368                 pkey_bits |= (!!check_write) << 1;
4369
4370                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4371         }
4372 }
4373
4374 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4375 {
4376         unsigned root_level = mmu->root_level;
4377
4378         mmu->last_nonleaf_level = root_level;
4379         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4380                 mmu->last_nonleaf_level++;
4381 }
4382
4383 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4384                                          struct kvm_mmu *context,
4385                                          int level)
4386 {
4387         context->nx = is_nx(vcpu);
4388         context->root_level = level;
4389
4390         reset_rsvds_bits_mask(vcpu, context);
4391         update_permission_bitmask(vcpu, context, false);
4392         update_pkru_bitmask(vcpu, context, false);
4393         update_last_nonleaf_level(vcpu, context);
4394
4395         MMU_WARN_ON(!is_pae(vcpu));
4396         context->page_fault = paging64_page_fault;
4397         context->gva_to_gpa = paging64_gva_to_gpa;
4398         context->sync_page = paging64_sync_page;
4399         context->invlpg = paging64_invlpg;
4400         context->shadow_root_level = level;
4401         context->direct_map = false;
4402 }
4403
4404 static void paging64_init_context(struct kvm_vcpu *vcpu,
4405                                   struct kvm_mmu *context)
4406 {
4407         int root_level = is_la57_mode(vcpu) ?
4408                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4409
4410         paging64_init_context_common(vcpu, context, root_level);
4411 }
4412
4413 static void paging32_init_context(struct kvm_vcpu *vcpu,
4414                                   struct kvm_mmu *context)
4415 {
4416         context->nx = false;
4417         context->root_level = PT32_ROOT_LEVEL;
4418
4419         reset_rsvds_bits_mask(vcpu, context);
4420         update_permission_bitmask(vcpu, context, false);
4421         update_pkru_bitmask(vcpu, context, false);
4422         update_last_nonleaf_level(vcpu, context);
4423
4424         context->page_fault = paging32_page_fault;
4425         context->gva_to_gpa = paging32_gva_to_gpa;
4426         context->sync_page = paging32_sync_page;
4427         context->invlpg = paging32_invlpg;
4428         context->shadow_root_level = PT32E_ROOT_LEVEL;
4429         context->direct_map = false;
4430 }
4431
4432 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4433                                    struct kvm_mmu *context)
4434 {
4435         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4436 }
4437
4438 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4439 {
4440         union kvm_mmu_extended_role ext = {0};
4441
4442         ext.cr0_pg = !!is_paging(vcpu);
4443         ext.cr4_pae = !!is_pae(vcpu);
4444         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4445         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4446         ext.cr4_pse = !!is_pse(vcpu);
4447         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4448         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4449
4450         ext.valid = 1;
4451
4452         return ext;
4453 }
4454
4455 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4456                                                    bool base_only)
4457 {
4458         union kvm_mmu_role role = {0};
4459
4460         role.base.access = ACC_ALL;
4461         role.base.nxe = !!is_nx(vcpu);
4462         role.base.cr0_wp = is_write_protection(vcpu);
4463         role.base.smm = is_smm(vcpu);
4464         role.base.guest_mode = is_guest_mode(vcpu);
4465
4466         if (base_only)
4467                 return role;
4468
4469         role.ext = kvm_calc_mmu_role_ext(vcpu);
4470
4471         return role;
4472 }
4473
4474 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4475 {
4476         /* Use 5-level TDP if and only if it's useful/necessary. */
4477         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4478                 return 4;
4479
4480         return max_tdp_level;
4481 }
4482
4483 static union kvm_mmu_role
4484 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4485 {
4486         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4487
4488         role.base.ad_disabled = (shadow_accessed_mask == 0);
4489         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4490         role.base.direct = true;
4491         role.base.gpte_is_8_bytes = true;
4492
4493         return role;
4494 }
4495
4496 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4497 {
4498         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4499         union kvm_mmu_role new_role =
4500                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4501
4502         if (new_role.as_u64 == context->mmu_role.as_u64)
4503                 return;
4504
4505         context->mmu_role.as_u64 = new_role.as_u64;
4506         context->page_fault = kvm_tdp_page_fault;
4507         context->sync_page = nonpaging_sync_page;
4508         context->invlpg = NULL;
4509         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4510         context->direct_map = true;
4511         context->get_guest_pgd = get_cr3;
4512         context->get_pdptr = kvm_pdptr_read;
4513         context->inject_page_fault = kvm_inject_page_fault;
4514
4515         if (!is_paging(vcpu)) {
4516                 context->nx = false;
4517                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4518                 context->root_level = 0;
4519         } else if (is_long_mode(vcpu)) {
4520                 context->nx = is_nx(vcpu);
4521                 context->root_level = is_la57_mode(vcpu) ?
4522                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4523                 reset_rsvds_bits_mask(vcpu, context);
4524                 context->gva_to_gpa = paging64_gva_to_gpa;
4525         } else if (is_pae(vcpu)) {
4526                 context->nx = is_nx(vcpu);
4527                 context->root_level = PT32E_ROOT_LEVEL;
4528                 reset_rsvds_bits_mask(vcpu, context);
4529                 context->gva_to_gpa = paging64_gva_to_gpa;
4530         } else {
4531                 context->nx = false;
4532                 context->root_level = PT32_ROOT_LEVEL;
4533                 reset_rsvds_bits_mask(vcpu, context);
4534                 context->gva_to_gpa = paging32_gva_to_gpa;
4535         }
4536
4537         update_permission_bitmask(vcpu, context, false);
4538         update_pkru_bitmask(vcpu, context, false);
4539         update_last_nonleaf_level(vcpu, context);
4540         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4541 }
4542
4543 static union kvm_mmu_role
4544 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4545 {
4546         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4547
4548         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4549                 !is_write_protection(vcpu);
4550         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4551                 !is_write_protection(vcpu);
4552         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4553
4554         return role;
4555 }
4556
4557 static union kvm_mmu_role
4558 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4559 {
4560         union kvm_mmu_role role =
4561                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4562
4563         role.base.direct = !is_paging(vcpu);
4564
4565         if (!is_long_mode(vcpu))
4566                 role.base.level = PT32E_ROOT_LEVEL;
4567         else if (is_la57_mode(vcpu))
4568                 role.base.level = PT64_ROOT_5LEVEL;
4569         else
4570                 role.base.level = PT64_ROOT_4LEVEL;
4571
4572         return role;
4573 }
4574
4575 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4576                                     u32 cr0, u32 cr4, u32 efer,
4577                                     union kvm_mmu_role new_role)
4578 {
4579         if (!(cr0 & X86_CR0_PG))
4580                 nonpaging_init_context(vcpu, context);
4581         else if (efer & EFER_LMA)
4582                 paging64_init_context(vcpu, context);
4583         else if (cr4 & X86_CR4_PAE)
4584                 paging32E_init_context(vcpu, context);
4585         else
4586                 paging32_init_context(vcpu, context);
4587
4588         context->mmu_role.as_u64 = new_role.as_u64;
4589         reset_shadow_zero_bits_mask(vcpu, context);
4590 }
4591
4592 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4593 {
4594         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4595         union kvm_mmu_role new_role =
4596                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4597
4598         if (new_role.as_u64 != context->mmu_role.as_u64)
4599                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4600 }
4601
4602 static union kvm_mmu_role
4603 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4604 {
4605         union kvm_mmu_role role =
4606                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4607
4608         role.base.direct = false;
4609         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4610
4611         return role;
4612 }
4613
4614 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4615                              gpa_t nested_cr3)
4616 {
4617         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4618         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4619
4620         context->shadow_root_level = new_role.base.level;
4621
4622         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4623
4624         if (new_role.as_u64 != context->mmu_role.as_u64)
4625                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4626 }
4627 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4628
4629 static union kvm_mmu_role
4630 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4631                                    bool execonly, u8 level)
4632 {
4633         union kvm_mmu_role role = {0};
4634
4635         /* SMM flag is inherited from root_mmu */
4636         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4637
4638         role.base.level = level;
4639         role.base.gpte_is_8_bytes = true;
4640         role.base.direct = false;
4641         role.base.ad_disabled = !accessed_dirty;
4642         role.base.guest_mode = true;
4643         role.base.access = ACC_ALL;
4644
4645         /*
4646          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4647          * SMAP variation to denote shadow EPT entries.
4648          */
4649         role.base.cr0_wp = true;
4650         role.base.smap_andnot_wp = true;
4651
4652         role.ext = kvm_calc_mmu_role_ext(vcpu);
4653         role.ext.execonly = execonly;
4654
4655         return role;
4656 }
4657
4658 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4659                              bool accessed_dirty, gpa_t new_eptp)
4660 {
4661         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4662         u8 level = vmx_eptp_page_walk_level(new_eptp);
4663         union kvm_mmu_role new_role =
4664                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4665                                                    execonly, level);
4666
4667         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4668
4669         if (new_role.as_u64 == context->mmu_role.as_u64)
4670                 return;
4671
4672         context->shadow_root_level = level;
4673
4674         context->nx = true;
4675         context->ept_ad = accessed_dirty;
4676         context->page_fault = ept_page_fault;
4677         context->gva_to_gpa = ept_gva_to_gpa;
4678         context->sync_page = ept_sync_page;
4679         context->invlpg = ept_invlpg;
4680         context->root_level = level;
4681         context->direct_map = false;
4682         context->mmu_role.as_u64 = new_role.as_u64;
4683
4684         update_permission_bitmask(vcpu, context, true);
4685         update_pkru_bitmask(vcpu, context, true);
4686         update_last_nonleaf_level(vcpu, context);
4687         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4688         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4689 }
4690 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4691
4692 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4693 {
4694         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4695
4696         kvm_init_shadow_mmu(vcpu,
4697                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4698                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4699                             vcpu->arch.efer);
4700
4701         context->get_guest_pgd     = get_cr3;
4702         context->get_pdptr         = kvm_pdptr_read;
4703         context->inject_page_fault = kvm_inject_page_fault;
4704 }
4705
4706 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4707 {
4708         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4709         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4710
4711         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4712                 return;
4713
4714         g_context->mmu_role.as_u64 = new_role.as_u64;
4715         g_context->get_guest_pgd     = get_cr3;
4716         g_context->get_pdptr         = kvm_pdptr_read;
4717         g_context->inject_page_fault = kvm_inject_page_fault;
4718
4719         /*
4720          * L2 page tables are never shadowed, so there is no need to sync
4721          * SPTEs.
4722          */
4723         g_context->invlpg            = NULL;
4724
4725         /*
4726          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4727          * L1's nested page tables (e.g. EPT12). The nested translation
4728          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4729          * L2's page tables as the first level of translation and L1's
4730          * nested page tables as the second level of translation. Basically
4731          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4732          */
4733         if (!is_paging(vcpu)) {
4734                 g_context->nx = false;
4735                 g_context->root_level = 0;
4736                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4737         } else if (is_long_mode(vcpu)) {
4738                 g_context->nx = is_nx(vcpu);
4739                 g_context->root_level = is_la57_mode(vcpu) ?
4740                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4741                 reset_rsvds_bits_mask(vcpu, g_context);
4742                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4743         } else if (is_pae(vcpu)) {
4744                 g_context->nx = is_nx(vcpu);
4745                 g_context->root_level = PT32E_ROOT_LEVEL;
4746                 reset_rsvds_bits_mask(vcpu, g_context);
4747                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4748         } else {
4749                 g_context->nx = false;
4750                 g_context->root_level = PT32_ROOT_LEVEL;
4751                 reset_rsvds_bits_mask(vcpu, g_context);
4752                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4753         }
4754
4755         update_permission_bitmask(vcpu, g_context, false);
4756         update_pkru_bitmask(vcpu, g_context, false);
4757         update_last_nonleaf_level(vcpu, g_context);
4758 }
4759
4760 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4761 {
4762         if (reset_roots) {
4763                 uint i;
4764
4765                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4766
4767                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4768                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4769         }
4770
4771         if (mmu_is_nested(vcpu))
4772                 init_kvm_nested_mmu(vcpu);
4773         else if (tdp_enabled)
4774                 init_kvm_tdp_mmu(vcpu);
4775         else
4776                 init_kvm_softmmu(vcpu);
4777 }
4778 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4779
4780 static union kvm_mmu_page_role
4781 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4782 {
4783         union kvm_mmu_role role;
4784
4785         if (tdp_enabled)
4786                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4787         else
4788                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4789
4790         return role.base;
4791 }
4792
4793 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4794 {
4795         kvm_mmu_unload(vcpu);
4796         kvm_init_mmu(vcpu, true);
4797 }
4798 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4799
4800 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4801 {
4802         int r;
4803
4804         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4805         if (r)
4806                 goto out;
4807         r = mmu_alloc_roots(vcpu);
4808         kvm_mmu_sync_roots(vcpu);
4809         if (r)
4810                 goto out;
4811         kvm_mmu_load_pgd(vcpu);
4812         static_call(kvm_x86_tlb_flush_current)(vcpu);
4813 out:
4814         return r;
4815 }
4816 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4817
4818 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4819 {
4820         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4821         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4822         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4823         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4824 }
4825 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4826
4827 static bool need_remote_flush(u64 old, u64 new)
4828 {
4829         if (!is_shadow_present_pte(old))
4830                 return false;
4831         if (!is_shadow_present_pte(new))
4832                 return true;
4833         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4834                 return true;
4835         old ^= shadow_nx_mask;
4836         new ^= shadow_nx_mask;
4837         return (old & ~new & PT64_PERM_MASK) != 0;
4838 }
4839
4840 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4841                                     int *bytes)
4842 {
4843         u64 gentry = 0;
4844         int r;
4845
4846         /*
4847          * Assume that the pte write on a page table of the same type
4848          * as the current vcpu paging mode since we update the sptes only
4849          * when they have the same mode.
4850          */
4851         if (is_pae(vcpu) && *bytes == 4) {
4852                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4853                 *gpa &= ~(gpa_t)7;
4854                 *bytes = 8;
4855         }
4856
4857         if (*bytes == 4 || *bytes == 8) {
4858                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4859                 if (r)
4860                         gentry = 0;
4861         }
4862
4863         return gentry;
4864 }
4865
4866 /*
4867  * If we're seeing too many writes to a page, it may no longer be a page table,
4868  * or we may be forking, in which case it is better to unmap the page.
4869  */
4870 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4871 {
4872         /*
4873          * Skip write-flooding detected for the sp whose level is 1, because
4874          * it can become unsync, then the guest page is not write-protected.
4875          */
4876         if (sp->role.level == PG_LEVEL_4K)
4877                 return false;
4878
4879         atomic_inc(&sp->write_flooding_count);
4880         return atomic_read(&sp->write_flooding_count) >= 3;
4881 }
4882
4883 /*
4884  * Misaligned accesses are too much trouble to fix up; also, they usually
4885  * indicate a page is not used as a page table.
4886  */
4887 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4888                                     int bytes)
4889 {
4890         unsigned offset, pte_size, misaligned;
4891
4892         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4893                  gpa, bytes, sp->role.word);
4894
4895         offset = offset_in_page(gpa);
4896         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4897
4898         /*
4899          * Sometimes, the OS only writes the last one bytes to update status
4900          * bits, for example, in linux, andb instruction is used in clear_bit().
4901          */
4902         if (!(offset & (pte_size - 1)) && bytes == 1)
4903                 return false;
4904
4905         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4906         misaligned |= bytes < 4;
4907
4908         return misaligned;
4909 }
4910
4911 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4912 {
4913         unsigned page_offset, quadrant;
4914         u64 *spte;
4915         int level;
4916
4917         page_offset = offset_in_page(gpa);
4918         level = sp->role.level;
4919         *nspte = 1;
4920         if (!sp->role.gpte_is_8_bytes) {
4921                 page_offset <<= 1;      /* 32->64 */
4922                 /*
4923                  * A 32-bit pde maps 4MB while the shadow pdes map
4924                  * only 2MB.  So we need to double the offset again
4925                  * and zap two pdes instead of one.
4926                  */
4927                 if (level == PT32_ROOT_LEVEL) {
4928                         page_offset &= ~7; /* kill rounding error */
4929                         page_offset <<= 1;
4930                         *nspte = 2;
4931                 }
4932                 quadrant = page_offset >> PAGE_SHIFT;
4933                 page_offset &= ~PAGE_MASK;
4934                 if (quadrant != sp->role.quadrant)
4935                         return NULL;
4936         }
4937
4938         spte = &sp->spt[page_offset / sizeof(*spte)];
4939         return spte;
4940 }
4941
4942 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4943                               const u8 *new, int bytes,
4944                               struct kvm_page_track_notifier_node *node)
4945 {
4946         gfn_t gfn = gpa >> PAGE_SHIFT;
4947         struct kvm_mmu_page *sp;
4948         LIST_HEAD(invalid_list);
4949         u64 entry, gentry, *spte;
4950         int npte;
4951         bool remote_flush, local_flush;
4952
4953         /*
4954          * If we don't have indirect shadow pages, it means no page is
4955          * write-protected, so we can exit simply.
4956          */
4957         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4958                 return;
4959
4960         remote_flush = local_flush = false;
4961
4962         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4963
4964         /*
4965          * No need to care whether allocation memory is successful
4966          * or not since pte prefetch is skiped if it does not have
4967          * enough objects in the cache.
4968          */
4969         mmu_topup_memory_caches(vcpu, true);
4970
4971         write_lock(&vcpu->kvm->mmu_lock);
4972
4973         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4974
4975         ++vcpu->kvm->stat.mmu_pte_write;
4976         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4977
4978         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4979                 if (detect_write_misaligned(sp, gpa, bytes) ||
4980                       detect_write_flooding(sp)) {
4981                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4982                         ++vcpu->kvm->stat.mmu_flooded;
4983                         continue;
4984                 }
4985
4986                 spte = get_written_sptes(sp, gpa, &npte);
4987                 if (!spte)
4988                         continue;
4989
4990                 local_flush = true;
4991                 while (npte--) {
4992                         entry = *spte;
4993                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
4994                         if (gentry && sp->role.level != PG_LEVEL_4K)
4995                                 ++vcpu->kvm->stat.mmu_pde_zapped;
4996                         if (need_remote_flush(entry, *spte))
4997                                 remote_flush = true;
4998                         ++spte;
4999                 }
5000         }
5001         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5002         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5003         write_unlock(&vcpu->kvm->mmu_lock);
5004 }
5005
5006 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5007 {
5008         gpa_t gpa;
5009         int r;
5010
5011         if (vcpu->arch.mmu->direct_map)
5012                 return 0;
5013
5014         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5015
5016         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5017
5018         return r;
5019 }
5020 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5021
5022 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5023                        void *insn, int insn_len)
5024 {
5025         int r, emulation_type = EMULTYPE_PF;
5026         bool direct = vcpu->arch.mmu->direct_map;
5027
5028         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5029                 return RET_PF_RETRY;
5030
5031         r = RET_PF_INVALID;
5032         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5033                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5034                 if (r == RET_PF_EMULATE)
5035                         goto emulate;
5036         }
5037
5038         if (r == RET_PF_INVALID) {
5039                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5040                                           lower_32_bits(error_code), false);
5041                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5042                         return -EIO;
5043         }
5044
5045         if (r < 0)
5046                 return r;
5047         if (r != RET_PF_EMULATE)
5048                 return 1;
5049
5050         /*
5051          * Before emulating the instruction, check if the error code
5052          * was due to a RO violation while translating the guest page.
5053          * This can occur when using nested virtualization with nested
5054          * paging in both guests. If true, we simply unprotect the page
5055          * and resume the guest.
5056          */
5057         if (vcpu->arch.mmu->direct_map &&
5058             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5059                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5060                 return 1;
5061         }
5062
5063         /*
5064          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5065          * optimistically try to just unprotect the page and let the processor
5066          * re-execute the instruction that caused the page fault.  Do not allow
5067          * retrying MMIO emulation, as it's not only pointless but could also
5068          * cause us to enter an infinite loop because the processor will keep
5069          * faulting on the non-existent MMIO address.  Retrying an instruction
5070          * from a nested guest is also pointless and dangerous as we are only
5071          * explicitly shadowing L1's page tables, i.e. unprotecting something
5072          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5073          */
5074         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5075                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5076 emulate:
5077         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5078                                        insn_len);
5079 }
5080 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5081
5082 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5083                             gva_t gva, hpa_t root_hpa)
5084 {
5085         int i;
5086
5087         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5088         if (mmu != &vcpu->arch.guest_mmu) {
5089                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5090                 if (is_noncanonical_address(gva, vcpu))
5091                         return;
5092
5093                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5094         }
5095
5096         if (!mmu->invlpg)
5097                 return;
5098
5099         if (root_hpa == INVALID_PAGE) {
5100                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5101
5102                 /*
5103                  * INVLPG is required to invalidate any global mappings for the VA,
5104                  * irrespective of PCID. Since it would take us roughly similar amount
5105                  * of work to determine whether any of the prev_root mappings of the VA
5106                  * is marked global, or to just sync it blindly, so we might as well
5107                  * just always sync it.
5108                  *
5109                  * Mappings not reachable via the current cr3 or the prev_roots will be
5110                  * synced when switching to that cr3, so nothing needs to be done here
5111                  * for them.
5112                  */
5113                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5114                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5115                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5116         } else {
5117                 mmu->invlpg(vcpu, gva, root_hpa);
5118         }
5119 }
5120 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5121
5122 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5123 {
5124         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5125         ++vcpu->stat.invlpg;
5126 }
5127 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5128
5129
5130 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5131 {
5132         struct kvm_mmu *mmu = vcpu->arch.mmu;
5133         bool tlb_flush = false;
5134         uint i;
5135
5136         if (pcid == kvm_get_active_pcid(vcpu)) {
5137                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5138                 tlb_flush = true;
5139         }
5140
5141         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5142                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5143                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5144                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5145                         tlb_flush = true;
5146                 }
5147         }
5148
5149         if (tlb_flush)
5150                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5151
5152         ++vcpu->stat.invlpg;
5153
5154         /*
5155          * Mappings not reachable via the current cr3 or the prev_roots will be
5156          * synced when switching to that cr3, so nothing needs to be done here
5157          * for them.
5158          */
5159 }
5160 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5161
5162 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5163                        int tdp_huge_page_level)
5164 {
5165         tdp_enabled = enable_tdp;
5166         max_tdp_level = tdp_max_root_level;
5167
5168         /*
5169          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5170          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5171          * the kernel is not.  But, KVM never creates a page size greater than
5172          * what is used by the kernel for any given HVA, i.e. the kernel's
5173          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5174          */
5175         if (tdp_enabled)
5176                 max_huge_page_level = tdp_huge_page_level;
5177         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5178                 max_huge_page_level = PG_LEVEL_1G;
5179         else
5180                 max_huge_page_level = PG_LEVEL_2M;
5181 }
5182 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5183
5184 /* The return value indicates if tlb flush on all vcpus is needed. */
5185 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5186
5187 /* The caller should hold mmu-lock before calling this function. */
5188 static __always_inline bool
5189 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5190                         slot_level_handler fn, int start_level, int end_level,
5191                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5192 {
5193         struct slot_rmap_walk_iterator iterator;
5194         bool flush = false;
5195
5196         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5197                         end_gfn, &iterator) {
5198                 if (iterator.rmap)
5199                         flush |= fn(kvm, iterator.rmap);
5200
5201                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5202                         if (flush && lock_flush_tlb) {
5203                                 kvm_flush_remote_tlbs_with_address(kvm,
5204                                                 start_gfn,
5205                                                 iterator.gfn - start_gfn + 1);
5206                                 flush = false;
5207                         }
5208                         cond_resched_rwlock_write(&kvm->mmu_lock);
5209                 }
5210         }
5211
5212         if (flush && lock_flush_tlb) {
5213                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5214                                                    end_gfn - start_gfn + 1);
5215                 flush = false;
5216         }
5217
5218         return flush;
5219 }
5220
5221 static __always_inline bool
5222 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5223                   slot_level_handler fn, int start_level, int end_level,
5224                   bool lock_flush_tlb)
5225 {
5226         return slot_handle_level_range(kvm, memslot, fn, start_level,
5227                         end_level, memslot->base_gfn,
5228                         memslot->base_gfn + memslot->npages - 1,
5229                         lock_flush_tlb);
5230 }
5231
5232 static __always_inline bool
5233 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5234                       slot_level_handler fn, bool lock_flush_tlb)
5235 {
5236         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5237                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5238 }
5239
5240 static __always_inline bool
5241 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5242                         slot_level_handler fn, bool lock_flush_tlb)
5243 {
5244         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5245                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5246 }
5247
5248 static __always_inline bool
5249 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5250                  slot_level_handler fn, bool lock_flush_tlb)
5251 {
5252         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5253                                  PG_LEVEL_4K, lock_flush_tlb);
5254 }
5255
5256 static void free_mmu_pages(struct kvm_mmu *mmu)
5257 {
5258         free_page((unsigned long)mmu->pae_root);
5259         free_page((unsigned long)mmu->lm_root);
5260 }
5261
5262 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5263 {
5264         struct page *page;
5265         int i;
5266
5267         mmu->root_hpa = INVALID_PAGE;
5268         mmu->root_pgd = 0;
5269         mmu->translate_gpa = translate_gpa;
5270         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5271                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5272
5273         /*
5274          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5275          * while the PDP table is a per-vCPU construct that's allocated at MMU
5276          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5277          * x86_64.  Therefore we need to allocate the PDP table in the first
5278          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5279          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5280          * skip allocating the PDP table.
5281          */
5282         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5283                 return 0;
5284
5285         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5286         if (!page)
5287                 return -ENOMEM;
5288
5289         mmu->pae_root = page_address(page);
5290         for (i = 0; i < 4; ++i)
5291                 mmu->pae_root[i] = INVALID_PAGE;
5292
5293         return 0;
5294 }
5295
5296 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5297 {
5298         int ret;
5299
5300         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5301         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5302
5303         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5304         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5305
5306         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5307
5308         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5309         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5310
5311         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5312
5313         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5314         if (ret)
5315                 return ret;
5316
5317         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5318         if (ret)
5319                 goto fail_allocate_root;
5320
5321         return ret;
5322  fail_allocate_root:
5323         free_mmu_pages(&vcpu->arch.guest_mmu);
5324         return ret;
5325 }
5326
5327 #define BATCH_ZAP_PAGES 10
5328 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5329 {
5330         struct kvm_mmu_page *sp, *node;
5331         int nr_zapped, batch = 0;
5332
5333 restart:
5334         list_for_each_entry_safe_reverse(sp, node,
5335               &kvm->arch.active_mmu_pages, link) {
5336                 /*
5337                  * No obsolete valid page exists before a newly created page
5338                  * since active_mmu_pages is a FIFO list.
5339                  */
5340                 if (!is_obsolete_sp(kvm, sp))
5341                         break;
5342
5343                 /*
5344                  * Invalid pages should never land back on the list of active
5345                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5346                  * infinite loop if the page gets put back on the list (again).
5347                  */
5348                 if (WARN_ON(sp->role.invalid))
5349                         continue;
5350
5351                 /*
5352                  * No need to flush the TLB since we're only zapping shadow
5353                  * pages with an obsolete generation number and all vCPUS have
5354                  * loaded a new root, i.e. the shadow pages being zapped cannot
5355                  * be in active use by the guest.
5356                  */
5357                 if (batch >= BATCH_ZAP_PAGES &&
5358                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5359                         batch = 0;
5360                         goto restart;
5361                 }
5362
5363                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5364                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5365                         batch += nr_zapped;
5366                         goto restart;
5367                 }
5368         }
5369
5370         /*
5371          * Trigger a remote TLB flush before freeing the page tables to ensure
5372          * KVM is not in the middle of a lockless shadow page table walk, which
5373          * may reference the pages.
5374          */
5375         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5376 }
5377
5378 /*
5379  * Fast invalidate all shadow pages and use lock-break technique
5380  * to zap obsolete pages.
5381  *
5382  * It's required when memslot is being deleted or VM is being
5383  * destroyed, in these cases, we should ensure that KVM MMU does
5384  * not use any resource of the being-deleted slot or all slots
5385  * after calling the function.
5386  */
5387 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5388 {
5389         lockdep_assert_held(&kvm->slots_lock);
5390
5391         write_lock(&kvm->mmu_lock);
5392         trace_kvm_mmu_zap_all_fast(kvm);
5393
5394         /*
5395          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5396          * held for the entire duration of zapping obsolete pages, it's
5397          * impossible for there to be multiple invalid generations associated
5398          * with *valid* shadow pages at any given time, i.e. there is exactly
5399          * one valid generation and (at most) one invalid generation.
5400          */
5401         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5402
5403         /*
5404          * Notify all vcpus to reload its shadow page table and flush TLB.
5405          * Then all vcpus will switch to new shadow page table with the new
5406          * mmu_valid_gen.
5407          *
5408          * Note: we need to do this under the protection of mmu_lock,
5409          * otherwise, vcpu would purge shadow page but miss tlb flush.
5410          */
5411         kvm_reload_remote_mmus(kvm);
5412
5413         kvm_zap_obsolete_pages(kvm);
5414
5415         if (is_tdp_mmu_enabled(kvm))
5416                 kvm_tdp_mmu_zap_all(kvm);
5417
5418         write_unlock(&kvm->mmu_lock);
5419 }
5420
5421 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5422 {
5423         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5424 }
5425
5426 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5427                         struct kvm_memory_slot *slot,
5428                         struct kvm_page_track_notifier_node *node)
5429 {
5430         kvm_mmu_zap_all_fast(kvm);
5431 }
5432
5433 void kvm_mmu_init_vm(struct kvm *kvm)
5434 {
5435         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5436
5437         kvm_mmu_init_tdp_mmu(kvm);
5438
5439         node->track_write = kvm_mmu_pte_write;
5440         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5441         kvm_page_track_register_notifier(kvm, node);
5442 }
5443
5444 void kvm_mmu_uninit_vm(struct kvm *kvm)
5445 {
5446         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5447
5448         kvm_page_track_unregister_notifier(kvm, node);
5449
5450         kvm_mmu_uninit_tdp_mmu(kvm);
5451 }
5452
5453 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5454 {
5455         struct kvm_memslots *slots;
5456         struct kvm_memory_slot *memslot;
5457         int i;
5458         bool flush;
5459
5460         write_lock(&kvm->mmu_lock);
5461         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5462                 slots = __kvm_memslots(kvm, i);
5463                 kvm_for_each_memslot(memslot, slots) {
5464                         gfn_t start, end;
5465
5466                         start = max(gfn_start, memslot->base_gfn);
5467                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5468                         if (start >= end)
5469                                 continue;
5470
5471                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5472                                                 PG_LEVEL_4K,
5473                                                 KVM_MAX_HUGEPAGE_LEVEL,
5474                                                 start, end - 1, true);
5475                 }
5476         }
5477
5478         if (is_tdp_mmu_enabled(kvm)) {
5479                 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5480                 if (flush)
5481                         kvm_flush_remote_tlbs(kvm);
5482         }
5483
5484         write_unlock(&kvm->mmu_lock);
5485 }
5486
5487 static bool slot_rmap_write_protect(struct kvm *kvm,
5488                                     struct kvm_rmap_head *rmap_head)
5489 {
5490         return __rmap_write_protect(kvm, rmap_head, false);
5491 }
5492
5493 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5494                                       struct kvm_memory_slot *memslot,
5495                                       int start_level)
5496 {
5497         bool flush;
5498
5499         write_lock(&kvm->mmu_lock);
5500         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5501                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5502         if (is_tdp_mmu_enabled(kvm))
5503                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5504         write_unlock(&kvm->mmu_lock);
5505
5506         /*
5507          * We can flush all the TLBs out of the mmu lock without TLB
5508          * corruption since we just change the spte from writable to
5509          * readonly so that we only need to care the case of changing
5510          * spte from present to present (changing the spte from present
5511          * to nonpresent will flush all the TLBs immediately), in other
5512          * words, the only case we care is mmu_spte_update() where we
5513          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5514          * instead of PT_WRITABLE_MASK, that means it does not depend
5515          * on PT_WRITABLE_MASK anymore.
5516          */
5517         if (flush)
5518                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5519 }
5520
5521 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5522                                          struct kvm_rmap_head *rmap_head)
5523 {
5524         u64 *sptep;
5525         struct rmap_iterator iter;
5526         int need_tlb_flush = 0;
5527         kvm_pfn_t pfn;
5528         struct kvm_mmu_page *sp;
5529
5530 restart:
5531         for_each_rmap_spte(rmap_head, &iter, sptep) {
5532                 sp = sptep_to_sp(sptep);
5533                 pfn = spte_to_pfn(*sptep);
5534
5535                 /*
5536                  * We cannot do huge page mapping for indirect shadow pages,
5537                  * which are found on the last rmap (level = 1) when not using
5538                  * tdp; such shadow pages are synced with the page table in
5539                  * the guest, and the guest page table is using 4K page size
5540                  * mapping if the indirect sp has level = 1.
5541                  */
5542                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5543                     (kvm_is_zone_device_pfn(pfn) ||
5544                      PageCompound(pfn_to_page(pfn)))) {
5545                         pte_list_remove(rmap_head, sptep);
5546
5547                         if (kvm_available_flush_tlb_with_range())
5548                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5549                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5550                         else
5551                                 need_tlb_flush = 1;
5552
5553                         goto restart;
5554                 }
5555         }
5556
5557         return need_tlb_flush;
5558 }
5559
5560 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5561                                    const struct kvm_memory_slot *memslot)
5562 {
5563         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5564         write_lock(&kvm->mmu_lock);
5565         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5566                          kvm_mmu_zap_collapsible_spte, true);
5567
5568         if (is_tdp_mmu_enabled(kvm))
5569                 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5570         write_unlock(&kvm->mmu_lock);
5571 }
5572
5573 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5574                                         struct kvm_memory_slot *memslot)
5575 {
5576         /*
5577          * All current use cases for flushing the TLBs for a specific memslot
5578          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5579          * The interaction between the various operations on memslot must be
5580          * serialized by slots_locks to ensure the TLB flush from one operation
5581          * is observed by any other operation on the same memslot.
5582          */
5583         lockdep_assert_held(&kvm->slots_lock);
5584         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5585                                            memslot->npages);
5586 }
5587
5588 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5589                                    struct kvm_memory_slot *memslot)
5590 {
5591         bool flush;
5592
5593         write_lock(&kvm->mmu_lock);
5594         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5595         if (is_tdp_mmu_enabled(kvm))
5596                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5597         write_unlock(&kvm->mmu_lock);
5598
5599         /*
5600          * It's also safe to flush TLBs out of mmu lock here as currently this
5601          * function is only used for dirty logging, in which case flushing TLB
5602          * out of mmu lock also guarantees no dirty pages will be lost in
5603          * dirty_bitmap.
5604          */
5605         if (flush)
5606                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5607 }
5608 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5609
5610 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5611                                         struct kvm_memory_slot *memslot)
5612 {
5613         bool flush;
5614
5615         write_lock(&kvm->mmu_lock);
5616         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5617                                         false);
5618         if (is_tdp_mmu_enabled(kvm))
5619                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5620         write_unlock(&kvm->mmu_lock);
5621
5622         if (flush)
5623                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5624 }
5625 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5626
5627 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5628                             struct kvm_memory_slot *memslot)
5629 {
5630         bool flush;
5631
5632         write_lock(&kvm->mmu_lock);
5633         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5634         if (is_tdp_mmu_enabled(kvm))
5635                 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5636         write_unlock(&kvm->mmu_lock);
5637
5638         if (flush)
5639                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5640 }
5641 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5642
5643 void kvm_mmu_zap_all(struct kvm *kvm)
5644 {
5645         struct kvm_mmu_page *sp, *node;
5646         LIST_HEAD(invalid_list);
5647         int ign;
5648
5649         write_lock(&kvm->mmu_lock);
5650 restart:
5651         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5652                 if (WARN_ON(sp->role.invalid))
5653                         continue;
5654                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5655                         goto restart;
5656                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5657                         goto restart;
5658         }
5659
5660         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5661
5662         if (is_tdp_mmu_enabled(kvm))
5663                 kvm_tdp_mmu_zap_all(kvm);
5664
5665         write_unlock(&kvm->mmu_lock);
5666 }
5667
5668 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5669 {
5670         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5671
5672         gen &= MMIO_SPTE_GEN_MASK;
5673
5674         /*
5675          * Generation numbers are incremented in multiples of the number of
5676          * address spaces in order to provide unique generations across all
5677          * address spaces.  Strip what is effectively the address space
5678          * modifier prior to checking for a wrap of the MMIO generation so
5679          * that a wrap in any address space is detected.
5680          */
5681         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5682
5683         /*
5684          * The very rare case: if the MMIO generation number has wrapped,
5685          * zap all shadow pages.
5686          */
5687         if (unlikely(gen == 0)) {
5688                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5689                 kvm_mmu_zap_all_fast(kvm);
5690         }
5691 }
5692
5693 static unsigned long
5694 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5695 {
5696         struct kvm *kvm;
5697         int nr_to_scan = sc->nr_to_scan;
5698         unsigned long freed = 0;
5699
5700         mutex_lock(&kvm_lock);
5701
5702         list_for_each_entry(kvm, &vm_list, vm_list) {
5703                 int idx;
5704                 LIST_HEAD(invalid_list);
5705
5706                 /*
5707                  * Never scan more than sc->nr_to_scan VM instances.
5708                  * Will not hit this condition practically since we do not try
5709                  * to shrink more than one VM and it is very unlikely to see
5710                  * !n_used_mmu_pages so many times.
5711                  */
5712                 if (!nr_to_scan--)
5713                         break;
5714                 /*
5715                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5716                  * here. We may skip a VM instance errorneosly, but we do not
5717                  * want to shrink a VM that only started to populate its MMU
5718                  * anyway.
5719                  */
5720                 if (!kvm->arch.n_used_mmu_pages &&
5721                     !kvm_has_zapped_obsolete_pages(kvm))
5722                         continue;
5723
5724                 idx = srcu_read_lock(&kvm->srcu);
5725                 write_lock(&kvm->mmu_lock);
5726
5727                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5728                         kvm_mmu_commit_zap_page(kvm,
5729                               &kvm->arch.zapped_obsolete_pages);
5730                         goto unlock;
5731                 }
5732
5733                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5734
5735 unlock:
5736                 write_unlock(&kvm->mmu_lock);
5737                 srcu_read_unlock(&kvm->srcu, idx);
5738
5739                 /*
5740                  * unfair on small ones
5741                  * per-vm shrinkers cry out
5742                  * sadness comes quickly
5743                  */
5744                 list_move_tail(&kvm->vm_list, &vm_list);
5745                 break;
5746         }
5747
5748         mutex_unlock(&kvm_lock);
5749         return freed;
5750 }
5751
5752 static unsigned long
5753 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5754 {
5755         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5756 }
5757
5758 static struct shrinker mmu_shrinker = {
5759         .count_objects = mmu_shrink_count,
5760         .scan_objects = mmu_shrink_scan,
5761         .seeks = DEFAULT_SEEKS * 10,
5762 };
5763
5764 static void mmu_destroy_caches(void)
5765 {
5766         kmem_cache_destroy(pte_list_desc_cache);
5767         kmem_cache_destroy(mmu_page_header_cache);
5768 }
5769
5770 static void kvm_set_mmio_spte_mask(void)
5771 {
5772         u64 mask;
5773
5774         /*
5775          * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5776          * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5777          * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5778          * 52-bit physical addresses then there are no reserved PA bits in the
5779          * PTEs and so the reserved PA approach must be disabled.
5780          */
5781         if (shadow_phys_bits < 52)
5782                 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5783         else
5784                 mask = 0;
5785
5786         kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5787 }
5788
5789 static bool get_nx_auto_mode(void)
5790 {
5791         /* Return true when CPU has the bug, and mitigations are ON */
5792         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5793 }
5794
5795 static void __set_nx_huge_pages(bool val)
5796 {
5797         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5798 }
5799
5800 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5801 {
5802         bool old_val = nx_huge_pages;
5803         bool new_val;
5804
5805         /* In "auto" mode deploy workaround only if CPU has the bug. */
5806         if (sysfs_streq(val, "off"))
5807                 new_val = 0;
5808         else if (sysfs_streq(val, "force"))
5809                 new_val = 1;
5810         else if (sysfs_streq(val, "auto"))
5811                 new_val = get_nx_auto_mode();
5812         else if (strtobool(val, &new_val) < 0)
5813                 return -EINVAL;
5814
5815         __set_nx_huge_pages(new_val);
5816
5817         if (new_val != old_val) {
5818                 struct kvm *kvm;
5819
5820                 mutex_lock(&kvm_lock);
5821
5822                 list_for_each_entry(kvm, &vm_list, vm_list) {
5823                         mutex_lock(&kvm->slots_lock);
5824                         kvm_mmu_zap_all_fast(kvm);
5825                         mutex_unlock(&kvm->slots_lock);
5826
5827                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5828                 }
5829                 mutex_unlock(&kvm_lock);
5830         }
5831
5832         return 0;
5833 }
5834
5835 int kvm_mmu_module_init(void)
5836 {
5837         int ret = -ENOMEM;
5838
5839         if (nx_huge_pages == -1)
5840                 __set_nx_huge_pages(get_nx_auto_mode());
5841
5842         /*
5843          * MMU roles use union aliasing which is, generally speaking, an
5844          * undefined behavior. However, we supposedly know how compilers behave
5845          * and the current status quo is unlikely to change. Guardians below are
5846          * supposed to let us know if the assumption becomes false.
5847          */
5848         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5849         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5850         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5851
5852         kvm_mmu_reset_all_pte_masks();
5853
5854         kvm_set_mmio_spte_mask();
5855
5856         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5857                                             sizeof(struct pte_list_desc),
5858                                             0, SLAB_ACCOUNT, NULL);
5859         if (!pte_list_desc_cache)
5860                 goto out;
5861
5862         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5863                                                   sizeof(struct kvm_mmu_page),
5864                                                   0, SLAB_ACCOUNT, NULL);
5865         if (!mmu_page_header_cache)
5866                 goto out;
5867
5868         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5869                 goto out;
5870
5871         ret = register_shrinker(&mmu_shrinker);
5872         if (ret)
5873                 goto out;
5874
5875         return 0;
5876
5877 out:
5878         mmu_destroy_caches();
5879         return ret;
5880 }
5881
5882 /*
5883  * Calculate mmu pages needed for kvm.
5884  */
5885 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5886 {
5887         unsigned long nr_mmu_pages;
5888         unsigned long nr_pages = 0;
5889         struct kvm_memslots *slots;
5890         struct kvm_memory_slot *memslot;
5891         int i;
5892
5893         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5894                 slots = __kvm_memslots(kvm, i);
5895
5896                 kvm_for_each_memslot(memslot, slots)
5897                         nr_pages += memslot->npages;
5898         }
5899
5900         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5901         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5902
5903         return nr_mmu_pages;
5904 }
5905
5906 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5907 {
5908         kvm_mmu_unload(vcpu);
5909         free_mmu_pages(&vcpu->arch.root_mmu);
5910         free_mmu_pages(&vcpu->arch.guest_mmu);
5911         mmu_free_memory_caches(vcpu);
5912 }
5913
5914 void kvm_mmu_module_exit(void)
5915 {
5916         mmu_destroy_caches();
5917         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5918         unregister_shrinker(&mmu_shrinker);
5919         mmu_audit_disable();
5920 }
5921
5922 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5923 {
5924         unsigned int old_val;
5925         int err;
5926
5927         old_val = nx_huge_pages_recovery_ratio;
5928         err = param_set_uint(val, kp);
5929         if (err)
5930                 return err;
5931
5932         if (READ_ONCE(nx_huge_pages) &&
5933             !old_val && nx_huge_pages_recovery_ratio) {
5934                 struct kvm *kvm;
5935
5936                 mutex_lock(&kvm_lock);
5937
5938                 list_for_each_entry(kvm, &vm_list, vm_list)
5939                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5940
5941                 mutex_unlock(&kvm_lock);
5942         }
5943
5944         return err;
5945 }
5946
5947 static void kvm_recover_nx_lpages(struct kvm *kvm)
5948 {
5949         int rcu_idx;
5950         struct kvm_mmu_page *sp;
5951         unsigned int ratio;
5952         LIST_HEAD(invalid_list);
5953         ulong to_zap;
5954
5955         rcu_idx = srcu_read_lock(&kvm->srcu);
5956         write_lock(&kvm->mmu_lock);
5957
5958         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5959         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5960         for ( ; to_zap; --to_zap) {
5961                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5962                         break;
5963
5964                 /*
5965                  * We use a separate list instead of just using active_mmu_pages
5966                  * because the number of lpage_disallowed pages is expected to
5967                  * be relatively small compared to the total.
5968                  */
5969                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5970                                       struct kvm_mmu_page,
5971                                       lpage_disallowed_link);
5972                 WARN_ON_ONCE(!sp->lpage_disallowed);
5973                 if (is_tdp_mmu_page(sp)) {
5974                         kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
5975                                 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5976                 } else {
5977                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5978                         WARN_ON_ONCE(sp->lpage_disallowed);
5979                 }
5980
5981                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5982                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5983                         cond_resched_rwlock_write(&kvm->mmu_lock);
5984                 }
5985         }
5986         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5987
5988         write_unlock(&kvm->mmu_lock);
5989         srcu_read_unlock(&kvm->srcu, rcu_idx);
5990 }
5991
5992 static long get_nx_lpage_recovery_timeout(u64 start_time)
5993 {
5994         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5995                 ? start_time + 60 * HZ - get_jiffies_64()
5996                 : MAX_SCHEDULE_TIMEOUT;
5997 }
5998
5999 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6000 {
6001         u64 start_time;
6002         long remaining_time;
6003
6004         while (true) {
6005                 start_time = get_jiffies_64();
6006                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6007
6008                 set_current_state(TASK_INTERRUPTIBLE);
6009                 while (!kthread_should_stop() && remaining_time > 0) {
6010                         schedule_timeout(remaining_time);
6011                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6012                         set_current_state(TASK_INTERRUPTIBLE);
6013                 }
6014
6015                 set_current_state(TASK_RUNNING);
6016
6017                 if (kthread_should_stop())
6018                         return 0;
6019
6020                 kvm_recover_nx_lpages(kvm);
6021         }
6022 }
6023
6024 int kvm_mmu_post_init_vm(struct kvm *kvm)
6025 {
6026         int err;
6027
6028         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6029                                           "kvm-nx-lpage-recovery",
6030                                           &kvm->arch.nx_lpage_recovery_thread);
6031         if (!err)
6032                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6033
6034         return err;
6035 }
6036
6037 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6038 {
6039         if (kvm->arch.nx_lpage_recovery_thread)
6040                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6041 }