KVM: x86/mmu: Rename unsync helper and update related comments
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 extern bool itlb_multihit_kvm_mitigation;
57
58 int __read_mostly nx_huge_pages = -1;
59 #ifdef CONFIG_PREEMPT_RT
60 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62 #else
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64 #endif
65
66 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
68
69 static const struct kernel_param_ops nx_huge_pages_ops = {
70         .set = set_nx_huge_pages,
71         .get = param_get_bool,
72 };
73
74 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75         .set = set_nx_huge_pages_recovery_ratio,
76         .get = param_get_uint,
77 };
78
79 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82                 &nx_huge_pages_recovery_ratio, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
84
85 static bool __read_mostly force_flush_and_sync_on_reuse;
86 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87
88 /*
89  * When setting this variable to true it enables Two-Dimensional-Paging
90  * where the hardware walks 2 page tables:
91  * 1. the guest-virtual to guest-physical
92  * 2. while doing 1. it walks guest-physical to host-physical
93  * If the hardware supports that we don't need to do shadow paging.
94  */
95 bool tdp_enabled = false;
96
97 static int max_huge_page_level __read_mostly;
98 static int max_tdp_level __read_mostly;
99
100 enum {
101         AUDIT_PRE_PAGE_FAULT,
102         AUDIT_POST_PAGE_FAULT,
103         AUDIT_PRE_PTE_WRITE,
104         AUDIT_POST_PTE_WRITE,
105         AUDIT_PRE_SYNC,
106         AUDIT_POST_SYNC
107 };
108
109 #ifdef MMU_DEBUG
110 bool dbg = 0;
111 module_param(dbg, bool, 0644);
112 #endif
113
114 #define PTE_PREFETCH_NUM                8
115
116 #define PT32_LEVEL_BITS 10
117
118 #define PT32_LEVEL_SHIFT(level) \
119                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
120
121 #define PT32_LVL_OFFSET_MASK(level) \
122         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT32_LEVEL_BITS))) - 1))
124
125 #define PT32_INDEX(address, level)\
126         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134                                             * PT32_LEVEL_BITS))) - 1))
135
136 #include <trace/events/kvm.h>
137
138 /* make pte_list_desc fit well in cache line */
139 #define PTE_LIST_EXT 3
140
141 struct pte_list_desc {
142         u64 *sptes[PTE_LIST_EXT];
143         struct pte_list_desc *more;
144 };
145
146 struct kvm_shadow_walk_iterator {
147         u64 addr;
148         hpa_t shadow_addr;
149         u64 *sptep;
150         int level;
151         unsigned index;
152 };
153
154 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
155         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
156                                          (_root), (_addr));                \
157              shadow_walk_okay(&(_walker));                                 \
158              shadow_walk_next(&(_walker)))
159
160 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
161         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
162              shadow_walk_okay(&(_walker));                      \
163              shadow_walk_next(&(_walker)))
164
165 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
166         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
167              shadow_walk_okay(&(_walker)) &&                            \
168                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
169              __shadow_walk_next(&(_walker), spte))
170
171 static struct kmem_cache *pte_list_desc_cache;
172 struct kmem_cache *mmu_page_header_cache;
173 static struct percpu_counter kvm_total_used_mmu_pages;
174
175 static void mmu_spte_set(u64 *sptep, u64 spte);
176 static union kvm_mmu_page_role
177 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178
179 #define CREATE_TRACE_POINTS
180 #include "mmutrace.h"
181
182
183 static inline bool kvm_available_flush_tlb_with_range(void)
184 {
185         return kvm_x86_ops.tlb_remote_flush_with_range;
186 }
187
188 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
189                 struct kvm_tlb_range *range)
190 {
191         int ret = -ENOTSUPP;
192
193         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
194                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
195
196         if (ret)
197                 kvm_flush_remote_tlbs(kvm);
198 }
199
200 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
201                 u64 start_gfn, u64 pages)
202 {
203         struct kvm_tlb_range range;
204
205         range.start_gfn = start_gfn;
206         range.pages = pages;
207
208         kvm_flush_remote_tlbs_with_range(kvm, &range);
209 }
210
211 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
212                            unsigned int access)
213 {
214         u64 spte = make_mmio_spte(vcpu, gfn, access);
215
216         trace_mark_mmio_spte(sptep, gfn, spte);
217         mmu_spte_set(sptep, spte);
218 }
219
220 static gfn_t get_mmio_spte_gfn(u64 spte)
221 {
222         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
223
224         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
225                & shadow_nonpresent_or_rsvd_mask;
226
227         return gpa >> PAGE_SHIFT;
228 }
229
230 static unsigned get_mmio_spte_access(u64 spte)
231 {
232         return spte & shadow_mmio_access_mask;
233 }
234
235 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
236 {
237         u64 kvm_gen, spte_gen, gen;
238
239         gen = kvm_vcpu_memslots(vcpu)->generation;
240         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
241                 return false;
242
243         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
244         spte_gen = get_mmio_spte_generation(spte);
245
246         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
247         return likely(kvm_gen == spte_gen);
248 }
249
250 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
251                                   struct x86_exception *exception)
252 {
253         /* Check if guest physical address doesn't exceed guest maximum */
254         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
255                 exception->error_code |= PFERR_RSVD_MASK;
256                 return UNMAPPED_GVA;
257         }
258
259         return gpa;
260 }
261
262 static int is_cpuid_PSE36(void)
263 {
264         return 1;
265 }
266
267 static int is_nx(struct kvm_vcpu *vcpu)
268 {
269         return vcpu->arch.efer & EFER_NX;
270 }
271
272 static gfn_t pse36_gfn_delta(u32 gpte)
273 {
274         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
275
276         return (gpte & PT32_DIR_PSE36_MASK) << shift;
277 }
278
279 #ifdef CONFIG_X86_64
280 static void __set_spte(u64 *sptep, u64 spte)
281 {
282         WRITE_ONCE(*sptep, spte);
283 }
284
285 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
286 {
287         WRITE_ONCE(*sptep, spte);
288 }
289
290 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
291 {
292         return xchg(sptep, spte);
293 }
294
295 static u64 __get_spte_lockless(u64 *sptep)
296 {
297         return READ_ONCE(*sptep);
298 }
299 #else
300 union split_spte {
301         struct {
302                 u32 spte_low;
303                 u32 spte_high;
304         };
305         u64 spte;
306 };
307
308 static void count_spte_clear(u64 *sptep, u64 spte)
309 {
310         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
311
312         if (is_shadow_present_pte(spte))
313                 return;
314
315         /* Ensure the spte is completely set before we increase the count */
316         smp_wmb();
317         sp->clear_spte_count++;
318 }
319
320 static void __set_spte(u64 *sptep, u64 spte)
321 {
322         union split_spte *ssptep, sspte;
323
324         ssptep = (union split_spte *)sptep;
325         sspte = (union split_spte)spte;
326
327         ssptep->spte_high = sspte.spte_high;
328
329         /*
330          * If we map the spte from nonpresent to present, We should store
331          * the high bits firstly, then set present bit, so cpu can not
332          * fetch this spte while we are setting the spte.
333          */
334         smp_wmb();
335
336         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
337 }
338
339 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
340 {
341         union split_spte *ssptep, sspte;
342
343         ssptep = (union split_spte *)sptep;
344         sspte = (union split_spte)spte;
345
346         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
347
348         /*
349          * If we map the spte from present to nonpresent, we should clear
350          * present bit firstly to avoid vcpu fetch the old high bits.
351          */
352         smp_wmb();
353
354         ssptep->spte_high = sspte.spte_high;
355         count_spte_clear(sptep, spte);
356 }
357
358 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
359 {
360         union split_spte *ssptep, sspte, orig;
361
362         ssptep = (union split_spte *)sptep;
363         sspte = (union split_spte)spte;
364
365         /* xchg acts as a barrier before the setting of the high bits */
366         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
367         orig.spte_high = ssptep->spte_high;
368         ssptep->spte_high = sspte.spte_high;
369         count_spte_clear(sptep, spte);
370
371         return orig.spte;
372 }
373
374 /*
375  * The idea using the light way get the spte on x86_32 guest is from
376  * gup_get_pte (mm/gup.c).
377  *
378  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
379  * coalesces them and we are running out of the MMU lock.  Therefore
380  * we need to protect against in-progress updates of the spte.
381  *
382  * Reading the spte while an update is in progress may get the old value
383  * for the high part of the spte.  The race is fine for a present->non-present
384  * change (because the high part of the spte is ignored for non-present spte),
385  * but for a present->present change we must reread the spte.
386  *
387  * All such changes are done in two steps (present->non-present and
388  * non-present->present), hence it is enough to count the number of
389  * present->non-present updates: if it changed while reading the spte,
390  * we might have hit the race.  This is done using clear_spte_count.
391  */
392 static u64 __get_spte_lockless(u64 *sptep)
393 {
394         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
395         union split_spte spte, *orig = (union split_spte *)sptep;
396         int count;
397
398 retry:
399         count = sp->clear_spte_count;
400         smp_rmb();
401
402         spte.spte_low = orig->spte_low;
403         smp_rmb();
404
405         spte.spte_high = orig->spte_high;
406         smp_rmb();
407
408         if (unlikely(spte.spte_low != orig->spte_low ||
409               count != sp->clear_spte_count))
410                 goto retry;
411
412         return spte.spte;
413 }
414 #endif
415
416 static bool spte_has_volatile_bits(u64 spte)
417 {
418         if (!is_shadow_present_pte(spte))
419                 return false;
420
421         /*
422          * Always atomically update spte if it can be updated
423          * out of mmu-lock, it can ensure dirty bit is not lost,
424          * also, it can help us to get a stable is_writable_pte()
425          * to ensure tlb flush is not missed.
426          */
427         if (spte_can_locklessly_be_made_writable(spte) ||
428             is_access_track_spte(spte))
429                 return true;
430
431         if (spte_ad_enabled(spte)) {
432                 if ((spte & shadow_accessed_mask) == 0 ||
433                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
434                         return true;
435         }
436
437         return false;
438 }
439
440 /* Rules for using mmu_spte_set:
441  * Set the sptep from nonpresent to present.
442  * Note: the sptep being assigned *must* be either not present
443  * or in a state where the hardware will not attempt to update
444  * the spte.
445  */
446 static void mmu_spte_set(u64 *sptep, u64 new_spte)
447 {
448         WARN_ON(is_shadow_present_pte(*sptep));
449         __set_spte(sptep, new_spte);
450 }
451
452 /*
453  * Update the SPTE (excluding the PFN), but do not track changes in its
454  * accessed/dirty status.
455  */
456 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
457 {
458         u64 old_spte = *sptep;
459
460         WARN_ON(!is_shadow_present_pte(new_spte));
461
462         if (!is_shadow_present_pte(old_spte)) {
463                 mmu_spte_set(sptep, new_spte);
464                 return old_spte;
465         }
466
467         if (!spte_has_volatile_bits(old_spte))
468                 __update_clear_spte_fast(sptep, new_spte);
469         else
470                 old_spte = __update_clear_spte_slow(sptep, new_spte);
471
472         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
473
474         return old_spte;
475 }
476
477 /* Rules for using mmu_spte_update:
478  * Update the state bits, it means the mapped pfn is not changed.
479  *
480  * Whenever we overwrite a writable spte with a read-only one we
481  * should flush remote TLBs. Otherwise rmap_write_protect
482  * will find a read-only spte, even though the writable spte
483  * might be cached on a CPU's TLB, the return value indicates this
484  * case.
485  *
486  * Returns true if the TLB needs to be flushed
487  */
488 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
489 {
490         bool flush = false;
491         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
492
493         if (!is_shadow_present_pte(old_spte))
494                 return false;
495
496         /*
497          * For the spte updated out of mmu-lock is safe, since
498          * we always atomically update it, see the comments in
499          * spte_has_volatile_bits().
500          */
501         if (spte_can_locklessly_be_made_writable(old_spte) &&
502               !is_writable_pte(new_spte))
503                 flush = true;
504
505         /*
506          * Flush TLB when accessed/dirty states are changed in the page tables,
507          * to guarantee consistency between TLB and page tables.
508          */
509
510         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
511                 flush = true;
512                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
513         }
514
515         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
516                 flush = true;
517                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
518         }
519
520         return flush;
521 }
522
523 /*
524  * Rules for using mmu_spte_clear_track_bits:
525  * It sets the sptep from present to nonpresent, and track the
526  * state bits, it is used to clear the last level sptep.
527  * Returns non-zero if the PTE was previously valid.
528  */
529 static int mmu_spte_clear_track_bits(u64 *sptep)
530 {
531         kvm_pfn_t pfn;
532         u64 old_spte = *sptep;
533
534         if (!spte_has_volatile_bits(old_spte))
535                 __update_clear_spte_fast(sptep, 0ull);
536         else
537                 old_spte = __update_clear_spte_slow(sptep, 0ull);
538
539         if (!is_shadow_present_pte(old_spte))
540                 return 0;
541
542         pfn = spte_to_pfn(old_spte);
543
544         /*
545          * KVM does not hold the refcount of the page used by
546          * kvm mmu, before reclaiming the page, we should
547          * unmap it from mmu first.
548          */
549         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
550
551         if (is_accessed_spte(old_spte))
552                 kvm_set_pfn_accessed(pfn);
553
554         if (is_dirty_spte(old_spte))
555                 kvm_set_pfn_dirty(pfn);
556
557         return 1;
558 }
559
560 /*
561  * Rules for using mmu_spte_clear_no_track:
562  * Directly clear spte without caring the state bits of sptep,
563  * it is used to set the upper level spte.
564  */
565 static void mmu_spte_clear_no_track(u64 *sptep)
566 {
567         __update_clear_spte_fast(sptep, 0ull);
568 }
569
570 static u64 mmu_spte_get_lockless(u64 *sptep)
571 {
572         return __get_spte_lockless(sptep);
573 }
574
575 /* Restore an acc-track PTE back to a regular PTE */
576 static u64 restore_acc_track_spte(u64 spte)
577 {
578         u64 new_spte = spte;
579         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
580                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
581
582         WARN_ON_ONCE(spte_ad_enabled(spte));
583         WARN_ON_ONCE(!is_access_track_spte(spte));
584
585         new_spte &= ~shadow_acc_track_mask;
586         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
587                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
588         new_spte |= saved_bits;
589
590         return new_spte;
591 }
592
593 /* Returns the Accessed status of the PTE and resets it at the same time. */
594 static bool mmu_spte_age(u64 *sptep)
595 {
596         u64 spte = mmu_spte_get_lockless(sptep);
597
598         if (!is_accessed_spte(spte))
599                 return false;
600
601         if (spte_ad_enabled(spte)) {
602                 clear_bit((ffs(shadow_accessed_mask) - 1),
603                           (unsigned long *)sptep);
604         } else {
605                 /*
606                  * Capture the dirty status of the page, so that it doesn't get
607                  * lost when the SPTE is marked for access tracking.
608                  */
609                 if (is_writable_pte(spte))
610                         kvm_set_pfn_dirty(spte_to_pfn(spte));
611
612                 spte = mark_spte_for_access_track(spte);
613                 mmu_spte_update_no_track(sptep, spte);
614         }
615
616         return true;
617 }
618
619 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
620 {
621         /*
622          * Prevent page table teardown by making any free-er wait during
623          * kvm_flush_remote_tlbs() IPI to all active vcpus.
624          */
625         local_irq_disable();
626
627         /*
628          * Make sure a following spte read is not reordered ahead of the write
629          * to vcpu->mode.
630          */
631         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
632 }
633
634 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
635 {
636         /*
637          * Make sure the write to vcpu->mode is not reordered in front of
638          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
639          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
640          */
641         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
642         local_irq_enable();
643 }
644
645 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
646 {
647         int r;
648
649         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
650         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
651                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
652         if (r)
653                 return r;
654         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
655                                        PT64_ROOT_MAX_LEVEL);
656         if (r)
657                 return r;
658         if (maybe_indirect) {
659                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
660                                                PT64_ROOT_MAX_LEVEL);
661                 if (r)
662                         return r;
663         }
664         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
665                                           PT64_ROOT_MAX_LEVEL);
666 }
667
668 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
669 {
670         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
671         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
672         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
673         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
674 }
675
676 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
677 {
678         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
679 }
680
681 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
682 {
683         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
684 }
685
686 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
687 {
688         if (!sp->role.direct)
689                 return sp->gfns[index];
690
691         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
692 }
693
694 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
695 {
696         if (!sp->role.direct) {
697                 sp->gfns[index] = gfn;
698                 return;
699         }
700
701         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
702                 pr_err_ratelimited("gfn mismatch under direct page %llx "
703                                    "(expected %llx, got %llx)\n",
704                                    sp->gfn,
705                                    kvm_mmu_page_get_gfn(sp, index), gfn);
706 }
707
708 /*
709  * Return the pointer to the large page information for a given gfn,
710  * handling slots that are not large page aligned.
711  */
712 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
713                 const struct kvm_memory_slot *slot, int level)
714 {
715         unsigned long idx;
716
717         idx = gfn_to_index(gfn, slot->base_gfn, level);
718         return &slot->arch.lpage_info[level - 2][idx];
719 }
720
721 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
722                                             gfn_t gfn, int count)
723 {
724         struct kvm_lpage_info *linfo;
725         int i;
726
727         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
728                 linfo = lpage_info_slot(gfn, slot, i);
729                 linfo->disallow_lpage += count;
730                 WARN_ON(linfo->disallow_lpage < 0);
731         }
732 }
733
734 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
735 {
736         update_gfn_disallow_lpage_count(slot, gfn, 1);
737 }
738
739 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
740 {
741         update_gfn_disallow_lpage_count(slot, gfn, -1);
742 }
743
744 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
745 {
746         struct kvm_memslots *slots;
747         struct kvm_memory_slot *slot;
748         gfn_t gfn;
749
750         kvm->arch.indirect_shadow_pages++;
751         gfn = sp->gfn;
752         slots = kvm_memslots_for_spte_role(kvm, sp->role);
753         slot = __gfn_to_memslot(slots, gfn);
754
755         /* the non-leaf shadow pages are keeping readonly. */
756         if (sp->role.level > PG_LEVEL_4K)
757                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
758                                                     KVM_PAGE_TRACK_WRITE);
759
760         kvm_mmu_gfn_disallow_lpage(slot, gfn);
761 }
762
763 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
764 {
765         if (sp->lpage_disallowed)
766                 return;
767
768         ++kvm->stat.nx_lpage_splits;
769         list_add_tail(&sp->lpage_disallowed_link,
770                       &kvm->arch.lpage_disallowed_mmu_pages);
771         sp->lpage_disallowed = true;
772 }
773
774 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
775 {
776         struct kvm_memslots *slots;
777         struct kvm_memory_slot *slot;
778         gfn_t gfn;
779
780         kvm->arch.indirect_shadow_pages--;
781         gfn = sp->gfn;
782         slots = kvm_memslots_for_spte_role(kvm, sp->role);
783         slot = __gfn_to_memslot(slots, gfn);
784         if (sp->role.level > PG_LEVEL_4K)
785                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
786                                                        KVM_PAGE_TRACK_WRITE);
787
788         kvm_mmu_gfn_allow_lpage(slot, gfn);
789 }
790
791 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
792 {
793         --kvm->stat.nx_lpage_splits;
794         sp->lpage_disallowed = false;
795         list_del(&sp->lpage_disallowed_link);
796 }
797
798 static struct kvm_memory_slot *
799 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
800                             bool no_dirty_log)
801 {
802         struct kvm_memory_slot *slot;
803
804         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
805         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
806                 return NULL;
807         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
808                 return NULL;
809
810         return slot;
811 }
812
813 /*
814  * About rmap_head encoding:
815  *
816  * If the bit zero of rmap_head->val is clear, then it points to the only spte
817  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
818  * pte_list_desc containing more mappings.
819  */
820
821 /*
822  * Returns the number of pointers in the rmap chain, not counting the new one.
823  */
824 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
825                         struct kvm_rmap_head *rmap_head)
826 {
827         struct pte_list_desc *desc;
828         int i, count = 0;
829
830         if (!rmap_head->val) {
831                 rmap_printk("%p %llx 0->1\n", spte, *spte);
832                 rmap_head->val = (unsigned long)spte;
833         } else if (!(rmap_head->val & 1)) {
834                 rmap_printk("%p %llx 1->many\n", spte, *spte);
835                 desc = mmu_alloc_pte_list_desc(vcpu);
836                 desc->sptes[0] = (u64 *)rmap_head->val;
837                 desc->sptes[1] = spte;
838                 rmap_head->val = (unsigned long)desc | 1;
839                 ++count;
840         } else {
841                 rmap_printk("%p %llx many->many\n", spte, *spte);
842                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
843                 while (desc->sptes[PTE_LIST_EXT-1]) {
844                         count += PTE_LIST_EXT;
845
846                         if (!desc->more) {
847                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
848                                 desc = desc->more;
849                                 break;
850                         }
851                         desc = desc->more;
852                 }
853                 for (i = 0; desc->sptes[i]; ++i)
854                         ++count;
855                 desc->sptes[i] = spte;
856         }
857         return count;
858 }
859
860 static void
861 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
862                            struct pte_list_desc *desc, int i,
863                            struct pte_list_desc *prev_desc)
864 {
865         int j;
866
867         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
868                 ;
869         desc->sptes[i] = desc->sptes[j];
870         desc->sptes[j] = NULL;
871         if (j != 0)
872                 return;
873         if (!prev_desc && !desc->more)
874                 rmap_head->val = 0;
875         else
876                 if (prev_desc)
877                         prev_desc->more = desc->more;
878                 else
879                         rmap_head->val = (unsigned long)desc->more | 1;
880         mmu_free_pte_list_desc(desc);
881 }
882
883 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
884 {
885         struct pte_list_desc *desc;
886         struct pte_list_desc *prev_desc;
887         int i;
888
889         if (!rmap_head->val) {
890                 pr_err("%s: %p 0->BUG\n", __func__, spte);
891                 BUG();
892         } else if (!(rmap_head->val & 1)) {
893                 rmap_printk("%p 1->0\n", spte);
894                 if ((u64 *)rmap_head->val != spte) {
895                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
896                         BUG();
897                 }
898                 rmap_head->val = 0;
899         } else {
900                 rmap_printk("%p many->many\n", spte);
901                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
902                 prev_desc = NULL;
903                 while (desc) {
904                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
905                                 if (desc->sptes[i] == spte) {
906                                         pte_list_desc_remove_entry(rmap_head,
907                                                         desc, i, prev_desc);
908                                         return;
909                                 }
910                         }
911                         prev_desc = desc;
912                         desc = desc->more;
913                 }
914                 pr_err("%s: %p many->many\n", __func__, spte);
915                 BUG();
916         }
917 }
918
919 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
920 {
921         mmu_spte_clear_track_bits(sptep);
922         __pte_list_remove(sptep, rmap_head);
923 }
924
925 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
926                                            struct kvm_memory_slot *slot)
927 {
928         unsigned long idx;
929
930         idx = gfn_to_index(gfn, slot->base_gfn, level);
931         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
932 }
933
934 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
935                                          struct kvm_mmu_page *sp)
936 {
937         struct kvm_memslots *slots;
938         struct kvm_memory_slot *slot;
939
940         slots = kvm_memslots_for_spte_role(kvm, sp->role);
941         slot = __gfn_to_memslot(slots, gfn);
942         return __gfn_to_rmap(gfn, sp->role.level, slot);
943 }
944
945 static bool rmap_can_add(struct kvm_vcpu *vcpu)
946 {
947         struct kvm_mmu_memory_cache *mc;
948
949         mc = &vcpu->arch.mmu_pte_list_desc_cache;
950         return kvm_mmu_memory_cache_nr_free_objects(mc);
951 }
952
953 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
954 {
955         struct kvm_mmu_page *sp;
956         struct kvm_rmap_head *rmap_head;
957
958         sp = sptep_to_sp(spte);
959         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
960         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
961         return pte_list_add(vcpu, spte, rmap_head);
962 }
963
964 static void rmap_remove(struct kvm *kvm, u64 *spte)
965 {
966         struct kvm_mmu_page *sp;
967         gfn_t gfn;
968         struct kvm_rmap_head *rmap_head;
969
970         sp = sptep_to_sp(spte);
971         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
972         rmap_head = gfn_to_rmap(kvm, gfn, sp);
973         __pte_list_remove(spte, rmap_head);
974 }
975
976 /*
977  * Used by the following functions to iterate through the sptes linked by a
978  * rmap.  All fields are private and not assumed to be used outside.
979  */
980 struct rmap_iterator {
981         /* private fields */
982         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
983         int pos;                        /* index of the sptep */
984 };
985
986 /*
987  * Iteration must be started by this function.  This should also be used after
988  * removing/dropping sptes from the rmap link because in such cases the
989  * information in the iterator may not be valid.
990  *
991  * Returns sptep if found, NULL otherwise.
992  */
993 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
994                            struct rmap_iterator *iter)
995 {
996         u64 *sptep;
997
998         if (!rmap_head->val)
999                 return NULL;
1000
1001         if (!(rmap_head->val & 1)) {
1002                 iter->desc = NULL;
1003                 sptep = (u64 *)rmap_head->val;
1004                 goto out;
1005         }
1006
1007         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1008         iter->pos = 0;
1009         sptep = iter->desc->sptes[iter->pos];
1010 out:
1011         BUG_ON(!is_shadow_present_pte(*sptep));
1012         return sptep;
1013 }
1014
1015 /*
1016  * Must be used with a valid iterator: e.g. after rmap_get_first().
1017  *
1018  * Returns sptep if found, NULL otherwise.
1019  */
1020 static u64 *rmap_get_next(struct rmap_iterator *iter)
1021 {
1022         u64 *sptep;
1023
1024         if (iter->desc) {
1025                 if (iter->pos < PTE_LIST_EXT - 1) {
1026                         ++iter->pos;
1027                         sptep = iter->desc->sptes[iter->pos];
1028                         if (sptep)
1029                                 goto out;
1030                 }
1031
1032                 iter->desc = iter->desc->more;
1033
1034                 if (iter->desc) {
1035                         iter->pos = 0;
1036                         /* desc->sptes[0] cannot be NULL */
1037                         sptep = iter->desc->sptes[iter->pos];
1038                         goto out;
1039                 }
1040         }
1041
1042         return NULL;
1043 out:
1044         BUG_ON(!is_shadow_present_pte(*sptep));
1045         return sptep;
1046 }
1047
1048 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1049         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1050              _spte_; _spte_ = rmap_get_next(_iter_))
1051
1052 static void drop_spte(struct kvm *kvm, u64 *sptep)
1053 {
1054         if (mmu_spte_clear_track_bits(sptep))
1055                 rmap_remove(kvm, sptep);
1056 }
1057
1058
1059 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1060 {
1061         if (is_large_pte(*sptep)) {
1062                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1063                 drop_spte(kvm, sptep);
1064                 --kvm->stat.lpages;
1065                 return true;
1066         }
1067
1068         return false;
1069 }
1070
1071 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1072 {
1073         if (__drop_large_spte(vcpu->kvm, sptep)) {
1074                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1075
1076                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1077                         KVM_PAGES_PER_HPAGE(sp->role.level));
1078         }
1079 }
1080
1081 /*
1082  * Write-protect on the specified @sptep, @pt_protect indicates whether
1083  * spte write-protection is caused by protecting shadow page table.
1084  *
1085  * Note: write protection is difference between dirty logging and spte
1086  * protection:
1087  * - for dirty logging, the spte can be set to writable at anytime if
1088  *   its dirty bitmap is properly set.
1089  * - for spte protection, the spte can be writable only after unsync-ing
1090  *   shadow page.
1091  *
1092  * Return true if tlb need be flushed.
1093  */
1094 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1095 {
1096         u64 spte = *sptep;
1097
1098         if (!is_writable_pte(spte) &&
1099               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1100                 return false;
1101
1102         rmap_printk("spte %p %llx\n", sptep, *sptep);
1103
1104         if (pt_protect)
1105                 spte &= ~shadow_mmu_writable_mask;
1106         spte = spte & ~PT_WRITABLE_MASK;
1107
1108         return mmu_spte_update(sptep, spte);
1109 }
1110
1111 static bool __rmap_write_protect(struct kvm *kvm,
1112                                  struct kvm_rmap_head *rmap_head,
1113                                  bool pt_protect)
1114 {
1115         u64 *sptep;
1116         struct rmap_iterator iter;
1117         bool flush = false;
1118
1119         for_each_rmap_spte(rmap_head, &iter, sptep)
1120                 flush |= spte_write_protect(sptep, pt_protect);
1121
1122         return flush;
1123 }
1124
1125 static bool spte_clear_dirty(u64 *sptep)
1126 {
1127         u64 spte = *sptep;
1128
1129         rmap_printk("spte %p %llx\n", sptep, *sptep);
1130
1131         MMU_WARN_ON(!spte_ad_enabled(spte));
1132         spte &= ~shadow_dirty_mask;
1133         return mmu_spte_update(sptep, spte);
1134 }
1135
1136 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1137 {
1138         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1139                                                (unsigned long *)sptep);
1140         if (was_writable && !spte_ad_enabled(*sptep))
1141                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1142
1143         return was_writable;
1144 }
1145
1146 /*
1147  * Gets the GFN ready for another round of dirty logging by clearing the
1148  *      - D bit on ad-enabled SPTEs, and
1149  *      - W bit on ad-disabled SPTEs.
1150  * Returns true iff any D or W bits were cleared.
1151  */
1152 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1153                                struct kvm_memory_slot *slot)
1154 {
1155         u64 *sptep;
1156         struct rmap_iterator iter;
1157         bool flush = false;
1158
1159         for_each_rmap_spte(rmap_head, &iter, sptep)
1160                 if (spte_ad_need_write_protect(*sptep))
1161                         flush |= spte_wrprot_for_clear_dirty(sptep);
1162                 else
1163                         flush |= spte_clear_dirty(sptep);
1164
1165         return flush;
1166 }
1167
1168 /**
1169  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1170  * @kvm: kvm instance
1171  * @slot: slot to protect
1172  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1173  * @mask: indicates which pages we should protect
1174  *
1175  * Used when we do not need to care about huge page mappings.
1176  */
1177 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178                                      struct kvm_memory_slot *slot,
1179                                      gfn_t gfn_offset, unsigned long mask)
1180 {
1181         struct kvm_rmap_head *rmap_head;
1182
1183         if (is_tdp_mmu_enabled(kvm))
1184                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1185                                 slot->base_gfn + gfn_offset, mask, true);
1186
1187         if (!kvm_memslots_have_rmaps(kvm))
1188                 return;
1189
1190         while (mask) {
1191                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1192                                           PG_LEVEL_4K, slot);
1193                 __rmap_write_protect(kvm, rmap_head, false);
1194
1195                 /* clear the first set bit */
1196                 mask &= mask - 1;
1197         }
1198 }
1199
1200 /**
1201  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1202  * protect the page if the D-bit isn't supported.
1203  * @kvm: kvm instance
1204  * @slot: slot to clear D-bit
1205  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1206  * @mask: indicates which pages we should clear D-bit
1207  *
1208  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1209  */
1210 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1211                                          struct kvm_memory_slot *slot,
1212                                          gfn_t gfn_offset, unsigned long mask)
1213 {
1214         struct kvm_rmap_head *rmap_head;
1215
1216         if (is_tdp_mmu_enabled(kvm))
1217                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1218                                 slot->base_gfn + gfn_offset, mask, false);
1219
1220         if (!kvm_memslots_have_rmaps(kvm))
1221                 return;
1222
1223         while (mask) {
1224                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1225                                           PG_LEVEL_4K, slot);
1226                 __rmap_clear_dirty(kvm, rmap_head, slot);
1227
1228                 /* clear the first set bit */
1229                 mask &= mask - 1;
1230         }
1231 }
1232
1233 /**
1234  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1235  * PT level pages.
1236  *
1237  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1238  * enable dirty logging for them.
1239  *
1240  * We need to care about huge page mappings: e.g. during dirty logging we may
1241  * have such mappings.
1242  */
1243 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1244                                 struct kvm_memory_slot *slot,
1245                                 gfn_t gfn_offset, unsigned long mask)
1246 {
1247         /*
1248          * Huge pages are NOT write protected when we start dirty logging in
1249          * initially-all-set mode; must write protect them here so that they
1250          * are split to 4K on the first write.
1251          *
1252          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1253          * of memslot has no such restriction, so the range can cross two large
1254          * pages.
1255          */
1256         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1257                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1258                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1259
1260                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1261
1262                 /* Cross two large pages? */
1263                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1264                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1265                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1266                                                        PG_LEVEL_2M);
1267         }
1268
1269         /* Now handle 4K PTEs.  */
1270         if (kvm_x86_ops.cpu_dirty_log_size)
1271                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1272         else
1273                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1274 }
1275
1276 int kvm_cpu_dirty_log_size(void)
1277 {
1278         return kvm_x86_ops.cpu_dirty_log_size;
1279 }
1280
1281 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1282                                     struct kvm_memory_slot *slot, u64 gfn,
1283                                     int min_level)
1284 {
1285         struct kvm_rmap_head *rmap_head;
1286         int i;
1287         bool write_protected = false;
1288
1289         if (kvm_memslots_have_rmaps(kvm)) {
1290                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1291                         rmap_head = __gfn_to_rmap(gfn, i, slot);
1292                         write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1293                 }
1294         }
1295
1296         if (is_tdp_mmu_enabled(kvm))
1297                 write_protected |=
1298                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1299
1300         return write_protected;
1301 }
1302
1303 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1304 {
1305         struct kvm_memory_slot *slot;
1306
1307         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1308         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1309 }
1310
1311 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1312                           struct kvm_memory_slot *slot)
1313 {
1314         u64 *sptep;
1315         struct rmap_iterator iter;
1316         bool flush = false;
1317
1318         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1319                 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1320
1321                 pte_list_remove(rmap_head, sptep);
1322                 flush = true;
1323         }
1324
1325         return flush;
1326 }
1327
1328 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1329                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1330                             pte_t unused)
1331 {
1332         return kvm_zap_rmapp(kvm, rmap_head, slot);
1333 }
1334
1335 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1336                               struct kvm_memory_slot *slot, gfn_t gfn, int level,
1337                               pte_t pte)
1338 {
1339         u64 *sptep;
1340         struct rmap_iterator iter;
1341         int need_flush = 0;
1342         u64 new_spte;
1343         kvm_pfn_t new_pfn;
1344
1345         WARN_ON(pte_huge(pte));
1346         new_pfn = pte_pfn(pte);
1347
1348 restart:
1349         for_each_rmap_spte(rmap_head, &iter, sptep) {
1350                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1351                             sptep, *sptep, gfn, level);
1352
1353                 need_flush = 1;
1354
1355                 if (pte_write(pte)) {
1356                         pte_list_remove(rmap_head, sptep);
1357                         goto restart;
1358                 } else {
1359                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1360                                         *sptep, new_pfn);
1361
1362                         mmu_spte_clear_track_bits(sptep);
1363                         mmu_spte_set(sptep, new_spte);
1364                 }
1365         }
1366
1367         if (need_flush && kvm_available_flush_tlb_with_range()) {
1368                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1369                 return 0;
1370         }
1371
1372         return need_flush;
1373 }
1374
1375 struct slot_rmap_walk_iterator {
1376         /* input fields. */
1377         struct kvm_memory_slot *slot;
1378         gfn_t start_gfn;
1379         gfn_t end_gfn;
1380         int start_level;
1381         int end_level;
1382
1383         /* output fields. */
1384         gfn_t gfn;
1385         struct kvm_rmap_head *rmap;
1386         int level;
1387
1388         /* private field. */
1389         struct kvm_rmap_head *end_rmap;
1390 };
1391
1392 static void
1393 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1394 {
1395         iterator->level = level;
1396         iterator->gfn = iterator->start_gfn;
1397         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1398         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1399                                            iterator->slot);
1400 }
1401
1402 static void
1403 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1404                     struct kvm_memory_slot *slot, int start_level,
1405                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1406 {
1407         iterator->slot = slot;
1408         iterator->start_level = start_level;
1409         iterator->end_level = end_level;
1410         iterator->start_gfn = start_gfn;
1411         iterator->end_gfn = end_gfn;
1412
1413         rmap_walk_init_level(iterator, iterator->start_level);
1414 }
1415
1416 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1417 {
1418         return !!iterator->rmap;
1419 }
1420
1421 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1422 {
1423         if (++iterator->rmap <= iterator->end_rmap) {
1424                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1425                 return;
1426         }
1427
1428         if (++iterator->level > iterator->end_level) {
1429                 iterator->rmap = NULL;
1430                 return;
1431         }
1432
1433         rmap_walk_init_level(iterator, iterator->level);
1434 }
1435
1436 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1437            _start_gfn, _end_gfn, _iter_)                                \
1438         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1439                                  _end_level_, _start_gfn, _end_gfn);    \
1440              slot_rmap_walk_okay(_iter_);                               \
1441              slot_rmap_walk_next(_iter_))
1442
1443 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1444                                struct kvm_memory_slot *slot, gfn_t gfn,
1445                                int level, pte_t pte);
1446
1447 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1448                                                  struct kvm_gfn_range *range,
1449                                                  rmap_handler_t handler)
1450 {
1451         struct slot_rmap_walk_iterator iterator;
1452         bool ret = false;
1453
1454         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1455                                  range->start, range->end - 1, &iterator)
1456                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1457                                iterator.level, range->pte);
1458
1459         return ret;
1460 }
1461
1462 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1463 {
1464         bool flush = false;
1465
1466         if (kvm_memslots_have_rmaps(kvm))
1467                 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1468
1469         if (is_tdp_mmu_enabled(kvm))
1470                 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1471
1472         return flush;
1473 }
1474
1475 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1476 {
1477         bool flush = false;
1478
1479         if (kvm_memslots_have_rmaps(kvm))
1480                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1481
1482         if (is_tdp_mmu_enabled(kvm))
1483                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1484
1485         return flush;
1486 }
1487
1488 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1489                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1490                           pte_t unused)
1491 {
1492         u64 *sptep;
1493         struct rmap_iterator iter;
1494         int young = 0;
1495
1496         for_each_rmap_spte(rmap_head, &iter, sptep)
1497                 young |= mmu_spte_age(sptep);
1498
1499         return young;
1500 }
1501
1502 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1503                                struct kvm_memory_slot *slot, gfn_t gfn,
1504                                int level, pte_t unused)
1505 {
1506         u64 *sptep;
1507         struct rmap_iterator iter;
1508
1509         for_each_rmap_spte(rmap_head, &iter, sptep)
1510                 if (is_accessed_spte(*sptep))
1511                         return 1;
1512         return 0;
1513 }
1514
1515 #define RMAP_RECYCLE_THRESHOLD 1000
1516
1517 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1518 {
1519         struct kvm_rmap_head *rmap_head;
1520         struct kvm_mmu_page *sp;
1521
1522         sp = sptep_to_sp(spte);
1523
1524         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1525
1526         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1527         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1528                         KVM_PAGES_PER_HPAGE(sp->role.level));
1529 }
1530
1531 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1532 {
1533         bool young = false;
1534
1535         if (kvm_memslots_have_rmaps(kvm))
1536                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1537
1538         if (is_tdp_mmu_enabled(kvm))
1539                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1540
1541         return young;
1542 }
1543
1544 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1545 {
1546         bool young = false;
1547
1548         if (kvm_memslots_have_rmaps(kvm))
1549                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1550
1551         if (is_tdp_mmu_enabled(kvm))
1552                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1553
1554         return young;
1555 }
1556
1557 #ifdef MMU_DEBUG
1558 static int is_empty_shadow_page(u64 *spt)
1559 {
1560         u64 *pos;
1561         u64 *end;
1562
1563         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1564                 if (is_shadow_present_pte(*pos)) {
1565                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1566                                pos, *pos);
1567                         return 0;
1568                 }
1569         return 1;
1570 }
1571 #endif
1572
1573 /*
1574  * This value is the sum of all of the kvm instances's
1575  * kvm->arch.n_used_mmu_pages values.  We need a global,
1576  * aggregate version in order to make the slab shrinker
1577  * faster
1578  */
1579 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1580 {
1581         kvm->arch.n_used_mmu_pages += nr;
1582         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1583 }
1584
1585 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1586 {
1587         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1588         hlist_del(&sp->hash_link);
1589         list_del(&sp->link);
1590         free_page((unsigned long)sp->spt);
1591         if (!sp->role.direct)
1592                 free_page((unsigned long)sp->gfns);
1593         kmem_cache_free(mmu_page_header_cache, sp);
1594 }
1595
1596 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1597 {
1598         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1599 }
1600
1601 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1602                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1603 {
1604         if (!parent_pte)
1605                 return;
1606
1607         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1608 }
1609
1610 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1611                                        u64 *parent_pte)
1612 {
1613         __pte_list_remove(parent_pte, &sp->parent_ptes);
1614 }
1615
1616 static void drop_parent_pte(struct kvm_mmu_page *sp,
1617                             u64 *parent_pte)
1618 {
1619         mmu_page_remove_parent_pte(sp, parent_pte);
1620         mmu_spte_clear_no_track(parent_pte);
1621 }
1622
1623 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1624 {
1625         struct kvm_mmu_page *sp;
1626
1627         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1628         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1629         if (!direct)
1630                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1631         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1632
1633         /*
1634          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1635          * depends on valid pages being added to the head of the list.  See
1636          * comments in kvm_zap_obsolete_pages().
1637          */
1638         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1639         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1640         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1641         return sp;
1642 }
1643
1644 static void mark_unsync(u64 *spte);
1645 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1646 {
1647         u64 *sptep;
1648         struct rmap_iterator iter;
1649
1650         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1651                 mark_unsync(sptep);
1652         }
1653 }
1654
1655 static void mark_unsync(u64 *spte)
1656 {
1657         struct kvm_mmu_page *sp;
1658         unsigned int index;
1659
1660         sp = sptep_to_sp(spte);
1661         index = spte - sp->spt;
1662         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1663                 return;
1664         if (sp->unsync_children++)
1665                 return;
1666         kvm_mmu_mark_parents_unsync(sp);
1667 }
1668
1669 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1670                                struct kvm_mmu_page *sp)
1671 {
1672         return 0;
1673 }
1674
1675 #define KVM_PAGE_ARRAY_NR 16
1676
1677 struct kvm_mmu_pages {
1678         struct mmu_page_and_offset {
1679                 struct kvm_mmu_page *sp;
1680                 unsigned int idx;
1681         } page[KVM_PAGE_ARRAY_NR];
1682         unsigned int nr;
1683 };
1684
1685 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1686                          int idx)
1687 {
1688         int i;
1689
1690         if (sp->unsync)
1691                 for (i=0; i < pvec->nr; i++)
1692                         if (pvec->page[i].sp == sp)
1693                                 return 0;
1694
1695         pvec->page[pvec->nr].sp = sp;
1696         pvec->page[pvec->nr].idx = idx;
1697         pvec->nr++;
1698         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1699 }
1700
1701 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1702 {
1703         --sp->unsync_children;
1704         WARN_ON((int)sp->unsync_children < 0);
1705         __clear_bit(idx, sp->unsync_child_bitmap);
1706 }
1707
1708 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1709                            struct kvm_mmu_pages *pvec)
1710 {
1711         int i, ret, nr_unsync_leaf = 0;
1712
1713         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1714                 struct kvm_mmu_page *child;
1715                 u64 ent = sp->spt[i];
1716
1717                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1718                         clear_unsync_child_bit(sp, i);
1719                         continue;
1720                 }
1721
1722                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1723
1724                 if (child->unsync_children) {
1725                         if (mmu_pages_add(pvec, child, i))
1726                                 return -ENOSPC;
1727
1728                         ret = __mmu_unsync_walk(child, pvec);
1729                         if (!ret) {
1730                                 clear_unsync_child_bit(sp, i);
1731                                 continue;
1732                         } else if (ret > 0) {
1733                                 nr_unsync_leaf += ret;
1734                         } else
1735                                 return ret;
1736                 } else if (child->unsync) {
1737                         nr_unsync_leaf++;
1738                         if (mmu_pages_add(pvec, child, i))
1739                                 return -ENOSPC;
1740                 } else
1741                         clear_unsync_child_bit(sp, i);
1742         }
1743
1744         return nr_unsync_leaf;
1745 }
1746
1747 #define INVALID_INDEX (-1)
1748
1749 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1750                            struct kvm_mmu_pages *pvec)
1751 {
1752         pvec->nr = 0;
1753         if (!sp->unsync_children)
1754                 return 0;
1755
1756         mmu_pages_add(pvec, sp, INVALID_INDEX);
1757         return __mmu_unsync_walk(sp, pvec);
1758 }
1759
1760 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1761 {
1762         WARN_ON(!sp->unsync);
1763         trace_kvm_mmu_sync_page(sp);
1764         sp->unsync = 0;
1765         --kvm->stat.mmu_unsync;
1766 }
1767
1768 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1769                                      struct list_head *invalid_list);
1770 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1771                                     struct list_head *invalid_list);
1772
1773 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1774         hlist_for_each_entry(_sp, _list, hash_link)                     \
1775                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1776                 } else
1777
1778 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1779         for_each_valid_sp(_kvm, _sp,                                    \
1780           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1781                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1782
1783 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1784                          struct list_head *invalid_list)
1785 {
1786         if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1787                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1788                 return false;
1789         }
1790
1791         return true;
1792 }
1793
1794 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1795                                         struct list_head *invalid_list,
1796                                         bool remote_flush)
1797 {
1798         if (!remote_flush && list_empty(invalid_list))
1799                 return false;
1800
1801         if (!list_empty(invalid_list))
1802                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1803         else
1804                 kvm_flush_remote_tlbs(kvm);
1805         return true;
1806 }
1807
1808 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1809                                  struct list_head *invalid_list,
1810                                  bool remote_flush, bool local_flush)
1811 {
1812         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1813                 return;
1814
1815         if (local_flush)
1816                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1817 }
1818
1819 #ifdef CONFIG_KVM_MMU_AUDIT
1820 #include "mmu_audit.c"
1821 #else
1822 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1823 static void mmu_audit_disable(void) { }
1824 #endif
1825
1826 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1827 {
1828         return sp->role.invalid ||
1829                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1830 }
1831
1832 struct mmu_page_path {
1833         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1834         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1835 };
1836
1837 #define for_each_sp(pvec, sp, parents, i)                       \
1838                 for (i = mmu_pages_first(&pvec, &parents);      \
1839                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1840                         i = mmu_pages_next(&pvec, &parents, i))
1841
1842 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1843                           struct mmu_page_path *parents,
1844                           int i)
1845 {
1846         int n;
1847
1848         for (n = i+1; n < pvec->nr; n++) {
1849                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1850                 unsigned idx = pvec->page[n].idx;
1851                 int level = sp->role.level;
1852
1853                 parents->idx[level-1] = idx;
1854                 if (level == PG_LEVEL_4K)
1855                         break;
1856
1857                 parents->parent[level-2] = sp;
1858         }
1859
1860         return n;
1861 }
1862
1863 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1864                            struct mmu_page_path *parents)
1865 {
1866         struct kvm_mmu_page *sp;
1867         int level;
1868
1869         if (pvec->nr == 0)
1870                 return 0;
1871
1872         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1873
1874         sp = pvec->page[0].sp;
1875         level = sp->role.level;
1876         WARN_ON(level == PG_LEVEL_4K);
1877
1878         parents->parent[level-2] = sp;
1879
1880         /* Also set up a sentinel.  Further entries in pvec are all
1881          * children of sp, so this element is never overwritten.
1882          */
1883         parents->parent[level-1] = NULL;
1884         return mmu_pages_next(pvec, parents, 0);
1885 }
1886
1887 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1888 {
1889         struct kvm_mmu_page *sp;
1890         unsigned int level = 0;
1891
1892         do {
1893                 unsigned int idx = parents->idx[level];
1894                 sp = parents->parent[level];
1895                 if (!sp)
1896                         return;
1897
1898                 WARN_ON(idx == INVALID_INDEX);
1899                 clear_unsync_child_bit(sp, idx);
1900                 level++;
1901         } while (!sp->unsync_children);
1902 }
1903
1904 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1905                               struct kvm_mmu_page *parent)
1906 {
1907         int i;
1908         struct kvm_mmu_page *sp;
1909         struct mmu_page_path parents;
1910         struct kvm_mmu_pages pages;
1911         LIST_HEAD(invalid_list);
1912         bool flush = false;
1913
1914         while (mmu_unsync_walk(parent, &pages)) {
1915                 bool protected = false;
1916
1917                 for_each_sp(pages, sp, parents, i)
1918                         protected |= rmap_write_protect(vcpu, sp->gfn);
1919
1920                 if (protected) {
1921                         kvm_flush_remote_tlbs(vcpu->kvm);
1922                         flush = false;
1923                 }
1924
1925                 for_each_sp(pages, sp, parents, i) {
1926                         kvm_unlink_unsync_page(vcpu->kvm, sp);
1927                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1928                         mmu_pages_clear_parents(&parents);
1929                 }
1930                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1931                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1932                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1933                         flush = false;
1934                 }
1935         }
1936
1937         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1938 }
1939
1940 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1941 {
1942         atomic_set(&sp->write_flooding_count,  0);
1943 }
1944
1945 static void clear_sp_write_flooding_count(u64 *spte)
1946 {
1947         __clear_sp_write_flooding_count(sptep_to_sp(spte));
1948 }
1949
1950 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1951                                              gfn_t gfn,
1952                                              gva_t gaddr,
1953                                              unsigned level,
1954                                              int direct,
1955                                              unsigned int access)
1956 {
1957         bool direct_mmu = vcpu->arch.mmu->direct_map;
1958         union kvm_mmu_page_role role;
1959         struct hlist_head *sp_list;
1960         unsigned quadrant;
1961         struct kvm_mmu_page *sp;
1962         int collisions = 0;
1963         LIST_HEAD(invalid_list);
1964
1965         role = vcpu->arch.mmu->mmu_role.base;
1966         role.level = level;
1967         role.direct = direct;
1968         if (role.direct)
1969                 role.gpte_is_8_bytes = true;
1970         role.access = access;
1971         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
1972                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1973                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1974                 role.quadrant = quadrant;
1975         }
1976
1977         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
1978         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
1979                 if (sp->gfn != gfn) {
1980                         collisions++;
1981                         continue;
1982                 }
1983
1984                 if (sp->role.word != role.word) {
1985                         /*
1986                          * If the guest is creating an upper-level page, zap
1987                          * unsync pages for the same gfn.  While it's possible
1988                          * the guest is using recursive page tables, in all
1989                          * likelihood the guest has stopped using the unsync
1990                          * page and is installing a completely unrelated page.
1991                          * Unsync pages must not be left as is, because the new
1992                          * upper-level page will be write-protected.
1993                          */
1994                         if (level > PG_LEVEL_4K && sp->unsync)
1995                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
1996                                                          &invalid_list);
1997                         continue;
1998                 }
1999
2000                 if (direct_mmu)
2001                         goto trace_get_page;
2002
2003                 if (sp->unsync) {
2004                         /*
2005                          * The page is good, but is stale.  kvm_sync_page does
2006                          * get the latest guest state, but (unlike mmu_unsync_children)
2007                          * it doesn't write-protect the page or mark it synchronized!
2008                          * This way the validity of the mapping is ensured, but the
2009                          * overhead of write protection is not incurred until the
2010                          * guest invalidates the TLB mapping.  This allows multiple
2011                          * SPs for a single gfn to be unsync.
2012                          *
2013                          * If the sync fails, the page is zapped.  If so, break
2014                          * in order to rebuild it.
2015                          */
2016                         if (!kvm_sync_page(vcpu, sp, &invalid_list))
2017                                 break;
2018
2019                         WARN_ON(!list_empty(&invalid_list));
2020                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2021                 }
2022
2023                 if (sp->unsync_children)
2024                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2025
2026                 __clear_sp_write_flooding_count(sp);
2027
2028 trace_get_page:
2029                 trace_kvm_mmu_get_page(sp, false);
2030                 goto out;
2031         }
2032
2033         ++vcpu->kvm->stat.mmu_cache_miss;
2034
2035         sp = kvm_mmu_alloc_page(vcpu, direct);
2036
2037         sp->gfn = gfn;
2038         sp->role = role;
2039         hlist_add_head(&sp->hash_link, sp_list);
2040         if (!direct) {
2041                 account_shadowed(vcpu->kvm, sp);
2042                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2043                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2044         }
2045         trace_kvm_mmu_get_page(sp, true);
2046 out:
2047         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2048
2049         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2050                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2051         return sp;
2052 }
2053
2054 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2055                                         struct kvm_vcpu *vcpu, hpa_t root,
2056                                         u64 addr)
2057 {
2058         iterator->addr = addr;
2059         iterator->shadow_addr = root;
2060         iterator->level = vcpu->arch.mmu->shadow_root_level;
2061
2062         if (iterator->level == PT64_ROOT_4LEVEL &&
2063             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2064             !vcpu->arch.mmu->direct_map)
2065                 --iterator->level;
2066
2067         if (iterator->level == PT32E_ROOT_LEVEL) {
2068                 /*
2069                  * prev_root is currently only used for 64-bit hosts. So only
2070                  * the active root_hpa is valid here.
2071                  */
2072                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2073
2074                 iterator->shadow_addr
2075                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2076                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2077                 --iterator->level;
2078                 if (!iterator->shadow_addr)
2079                         iterator->level = 0;
2080         }
2081 }
2082
2083 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2084                              struct kvm_vcpu *vcpu, u64 addr)
2085 {
2086         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2087                                     addr);
2088 }
2089
2090 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2091 {
2092         if (iterator->level < PG_LEVEL_4K)
2093                 return false;
2094
2095         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2096         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2097         return true;
2098 }
2099
2100 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2101                                u64 spte)
2102 {
2103         if (is_last_spte(spte, iterator->level)) {
2104                 iterator->level = 0;
2105                 return;
2106         }
2107
2108         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2109         --iterator->level;
2110 }
2111
2112 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2113 {
2114         __shadow_walk_next(iterator, *iterator->sptep);
2115 }
2116
2117 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2118                              struct kvm_mmu_page *sp)
2119 {
2120         u64 spte;
2121
2122         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2123
2124         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2125
2126         mmu_spte_set(sptep, spte);
2127
2128         mmu_page_add_parent_pte(vcpu, sp, sptep);
2129
2130         if (sp->unsync_children || sp->unsync)
2131                 mark_unsync(sptep);
2132 }
2133
2134 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2135                                    unsigned direct_access)
2136 {
2137         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2138                 struct kvm_mmu_page *child;
2139
2140                 /*
2141                  * For the direct sp, if the guest pte's dirty bit
2142                  * changed form clean to dirty, it will corrupt the
2143                  * sp's access: allow writable in the read-only sp,
2144                  * so we should update the spte at this point to get
2145                  * a new sp with the correct access.
2146                  */
2147                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2148                 if (child->role.access == direct_access)
2149                         return;
2150
2151                 drop_parent_pte(child, sptep);
2152                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2153         }
2154 }
2155
2156 /* Returns the number of zapped non-leaf child shadow pages. */
2157 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2158                             u64 *spte, struct list_head *invalid_list)
2159 {
2160         u64 pte;
2161         struct kvm_mmu_page *child;
2162
2163         pte = *spte;
2164         if (is_shadow_present_pte(pte)) {
2165                 if (is_last_spte(pte, sp->role.level)) {
2166                         drop_spte(kvm, spte);
2167                         if (is_large_pte(pte))
2168                                 --kvm->stat.lpages;
2169                 } else {
2170                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2171                         drop_parent_pte(child, spte);
2172
2173                         /*
2174                          * Recursively zap nested TDP SPs, parentless SPs are
2175                          * unlikely to be used again in the near future.  This
2176                          * avoids retaining a large number of stale nested SPs.
2177                          */
2178                         if (tdp_enabled && invalid_list &&
2179                             child->role.guest_mode && !child->parent_ptes.val)
2180                                 return kvm_mmu_prepare_zap_page(kvm, child,
2181                                                                 invalid_list);
2182                 }
2183         } else if (is_mmio_spte(pte)) {
2184                 mmu_spte_clear_no_track(spte);
2185         }
2186         return 0;
2187 }
2188
2189 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2190                                         struct kvm_mmu_page *sp,
2191                                         struct list_head *invalid_list)
2192 {
2193         int zapped = 0;
2194         unsigned i;
2195
2196         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2197                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2198
2199         return zapped;
2200 }
2201
2202 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2203 {
2204         u64 *sptep;
2205         struct rmap_iterator iter;
2206
2207         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2208                 drop_parent_pte(sp, sptep);
2209 }
2210
2211 static int mmu_zap_unsync_children(struct kvm *kvm,
2212                                    struct kvm_mmu_page *parent,
2213                                    struct list_head *invalid_list)
2214 {
2215         int i, zapped = 0;
2216         struct mmu_page_path parents;
2217         struct kvm_mmu_pages pages;
2218
2219         if (parent->role.level == PG_LEVEL_4K)
2220                 return 0;
2221
2222         while (mmu_unsync_walk(parent, &pages)) {
2223                 struct kvm_mmu_page *sp;
2224
2225                 for_each_sp(pages, sp, parents, i) {
2226                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2227                         mmu_pages_clear_parents(&parents);
2228                         zapped++;
2229                 }
2230         }
2231
2232         return zapped;
2233 }
2234
2235 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2236                                        struct kvm_mmu_page *sp,
2237                                        struct list_head *invalid_list,
2238                                        int *nr_zapped)
2239 {
2240         bool list_unstable;
2241
2242         trace_kvm_mmu_prepare_zap_page(sp);
2243         ++kvm->stat.mmu_shadow_zapped;
2244         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2245         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2246         kvm_mmu_unlink_parents(kvm, sp);
2247
2248         /* Zapping children means active_mmu_pages has become unstable. */
2249         list_unstable = *nr_zapped;
2250
2251         if (!sp->role.invalid && !sp->role.direct)
2252                 unaccount_shadowed(kvm, sp);
2253
2254         if (sp->unsync)
2255                 kvm_unlink_unsync_page(kvm, sp);
2256         if (!sp->root_count) {
2257                 /* Count self */
2258                 (*nr_zapped)++;
2259
2260                 /*
2261                  * Already invalid pages (previously active roots) are not on
2262                  * the active page list.  See list_del() in the "else" case of
2263                  * !sp->root_count.
2264                  */
2265                 if (sp->role.invalid)
2266                         list_add(&sp->link, invalid_list);
2267                 else
2268                         list_move(&sp->link, invalid_list);
2269                 kvm_mod_used_mmu_pages(kvm, -1);
2270         } else {
2271                 /*
2272                  * Remove the active root from the active page list, the root
2273                  * will be explicitly freed when the root_count hits zero.
2274                  */
2275                 list_del(&sp->link);
2276
2277                 /*
2278                  * Obsolete pages cannot be used on any vCPUs, see the comment
2279                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2280                  * treats invalid shadow pages as being obsolete.
2281                  */
2282                 if (!is_obsolete_sp(kvm, sp))
2283                         kvm_reload_remote_mmus(kvm);
2284         }
2285
2286         if (sp->lpage_disallowed)
2287                 unaccount_huge_nx_page(kvm, sp);
2288
2289         sp->role.invalid = 1;
2290         return list_unstable;
2291 }
2292
2293 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2294                                      struct list_head *invalid_list)
2295 {
2296         int nr_zapped;
2297
2298         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2299         return nr_zapped;
2300 }
2301
2302 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2303                                     struct list_head *invalid_list)
2304 {
2305         struct kvm_mmu_page *sp, *nsp;
2306
2307         if (list_empty(invalid_list))
2308                 return;
2309
2310         /*
2311          * We need to make sure everyone sees our modifications to
2312          * the page tables and see changes to vcpu->mode here. The barrier
2313          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2314          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2315          *
2316          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2317          * guest mode and/or lockless shadow page table walks.
2318          */
2319         kvm_flush_remote_tlbs(kvm);
2320
2321         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2322                 WARN_ON(!sp->role.invalid || sp->root_count);
2323                 kvm_mmu_free_page(sp);
2324         }
2325 }
2326
2327 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2328                                                   unsigned long nr_to_zap)
2329 {
2330         unsigned long total_zapped = 0;
2331         struct kvm_mmu_page *sp, *tmp;
2332         LIST_HEAD(invalid_list);
2333         bool unstable;
2334         int nr_zapped;
2335
2336         if (list_empty(&kvm->arch.active_mmu_pages))
2337                 return 0;
2338
2339 restart:
2340         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2341                 /*
2342                  * Don't zap active root pages, the page itself can't be freed
2343                  * and zapping it will just force vCPUs to realloc and reload.
2344                  */
2345                 if (sp->root_count)
2346                         continue;
2347
2348                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2349                                                       &nr_zapped);
2350                 total_zapped += nr_zapped;
2351                 if (total_zapped >= nr_to_zap)
2352                         break;
2353
2354                 if (unstable)
2355                         goto restart;
2356         }
2357
2358         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2359
2360         kvm->stat.mmu_recycled += total_zapped;
2361         return total_zapped;
2362 }
2363
2364 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2365 {
2366         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2367                 return kvm->arch.n_max_mmu_pages -
2368                         kvm->arch.n_used_mmu_pages;
2369
2370         return 0;
2371 }
2372
2373 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2374 {
2375         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2376
2377         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2378                 return 0;
2379
2380         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2381
2382         /*
2383          * Note, this check is intentionally soft, it only guarantees that one
2384          * page is available, while the caller may end up allocating as many as
2385          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2386          * exceeding the (arbitrary by default) limit will not harm the host,
2387          * being too agressive may unnecessarily kill the guest, and getting an
2388          * exact count is far more trouble than it's worth, especially in the
2389          * page fault paths.
2390          */
2391         if (!kvm_mmu_available_pages(vcpu->kvm))
2392                 return -ENOSPC;
2393         return 0;
2394 }
2395
2396 /*
2397  * Changing the number of mmu pages allocated to the vm
2398  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2399  */
2400 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2401 {
2402         write_lock(&kvm->mmu_lock);
2403
2404         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2405                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2406                                                   goal_nr_mmu_pages);
2407
2408                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2409         }
2410
2411         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2412
2413         write_unlock(&kvm->mmu_lock);
2414 }
2415
2416 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2417 {
2418         struct kvm_mmu_page *sp;
2419         LIST_HEAD(invalid_list);
2420         int r;
2421
2422         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2423         r = 0;
2424         write_lock(&kvm->mmu_lock);
2425         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2426                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2427                          sp->role.word);
2428                 r = 1;
2429                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2430         }
2431         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2432         write_unlock(&kvm->mmu_lock);
2433
2434         return r;
2435 }
2436
2437 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2438 {
2439         gpa_t gpa;
2440         int r;
2441
2442         if (vcpu->arch.mmu->direct_map)
2443                 return 0;
2444
2445         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2446
2447         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2448
2449         return r;
2450 }
2451
2452 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2453 {
2454         trace_kvm_mmu_unsync_page(sp);
2455         ++vcpu->kvm->stat.mmu_unsync;
2456         sp->unsync = 1;
2457
2458         kvm_mmu_mark_parents_unsync(sp);
2459 }
2460
2461 /*
2462  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2463  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2464  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2465  * be write-protected.
2466  */
2467 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2468 {
2469         struct kvm_mmu_page *sp;
2470
2471         /*
2472          * Force write-protection if the page is being tracked.  Note, the page
2473          * track machinery is used to write-protect upper-level shadow pages,
2474          * i.e. this guards the role.level == 4K assertion below!
2475          */
2476         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2477                 return -EPERM;
2478
2479         /*
2480          * The page is not write-tracked, mark existing shadow pages unsync
2481          * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2482          * that case, KVM must complete emulation of the guest TLB flush before
2483          * allowing shadow pages to become unsync (writable by the guest).
2484          */
2485         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2486                 if (!can_unsync)
2487                         return -EPERM;
2488
2489                 if (sp->unsync)
2490                         continue;
2491
2492                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2493                 kvm_unsync_page(vcpu, sp);
2494         }
2495
2496         /*
2497          * We need to ensure that the marking of unsync pages is visible
2498          * before the SPTE is updated to allow writes because
2499          * kvm_mmu_sync_roots() checks the unsync flags without holding
2500          * the MMU lock and so can race with this. If the SPTE was updated
2501          * before the page had been marked as unsync-ed, something like the
2502          * following could happen:
2503          *
2504          * CPU 1                    CPU 2
2505          * ---------------------------------------------------------------------
2506          * 1.2 Host updates SPTE
2507          *     to be writable
2508          *                      2.1 Guest writes a GPTE for GVA X.
2509          *                          (GPTE being in the guest page table shadowed
2510          *                           by the SP from CPU 1.)
2511          *                          This reads SPTE during the page table walk.
2512          *                          Since SPTE.W is read as 1, there is no
2513          *                          fault.
2514          *
2515          *                      2.2 Guest issues TLB flush.
2516          *                          That causes a VM Exit.
2517          *
2518          *                      2.3 Walking of unsync pages sees sp->unsync is
2519          *                          false and skips the page.
2520          *
2521          *                      2.4 Guest accesses GVA X.
2522          *                          Since the mapping in the SP was not updated,
2523          *                          so the old mapping for GVA X incorrectly
2524          *                          gets used.
2525          * 1.1 Host marks SP
2526          *     as unsync
2527          *     (sp->unsync = true)
2528          *
2529          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2530          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2531          * pairs with this write barrier.
2532          */
2533         smp_wmb();
2534
2535         return 0;
2536 }
2537
2538 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2539                     unsigned int pte_access, int level,
2540                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2541                     bool can_unsync, bool host_writable)
2542 {
2543         u64 spte;
2544         struct kvm_mmu_page *sp;
2545         int ret;
2546
2547         sp = sptep_to_sp(sptep);
2548
2549         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2550                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2551
2552         if (spte & PT_WRITABLE_MASK)
2553                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2554
2555         if (*sptep == spte)
2556                 ret |= SET_SPTE_SPURIOUS;
2557         else if (mmu_spte_update(sptep, spte))
2558                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2559         return ret;
2560 }
2561
2562 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2563                         unsigned int pte_access, bool write_fault, int level,
2564                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2565                         bool host_writable)
2566 {
2567         int was_rmapped = 0;
2568         int rmap_count;
2569         int set_spte_ret;
2570         int ret = RET_PF_FIXED;
2571         bool flush = false;
2572
2573         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2574                  *sptep, write_fault, gfn);
2575
2576         if (unlikely(is_noslot_pfn(pfn))) {
2577                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2578                 return RET_PF_EMULATE;
2579         }
2580
2581         if (is_shadow_present_pte(*sptep)) {
2582                 /*
2583                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2584                  * the parent of the now unreachable PTE.
2585                  */
2586                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2587                         struct kvm_mmu_page *child;
2588                         u64 pte = *sptep;
2589
2590                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2591                         drop_parent_pte(child, sptep);
2592                         flush = true;
2593                 } else if (pfn != spte_to_pfn(*sptep)) {
2594                         pgprintk("hfn old %llx new %llx\n",
2595                                  spte_to_pfn(*sptep), pfn);
2596                         drop_spte(vcpu->kvm, sptep);
2597                         flush = true;
2598                 } else
2599                         was_rmapped = 1;
2600         }
2601
2602         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2603                                 speculative, true, host_writable);
2604         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2605                 if (write_fault)
2606                         ret = RET_PF_EMULATE;
2607                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2608         }
2609
2610         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2611                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2612                                 KVM_PAGES_PER_HPAGE(level));
2613
2614         /*
2615          * The fault is fully spurious if and only if the new SPTE and old SPTE
2616          * are identical, and emulation is not required.
2617          */
2618         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2619                 WARN_ON_ONCE(!was_rmapped);
2620                 return RET_PF_SPURIOUS;
2621         }
2622
2623         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2624         trace_kvm_mmu_set_spte(level, gfn, sptep);
2625         if (!was_rmapped && is_large_pte(*sptep))
2626                 ++vcpu->kvm->stat.lpages;
2627
2628         if (is_shadow_present_pte(*sptep)) {
2629                 if (!was_rmapped) {
2630                         rmap_count = rmap_add(vcpu, sptep, gfn);
2631                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2632                                 rmap_recycle(vcpu, sptep, gfn);
2633                 }
2634         }
2635
2636         return ret;
2637 }
2638
2639 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2640                                      bool no_dirty_log)
2641 {
2642         struct kvm_memory_slot *slot;
2643
2644         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2645         if (!slot)
2646                 return KVM_PFN_ERR_FAULT;
2647
2648         return gfn_to_pfn_memslot_atomic(slot, gfn);
2649 }
2650
2651 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2652                                     struct kvm_mmu_page *sp,
2653                                     u64 *start, u64 *end)
2654 {
2655         struct page *pages[PTE_PREFETCH_NUM];
2656         struct kvm_memory_slot *slot;
2657         unsigned int access = sp->role.access;
2658         int i, ret;
2659         gfn_t gfn;
2660
2661         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2662         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2663         if (!slot)
2664                 return -1;
2665
2666         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2667         if (ret <= 0)
2668                 return -1;
2669
2670         for (i = 0; i < ret; i++, gfn++, start++) {
2671                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2672                              page_to_pfn(pages[i]), true, true);
2673                 put_page(pages[i]);
2674         }
2675
2676         return 0;
2677 }
2678
2679 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2680                                   struct kvm_mmu_page *sp, u64 *sptep)
2681 {
2682         u64 *spte, *start = NULL;
2683         int i;
2684
2685         WARN_ON(!sp->role.direct);
2686
2687         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2688         spte = sp->spt + i;
2689
2690         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2691                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2692                         if (!start)
2693                                 continue;
2694                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2695                                 break;
2696                         start = NULL;
2697                 } else if (!start)
2698                         start = spte;
2699         }
2700 }
2701
2702 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2703 {
2704         struct kvm_mmu_page *sp;
2705
2706         sp = sptep_to_sp(sptep);
2707
2708         /*
2709          * Without accessed bits, there's no way to distinguish between
2710          * actually accessed translations and prefetched, so disable pte
2711          * prefetch if accessed bits aren't available.
2712          */
2713         if (sp_ad_disabled(sp))
2714                 return;
2715
2716         if (sp->role.level > PG_LEVEL_4K)
2717                 return;
2718
2719         /*
2720          * If addresses are being invalidated, skip prefetching to avoid
2721          * accidentally prefetching those addresses.
2722          */
2723         if (unlikely(vcpu->kvm->mmu_notifier_count))
2724                 return;
2725
2726         __direct_pte_prefetch(vcpu, sp, sptep);
2727 }
2728
2729 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2730                                   const struct kvm_memory_slot *slot)
2731 {
2732         unsigned long hva;
2733         pte_t *pte;
2734         int level;
2735
2736         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2737                 return PG_LEVEL_4K;
2738
2739         /*
2740          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2741          * is not solely for performance, it's also necessary to avoid the
2742          * "writable" check in __gfn_to_hva_many(), which will always fail on
2743          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2744          * page fault steps have already verified the guest isn't writing a
2745          * read-only memslot.
2746          */
2747         hva = __gfn_to_hva_memslot(slot, gfn);
2748
2749         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2750         if (unlikely(!pte))
2751                 return PG_LEVEL_4K;
2752
2753         return level;
2754 }
2755
2756 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2757                               const struct kvm_memory_slot *slot, gfn_t gfn,
2758                               kvm_pfn_t pfn, int max_level)
2759 {
2760         struct kvm_lpage_info *linfo;
2761
2762         max_level = min(max_level, max_huge_page_level);
2763         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2764                 linfo = lpage_info_slot(gfn, slot, max_level);
2765                 if (!linfo->disallow_lpage)
2766                         break;
2767         }
2768
2769         if (max_level == PG_LEVEL_4K)
2770                 return PG_LEVEL_4K;
2771
2772         return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2773 }
2774
2775 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2776                             int max_level, kvm_pfn_t *pfnp,
2777                             bool huge_page_disallowed, int *req_level)
2778 {
2779         struct kvm_memory_slot *slot;
2780         kvm_pfn_t pfn = *pfnp;
2781         kvm_pfn_t mask;
2782         int level;
2783
2784         *req_level = PG_LEVEL_4K;
2785
2786         if (unlikely(max_level == PG_LEVEL_4K))
2787                 return PG_LEVEL_4K;
2788
2789         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2790                 return PG_LEVEL_4K;
2791
2792         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2793         if (!slot)
2794                 return PG_LEVEL_4K;
2795
2796         level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2797         if (level == PG_LEVEL_4K)
2798                 return level;
2799
2800         *req_level = level = min(level, max_level);
2801
2802         /*
2803          * Enforce the iTLB multihit workaround after capturing the requested
2804          * level, which will be used to do precise, accurate accounting.
2805          */
2806         if (huge_page_disallowed)
2807                 return PG_LEVEL_4K;
2808
2809         /*
2810          * mmu_notifier_retry() was successful and mmu_lock is held, so
2811          * the pmd can't be split from under us.
2812          */
2813         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2814         VM_BUG_ON((gfn & mask) != (pfn & mask));
2815         *pfnp = pfn & ~mask;
2816
2817         return level;
2818 }
2819
2820 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2821                                 kvm_pfn_t *pfnp, int *goal_levelp)
2822 {
2823         int level = *goal_levelp;
2824
2825         if (cur_level == level && level > PG_LEVEL_4K &&
2826             is_shadow_present_pte(spte) &&
2827             !is_large_pte(spte)) {
2828                 /*
2829                  * A small SPTE exists for this pfn, but FNAME(fetch)
2830                  * and __direct_map would like to create a large PTE
2831                  * instead: just force them to go down another level,
2832                  * patching back for them into pfn the next 9 bits of
2833                  * the address.
2834                  */
2835                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2836                                 KVM_PAGES_PER_HPAGE(level - 1);
2837                 *pfnp |= gfn & page_mask;
2838                 (*goal_levelp)--;
2839         }
2840 }
2841
2842 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2843                         int map_writable, int max_level, kvm_pfn_t pfn,
2844                         bool prefault, bool is_tdp)
2845 {
2846         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2847         bool write = error_code & PFERR_WRITE_MASK;
2848         bool exec = error_code & PFERR_FETCH_MASK;
2849         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2850         struct kvm_shadow_walk_iterator it;
2851         struct kvm_mmu_page *sp;
2852         int level, req_level, ret;
2853         gfn_t gfn = gpa >> PAGE_SHIFT;
2854         gfn_t base_gfn = gfn;
2855
2856         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2857                                         huge_page_disallowed, &req_level);
2858
2859         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2860         for_each_shadow_entry(vcpu, gpa, it) {
2861                 /*
2862                  * We cannot overwrite existing page tables with an NX
2863                  * large page, as the leaf could be executable.
2864                  */
2865                 if (nx_huge_page_workaround_enabled)
2866                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2867                                                    &pfn, &level);
2868
2869                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2870                 if (it.level == level)
2871                         break;
2872
2873                 drop_large_spte(vcpu, it.sptep);
2874                 if (!is_shadow_present_pte(*it.sptep)) {
2875                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2876                                               it.level - 1, true, ACC_ALL);
2877
2878                         link_shadow_page(vcpu, it.sptep, sp);
2879                         if (is_tdp && huge_page_disallowed &&
2880                             req_level >= it.level)
2881                                 account_huge_nx_page(vcpu->kvm, sp);
2882                 }
2883         }
2884
2885         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2886                            write, level, base_gfn, pfn, prefault,
2887                            map_writable);
2888         if (ret == RET_PF_SPURIOUS)
2889                 return ret;
2890
2891         direct_pte_prefetch(vcpu, it.sptep);
2892         ++vcpu->stat.pf_fixed;
2893         return ret;
2894 }
2895
2896 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2897 {
2898         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2899 }
2900
2901 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2902 {
2903         /*
2904          * Do not cache the mmio info caused by writing the readonly gfn
2905          * into the spte otherwise read access on readonly gfn also can
2906          * caused mmio page fault and treat it as mmio access.
2907          */
2908         if (pfn == KVM_PFN_ERR_RO_FAULT)
2909                 return RET_PF_EMULATE;
2910
2911         if (pfn == KVM_PFN_ERR_HWPOISON) {
2912                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2913                 return RET_PF_RETRY;
2914         }
2915
2916         return -EFAULT;
2917 }
2918
2919 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2920                                 kvm_pfn_t pfn, unsigned int access,
2921                                 int *ret_val)
2922 {
2923         /* The pfn is invalid, report the error! */
2924         if (unlikely(is_error_pfn(pfn))) {
2925                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2926                 return true;
2927         }
2928
2929         if (unlikely(is_noslot_pfn(pfn))) {
2930                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2931                                      access & shadow_mmio_access_mask);
2932                 /*
2933                  * If MMIO caching is disabled, emulate immediately without
2934                  * touching the shadow page tables as attempting to install an
2935                  * MMIO SPTE will just be an expensive nop.
2936                  */
2937                 if (unlikely(!shadow_mmio_value)) {
2938                         *ret_val = RET_PF_EMULATE;
2939                         return true;
2940                 }
2941         }
2942
2943         return false;
2944 }
2945
2946 static bool page_fault_can_be_fast(u32 error_code)
2947 {
2948         /*
2949          * Do not fix the mmio spte with invalid generation number which
2950          * need to be updated by slow page fault path.
2951          */
2952         if (unlikely(error_code & PFERR_RSVD_MASK))
2953                 return false;
2954
2955         /* See if the page fault is due to an NX violation */
2956         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2957                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2958                 return false;
2959
2960         /*
2961          * #PF can be fast if:
2962          * 1. The shadow page table entry is not present, which could mean that
2963          *    the fault is potentially caused by access tracking (if enabled).
2964          * 2. The shadow page table entry is present and the fault
2965          *    is caused by write-protect, that means we just need change the W
2966          *    bit of the spte which can be done out of mmu-lock.
2967          *
2968          * However, if access tracking is disabled we know that a non-present
2969          * page must be a genuine page fault where we have to create a new SPTE.
2970          * So, if access tracking is disabled, we return true only for write
2971          * accesses to a present page.
2972          */
2973
2974         return shadow_acc_track_mask != 0 ||
2975                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2976                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2977 }
2978
2979 /*
2980  * Returns true if the SPTE was fixed successfully. Otherwise,
2981  * someone else modified the SPTE from its original value.
2982  */
2983 static bool
2984 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2985                         u64 *sptep, u64 old_spte, u64 new_spte)
2986 {
2987         gfn_t gfn;
2988
2989         WARN_ON(!sp->role.direct);
2990
2991         /*
2992          * Theoretically we could also set dirty bit (and flush TLB) here in
2993          * order to eliminate unnecessary PML logging. See comments in
2994          * set_spte. But fast_page_fault is very unlikely to happen with PML
2995          * enabled, so we do not do this. This might result in the same GPA
2996          * to be logged in PML buffer again when the write really happens, and
2997          * eventually to be called by mark_page_dirty twice. But it's also no
2998          * harm. This also avoids the TLB flush needed after setting dirty bit
2999          * so non-PML cases won't be impacted.
3000          *
3001          * Compare with set_spte where instead shadow_dirty_mask is set.
3002          */
3003         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3004                 return false;
3005
3006         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3007                 /*
3008                  * The gfn of direct spte is stable since it is
3009                  * calculated by sp->gfn.
3010                  */
3011                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3012                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3013         }
3014
3015         return true;
3016 }
3017
3018 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3019 {
3020         if (fault_err_code & PFERR_FETCH_MASK)
3021                 return is_executable_pte(spte);
3022
3023         if (fault_err_code & PFERR_WRITE_MASK)
3024                 return is_writable_pte(spte);
3025
3026         /* Fault was on Read access */
3027         return spte & PT_PRESENT_MASK;
3028 }
3029
3030 /*
3031  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3032  */
3033 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3034                            u32 error_code)
3035 {
3036         struct kvm_shadow_walk_iterator iterator;
3037         struct kvm_mmu_page *sp;
3038         int ret = RET_PF_INVALID;
3039         u64 spte = 0ull;
3040         uint retry_count = 0;
3041
3042         if (!page_fault_can_be_fast(error_code))
3043                 return ret;
3044
3045         walk_shadow_page_lockless_begin(vcpu);
3046
3047         do {
3048                 u64 new_spte;
3049
3050                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3051                         if (!is_shadow_present_pte(spte))
3052                                 break;
3053
3054                 if (!is_shadow_present_pte(spte))
3055                         break;
3056
3057                 sp = sptep_to_sp(iterator.sptep);
3058                 if (!is_last_spte(spte, sp->role.level))
3059                         break;
3060
3061                 /*
3062                  * Check whether the memory access that caused the fault would
3063                  * still cause it if it were to be performed right now. If not,
3064                  * then this is a spurious fault caused by TLB lazily flushed,
3065                  * or some other CPU has already fixed the PTE after the
3066                  * current CPU took the fault.
3067                  *
3068                  * Need not check the access of upper level table entries since
3069                  * they are always ACC_ALL.
3070                  */
3071                 if (is_access_allowed(error_code, spte)) {
3072                         ret = RET_PF_SPURIOUS;
3073                         break;
3074                 }
3075
3076                 new_spte = spte;
3077
3078                 if (is_access_track_spte(spte))
3079                         new_spte = restore_acc_track_spte(new_spte);
3080
3081                 /*
3082                  * Currently, to simplify the code, write-protection can
3083                  * be removed in the fast path only if the SPTE was
3084                  * write-protected for dirty-logging or access tracking.
3085                  */
3086                 if ((error_code & PFERR_WRITE_MASK) &&
3087                     spte_can_locklessly_be_made_writable(spte)) {
3088                         new_spte |= PT_WRITABLE_MASK;
3089
3090                         /*
3091                          * Do not fix write-permission on the large spte.  Since
3092                          * we only dirty the first page into the dirty-bitmap in
3093                          * fast_pf_fix_direct_spte(), other pages are missed
3094                          * if its slot has dirty logging enabled.
3095                          *
3096                          * Instead, we let the slow page fault path create a
3097                          * normal spte to fix the access.
3098                          *
3099                          * See the comments in kvm_arch_commit_memory_region().
3100                          */
3101                         if (sp->role.level > PG_LEVEL_4K)
3102                                 break;
3103                 }
3104
3105                 /* Verify that the fault can be handled in the fast path */
3106                 if (new_spte == spte ||
3107                     !is_access_allowed(error_code, new_spte))
3108                         break;
3109
3110                 /*
3111                  * Currently, fast page fault only works for direct mapping
3112                  * since the gfn is not stable for indirect shadow page. See
3113                  * Documentation/virt/kvm/locking.rst to get more detail.
3114                  */
3115                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3116                                             new_spte)) {
3117                         ret = RET_PF_FIXED;
3118                         break;
3119                 }
3120
3121                 if (++retry_count > 4) {
3122                         printk_once(KERN_WARNING
3123                                 "kvm: Fast #PF retrying more than 4 times.\n");
3124                         break;
3125                 }
3126
3127         } while (true);
3128
3129         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3130                               spte, ret);
3131         walk_shadow_page_lockless_end(vcpu);
3132
3133         return ret;
3134 }
3135
3136 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3137                                struct list_head *invalid_list)
3138 {
3139         struct kvm_mmu_page *sp;
3140
3141         if (!VALID_PAGE(*root_hpa))
3142                 return;
3143
3144         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3145
3146         if (is_tdp_mmu_page(sp))
3147                 kvm_tdp_mmu_put_root(kvm, sp, false);
3148         else if (!--sp->root_count && sp->role.invalid)
3149                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3150
3151         *root_hpa = INVALID_PAGE;
3152 }
3153
3154 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3155 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3156                         ulong roots_to_free)
3157 {
3158         struct kvm *kvm = vcpu->kvm;
3159         int i;
3160         LIST_HEAD(invalid_list);
3161         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3162
3163         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3164
3165         /* Before acquiring the MMU lock, see if we need to do any real work. */
3166         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3167                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3168                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3169                             VALID_PAGE(mmu->prev_roots[i].hpa))
3170                                 break;
3171
3172                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3173                         return;
3174         }
3175
3176         write_lock(&kvm->mmu_lock);
3177
3178         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3179                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3180                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3181                                            &invalid_list);
3182
3183         if (free_active_root) {
3184                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3185                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3186                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3187                 } else if (mmu->pae_root) {
3188                         for (i = 0; i < 4; ++i) {
3189                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3190                                         continue;
3191
3192                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3193                                                    &invalid_list);
3194                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3195                         }
3196                 }
3197                 mmu->root_hpa = INVALID_PAGE;
3198                 mmu->root_pgd = 0;
3199         }
3200
3201         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3202         write_unlock(&kvm->mmu_lock);
3203 }
3204 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3205
3206 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3207 {
3208         unsigned long roots_to_free = 0;
3209         hpa_t root_hpa;
3210         int i;
3211
3212         /*
3213          * This should not be called while L2 is active, L2 can't invalidate
3214          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3215          */
3216         WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3217
3218         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3219                 root_hpa = mmu->prev_roots[i].hpa;
3220                 if (!VALID_PAGE(root_hpa))
3221                         continue;
3222
3223                 if (!to_shadow_page(root_hpa) ||
3224                         to_shadow_page(root_hpa)->role.guest_mode)
3225                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3226         }
3227
3228         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3229 }
3230 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3231
3232
3233 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3234 {
3235         int ret = 0;
3236
3237         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3238                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3239                 ret = 1;
3240         }
3241
3242         return ret;
3243 }
3244
3245 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3246                             u8 level, bool direct)
3247 {
3248         struct kvm_mmu_page *sp;
3249
3250         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3251         ++sp->root_count;
3252
3253         return __pa(sp->spt);
3254 }
3255
3256 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3257 {
3258         struct kvm_mmu *mmu = vcpu->arch.mmu;
3259         u8 shadow_root_level = mmu->shadow_root_level;
3260         hpa_t root;
3261         unsigned i;
3262         int r;
3263
3264         write_lock(&vcpu->kvm->mmu_lock);
3265         r = make_mmu_pages_available(vcpu);
3266         if (r < 0)
3267                 goto out_unlock;
3268
3269         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3270                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3271                 mmu->root_hpa = root;
3272         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3273                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3274                 mmu->root_hpa = root;
3275         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3276                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3277                         r = -EIO;
3278                         goto out_unlock;
3279                 }
3280
3281                 for (i = 0; i < 4; ++i) {
3282                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3283
3284                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3285                                               i << 30, PT32_ROOT_LEVEL, true);
3286                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3287                                            shadow_me_mask;
3288                 }
3289                 mmu->root_hpa = __pa(mmu->pae_root);
3290         } else {
3291                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3292                 r = -EIO;
3293                 goto out_unlock;
3294         }
3295
3296         /* root_pgd is ignored for direct MMUs. */
3297         mmu->root_pgd = 0;
3298 out_unlock:
3299         write_unlock(&vcpu->kvm->mmu_lock);
3300         return r;
3301 }
3302
3303 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3304 {
3305         struct kvm_mmu *mmu = vcpu->arch.mmu;
3306         u64 pdptrs[4], pm_mask;
3307         gfn_t root_gfn, root_pgd;
3308         hpa_t root;
3309         unsigned i;
3310         int r;
3311
3312         root_pgd = mmu->get_guest_pgd(vcpu);
3313         root_gfn = root_pgd >> PAGE_SHIFT;
3314
3315         if (mmu_check_root(vcpu, root_gfn))
3316                 return 1;
3317
3318         /*
3319          * On SVM, reading PDPTRs might access guest memory, which might fault
3320          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3321          */
3322         if (mmu->root_level == PT32E_ROOT_LEVEL) {
3323                 for (i = 0; i < 4; ++i) {
3324                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3325                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3326                                 continue;
3327
3328                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3329                                 return 1;
3330                 }
3331         }
3332
3333         r = alloc_all_memslots_rmaps(vcpu->kvm);
3334         if (r)
3335                 return r;
3336
3337         write_lock(&vcpu->kvm->mmu_lock);
3338         r = make_mmu_pages_available(vcpu);
3339         if (r < 0)
3340                 goto out_unlock;
3341
3342         /*
3343          * Do we shadow a long mode page table? If so we need to
3344          * write-protect the guests page table root.
3345          */
3346         if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3347                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3348                                       mmu->shadow_root_level, false);
3349                 mmu->root_hpa = root;
3350                 goto set_root_pgd;
3351         }
3352
3353         if (WARN_ON_ONCE(!mmu->pae_root)) {
3354                 r = -EIO;
3355                 goto out_unlock;
3356         }
3357
3358         /*
3359          * We shadow a 32 bit page table. This may be a legacy 2-level
3360          * or a PAE 3-level page table. In either case we need to be aware that
3361          * the shadow page table may be a PAE or a long mode page table.
3362          */
3363         pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3364         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3365                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3366
3367                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3368                         r = -EIO;
3369                         goto out_unlock;
3370                 }
3371
3372                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3373         }
3374
3375         for (i = 0; i < 4; ++i) {
3376                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3377
3378                 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3379                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3380                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3381                                 continue;
3382                         }
3383                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3384                 }
3385
3386                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3387                                       PT32_ROOT_LEVEL, false);
3388                 mmu->pae_root[i] = root | pm_mask;
3389         }
3390
3391         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3392                 mmu->root_hpa = __pa(mmu->pml4_root);
3393         else
3394                 mmu->root_hpa = __pa(mmu->pae_root);
3395
3396 set_root_pgd:
3397         mmu->root_pgd = root_pgd;
3398 out_unlock:
3399         write_unlock(&vcpu->kvm->mmu_lock);
3400
3401         return 0;
3402 }
3403
3404 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3405 {
3406         struct kvm_mmu *mmu = vcpu->arch.mmu;
3407         u64 *pml4_root, *pae_root;
3408
3409         /*
3410          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3411          * tables are allocated and initialized at root creation as there is no
3412          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3413          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3414          */
3415         if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3416             mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3417                 return 0;
3418
3419         /*
3420          * This mess only works with 4-level paging and needs to be updated to
3421          * work with 5-level paging.
3422          */
3423         if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3424                 return -EIO;
3425
3426         if (mmu->pae_root && mmu->pml4_root)
3427                 return 0;
3428
3429         /*
3430          * The special roots should always be allocated in concert.  Yell and
3431          * bail if KVM ends up in a state where only one of the roots is valid.
3432          */
3433         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3434                 return -EIO;
3435
3436         /*
3437          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3438          * doesn't need to be decrypted.
3439          */
3440         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3441         if (!pae_root)
3442                 return -ENOMEM;
3443
3444         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3445         if (!pml4_root) {
3446                 free_page((unsigned long)pae_root);
3447                 return -ENOMEM;
3448         }
3449
3450         mmu->pae_root = pae_root;
3451         mmu->pml4_root = pml4_root;
3452
3453         return 0;
3454 }
3455
3456 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3457 {
3458         int i;
3459         struct kvm_mmu_page *sp;
3460
3461         if (vcpu->arch.mmu->direct_map)
3462                 return;
3463
3464         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3465                 return;
3466
3467         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3468
3469         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3470                 hpa_t root = vcpu->arch.mmu->root_hpa;
3471                 sp = to_shadow_page(root);
3472
3473                 /*
3474                  * Even if another CPU was marking the SP as unsync-ed
3475                  * simultaneously, any guest page table changes are not
3476                  * guaranteed to be visible anyway until this VCPU issues a TLB
3477                  * flush strictly after those changes are made. We only need to
3478                  * ensure that the other CPU sets these flags before any actual
3479                  * changes to the page tables are made. The comments in
3480                  * mmu_try_to_unsync_pages() describe what could go wrong if
3481                  * this requirement isn't satisfied.
3482                  */
3483                 if (!smp_load_acquire(&sp->unsync) &&
3484                     !smp_load_acquire(&sp->unsync_children))
3485                         return;
3486
3487                 write_lock(&vcpu->kvm->mmu_lock);
3488                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3489
3490                 mmu_sync_children(vcpu, sp);
3491
3492                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3493                 write_unlock(&vcpu->kvm->mmu_lock);
3494                 return;
3495         }
3496
3497         write_lock(&vcpu->kvm->mmu_lock);
3498         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3499
3500         for (i = 0; i < 4; ++i) {
3501                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3502
3503                 if (IS_VALID_PAE_ROOT(root)) {
3504                         root &= PT64_BASE_ADDR_MASK;
3505                         sp = to_shadow_page(root);
3506                         mmu_sync_children(vcpu, sp);
3507                 }
3508         }
3509
3510         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3511         write_unlock(&vcpu->kvm->mmu_lock);
3512 }
3513
3514 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3515                                   u32 access, struct x86_exception *exception)
3516 {
3517         if (exception)
3518                 exception->error_code = 0;
3519         return vaddr;
3520 }
3521
3522 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3523                                          u32 access,
3524                                          struct x86_exception *exception)
3525 {
3526         if (exception)
3527                 exception->error_code = 0;
3528         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3529 }
3530
3531 static bool
3532 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3533 {
3534         int bit7 = (pte >> 7) & 1;
3535
3536         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3537 }
3538
3539 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3540 {
3541         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3542 }
3543
3544 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3545 {
3546         /*
3547          * A nested guest cannot use the MMIO cache if it is using nested
3548          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3549          */
3550         if (mmu_is_nested(vcpu))
3551                 return false;
3552
3553         if (direct)
3554                 return vcpu_match_mmio_gpa(vcpu, addr);
3555
3556         return vcpu_match_mmio_gva(vcpu, addr);
3557 }
3558
3559 /*
3560  * Return the level of the lowest level SPTE added to sptes.
3561  * That SPTE may be non-present.
3562  */
3563 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3564 {
3565         struct kvm_shadow_walk_iterator iterator;
3566         int leaf = -1;
3567         u64 spte;
3568
3569         walk_shadow_page_lockless_begin(vcpu);
3570
3571         for (shadow_walk_init(&iterator, vcpu, addr),
3572              *root_level = iterator.level;
3573              shadow_walk_okay(&iterator);
3574              __shadow_walk_next(&iterator, spte)) {
3575                 leaf = iterator.level;
3576                 spte = mmu_spte_get_lockless(iterator.sptep);
3577
3578                 sptes[leaf] = spte;
3579
3580                 if (!is_shadow_present_pte(spte))
3581                         break;
3582         }
3583
3584         walk_shadow_page_lockless_end(vcpu);
3585
3586         return leaf;
3587 }
3588
3589 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3590 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3591 {
3592         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3593         struct rsvd_bits_validate *rsvd_check;
3594         int root, leaf, level;
3595         bool reserved = false;
3596
3597         if (is_tdp_mmu(vcpu->arch.mmu))
3598                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3599         else
3600                 leaf = get_walk(vcpu, addr, sptes, &root);
3601
3602         if (unlikely(leaf < 0)) {
3603                 *sptep = 0ull;
3604                 return reserved;
3605         }
3606
3607         *sptep = sptes[leaf];
3608
3609         /*
3610          * Skip reserved bits checks on the terminal leaf if it's not a valid
3611          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3612          * design, always have reserved bits set.  The purpose of the checks is
3613          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3614          */
3615         if (!is_shadow_present_pte(sptes[leaf]))
3616                 leaf++;
3617
3618         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3619
3620         for (level = root; level >= leaf; level--)
3621                 /*
3622                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3623                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3624                  * adding a Jcc in the loop.
3625                  */
3626                 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3627                             __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3628
3629         if (reserved) {
3630                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3631                        __func__, addr);
3632                 for (level = root; level >= leaf; level--)
3633                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3634                                sptes[level], level,
3635                                rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
3636         }
3637
3638         return reserved;
3639 }
3640
3641 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3642 {
3643         u64 spte;
3644         bool reserved;
3645
3646         if (mmio_info_in_cache(vcpu, addr, direct))
3647                 return RET_PF_EMULATE;
3648
3649         reserved = get_mmio_spte(vcpu, addr, &spte);
3650         if (WARN_ON(reserved))
3651                 return -EINVAL;
3652
3653         if (is_mmio_spte(spte)) {
3654                 gfn_t gfn = get_mmio_spte_gfn(spte);
3655                 unsigned int access = get_mmio_spte_access(spte);
3656
3657                 if (!check_mmio_spte(vcpu, spte))
3658                         return RET_PF_INVALID;
3659
3660                 if (direct)
3661                         addr = 0;
3662
3663                 trace_handle_mmio_page_fault(addr, gfn, access);
3664                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3665                 return RET_PF_EMULATE;
3666         }
3667
3668         /*
3669          * If the page table is zapped by other cpus, let CPU fault again on
3670          * the address.
3671          */
3672         return RET_PF_RETRY;
3673 }
3674
3675 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3676                                          u32 error_code, gfn_t gfn)
3677 {
3678         if (unlikely(error_code & PFERR_RSVD_MASK))
3679                 return false;
3680
3681         if (!(error_code & PFERR_PRESENT_MASK) ||
3682               !(error_code & PFERR_WRITE_MASK))
3683                 return false;
3684
3685         /*
3686          * guest is writing the page which is write tracked which can
3687          * not be fixed by page fault handler.
3688          */
3689         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3690                 return true;
3691
3692         return false;
3693 }
3694
3695 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3696 {
3697         struct kvm_shadow_walk_iterator iterator;
3698         u64 spte;
3699
3700         walk_shadow_page_lockless_begin(vcpu);
3701         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3702                 clear_sp_write_flooding_count(iterator.sptep);
3703                 if (!is_shadow_present_pte(spte))
3704                         break;
3705         }
3706         walk_shadow_page_lockless_end(vcpu);
3707 }
3708
3709 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3710                                     gfn_t gfn)
3711 {
3712         struct kvm_arch_async_pf arch;
3713
3714         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3715         arch.gfn = gfn;
3716         arch.direct_map = vcpu->arch.mmu->direct_map;
3717         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3718
3719         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3720                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3721 }
3722
3723 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3724                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3725                          bool write, bool *writable)
3726 {
3727         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3728         bool async;
3729
3730         /*
3731          * Retry the page fault if the gfn hit a memslot that is being deleted
3732          * or moved.  This ensures any existing SPTEs for the old memslot will
3733          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3734          */
3735         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3736                 return true;
3737
3738         /* Don't expose private memslots to L2. */
3739         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3740                 *pfn = KVM_PFN_NOSLOT;
3741                 *writable = false;
3742                 return false;
3743         }
3744
3745         async = false;
3746         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3747                                     write, writable, hva);
3748         if (!async)
3749                 return false; /* *pfn has correct page already */
3750
3751         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3752                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3753                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3754                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3755                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3756                         return true;
3757                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3758                         return true;
3759         }
3760
3761         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3762                                     write, writable, hva);
3763         return false;
3764 }
3765
3766 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3767                              bool prefault, int max_level, bool is_tdp)
3768 {
3769         bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3770         bool write = error_code & PFERR_WRITE_MASK;
3771         bool map_writable;
3772
3773         gfn_t gfn = gpa >> PAGE_SHIFT;
3774         unsigned long mmu_seq;
3775         kvm_pfn_t pfn;
3776         hva_t hva;
3777         int r;
3778
3779         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3780                 return RET_PF_EMULATE;
3781
3782         if (!is_tdp_mmu_fault) {
3783                 r = fast_page_fault(vcpu, gpa, error_code);
3784                 if (r != RET_PF_INVALID)
3785                         return r;
3786         }
3787
3788         r = mmu_topup_memory_caches(vcpu, false);
3789         if (r)
3790                 return r;
3791
3792         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3793         smp_rmb();
3794
3795         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3796                          write, &map_writable))
3797                 return RET_PF_RETRY;
3798
3799         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3800                 return r;
3801
3802         r = RET_PF_RETRY;
3803
3804         if (is_tdp_mmu_fault)
3805                 read_lock(&vcpu->kvm->mmu_lock);
3806         else
3807                 write_lock(&vcpu->kvm->mmu_lock);
3808
3809         if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3810                 goto out_unlock;
3811         r = make_mmu_pages_available(vcpu);
3812         if (r)
3813                 goto out_unlock;
3814
3815         if (is_tdp_mmu_fault)
3816                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3817                                     pfn, prefault);
3818         else
3819                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3820                                  prefault, is_tdp);
3821
3822 out_unlock:
3823         if (is_tdp_mmu_fault)
3824                 read_unlock(&vcpu->kvm->mmu_lock);
3825         else
3826                 write_unlock(&vcpu->kvm->mmu_lock);
3827         kvm_release_pfn_clean(pfn);
3828         return r;
3829 }
3830
3831 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3832                                 u32 error_code, bool prefault)
3833 {
3834         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3835
3836         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3837         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3838                                  PG_LEVEL_2M, false);
3839 }
3840
3841 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3842                                 u64 fault_address, char *insn, int insn_len)
3843 {
3844         int r = 1;
3845         u32 flags = vcpu->arch.apf.host_apf_flags;
3846
3847 #ifndef CONFIG_X86_64
3848         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3849         if (WARN_ON_ONCE(fault_address >> 32))
3850                 return -EFAULT;
3851 #endif
3852
3853         vcpu->arch.l1tf_flush_l1d = true;
3854         if (!flags) {
3855                 trace_kvm_page_fault(fault_address, error_code);
3856
3857                 if (kvm_event_needs_reinjection(vcpu))
3858                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3859                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3860                                 insn_len);
3861         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3862                 vcpu->arch.apf.host_apf_flags = 0;
3863                 local_irq_disable();
3864                 kvm_async_pf_task_wait_schedule(fault_address);
3865                 local_irq_enable();
3866         } else {
3867                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3868         }
3869
3870         return r;
3871 }
3872 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3873
3874 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3875                        bool prefault)
3876 {
3877         int max_level;
3878
3879         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3880              max_level > PG_LEVEL_4K;
3881              max_level--) {
3882                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3883                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3884
3885                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3886                         break;
3887         }
3888
3889         return direct_page_fault(vcpu, gpa, error_code, prefault,
3890                                  max_level, true);
3891 }
3892
3893 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3894                                    struct kvm_mmu *context)
3895 {
3896         context->page_fault = nonpaging_page_fault;
3897         context->gva_to_gpa = nonpaging_gva_to_gpa;
3898         context->sync_page = nonpaging_sync_page;
3899         context->invlpg = NULL;
3900         context->root_level = 0;
3901         context->shadow_root_level = PT32E_ROOT_LEVEL;
3902         context->direct_map = true;
3903         context->nx = false;
3904 }
3905
3906 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3907                                   union kvm_mmu_page_role role)
3908 {
3909         return (role.direct || pgd == root->pgd) &&
3910                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3911                role.word == to_shadow_page(root->hpa)->role.word;
3912 }
3913
3914 /*
3915  * Find out if a previously cached root matching the new pgd/role is available.
3916  * The current root is also inserted into the cache.
3917  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3918  * returned.
3919  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3920  * false is returned. This root should now be freed by the caller.
3921  */
3922 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3923                                   union kvm_mmu_page_role new_role)
3924 {
3925         uint i;
3926         struct kvm_mmu_root_info root;
3927         struct kvm_mmu *mmu = vcpu->arch.mmu;
3928
3929         root.pgd = mmu->root_pgd;
3930         root.hpa = mmu->root_hpa;
3931
3932         if (is_root_usable(&root, new_pgd, new_role))
3933                 return true;
3934
3935         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3936                 swap(root, mmu->prev_roots[i]);
3937
3938                 if (is_root_usable(&root, new_pgd, new_role))
3939                         break;
3940         }
3941
3942         mmu->root_hpa = root.hpa;
3943         mmu->root_pgd = root.pgd;
3944
3945         return i < KVM_MMU_NUM_PREV_ROOTS;
3946 }
3947
3948 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3949                             union kvm_mmu_page_role new_role)
3950 {
3951         struct kvm_mmu *mmu = vcpu->arch.mmu;
3952
3953         /*
3954          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3955          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3956          * later if necessary.
3957          */
3958         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3959             mmu->root_level >= PT64_ROOT_4LEVEL)
3960                 return cached_root_available(vcpu, new_pgd, new_role);
3961
3962         return false;
3963 }
3964
3965 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3966                               union kvm_mmu_page_role new_role)
3967 {
3968         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3969                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3970                 return;
3971         }
3972
3973         /*
3974          * It's possible that the cached previous root page is obsolete because
3975          * of a change in the MMU generation number. However, changing the
3976          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3977          * free the root set here and allocate a new one.
3978          */
3979         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3980
3981         if (force_flush_and_sync_on_reuse) {
3982                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3983                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3984         }
3985
3986         /*
3987          * The last MMIO access's GVA and GPA are cached in the VCPU. When
3988          * switching to a new CR3, that GVA->GPA mapping may no longer be
3989          * valid. So clear any cached MMIO info even when we don't need to sync
3990          * the shadow page tables.
3991          */
3992         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3993
3994         /*
3995          * If this is a direct root page, it doesn't have a write flooding
3996          * count. Otherwise, clear the write flooding count.
3997          */
3998         if (!new_role.direct)
3999                 __clear_sp_write_flooding_count(
4000                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
4001 }
4002
4003 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4004 {
4005         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4006 }
4007 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4008
4009 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4010 {
4011         return kvm_read_cr3(vcpu);
4012 }
4013
4014 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4015                            unsigned int access, int *nr_present)
4016 {
4017         if (unlikely(is_mmio_spte(*sptep))) {
4018                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4019                         mmu_spte_clear_no_track(sptep);
4020                         return true;
4021                 }
4022
4023                 (*nr_present)++;
4024                 mark_mmio_spte(vcpu, sptep, gfn, access);
4025                 return true;
4026         }
4027
4028         return false;
4029 }
4030
4031 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4032                                 unsigned level, unsigned gpte)
4033 {
4034         /*
4035          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4036          * If it is clear, there are no large pages at this level, so clear
4037          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4038          */
4039         gpte &= level - mmu->last_nonleaf_level;
4040
4041         /*
4042          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
4043          * iff level <= PG_LEVEL_4K, which for our purpose means
4044          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4045          */
4046         gpte |= level - PG_LEVEL_4K - 1;
4047
4048         return gpte & PT_PAGE_SIZE_MASK;
4049 }
4050
4051 #define PTTYPE_EPT 18 /* arbitrary */
4052 #define PTTYPE PTTYPE_EPT
4053 #include "paging_tmpl.h"
4054 #undef PTTYPE
4055
4056 #define PTTYPE 64
4057 #include "paging_tmpl.h"
4058 #undef PTTYPE
4059
4060 #define PTTYPE 32
4061 #include "paging_tmpl.h"
4062 #undef PTTYPE
4063
4064 static void
4065 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4066                         struct rsvd_bits_validate *rsvd_check,
4067                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4068                         bool pse, bool amd)
4069 {
4070         u64 gbpages_bit_rsvd = 0;
4071         u64 nonleaf_bit8_rsvd = 0;
4072         u64 high_bits_rsvd;
4073
4074         rsvd_check->bad_mt_xwr = 0;
4075
4076         if (!gbpages)
4077                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4078
4079         if (level == PT32E_ROOT_LEVEL)
4080                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4081         else
4082                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4083
4084         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4085         if (!nx)
4086                 high_bits_rsvd |= rsvd_bits(63, 63);
4087
4088         /*
4089          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4090          * leaf entries) on AMD CPUs only.
4091          */
4092         if (amd)
4093                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4094
4095         switch (level) {
4096         case PT32_ROOT_LEVEL:
4097                 /* no rsvd bits for 2 level 4K page table entries */
4098                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4099                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4100                 rsvd_check->rsvd_bits_mask[1][0] =
4101                         rsvd_check->rsvd_bits_mask[0][0];
4102
4103                 if (!pse) {
4104                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4105                         break;
4106                 }
4107
4108                 if (is_cpuid_PSE36())
4109                         /* 36bits PSE 4MB page */
4110                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4111                 else
4112                         /* 32 bits PSE 4MB page */
4113                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4114                 break;
4115         case PT32E_ROOT_LEVEL:
4116                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4117                                                    high_bits_rsvd |
4118                                                    rsvd_bits(5, 8) |
4119                                                    rsvd_bits(1, 2);     /* PDPTE */
4120                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4121                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4122                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4123                                                    rsvd_bits(13, 20);   /* large page */
4124                 rsvd_check->rsvd_bits_mask[1][0] =
4125                         rsvd_check->rsvd_bits_mask[0][0];
4126                 break;
4127         case PT64_ROOT_5LEVEL:
4128                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4129                                                    nonleaf_bit8_rsvd |
4130                                                    rsvd_bits(7, 7);
4131                 rsvd_check->rsvd_bits_mask[1][4] =
4132                         rsvd_check->rsvd_bits_mask[0][4];
4133                 fallthrough;
4134         case PT64_ROOT_4LEVEL:
4135                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4136                                                    nonleaf_bit8_rsvd |
4137                                                    rsvd_bits(7, 7);
4138                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4139                                                    gbpages_bit_rsvd;
4140                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4141                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4142                 rsvd_check->rsvd_bits_mask[1][3] =
4143                         rsvd_check->rsvd_bits_mask[0][3];
4144                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4145                                                    gbpages_bit_rsvd |
4146                                                    rsvd_bits(13, 29);
4147                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4148                                                    rsvd_bits(13, 20); /* large page */
4149                 rsvd_check->rsvd_bits_mask[1][0] =
4150                         rsvd_check->rsvd_bits_mask[0][0];
4151                 break;
4152         }
4153 }
4154
4155 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4156                                   struct kvm_mmu *context)
4157 {
4158         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4159                                 vcpu->arch.reserved_gpa_bits,
4160                                 context->root_level, context->nx,
4161                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4162                                 is_pse(vcpu),
4163                                 guest_cpuid_is_amd_or_hygon(vcpu));
4164 }
4165
4166 static void
4167 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4168                             u64 pa_bits_rsvd, bool execonly)
4169 {
4170         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4171         u64 bad_mt_xwr;
4172
4173         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4174         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4175         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4176         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4177         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4178
4179         /* large page */
4180         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4181         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4182         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4183         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4184         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4185
4186         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4187         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4188         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4189         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4190         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4191         if (!execonly) {
4192                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4193                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4194         }
4195         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4196 }
4197
4198 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4199                 struct kvm_mmu *context, bool execonly)
4200 {
4201         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4202                                     vcpu->arch.reserved_gpa_bits, execonly);
4203 }
4204
4205 static inline u64 reserved_hpa_bits(void)
4206 {
4207         return rsvd_bits(shadow_phys_bits, 63);
4208 }
4209
4210 /*
4211  * the page table on host is the shadow page table for the page
4212  * table in guest or amd nested guest, its mmu features completely
4213  * follow the features in guest.
4214  */
4215 void
4216 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4217 {
4218         /*
4219          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4220          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4221          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4222          * The iTLB multi-hit workaround can be toggled at any time, so assume
4223          * NX can be used by any non-nested shadow MMU to avoid having to reset
4224          * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4225          */
4226         bool uses_nx = context->nx || !tdp_enabled ||
4227                 context->mmu_role.base.smep_andnot_wp;
4228         struct rsvd_bits_validate *shadow_zero_check;
4229         int i;
4230
4231         /*
4232          * Passing "true" to the last argument is okay; it adds a check
4233          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4234          */
4235         shadow_zero_check = &context->shadow_zero_check;
4236         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4237                                 reserved_hpa_bits(),
4238                                 context->shadow_root_level, uses_nx,
4239                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4240                                 is_pse(vcpu), true);
4241
4242         if (!shadow_me_mask)
4243                 return;
4244
4245         for (i = context->shadow_root_level; --i >= 0;) {
4246                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4247                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4248         }
4249
4250 }
4251 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4252
4253 static inline bool boot_cpu_is_amd(void)
4254 {
4255         WARN_ON_ONCE(!tdp_enabled);
4256         return shadow_x_mask == 0;
4257 }
4258
4259 /*
4260  * the direct page table on host, use as much mmu features as
4261  * possible, however, kvm currently does not do execution-protection.
4262  */
4263 static void
4264 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4265                                 struct kvm_mmu *context)
4266 {
4267         struct rsvd_bits_validate *shadow_zero_check;
4268         int i;
4269
4270         shadow_zero_check = &context->shadow_zero_check;
4271
4272         if (boot_cpu_is_amd())
4273                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4274                                         reserved_hpa_bits(),
4275                                         context->shadow_root_level, false,
4276                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4277                                         true, true);
4278         else
4279                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4280                                             reserved_hpa_bits(), false);
4281
4282         if (!shadow_me_mask)
4283                 return;
4284
4285         for (i = context->shadow_root_level; --i >= 0;) {
4286                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4287                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4288         }
4289 }
4290
4291 /*
4292  * as the comments in reset_shadow_zero_bits_mask() except it
4293  * is the shadow page table for intel nested guest.
4294  */
4295 static void
4296 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4297                                 struct kvm_mmu *context, bool execonly)
4298 {
4299         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4300                                     reserved_hpa_bits(), execonly);
4301 }
4302
4303 #define BYTE_MASK(access) \
4304         ((1 & (access) ? 2 : 0) | \
4305          (2 & (access) ? 4 : 0) | \
4306          (3 & (access) ? 8 : 0) | \
4307          (4 & (access) ? 16 : 0) | \
4308          (5 & (access) ? 32 : 0) | \
4309          (6 & (access) ? 64 : 0) | \
4310          (7 & (access) ? 128 : 0))
4311
4312
4313 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4314                                       struct kvm_mmu *mmu, bool ept)
4315 {
4316         unsigned byte;
4317
4318         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4319         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4320         const u8 u = BYTE_MASK(ACC_USER_MASK);
4321
4322         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4323         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4324         bool cr0_wp = is_write_protection(vcpu);
4325
4326         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4327                 unsigned pfec = byte << 1;
4328
4329                 /*
4330                  * Each "*f" variable has a 1 bit for each UWX value
4331                  * that causes a fault with the given PFEC.
4332                  */
4333
4334                 /* Faults from writes to non-writable pages */
4335                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4336                 /* Faults from user mode accesses to supervisor pages */
4337                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4338                 /* Faults from fetches of non-executable pages*/
4339                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4340                 /* Faults from kernel mode fetches of user pages */
4341                 u8 smepf = 0;
4342                 /* Faults from kernel mode accesses of user pages */
4343                 u8 smapf = 0;
4344
4345                 if (!ept) {
4346                         /* Faults from kernel mode accesses to user pages */
4347                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4348
4349                         /* Not really needed: !nx will cause pte.nx to fault */
4350                         if (!mmu->nx)
4351                                 ff = 0;
4352
4353                         /* Allow supervisor writes if !cr0.wp */
4354                         if (!cr0_wp)
4355                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4356
4357                         /* Disallow supervisor fetches of user code if cr4.smep */
4358                         if (cr4_smep)
4359                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4360
4361                         /*
4362                          * SMAP:kernel-mode data accesses from user-mode
4363                          * mappings should fault. A fault is considered
4364                          * as a SMAP violation if all of the following
4365                          * conditions are true:
4366                          *   - X86_CR4_SMAP is set in CR4
4367                          *   - A user page is accessed
4368                          *   - The access is not a fetch
4369                          *   - Page fault in kernel mode
4370                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4371                          *
4372                          * Here, we cover the first three conditions.
4373                          * The fourth is computed dynamically in permission_fault();
4374                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4375                          * *not* subject to SMAP restrictions.
4376                          */
4377                         if (cr4_smap)
4378                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4379                 }
4380
4381                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4382         }
4383 }
4384
4385 /*
4386 * PKU is an additional mechanism by which the paging controls access to
4387 * user-mode addresses based on the value in the PKRU register.  Protection
4388 * key violations are reported through a bit in the page fault error code.
4389 * Unlike other bits of the error code, the PK bit is not known at the
4390 * call site of e.g. gva_to_gpa; it must be computed directly in
4391 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4392 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4393 *
4394 * In particular the following conditions come from the error code, the
4395 * page tables and the machine state:
4396 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4397 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4398 * - PK is always zero if U=0 in the page tables
4399 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4400 *
4401 * The PKRU bitmask caches the result of these four conditions.  The error
4402 * code (minus the P bit) and the page table's U bit form an index into the
4403 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4404 * with the two bits of the PKRU register corresponding to the protection key.
4405 * For the first three conditions above the bits will be 00, thus masking
4406 * away both AD and WD.  For all reads or if the last condition holds, WD
4407 * only will be masked away.
4408 */
4409 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4410                                 bool ept)
4411 {
4412         unsigned bit;
4413         bool wp;
4414
4415         if (ept) {
4416                 mmu->pkru_mask = 0;
4417                 return;
4418         }
4419
4420         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4421         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4422                 mmu->pkru_mask = 0;
4423                 return;
4424         }
4425
4426         wp = is_write_protection(vcpu);
4427
4428         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4429                 unsigned pfec, pkey_bits;
4430                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4431
4432                 pfec = bit << 1;
4433                 ff = pfec & PFERR_FETCH_MASK;
4434                 uf = pfec & PFERR_USER_MASK;
4435                 wf = pfec & PFERR_WRITE_MASK;
4436
4437                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4438                 pte_user = pfec & PFERR_RSVD_MASK;
4439
4440                 /*
4441                  * Only need to check the access which is not an
4442                  * instruction fetch and is to a user page.
4443                  */
4444                 check_pkey = (!ff && pte_user);
4445                 /*
4446                  * write access is controlled by PKRU if it is a
4447                  * user access or CR0.WP = 1.
4448                  */
4449                 check_write = check_pkey && wf && (uf || wp);
4450
4451                 /* PKRU.AD stops both read and write access. */
4452                 pkey_bits = !!check_pkey;
4453                 /* PKRU.WD stops write access. */
4454                 pkey_bits |= (!!check_write) << 1;
4455
4456                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4457         }
4458 }
4459
4460 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4461 {
4462         unsigned root_level = mmu->root_level;
4463
4464         mmu->last_nonleaf_level = root_level;
4465         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4466                 mmu->last_nonleaf_level++;
4467 }
4468
4469 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4470                                          struct kvm_mmu *context,
4471                                          int level)
4472 {
4473         context->nx = is_nx(vcpu);
4474         context->root_level = level;
4475
4476         reset_rsvds_bits_mask(vcpu, context);
4477         update_permission_bitmask(vcpu, context, false);
4478         update_pkru_bitmask(vcpu, context, false);
4479         update_last_nonleaf_level(vcpu, context);
4480
4481         MMU_WARN_ON(!is_pae(vcpu));
4482         context->page_fault = paging64_page_fault;
4483         context->gva_to_gpa = paging64_gva_to_gpa;
4484         context->sync_page = paging64_sync_page;
4485         context->invlpg = paging64_invlpg;
4486         context->shadow_root_level = level;
4487         context->direct_map = false;
4488 }
4489
4490 static void paging64_init_context(struct kvm_vcpu *vcpu,
4491                                   struct kvm_mmu *context)
4492 {
4493         int root_level = is_la57_mode(vcpu) ?
4494                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4495
4496         paging64_init_context_common(vcpu, context, root_level);
4497 }
4498
4499 static void paging32_init_context(struct kvm_vcpu *vcpu,
4500                                   struct kvm_mmu *context)
4501 {
4502         context->nx = false;
4503         context->root_level = PT32_ROOT_LEVEL;
4504
4505         reset_rsvds_bits_mask(vcpu, context);
4506         update_permission_bitmask(vcpu, context, false);
4507         update_pkru_bitmask(vcpu, context, false);
4508         update_last_nonleaf_level(vcpu, context);
4509
4510         context->page_fault = paging32_page_fault;
4511         context->gva_to_gpa = paging32_gva_to_gpa;
4512         context->sync_page = paging32_sync_page;
4513         context->invlpg = paging32_invlpg;
4514         context->shadow_root_level = PT32E_ROOT_LEVEL;
4515         context->direct_map = false;
4516 }
4517
4518 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4519                                    struct kvm_mmu *context)
4520 {
4521         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4522 }
4523
4524 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4525 {
4526         union kvm_mmu_extended_role ext = {0};
4527
4528         ext.cr0_pg = !!is_paging(vcpu);
4529         ext.cr4_pae = !!is_pae(vcpu);
4530         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4531         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4532         ext.cr4_pse = !!is_pse(vcpu);
4533         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4534         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4535
4536         ext.valid = 1;
4537
4538         return ext;
4539 }
4540
4541 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4542                                                    bool base_only)
4543 {
4544         union kvm_mmu_role role = {0};
4545
4546         role.base.access = ACC_ALL;
4547         role.base.nxe = !!is_nx(vcpu);
4548         role.base.cr0_wp = is_write_protection(vcpu);
4549         role.base.smm = is_smm(vcpu);
4550         role.base.guest_mode = is_guest_mode(vcpu);
4551
4552         if (base_only)
4553                 return role;
4554
4555         role.ext = kvm_calc_mmu_role_ext(vcpu);
4556
4557         return role;
4558 }
4559
4560 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4561 {
4562         /* Use 5-level TDP if and only if it's useful/necessary. */
4563         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4564                 return 4;
4565
4566         return max_tdp_level;
4567 }
4568
4569 static union kvm_mmu_role
4570 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4571 {
4572         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4573
4574         role.base.ad_disabled = (shadow_accessed_mask == 0);
4575         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4576         role.base.direct = true;
4577         role.base.gpte_is_8_bytes = true;
4578
4579         return role;
4580 }
4581
4582 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4583 {
4584         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4585         union kvm_mmu_role new_role =
4586                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4587
4588         if (new_role.as_u64 == context->mmu_role.as_u64)
4589                 return;
4590
4591         context->mmu_role.as_u64 = new_role.as_u64;
4592         context->page_fault = kvm_tdp_page_fault;
4593         context->sync_page = nonpaging_sync_page;
4594         context->invlpg = NULL;
4595         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4596         context->direct_map = true;
4597         context->get_guest_pgd = get_cr3;
4598         context->get_pdptr = kvm_pdptr_read;
4599         context->inject_page_fault = kvm_inject_page_fault;
4600
4601         if (!is_paging(vcpu)) {
4602                 context->nx = false;
4603                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4604                 context->root_level = 0;
4605         } else if (is_long_mode(vcpu)) {
4606                 context->nx = is_nx(vcpu);
4607                 context->root_level = is_la57_mode(vcpu) ?
4608                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4609                 reset_rsvds_bits_mask(vcpu, context);
4610                 context->gva_to_gpa = paging64_gva_to_gpa;
4611         } else if (is_pae(vcpu)) {
4612                 context->nx = is_nx(vcpu);
4613                 context->root_level = PT32E_ROOT_LEVEL;
4614                 reset_rsvds_bits_mask(vcpu, context);
4615                 context->gva_to_gpa = paging64_gva_to_gpa;
4616         } else {
4617                 context->nx = false;
4618                 context->root_level = PT32_ROOT_LEVEL;
4619                 reset_rsvds_bits_mask(vcpu, context);
4620                 context->gva_to_gpa = paging32_gva_to_gpa;
4621         }
4622
4623         update_permission_bitmask(vcpu, context, false);
4624         update_pkru_bitmask(vcpu, context, false);
4625         update_last_nonleaf_level(vcpu, context);
4626         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4627 }
4628
4629 static union kvm_mmu_role
4630 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4631 {
4632         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4633
4634         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4635                 !is_write_protection(vcpu);
4636         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4637                 !is_write_protection(vcpu);
4638         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4639
4640         return role;
4641 }
4642
4643 static union kvm_mmu_role
4644 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4645 {
4646         union kvm_mmu_role role =
4647                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4648
4649         role.base.direct = !is_paging(vcpu);
4650
4651         if (!is_long_mode(vcpu))
4652                 role.base.level = PT32E_ROOT_LEVEL;
4653         else if (is_la57_mode(vcpu))
4654                 role.base.level = PT64_ROOT_5LEVEL;
4655         else
4656                 role.base.level = PT64_ROOT_4LEVEL;
4657
4658         return role;
4659 }
4660
4661 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4662                                     u32 cr0, u32 cr4, u32 efer,
4663                                     union kvm_mmu_role new_role)
4664 {
4665         if (!(cr0 & X86_CR0_PG))
4666                 nonpaging_init_context(vcpu, context);
4667         else if (efer & EFER_LMA)
4668                 paging64_init_context(vcpu, context);
4669         else if (cr4 & X86_CR4_PAE)
4670                 paging32E_init_context(vcpu, context);
4671         else
4672                 paging32_init_context(vcpu, context);
4673
4674         context->mmu_role.as_u64 = new_role.as_u64;
4675         reset_shadow_zero_bits_mask(vcpu, context);
4676 }
4677
4678 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4679 {
4680         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4681         union kvm_mmu_role new_role =
4682                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4683
4684         if (new_role.as_u64 != context->mmu_role.as_u64)
4685                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4686 }
4687
4688 static union kvm_mmu_role
4689 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4690 {
4691         union kvm_mmu_role role =
4692                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4693
4694         role.base.direct = false;
4695         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4696
4697         return role;
4698 }
4699
4700 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4701                              gpa_t nested_cr3)
4702 {
4703         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4704         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4705
4706         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4707
4708         if (new_role.as_u64 != context->mmu_role.as_u64) {
4709                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4710
4711                 /*
4712                  * Override the level set by the common init helper, nested TDP
4713                  * always uses the host's TDP configuration.
4714                  */
4715                 context->shadow_root_level = new_role.base.level;
4716         }
4717 }
4718 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4719
4720 static union kvm_mmu_role
4721 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4722                                    bool execonly, u8 level)
4723 {
4724         union kvm_mmu_role role = {0};
4725
4726         /* SMM flag is inherited from root_mmu */
4727         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4728
4729         role.base.level = level;
4730         role.base.gpte_is_8_bytes = true;
4731         role.base.direct = false;
4732         role.base.ad_disabled = !accessed_dirty;
4733         role.base.guest_mode = true;
4734         role.base.access = ACC_ALL;
4735
4736         role.ext = kvm_calc_mmu_role_ext(vcpu);
4737         role.ext.execonly = execonly;
4738
4739         return role;
4740 }
4741
4742 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4743                              bool accessed_dirty, gpa_t new_eptp)
4744 {
4745         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4746         u8 level = vmx_eptp_page_walk_level(new_eptp);
4747         union kvm_mmu_role new_role =
4748                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4749                                                    execonly, level);
4750
4751         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4752
4753         if (new_role.as_u64 == context->mmu_role.as_u64)
4754                 return;
4755
4756         context->shadow_root_level = level;
4757
4758         context->nx = true;
4759         context->ept_ad = accessed_dirty;
4760         context->page_fault = ept_page_fault;
4761         context->gva_to_gpa = ept_gva_to_gpa;
4762         context->sync_page = ept_sync_page;
4763         context->invlpg = ept_invlpg;
4764         context->root_level = level;
4765         context->direct_map = false;
4766         context->mmu_role.as_u64 = new_role.as_u64;
4767
4768         update_permission_bitmask(vcpu, context, true);
4769         update_pkru_bitmask(vcpu, context, true);
4770         update_last_nonleaf_level(vcpu, context);
4771         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4772         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4773 }
4774 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4775
4776 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4777 {
4778         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4779
4780         kvm_init_shadow_mmu(vcpu,
4781                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4782                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4783                             vcpu->arch.efer);
4784
4785         context->get_guest_pgd     = get_cr3;
4786         context->get_pdptr         = kvm_pdptr_read;
4787         context->inject_page_fault = kvm_inject_page_fault;
4788 }
4789
4790 static union kvm_mmu_role kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu)
4791 {
4792         union kvm_mmu_role role = kvm_calc_shadow_root_page_role_common(vcpu, false);
4793
4794         /*
4795          * Nested MMUs are used only for walking L2's gva->gpa, they never have
4796          * shadow pages of their own and so "direct" has no meaning.   Set it
4797          * to "true" to try to detect bogus usage of the nested MMU.
4798          */
4799         role.base.direct = true;
4800
4801         if (!is_paging(vcpu))
4802                 role.base.level = 0;
4803         else if (is_long_mode(vcpu))
4804                 role.base.level = is_la57_mode(vcpu) ? PT64_ROOT_5LEVEL :
4805                                                        PT64_ROOT_4LEVEL;
4806         else if (is_pae(vcpu))
4807                 role.base.level = PT32E_ROOT_LEVEL;
4808         else
4809                 role.base.level = PT32_ROOT_LEVEL;
4810
4811         return role;
4812 }
4813
4814 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4815 {
4816         union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu);
4817         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4818
4819         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4820                 return;
4821
4822         g_context->mmu_role.as_u64 = new_role.as_u64;
4823         g_context->get_guest_pgd     = get_cr3;
4824         g_context->get_pdptr         = kvm_pdptr_read;
4825         g_context->inject_page_fault = kvm_inject_page_fault;
4826
4827         /*
4828          * L2 page tables are never shadowed, so there is no need to sync
4829          * SPTEs.
4830          */
4831         g_context->invlpg            = NULL;
4832
4833         /*
4834          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4835          * L1's nested page tables (e.g. EPT12). The nested translation
4836          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4837          * L2's page tables as the first level of translation and L1's
4838          * nested page tables as the second level of translation. Basically
4839          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4840          */
4841         if (!is_paging(vcpu)) {
4842                 g_context->nx = false;
4843                 g_context->root_level = 0;
4844                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4845         } else if (is_long_mode(vcpu)) {
4846                 g_context->nx = is_nx(vcpu);
4847                 g_context->root_level = is_la57_mode(vcpu) ?
4848                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4849                 reset_rsvds_bits_mask(vcpu, g_context);
4850                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4851         } else if (is_pae(vcpu)) {
4852                 g_context->nx = is_nx(vcpu);
4853                 g_context->root_level = PT32E_ROOT_LEVEL;
4854                 reset_rsvds_bits_mask(vcpu, g_context);
4855                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4856         } else {
4857                 g_context->nx = false;
4858                 g_context->root_level = PT32_ROOT_LEVEL;
4859                 reset_rsvds_bits_mask(vcpu, g_context);
4860                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4861         }
4862
4863         update_permission_bitmask(vcpu, g_context, false);
4864         update_pkru_bitmask(vcpu, g_context, false);
4865         update_last_nonleaf_level(vcpu, g_context);
4866 }
4867
4868 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4869 {
4870         if (mmu_is_nested(vcpu))
4871                 init_kvm_nested_mmu(vcpu);
4872         else if (tdp_enabled)
4873                 init_kvm_tdp_mmu(vcpu);
4874         else
4875                 init_kvm_softmmu(vcpu);
4876 }
4877 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4878
4879 static union kvm_mmu_page_role
4880 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4881 {
4882         union kvm_mmu_role role;
4883
4884         if (tdp_enabled)
4885                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4886         else
4887                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4888
4889         return role.base;
4890 }
4891
4892 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
4893 {
4894         /*
4895          * Invalidate all MMU roles to force them to reinitialize as CPUID
4896          * information is factored into reserved bit calculations.
4897          */
4898         vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
4899         vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
4900         vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
4901         kvm_mmu_reset_context(vcpu);
4902
4903         /*
4904          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
4905          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
4906          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
4907          * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
4908          * sweep the problem under the rug.
4909          *
4910          * KVM's horrific CPUID ABI makes the problem all but impossible to
4911          * solve, as correctly handling multiple vCPU models (with respect to
4912          * paging and physical address properties) in a single VM would require
4913          * tracking all relevant CPUID information in kvm_mmu_page_role.  That
4914          * is very undesirable as it would double the memory requirements for
4915          * gfn_track (see struct kvm_mmu_page_role comments), and in practice
4916          * no sane VMM mucks with the core vCPU model on the fly.
4917          */
4918         if (vcpu->arch.last_vmentry_cpu != -1) {
4919                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
4920                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
4921         }
4922 }
4923
4924 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4925 {
4926         kvm_mmu_unload(vcpu);
4927         kvm_init_mmu(vcpu);
4928 }
4929 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4930
4931 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4932 {
4933         int r;
4934
4935         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4936         if (r)
4937                 goto out;
4938         r = mmu_alloc_special_roots(vcpu);
4939         if (r)
4940                 goto out;
4941         if (vcpu->arch.mmu->direct_map)
4942                 r = mmu_alloc_direct_roots(vcpu);
4943         else
4944                 r = mmu_alloc_shadow_roots(vcpu);
4945         if (r)
4946                 goto out;
4947
4948         kvm_mmu_sync_roots(vcpu);
4949
4950         kvm_mmu_load_pgd(vcpu);
4951         static_call(kvm_x86_tlb_flush_current)(vcpu);
4952 out:
4953         return r;
4954 }
4955
4956 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4957 {
4958         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4959         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4960         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4961         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4962 }
4963
4964 static bool need_remote_flush(u64 old, u64 new)
4965 {
4966         if (!is_shadow_present_pte(old))
4967                 return false;
4968         if (!is_shadow_present_pte(new))
4969                 return true;
4970         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4971                 return true;
4972         old ^= shadow_nx_mask;
4973         new ^= shadow_nx_mask;
4974         return (old & ~new & PT64_PERM_MASK) != 0;
4975 }
4976
4977 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4978                                     int *bytes)
4979 {
4980         u64 gentry = 0;
4981         int r;
4982
4983         /*
4984          * Assume that the pte write on a page table of the same type
4985          * as the current vcpu paging mode since we update the sptes only
4986          * when they have the same mode.
4987          */
4988         if (is_pae(vcpu) && *bytes == 4) {
4989                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4990                 *gpa &= ~(gpa_t)7;
4991                 *bytes = 8;
4992         }
4993
4994         if (*bytes == 4 || *bytes == 8) {
4995                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4996                 if (r)
4997                         gentry = 0;
4998         }
4999
5000         return gentry;
5001 }
5002
5003 /*
5004  * If we're seeing too many writes to a page, it may no longer be a page table,
5005  * or we may be forking, in which case it is better to unmap the page.
5006  */
5007 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5008 {
5009         /*
5010          * Skip write-flooding detected for the sp whose level is 1, because
5011          * it can become unsync, then the guest page is not write-protected.
5012          */
5013         if (sp->role.level == PG_LEVEL_4K)
5014                 return false;
5015
5016         atomic_inc(&sp->write_flooding_count);
5017         return atomic_read(&sp->write_flooding_count) >= 3;
5018 }
5019
5020 /*
5021  * Misaligned accesses are too much trouble to fix up; also, they usually
5022  * indicate a page is not used as a page table.
5023  */
5024 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5025                                     int bytes)
5026 {
5027         unsigned offset, pte_size, misaligned;
5028
5029         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5030                  gpa, bytes, sp->role.word);
5031
5032         offset = offset_in_page(gpa);
5033         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5034
5035         /*
5036          * Sometimes, the OS only writes the last one bytes to update status
5037          * bits, for example, in linux, andb instruction is used in clear_bit().
5038          */
5039         if (!(offset & (pte_size - 1)) && bytes == 1)
5040                 return false;
5041
5042         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5043         misaligned |= bytes < 4;
5044
5045         return misaligned;
5046 }
5047
5048 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5049 {
5050         unsigned page_offset, quadrant;
5051         u64 *spte;
5052         int level;
5053
5054         page_offset = offset_in_page(gpa);
5055         level = sp->role.level;
5056         *nspte = 1;
5057         if (!sp->role.gpte_is_8_bytes) {
5058                 page_offset <<= 1;      /* 32->64 */
5059                 /*
5060                  * A 32-bit pde maps 4MB while the shadow pdes map
5061                  * only 2MB.  So we need to double the offset again
5062                  * and zap two pdes instead of one.
5063                  */
5064                 if (level == PT32_ROOT_LEVEL) {
5065                         page_offset &= ~7; /* kill rounding error */
5066                         page_offset <<= 1;
5067                         *nspte = 2;
5068                 }
5069                 quadrant = page_offset >> PAGE_SHIFT;
5070                 page_offset &= ~PAGE_MASK;
5071                 if (quadrant != sp->role.quadrant)
5072                         return NULL;
5073         }
5074
5075         spte = &sp->spt[page_offset / sizeof(*spte)];
5076         return spte;
5077 }
5078
5079 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5080                               const u8 *new, int bytes,
5081                               struct kvm_page_track_notifier_node *node)
5082 {
5083         gfn_t gfn = gpa >> PAGE_SHIFT;
5084         struct kvm_mmu_page *sp;
5085         LIST_HEAD(invalid_list);
5086         u64 entry, gentry, *spte;
5087         int npte;
5088         bool remote_flush, local_flush;
5089
5090         /*
5091          * If we don't have indirect shadow pages, it means no page is
5092          * write-protected, so we can exit simply.
5093          */
5094         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5095                 return;
5096
5097         remote_flush = local_flush = false;
5098
5099         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5100
5101         /*
5102          * No need to care whether allocation memory is successful
5103          * or not since pte prefetch is skipped if it does not have
5104          * enough objects in the cache.
5105          */
5106         mmu_topup_memory_caches(vcpu, true);
5107
5108         write_lock(&vcpu->kvm->mmu_lock);
5109
5110         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5111
5112         ++vcpu->kvm->stat.mmu_pte_write;
5113         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5114
5115         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5116                 if (detect_write_misaligned(sp, gpa, bytes) ||
5117                       detect_write_flooding(sp)) {
5118                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5119                         ++vcpu->kvm->stat.mmu_flooded;
5120                         continue;
5121                 }
5122
5123                 spte = get_written_sptes(sp, gpa, &npte);
5124                 if (!spte)
5125                         continue;
5126
5127                 local_flush = true;
5128                 while (npte--) {
5129                         entry = *spte;
5130                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5131                         if (gentry && sp->role.level != PG_LEVEL_4K)
5132                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5133                         if (need_remote_flush(entry, *spte))
5134                                 remote_flush = true;
5135                         ++spte;
5136                 }
5137         }
5138         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5139         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5140         write_unlock(&vcpu->kvm->mmu_lock);
5141 }
5142
5143 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5144                        void *insn, int insn_len)
5145 {
5146         int r, emulation_type = EMULTYPE_PF;
5147         bool direct = vcpu->arch.mmu->direct_map;
5148
5149         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5150                 return RET_PF_RETRY;
5151
5152         r = RET_PF_INVALID;
5153         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5154                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5155                 if (r == RET_PF_EMULATE)
5156                         goto emulate;
5157         }
5158
5159         if (r == RET_PF_INVALID) {
5160                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5161                                           lower_32_bits(error_code), false);
5162                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5163                         return -EIO;
5164         }
5165
5166         if (r < 0)
5167                 return r;
5168         if (r != RET_PF_EMULATE)
5169                 return 1;
5170
5171         /*
5172          * Before emulating the instruction, check if the error code
5173          * was due to a RO violation while translating the guest page.
5174          * This can occur when using nested virtualization with nested
5175          * paging in both guests. If true, we simply unprotect the page
5176          * and resume the guest.
5177          */
5178         if (vcpu->arch.mmu->direct_map &&
5179             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5180                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5181                 return 1;
5182         }
5183
5184         /*
5185          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5186          * optimistically try to just unprotect the page and let the processor
5187          * re-execute the instruction that caused the page fault.  Do not allow
5188          * retrying MMIO emulation, as it's not only pointless but could also
5189          * cause us to enter an infinite loop because the processor will keep
5190          * faulting on the non-existent MMIO address.  Retrying an instruction
5191          * from a nested guest is also pointless and dangerous as we are only
5192          * explicitly shadowing L1's page tables, i.e. unprotecting something
5193          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5194          */
5195         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5196                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5197 emulate:
5198         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5199                                        insn_len);
5200 }
5201 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5202
5203 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5204                             gva_t gva, hpa_t root_hpa)
5205 {
5206         int i;
5207
5208         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5209         if (mmu != &vcpu->arch.guest_mmu) {
5210                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5211                 if (is_noncanonical_address(gva, vcpu))
5212                         return;
5213
5214                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5215         }
5216
5217         if (!mmu->invlpg)
5218                 return;
5219
5220         if (root_hpa == INVALID_PAGE) {
5221                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5222
5223                 /*
5224                  * INVLPG is required to invalidate any global mappings for the VA,
5225                  * irrespective of PCID. Since it would take us roughly similar amount
5226                  * of work to determine whether any of the prev_root mappings of the VA
5227                  * is marked global, or to just sync it blindly, so we might as well
5228                  * just always sync it.
5229                  *
5230                  * Mappings not reachable via the current cr3 or the prev_roots will be
5231                  * synced when switching to that cr3, so nothing needs to be done here
5232                  * for them.
5233                  */
5234                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5235                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5236                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5237         } else {
5238                 mmu->invlpg(vcpu, gva, root_hpa);
5239         }
5240 }
5241
5242 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5243 {
5244         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5245         ++vcpu->stat.invlpg;
5246 }
5247 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5248
5249
5250 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5251 {
5252         struct kvm_mmu *mmu = vcpu->arch.mmu;
5253         bool tlb_flush = false;
5254         uint i;
5255
5256         if (pcid == kvm_get_active_pcid(vcpu)) {
5257                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5258                 tlb_flush = true;
5259         }
5260
5261         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5262                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5263                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5264                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5265                         tlb_flush = true;
5266                 }
5267         }
5268
5269         if (tlb_flush)
5270                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5271
5272         ++vcpu->stat.invlpg;
5273
5274         /*
5275          * Mappings not reachable via the current cr3 or the prev_roots will be
5276          * synced when switching to that cr3, so nothing needs to be done here
5277          * for them.
5278          */
5279 }
5280
5281 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5282                        int tdp_huge_page_level)
5283 {
5284         tdp_enabled = enable_tdp;
5285         max_tdp_level = tdp_max_root_level;
5286
5287         /*
5288          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5289          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5290          * the kernel is not.  But, KVM never creates a page size greater than
5291          * what is used by the kernel for any given HVA, i.e. the kernel's
5292          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5293          */
5294         if (tdp_enabled)
5295                 max_huge_page_level = tdp_huge_page_level;
5296         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5297                 max_huge_page_level = PG_LEVEL_1G;
5298         else
5299                 max_huge_page_level = PG_LEVEL_2M;
5300 }
5301 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5302
5303 /* The return value indicates if tlb flush on all vcpus is needed. */
5304 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5305                                     struct kvm_memory_slot *slot);
5306
5307 /* The caller should hold mmu-lock before calling this function. */
5308 static __always_inline bool
5309 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5310                         slot_level_handler fn, int start_level, int end_level,
5311                         gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5312                         bool flush)
5313 {
5314         struct slot_rmap_walk_iterator iterator;
5315
5316         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5317                         end_gfn, &iterator) {
5318                 if (iterator.rmap)
5319                         flush |= fn(kvm, iterator.rmap, memslot);
5320
5321                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5322                         if (flush && flush_on_yield) {
5323                                 kvm_flush_remote_tlbs_with_address(kvm,
5324                                                 start_gfn,
5325                                                 iterator.gfn - start_gfn + 1);
5326                                 flush = false;
5327                         }
5328                         cond_resched_rwlock_write(&kvm->mmu_lock);
5329                 }
5330         }
5331
5332         return flush;
5333 }
5334
5335 static __always_inline bool
5336 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5337                   slot_level_handler fn, int start_level, int end_level,
5338                   bool flush_on_yield)
5339 {
5340         return slot_handle_level_range(kvm, memslot, fn, start_level,
5341                         end_level, memslot->base_gfn,
5342                         memslot->base_gfn + memslot->npages - 1,
5343                         flush_on_yield, false);
5344 }
5345
5346 static __always_inline bool
5347 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5348                  slot_level_handler fn, bool flush_on_yield)
5349 {
5350         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5351                                  PG_LEVEL_4K, flush_on_yield);
5352 }
5353
5354 static void free_mmu_pages(struct kvm_mmu *mmu)
5355 {
5356         if (!tdp_enabled && mmu->pae_root)
5357                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5358         free_page((unsigned long)mmu->pae_root);
5359         free_page((unsigned long)mmu->pml4_root);
5360 }
5361
5362 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5363 {
5364         struct page *page;
5365         int i;
5366
5367         mmu->root_hpa = INVALID_PAGE;
5368         mmu->root_pgd = 0;
5369         mmu->translate_gpa = translate_gpa;
5370         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5371                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5372
5373         /*
5374          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5375          * while the PDP table is a per-vCPU construct that's allocated at MMU
5376          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5377          * x86_64.  Therefore we need to allocate the PDP table in the first
5378          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5379          * generally doesn't use PAE paging and can skip allocating the PDP
5380          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5381          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5382          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5383          */
5384         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5385                 return 0;
5386
5387         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5388         if (!page)
5389                 return -ENOMEM;
5390
5391         mmu->pae_root = page_address(page);
5392
5393         /*
5394          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5395          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5396          * that KVM's writes and the CPU's reads get along.  Note, this is
5397          * only necessary when using shadow paging, as 64-bit NPT can get at
5398          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5399          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5400          */
5401         if (!tdp_enabled)
5402                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5403         else
5404                 WARN_ON_ONCE(shadow_me_mask);
5405
5406         for (i = 0; i < 4; ++i)
5407                 mmu->pae_root[i] = INVALID_PAE_ROOT;
5408
5409         return 0;
5410 }
5411
5412 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5413 {
5414         int ret;
5415
5416         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5417         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5418
5419         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5420         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5421
5422         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5423
5424         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5425         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5426
5427         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5428
5429         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5430         if (ret)
5431                 return ret;
5432
5433         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5434         if (ret)
5435                 goto fail_allocate_root;
5436
5437         return ret;
5438  fail_allocate_root:
5439         free_mmu_pages(&vcpu->arch.guest_mmu);
5440         return ret;
5441 }
5442
5443 #define BATCH_ZAP_PAGES 10
5444 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5445 {
5446         struct kvm_mmu_page *sp, *node;
5447         int nr_zapped, batch = 0;
5448
5449 restart:
5450         list_for_each_entry_safe_reverse(sp, node,
5451               &kvm->arch.active_mmu_pages, link) {
5452                 /*
5453                  * No obsolete valid page exists before a newly created page
5454                  * since active_mmu_pages is a FIFO list.
5455                  */
5456                 if (!is_obsolete_sp(kvm, sp))
5457                         break;
5458
5459                 /*
5460                  * Invalid pages should never land back on the list of active
5461                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5462                  * infinite loop if the page gets put back on the list (again).
5463                  */
5464                 if (WARN_ON(sp->role.invalid))
5465                         continue;
5466
5467                 /*
5468                  * No need to flush the TLB since we're only zapping shadow
5469                  * pages with an obsolete generation number and all vCPUS have
5470                  * loaded a new root, i.e. the shadow pages being zapped cannot
5471                  * be in active use by the guest.
5472                  */
5473                 if (batch >= BATCH_ZAP_PAGES &&
5474                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5475                         batch = 0;
5476                         goto restart;
5477                 }
5478
5479                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5480                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5481                         batch += nr_zapped;
5482                         goto restart;
5483                 }
5484         }
5485
5486         /*
5487          * Trigger a remote TLB flush before freeing the page tables to ensure
5488          * KVM is not in the middle of a lockless shadow page table walk, which
5489          * may reference the pages.
5490          */
5491         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5492 }
5493
5494 /*
5495  * Fast invalidate all shadow pages and use lock-break technique
5496  * to zap obsolete pages.
5497  *
5498  * It's required when memslot is being deleted or VM is being
5499  * destroyed, in these cases, we should ensure that KVM MMU does
5500  * not use any resource of the being-deleted slot or all slots
5501  * after calling the function.
5502  */
5503 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5504 {
5505         lockdep_assert_held(&kvm->slots_lock);
5506
5507         write_lock(&kvm->mmu_lock);
5508         trace_kvm_mmu_zap_all_fast(kvm);
5509
5510         /*
5511          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5512          * held for the entire duration of zapping obsolete pages, it's
5513          * impossible for there to be multiple invalid generations associated
5514          * with *valid* shadow pages at any given time, i.e. there is exactly
5515          * one valid generation and (at most) one invalid generation.
5516          */
5517         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5518
5519         /* In order to ensure all threads see this change when
5520          * handling the MMU reload signal, this must happen in the
5521          * same critical section as kvm_reload_remote_mmus, and
5522          * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5523          * could drop the MMU lock and yield.
5524          */
5525         if (is_tdp_mmu_enabled(kvm))
5526                 kvm_tdp_mmu_invalidate_all_roots(kvm);
5527
5528         /*
5529          * Notify all vcpus to reload its shadow page table and flush TLB.
5530          * Then all vcpus will switch to new shadow page table with the new
5531          * mmu_valid_gen.
5532          *
5533          * Note: we need to do this under the protection of mmu_lock,
5534          * otherwise, vcpu would purge shadow page but miss tlb flush.
5535          */
5536         kvm_reload_remote_mmus(kvm);
5537
5538         kvm_zap_obsolete_pages(kvm);
5539
5540         write_unlock(&kvm->mmu_lock);
5541
5542         if (is_tdp_mmu_enabled(kvm)) {
5543                 read_lock(&kvm->mmu_lock);
5544                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5545                 read_unlock(&kvm->mmu_lock);
5546         }
5547 }
5548
5549 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5550 {
5551         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5552 }
5553
5554 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5555                         struct kvm_memory_slot *slot,
5556                         struct kvm_page_track_notifier_node *node)
5557 {
5558         kvm_mmu_zap_all_fast(kvm);
5559 }
5560
5561 void kvm_mmu_init_vm(struct kvm *kvm)
5562 {
5563         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5564
5565         if (!kvm_mmu_init_tdp_mmu(kvm))
5566                 /*
5567                  * No smp_load/store wrappers needed here as we are in
5568                  * VM init and there cannot be any memslots / other threads
5569                  * accessing this struct kvm yet.
5570                  */
5571                 kvm->arch.memslots_have_rmaps = true;
5572
5573         node->track_write = kvm_mmu_pte_write;
5574         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5575         kvm_page_track_register_notifier(kvm, node);
5576 }
5577
5578 void kvm_mmu_uninit_vm(struct kvm *kvm)
5579 {
5580         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5581
5582         kvm_page_track_unregister_notifier(kvm, node);
5583
5584         kvm_mmu_uninit_tdp_mmu(kvm);
5585 }
5586
5587 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5588 {
5589         struct kvm_memslots *slots;
5590         struct kvm_memory_slot *memslot;
5591         int i;
5592         bool flush = false;
5593
5594         if (kvm_memslots_have_rmaps(kvm)) {
5595                 write_lock(&kvm->mmu_lock);
5596                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5597                         slots = __kvm_memslots(kvm, i);
5598                         kvm_for_each_memslot(memslot, slots) {
5599                                 gfn_t start, end;
5600
5601                                 start = max(gfn_start, memslot->base_gfn);
5602                                 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5603                                 if (start >= end)
5604                                         continue;
5605
5606                                 flush = slot_handle_level_range(kvm, memslot,
5607                                                 kvm_zap_rmapp, PG_LEVEL_4K,
5608                                                 KVM_MAX_HUGEPAGE_LEVEL, start,
5609                                                 end - 1, true, flush);
5610                         }
5611                 }
5612                 if (flush)
5613                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5614                 write_unlock(&kvm->mmu_lock);
5615         }
5616
5617         if (is_tdp_mmu_enabled(kvm)) {
5618                 flush = false;
5619
5620                 read_lock(&kvm->mmu_lock);
5621                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5622                         flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5623                                                           gfn_end, flush, true);
5624                 if (flush)
5625                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5626                                                            gfn_end);
5627
5628                 read_unlock(&kvm->mmu_lock);
5629         }
5630 }
5631
5632 static bool slot_rmap_write_protect(struct kvm *kvm,
5633                                     struct kvm_rmap_head *rmap_head,
5634                                     struct kvm_memory_slot *slot)
5635 {
5636         return __rmap_write_protect(kvm, rmap_head, false);
5637 }
5638
5639 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5640                                       struct kvm_memory_slot *memslot,
5641                                       int start_level)
5642 {
5643         bool flush = false;
5644
5645         if (kvm_memslots_have_rmaps(kvm)) {
5646                 write_lock(&kvm->mmu_lock);
5647                 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5648                                           start_level, KVM_MAX_HUGEPAGE_LEVEL,
5649                                           false);
5650                 write_unlock(&kvm->mmu_lock);
5651         }
5652
5653         if (is_tdp_mmu_enabled(kvm)) {
5654                 read_lock(&kvm->mmu_lock);
5655                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5656                 read_unlock(&kvm->mmu_lock);
5657         }
5658
5659         /*
5660          * We can flush all the TLBs out of the mmu lock without TLB
5661          * corruption since we just change the spte from writable to
5662          * readonly so that we only need to care the case of changing
5663          * spte from present to present (changing the spte from present
5664          * to nonpresent will flush all the TLBs immediately), in other
5665          * words, the only case we care is mmu_spte_update() where we
5666          * have checked Host-writable | MMU-writable instead of
5667          * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5668          * anymore.
5669          */
5670         if (flush)
5671                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5672 }
5673
5674 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5675                                          struct kvm_rmap_head *rmap_head,
5676                                          struct kvm_memory_slot *slot)
5677 {
5678         u64 *sptep;
5679         struct rmap_iterator iter;
5680         int need_tlb_flush = 0;
5681         kvm_pfn_t pfn;
5682         struct kvm_mmu_page *sp;
5683
5684 restart:
5685         for_each_rmap_spte(rmap_head, &iter, sptep) {
5686                 sp = sptep_to_sp(sptep);
5687                 pfn = spte_to_pfn(*sptep);
5688
5689                 /*
5690                  * We cannot do huge page mapping for indirect shadow pages,
5691                  * which are found on the last rmap (level = 1) when not using
5692                  * tdp; such shadow pages are synced with the page table in
5693                  * the guest, and the guest page table is using 4K page size
5694                  * mapping if the indirect sp has level = 1.
5695                  */
5696                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5697                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5698                                                                pfn, PG_LEVEL_NUM)) {
5699                         pte_list_remove(rmap_head, sptep);
5700
5701                         if (kvm_available_flush_tlb_with_range())
5702                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5703                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5704                         else
5705                                 need_tlb_flush = 1;
5706
5707                         goto restart;
5708                 }
5709         }
5710
5711         return need_tlb_flush;
5712 }
5713
5714 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5715                                    const struct kvm_memory_slot *memslot)
5716 {
5717         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5718         struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5719         bool flush = false;
5720
5721         if (kvm_memslots_have_rmaps(kvm)) {
5722                 write_lock(&kvm->mmu_lock);
5723                 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5724                 if (flush)
5725                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5726                 write_unlock(&kvm->mmu_lock);
5727         }
5728
5729         if (is_tdp_mmu_enabled(kvm)) {
5730                 read_lock(&kvm->mmu_lock);
5731                 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5732                 if (flush)
5733                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5734                 read_unlock(&kvm->mmu_lock);
5735         }
5736 }
5737
5738 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5739                                         const struct kvm_memory_slot *memslot)
5740 {
5741         /*
5742          * All current use cases for flushing the TLBs for a specific memslot
5743          * related to dirty logging, and many do the TLB flush out of mmu_lock.
5744          * The interaction between the various operations on memslot must be
5745          * serialized by slots_locks to ensure the TLB flush from one operation
5746          * is observed by any other operation on the same memslot.
5747          */
5748         lockdep_assert_held(&kvm->slots_lock);
5749         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5750                                            memslot->npages);
5751 }
5752
5753 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5754                                    struct kvm_memory_slot *memslot)
5755 {
5756         bool flush = false;
5757
5758         if (kvm_memslots_have_rmaps(kvm)) {
5759                 write_lock(&kvm->mmu_lock);
5760                 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5761                                          false);
5762                 write_unlock(&kvm->mmu_lock);
5763         }
5764
5765         if (is_tdp_mmu_enabled(kvm)) {
5766                 read_lock(&kvm->mmu_lock);
5767                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5768                 read_unlock(&kvm->mmu_lock);
5769         }
5770
5771         /*
5772          * It's also safe to flush TLBs out of mmu lock here as currently this
5773          * function is only used for dirty logging, in which case flushing TLB
5774          * out of mmu lock also guarantees no dirty pages will be lost in
5775          * dirty_bitmap.
5776          */
5777         if (flush)
5778                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5779 }
5780
5781 void kvm_mmu_zap_all(struct kvm *kvm)
5782 {
5783         struct kvm_mmu_page *sp, *node;
5784         LIST_HEAD(invalid_list);
5785         int ign;
5786
5787         write_lock(&kvm->mmu_lock);
5788 restart:
5789         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5790                 if (WARN_ON(sp->role.invalid))
5791                         continue;
5792                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5793                         goto restart;
5794                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5795                         goto restart;
5796         }
5797
5798         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5799
5800         if (is_tdp_mmu_enabled(kvm))
5801                 kvm_tdp_mmu_zap_all(kvm);
5802
5803         write_unlock(&kvm->mmu_lock);
5804 }
5805
5806 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5807 {
5808         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5809
5810         gen &= MMIO_SPTE_GEN_MASK;
5811
5812         /*
5813          * Generation numbers are incremented in multiples of the number of
5814          * address spaces in order to provide unique generations across all
5815          * address spaces.  Strip what is effectively the address space
5816          * modifier prior to checking for a wrap of the MMIO generation so
5817          * that a wrap in any address space is detected.
5818          */
5819         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5820
5821         /*
5822          * The very rare case: if the MMIO generation number has wrapped,
5823          * zap all shadow pages.
5824          */
5825         if (unlikely(gen == 0)) {
5826                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5827                 kvm_mmu_zap_all_fast(kvm);
5828         }
5829 }
5830
5831 static unsigned long
5832 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5833 {
5834         struct kvm *kvm;
5835         int nr_to_scan = sc->nr_to_scan;
5836         unsigned long freed = 0;
5837
5838         mutex_lock(&kvm_lock);
5839
5840         list_for_each_entry(kvm, &vm_list, vm_list) {
5841                 int idx;
5842                 LIST_HEAD(invalid_list);
5843
5844                 /*
5845                  * Never scan more than sc->nr_to_scan VM instances.
5846                  * Will not hit this condition practically since we do not try
5847                  * to shrink more than one VM and it is very unlikely to see
5848                  * !n_used_mmu_pages so many times.
5849                  */
5850                 if (!nr_to_scan--)
5851                         break;
5852                 /*
5853                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5854                  * here. We may skip a VM instance errorneosly, but we do not
5855                  * want to shrink a VM that only started to populate its MMU
5856                  * anyway.
5857                  */
5858                 if (!kvm->arch.n_used_mmu_pages &&
5859                     !kvm_has_zapped_obsolete_pages(kvm))
5860                         continue;
5861
5862                 idx = srcu_read_lock(&kvm->srcu);
5863                 write_lock(&kvm->mmu_lock);
5864
5865                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5866                         kvm_mmu_commit_zap_page(kvm,
5867                               &kvm->arch.zapped_obsolete_pages);
5868                         goto unlock;
5869                 }
5870
5871                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5872
5873 unlock:
5874                 write_unlock(&kvm->mmu_lock);
5875                 srcu_read_unlock(&kvm->srcu, idx);
5876
5877                 /*
5878                  * unfair on small ones
5879                  * per-vm shrinkers cry out
5880                  * sadness comes quickly
5881                  */
5882                 list_move_tail(&kvm->vm_list, &vm_list);
5883                 break;
5884         }
5885
5886         mutex_unlock(&kvm_lock);
5887         return freed;
5888 }
5889
5890 static unsigned long
5891 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5892 {
5893         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5894 }
5895
5896 static struct shrinker mmu_shrinker = {
5897         .count_objects = mmu_shrink_count,
5898         .scan_objects = mmu_shrink_scan,
5899         .seeks = DEFAULT_SEEKS * 10,
5900 };
5901
5902 static void mmu_destroy_caches(void)
5903 {
5904         kmem_cache_destroy(pte_list_desc_cache);
5905         kmem_cache_destroy(mmu_page_header_cache);
5906 }
5907
5908 static bool get_nx_auto_mode(void)
5909 {
5910         /* Return true when CPU has the bug, and mitigations are ON */
5911         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5912 }
5913
5914 static void __set_nx_huge_pages(bool val)
5915 {
5916         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5917 }
5918
5919 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5920 {
5921         bool old_val = nx_huge_pages;
5922         bool new_val;
5923
5924         /* In "auto" mode deploy workaround only if CPU has the bug. */
5925         if (sysfs_streq(val, "off"))
5926                 new_val = 0;
5927         else if (sysfs_streq(val, "force"))
5928                 new_val = 1;
5929         else if (sysfs_streq(val, "auto"))
5930                 new_val = get_nx_auto_mode();
5931         else if (strtobool(val, &new_val) < 0)
5932                 return -EINVAL;
5933
5934         __set_nx_huge_pages(new_val);
5935
5936         if (new_val != old_val) {
5937                 struct kvm *kvm;
5938
5939                 mutex_lock(&kvm_lock);
5940
5941                 list_for_each_entry(kvm, &vm_list, vm_list) {
5942                         mutex_lock(&kvm->slots_lock);
5943                         kvm_mmu_zap_all_fast(kvm);
5944                         mutex_unlock(&kvm->slots_lock);
5945
5946                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5947                 }
5948                 mutex_unlock(&kvm_lock);
5949         }
5950
5951         return 0;
5952 }
5953
5954 int kvm_mmu_module_init(void)
5955 {
5956         int ret = -ENOMEM;
5957
5958         if (nx_huge_pages == -1)
5959                 __set_nx_huge_pages(get_nx_auto_mode());
5960
5961         /*
5962          * MMU roles use union aliasing which is, generally speaking, an
5963          * undefined behavior. However, we supposedly know how compilers behave
5964          * and the current status quo is unlikely to change. Guardians below are
5965          * supposed to let us know if the assumption becomes false.
5966          */
5967         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5968         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5969         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5970
5971         kvm_mmu_reset_all_pte_masks();
5972
5973         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5974                                             sizeof(struct pte_list_desc),
5975                                             0, SLAB_ACCOUNT, NULL);
5976         if (!pte_list_desc_cache)
5977                 goto out;
5978
5979         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5980                                                   sizeof(struct kvm_mmu_page),
5981                                                   0, SLAB_ACCOUNT, NULL);
5982         if (!mmu_page_header_cache)
5983                 goto out;
5984
5985         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5986                 goto out;
5987
5988         ret = register_shrinker(&mmu_shrinker);
5989         if (ret)
5990                 goto out;
5991
5992         return 0;
5993
5994 out:
5995         mmu_destroy_caches();
5996         return ret;
5997 }
5998
5999 /*
6000  * Calculate mmu pages needed for kvm.
6001  */
6002 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6003 {
6004         unsigned long nr_mmu_pages;
6005         unsigned long nr_pages = 0;
6006         struct kvm_memslots *slots;
6007         struct kvm_memory_slot *memslot;
6008         int i;
6009
6010         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6011                 slots = __kvm_memslots(kvm, i);
6012
6013                 kvm_for_each_memslot(memslot, slots)
6014                         nr_pages += memslot->npages;
6015         }
6016
6017         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6018         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6019
6020         return nr_mmu_pages;
6021 }
6022
6023 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6024 {
6025         kvm_mmu_unload(vcpu);
6026         free_mmu_pages(&vcpu->arch.root_mmu);
6027         free_mmu_pages(&vcpu->arch.guest_mmu);
6028         mmu_free_memory_caches(vcpu);
6029 }
6030
6031 void kvm_mmu_module_exit(void)
6032 {
6033         mmu_destroy_caches();
6034         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6035         unregister_shrinker(&mmu_shrinker);
6036         mmu_audit_disable();
6037 }
6038
6039 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6040 {
6041         unsigned int old_val;
6042         int err;
6043
6044         old_val = nx_huge_pages_recovery_ratio;
6045         err = param_set_uint(val, kp);
6046         if (err)
6047                 return err;
6048
6049         if (READ_ONCE(nx_huge_pages) &&
6050             !old_val && nx_huge_pages_recovery_ratio) {
6051                 struct kvm *kvm;
6052
6053                 mutex_lock(&kvm_lock);
6054
6055                 list_for_each_entry(kvm, &vm_list, vm_list)
6056                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6057
6058                 mutex_unlock(&kvm_lock);
6059         }
6060
6061         return err;
6062 }
6063
6064 static void kvm_recover_nx_lpages(struct kvm *kvm)
6065 {
6066         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6067         int rcu_idx;
6068         struct kvm_mmu_page *sp;
6069         unsigned int ratio;
6070         LIST_HEAD(invalid_list);
6071         bool flush = false;
6072         ulong to_zap;
6073
6074         rcu_idx = srcu_read_lock(&kvm->srcu);
6075         write_lock(&kvm->mmu_lock);
6076
6077         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6078         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6079         for ( ; to_zap; --to_zap) {
6080                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6081                         break;
6082
6083                 /*
6084                  * We use a separate list instead of just using active_mmu_pages
6085                  * because the number of lpage_disallowed pages is expected to
6086                  * be relatively small compared to the total.
6087                  */
6088                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6089                                       struct kvm_mmu_page,
6090                                       lpage_disallowed_link);
6091                 WARN_ON_ONCE(!sp->lpage_disallowed);
6092                 if (is_tdp_mmu_page(sp)) {
6093                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6094                 } else {
6095                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6096                         WARN_ON_ONCE(sp->lpage_disallowed);
6097                 }
6098
6099                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6100                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6101                         cond_resched_rwlock_write(&kvm->mmu_lock);
6102                         flush = false;
6103                 }
6104         }
6105         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6106
6107         write_unlock(&kvm->mmu_lock);
6108         srcu_read_unlock(&kvm->srcu, rcu_idx);
6109 }
6110
6111 static long get_nx_lpage_recovery_timeout(u64 start_time)
6112 {
6113         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6114                 ? start_time + 60 * HZ - get_jiffies_64()
6115                 : MAX_SCHEDULE_TIMEOUT;
6116 }
6117
6118 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6119 {
6120         u64 start_time;
6121         long remaining_time;
6122
6123         while (true) {
6124                 start_time = get_jiffies_64();
6125                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6126
6127                 set_current_state(TASK_INTERRUPTIBLE);
6128                 while (!kthread_should_stop() && remaining_time > 0) {
6129                         schedule_timeout(remaining_time);
6130                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6131                         set_current_state(TASK_INTERRUPTIBLE);
6132                 }
6133
6134                 set_current_state(TASK_RUNNING);
6135
6136                 if (kthread_should_stop())
6137                         return 0;
6138
6139                 kvm_recover_nx_lpages(kvm);
6140         }
6141 }
6142
6143 int kvm_mmu_post_init_vm(struct kvm *kvm)
6144 {
6145         int err;
6146
6147         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6148                                           "kvm-nx-lpage-recovery",
6149                                           &kvm->arch.nx_lpage_recovery_thread);
6150         if (!err)
6151                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6152
6153         return err;
6154 }
6155
6156 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6157 {
6158         if (kvm->arch.nx_lpage_recovery_thread)
6159                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6160 }