daf41806243f4dc884386f51ef8a36038e4c08ee
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "cpuid.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/moduleparam.h>
30 #include <linux/export.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/signal.h>
37 #include <linux/uaccess.h>
38 #include <linux/hash.h>
39 #include <linux/kern_levels.h>
40 #include <linux/kthread.h>
41
42 #include <asm/page.h>
43 #include <asm/pat.h>
44 #include <asm/cmpxchg.h>
45 #include <asm/e820/api.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49 #include "trace.h"
50
51 extern bool itlb_multihit_kvm_mitigation;
52
53 static int __read_mostly nx_huge_pages = -1;
54 #ifdef CONFIG_PREEMPT_RT
55 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
56 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
57 #else
58 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
59 #endif
60
61 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
62 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
63
64 static struct kernel_param_ops nx_huge_pages_ops = {
65         .set = set_nx_huge_pages,
66         .get = param_get_bool,
67 };
68
69 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
70         .set = set_nx_huge_pages_recovery_ratio,
71         .get = param_get_uint,
72 };
73
74 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
75 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
76 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
77                 &nx_huge_pages_recovery_ratio, 0644);
78 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
79
80 /*
81  * When setting this variable to true it enables Two-Dimensional-Paging
82  * where the hardware walks 2 page tables:
83  * 1. the guest-virtual to guest-physical
84  * 2. while doing 1. it walks guest-physical to host-physical
85  * If the hardware supports that we don't need to do shadow paging.
86  */
87 bool tdp_enabled = false;
88
89 enum {
90         AUDIT_PRE_PAGE_FAULT,
91         AUDIT_POST_PAGE_FAULT,
92         AUDIT_PRE_PTE_WRITE,
93         AUDIT_POST_PTE_WRITE,
94         AUDIT_PRE_SYNC,
95         AUDIT_POST_SYNC
96 };
97
98 #undef MMU_DEBUG
99
100 #ifdef MMU_DEBUG
101 static bool dbg = 0;
102 module_param(dbg, bool, 0644);
103
104 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
105 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
106 #define MMU_WARN_ON(x) WARN_ON(x)
107 #else
108 #define pgprintk(x...) do { } while (0)
109 #define rmap_printk(x...) do { } while (0)
110 #define MMU_WARN_ON(x) do { } while (0)
111 #endif
112
113 #define PTE_PREFETCH_NUM                8
114
115 #define PT_FIRST_AVAIL_BITS_SHIFT 10
116 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
117
118 /*
119  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
120  * Access Tracking SPTEs.
121  */
122 #define SPTE_SPECIAL_MASK (3ULL << 52)
123 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
124 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
125 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
126 #define SPTE_MMIO_MASK (3ULL << 52)
127
128 #define PT64_LEVEL_BITS 9
129
130 #define PT64_LEVEL_SHIFT(level) \
131                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
132
133 #define PT64_INDEX(address, level)\
134         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
135
136
137 #define PT32_LEVEL_BITS 10
138
139 #define PT32_LEVEL_SHIFT(level) \
140                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
141
142 #define PT32_LVL_OFFSET_MASK(level) \
143         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144                                                 * PT32_LEVEL_BITS))) - 1))
145
146 #define PT32_INDEX(address, level)\
147         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
148
149
150 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
151 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
152 #else
153 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
154 #endif
155 #define PT64_LVL_ADDR_MASK(level) \
156         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
157                                                 * PT64_LEVEL_BITS))) - 1))
158 #define PT64_LVL_OFFSET_MASK(level) \
159         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
160                                                 * PT64_LEVEL_BITS))) - 1))
161
162 #define PT32_BASE_ADDR_MASK PAGE_MASK
163 #define PT32_DIR_BASE_ADDR_MASK \
164         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
165 #define PT32_LVL_ADDR_MASK(level) \
166         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
167                                             * PT32_LEVEL_BITS))) - 1))
168
169 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
170                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
171
172 #define ACC_EXEC_MASK    1
173 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
174 #define ACC_USER_MASK    PT_USER_MASK
175 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
176
177 /* The mask for the R/X bits in EPT PTEs */
178 #define PT64_EPT_READABLE_MASK                  0x1ull
179 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
180
181 #include <trace/events/kvm.h>
182
183 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
184 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
185
186 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
187
188 /* make pte_list_desc fit well in cache line */
189 #define PTE_LIST_EXT 3
190
191 /*
192  * Return values of handle_mmio_page_fault and mmu.page_fault:
193  * RET_PF_RETRY: let CPU fault again on the address.
194  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
195  *
196  * For handle_mmio_page_fault only:
197  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
198  */
199 enum {
200         RET_PF_RETRY = 0,
201         RET_PF_EMULATE = 1,
202         RET_PF_INVALID = 2,
203 };
204
205 struct pte_list_desc {
206         u64 *sptes[PTE_LIST_EXT];
207         struct pte_list_desc *more;
208 };
209
210 struct kvm_shadow_walk_iterator {
211         u64 addr;
212         hpa_t shadow_addr;
213         u64 *sptep;
214         int level;
215         unsigned index;
216 };
217
218 static const union kvm_mmu_page_role mmu_base_role_mask = {
219         .cr0_wp = 1,
220         .gpte_is_8_bytes = 1,
221         .nxe = 1,
222         .smep_andnot_wp = 1,
223         .smap_andnot_wp = 1,
224         .smm = 1,
225         .guest_mode = 1,
226         .ad_disabled = 1,
227 };
228
229 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
230         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
231                                          (_root), (_addr));                \
232              shadow_walk_okay(&(_walker));                                 \
233              shadow_walk_next(&(_walker)))
234
235 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
236         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
237              shadow_walk_okay(&(_walker));                      \
238              shadow_walk_next(&(_walker)))
239
240 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
241         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
242              shadow_walk_okay(&(_walker)) &&                            \
243                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
244              __shadow_walk_next(&(_walker), spte))
245
246 static struct kmem_cache *pte_list_desc_cache;
247 static struct kmem_cache *mmu_page_header_cache;
248 static struct percpu_counter kvm_total_used_mmu_pages;
249
250 static u64 __read_mostly shadow_nx_mask;
251 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
252 static u64 __read_mostly shadow_user_mask;
253 static u64 __read_mostly shadow_accessed_mask;
254 static u64 __read_mostly shadow_dirty_mask;
255 static u64 __read_mostly shadow_mmio_mask;
256 static u64 __read_mostly shadow_mmio_value;
257 static u64 __read_mostly shadow_mmio_access_mask;
258 static u64 __read_mostly shadow_present_mask;
259 static u64 __read_mostly shadow_me_mask;
260
261 /*
262  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
263  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
264  * pages.
265  */
266 static u64 __read_mostly shadow_acc_track_mask;
267
268 /*
269  * The mask/shift to use for saving the original R/X bits when marking the PTE
270  * as not-present for access tracking purposes. We do not save the W bit as the
271  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
272  * restored only when a write is attempted to the page.
273  */
274 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
275                                                     PT64_EPT_EXECUTABLE_MASK;
276 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
277
278 /*
279  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
280  * to guard against L1TF attacks.
281  */
282 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
283
284 /*
285  * The number of high-order 1 bits to use in the mask above.
286  */
287 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
288
289 /*
290  * In some cases, we need to preserve the GFN of a non-present or reserved
291  * SPTE when we usurp the upper five bits of the physical address space to
292  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
293  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
294  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
295  * high and low parts.  This mask covers the lower bits of the GFN.
296  */
297 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
298
299 /*
300  * The number of non-reserved physical address bits irrespective of features
301  * that repurpose legal bits, e.g. MKTME.
302  */
303 static u8 __read_mostly shadow_phys_bits;
304
305 static void mmu_spte_set(u64 *sptep, u64 spte);
306 static bool is_executable_pte(u64 spte);
307 static union kvm_mmu_page_role
308 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
309
310 #define CREATE_TRACE_POINTS
311 #include "mmutrace.h"
312
313
314 static inline bool kvm_available_flush_tlb_with_range(void)
315 {
316         return kvm_x86_ops->tlb_remote_flush_with_range;
317 }
318
319 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
320                 struct kvm_tlb_range *range)
321 {
322         int ret = -ENOTSUPP;
323
324         if (range && kvm_x86_ops->tlb_remote_flush_with_range)
325                 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
326
327         if (ret)
328                 kvm_flush_remote_tlbs(kvm);
329 }
330
331 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
332                 u64 start_gfn, u64 pages)
333 {
334         struct kvm_tlb_range range;
335
336         range.start_gfn = start_gfn;
337         range.pages = pages;
338
339         kvm_flush_remote_tlbs_with_range(kvm, &range);
340 }
341
342 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
343 {
344         BUG_ON((u64)(unsigned)access_mask != access_mask);
345         BUG_ON((mmio_mask & mmio_value) != mmio_value);
346         shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
347         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
348         shadow_mmio_access_mask = access_mask;
349 }
350 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
351
352 static bool is_mmio_spte(u64 spte)
353 {
354         return (spte & shadow_mmio_mask) == shadow_mmio_value;
355 }
356
357 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
358 {
359         return sp->role.ad_disabled;
360 }
361
362 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
363 {
364         /*
365          * When using the EPT page-modification log, the GPAs in the log
366          * would come from L2 rather than L1.  Therefore, we need to rely
367          * on write protection to record dirty pages.  This also bypasses
368          * PML, since writes now result in a vmexit.
369          */
370         return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
371 }
372
373 static inline bool spte_ad_enabled(u64 spte)
374 {
375         MMU_WARN_ON(is_mmio_spte(spte));
376         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
377 }
378
379 static inline bool spte_ad_need_write_protect(u64 spte)
380 {
381         MMU_WARN_ON(is_mmio_spte(spte));
382         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
383 }
384
385 static bool is_nx_huge_page_enabled(void)
386 {
387         return READ_ONCE(nx_huge_pages);
388 }
389
390 static inline u64 spte_shadow_accessed_mask(u64 spte)
391 {
392         MMU_WARN_ON(is_mmio_spte(spte));
393         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
394 }
395
396 static inline u64 spte_shadow_dirty_mask(u64 spte)
397 {
398         MMU_WARN_ON(is_mmio_spte(spte));
399         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
400 }
401
402 static inline bool is_access_track_spte(u64 spte)
403 {
404         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
405 }
406
407 /*
408  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
409  * the memslots generation and is derived as follows:
410  *
411  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
412  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
413  *
414  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
415  * the MMIO generation number, as doing so would require stealing a bit from
416  * the "real" generation number and thus effectively halve the maximum number
417  * of MMIO generations that can be handled before encountering a wrap (which
418  * requires a full MMU zap).  The flag is instead explicitly queried when
419  * checking for MMIO spte cache hits.
420  */
421 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(18, 0)
422
423 #define MMIO_SPTE_GEN_LOW_START         3
424 #define MMIO_SPTE_GEN_LOW_END           11
425 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
426                                                     MMIO_SPTE_GEN_LOW_START)
427
428 #define MMIO_SPTE_GEN_HIGH_START        52
429 #define MMIO_SPTE_GEN_HIGH_END          61
430 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
431                                                     MMIO_SPTE_GEN_HIGH_START)
432 static u64 generation_mmio_spte_mask(u64 gen)
433 {
434         u64 mask;
435
436         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
437
438         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
439         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
440         return mask;
441 }
442
443 static u64 get_mmio_spte_generation(u64 spte)
444 {
445         u64 gen;
446
447         spte &= ~shadow_mmio_mask;
448
449         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
450         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
451         return gen;
452 }
453
454 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
455                            unsigned access)
456 {
457         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
458         u64 mask = generation_mmio_spte_mask(gen);
459         u64 gpa = gfn << PAGE_SHIFT;
460
461         access &= shadow_mmio_access_mask;
462         mask |= shadow_mmio_value | access;
463         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
464         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
465                 << shadow_nonpresent_or_rsvd_mask_len;
466
467         trace_mark_mmio_spte(sptep, gfn, access, gen);
468         mmu_spte_set(sptep, mask);
469 }
470
471 static gfn_t get_mmio_spte_gfn(u64 spte)
472 {
473         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
474
475         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
476                & shadow_nonpresent_or_rsvd_mask;
477
478         return gpa >> PAGE_SHIFT;
479 }
480
481 static unsigned get_mmio_spte_access(u64 spte)
482 {
483         return spte & shadow_mmio_access_mask;
484 }
485
486 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
487                           kvm_pfn_t pfn, unsigned access)
488 {
489         if (unlikely(is_noslot_pfn(pfn))) {
490                 mark_mmio_spte(vcpu, sptep, gfn, access);
491                 return true;
492         }
493
494         return false;
495 }
496
497 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
498 {
499         u64 kvm_gen, spte_gen, gen;
500
501         gen = kvm_vcpu_memslots(vcpu)->generation;
502         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
503                 return false;
504
505         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
506         spte_gen = get_mmio_spte_generation(spte);
507
508         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
509         return likely(kvm_gen == spte_gen);
510 }
511
512 /*
513  * Sets the shadow PTE masks used by the MMU.
514  *
515  * Assumptions:
516  *  - Setting either @accessed_mask or @dirty_mask requires setting both
517  *  - At least one of @accessed_mask or @acc_track_mask must be set
518  */
519 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
520                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
521                 u64 acc_track_mask, u64 me_mask)
522 {
523         BUG_ON(!dirty_mask != !accessed_mask);
524         BUG_ON(!accessed_mask && !acc_track_mask);
525         BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
526
527         shadow_user_mask = user_mask;
528         shadow_accessed_mask = accessed_mask;
529         shadow_dirty_mask = dirty_mask;
530         shadow_nx_mask = nx_mask;
531         shadow_x_mask = x_mask;
532         shadow_present_mask = p_mask;
533         shadow_acc_track_mask = acc_track_mask;
534         shadow_me_mask = me_mask;
535 }
536 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
537
538 static u8 kvm_get_shadow_phys_bits(void)
539 {
540         /*
541          * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
542          * in CPU detection code, but the processor treats those reduced bits as
543          * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
544          * the physical address bits reported by CPUID.
545          */
546         if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
547                 return cpuid_eax(0x80000008) & 0xff;
548
549         /*
550          * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
551          * custom CPUID.  Proceed with whatever the kernel found since these features
552          * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
553          */
554         return boot_cpu_data.x86_phys_bits;
555 }
556
557 static void kvm_mmu_reset_all_pte_masks(void)
558 {
559         u8 low_phys_bits;
560
561         shadow_user_mask = 0;
562         shadow_accessed_mask = 0;
563         shadow_dirty_mask = 0;
564         shadow_nx_mask = 0;
565         shadow_x_mask = 0;
566         shadow_mmio_mask = 0;
567         shadow_present_mask = 0;
568         shadow_acc_track_mask = 0;
569
570         shadow_phys_bits = kvm_get_shadow_phys_bits();
571
572         /*
573          * If the CPU has 46 or less physical address bits, then set an
574          * appropriate mask to guard against L1TF attacks. Otherwise, it is
575          * assumed that the CPU is not vulnerable to L1TF.
576          *
577          * Some Intel CPUs address the L1 cache using more PA bits than are
578          * reported by CPUID. Use the PA width of the L1 cache when possible
579          * to achieve more effective mitigation, e.g. if system RAM overlaps
580          * the most significant bits of legal physical address space.
581          */
582         shadow_nonpresent_or_rsvd_mask = 0;
583         low_phys_bits = boot_cpu_data.x86_cache_bits;
584         if (boot_cpu_data.x86_cache_bits <
585             52 - shadow_nonpresent_or_rsvd_mask_len) {
586                 shadow_nonpresent_or_rsvd_mask =
587                         rsvd_bits(boot_cpu_data.x86_cache_bits -
588                                   shadow_nonpresent_or_rsvd_mask_len,
589                                   boot_cpu_data.x86_cache_bits - 1);
590                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
591         } else
592                 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
593
594         shadow_nonpresent_or_rsvd_lower_gfn_mask =
595                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
596 }
597
598 static int is_cpuid_PSE36(void)
599 {
600         return 1;
601 }
602
603 static int is_nx(struct kvm_vcpu *vcpu)
604 {
605         return vcpu->arch.efer & EFER_NX;
606 }
607
608 static int is_shadow_present_pte(u64 pte)
609 {
610         return (pte != 0) && !is_mmio_spte(pte);
611 }
612
613 static int is_large_pte(u64 pte)
614 {
615         return pte & PT_PAGE_SIZE_MASK;
616 }
617
618 static int is_last_spte(u64 pte, int level)
619 {
620         if (level == PT_PAGE_TABLE_LEVEL)
621                 return 1;
622         if (is_large_pte(pte))
623                 return 1;
624         return 0;
625 }
626
627 static bool is_executable_pte(u64 spte)
628 {
629         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
630 }
631
632 static kvm_pfn_t spte_to_pfn(u64 pte)
633 {
634         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
635 }
636
637 static gfn_t pse36_gfn_delta(u32 gpte)
638 {
639         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
640
641         return (gpte & PT32_DIR_PSE36_MASK) << shift;
642 }
643
644 #ifdef CONFIG_X86_64
645 static void __set_spte(u64 *sptep, u64 spte)
646 {
647         WRITE_ONCE(*sptep, spte);
648 }
649
650 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
651 {
652         WRITE_ONCE(*sptep, spte);
653 }
654
655 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
656 {
657         return xchg(sptep, spte);
658 }
659
660 static u64 __get_spte_lockless(u64 *sptep)
661 {
662         return READ_ONCE(*sptep);
663 }
664 #else
665 union split_spte {
666         struct {
667                 u32 spte_low;
668                 u32 spte_high;
669         };
670         u64 spte;
671 };
672
673 static void count_spte_clear(u64 *sptep, u64 spte)
674 {
675         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
676
677         if (is_shadow_present_pte(spte))
678                 return;
679
680         /* Ensure the spte is completely set before we increase the count */
681         smp_wmb();
682         sp->clear_spte_count++;
683 }
684
685 static void __set_spte(u64 *sptep, u64 spte)
686 {
687         union split_spte *ssptep, sspte;
688
689         ssptep = (union split_spte *)sptep;
690         sspte = (union split_spte)spte;
691
692         ssptep->spte_high = sspte.spte_high;
693
694         /*
695          * If we map the spte from nonpresent to present, We should store
696          * the high bits firstly, then set present bit, so cpu can not
697          * fetch this spte while we are setting the spte.
698          */
699         smp_wmb();
700
701         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
702 }
703
704 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
705 {
706         union split_spte *ssptep, sspte;
707
708         ssptep = (union split_spte *)sptep;
709         sspte = (union split_spte)spte;
710
711         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
712
713         /*
714          * If we map the spte from present to nonpresent, we should clear
715          * present bit firstly to avoid vcpu fetch the old high bits.
716          */
717         smp_wmb();
718
719         ssptep->spte_high = sspte.spte_high;
720         count_spte_clear(sptep, spte);
721 }
722
723 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
724 {
725         union split_spte *ssptep, sspte, orig;
726
727         ssptep = (union split_spte *)sptep;
728         sspte = (union split_spte)spte;
729
730         /* xchg acts as a barrier before the setting of the high bits */
731         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
732         orig.spte_high = ssptep->spte_high;
733         ssptep->spte_high = sspte.spte_high;
734         count_spte_clear(sptep, spte);
735
736         return orig.spte;
737 }
738
739 /*
740  * The idea using the light way get the spte on x86_32 guest is from
741  * gup_get_pte (mm/gup.c).
742  *
743  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
744  * coalesces them and we are running out of the MMU lock.  Therefore
745  * we need to protect against in-progress updates of the spte.
746  *
747  * Reading the spte while an update is in progress may get the old value
748  * for the high part of the spte.  The race is fine for a present->non-present
749  * change (because the high part of the spte is ignored for non-present spte),
750  * but for a present->present change we must reread the spte.
751  *
752  * All such changes are done in two steps (present->non-present and
753  * non-present->present), hence it is enough to count the number of
754  * present->non-present updates: if it changed while reading the spte,
755  * we might have hit the race.  This is done using clear_spte_count.
756  */
757 static u64 __get_spte_lockless(u64 *sptep)
758 {
759         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
760         union split_spte spte, *orig = (union split_spte *)sptep;
761         int count;
762
763 retry:
764         count = sp->clear_spte_count;
765         smp_rmb();
766
767         spte.spte_low = orig->spte_low;
768         smp_rmb();
769
770         spte.spte_high = orig->spte_high;
771         smp_rmb();
772
773         if (unlikely(spte.spte_low != orig->spte_low ||
774               count != sp->clear_spte_count))
775                 goto retry;
776
777         return spte.spte;
778 }
779 #endif
780
781 static bool spte_can_locklessly_be_made_writable(u64 spte)
782 {
783         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
784                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
785 }
786
787 static bool spte_has_volatile_bits(u64 spte)
788 {
789         if (!is_shadow_present_pte(spte))
790                 return false;
791
792         /*
793          * Always atomically update spte if it can be updated
794          * out of mmu-lock, it can ensure dirty bit is not lost,
795          * also, it can help us to get a stable is_writable_pte()
796          * to ensure tlb flush is not missed.
797          */
798         if (spte_can_locklessly_be_made_writable(spte) ||
799             is_access_track_spte(spte))
800                 return true;
801
802         if (spte_ad_enabled(spte)) {
803                 if ((spte & shadow_accessed_mask) == 0 ||
804                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
805                         return true;
806         }
807
808         return false;
809 }
810
811 static bool is_accessed_spte(u64 spte)
812 {
813         u64 accessed_mask = spte_shadow_accessed_mask(spte);
814
815         return accessed_mask ? spte & accessed_mask
816                              : !is_access_track_spte(spte);
817 }
818
819 static bool is_dirty_spte(u64 spte)
820 {
821         u64 dirty_mask = spte_shadow_dirty_mask(spte);
822
823         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
824 }
825
826 /* Rules for using mmu_spte_set:
827  * Set the sptep from nonpresent to present.
828  * Note: the sptep being assigned *must* be either not present
829  * or in a state where the hardware will not attempt to update
830  * the spte.
831  */
832 static void mmu_spte_set(u64 *sptep, u64 new_spte)
833 {
834         WARN_ON(is_shadow_present_pte(*sptep));
835         __set_spte(sptep, new_spte);
836 }
837
838 /*
839  * Update the SPTE (excluding the PFN), but do not track changes in its
840  * accessed/dirty status.
841  */
842 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
843 {
844         u64 old_spte = *sptep;
845
846         WARN_ON(!is_shadow_present_pte(new_spte));
847
848         if (!is_shadow_present_pte(old_spte)) {
849                 mmu_spte_set(sptep, new_spte);
850                 return old_spte;
851         }
852
853         if (!spte_has_volatile_bits(old_spte))
854                 __update_clear_spte_fast(sptep, new_spte);
855         else
856                 old_spte = __update_clear_spte_slow(sptep, new_spte);
857
858         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
859
860         return old_spte;
861 }
862
863 /* Rules for using mmu_spte_update:
864  * Update the state bits, it means the mapped pfn is not changed.
865  *
866  * Whenever we overwrite a writable spte with a read-only one we
867  * should flush remote TLBs. Otherwise rmap_write_protect
868  * will find a read-only spte, even though the writable spte
869  * might be cached on a CPU's TLB, the return value indicates this
870  * case.
871  *
872  * Returns true if the TLB needs to be flushed
873  */
874 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
875 {
876         bool flush = false;
877         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
878
879         if (!is_shadow_present_pte(old_spte))
880                 return false;
881
882         /*
883          * For the spte updated out of mmu-lock is safe, since
884          * we always atomically update it, see the comments in
885          * spte_has_volatile_bits().
886          */
887         if (spte_can_locklessly_be_made_writable(old_spte) &&
888               !is_writable_pte(new_spte))
889                 flush = true;
890
891         /*
892          * Flush TLB when accessed/dirty states are changed in the page tables,
893          * to guarantee consistency between TLB and page tables.
894          */
895
896         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
897                 flush = true;
898                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
899         }
900
901         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
902                 flush = true;
903                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
904         }
905
906         return flush;
907 }
908
909 /*
910  * Rules for using mmu_spte_clear_track_bits:
911  * It sets the sptep from present to nonpresent, and track the
912  * state bits, it is used to clear the last level sptep.
913  * Returns non-zero if the PTE was previously valid.
914  */
915 static int mmu_spte_clear_track_bits(u64 *sptep)
916 {
917         kvm_pfn_t pfn;
918         u64 old_spte = *sptep;
919
920         if (!spte_has_volatile_bits(old_spte))
921                 __update_clear_spte_fast(sptep, 0ull);
922         else
923                 old_spte = __update_clear_spte_slow(sptep, 0ull);
924
925         if (!is_shadow_present_pte(old_spte))
926                 return 0;
927
928         pfn = spte_to_pfn(old_spte);
929
930         /*
931          * KVM does not hold the refcount of the page used by
932          * kvm mmu, before reclaiming the page, we should
933          * unmap it from mmu first.
934          */
935         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
936
937         if (is_accessed_spte(old_spte))
938                 kvm_set_pfn_accessed(pfn);
939
940         if (is_dirty_spte(old_spte))
941                 kvm_set_pfn_dirty(pfn);
942
943         return 1;
944 }
945
946 /*
947  * Rules for using mmu_spte_clear_no_track:
948  * Directly clear spte without caring the state bits of sptep,
949  * it is used to set the upper level spte.
950  */
951 static void mmu_spte_clear_no_track(u64 *sptep)
952 {
953         __update_clear_spte_fast(sptep, 0ull);
954 }
955
956 static u64 mmu_spte_get_lockless(u64 *sptep)
957 {
958         return __get_spte_lockless(sptep);
959 }
960
961 static u64 mark_spte_for_access_track(u64 spte)
962 {
963         if (spte_ad_enabled(spte))
964                 return spte & ~shadow_accessed_mask;
965
966         if (is_access_track_spte(spte))
967                 return spte;
968
969         /*
970          * Making an Access Tracking PTE will result in removal of write access
971          * from the PTE. So, verify that we will be able to restore the write
972          * access in the fast page fault path later on.
973          */
974         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
975                   !spte_can_locklessly_be_made_writable(spte),
976                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
977
978         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
979                           shadow_acc_track_saved_bits_shift),
980                   "kvm: Access Tracking saved bit locations are not zero\n");
981
982         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
983                 shadow_acc_track_saved_bits_shift;
984         spte &= ~shadow_acc_track_mask;
985
986         return spte;
987 }
988
989 /* Restore an acc-track PTE back to a regular PTE */
990 static u64 restore_acc_track_spte(u64 spte)
991 {
992         u64 new_spte = spte;
993         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
994                          & shadow_acc_track_saved_bits_mask;
995
996         WARN_ON_ONCE(spte_ad_enabled(spte));
997         WARN_ON_ONCE(!is_access_track_spte(spte));
998
999         new_spte &= ~shadow_acc_track_mask;
1000         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1001                       shadow_acc_track_saved_bits_shift);
1002         new_spte |= saved_bits;
1003
1004         return new_spte;
1005 }
1006
1007 /* Returns the Accessed status of the PTE and resets it at the same time. */
1008 static bool mmu_spte_age(u64 *sptep)
1009 {
1010         u64 spte = mmu_spte_get_lockless(sptep);
1011
1012         if (!is_accessed_spte(spte))
1013                 return false;
1014
1015         if (spte_ad_enabled(spte)) {
1016                 clear_bit((ffs(shadow_accessed_mask) - 1),
1017                           (unsigned long *)sptep);
1018         } else {
1019                 /*
1020                  * Capture the dirty status of the page, so that it doesn't get
1021                  * lost when the SPTE is marked for access tracking.
1022                  */
1023                 if (is_writable_pte(spte))
1024                         kvm_set_pfn_dirty(spte_to_pfn(spte));
1025
1026                 spte = mark_spte_for_access_track(spte);
1027                 mmu_spte_update_no_track(sptep, spte);
1028         }
1029
1030         return true;
1031 }
1032
1033 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1034 {
1035         /*
1036          * Prevent page table teardown by making any free-er wait during
1037          * kvm_flush_remote_tlbs() IPI to all active vcpus.
1038          */
1039         local_irq_disable();
1040
1041         /*
1042          * Make sure a following spte read is not reordered ahead of the write
1043          * to vcpu->mode.
1044          */
1045         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1046 }
1047
1048 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1049 {
1050         /*
1051          * Make sure the write to vcpu->mode is not reordered in front of
1052          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1053          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1054          */
1055         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1056         local_irq_enable();
1057 }
1058
1059 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1060                                   struct kmem_cache *base_cache, int min)
1061 {
1062         void *obj;
1063
1064         if (cache->nobjs >= min)
1065                 return 0;
1066         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1067                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1068                 if (!obj)
1069                         return cache->nobjs >= min ? 0 : -ENOMEM;
1070                 cache->objects[cache->nobjs++] = obj;
1071         }
1072         return 0;
1073 }
1074
1075 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1076 {
1077         return cache->nobjs;
1078 }
1079
1080 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1081                                   struct kmem_cache *cache)
1082 {
1083         while (mc->nobjs)
1084                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1085 }
1086
1087 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1088                                        int min)
1089 {
1090         void *page;
1091
1092         if (cache->nobjs >= min)
1093                 return 0;
1094         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1095                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1096                 if (!page)
1097                         return cache->nobjs >= min ? 0 : -ENOMEM;
1098                 cache->objects[cache->nobjs++] = page;
1099         }
1100         return 0;
1101 }
1102
1103 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1104 {
1105         while (mc->nobjs)
1106                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1107 }
1108
1109 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1110 {
1111         int r;
1112
1113         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1114                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1115         if (r)
1116                 goto out;
1117         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1118         if (r)
1119                 goto out;
1120         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1121                                    mmu_page_header_cache, 4);
1122 out:
1123         return r;
1124 }
1125
1126 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1127 {
1128         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1129                                 pte_list_desc_cache);
1130         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1131         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1132                                 mmu_page_header_cache);
1133 }
1134
1135 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1136 {
1137         void *p;
1138
1139         BUG_ON(!mc->nobjs);
1140         p = mc->objects[--mc->nobjs];
1141         return p;
1142 }
1143
1144 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1145 {
1146         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1147 }
1148
1149 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1150 {
1151         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1152 }
1153
1154 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1155 {
1156         if (!sp->role.direct)
1157                 return sp->gfns[index];
1158
1159         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1160 }
1161
1162 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1163 {
1164         if (!sp->role.direct) {
1165                 sp->gfns[index] = gfn;
1166                 return;
1167         }
1168
1169         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1170                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1171                                    "(expected %llx, got %llx)\n",
1172                                    sp->gfn,
1173                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1174 }
1175
1176 /*
1177  * Return the pointer to the large page information for a given gfn,
1178  * handling slots that are not large page aligned.
1179  */
1180 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1181                                               struct kvm_memory_slot *slot,
1182                                               int level)
1183 {
1184         unsigned long idx;
1185
1186         idx = gfn_to_index(gfn, slot->base_gfn, level);
1187         return &slot->arch.lpage_info[level - 2][idx];
1188 }
1189
1190 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1191                                             gfn_t gfn, int count)
1192 {
1193         struct kvm_lpage_info *linfo;
1194         int i;
1195
1196         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1197                 linfo = lpage_info_slot(gfn, slot, i);
1198                 linfo->disallow_lpage += count;
1199                 WARN_ON(linfo->disallow_lpage < 0);
1200         }
1201 }
1202
1203 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1204 {
1205         update_gfn_disallow_lpage_count(slot, gfn, 1);
1206 }
1207
1208 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1209 {
1210         update_gfn_disallow_lpage_count(slot, gfn, -1);
1211 }
1212
1213 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1214 {
1215         struct kvm_memslots *slots;
1216         struct kvm_memory_slot *slot;
1217         gfn_t gfn;
1218
1219         kvm->arch.indirect_shadow_pages++;
1220         gfn = sp->gfn;
1221         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1222         slot = __gfn_to_memslot(slots, gfn);
1223
1224         /* the non-leaf shadow pages are keeping readonly. */
1225         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1226                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1227                                                     KVM_PAGE_TRACK_WRITE);
1228
1229         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1230 }
1231
1232 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1233 {
1234         if (sp->lpage_disallowed)
1235                 return;
1236
1237         ++kvm->stat.nx_lpage_splits;
1238         list_add_tail(&sp->lpage_disallowed_link,
1239                       &kvm->arch.lpage_disallowed_mmu_pages);
1240         sp->lpage_disallowed = true;
1241 }
1242
1243 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1244 {
1245         struct kvm_memslots *slots;
1246         struct kvm_memory_slot *slot;
1247         gfn_t gfn;
1248
1249         kvm->arch.indirect_shadow_pages--;
1250         gfn = sp->gfn;
1251         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252         slot = __gfn_to_memslot(slots, gfn);
1253         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1254                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1255                                                        KVM_PAGE_TRACK_WRITE);
1256
1257         kvm_mmu_gfn_allow_lpage(slot, gfn);
1258 }
1259
1260 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1261 {
1262         --kvm->stat.nx_lpage_splits;
1263         sp->lpage_disallowed = false;
1264         list_del(&sp->lpage_disallowed_link);
1265 }
1266
1267 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1268                                           struct kvm_memory_slot *slot)
1269 {
1270         struct kvm_lpage_info *linfo;
1271
1272         if (slot) {
1273                 linfo = lpage_info_slot(gfn, slot, level);
1274                 return !!linfo->disallow_lpage;
1275         }
1276
1277         return true;
1278 }
1279
1280 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1281                                         int level)
1282 {
1283         struct kvm_memory_slot *slot;
1284
1285         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1286         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1287 }
1288
1289 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1290 {
1291         unsigned long page_size;
1292         int i, ret = 0;
1293
1294         page_size = kvm_host_page_size(kvm, gfn);
1295
1296         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1297                 if (page_size >= KVM_HPAGE_SIZE(i))
1298                         ret = i;
1299                 else
1300                         break;
1301         }
1302
1303         return ret;
1304 }
1305
1306 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1307                                           bool no_dirty_log)
1308 {
1309         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1310                 return false;
1311         if (no_dirty_log && slot->dirty_bitmap)
1312                 return false;
1313
1314         return true;
1315 }
1316
1317 static struct kvm_memory_slot *
1318 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1319                             bool no_dirty_log)
1320 {
1321         struct kvm_memory_slot *slot;
1322
1323         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1325                 slot = NULL;
1326
1327         return slot;
1328 }
1329
1330 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1331                          int *max_levelp)
1332 {
1333         int host_level, max_level = *max_levelp;
1334         struct kvm_memory_slot *slot;
1335
1336         if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
1337                 return PT_PAGE_TABLE_LEVEL;
1338
1339         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1340         if (!memslot_valid_for_gpte(slot, true)) {
1341                 *max_levelp = PT_PAGE_TABLE_LEVEL;
1342                 return PT_PAGE_TABLE_LEVEL;
1343         }
1344
1345         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1346
1347         if (host_level == PT_PAGE_TABLE_LEVEL)
1348                 return host_level;
1349
1350         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1351         for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
1352                 if (!__mmu_gfn_lpage_is_disallowed(large_gfn, max_level, slot))
1353                         break;
1354         }
1355
1356         return max_level;
1357 }
1358
1359 /*
1360  * About rmap_head encoding:
1361  *
1362  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1363  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1364  * pte_list_desc containing more mappings.
1365  */
1366
1367 /*
1368  * Returns the number of pointers in the rmap chain, not counting the new one.
1369  */
1370 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1371                         struct kvm_rmap_head *rmap_head)
1372 {
1373         struct pte_list_desc *desc;
1374         int i, count = 0;
1375
1376         if (!rmap_head->val) {
1377                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1378                 rmap_head->val = (unsigned long)spte;
1379         } else if (!(rmap_head->val & 1)) {
1380                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1381                 desc = mmu_alloc_pte_list_desc(vcpu);
1382                 desc->sptes[0] = (u64 *)rmap_head->val;
1383                 desc->sptes[1] = spte;
1384                 rmap_head->val = (unsigned long)desc | 1;
1385                 ++count;
1386         } else {
1387                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1388                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1389                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1390                         desc = desc->more;
1391                         count += PTE_LIST_EXT;
1392                 }
1393                 if (desc->sptes[PTE_LIST_EXT-1]) {
1394                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1395                         desc = desc->more;
1396                 }
1397                 for (i = 0; desc->sptes[i]; ++i)
1398                         ++count;
1399                 desc->sptes[i] = spte;
1400         }
1401         return count;
1402 }
1403
1404 static void
1405 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1406                            struct pte_list_desc *desc, int i,
1407                            struct pte_list_desc *prev_desc)
1408 {
1409         int j;
1410
1411         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1412                 ;
1413         desc->sptes[i] = desc->sptes[j];
1414         desc->sptes[j] = NULL;
1415         if (j != 0)
1416                 return;
1417         if (!prev_desc && !desc->more)
1418                 rmap_head->val = 0;
1419         else
1420                 if (prev_desc)
1421                         prev_desc->more = desc->more;
1422                 else
1423                         rmap_head->val = (unsigned long)desc->more | 1;
1424         mmu_free_pte_list_desc(desc);
1425 }
1426
1427 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1428 {
1429         struct pte_list_desc *desc;
1430         struct pte_list_desc *prev_desc;
1431         int i;
1432
1433         if (!rmap_head->val) {
1434                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1435                 BUG();
1436         } else if (!(rmap_head->val & 1)) {
1437                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1438                 if ((u64 *)rmap_head->val != spte) {
1439                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1440                         BUG();
1441                 }
1442                 rmap_head->val = 0;
1443         } else {
1444                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1445                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1446                 prev_desc = NULL;
1447                 while (desc) {
1448                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1449                                 if (desc->sptes[i] == spte) {
1450                                         pte_list_desc_remove_entry(rmap_head,
1451                                                         desc, i, prev_desc);
1452                                         return;
1453                                 }
1454                         }
1455                         prev_desc = desc;
1456                         desc = desc->more;
1457                 }
1458                 pr_err("%s: %p many->many\n", __func__, spte);
1459                 BUG();
1460         }
1461 }
1462
1463 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1464 {
1465         mmu_spte_clear_track_bits(sptep);
1466         __pte_list_remove(sptep, rmap_head);
1467 }
1468
1469 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1470                                            struct kvm_memory_slot *slot)
1471 {
1472         unsigned long idx;
1473
1474         idx = gfn_to_index(gfn, slot->base_gfn, level);
1475         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1476 }
1477
1478 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1479                                          struct kvm_mmu_page *sp)
1480 {
1481         struct kvm_memslots *slots;
1482         struct kvm_memory_slot *slot;
1483
1484         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1485         slot = __gfn_to_memslot(slots, gfn);
1486         return __gfn_to_rmap(gfn, sp->role.level, slot);
1487 }
1488
1489 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1490 {
1491         struct kvm_mmu_memory_cache *cache;
1492
1493         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1494         return mmu_memory_cache_free_objects(cache);
1495 }
1496
1497 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1498 {
1499         struct kvm_mmu_page *sp;
1500         struct kvm_rmap_head *rmap_head;
1501
1502         sp = page_header(__pa(spte));
1503         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1504         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1505         return pte_list_add(vcpu, spte, rmap_head);
1506 }
1507
1508 static void rmap_remove(struct kvm *kvm, u64 *spte)
1509 {
1510         struct kvm_mmu_page *sp;
1511         gfn_t gfn;
1512         struct kvm_rmap_head *rmap_head;
1513
1514         sp = page_header(__pa(spte));
1515         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1516         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1517         __pte_list_remove(spte, rmap_head);
1518 }
1519
1520 /*
1521  * Used by the following functions to iterate through the sptes linked by a
1522  * rmap.  All fields are private and not assumed to be used outside.
1523  */
1524 struct rmap_iterator {
1525         /* private fields */
1526         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1527         int pos;                        /* index of the sptep */
1528 };
1529
1530 /*
1531  * Iteration must be started by this function.  This should also be used after
1532  * removing/dropping sptes from the rmap link because in such cases the
1533  * information in the iterator may not be valid.
1534  *
1535  * Returns sptep if found, NULL otherwise.
1536  */
1537 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1538                            struct rmap_iterator *iter)
1539 {
1540         u64 *sptep;
1541
1542         if (!rmap_head->val)
1543                 return NULL;
1544
1545         if (!(rmap_head->val & 1)) {
1546                 iter->desc = NULL;
1547                 sptep = (u64 *)rmap_head->val;
1548                 goto out;
1549         }
1550
1551         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1552         iter->pos = 0;
1553         sptep = iter->desc->sptes[iter->pos];
1554 out:
1555         BUG_ON(!is_shadow_present_pte(*sptep));
1556         return sptep;
1557 }
1558
1559 /*
1560  * Must be used with a valid iterator: e.g. after rmap_get_first().
1561  *
1562  * Returns sptep if found, NULL otherwise.
1563  */
1564 static u64 *rmap_get_next(struct rmap_iterator *iter)
1565 {
1566         u64 *sptep;
1567
1568         if (iter->desc) {
1569                 if (iter->pos < PTE_LIST_EXT - 1) {
1570                         ++iter->pos;
1571                         sptep = iter->desc->sptes[iter->pos];
1572                         if (sptep)
1573                                 goto out;
1574                 }
1575
1576                 iter->desc = iter->desc->more;
1577
1578                 if (iter->desc) {
1579                         iter->pos = 0;
1580                         /* desc->sptes[0] cannot be NULL */
1581                         sptep = iter->desc->sptes[iter->pos];
1582                         goto out;
1583                 }
1584         }
1585
1586         return NULL;
1587 out:
1588         BUG_ON(!is_shadow_present_pte(*sptep));
1589         return sptep;
1590 }
1591
1592 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1593         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1594              _spte_; _spte_ = rmap_get_next(_iter_))
1595
1596 static void drop_spte(struct kvm *kvm, u64 *sptep)
1597 {
1598         if (mmu_spte_clear_track_bits(sptep))
1599                 rmap_remove(kvm, sptep);
1600 }
1601
1602
1603 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1604 {
1605         if (is_large_pte(*sptep)) {
1606                 WARN_ON(page_header(__pa(sptep))->role.level ==
1607                         PT_PAGE_TABLE_LEVEL);
1608                 drop_spte(kvm, sptep);
1609                 --kvm->stat.lpages;
1610                 return true;
1611         }
1612
1613         return false;
1614 }
1615
1616 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1617 {
1618         if (__drop_large_spte(vcpu->kvm, sptep)) {
1619                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1620
1621                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1622                         KVM_PAGES_PER_HPAGE(sp->role.level));
1623         }
1624 }
1625
1626 /*
1627  * Write-protect on the specified @sptep, @pt_protect indicates whether
1628  * spte write-protection is caused by protecting shadow page table.
1629  *
1630  * Note: write protection is difference between dirty logging and spte
1631  * protection:
1632  * - for dirty logging, the spte can be set to writable at anytime if
1633  *   its dirty bitmap is properly set.
1634  * - for spte protection, the spte can be writable only after unsync-ing
1635  *   shadow page.
1636  *
1637  * Return true if tlb need be flushed.
1638  */
1639 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1640 {
1641         u64 spte = *sptep;
1642
1643         if (!is_writable_pte(spte) &&
1644               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1645                 return false;
1646
1647         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1648
1649         if (pt_protect)
1650                 spte &= ~SPTE_MMU_WRITEABLE;
1651         spte = spte & ~PT_WRITABLE_MASK;
1652
1653         return mmu_spte_update(sptep, spte);
1654 }
1655
1656 static bool __rmap_write_protect(struct kvm *kvm,
1657                                  struct kvm_rmap_head *rmap_head,
1658                                  bool pt_protect)
1659 {
1660         u64 *sptep;
1661         struct rmap_iterator iter;
1662         bool flush = false;
1663
1664         for_each_rmap_spte(rmap_head, &iter, sptep)
1665                 flush |= spte_write_protect(sptep, pt_protect);
1666
1667         return flush;
1668 }
1669
1670 static bool spte_clear_dirty(u64 *sptep)
1671 {
1672         u64 spte = *sptep;
1673
1674         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1675
1676         MMU_WARN_ON(!spte_ad_enabled(spte));
1677         spte &= ~shadow_dirty_mask;
1678         return mmu_spte_update(sptep, spte);
1679 }
1680
1681 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1682 {
1683         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1684                                                (unsigned long *)sptep);
1685         if (was_writable && !spte_ad_enabled(*sptep))
1686                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1687
1688         return was_writable;
1689 }
1690
1691 /*
1692  * Gets the GFN ready for another round of dirty logging by clearing the
1693  *      - D bit on ad-enabled SPTEs, and
1694  *      - W bit on ad-disabled SPTEs.
1695  * Returns true iff any D or W bits were cleared.
1696  */
1697 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1698 {
1699         u64 *sptep;
1700         struct rmap_iterator iter;
1701         bool flush = false;
1702
1703         for_each_rmap_spte(rmap_head, &iter, sptep)
1704                 if (spte_ad_need_write_protect(*sptep))
1705                         flush |= spte_wrprot_for_clear_dirty(sptep);
1706                 else
1707                         flush |= spte_clear_dirty(sptep);
1708
1709         return flush;
1710 }
1711
1712 static bool spte_set_dirty(u64 *sptep)
1713 {
1714         u64 spte = *sptep;
1715
1716         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1717
1718         /*
1719          * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
1720          * do not bother adding back write access to pages marked
1721          * SPTE_AD_WRPROT_ONLY_MASK.
1722          */
1723         spte |= shadow_dirty_mask;
1724
1725         return mmu_spte_update(sptep, spte);
1726 }
1727
1728 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1729 {
1730         u64 *sptep;
1731         struct rmap_iterator iter;
1732         bool flush = false;
1733
1734         for_each_rmap_spte(rmap_head, &iter, sptep)
1735                 if (spte_ad_enabled(*sptep))
1736                         flush |= spte_set_dirty(sptep);
1737
1738         return flush;
1739 }
1740
1741 /**
1742  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1743  * @kvm: kvm instance
1744  * @slot: slot to protect
1745  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1746  * @mask: indicates which pages we should protect
1747  *
1748  * Used when we do not need to care about huge page mappings: e.g. during dirty
1749  * logging we do not have any such mappings.
1750  */
1751 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1752                                      struct kvm_memory_slot *slot,
1753                                      gfn_t gfn_offset, unsigned long mask)
1754 {
1755         struct kvm_rmap_head *rmap_head;
1756
1757         while (mask) {
1758                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1759                                           PT_PAGE_TABLE_LEVEL, slot);
1760                 __rmap_write_protect(kvm, rmap_head, false);
1761
1762                 /* clear the first set bit */
1763                 mask &= mask - 1;
1764         }
1765 }
1766
1767 /**
1768  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1769  * protect the page if the D-bit isn't supported.
1770  * @kvm: kvm instance
1771  * @slot: slot to clear D-bit
1772  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1773  * @mask: indicates which pages we should clear D-bit
1774  *
1775  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1776  */
1777 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1778                                      struct kvm_memory_slot *slot,
1779                                      gfn_t gfn_offset, unsigned long mask)
1780 {
1781         struct kvm_rmap_head *rmap_head;
1782
1783         while (mask) {
1784                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1785                                           PT_PAGE_TABLE_LEVEL, slot);
1786                 __rmap_clear_dirty(kvm, rmap_head);
1787
1788                 /* clear the first set bit */
1789                 mask &= mask - 1;
1790         }
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1793
1794 /**
1795  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1796  * PT level pages.
1797  *
1798  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1799  * enable dirty logging for them.
1800  *
1801  * Used when we do not need to care about huge page mappings: e.g. during dirty
1802  * logging we do not have any such mappings.
1803  */
1804 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1805                                 struct kvm_memory_slot *slot,
1806                                 gfn_t gfn_offset, unsigned long mask)
1807 {
1808         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1809                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1810                                 mask);
1811         else
1812                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1813 }
1814
1815 /**
1816  * kvm_arch_write_log_dirty - emulate dirty page logging
1817  * @vcpu: Guest mode vcpu
1818  *
1819  * Emulate arch specific page modification logging for the
1820  * nested hypervisor
1821  */
1822 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1823 {
1824         if (kvm_x86_ops->write_log_dirty)
1825                 return kvm_x86_ops->write_log_dirty(vcpu);
1826
1827         return 0;
1828 }
1829
1830 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1831                                     struct kvm_memory_slot *slot, u64 gfn)
1832 {
1833         struct kvm_rmap_head *rmap_head;
1834         int i;
1835         bool write_protected = false;
1836
1837         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1838                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1839                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1840         }
1841
1842         return write_protected;
1843 }
1844
1845 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1846 {
1847         struct kvm_memory_slot *slot;
1848
1849         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1850         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1851 }
1852
1853 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1854 {
1855         u64 *sptep;
1856         struct rmap_iterator iter;
1857         bool flush = false;
1858
1859         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1860                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1861
1862                 pte_list_remove(rmap_head, sptep);
1863                 flush = true;
1864         }
1865
1866         return flush;
1867 }
1868
1869 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1870                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1871                            unsigned long data)
1872 {
1873         return kvm_zap_rmapp(kvm, rmap_head);
1874 }
1875
1876 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1877                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1878                              unsigned long data)
1879 {
1880         u64 *sptep;
1881         struct rmap_iterator iter;
1882         int need_flush = 0;
1883         u64 new_spte;
1884         pte_t *ptep = (pte_t *)data;
1885         kvm_pfn_t new_pfn;
1886
1887         WARN_ON(pte_huge(*ptep));
1888         new_pfn = pte_pfn(*ptep);
1889
1890 restart:
1891         for_each_rmap_spte(rmap_head, &iter, sptep) {
1892                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1893                             sptep, *sptep, gfn, level);
1894
1895                 need_flush = 1;
1896
1897                 if (pte_write(*ptep)) {
1898                         pte_list_remove(rmap_head, sptep);
1899                         goto restart;
1900                 } else {
1901                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1902                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1903
1904                         new_spte &= ~PT_WRITABLE_MASK;
1905                         new_spte &= ~SPTE_HOST_WRITEABLE;
1906
1907                         new_spte = mark_spte_for_access_track(new_spte);
1908
1909                         mmu_spte_clear_track_bits(sptep);
1910                         mmu_spte_set(sptep, new_spte);
1911                 }
1912         }
1913
1914         if (need_flush && kvm_available_flush_tlb_with_range()) {
1915                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1916                 return 0;
1917         }
1918
1919         return need_flush;
1920 }
1921
1922 struct slot_rmap_walk_iterator {
1923         /* input fields. */
1924         struct kvm_memory_slot *slot;
1925         gfn_t start_gfn;
1926         gfn_t end_gfn;
1927         int start_level;
1928         int end_level;
1929
1930         /* output fields. */
1931         gfn_t gfn;
1932         struct kvm_rmap_head *rmap;
1933         int level;
1934
1935         /* private field. */
1936         struct kvm_rmap_head *end_rmap;
1937 };
1938
1939 static void
1940 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1941 {
1942         iterator->level = level;
1943         iterator->gfn = iterator->start_gfn;
1944         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1945         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1946                                            iterator->slot);
1947 }
1948
1949 static void
1950 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1951                     struct kvm_memory_slot *slot, int start_level,
1952                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1953 {
1954         iterator->slot = slot;
1955         iterator->start_level = start_level;
1956         iterator->end_level = end_level;
1957         iterator->start_gfn = start_gfn;
1958         iterator->end_gfn = end_gfn;
1959
1960         rmap_walk_init_level(iterator, iterator->start_level);
1961 }
1962
1963 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1964 {
1965         return !!iterator->rmap;
1966 }
1967
1968 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1969 {
1970         if (++iterator->rmap <= iterator->end_rmap) {
1971                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1972                 return;
1973         }
1974
1975         if (++iterator->level > iterator->end_level) {
1976                 iterator->rmap = NULL;
1977                 return;
1978         }
1979
1980         rmap_walk_init_level(iterator, iterator->level);
1981 }
1982
1983 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1984            _start_gfn, _end_gfn, _iter_)                                \
1985         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1986                                  _end_level_, _start_gfn, _end_gfn);    \
1987              slot_rmap_walk_okay(_iter_);                               \
1988              slot_rmap_walk_next(_iter_))
1989
1990 static int kvm_handle_hva_range(struct kvm *kvm,
1991                                 unsigned long start,
1992                                 unsigned long end,
1993                                 unsigned long data,
1994                                 int (*handler)(struct kvm *kvm,
1995                                                struct kvm_rmap_head *rmap_head,
1996                                                struct kvm_memory_slot *slot,
1997                                                gfn_t gfn,
1998                                                int level,
1999                                                unsigned long data))
2000 {
2001         struct kvm_memslots *slots;
2002         struct kvm_memory_slot *memslot;
2003         struct slot_rmap_walk_iterator iterator;
2004         int ret = 0;
2005         int i;
2006
2007         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
2008                 slots = __kvm_memslots(kvm, i);
2009                 kvm_for_each_memslot(memslot, slots) {
2010                         unsigned long hva_start, hva_end;
2011                         gfn_t gfn_start, gfn_end;
2012
2013                         hva_start = max(start, memslot->userspace_addr);
2014                         hva_end = min(end, memslot->userspace_addr +
2015                                       (memslot->npages << PAGE_SHIFT));
2016                         if (hva_start >= hva_end)
2017                                 continue;
2018                         /*
2019                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
2020                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
2021                          */
2022                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
2023                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
2024
2025                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
2026                                                  PT_MAX_HUGEPAGE_LEVEL,
2027                                                  gfn_start, gfn_end - 1,
2028                                                  &iterator)
2029                                 ret |= handler(kvm, iterator.rmap, memslot,
2030                                                iterator.gfn, iterator.level, data);
2031                 }
2032         }
2033
2034         return ret;
2035 }
2036
2037 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
2038                           unsigned long data,
2039                           int (*handler)(struct kvm *kvm,
2040                                          struct kvm_rmap_head *rmap_head,
2041                                          struct kvm_memory_slot *slot,
2042                                          gfn_t gfn, int level,
2043                                          unsigned long data))
2044 {
2045         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
2046 }
2047
2048 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
2049 {
2050         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
2051 }
2052
2053 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2054 {
2055         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
2056 }
2057
2058 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2059                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
2060                          unsigned long data)
2061 {
2062         u64 *sptep;
2063         struct rmap_iterator uninitialized_var(iter);
2064         int young = 0;
2065
2066         for_each_rmap_spte(rmap_head, &iter, sptep)
2067                 young |= mmu_spte_age(sptep);
2068
2069         trace_kvm_age_page(gfn, level, slot, young);
2070         return young;
2071 }
2072
2073 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2074                               struct kvm_memory_slot *slot, gfn_t gfn,
2075                               int level, unsigned long data)
2076 {
2077         u64 *sptep;
2078         struct rmap_iterator iter;
2079
2080         for_each_rmap_spte(rmap_head, &iter, sptep)
2081                 if (is_accessed_spte(*sptep))
2082                         return 1;
2083         return 0;
2084 }
2085
2086 #define RMAP_RECYCLE_THRESHOLD 1000
2087
2088 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2089 {
2090         struct kvm_rmap_head *rmap_head;
2091         struct kvm_mmu_page *sp;
2092
2093         sp = page_header(__pa(spte));
2094
2095         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2096
2097         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2098         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2099                         KVM_PAGES_PER_HPAGE(sp->role.level));
2100 }
2101
2102 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2103 {
2104         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2105 }
2106
2107 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2108 {
2109         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2110 }
2111
2112 #ifdef MMU_DEBUG
2113 static int is_empty_shadow_page(u64 *spt)
2114 {
2115         u64 *pos;
2116         u64 *end;
2117
2118         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2119                 if (is_shadow_present_pte(*pos)) {
2120                         printk(KERN_ERR "%s: %p %llx\n", __func__,
2121                                pos, *pos);
2122                         return 0;
2123                 }
2124         return 1;
2125 }
2126 #endif
2127
2128 /*
2129  * This value is the sum of all of the kvm instances's
2130  * kvm->arch.n_used_mmu_pages values.  We need a global,
2131  * aggregate version in order to make the slab shrinker
2132  * faster
2133  */
2134 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2135 {
2136         kvm->arch.n_used_mmu_pages += nr;
2137         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2138 }
2139
2140 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2141 {
2142         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2143         hlist_del(&sp->hash_link);
2144         list_del(&sp->link);
2145         free_page((unsigned long)sp->spt);
2146         if (!sp->role.direct)
2147                 free_page((unsigned long)sp->gfns);
2148         kmem_cache_free(mmu_page_header_cache, sp);
2149 }
2150
2151 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2152 {
2153         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2154 }
2155
2156 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2157                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2158 {
2159         if (!parent_pte)
2160                 return;
2161
2162         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2163 }
2164
2165 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2166                                        u64 *parent_pte)
2167 {
2168         __pte_list_remove(parent_pte, &sp->parent_ptes);
2169 }
2170
2171 static void drop_parent_pte(struct kvm_mmu_page *sp,
2172                             u64 *parent_pte)
2173 {
2174         mmu_page_remove_parent_pte(sp, parent_pte);
2175         mmu_spte_clear_no_track(parent_pte);
2176 }
2177
2178 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2179 {
2180         struct kvm_mmu_page *sp;
2181
2182         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2183         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2184         if (!direct)
2185                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2186         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2187
2188         /*
2189          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2190          * depends on valid pages being added to the head of the list.  See
2191          * comments in kvm_zap_obsolete_pages().
2192          */
2193         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2194         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2195         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2196         return sp;
2197 }
2198
2199 static void mark_unsync(u64 *spte);
2200 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2201 {
2202         u64 *sptep;
2203         struct rmap_iterator iter;
2204
2205         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2206                 mark_unsync(sptep);
2207         }
2208 }
2209
2210 static void mark_unsync(u64 *spte)
2211 {
2212         struct kvm_mmu_page *sp;
2213         unsigned int index;
2214
2215         sp = page_header(__pa(spte));
2216         index = spte - sp->spt;
2217         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2218                 return;
2219         if (sp->unsync_children++)
2220                 return;
2221         kvm_mmu_mark_parents_unsync(sp);
2222 }
2223
2224 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2225                                struct kvm_mmu_page *sp)
2226 {
2227         return 0;
2228 }
2229
2230 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2231 {
2232 }
2233
2234 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2235                                  struct kvm_mmu_page *sp, u64 *spte,
2236                                  const void *pte)
2237 {
2238         WARN_ON(1);
2239 }
2240
2241 #define KVM_PAGE_ARRAY_NR 16
2242
2243 struct kvm_mmu_pages {
2244         struct mmu_page_and_offset {
2245                 struct kvm_mmu_page *sp;
2246                 unsigned int idx;
2247         } page[KVM_PAGE_ARRAY_NR];
2248         unsigned int nr;
2249 };
2250
2251 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2252                          int idx)
2253 {
2254         int i;
2255
2256         if (sp->unsync)
2257                 for (i=0; i < pvec->nr; i++)
2258                         if (pvec->page[i].sp == sp)
2259                                 return 0;
2260
2261         pvec->page[pvec->nr].sp = sp;
2262         pvec->page[pvec->nr].idx = idx;
2263         pvec->nr++;
2264         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2265 }
2266
2267 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2268 {
2269         --sp->unsync_children;
2270         WARN_ON((int)sp->unsync_children < 0);
2271         __clear_bit(idx, sp->unsync_child_bitmap);
2272 }
2273
2274 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2275                            struct kvm_mmu_pages *pvec)
2276 {
2277         int i, ret, nr_unsync_leaf = 0;
2278
2279         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2280                 struct kvm_mmu_page *child;
2281                 u64 ent = sp->spt[i];
2282
2283                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2284                         clear_unsync_child_bit(sp, i);
2285                         continue;
2286                 }
2287
2288                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2289
2290                 if (child->unsync_children) {
2291                         if (mmu_pages_add(pvec, child, i))
2292                                 return -ENOSPC;
2293
2294                         ret = __mmu_unsync_walk(child, pvec);
2295                         if (!ret) {
2296                                 clear_unsync_child_bit(sp, i);
2297                                 continue;
2298                         } else if (ret > 0) {
2299                                 nr_unsync_leaf += ret;
2300                         } else
2301                                 return ret;
2302                 } else if (child->unsync) {
2303                         nr_unsync_leaf++;
2304                         if (mmu_pages_add(pvec, child, i))
2305                                 return -ENOSPC;
2306                 } else
2307                         clear_unsync_child_bit(sp, i);
2308         }
2309
2310         return nr_unsync_leaf;
2311 }
2312
2313 #define INVALID_INDEX (-1)
2314
2315 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2316                            struct kvm_mmu_pages *pvec)
2317 {
2318         pvec->nr = 0;
2319         if (!sp->unsync_children)
2320                 return 0;
2321
2322         mmu_pages_add(pvec, sp, INVALID_INDEX);
2323         return __mmu_unsync_walk(sp, pvec);
2324 }
2325
2326 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2327 {
2328         WARN_ON(!sp->unsync);
2329         trace_kvm_mmu_sync_page(sp);
2330         sp->unsync = 0;
2331         --kvm->stat.mmu_unsync;
2332 }
2333
2334 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2335                                      struct list_head *invalid_list);
2336 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2337                                     struct list_head *invalid_list);
2338
2339
2340 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2341         hlist_for_each_entry(_sp,                                       \
2342           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2343                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
2344                 } else
2345
2346 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2347         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2348                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2349
2350 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2351 {
2352         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2353 }
2354
2355 /* @sp->gfn should be write-protected at the call site */
2356 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2357                             struct list_head *invalid_list)
2358 {
2359         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2360             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2361                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2362                 return false;
2363         }
2364
2365         return true;
2366 }
2367
2368 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2369                                         struct list_head *invalid_list,
2370                                         bool remote_flush)
2371 {
2372         if (!remote_flush && list_empty(invalid_list))
2373                 return false;
2374
2375         if (!list_empty(invalid_list))
2376                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2377         else
2378                 kvm_flush_remote_tlbs(kvm);
2379         return true;
2380 }
2381
2382 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2383                                  struct list_head *invalid_list,
2384                                  bool remote_flush, bool local_flush)
2385 {
2386         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2387                 return;
2388
2389         if (local_flush)
2390                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2391 }
2392
2393 #ifdef CONFIG_KVM_MMU_AUDIT
2394 #include "mmu_audit.c"
2395 #else
2396 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2397 static void mmu_audit_disable(void) { }
2398 #endif
2399
2400 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2401 {
2402         return sp->role.invalid ||
2403                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2404 }
2405
2406 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2407                          struct list_head *invalid_list)
2408 {
2409         kvm_unlink_unsync_page(vcpu->kvm, sp);
2410         return __kvm_sync_page(vcpu, sp, invalid_list);
2411 }
2412
2413 /* @gfn should be write-protected at the call site */
2414 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2415                            struct list_head *invalid_list)
2416 {
2417         struct kvm_mmu_page *s;
2418         bool ret = false;
2419
2420         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2421                 if (!s->unsync)
2422                         continue;
2423
2424                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2425                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2426         }
2427
2428         return ret;
2429 }
2430
2431 struct mmu_page_path {
2432         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2433         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2434 };
2435
2436 #define for_each_sp(pvec, sp, parents, i)                       \
2437                 for (i = mmu_pages_first(&pvec, &parents);      \
2438                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2439                         i = mmu_pages_next(&pvec, &parents, i))
2440
2441 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2442                           struct mmu_page_path *parents,
2443                           int i)
2444 {
2445         int n;
2446
2447         for (n = i+1; n < pvec->nr; n++) {
2448                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2449                 unsigned idx = pvec->page[n].idx;
2450                 int level = sp->role.level;
2451
2452                 parents->idx[level-1] = idx;
2453                 if (level == PT_PAGE_TABLE_LEVEL)
2454                         break;
2455
2456                 parents->parent[level-2] = sp;
2457         }
2458
2459         return n;
2460 }
2461
2462 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2463                            struct mmu_page_path *parents)
2464 {
2465         struct kvm_mmu_page *sp;
2466         int level;
2467
2468         if (pvec->nr == 0)
2469                 return 0;
2470
2471         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2472
2473         sp = pvec->page[0].sp;
2474         level = sp->role.level;
2475         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2476
2477         parents->parent[level-2] = sp;
2478
2479         /* Also set up a sentinel.  Further entries in pvec are all
2480          * children of sp, so this element is never overwritten.
2481          */
2482         parents->parent[level-1] = NULL;
2483         return mmu_pages_next(pvec, parents, 0);
2484 }
2485
2486 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2487 {
2488         struct kvm_mmu_page *sp;
2489         unsigned int level = 0;
2490
2491         do {
2492                 unsigned int idx = parents->idx[level];
2493                 sp = parents->parent[level];
2494                 if (!sp)
2495                         return;
2496
2497                 WARN_ON(idx == INVALID_INDEX);
2498                 clear_unsync_child_bit(sp, idx);
2499                 level++;
2500         } while (!sp->unsync_children);
2501 }
2502
2503 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2504                               struct kvm_mmu_page *parent)
2505 {
2506         int i;
2507         struct kvm_mmu_page *sp;
2508         struct mmu_page_path parents;
2509         struct kvm_mmu_pages pages;
2510         LIST_HEAD(invalid_list);
2511         bool flush = false;
2512
2513         while (mmu_unsync_walk(parent, &pages)) {
2514                 bool protected = false;
2515
2516                 for_each_sp(pages, sp, parents, i)
2517                         protected |= rmap_write_protect(vcpu, sp->gfn);
2518
2519                 if (protected) {
2520                         kvm_flush_remote_tlbs(vcpu->kvm);
2521                         flush = false;
2522                 }
2523
2524                 for_each_sp(pages, sp, parents, i) {
2525                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2526                         mmu_pages_clear_parents(&parents);
2527                 }
2528                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2529                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2530                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2531                         flush = false;
2532                 }
2533         }
2534
2535         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2536 }
2537
2538 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2539 {
2540         atomic_set(&sp->write_flooding_count,  0);
2541 }
2542
2543 static void clear_sp_write_flooding_count(u64 *spte)
2544 {
2545         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2546
2547         __clear_sp_write_flooding_count(sp);
2548 }
2549
2550 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2551                                              gfn_t gfn,
2552                                              gva_t gaddr,
2553                                              unsigned level,
2554                                              int direct,
2555                                              unsigned access)
2556 {
2557         union kvm_mmu_page_role role;
2558         unsigned quadrant;
2559         struct kvm_mmu_page *sp;
2560         bool need_sync = false;
2561         bool flush = false;
2562         int collisions = 0;
2563         LIST_HEAD(invalid_list);
2564
2565         role = vcpu->arch.mmu->mmu_role.base;
2566         role.level = level;
2567         role.direct = direct;
2568         if (role.direct)
2569                 role.gpte_is_8_bytes = true;
2570         role.access = access;
2571         if (!vcpu->arch.mmu->direct_map
2572             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2573                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2574                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2575                 role.quadrant = quadrant;
2576         }
2577         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2578                 if (sp->gfn != gfn) {
2579                         collisions++;
2580                         continue;
2581                 }
2582
2583                 if (!need_sync && sp->unsync)
2584                         need_sync = true;
2585
2586                 if (sp->role.word != role.word)
2587                         continue;
2588
2589                 if (sp->unsync) {
2590                         /* The page is good, but __kvm_sync_page might still end
2591                          * up zapping it.  If so, break in order to rebuild it.
2592                          */
2593                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2594                                 break;
2595
2596                         WARN_ON(!list_empty(&invalid_list));
2597                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2598                 }
2599
2600                 if (sp->unsync_children)
2601                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2602
2603                 __clear_sp_write_flooding_count(sp);
2604                 trace_kvm_mmu_get_page(sp, false);
2605                 goto out;
2606         }
2607
2608         ++vcpu->kvm->stat.mmu_cache_miss;
2609
2610         sp = kvm_mmu_alloc_page(vcpu, direct);
2611
2612         sp->gfn = gfn;
2613         sp->role = role;
2614         hlist_add_head(&sp->hash_link,
2615                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2616         if (!direct) {
2617                 /*
2618                  * we should do write protection before syncing pages
2619                  * otherwise the content of the synced shadow page may
2620                  * be inconsistent with guest page table.
2621                  */
2622                 account_shadowed(vcpu->kvm, sp);
2623                 if (level == PT_PAGE_TABLE_LEVEL &&
2624                       rmap_write_protect(vcpu, gfn))
2625                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2626
2627                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2628                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2629         }
2630         clear_page(sp->spt);
2631         trace_kvm_mmu_get_page(sp, true);
2632
2633         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2634 out:
2635         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2636                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2637         return sp;
2638 }
2639
2640 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2641                                         struct kvm_vcpu *vcpu, hpa_t root,
2642                                         u64 addr)
2643 {
2644         iterator->addr = addr;
2645         iterator->shadow_addr = root;
2646         iterator->level = vcpu->arch.mmu->shadow_root_level;
2647
2648         if (iterator->level == PT64_ROOT_4LEVEL &&
2649             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2650             !vcpu->arch.mmu->direct_map)
2651                 --iterator->level;
2652
2653         if (iterator->level == PT32E_ROOT_LEVEL) {
2654                 /*
2655                  * prev_root is currently only used for 64-bit hosts. So only
2656                  * the active root_hpa is valid here.
2657                  */
2658                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2659
2660                 iterator->shadow_addr
2661                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2662                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2663                 --iterator->level;
2664                 if (!iterator->shadow_addr)
2665                         iterator->level = 0;
2666         }
2667 }
2668
2669 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2670                              struct kvm_vcpu *vcpu, u64 addr)
2671 {
2672         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2673                                     addr);
2674 }
2675
2676 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2677 {
2678         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2679                 return false;
2680
2681         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2682         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2683         return true;
2684 }
2685
2686 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2687                                u64 spte)
2688 {
2689         if (is_last_spte(spte, iterator->level)) {
2690                 iterator->level = 0;
2691                 return;
2692         }
2693
2694         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2695         --iterator->level;
2696 }
2697
2698 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2699 {
2700         __shadow_walk_next(iterator, *iterator->sptep);
2701 }
2702
2703 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2704                              struct kvm_mmu_page *sp)
2705 {
2706         u64 spte;
2707
2708         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2709
2710         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2711                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2712
2713         if (sp_ad_disabled(sp))
2714                 spte |= SPTE_AD_DISABLED_MASK;
2715         else
2716                 spte |= shadow_accessed_mask;
2717
2718         mmu_spte_set(sptep, spte);
2719
2720         mmu_page_add_parent_pte(vcpu, sp, sptep);
2721
2722         if (sp->unsync_children || sp->unsync)
2723                 mark_unsync(sptep);
2724 }
2725
2726 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2727                                    unsigned direct_access)
2728 {
2729         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2730                 struct kvm_mmu_page *child;
2731
2732                 /*
2733                  * For the direct sp, if the guest pte's dirty bit
2734                  * changed form clean to dirty, it will corrupt the
2735                  * sp's access: allow writable in the read-only sp,
2736                  * so we should update the spte at this point to get
2737                  * a new sp with the correct access.
2738                  */
2739                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2740                 if (child->role.access == direct_access)
2741                         return;
2742
2743                 drop_parent_pte(child, sptep);
2744                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2745         }
2746 }
2747
2748 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2749                              u64 *spte)
2750 {
2751         u64 pte;
2752         struct kvm_mmu_page *child;
2753
2754         pte = *spte;
2755         if (is_shadow_present_pte(pte)) {
2756                 if (is_last_spte(pte, sp->role.level)) {
2757                         drop_spte(kvm, spte);
2758                         if (is_large_pte(pte))
2759                                 --kvm->stat.lpages;
2760                 } else {
2761                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2762                         drop_parent_pte(child, spte);
2763                 }
2764                 return true;
2765         }
2766
2767         if (is_mmio_spte(pte))
2768                 mmu_spte_clear_no_track(spte);
2769
2770         return false;
2771 }
2772
2773 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2774                                          struct kvm_mmu_page *sp)
2775 {
2776         unsigned i;
2777
2778         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2779                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2780 }
2781
2782 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2783 {
2784         u64 *sptep;
2785         struct rmap_iterator iter;
2786
2787         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2788                 drop_parent_pte(sp, sptep);
2789 }
2790
2791 static int mmu_zap_unsync_children(struct kvm *kvm,
2792                                    struct kvm_mmu_page *parent,
2793                                    struct list_head *invalid_list)
2794 {
2795         int i, zapped = 0;
2796         struct mmu_page_path parents;
2797         struct kvm_mmu_pages pages;
2798
2799         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2800                 return 0;
2801
2802         while (mmu_unsync_walk(parent, &pages)) {
2803                 struct kvm_mmu_page *sp;
2804
2805                 for_each_sp(pages, sp, parents, i) {
2806                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2807                         mmu_pages_clear_parents(&parents);
2808                         zapped++;
2809                 }
2810         }
2811
2812         return zapped;
2813 }
2814
2815 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2816                                        struct kvm_mmu_page *sp,
2817                                        struct list_head *invalid_list,
2818                                        int *nr_zapped)
2819 {
2820         bool list_unstable;
2821
2822         trace_kvm_mmu_prepare_zap_page(sp);
2823         ++kvm->stat.mmu_shadow_zapped;
2824         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2825         kvm_mmu_page_unlink_children(kvm, sp);
2826         kvm_mmu_unlink_parents(kvm, sp);
2827
2828         /* Zapping children means active_mmu_pages has become unstable. */
2829         list_unstable = *nr_zapped;
2830
2831         if (!sp->role.invalid && !sp->role.direct)
2832                 unaccount_shadowed(kvm, sp);
2833
2834         if (sp->unsync)
2835                 kvm_unlink_unsync_page(kvm, sp);
2836         if (!sp->root_count) {
2837                 /* Count self */
2838                 (*nr_zapped)++;
2839                 list_move(&sp->link, invalid_list);
2840                 kvm_mod_used_mmu_pages(kvm, -1);
2841         } else {
2842                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2843
2844                 /*
2845                  * Obsolete pages cannot be used on any vCPUs, see the comment
2846                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2847                  * treats invalid shadow pages as being obsolete.
2848                  */
2849                 if (!is_obsolete_sp(kvm, sp))
2850                         kvm_reload_remote_mmus(kvm);
2851         }
2852
2853         if (sp->lpage_disallowed)
2854                 unaccount_huge_nx_page(kvm, sp);
2855
2856         sp->role.invalid = 1;
2857         return list_unstable;
2858 }
2859
2860 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2861                                      struct list_head *invalid_list)
2862 {
2863         int nr_zapped;
2864
2865         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2866         return nr_zapped;
2867 }
2868
2869 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2870                                     struct list_head *invalid_list)
2871 {
2872         struct kvm_mmu_page *sp, *nsp;
2873
2874         if (list_empty(invalid_list))
2875                 return;
2876
2877         /*
2878          * We need to make sure everyone sees our modifications to
2879          * the page tables and see changes to vcpu->mode here. The barrier
2880          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2881          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2882          *
2883          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2884          * guest mode and/or lockless shadow page table walks.
2885          */
2886         kvm_flush_remote_tlbs(kvm);
2887
2888         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2889                 WARN_ON(!sp->role.invalid || sp->root_count);
2890                 kvm_mmu_free_page(sp);
2891         }
2892 }
2893
2894 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2895                                         struct list_head *invalid_list)
2896 {
2897         struct kvm_mmu_page *sp;
2898
2899         if (list_empty(&kvm->arch.active_mmu_pages))
2900                 return false;
2901
2902         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2903                              struct kvm_mmu_page, link);
2904         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2905 }
2906
2907 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2908 {
2909         LIST_HEAD(invalid_list);
2910
2911         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2912                 return 0;
2913
2914         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2915                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2916                         break;
2917
2918                 ++vcpu->kvm->stat.mmu_recycled;
2919         }
2920         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2921
2922         if (!kvm_mmu_available_pages(vcpu->kvm))
2923                 return -ENOSPC;
2924         return 0;
2925 }
2926
2927 /*
2928  * Changing the number of mmu pages allocated to the vm
2929  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2930  */
2931 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2932 {
2933         LIST_HEAD(invalid_list);
2934
2935         spin_lock(&kvm->mmu_lock);
2936
2937         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2938                 /* Need to free some mmu pages to achieve the goal. */
2939                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2940                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2941                                 break;
2942
2943                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2944                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2945         }
2946
2947         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2948
2949         spin_unlock(&kvm->mmu_lock);
2950 }
2951
2952 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2953 {
2954         struct kvm_mmu_page *sp;
2955         LIST_HEAD(invalid_list);
2956         int r;
2957
2958         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2959         r = 0;
2960         spin_lock(&kvm->mmu_lock);
2961         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2962                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2963                          sp->role.word);
2964                 r = 1;
2965                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2966         }
2967         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2968         spin_unlock(&kvm->mmu_lock);
2969
2970         return r;
2971 }
2972 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2973
2974 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2975 {
2976         trace_kvm_mmu_unsync_page(sp);
2977         ++vcpu->kvm->stat.mmu_unsync;
2978         sp->unsync = 1;
2979
2980         kvm_mmu_mark_parents_unsync(sp);
2981 }
2982
2983 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2984                                    bool can_unsync)
2985 {
2986         struct kvm_mmu_page *sp;
2987
2988         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2989                 return true;
2990
2991         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2992                 if (!can_unsync)
2993                         return true;
2994
2995                 if (sp->unsync)
2996                         continue;
2997
2998                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2999                 kvm_unsync_page(vcpu, sp);
3000         }
3001
3002         /*
3003          * We need to ensure that the marking of unsync pages is visible
3004          * before the SPTE is updated to allow writes because
3005          * kvm_mmu_sync_roots() checks the unsync flags without holding
3006          * the MMU lock and so can race with this. If the SPTE was updated
3007          * before the page had been marked as unsync-ed, something like the
3008          * following could happen:
3009          *
3010          * CPU 1                    CPU 2
3011          * ---------------------------------------------------------------------
3012          * 1.2 Host updates SPTE
3013          *     to be writable
3014          *                      2.1 Guest writes a GPTE for GVA X.
3015          *                          (GPTE being in the guest page table shadowed
3016          *                           by the SP from CPU 1.)
3017          *                          This reads SPTE during the page table walk.
3018          *                          Since SPTE.W is read as 1, there is no
3019          *                          fault.
3020          *
3021          *                      2.2 Guest issues TLB flush.
3022          *                          That causes a VM Exit.
3023          *
3024          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
3025          *                          Since it is false, so it just returns.
3026          *
3027          *                      2.4 Guest accesses GVA X.
3028          *                          Since the mapping in the SP was not updated,
3029          *                          so the old mapping for GVA X incorrectly
3030          *                          gets used.
3031          * 1.1 Host marks SP
3032          *     as unsync
3033          *     (sp->unsync = true)
3034          *
3035          * The write barrier below ensures that 1.1 happens before 1.2 and thus
3036          * the situation in 2.4 does not arise. The implicit barrier in 2.2
3037          * pairs with this write barrier.
3038          */
3039         smp_wmb();
3040
3041         return false;
3042 }
3043
3044 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
3045 {
3046         if (pfn_valid(pfn))
3047                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
3048                         /*
3049                          * Some reserved pages, such as those from NVDIMM
3050                          * DAX devices, are not for MMIO, and can be mapped
3051                          * with cached memory type for better performance.
3052                          * However, the above check misconceives those pages
3053                          * as MMIO, and results in KVM mapping them with UC
3054                          * memory type, which would hurt the performance.
3055                          * Therefore, we check the host memory type in addition
3056                          * and only treat UC/UC-/WC pages as MMIO.
3057                          */
3058                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
3059
3060         return !e820__mapped_raw_any(pfn_to_hpa(pfn),
3061                                      pfn_to_hpa(pfn + 1) - 1,
3062                                      E820_TYPE_RAM);
3063 }
3064
3065 /* Bits which may be returned by set_spte() */
3066 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
3067 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
3068
3069 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3070                     unsigned pte_access, int level,
3071                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3072                     bool can_unsync, bool host_writable)
3073 {
3074         u64 spte = 0;
3075         int ret = 0;
3076         struct kvm_mmu_page *sp;
3077
3078         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3079                 return 0;
3080
3081         sp = page_header(__pa(sptep));
3082         if (sp_ad_disabled(sp))
3083                 spte |= SPTE_AD_DISABLED_MASK;
3084         else if (kvm_vcpu_ad_need_write_protect(vcpu))
3085                 spte |= SPTE_AD_WRPROT_ONLY_MASK;
3086
3087         /*
3088          * For the EPT case, shadow_present_mask is 0 if hardware
3089          * supports exec-only page table entries.  In that case,
3090          * ACC_USER_MASK and shadow_user_mask are used to represent
3091          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
3092          */
3093         spte |= shadow_present_mask;
3094         if (!speculative)
3095                 spte |= spte_shadow_accessed_mask(spte);
3096
3097         if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3098             is_nx_huge_page_enabled()) {
3099                 pte_access &= ~ACC_EXEC_MASK;
3100         }
3101
3102         if (pte_access & ACC_EXEC_MASK)
3103                 spte |= shadow_x_mask;
3104         else
3105                 spte |= shadow_nx_mask;
3106
3107         if (pte_access & ACC_USER_MASK)
3108                 spte |= shadow_user_mask;
3109
3110         if (level > PT_PAGE_TABLE_LEVEL)
3111                 spte |= PT_PAGE_SIZE_MASK;
3112         if (tdp_enabled)
3113                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
3114                         kvm_is_mmio_pfn(pfn));
3115
3116         if (host_writable)
3117                 spte |= SPTE_HOST_WRITEABLE;
3118         else
3119                 pte_access &= ~ACC_WRITE_MASK;
3120
3121         if (!kvm_is_mmio_pfn(pfn))
3122                 spte |= shadow_me_mask;
3123
3124         spte |= (u64)pfn << PAGE_SHIFT;
3125
3126         if (pte_access & ACC_WRITE_MASK) {
3127
3128                 /*
3129                  * Other vcpu creates new sp in the window between
3130                  * mapping_level() and acquiring mmu-lock. We can
3131                  * allow guest to retry the access, the mapping can
3132                  * be fixed if guest refault.
3133                  */
3134                 if (level > PT_PAGE_TABLE_LEVEL &&
3135                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
3136                         goto done;
3137
3138                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3139
3140                 /*
3141                  * Optimization: for pte sync, if spte was writable the hash
3142                  * lookup is unnecessary (and expensive). Write protection
3143                  * is responsibility of mmu_get_page / kvm_sync_page.
3144                  * Same reasoning can be applied to dirty page accounting.
3145                  */
3146                 if (!can_unsync && is_writable_pte(*sptep))
3147                         goto set_pte;
3148
3149                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3150                         pgprintk("%s: found shadow page for %llx, marking ro\n",
3151                                  __func__, gfn);
3152                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
3153                         pte_access &= ~ACC_WRITE_MASK;
3154                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3155                 }
3156         }
3157
3158         if (pte_access & ACC_WRITE_MASK) {
3159                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3160                 spte |= spte_shadow_dirty_mask(spte);
3161         }
3162
3163         if (speculative)
3164                 spte = mark_spte_for_access_track(spte);
3165
3166 set_pte:
3167         if (mmu_spte_update(sptep, spte))
3168                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3169 done:
3170         return ret;
3171 }
3172
3173 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3174                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3175                         bool speculative, bool host_writable)
3176 {
3177         int was_rmapped = 0;
3178         int rmap_count;
3179         int set_spte_ret;
3180         int ret = RET_PF_RETRY;
3181         bool flush = false;
3182
3183         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3184                  *sptep, write_fault, gfn);
3185
3186         if (is_shadow_present_pte(*sptep)) {
3187                 /*
3188                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3189                  * the parent of the now unreachable PTE.
3190                  */
3191                 if (level > PT_PAGE_TABLE_LEVEL &&
3192                     !is_large_pte(*sptep)) {
3193                         struct kvm_mmu_page *child;
3194                         u64 pte = *sptep;
3195
3196                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3197                         drop_parent_pte(child, sptep);
3198                         flush = true;
3199                 } else if (pfn != spte_to_pfn(*sptep)) {
3200                         pgprintk("hfn old %llx new %llx\n",
3201                                  spte_to_pfn(*sptep), pfn);
3202                         drop_spte(vcpu->kvm, sptep);
3203                         flush = true;
3204                 } else
3205                         was_rmapped = 1;
3206         }
3207
3208         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3209                                 speculative, true, host_writable);
3210         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3211                 if (write_fault)
3212                         ret = RET_PF_EMULATE;
3213                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3214         }
3215
3216         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3217                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3218                                 KVM_PAGES_PER_HPAGE(level));
3219
3220         if (unlikely(is_mmio_spte(*sptep)))
3221                 ret = RET_PF_EMULATE;
3222
3223         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3224         trace_kvm_mmu_set_spte(level, gfn, sptep);
3225         if (!was_rmapped && is_large_pte(*sptep))
3226                 ++vcpu->kvm->stat.lpages;
3227
3228         if (is_shadow_present_pte(*sptep)) {
3229                 if (!was_rmapped) {
3230                         rmap_count = rmap_add(vcpu, sptep, gfn);
3231                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3232                                 rmap_recycle(vcpu, sptep, gfn);
3233                 }
3234         }
3235
3236         return ret;
3237 }
3238
3239 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3240                                      bool no_dirty_log)
3241 {
3242         struct kvm_memory_slot *slot;
3243
3244         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3245         if (!slot)
3246                 return KVM_PFN_ERR_FAULT;
3247
3248         return gfn_to_pfn_memslot_atomic(slot, gfn);
3249 }
3250
3251 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3252                                     struct kvm_mmu_page *sp,
3253                                     u64 *start, u64 *end)
3254 {
3255         struct page *pages[PTE_PREFETCH_NUM];
3256         struct kvm_memory_slot *slot;
3257         unsigned access = sp->role.access;
3258         int i, ret;
3259         gfn_t gfn;
3260
3261         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3262         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3263         if (!slot)
3264                 return -1;
3265
3266         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3267         if (ret <= 0)
3268                 return -1;
3269
3270         for (i = 0; i < ret; i++, gfn++, start++) {
3271                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3272                              page_to_pfn(pages[i]), true, true);
3273                 put_page(pages[i]);
3274         }
3275
3276         return 0;
3277 }
3278
3279 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3280                                   struct kvm_mmu_page *sp, u64 *sptep)
3281 {
3282         u64 *spte, *start = NULL;
3283         int i;
3284
3285         WARN_ON(!sp->role.direct);
3286
3287         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3288         spte = sp->spt + i;
3289
3290         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3291                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3292                         if (!start)
3293                                 continue;
3294                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3295                                 break;
3296                         start = NULL;
3297                 } else if (!start)
3298                         start = spte;
3299         }
3300 }
3301
3302 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3303 {
3304         struct kvm_mmu_page *sp;
3305
3306         sp = page_header(__pa(sptep));
3307
3308         /*
3309          * Without accessed bits, there's no way to distinguish between
3310          * actually accessed translations and prefetched, so disable pte
3311          * prefetch if accessed bits aren't available.
3312          */
3313         if (sp_ad_disabled(sp))
3314                 return;
3315
3316         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3317                 return;
3318
3319         __direct_pte_prefetch(vcpu, sp, sptep);
3320 }
3321
3322 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3323                                        gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3324 {
3325         int level = *levelp;
3326         u64 spte = *it.sptep;
3327
3328         if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3329             is_nx_huge_page_enabled() &&
3330             is_shadow_present_pte(spte) &&
3331             !is_large_pte(spte)) {
3332                 /*
3333                  * A small SPTE exists for this pfn, but FNAME(fetch)
3334                  * and __direct_map would like to create a large PTE
3335                  * instead: just force them to go down another level,
3336                  * patching back for them into pfn the next 9 bits of
3337                  * the address.
3338                  */
3339                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3340                 *pfnp |= gfn & page_mask;
3341                 (*levelp)--;
3342         }
3343 }
3344
3345 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3346                         int map_writable, int level, kvm_pfn_t pfn,
3347                         bool prefault, bool lpage_disallowed)
3348 {
3349         struct kvm_shadow_walk_iterator it;
3350         struct kvm_mmu_page *sp;
3351         int ret;
3352         gfn_t gfn = gpa >> PAGE_SHIFT;
3353         gfn_t base_gfn = gfn;
3354
3355         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3356                 return RET_PF_RETRY;
3357
3358         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3359         for_each_shadow_entry(vcpu, gpa, it) {
3360                 /*
3361                  * We cannot overwrite existing page tables with an NX
3362                  * large page, as the leaf could be executable.
3363                  */
3364                 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3365
3366                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3367                 if (it.level == level)
3368                         break;
3369
3370                 drop_large_spte(vcpu, it.sptep);
3371                 if (!is_shadow_present_pte(*it.sptep)) {
3372                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3373                                               it.level - 1, true, ACC_ALL);
3374
3375                         link_shadow_page(vcpu, it.sptep, sp);
3376                         if (lpage_disallowed)
3377                                 account_huge_nx_page(vcpu->kvm, sp);
3378                 }
3379         }
3380
3381         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3382                            write, level, base_gfn, pfn, prefault,
3383                            map_writable);
3384         direct_pte_prefetch(vcpu, it.sptep);
3385         ++vcpu->stat.pf_fixed;
3386         return ret;
3387 }
3388
3389 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3390 {
3391         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3392 }
3393
3394 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3395 {
3396         /*
3397          * Do not cache the mmio info caused by writing the readonly gfn
3398          * into the spte otherwise read access on readonly gfn also can
3399          * caused mmio page fault and treat it as mmio access.
3400          */
3401         if (pfn == KVM_PFN_ERR_RO_FAULT)
3402                 return RET_PF_EMULATE;
3403
3404         if (pfn == KVM_PFN_ERR_HWPOISON) {
3405                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3406                 return RET_PF_RETRY;
3407         }
3408
3409         return -EFAULT;
3410 }
3411
3412 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3413                                         gfn_t gfn, kvm_pfn_t *pfnp,
3414                                         int *levelp)
3415 {
3416         kvm_pfn_t pfn = *pfnp;
3417         int level = *levelp;
3418
3419         /*
3420          * Check if it's a transparent hugepage. If this would be an
3421          * hugetlbfs page, level wouldn't be set to
3422          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3423          * here.
3424          */
3425         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3426             !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
3427             PageTransCompoundMap(pfn_to_page(pfn)) &&
3428             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3429                 unsigned long mask;
3430                 /*
3431                  * mmu_notifier_retry was successful and we hold the
3432                  * mmu_lock here, so the pmd can't become splitting
3433                  * from under us, and in turn
3434                  * __split_huge_page_refcount() can't run from under
3435                  * us and we can safely transfer the refcount from
3436                  * PG_tail to PG_head as we switch the pfn to tail to
3437                  * head.
3438                  */
3439                 *levelp = level = PT_DIRECTORY_LEVEL;
3440                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3441                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3442                 if (pfn & mask) {
3443                         kvm_release_pfn_clean(pfn);
3444                         pfn &= ~mask;
3445                         kvm_get_pfn(pfn);
3446                         *pfnp = pfn;
3447                 }
3448         }
3449 }
3450
3451 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3452                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3453 {
3454         /* The pfn is invalid, report the error! */
3455         if (unlikely(is_error_pfn(pfn))) {
3456                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3457                 return true;
3458         }
3459
3460         if (unlikely(is_noslot_pfn(pfn)))
3461                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3462                                      access & shadow_mmio_access_mask);
3463
3464         return false;
3465 }
3466
3467 static bool page_fault_can_be_fast(u32 error_code)
3468 {
3469         /*
3470          * Do not fix the mmio spte with invalid generation number which
3471          * need to be updated by slow page fault path.
3472          */
3473         if (unlikely(error_code & PFERR_RSVD_MASK))
3474                 return false;
3475
3476         /* See if the page fault is due to an NX violation */
3477         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3478                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3479                 return false;
3480
3481         /*
3482          * #PF can be fast if:
3483          * 1. The shadow page table entry is not present, which could mean that
3484          *    the fault is potentially caused by access tracking (if enabled).
3485          * 2. The shadow page table entry is present and the fault
3486          *    is caused by write-protect, that means we just need change the W
3487          *    bit of the spte which can be done out of mmu-lock.
3488          *
3489          * However, if access tracking is disabled we know that a non-present
3490          * page must be a genuine page fault where we have to create a new SPTE.
3491          * So, if access tracking is disabled, we return true only for write
3492          * accesses to a present page.
3493          */
3494
3495         return shadow_acc_track_mask != 0 ||
3496                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3497                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3498 }
3499
3500 /*
3501  * Returns true if the SPTE was fixed successfully. Otherwise,
3502  * someone else modified the SPTE from its original value.
3503  */
3504 static bool
3505 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3506                         u64 *sptep, u64 old_spte, u64 new_spte)
3507 {
3508         gfn_t gfn;
3509
3510         WARN_ON(!sp->role.direct);
3511
3512         /*
3513          * Theoretically we could also set dirty bit (and flush TLB) here in
3514          * order to eliminate unnecessary PML logging. See comments in
3515          * set_spte. But fast_page_fault is very unlikely to happen with PML
3516          * enabled, so we do not do this. This might result in the same GPA
3517          * to be logged in PML buffer again when the write really happens, and
3518          * eventually to be called by mark_page_dirty twice. But it's also no
3519          * harm. This also avoids the TLB flush needed after setting dirty bit
3520          * so non-PML cases won't be impacted.
3521          *
3522          * Compare with set_spte where instead shadow_dirty_mask is set.
3523          */
3524         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3525                 return false;
3526
3527         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3528                 /*
3529                  * The gfn of direct spte is stable since it is
3530                  * calculated by sp->gfn.
3531                  */
3532                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3533                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3534         }
3535
3536         return true;
3537 }
3538
3539 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3540 {
3541         if (fault_err_code & PFERR_FETCH_MASK)
3542                 return is_executable_pte(spte);
3543
3544         if (fault_err_code & PFERR_WRITE_MASK)
3545                 return is_writable_pte(spte);
3546
3547         /* Fault was on Read access */
3548         return spte & PT_PRESENT_MASK;
3549 }
3550
3551 /*
3552  * Return value:
3553  * - true: let the vcpu to access on the same address again.
3554  * - false: let the real page fault path to fix it.
3555  */
3556 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, int level,
3557                             u32 error_code)
3558 {
3559         struct kvm_shadow_walk_iterator iterator;
3560         struct kvm_mmu_page *sp;
3561         bool fault_handled = false;
3562         u64 spte = 0ull;
3563         uint retry_count = 0;
3564
3565         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3566                 return false;
3567
3568         if (!page_fault_can_be_fast(error_code))
3569                 return false;
3570
3571         walk_shadow_page_lockless_begin(vcpu);
3572
3573         do {
3574                 u64 new_spte;
3575
3576                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3577                         if (!is_shadow_present_pte(spte) ||
3578                             iterator.level < level)
3579                                 break;
3580
3581                 sp = page_header(__pa(iterator.sptep));
3582                 if (!is_last_spte(spte, sp->role.level))
3583                         break;
3584
3585                 /*
3586                  * Check whether the memory access that caused the fault would
3587                  * still cause it if it were to be performed right now. If not,
3588                  * then this is a spurious fault caused by TLB lazily flushed,
3589                  * or some other CPU has already fixed the PTE after the
3590                  * current CPU took the fault.
3591                  *
3592                  * Need not check the access of upper level table entries since
3593                  * they are always ACC_ALL.
3594                  */
3595                 if (is_access_allowed(error_code, spte)) {
3596                         fault_handled = true;
3597                         break;
3598                 }
3599
3600                 new_spte = spte;
3601
3602                 if (is_access_track_spte(spte))
3603                         new_spte = restore_acc_track_spte(new_spte);
3604
3605                 /*
3606                  * Currently, to simplify the code, write-protection can
3607                  * be removed in the fast path only if the SPTE was
3608                  * write-protected for dirty-logging or access tracking.
3609                  */
3610                 if ((error_code & PFERR_WRITE_MASK) &&
3611                     spte_can_locklessly_be_made_writable(spte))
3612                 {
3613                         new_spte |= PT_WRITABLE_MASK;
3614
3615                         /*
3616                          * Do not fix write-permission on the large spte.  Since
3617                          * we only dirty the first page into the dirty-bitmap in
3618                          * fast_pf_fix_direct_spte(), other pages are missed
3619                          * if its slot has dirty logging enabled.
3620                          *
3621                          * Instead, we let the slow page fault path create a
3622                          * normal spte to fix the access.
3623                          *
3624                          * See the comments in kvm_arch_commit_memory_region().
3625                          */
3626                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3627                                 break;
3628                 }
3629
3630                 /* Verify that the fault can be handled in the fast path */
3631                 if (new_spte == spte ||
3632                     !is_access_allowed(error_code, new_spte))
3633                         break;
3634
3635                 /*
3636                  * Currently, fast page fault only works for direct mapping
3637                  * since the gfn is not stable for indirect shadow page. See
3638                  * Documentation/virt/kvm/locking.txt to get more detail.
3639                  */
3640                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3641                                                         iterator.sptep, spte,
3642                                                         new_spte);
3643                 if (fault_handled)
3644                         break;
3645
3646                 if (++retry_count > 4) {
3647                         printk_once(KERN_WARNING
3648                                 "kvm: Fast #PF retrying more than 4 times.\n");
3649                         break;
3650                 }
3651
3652         } while (true);
3653
3654         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3655                               spte, fault_handled);
3656         walk_shadow_page_lockless_end(vcpu);
3657
3658         return fault_handled;
3659 }
3660
3661 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3662                                struct list_head *invalid_list)
3663 {
3664         struct kvm_mmu_page *sp;
3665
3666         if (!VALID_PAGE(*root_hpa))
3667                 return;
3668
3669         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3670         --sp->root_count;
3671         if (!sp->root_count && sp->role.invalid)
3672                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3673
3674         *root_hpa = INVALID_PAGE;
3675 }
3676
3677 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3678 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3679                         ulong roots_to_free)
3680 {
3681         int i;
3682         LIST_HEAD(invalid_list);
3683         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3684
3685         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3686
3687         /* Before acquiring the MMU lock, see if we need to do any real work. */
3688         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3689                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3690                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3691                             VALID_PAGE(mmu->prev_roots[i].hpa))
3692                                 break;
3693
3694                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3695                         return;
3696         }
3697
3698         spin_lock(&vcpu->kvm->mmu_lock);
3699
3700         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3701                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3702                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3703                                            &invalid_list);
3704
3705         if (free_active_root) {
3706                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3707                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3708                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3709                                            &invalid_list);
3710                 } else {
3711                         for (i = 0; i < 4; ++i)
3712                                 if (mmu->pae_root[i] != 0)
3713                                         mmu_free_root_page(vcpu->kvm,
3714                                                            &mmu->pae_root[i],
3715                                                            &invalid_list);
3716                         mmu->root_hpa = INVALID_PAGE;
3717                 }
3718                 mmu->root_cr3 = 0;
3719         }
3720
3721         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3722         spin_unlock(&vcpu->kvm->mmu_lock);
3723 }
3724 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3725
3726 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3727 {
3728         int ret = 0;
3729
3730         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3731                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3732                 ret = 1;
3733         }
3734
3735         return ret;
3736 }
3737
3738 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3739 {
3740         struct kvm_mmu_page *sp;
3741         unsigned i;
3742
3743         if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3744                 spin_lock(&vcpu->kvm->mmu_lock);
3745                 if(make_mmu_pages_available(vcpu) < 0) {
3746                         spin_unlock(&vcpu->kvm->mmu_lock);
3747                         return -ENOSPC;
3748                 }
3749                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3750                                 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3751                 ++sp->root_count;
3752                 spin_unlock(&vcpu->kvm->mmu_lock);
3753                 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3754         } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3755                 for (i = 0; i < 4; ++i) {
3756                         hpa_t root = vcpu->arch.mmu->pae_root[i];
3757
3758                         MMU_WARN_ON(VALID_PAGE(root));
3759                         spin_lock(&vcpu->kvm->mmu_lock);
3760                         if (make_mmu_pages_available(vcpu) < 0) {
3761                                 spin_unlock(&vcpu->kvm->mmu_lock);
3762                                 return -ENOSPC;
3763                         }
3764                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3765                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3766                         root = __pa(sp->spt);
3767                         ++sp->root_count;
3768                         spin_unlock(&vcpu->kvm->mmu_lock);
3769                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3770                 }
3771                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3772         } else
3773                 BUG();
3774         vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3775
3776         return 0;
3777 }
3778
3779 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3780 {
3781         struct kvm_mmu_page *sp;
3782         u64 pdptr, pm_mask;
3783         gfn_t root_gfn, root_cr3;
3784         int i;
3785
3786         root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3787         root_gfn = root_cr3 >> PAGE_SHIFT;
3788
3789         if (mmu_check_root(vcpu, root_gfn))
3790                 return 1;
3791
3792         /*
3793          * Do we shadow a long mode page table? If so we need to
3794          * write-protect the guests page table root.
3795          */
3796         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3797                 hpa_t root = vcpu->arch.mmu->root_hpa;
3798
3799                 MMU_WARN_ON(VALID_PAGE(root));
3800
3801                 spin_lock(&vcpu->kvm->mmu_lock);
3802                 if (make_mmu_pages_available(vcpu) < 0) {
3803                         spin_unlock(&vcpu->kvm->mmu_lock);
3804                         return -ENOSPC;
3805                 }
3806                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3807                                 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3808                 root = __pa(sp->spt);
3809                 ++sp->root_count;
3810                 spin_unlock(&vcpu->kvm->mmu_lock);
3811                 vcpu->arch.mmu->root_hpa = root;
3812                 goto set_root_cr3;
3813         }
3814
3815         /*
3816          * We shadow a 32 bit page table. This may be a legacy 2-level
3817          * or a PAE 3-level page table. In either case we need to be aware that
3818          * the shadow page table may be a PAE or a long mode page table.
3819          */
3820         pm_mask = PT_PRESENT_MASK;
3821         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3822                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3823
3824         for (i = 0; i < 4; ++i) {
3825                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3826
3827                 MMU_WARN_ON(VALID_PAGE(root));
3828                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3829                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3830                         if (!(pdptr & PT_PRESENT_MASK)) {
3831                                 vcpu->arch.mmu->pae_root[i] = 0;
3832                                 continue;
3833                         }
3834                         root_gfn = pdptr >> PAGE_SHIFT;
3835                         if (mmu_check_root(vcpu, root_gfn))
3836                                 return 1;
3837                 }
3838                 spin_lock(&vcpu->kvm->mmu_lock);
3839                 if (make_mmu_pages_available(vcpu) < 0) {
3840                         spin_unlock(&vcpu->kvm->mmu_lock);
3841                         return -ENOSPC;
3842                 }
3843                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3844                                       0, ACC_ALL);
3845                 root = __pa(sp->spt);
3846                 ++sp->root_count;
3847                 spin_unlock(&vcpu->kvm->mmu_lock);
3848
3849                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3850         }
3851         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3852
3853         /*
3854          * If we shadow a 32 bit page table with a long mode page
3855          * table we enter this path.
3856          */
3857         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3858                 if (vcpu->arch.mmu->lm_root == NULL) {
3859                         /*
3860                          * The additional page necessary for this is only
3861                          * allocated on demand.
3862                          */
3863
3864                         u64 *lm_root;
3865
3866                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3867                         if (lm_root == NULL)
3868                                 return 1;
3869
3870                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3871
3872                         vcpu->arch.mmu->lm_root = lm_root;
3873                 }
3874
3875                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3876         }
3877
3878 set_root_cr3:
3879         vcpu->arch.mmu->root_cr3 = root_cr3;
3880
3881         return 0;
3882 }
3883
3884 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3885 {
3886         if (vcpu->arch.mmu->direct_map)
3887                 return mmu_alloc_direct_roots(vcpu);
3888         else
3889                 return mmu_alloc_shadow_roots(vcpu);
3890 }
3891
3892 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3893 {
3894         int i;
3895         struct kvm_mmu_page *sp;
3896
3897         if (vcpu->arch.mmu->direct_map)
3898                 return;
3899
3900         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3901                 return;
3902
3903         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3904
3905         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3906                 hpa_t root = vcpu->arch.mmu->root_hpa;
3907                 sp = page_header(root);
3908
3909                 /*
3910                  * Even if another CPU was marking the SP as unsync-ed
3911                  * simultaneously, any guest page table changes are not
3912                  * guaranteed to be visible anyway until this VCPU issues a TLB
3913                  * flush strictly after those changes are made. We only need to
3914                  * ensure that the other CPU sets these flags before any actual
3915                  * changes to the page tables are made. The comments in
3916                  * mmu_need_write_protect() describe what could go wrong if this
3917                  * requirement isn't satisfied.
3918                  */
3919                 if (!smp_load_acquire(&sp->unsync) &&
3920                     !smp_load_acquire(&sp->unsync_children))
3921                         return;
3922
3923                 spin_lock(&vcpu->kvm->mmu_lock);
3924                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3925
3926                 mmu_sync_children(vcpu, sp);
3927
3928                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3929                 spin_unlock(&vcpu->kvm->mmu_lock);
3930                 return;
3931         }
3932
3933         spin_lock(&vcpu->kvm->mmu_lock);
3934         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3935
3936         for (i = 0; i < 4; ++i) {
3937                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3938
3939                 if (root && VALID_PAGE(root)) {
3940                         root &= PT64_BASE_ADDR_MASK;
3941                         sp = page_header(root);
3942                         mmu_sync_children(vcpu, sp);
3943                 }
3944         }
3945
3946         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3947         spin_unlock(&vcpu->kvm->mmu_lock);
3948 }
3949 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3950
3951 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3952                                   u32 access, struct x86_exception *exception)
3953 {
3954         if (exception)
3955                 exception->error_code = 0;
3956         return vaddr;
3957 }
3958
3959 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3960                                          u32 access,
3961                                          struct x86_exception *exception)
3962 {
3963         if (exception)
3964                 exception->error_code = 0;
3965         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3966 }
3967
3968 static bool
3969 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3970 {
3971         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3972
3973         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3974                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3975 }
3976
3977 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3978 {
3979         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3980 }
3981
3982 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3983 {
3984         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3985 }
3986
3987 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3988 {
3989         /*
3990          * A nested guest cannot use the MMIO cache if it is using nested
3991          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3992          */
3993         if (mmu_is_nested(vcpu))
3994                 return false;
3995
3996         if (direct)
3997                 return vcpu_match_mmio_gpa(vcpu, addr);
3998
3999         return vcpu_match_mmio_gva(vcpu, addr);
4000 }
4001
4002 /* return true if reserved bit is detected on spte. */
4003 static bool
4004 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4005 {
4006         struct kvm_shadow_walk_iterator iterator;
4007         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
4008         int root, leaf;
4009         bool reserved = false;
4010
4011         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4012                 goto exit;
4013
4014         walk_shadow_page_lockless_begin(vcpu);
4015
4016         for (shadow_walk_init(&iterator, vcpu, addr),
4017                  leaf = root = iterator.level;
4018              shadow_walk_okay(&iterator);
4019              __shadow_walk_next(&iterator, spte)) {
4020                 spte = mmu_spte_get_lockless(iterator.sptep);
4021
4022                 sptes[leaf - 1] = spte;
4023                 leaf--;
4024
4025                 if (!is_shadow_present_pte(spte))
4026                         break;
4027
4028                 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
4029                                                     iterator.level);
4030         }
4031
4032         walk_shadow_page_lockless_end(vcpu);
4033
4034         if (reserved) {
4035                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
4036                        __func__, addr);
4037                 while (root > leaf) {
4038                         pr_err("------ spte 0x%llx level %d.\n",
4039                                sptes[root - 1], root);
4040                         root--;
4041                 }
4042         }
4043 exit:
4044         *sptep = spte;
4045         return reserved;
4046 }
4047
4048 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4049 {
4050         u64 spte;
4051         bool reserved;
4052
4053         if (mmio_info_in_cache(vcpu, addr, direct))
4054                 return RET_PF_EMULATE;
4055
4056         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4057         if (WARN_ON(reserved))
4058                 return -EINVAL;
4059
4060         if (is_mmio_spte(spte)) {
4061                 gfn_t gfn = get_mmio_spte_gfn(spte);
4062                 unsigned access = get_mmio_spte_access(spte);
4063
4064                 if (!check_mmio_spte(vcpu, spte))
4065                         return RET_PF_INVALID;
4066
4067                 if (direct)
4068                         addr = 0;
4069
4070                 trace_handle_mmio_page_fault(addr, gfn, access);
4071                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4072                 return RET_PF_EMULATE;
4073         }
4074
4075         /*
4076          * If the page table is zapped by other cpus, let CPU fault again on
4077          * the address.
4078          */
4079         return RET_PF_RETRY;
4080 }
4081
4082 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4083                                          u32 error_code, gfn_t gfn)
4084 {
4085         if (unlikely(error_code & PFERR_RSVD_MASK))
4086                 return false;
4087
4088         if (!(error_code & PFERR_PRESENT_MASK) ||
4089               !(error_code & PFERR_WRITE_MASK))
4090                 return false;
4091
4092         /*
4093          * guest is writing the page which is write tracked which can
4094          * not be fixed by page fault handler.
4095          */
4096         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4097                 return true;
4098
4099         return false;
4100 }
4101
4102 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4103 {
4104         struct kvm_shadow_walk_iterator iterator;
4105         u64 spte;
4106
4107         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4108                 return;
4109
4110         walk_shadow_page_lockless_begin(vcpu);
4111         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4112                 clear_sp_write_flooding_count(iterator.sptep);
4113                 if (!is_shadow_present_pte(spte))
4114                         break;
4115         }
4116         walk_shadow_page_lockless_end(vcpu);
4117 }
4118
4119 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4120                                    gfn_t gfn)
4121 {
4122         struct kvm_arch_async_pf arch;
4123
4124         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4125         arch.gfn = gfn;
4126         arch.direct_map = vcpu->arch.mmu->direct_map;
4127         arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4128
4129         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4130                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4131 }
4132
4133 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4134                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4135                          bool *writable)
4136 {
4137         struct kvm_memory_slot *slot;
4138         bool async;
4139
4140         /*
4141          * Don't expose private memslots to L2.
4142          */
4143         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4144                 *pfn = KVM_PFN_NOSLOT;
4145                 return false;
4146         }
4147
4148         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4149         async = false;
4150         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4151         if (!async)
4152                 return false; /* *pfn has correct page already */
4153
4154         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4155                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4156                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4157                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4158                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4159                         return true;
4160                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4161                         return true;
4162         }
4163
4164         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4165         return false;
4166 }
4167
4168 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4169                                 u32 error_code, bool prefault)
4170 {
4171         int r;
4172         int level;
4173         kvm_pfn_t pfn;
4174         unsigned long mmu_seq;
4175         gfn_t gfn = gpa >> PAGE_SHIFT;
4176         bool write = error_code & PFERR_WRITE_MASK;
4177         bool map_writable;
4178         bool exec = error_code & PFERR_FETCH_MASK;
4179         bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4180         int max_level;
4181
4182         /* Note, paging is disabled, ergo gva == gpa. */
4183         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4184
4185         gpa &= PAGE_MASK;
4186
4187         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4188                 return RET_PF_EMULATE;
4189
4190         r = mmu_topup_memory_caches(vcpu);
4191         if (r)
4192                 return r;
4193
4194         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4195
4196         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4197         max_level = lpage_disallowed ? PT_PAGE_TABLE_LEVEL : PT_DIRECTORY_LEVEL;
4198
4199         level = mapping_level(vcpu, gfn, &max_level);
4200         if (level > PT_PAGE_TABLE_LEVEL)
4201                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4202
4203         if (fast_page_fault(vcpu, gpa, level, error_code))
4204                 return RET_PF_RETRY;
4205
4206         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4207         smp_rmb();
4208
4209         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4210                 return RET_PF_RETRY;
4211
4212         if (handle_abnormal_pfn(vcpu, gpa, gfn, pfn, ACC_ALL, &r))
4213                 return r;
4214
4215         r = RET_PF_RETRY;
4216         spin_lock(&vcpu->kvm->mmu_lock);
4217         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4218                 goto out_unlock;
4219         if (make_mmu_pages_available(vcpu) < 0)
4220                 goto out_unlock;
4221         if (likely(max_level > PT_PAGE_TABLE_LEVEL))
4222                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4223         r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4224                          prefault, false);
4225 out_unlock:
4226         spin_unlock(&vcpu->kvm->mmu_lock);
4227         kvm_release_pfn_clean(pfn);
4228         return r;
4229 }
4230
4231 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4232                                 u64 fault_address, char *insn, int insn_len)
4233 {
4234         int r = 1;
4235
4236 #ifndef CONFIG_X86_64
4237         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4238         if (WARN_ON_ONCE(fault_address >> 32))
4239                 return -EFAULT;
4240 #endif
4241
4242         vcpu->arch.l1tf_flush_l1d = true;
4243         switch (vcpu->arch.apf.host_apf_reason) {
4244         default:
4245                 trace_kvm_page_fault(fault_address, error_code);
4246
4247                 if (kvm_event_needs_reinjection(vcpu))
4248                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4249                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4250                                 insn_len);
4251                 break;
4252         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4253                 vcpu->arch.apf.host_apf_reason = 0;
4254                 local_irq_disable();
4255                 kvm_async_pf_task_wait(fault_address, 0);
4256                 local_irq_enable();
4257                 break;
4258         case KVM_PV_REASON_PAGE_READY:
4259                 vcpu->arch.apf.host_apf_reason = 0;
4260                 local_irq_disable();
4261                 kvm_async_pf_task_wake(fault_address);
4262                 local_irq_enable();
4263                 break;
4264         }
4265         return r;
4266 }
4267 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4268
4269 static int tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4270                           bool prefault)
4271 {
4272         kvm_pfn_t pfn;
4273         int r;
4274         int level;
4275         gfn_t gfn = gpa >> PAGE_SHIFT;
4276         unsigned long mmu_seq;
4277         int write = error_code & PFERR_WRITE_MASK;
4278         bool map_writable;
4279         bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
4280                                 is_nx_huge_page_enabled();
4281         int max_level;
4282
4283         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4284
4285         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4286                 return RET_PF_EMULATE;
4287
4288         r = mmu_topup_memory_caches(vcpu);
4289         if (r)
4290                 return r;
4291
4292         for (max_level = PT_MAX_HUGEPAGE_LEVEL;
4293              max_level > PT_PAGE_TABLE_LEVEL;
4294              max_level--) {
4295                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4296                 gfn_t base = gfn & ~(page_num - 1);
4297
4298                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4299                         break;
4300         }
4301
4302         if (lpage_disallowed)
4303                 max_level = PT_PAGE_TABLE_LEVEL;
4304
4305         level = mapping_level(vcpu, gfn, &max_level);
4306         if (level > PT_PAGE_TABLE_LEVEL)
4307                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4308
4309         if (fast_page_fault(vcpu, gpa, level, error_code))
4310                 return RET_PF_RETRY;
4311
4312         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4313         smp_rmb();
4314
4315         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4316                 return RET_PF_RETRY;
4317
4318         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4319                 return r;
4320
4321         r = RET_PF_RETRY;
4322         spin_lock(&vcpu->kvm->mmu_lock);
4323         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4324                 goto out_unlock;
4325         if (make_mmu_pages_available(vcpu) < 0)
4326                 goto out_unlock;
4327         if (likely(max_level > PT_PAGE_TABLE_LEVEL))
4328                 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4329         r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4330                          prefault, lpage_disallowed);
4331 out_unlock:
4332         spin_unlock(&vcpu->kvm->mmu_lock);
4333         kvm_release_pfn_clean(pfn);
4334         return r;
4335 }
4336
4337 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4338                                    struct kvm_mmu *context)
4339 {
4340         context->page_fault = nonpaging_page_fault;
4341         context->gva_to_gpa = nonpaging_gva_to_gpa;
4342         context->sync_page = nonpaging_sync_page;
4343         context->invlpg = nonpaging_invlpg;
4344         context->update_pte = nonpaging_update_pte;
4345         context->root_level = 0;
4346         context->shadow_root_level = PT32E_ROOT_LEVEL;
4347         context->direct_map = true;
4348         context->nx = false;
4349 }
4350
4351 /*
4352  * Find out if a previously cached root matching the new CR3/role is available.
4353  * The current root is also inserted into the cache.
4354  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4355  * returned.
4356  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4357  * false is returned. This root should now be freed by the caller.
4358  */
4359 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4360                                   union kvm_mmu_page_role new_role)
4361 {
4362         uint i;
4363         struct kvm_mmu_root_info root;
4364         struct kvm_mmu *mmu = vcpu->arch.mmu;
4365
4366         root.cr3 = mmu->root_cr3;
4367         root.hpa = mmu->root_hpa;
4368
4369         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4370                 swap(root, mmu->prev_roots[i]);
4371
4372                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4373                     page_header(root.hpa) != NULL &&
4374                     new_role.word == page_header(root.hpa)->role.word)
4375                         break;
4376         }
4377
4378         mmu->root_hpa = root.hpa;
4379         mmu->root_cr3 = root.cr3;
4380
4381         return i < KVM_MMU_NUM_PREV_ROOTS;
4382 }
4383
4384 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4385                             union kvm_mmu_page_role new_role,
4386                             bool skip_tlb_flush)
4387 {
4388         struct kvm_mmu *mmu = vcpu->arch.mmu;
4389
4390         /*
4391          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4392          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4393          * later if necessary.
4394          */
4395         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4396             mmu->root_level >= PT64_ROOT_4LEVEL) {
4397                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4398                         return false;
4399
4400                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4401                         /*
4402                          * It is possible that the cached previous root page is
4403                          * obsolete because of a change in the MMU generation
4404                          * number. However, changing the generation number is
4405                          * accompanied by KVM_REQ_MMU_RELOAD, which will free
4406                          * the root set here and allocate a new one.
4407                          */
4408                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4409                         if (!skip_tlb_flush) {
4410                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4411                                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4412                         }
4413
4414                         /*
4415                          * The last MMIO access's GVA and GPA are cached in the
4416                          * VCPU. When switching to a new CR3, that GVA->GPA
4417                          * mapping may no longer be valid. So clear any cached
4418                          * MMIO info even when we don't need to sync the shadow
4419                          * page tables.
4420                          */
4421                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4422
4423                         __clear_sp_write_flooding_count(
4424                                 page_header(mmu->root_hpa));
4425
4426                         return true;
4427                 }
4428         }
4429
4430         return false;
4431 }
4432
4433 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4434                               union kvm_mmu_page_role new_role,
4435                               bool skip_tlb_flush)
4436 {
4437         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4438                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4439                                    KVM_MMU_ROOT_CURRENT);
4440 }
4441
4442 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4443 {
4444         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4445                           skip_tlb_flush);
4446 }
4447 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4448
4449 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4450 {
4451         return kvm_read_cr3(vcpu);
4452 }
4453
4454 static void inject_page_fault(struct kvm_vcpu *vcpu,
4455                               struct x86_exception *fault)
4456 {
4457         vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4458 }
4459
4460 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4461                            unsigned access, int *nr_present)
4462 {
4463         if (unlikely(is_mmio_spte(*sptep))) {
4464                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4465                         mmu_spte_clear_no_track(sptep);
4466                         return true;
4467                 }
4468
4469                 (*nr_present)++;
4470                 mark_mmio_spte(vcpu, sptep, gfn, access);
4471                 return true;
4472         }
4473
4474         return false;
4475 }
4476
4477 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4478                                 unsigned level, unsigned gpte)
4479 {
4480         /*
4481          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4482          * If it is clear, there are no large pages at this level, so clear
4483          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4484          */
4485         gpte &= level - mmu->last_nonleaf_level;
4486
4487         /*
4488          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4489          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4490          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4491          */
4492         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4493
4494         return gpte & PT_PAGE_SIZE_MASK;
4495 }
4496
4497 #define PTTYPE_EPT 18 /* arbitrary */
4498 #define PTTYPE PTTYPE_EPT
4499 #include "paging_tmpl.h"
4500 #undef PTTYPE
4501
4502 #define PTTYPE 64
4503 #include "paging_tmpl.h"
4504 #undef PTTYPE
4505
4506 #define PTTYPE 32
4507 #include "paging_tmpl.h"
4508 #undef PTTYPE
4509
4510 static void
4511 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4512                         struct rsvd_bits_validate *rsvd_check,
4513                         int maxphyaddr, int level, bool nx, bool gbpages,
4514                         bool pse, bool amd)
4515 {
4516         u64 exb_bit_rsvd = 0;
4517         u64 gbpages_bit_rsvd = 0;
4518         u64 nonleaf_bit8_rsvd = 0;
4519
4520         rsvd_check->bad_mt_xwr = 0;
4521
4522         if (!nx)
4523                 exb_bit_rsvd = rsvd_bits(63, 63);
4524         if (!gbpages)
4525                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4526
4527         /*
4528          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4529          * leaf entries) on AMD CPUs only.
4530          */
4531         if (amd)
4532                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4533
4534         switch (level) {
4535         case PT32_ROOT_LEVEL:
4536                 /* no rsvd bits for 2 level 4K page table entries */
4537                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4538                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4539                 rsvd_check->rsvd_bits_mask[1][0] =
4540                         rsvd_check->rsvd_bits_mask[0][0];
4541
4542                 if (!pse) {
4543                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4544                         break;
4545                 }
4546
4547                 if (is_cpuid_PSE36())
4548                         /* 36bits PSE 4MB page */
4549                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4550                 else
4551                         /* 32 bits PSE 4MB page */
4552                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4553                 break;
4554         case PT32E_ROOT_LEVEL:
4555                 rsvd_check->rsvd_bits_mask[0][2] =
4556                         rsvd_bits(maxphyaddr, 63) |
4557                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4558                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4559                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4560                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4561                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4562                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4563                         rsvd_bits(maxphyaddr, 62) |
4564                         rsvd_bits(13, 20);              /* large page */
4565                 rsvd_check->rsvd_bits_mask[1][0] =
4566                         rsvd_check->rsvd_bits_mask[0][0];
4567                 break;
4568         case PT64_ROOT_5LEVEL:
4569                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4570                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4571                         rsvd_bits(maxphyaddr, 51);
4572                 rsvd_check->rsvd_bits_mask[1][4] =
4573                         rsvd_check->rsvd_bits_mask[0][4];
4574                 /* fall through */
4575         case PT64_ROOT_4LEVEL:
4576                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4577                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4578                         rsvd_bits(maxphyaddr, 51);
4579                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4580                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4581                         rsvd_bits(maxphyaddr, 51);
4582                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4583                         rsvd_bits(maxphyaddr, 51);
4584                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4585                         rsvd_bits(maxphyaddr, 51);
4586                 rsvd_check->rsvd_bits_mask[1][3] =
4587                         rsvd_check->rsvd_bits_mask[0][3];
4588                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4589                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4590                         rsvd_bits(13, 29);
4591                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4592                         rsvd_bits(maxphyaddr, 51) |
4593                         rsvd_bits(13, 20);              /* large page */
4594                 rsvd_check->rsvd_bits_mask[1][0] =
4595                         rsvd_check->rsvd_bits_mask[0][0];
4596                 break;
4597         }
4598 }
4599
4600 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4601                                   struct kvm_mmu *context)
4602 {
4603         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4604                                 cpuid_maxphyaddr(vcpu), context->root_level,
4605                                 context->nx,
4606                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4607                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4608 }
4609
4610 static void
4611 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4612                             int maxphyaddr, bool execonly)
4613 {
4614         u64 bad_mt_xwr;
4615
4616         rsvd_check->rsvd_bits_mask[0][4] =
4617                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4618         rsvd_check->rsvd_bits_mask[0][3] =
4619                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4620         rsvd_check->rsvd_bits_mask[0][2] =
4621                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4622         rsvd_check->rsvd_bits_mask[0][1] =
4623                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4624         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4625
4626         /* large page */
4627         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4628         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4629         rsvd_check->rsvd_bits_mask[1][2] =
4630                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4631         rsvd_check->rsvd_bits_mask[1][1] =
4632                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4633         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4634
4635         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4636         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4637         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4638         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4639         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4640         if (!execonly) {
4641                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4642                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4643         }
4644         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4645 }
4646
4647 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4648                 struct kvm_mmu *context, bool execonly)
4649 {
4650         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4651                                     cpuid_maxphyaddr(vcpu), execonly);
4652 }
4653
4654 /*
4655  * the page table on host is the shadow page table for the page
4656  * table in guest or amd nested guest, its mmu features completely
4657  * follow the features in guest.
4658  */
4659 void
4660 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4661 {
4662         bool uses_nx = context->nx ||
4663                 context->mmu_role.base.smep_andnot_wp;
4664         struct rsvd_bits_validate *shadow_zero_check;
4665         int i;
4666
4667         /*
4668          * Passing "true" to the last argument is okay; it adds a check
4669          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4670          */
4671         shadow_zero_check = &context->shadow_zero_check;
4672         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4673                                 shadow_phys_bits,
4674                                 context->shadow_root_level, uses_nx,
4675                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4676                                 is_pse(vcpu), true);
4677
4678         if (!shadow_me_mask)
4679                 return;
4680
4681         for (i = context->shadow_root_level; --i >= 0;) {
4682                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4683                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4684         }
4685
4686 }
4687 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4688
4689 static inline bool boot_cpu_is_amd(void)
4690 {
4691         WARN_ON_ONCE(!tdp_enabled);
4692         return shadow_x_mask == 0;
4693 }
4694
4695 /*
4696  * the direct page table on host, use as much mmu features as
4697  * possible, however, kvm currently does not do execution-protection.
4698  */
4699 static void
4700 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4701                                 struct kvm_mmu *context)
4702 {
4703         struct rsvd_bits_validate *shadow_zero_check;
4704         int i;
4705
4706         shadow_zero_check = &context->shadow_zero_check;
4707
4708         if (boot_cpu_is_amd())
4709                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4710                                         shadow_phys_bits,
4711                                         context->shadow_root_level, false,
4712                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4713                                         true, true);
4714         else
4715                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4716                                             shadow_phys_bits,
4717                                             false);
4718
4719         if (!shadow_me_mask)
4720                 return;
4721
4722         for (i = context->shadow_root_level; --i >= 0;) {
4723                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4724                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4725         }
4726 }
4727
4728 /*
4729  * as the comments in reset_shadow_zero_bits_mask() except it
4730  * is the shadow page table for intel nested guest.
4731  */
4732 static void
4733 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4734                                 struct kvm_mmu *context, bool execonly)
4735 {
4736         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4737                                     shadow_phys_bits, execonly);
4738 }
4739
4740 #define BYTE_MASK(access) \
4741         ((1 & (access) ? 2 : 0) | \
4742          (2 & (access) ? 4 : 0) | \
4743          (3 & (access) ? 8 : 0) | \
4744          (4 & (access) ? 16 : 0) | \
4745          (5 & (access) ? 32 : 0) | \
4746          (6 & (access) ? 64 : 0) | \
4747          (7 & (access) ? 128 : 0))
4748
4749
4750 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4751                                       struct kvm_mmu *mmu, bool ept)
4752 {
4753         unsigned byte;
4754
4755         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4756         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4757         const u8 u = BYTE_MASK(ACC_USER_MASK);
4758
4759         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4760         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4761         bool cr0_wp = is_write_protection(vcpu);
4762
4763         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4764                 unsigned pfec = byte << 1;
4765
4766                 /*
4767                  * Each "*f" variable has a 1 bit for each UWX value
4768                  * that causes a fault with the given PFEC.
4769                  */
4770
4771                 /* Faults from writes to non-writable pages */
4772                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4773                 /* Faults from user mode accesses to supervisor pages */
4774                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4775                 /* Faults from fetches of non-executable pages*/
4776                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4777                 /* Faults from kernel mode fetches of user pages */
4778                 u8 smepf = 0;
4779                 /* Faults from kernel mode accesses of user pages */
4780                 u8 smapf = 0;
4781
4782                 if (!ept) {
4783                         /* Faults from kernel mode accesses to user pages */
4784                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4785
4786                         /* Not really needed: !nx will cause pte.nx to fault */
4787                         if (!mmu->nx)
4788                                 ff = 0;
4789
4790                         /* Allow supervisor writes if !cr0.wp */
4791                         if (!cr0_wp)
4792                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4793
4794                         /* Disallow supervisor fetches of user code if cr4.smep */
4795                         if (cr4_smep)
4796                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4797
4798                         /*
4799                          * SMAP:kernel-mode data accesses from user-mode
4800                          * mappings should fault. A fault is considered
4801                          * as a SMAP violation if all of the following
4802                          * conditions are true:
4803                          *   - X86_CR4_SMAP is set in CR4
4804                          *   - A user page is accessed
4805                          *   - The access is not a fetch
4806                          *   - Page fault in kernel mode
4807                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4808                          *
4809                          * Here, we cover the first three conditions.
4810                          * The fourth is computed dynamically in permission_fault();
4811                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4812                          * *not* subject to SMAP restrictions.
4813                          */
4814                         if (cr4_smap)
4815                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4816                 }
4817
4818                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4819         }
4820 }
4821
4822 /*
4823 * PKU is an additional mechanism by which the paging controls access to
4824 * user-mode addresses based on the value in the PKRU register.  Protection
4825 * key violations are reported through a bit in the page fault error code.
4826 * Unlike other bits of the error code, the PK bit is not known at the
4827 * call site of e.g. gva_to_gpa; it must be computed directly in
4828 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4829 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4830 *
4831 * In particular the following conditions come from the error code, the
4832 * page tables and the machine state:
4833 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4834 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4835 * - PK is always zero if U=0 in the page tables
4836 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4837 *
4838 * The PKRU bitmask caches the result of these four conditions.  The error
4839 * code (minus the P bit) and the page table's U bit form an index into the
4840 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4841 * with the two bits of the PKRU register corresponding to the protection key.
4842 * For the first three conditions above the bits will be 00, thus masking
4843 * away both AD and WD.  For all reads or if the last condition holds, WD
4844 * only will be masked away.
4845 */
4846 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4847                                 bool ept)
4848 {
4849         unsigned bit;
4850         bool wp;
4851
4852         if (ept) {
4853                 mmu->pkru_mask = 0;
4854                 return;
4855         }
4856
4857         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4858         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4859                 mmu->pkru_mask = 0;
4860                 return;
4861         }
4862
4863         wp = is_write_protection(vcpu);
4864
4865         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4866                 unsigned pfec, pkey_bits;
4867                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4868
4869                 pfec = bit << 1;
4870                 ff = pfec & PFERR_FETCH_MASK;
4871                 uf = pfec & PFERR_USER_MASK;
4872                 wf = pfec & PFERR_WRITE_MASK;
4873
4874                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4875                 pte_user = pfec & PFERR_RSVD_MASK;
4876
4877                 /*
4878                  * Only need to check the access which is not an
4879                  * instruction fetch and is to a user page.
4880                  */
4881                 check_pkey = (!ff && pte_user);
4882                 /*
4883                  * write access is controlled by PKRU if it is a
4884                  * user access or CR0.WP = 1.
4885                  */
4886                 check_write = check_pkey && wf && (uf || wp);
4887
4888                 /* PKRU.AD stops both read and write access. */
4889                 pkey_bits = !!check_pkey;
4890                 /* PKRU.WD stops write access. */
4891                 pkey_bits |= (!!check_write) << 1;
4892
4893                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4894         }
4895 }
4896
4897 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4898 {
4899         unsigned root_level = mmu->root_level;
4900
4901         mmu->last_nonleaf_level = root_level;
4902         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4903                 mmu->last_nonleaf_level++;
4904 }
4905
4906 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4907                                          struct kvm_mmu *context,
4908                                          int level)
4909 {
4910         context->nx = is_nx(vcpu);
4911         context->root_level = level;
4912
4913         reset_rsvds_bits_mask(vcpu, context);
4914         update_permission_bitmask(vcpu, context, false);
4915         update_pkru_bitmask(vcpu, context, false);
4916         update_last_nonleaf_level(vcpu, context);
4917
4918         MMU_WARN_ON(!is_pae(vcpu));
4919         context->page_fault = paging64_page_fault;
4920         context->gva_to_gpa = paging64_gva_to_gpa;
4921         context->sync_page = paging64_sync_page;
4922         context->invlpg = paging64_invlpg;
4923         context->update_pte = paging64_update_pte;
4924         context->shadow_root_level = level;
4925         context->direct_map = false;
4926 }
4927
4928 static void paging64_init_context(struct kvm_vcpu *vcpu,
4929                                   struct kvm_mmu *context)
4930 {
4931         int root_level = is_la57_mode(vcpu) ?
4932                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4933
4934         paging64_init_context_common(vcpu, context, root_level);
4935 }
4936
4937 static void paging32_init_context(struct kvm_vcpu *vcpu,
4938                                   struct kvm_mmu *context)
4939 {
4940         context->nx = false;
4941         context->root_level = PT32_ROOT_LEVEL;
4942
4943         reset_rsvds_bits_mask(vcpu, context);
4944         update_permission_bitmask(vcpu, context, false);
4945         update_pkru_bitmask(vcpu, context, false);
4946         update_last_nonleaf_level(vcpu, context);
4947
4948         context->page_fault = paging32_page_fault;
4949         context->gva_to_gpa = paging32_gva_to_gpa;
4950         context->sync_page = paging32_sync_page;
4951         context->invlpg = paging32_invlpg;
4952         context->update_pte = paging32_update_pte;
4953         context->shadow_root_level = PT32E_ROOT_LEVEL;
4954         context->direct_map = false;
4955 }
4956
4957 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4958                                    struct kvm_mmu *context)
4959 {
4960         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4961 }
4962
4963 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4964 {
4965         union kvm_mmu_extended_role ext = {0};
4966
4967         ext.cr0_pg = !!is_paging(vcpu);
4968         ext.cr4_pae = !!is_pae(vcpu);
4969         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4970         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4971         ext.cr4_pse = !!is_pse(vcpu);
4972         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4973         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4974         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4975
4976         ext.valid = 1;
4977
4978         return ext;
4979 }
4980
4981 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4982                                                    bool base_only)
4983 {
4984         union kvm_mmu_role role = {0};
4985
4986         role.base.access = ACC_ALL;
4987         role.base.nxe = !!is_nx(vcpu);
4988         role.base.cr0_wp = is_write_protection(vcpu);
4989         role.base.smm = is_smm(vcpu);
4990         role.base.guest_mode = is_guest_mode(vcpu);
4991
4992         if (base_only)
4993                 return role;
4994
4995         role.ext = kvm_calc_mmu_role_ext(vcpu);
4996
4997         return role;
4998 }
4999
5000 static union kvm_mmu_role
5001 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5002 {
5003         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5004
5005         role.base.ad_disabled = (shadow_accessed_mask == 0);
5006         role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
5007         role.base.direct = true;
5008         role.base.gpte_is_8_bytes = true;
5009
5010         return role;
5011 }
5012
5013 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
5014 {
5015         struct kvm_mmu *context = vcpu->arch.mmu;
5016         union kvm_mmu_role new_role =
5017                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
5018
5019         new_role.base.word &= mmu_base_role_mask.word;
5020         if (new_role.as_u64 == context->mmu_role.as_u64)
5021                 return;
5022
5023         context->mmu_role.as_u64 = new_role.as_u64;
5024         context->page_fault = tdp_page_fault;
5025         context->sync_page = nonpaging_sync_page;
5026         context->invlpg = nonpaging_invlpg;
5027         context->update_pte = nonpaging_update_pte;
5028         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
5029         context->direct_map = true;
5030         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5031         context->get_cr3 = get_cr3;
5032         context->get_pdptr = kvm_pdptr_read;
5033         context->inject_page_fault = kvm_inject_page_fault;
5034
5035         if (!is_paging(vcpu)) {
5036                 context->nx = false;
5037                 context->gva_to_gpa = nonpaging_gva_to_gpa;
5038                 context->root_level = 0;
5039         } else if (is_long_mode(vcpu)) {
5040                 context->nx = is_nx(vcpu);
5041                 context->root_level = is_la57_mode(vcpu) ?
5042                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5043                 reset_rsvds_bits_mask(vcpu, context);
5044                 context->gva_to_gpa = paging64_gva_to_gpa;
5045         } else if (is_pae(vcpu)) {
5046                 context->nx = is_nx(vcpu);
5047                 context->root_level = PT32E_ROOT_LEVEL;
5048                 reset_rsvds_bits_mask(vcpu, context);
5049                 context->gva_to_gpa = paging64_gva_to_gpa;
5050         } else {
5051                 context->nx = false;
5052                 context->root_level = PT32_ROOT_LEVEL;
5053                 reset_rsvds_bits_mask(vcpu, context);
5054                 context->gva_to_gpa = paging32_gva_to_gpa;
5055         }
5056
5057         update_permission_bitmask(vcpu, context, false);
5058         update_pkru_bitmask(vcpu, context, false);
5059         update_last_nonleaf_level(vcpu, context);
5060         reset_tdp_shadow_zero_bits_mask(vcpu, context);
5061 }
5062
5063 static union kvm_mmu_role
5064 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5065 {
5066         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5067
5068         role.base.smep_andnot_wp = role.ext.cr4_smep &&
5069                 !is_write_protection(vcpu);
5070         role.base.smap_andnot_wp = role.ext.cr4_smap &&
5071                 !is_write_protection(vcpu);
5072         role.base.direct = !is_paging(vcpu);
5073         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
5074
5075         if (!is_long_mode(vcpu))
5076                 role.base.level = PT32E_ROOT_LEVEL;
5077         else if (is_la57_mode(vcpu))
5078                 role.base.level = PT64_ROOT_5LEVEL;
5079         else
5080                 role.base.level = PT64_ROOT_4LEVEL;
5081
5082         return role;
5083 }
5084
5085 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
5086 {
5087         struct kvm_mmu *context = vcpu->arch.mmu;
5088         union kvm_mmu_role new_role =
5089                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
5090
5091         new_role.base.word &= mmu_base_role_mask.word;
5092         if (new_role.as_u64 == context->mmu_role.as_u64)
5093                 return;
5094
5095         if (!is_paging(vcpu))
5096                 nonpaging_init_context(vcpu, context);
5097         else if (is_long_mode(vcpu))
5098                 paging64_init_context(vcpu, context);
5099         else if (is_pae(vcpu))
5100                 paging32E_init_context(vcpu, context);
5101         else
5102                 paging32_init_context(vcpu, context);
5103
5104         context->mmu_role.as_u64 = new_role.as_u64;
5105         reset_shadow_zero_bits_mask(vcpu, context);
5106 }
5107 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5108
5109 static union kvm_mmu_role
5110 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5111                                    bool execonly)
5112 {
5113         union kvm_mmu_role role = {0};
5114
5115         /* SMM flag is inherited from root_mmu */
5116         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5117
5118         role.base.level = PT64_ROOT_4LEVEL;
5119         role.base.gpte_is_8_bytes = true;
5120         role.base.direct = false;
5121         role.base.ad_disabled = !accessed_dirty;
5122         role.base.guest_mode = true;
5123         role.base.access = ACC_ALL;
5124
5125         /*
5126          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5127          * SMAP variation to denote shadow EPT entries.
5128          */
5129         role.base.cr0_wp = true;
5130         role.base.smap_andnot_wp = true;
5131
5132         role.ext = kvm_calc_mmu_role_ext(vcpu);
5133         role.ext.execonly = execonly;
5134
5135         return role;
5136 }
5137
5138 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5139                              bool accessed_dirty, gpa_t new_eptp)
5140 {
5141         struct kvm_mmu *context = vcpu->arch.mmu;
5142         union kvm_mmu_role new_role =
5143                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5144                                                    execonly);
5145
5146         __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5147
5148         new_role.base.word &= mmu_base_role_mask.word;
5149         if (new_role.as_u64 == context->mmu_role.as_u64)
5150                 return;
5151
5152         context->shadow_root_level = PT64_ROOT_4LEVEL;
5153
5154         context->nx = true;
5155         context->ept_ad = accessed_dirty;
5156         context->page_fault = ept_page_fault;
5157         context->gva_to_gpa = ept_gva_to_gpa;
5158         context->sync_page = ept_sync_page;
5159         context->invlpg = ept_invlpg;
5160         context->update_pte = ept_update_pte;
5161         context->root_level = PT64_ROOT_4LEVEL;
5162         context->direct_map = false;
5163         context->mmu_role.as_u64 = new_role.as_u64;
5164
5165         update_permission_bitmask(vcpu, context, true);
5166         update_pkru_bitmask(vcpu, context, true);
5167         update_last_nonleaf_level(vcpu, context);
5168         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5169         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5170 }
5171 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5172
5173 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5174 {
5175         struct kvm_mmu *context = vcpu->arch.mmu;
5176
5177         kvm_init_shadow_mmu(vcpu);
5178         context->set_cr3           = kvm_x86_ops->set_cr3;
5179         context->get_cr3           = get_cr3;
5180         context->get_pdptr         = kvm_pdptr_read;
5181         context->inject_page_fault = kvm_inject_page_fault;
5182 }
5183
5184 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5185 {
5186         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5187         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5188
5189         new_role.base.word &= mmu_base_role_mask.word;
5190         if (new_role.as_u64 == g_context->mmu_role.as_u64)
5191                 return;
5192
5193         g_context->mmu_role.as_u64 = new_role.as_u64;
5194         g_context->get_cr3           = get_cr3;
5195         g_context->get_pdptr         = kvm_pdptr_read;
5196         g_context->inject_page_fault = kvm_inject_page_fault;
5197
5198         /*
5199          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5200          * L1's nested page tables (e.g. EPT12). The nested translation
5201          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5202          * L2's page tables as the first level of translation and L1's
5203          * nested page tables as the second level of translation. Basically
5204          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5205          */
5206         if (!is_paging(vcpu)) {
5207                 g_context->nx = false;
5208                 g_context->root_level = 0;
5209                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5210         } else if (is_long_mode(vcpu)) {
5211                 g_context->nx = is_nx(vcpu);
5212                 g_context->root_level = is_la57_mode(vcpu) ?
5213                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5214                 reset_rsvds_bits_mask(vcpu, g_context);
5215                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5216         } else if (is_pae(vcpu)) {
5217                 g_context->nx = is_nx(vcpu);
5218                 g_context->root_level = PT32E_ROOT_LEVEL;
5219                 reset_rsvds_bits_mask(vcpu, g_context);
5220                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5221         } else {
5222                 g_context->nx = false;
5223                 g_context->root_level = PT32_ROOT_LEVEL;
5224                 reset_rsvds_bits_mask(vcpu, g_context);
5225                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5226         }
5227
5228         update_permission_bitmask(vcpu, g_context, false);
5229         update_pkru_bitmask(vcpu, g_context, false);
5230         update_last_nonleaf_level(vcpu, g_context);
5231 }
5232
5233 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5234 {
5235         if (reset_roots) {
5236                 uint i;
5237
5238                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5239
5240                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5241                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5242         }
5243
5244         if (mmu_is_nested(vcpu))
5245                 init_kvm_nested_mmu(vcpu);
5246         else if (tdp_enabled)
5247                 init_kvm_tdp_mmu(vcpu);
5248         else
5249                 init_kvm_softmmu(vcpu);
5250 }
5251 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5252
5253 static union kvm_mmu_page_role
5254 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5255 {
5256         union kvm_mmu_role role;
5257
5258         if (tdp_enabled)
5259                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5260         else
5261                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5262
5263         return role.base;
5264 }
5265
5266 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5267 {
5268         kvm_mmu_unload(vcpu);
5269         kvm_init_mmu(vcpu, true);
5270 }
5271 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5272
5273 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5274 {
5275         int r;
5276
5277         r = mmu_topup_memory_caches(vcpu);
5278         if (r)
5279                 goto out;
5280         r = mmu_alloc_roots(vcpu);
5281         kvm_mmu_sync_roots(vcpu);
5282         if (r)
5283                 goto out;
5284         kvm_mmu_load_cr3(vcpu);
5285         kvm_x86_ops->tlb_flush(vcpu, true);
5286 out:
5287         return r;
5288 }
5289 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5290
5291 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5292 {
5293         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5294         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5295         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5296         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5297 }
5298 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5299
5300 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5301                                   struct kvm_mmu_page *sp, u64 *spte,
5302                                   const void *new)
5303 {
5304         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5305                 ++vcpu->kvm->stat.mmu_pde_zapped;
5306                 return;
5307         }
5308
5309         ++vcpu->kvm->stat.mmu_pte_updated;
5310         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5311 }
5312
5313 static bool need_remote_flush(u64 old, u64 new)
5314 {
5315         if (!is_shadow_present_pte(old))
5316                 return false;
5317         if (!is_shadow_present_pte(new))
5318                 return true;
5319         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5320                 return true;
5321         old ^= shadow_nx_mask;
5322         new ^= shadow_nx_mask;
5323         return (old & ~new & PT64_PERM_MASK) != 0;
5324 }
5325
5326 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5327                                     int *bytes)
5328 {
5329         u64 gentry = 0;
5330         int r;
5331
5332         /*
5333          * Assume that the pte write on a page table of the same type
5334          * as the current vcpu paging mode since we update the sptes only
5335          * when they have the same mode.
5336          */
5337         if (is_pae(vcpu) && *bytes == 4) {
5338                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5339                 *gpa &= ~(gpa_t)7;
5340                 *bytes = 8;
5341         }
5342
5343         if (*bytes == 4 || *bytes == 8) {
5344                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5345                 if (r)
5346                         gentry = 0;
5347         }
5348
5349         return gentry;
5350 }
5351
5352 /*
5353  * If we're seeing too many writes to a page, it may no longer be a page table,
5354  * or we may be forking, in which case it is better to unmap the page.
5355  */
5356 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5357 {
5358         /*
5359          * Skip write-flooding detected for the sp whose level is 1, because
5360          * it can become unsync, then the guest page is not write-protected.
5361          */
5362         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5363                 return false;
5364
5365         atomic_inc(&sp->write_flooding_count);
5366         return atomic_read(&sp->write_flooding_count) >= 3;
5367 }
5368
5369 /*
5370  * Misaligned accesses are too much trouble to fix up; also, they usually
5371  * indicate a page is not used as a page table.
5372  */
5373 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5374                                     int bytes)
5375 {
5376         unsigned offset, pte_size, misaligned;
5377
5378         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5379                  gpa, bytes, sp->role.word);
5380
5381         offset = offset_in_page(gpa);
5382         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5383
5384         /*
5385          * Sometimes, the OS only writes the last one bytes to update status
5386          * bits, for example, in linux, andb instruction is used in clear_bit().
5387          */
5388         if (!(offset & (pte_size - 1)) && bytes == 1)
5389                 return false;
5390
5391         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5392         misaligned |= bytes < 4;
5393
5394         return misaligned;
5395 }
5396
5397 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5398 {
5399         unsigned page_offset, quadrant;
5400         u64 *spte;
5401         int level;
5402
5403         page_offset = offset_in_page(gpa);
5404         level = sp->role.level;
5405         *nspte = 1;
5406         if (!sp->role.gpte_is_8_bytes) {
5407                 page_offset <<= 1;      /* 32->64 */
5408                 /*
5409                  * A 32-bit pde maps 4MB while the shadow pdes map
5410                  * only 2MB.  So we need to double the offset again
5411                  * and zap two pdes instead of one.
5412                  */
5413                 if (level == PT32_ROOT_LEVEL) {
5414                         page_offset &= ~7; /* kill rounding error */
5415                         page_offset <<= 1;
5416                         *nspte = 2;
5417                 }
5418                 quadrant = page_offset >> PAGE_SHIFT;
5419                 page_offset &= ~PAGE_MASK;
5420                 if (quadrant != sp->role.quadrant)
5421                         return NULL;
5422         }
5423
5424         spte = &sp->spt[page_offset / sizeof(*spte)];
5425         return spte;
5426 }
5427
5428 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5429                               const u8 *new, int bytes,
5430                               struct kvm_page_track_notifier_node *node)
5431 {
5432         gfn_t gfn = gpa >> PAGE_SHIFT;
5433         struct kvm_mmu_page *sp;
5434         LIST_HEAD(invalid_list);
5435         u64 entry, gentry, *spte;
5436         int npte;
5437         bool remote_flush, local_flush;
5438
5439         /*
5440          * If we don't have indirect shadow pages, it means no page is
5441          * write-protected, so we can exit simply.
5442          */
5443         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5444                 return;
5445
5446         remote_flush = local_flush = false;
5447
5448         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5449
5450         /*
5451          * No need to care whether allocation memory is successful
5452          * or not since pte prefetch is skiped if it does not have
5453          * enough objects in the cache.
5454          */
5455         mmu_topup_memory_caches(vcpu);
5456
5457         spin_lock(&vcpu->kvm->mmu_lock);
5458
5459         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5460
5461         ++vcpu->kvm->stat.mmu_pte_write;
5462         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5463
5464         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5465                 if (detect_write_misaligned(sp, gpa, bytes) ||
5466                       detect_write_flooding(sp)) {
5467                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5468                         ++vcpu->kvm->stat.mmu_flooded;
5469                         continue;
5470                 }
5471
5472                 spte = get_written_sptes(sp, gpa, &npte);
5473                 if (!spte)
5474                         continue;
5475
5476                 local_flush = true;
5477                 while (npte--) {
5478                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5479
5480                         entry = *spte;
5481                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5482                         if (gentry &&
5483                               !((sp->role.word ^ base_role)
5484                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5485                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5486                         if (need_remote_flush(entry, *spte))
5487                                 remote_flush = true;
5488                         ++spte;
5489                 }
5490         }
5491         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5492         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5493         spin_unlock(&vcpu->kvm->mmu_lock);
5494 }
5495
5496 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5497 {
5498         gpa_t gpa;
5499         int r;
5500
5501         if (vcpu->arch.mmu->direct_map)
5502                 return 0;
5503
5504         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5505
5506         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5507
5508         return r;
5509 }
5510 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5511
5512 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5513                        void *insn, int insn_len)
5514 {
5515         int r, emulation_type = 0;
5516         bool direct = vcpu->arch.mmu->direct_map;
5517
5518         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5519         if (vcpu->arch.mmu->direct_map) {
5520                 vcpu->arch.gpa_available = true;
5521                 vcpu->arch.gpa_val = cr2_or_gpa;
5522         }
5523
5524         r = RET_PF_INVALID;
5525         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5526                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5527                 if (r == RET_PF_EMULATE)
5528                         goto emulate;
5529         }
5530
5531         if (r == RET_PF_INVALID) {
5532                 r = vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa,
5533                                                lower_32_bits(error_code),
5534                                                false);
5535                 WARN_ON(r == RET_PF_INVALID);
5536         }
5537
5538         if (r == RET_PF_RETRY)
5539                 return 1;
5540         if (r < 0)
5541                 return r;
5542
5543         /*
5544          * Before emulating the instruction, check if the error code
5545          * was due to a RO violation while translating the guest page.
5546          * This can occur when using nested virtualization with nested
5547          * paging in both guests. If true, we simply unprotect the page
5548          * and resume the guest.
5549          */
5550         if (vcpu->arch.mmu->direct_map &&
5551             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5552                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5553                 return 1;
5554         }
5555
5556         /*
5557          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5558          * optimistically try to just unprotect the page and let the processor
5559          * re-execute the instruction that caused the page fault.  Do not allow
5560          * retrying MMIO emulation, as it's not only pointless but could also
5561          * cause us to enter an infinite loop because the processor will keep
5562          * faulting on the non-existent MMIO address.  Retrying an instruction
5563          * from a nested guest is also pointless and dangerous as we are only
5564          * explicitly shadowing L1's page tables, i.e. unprotecting something
5565          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5566          */
5567         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5568                 emulation_type = EMULTYPE_ALLOW_RETRY;
5569 emulate:
5570         /*
5571          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5572          * This can happen if a guest gets a page-fault on data access but the HW
5573          * table walker is not able to read the instruction page (e.g instruction
5574          * page is not present in memory). In those cases we simply restart the
5575          * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5576          */
5577         if (unlikely(insn && !insn_len)) {
5578                 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5579                         return 1;
5580         }
5581
5582         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5583                                        insn_len);
5584 }
5585 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5586
5587 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5588 {
5589         struct kvm_mmu *mmu = vcpu->arch.mmu;
5590         int i;
5591
5592         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5593         if (is_noncanonical_address(gva, vcpu))
5594                 return;
5595
5596         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5597
5598         /*
5599          * INVLPG is required to invalidate any global mappings for the VA,
5600          * irrespective of PCID. Since it would take us roughly similar amount
5601          * of work to determine whether any of the prev_root mappings of the VA
5602          * is marked global, or to just sync it blindly, so we might as well
5603          * just always sync it.
5604          *
5605          * Mappings not reachable via the current cr3 or the prev_roots will be
5606          * synced when switching to that cr3, so nothing needs to be done here
5607          * for them.
5608          */
5609         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5610                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5611                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5612
5613         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5614         ++vcpu->stat.invlpg;
5615 }
5616 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5617
5618 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5619 {
5620         struct kvm_mmu *mmu = vcpu->arch.mmu;
5621         bool tlb_flush = false;
5622         uint i;
5623
5624         if (pcid == kvm_get_active_pcid(vcpu)) {
5625                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5626                 tlb_flush = true;
5627         }
5628
5629         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5630                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5631                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5632                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5633                         tlb_flush = true;
5634                 }
5635         }
5636
5637         if (tlb_flush)
5638                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5639
5640         ++vcpu->stat.invlpg;
5641
5642         /*
5643          * Mappings not reachable via the current cr3 or the prev_roots will be
5644          * synced when switching to that cr3, so nothing needs to be done here
5645          * for them.
5646          */
5647 }
5648 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5649
5650 void kvm_enable_tdp(void)
5651 {
5652         tdp_enabled = true;
5653 }
5654 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5655
5656 void kvm_disable_tdp(void)
5657 {
5658         tdp_enabled = false;
5659 }
5660 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5661
5662
5663 /* The return value indicates if tlb flush on all vcpus is needed. */
5664 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5665
5666 /* The caller should hold mmu-lock before calling this function. */
5667 static __always_inline bool
5668 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5669                         slot_level_handler fn, int start_level, int end_level,
5670                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5671 {
5672         struct slot_rmap_walk_iterator iterator;
5673         bool flush = false;
5674
5675         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5676                         end_gfn, &iterator) {
5677                 if (iterator.rmap)
5678                         flush |= fn(kvm, iterator.rmap);
5679
5680                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5681                         if (flush && lock_flush_tlb) {
5682                                 kvm_flush_remote_tlbs_with_address(kvm,
5683                                                 start_gfn,
5684                                                 iterator.gfn - start_gfn + 1);
5685                                 flush = false;
5686                         }
5687                         cond_resched_lock(&kvm->mmu_lock);
5688                 }
5689         }
5690
5691         if (flush && lock_flush_tlb) {
5692                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5693                                                    end_gfn - start_gfn + 1);
5694                 flush = false;
5695         }
5696
5697         return flush;
5698 }
5699
5700 static __always_inline bool
5701 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5702                   slot_level_handler fn, int start_level, int end_level,
5703                   bool lock_flush_tlb)
5704 {
5705         return slot_handle_level_range(kvm, memslot, fn, start_level,
5706                         end_level, memslot->base_gfn,
5707                         memslot->base_gfn + memslot->npages - 1,
5708                         lock_flush_tlb);
5709 }
5710
5711 static __always_inline bool
5712 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5713                       slot_level_handler fn, bool lock_flush_tlb)
5714 {
5715         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5716                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5717 }
5718
5719 static __always_inline bool
5720 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5721                         slot_level_handler fn, bool lock_flush_tlb)
5722 {
5723         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5724                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5725 }
5726
5727 static __always_inline bool
5728 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5729                  slot_level_handler fn, bool lock_flush_tlb)
5730 {
5731         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5732                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5733 }
5734
5735 static void free_mmu_pages(struct kvm_mmu *mmu)
5736 {
5737         free_page((unsigned long)mmu->pae_root);
5738         free_page((unsigned long)mmu->lm_root);
5739 }
5740
5741 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5742 {
5743         struct page *page;
5744         int i;
5745
5746         /*
5747          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5748          * while the PDP table is a per-vCPU construct that's allocated at MMU
5749          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5750          * x86_64.  Therefore we need to allocate the PDP table in the first
5751          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5752          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5753          * skip allocating the PDP table.
5754          */
5755         if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5756                 return 0;
5757
5758         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5759         if (!page)
5760                 return -ENOMEM;
5761
5762         mmu->pae_root = page_address(page);
5763         for (i = 0; i < 4; ++i)
5764                 mmu->pae_root[i] = INVALID_PAGE;
5765
5766         return 0;
5767 }
5768
5769 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5770 {
5771         uint i;
5772         int ret;
5773
5774         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5775         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5776
5777         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5778         vcpu->arch.root_mmu.root_cr3 = 0;
5779         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5780         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5781                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5782
5783         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5784         vcpu->arch.guest_mmu.root_cr3 = 0;
5785         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5786         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5787                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5788
5789         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5790
5791         ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5792         if (ret)
5793                 return ret;
5794
5795         ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5796         if (ret)
5797                 goto fail_allocate_root;
5798
5799         return ret;
5800  fail_allocate_root:
5801         free_mmu_pages(&vcpu->arch.guest_mmu);
5802         return ret;
5803 }
5804
5805 #define BATCH_ZAP_PAGES 10
5806 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5807 {
5808         struct kvm_mmu_page *sp, *node;
5809         int nr_zapped, batch = 0;
5810
5811 restart:
5812         list_for_each_entry_safe_reverse(sp, node,
5813               &kvm->arch.active_mmu_pages, link) {
5814                 /*
5815                  * No obsolete valid page exists before a newly created page
5816                  * since active_mmu_pages is a FIFO list.
5817                  */
5818                 if (!is_obsolete_sp(kvm, sp))
5819                         break;
5820
5821                 /*
5822                  * Skip invalid pages with a non-zero root count, zapping pages
5823                  * with a non-zero root count will never succeed, i.e. the page
5824                  * will get thrown back on active_mmu_pages and we'll get stuck
5825                  * in an infinite loop.
5826                  */
5827                 if (sp->role.invalid && sp->root_count)
5828                         continue;
5829
5830                 /*
5831                  * No need to flush the TLB since we're only zapping shadow
5832                  * pages with an obsolete generation number and all vCPUS have
5833                  * loaded a new root, i.e. the shadow pages being zapped cannot
5834                  * be in active use by the guest.
5835                  */
5836                 if (batch >= BATCH_ZAP_PAGES &&
5837                     cond_resched_lock(&kvm->mmu_lock)) {
5838                         batch = 0;
5839                         goto restart;
5840                 }
5841
5842                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5843                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5844                         batch += nr_zapped;
5845                         goto restart;
5846                 }
5847         }
5848
5849         /*
5850          * Trigger a remote TLB flush before freeing the page tables to ensure
5851          * KVM is not in the middle of a lockless shadow page table walk, which
5852          * may reference the pages.
5853          */
5854         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5855 }
5856
5857 /*
5858  * Fast invalidate all shadow pages and use lock-break technique
5859  * to zap obsolete pages.
5860  *
5861  * It's required when memslot is being deleted or VM is being
5862  * destroyed, in these cases, we should ensure that KVM MMU does
5863  * not use any resource of the being-deleted slot or all slots
5864  * after calling the function.
5865  */
5866 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5867 {
5868         lockdep_assert_held(&kvm->slots_lock);
5869
5870         spin_lock(&kvm->mmu_lock);
5871         trace_kvm_mmu_zap_all_fast(kvm);
5872
5873         /*
5874          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5875          * held for the entire duration of zapping obsolete pages, it's
5876          * impossible for there to be multiple invalid generations associated
5877          * with *valid* shadow pages at any given time, i.e. there is exactly
5878          * one valid generation and (at most) one invalid generation.
5879          */
5880         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5881
5882         /*
5883          * Notify all vcpus to reload its shadow page table and flush TLB.
5884          * Then all vcpus will switch to new shadow page table with the new
5885          * mmu_valid_gen.
5886          *
5887          * Note: we need to do this under the protection of mmu_lock,
5888          * otherwise, vcpu would purge shadow page but miss tlb flush.
5889          */
5890         kvm_reload_remote_mmus(kvm);
5891
5892         kvm_zap_obsolete_pages(kvm);
5893         spin_unlock(&kvm->mmu_lock);
5894 }
5895
5896 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5897 {
5898         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5899 }
5900
5901 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5902                         struct kvm_memory_slot *slot,
5903                         struct kvm_page_track_notifier_node *node)
5904 {
5905         kvm_mmu_zap_all_fast(kvm);
5906 }
5907
5908 void kvm_mmu_init_vm(struct kvm *kvm)
5909 {
5910         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5911
5912         node->track_write = kvm_mmu_pte_write;
5913         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5914         kvm_page_track_register_notifier(kvm, node);
5915 }
5916
5917 void kvm_mmu_uninit_vm(struct kvm *kvm)
5918 {
5919         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5920
5921         kvm_page_track_unregister_notifier(kvm, node);
5922 }
5923
5924 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5925 {
5926         struct kvm_memslots *slots;
5927         struct kvm_memory_slot *memslot;
5928         int i;
5929
5930         spin_lock(&kvm->mmu_lock);
5931         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5932                 slots = __kvm_memslots(kvm, i);
5933                 kvm_for_each_memslot(memslot, slots) {
5934                         gfn_t start, end;
5935
5936                         start = max(gfn_start, memslot->base_gfn);
5937                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5938                         if (start >= end)
5939                                 continue;
5940
5941                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5942                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5943                                                 start, end - 1, true);
5944                 }
5945         }
5946
5947         spin_unlock(&kvm->mmu_lock);
5948 }
5949
5950 static bool slot_rmap_write_protect(struct kvm *kvm,
5951                                     struct kvm_rmap_head *rmap_head)
5952 {
5953         return __rmap_write_protect(kvm, rmap_head, false);
5954 }
5955
5956 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5957                                       struct kvm_memory_slot *memslot)
5958 {
5959         bool flush;
5960
5961         spin_lock(&kvm->mmu_lock);
5962         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5963                                       false);
5964         spin_unlock(&kvm->mmu_lock);
5965
5966         /*
5967          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5968          * which do tlb flush out of mmu-lock should be serialized by
5969          * kvm->slots_lock otherwise tlb flush would be missed.
5970          */
5971         lockdep_assert_held(&kvm->slots_lock);
5972
5973         /*
5974          * We can flush all the TLBs out of the mmu lock without TLB
5975          * corruption since we just change the spte from writable to
5976          * readonly so that we only need to care the case of changing
5977          * spte from present to present (changing the spte from present
5978          * to nonpresent will flush all the TLBs immediately), in other
5979          * words, the only case we care is mmu_spte_update() where we
5980          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5981          * instead of PT_WRITABLE_MASK, that means it does not depend
5982          * on PT_WRITABLE_MASK anymore.
5983          */
5984         if (flush)
5985                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5986                         memslot->npages);
5987 }
5988
5989 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5990                                          struct kvm_rmap_head *rmap_head)
5991 {
5992         u64 *sptep;
5993         struct rmap_iterator iter;
5994         int need_tlb_flush = 0;
5995         kvm_pfn_t pfn;
5996         struct kvm_mmu_page *sp;
5997
5998 restart:
5999         for_each_rmap_spte(rmap_head, &iter, sptep) {
6000                 sp = page_header(__pa(sptep));
6001                 pfn = spte_to_pfn(*sptep);
6002
6003                 /*
6004                  * We cannot do huge page mapping for indirect shadow pages,
6005                  * which are found on the last rmap (level = 1) when not using
6006                  * tdp; such shadow pages are synced with the page table in
6007                  * the guest, and the guest page table is using 4K page size
6008                  * mapping if the indirect sp has level = 1.
6009                  */
6010                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
6011                     !kvm_is_zone_device_pfn(pfn) &&
6012                     PageTransCompoundMap(pfn_to_page(pfn))) {
6013                         pte_list_remove(rmap_head, sptep);
6014
6015                         if (kvm_available_flush_tlb_with_range())
6016                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
6017                                         KVM_PAGES_PER_HPAGE(sp->role.level));
6018                         else
6019                                 need_tlb_flush = 1;
6020
6021                         goto restart;
6022                 }
6023         }
6024
6025         return need_tlb_flush;
6026 }
6027
6028 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6029                                    const struct kvm_memory_slot *memslot)
6030 {
6031         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
6032         spin_lock(&kvm->mmu_lock);
6033         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
6034                          kvm_mmu_zap_collapsible_spte, true);
6035         spin_unlock(&kvm->mmu_lock);
6036 }
6037
6038 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6039                                    struct kvm_memory_slot *memslot)
6040 {
6041         bool flush;
6042
6043         spin_lock(&kvm->mmu_lock);
6044         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6045         spin_unlock(&kvm->mmu_lock);
6046
6047         lockdep_assert_held(&kvm->slots_lock);
6048
6049         /*
6050          * It's also safe to flush TLBs out of mmu lock here as currently this
6051          * function is only used for dirty logging, in which case flushing TLB
6052          * out of mmu lock also guarantees no dirty pages will be lost in
6053          * dirty_bitmap.
6054          */
6055         if (flush)
6056                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6057                                 memslot->npages);
6058 }
6059 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
6060
6061 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6062                                         struct kvm_memory_slot *memslot)
6063 {
6064         bool flush;
6065
6066         spin_lock(&kvm->mmu_lock);
6067         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6068                                         false);
6069         spin_unlock(&kvm->mmu_lock);
6070
6071         /* see kvm_mmu_slot_remove_write_access */
6072         lockdep_assert_held(&kvm->slots_lock);
6073
6074         if (flush)
6075                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6076                                 memslot->npages);
6077 }
6078 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6079
6080 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6081                             struct kvm_memory_slot *memslot)
6082 {
6083         bool flush;
6084
6085         spin_lock(&kvm->mmu_lock);
6086         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6087         spin_unlock(&kvm->mmu_lock);
6088
6089         lockdep_assert_held(&kvm->slots_lock);
6090
6091         /* see kvm_mmu_slot_leaf_clear_dirty */
6092         if (flush)
6093                 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6094                                 memslot->npages);
6095 }
6096 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6097
6098 void kvm_mmu_zap_all(struct kvm *kvm)
6099 {
6100         struct kvm_mmu_page *sp, *node;
6101         LIST_HEAD(invalid_list);
6102         int ign;
6103
6104         spin_lock(&kvm->mmu_lock);
6105 restart:
6106         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6107                 if (sp->role.invalid && sp->root_count)
6108                         continue;
6109                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6110                         goto restart;
6111                 if (cond_resched_lock(&kvm->mmu_lock))
6112                         goto restart;
6113         }
6114
6115         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6116         spin_unlock(&kvm->mmu_lock);
6117 }
6118
6119 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6120 {
6121         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6122
6123         gen &= MMIO_SPTE_GEN_MASK;
6124
6125         /*
6126          * Generation numbers are incremented in multiples of the number of
6127          * address spaces in order to provide unique generations across all
6128          * address spaces.  Strip what is effectively the address space
6129          * modifier prior to checking for a wrap of the MMIO generation so
6130          * that a wrap in any address space is detected.
6131          */
6132         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6133
6134         /*
6135          * The very rare case: if the MMIO generation number has wrapped,
6136          * zap all shadow pages.
6137          */
6138         if (unlikely(gen == 0)) {
6139                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6140                 kvm_mmu_zap_all_fast(kvm);
6141         }
6142 }
6143
6144 static unsigned long
6145 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6146 {
6147         struct kvm *kvm;
6148         int nr_to_scan = sc->nr_to_scan;
6149         unsigned long freed = 0;
6150
6151         mutex_lock(&kvm_lock);
6152
6153         list_for_each_entry(kvm, &vm_list, vm_list) {
6154                 int idx;
6155                 LIST_HEAD(invalid_list);
6156
6157                 /*
6158                  * Never scan more than sc->nr_to_scan VM instances.
6159                  * Will not hit this condition practically since we do not try
6160                  * to shrink more than one VM and it is very unlikely to see
6161                  * !n_used_mmu_pages so many times.
6162                  */
6163                 if (!nr_to_scan--)
6164                         break;
6165                 /*
6166                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6167                  * here. We may skip a VM instance errorneosly, but we do not
6168                  * want to shrink a VM that only started to populate its MMU
6169                  * anyway.
6170                  */
6171                 if (!kvm->arch.n_used_mmu_pages &&
6172                     !kvm_has_zapped_obsolete_pages(kvm))
6173                         continue;
6174
6175                 idx = srcu_read_lock(&kvm->srcu);
6176                 spin_lock(&kvm->mmu_lock);
6177
6178                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6179                         kvm_mmu_commit_zap_page(kvm,
6180                               &kvm->arch.zapped_obsolete_pages);
6181                         goto unlock;
6182                 }
6183
6184                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6185                         freed++;
6186                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6187
6188 unlock:
6189                 spin_unlock(&kvm->mmu_lock);
6190                 srcu_read_unlock(&kvm->srcu, idx);
6191
6192                 /*
6193                  * unfair on small ones
6194                  * per-vm shrinkers cry out
6195                  * sadness comes quickly
6196                  */
6197                 list_move_tail(&kvm->vm_list, &vm_list);
6198                 break;
6199         }
6200
6201         mutex_unlock(&kvm_lock);
6202         return freed;
6203 }
6204
6205 static unsigned long
6206 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6207 {
6208         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6209 }
6210
6211 static struct shrinker mmu_shrinker = {
6212         .count_objects = mmu_shrink_count,
6213         .scan_objects = mmu_shrink_scan,
6214         .seeks = DEFAULT_SEEKS * 10,
6215 };
6216
6217 static void mmu_destroy_caches(void)
6218 {
6219         kmem_cache_destroy(pte_list_desc_cache);
6220         kmem_cache_destroy(mmu_page_header_cache);
6221 }
6222
6223 static void kvm_set_mmio_spte_mask(void)
6224 {
6225         u64 mask;
6226
6227         /*
6228          * Set the reserved bits and the present bit of an paging-structure
6229          * entry to generate page fault with PFER.RSV = 1.
6230          */
6231
6232         /*
6233          * Mask the uppermost physical address bit, which would be reserved as
6234          * long as the supported physical address width is less than 52.
6235          */
6236         mask = 1ull << 51;
6237
6238         /* Set the present bit. */
6239         mask |= 1ull;
6240
6241         /*
6242          * If reserved bit is not supported, clear the present bit to disable
6243          * mmio page fault.
6244          */
6245         if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
6246                 mask &= ~1ull;
6247
6248         kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6249 }
6250
6251 static bool get_nx_auto_mode(void)
6252 {
6253         /* Return true when CPU has the bug, and mitigations are ON */
6254         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6255 }
6256
6257 static void __set_nx_huge_pages(bool val)
6258 {
6259         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6260 }
6261
6262 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6263 {
6264         bool old_val = nx_huge_pages;
6265         bool new_val;
6266
6267         /* In "auto" mode deploy workaround only if CPU has the bug. */
6268         if (sysfs_streq(val, "off"))
6269                 new_val = 0;
6270         else if (sysfs_streq(val, "force"))
6271                 new_val = 1;
6272         else if (sysfs_streq(val, "auto"))
6273                 new_val = get_nx_auto_mode();
6274         else if (strtobool(val, &new_val) < 0)
6275                 return -EINVAL;
6276
6277         __set_nx_huge_pages(new_val);
6278
6279         if (new_val != old_val) {
6280                 struct kvm *kvm;
6281
6282                 mutex_lock(&kvm_lock);
6283
6284                 list_for_each_entry(kvm, &vm_list, vm_list) {
6285                         mutex_lock(&kvm->slots_lock);
6286                         kvm_mmu_zap_all_fast(kvm);
6287                         mutex_unlock(&kvm->slots_lock);
6288
6289                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6290                 }
6291                 mutex_unlock(&kvm_lock);
6292         }
6293
6294         return 0;
6295 }
6296
6297 int kvm_mmu_module_init(void)
6298 {
6299         int ret = -ENOMEM;
6300
6301         if (nx_huge_pages == -1)
6302                 __set_nx_huge_pages(get_nx_auto_mode());
6303
6304         /*
6305          * MMU roles use union aliasing which is, generally speaking, an
6306          * undefined behavior. However, we supposedly know how compilers behave
6307          * and the current status quo is unlikely to change. Guardians below are
6308          * supposed to let us know if the assumption becomes false.
6309          */
6310         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6311         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6312         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6313
6314         kvm_mmu_reset_all_pte_masks();
6315
6316         kvm_set_mmio_spte_mask();
6317
6318         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6319                                             sizeof(struct pte_list_desc),
6320                                             0, SLAB_ACCOUNT, NULL);
6321         if (!pte_list_desc_cache)
6322                 goto out;
6323
6324         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6325                                                   sizeof(struct kvm_mmu_page),
6326                                                   0, SLAB_ACCOUNT, NULL);
6327         if (!mmu_page_header_cache)
6328                 goto out;
6329
6330         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6331                 goto out;
6332
6333         ret = register_shrinker(&mmu_shrinker);
6334         if (ret)
6335                 goto out;
6336
6337         return 0;
6338
6339 out:
6340         mmu_destroy_caches();
6341         return ret;
6342 }
6343
6344 /*
6345  * Calculate mmu pages needed for kvm.
6346  */
6347 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6348 {
6349         unsigned long nr_mmu_pages;
6350         unsigned long nr_pages = 0;
6351         struct kvm_memslots *slots;
6352         struct kvm_memory_slot *memslot;
6353         int i;
6354
6355         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6356                 slots = __kvm_memslots(kvm, i);
6357
6358                 kvm_for_each_memslot(memslot, slots)
6359                         nr_pages += memslot->npages;
6360         }
6361
6362         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6363         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6364
6365         return nr_mmu_pages;
6366 }
6367
6368 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6369 {
6370         kvm_mmu_unload(vcpu);
6371         free_mmu_pages(&vcpu->arch.root_mmu);
6372         free_mmu_pages(&vcpu->arch.guest_mmu);
6373         mmu_free_memory_caches(vcpu);
6374 }
6375
6376 void kvm_mmu_module_exit(void)
6377 {
6378         mmu_destroy_caches();
6379         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6380         unregister_shrinker(&mmu_shrinker);
6381         mmu_audit_disable();
6382 }
6383
6384 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6385 {
6386         unsigned int old_val;
6387         int err;
6388
6389         old_val = nx_huge_pages_recovery_ratio;
6390         err = param_set_uint(val, kp);
6391         if (err)
6392                 return err;
6393
6394         if (READ_ONCE(nx_huge_pages) &&
6395             !old_val && nx_huge_pages_recovery_ratio) {
6396                 struct kvm *kvm;
6397
6398                 mutex_lock(&kvm_lock);
6399
6400                 list_for_each_entry(kvm, &vm_list, vm_list)
6401                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6402
6403                 mutex_unlock(&kvm_lock);
6404         }
6405
6406         return err;
6407 }
6408
6409 static void kvm_recover_nx_lpages(struct kvm *kvm)
6410 {
6411         int rcu_idx;
6412         struct kvm_mmu_page *sp;
6413         unsigned int ratio;
6414         LIST_HEAD(invalid_list);
6415         ulong to_zap;
6416
6417         rcu_idx = srcu_read_lock(&kvm->srcu);
6418         spin_lock(&kvm->mmu_lock);
6419
6420         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6421         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6422         while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6423                 /*
6424                  * We use a separate list instead of just using active_mmu_pages
6425                  * because the number of lpage_disallowed pages is expected to
6426                  * be relatively small compared to the total.
6427                  */
6428                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6429                                       struct kvm_mmu_page,
6430                                       lpage_disallowed_link);
6431                 WARN_ON_ONCE(!sp->lpage_disallowed);
6432                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6433                 WARN_ON_ONCE(sp->lpage_disallowed);
6434
6435                 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6436                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6437                         if (to_zap)
6438                                 cond_resched_lock(&kvm->mmu_lock);
6439                 }
6440         }
6441
6442         spin_unlock(&kvm->mmu_lock);
6443         srcu_read_unlock(&kvm->srcu, rcu_idx);
6444 }
6445
6446 static long get_nx_lpage_recovery_timeout(u64 start_time)
6447 {
6448         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6449                 ? start_time + 60 * HZ - get_jiffies_64()
6450                 : MAX_SCHEDULE_TIMEOUT;
6451 }
6452
6453 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6454 {
6455         u64 start_time;
6456         long remaining_time;
6457
6458         while (true) {
6459                 start_time = get_jiffies_64();
6460                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6461
6462                 set_current_state(TASK_INTERRUPTIBLE);
6463                 while (!kthread_should_stop() && remaining_time > 0) {
6464                         schedule_timeout(remaining_time);
6465                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6466                         set_current_state(TASK_INTERRUPTIBLE);
6467                 }
6468
6469                 set_current_state(TASK_RUNNING);
6470
6471                 if (kthread_should_stop())
6472                         return 0;
6473
6474                 kvm_recover_nx_lpages(kvm);
6475         }
6476 }
6477
6478 int kvm_mmu_post_init_vm(struct kvm *kvm)
6479 {
6480         int err;
6481
6482         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6483                                           "kvm-nx-lpage-recovery",
6484                                           &kvm->arch.nx_lpage_recovery_thread);
6485         if (!err)
6486                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6487
6488         return err;
6489 }
6490
6491 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6492 {
6493         if (kvm->arch.nx_lpage_recovery_thread)
6494                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6495 }