KVM: x86/mmu: Alloc page for PDPTEs when shadowing 32-bit NPT with 64-bit
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54
55 extern bool itlb_multihit_kvm_mitigation;
56
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69         .set = set_nx_huge_pages,
70         .get = param_get_bool,
71 };
72
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74         .set = set_nx_huge_pages_recovery_ratio,
75         .get = param_get_uint,
76 };
77
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81                 &nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
87 /*
88  * When setting this variable to true it enables Two-Dimensional-Paging
89  * where the hardware walks 2 page tables:
90  * 1. the guest-virtual to guest-physical
91  * 2. while doing 1. it walks guest-physical to host-physical
92  * If the hardware supports that we don't need to do shadow paging.
93  */
94 bool tdp_enabled = false;
95
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98
99 enum {
100         AUDIT_PRE_PAGE_FAULT,
101         AUDIT_POST_PAGE_FAULT,
102         AUDIT_PRE_PTE_WRITE,
103         AUDIT_POST_PTE_WRITE,
104         AUDIT_PRE_SYNC,
105         AUDIT_POST_SYNC
106 };
107
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112
113 #define PTE_PREFETCH_NUM                8
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119
120 #define PT32_LVL_OFFSET_MASK(level) \
121         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122                                                 * PT32_LEVEL_BITS))) - 1))
123
124 #define PT32_INDEX(address, level)\
125         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #include <trace/events/kvm.h>
136
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139
140 struct pte_list_desc {
141         u64 *sptes[PTE_LIST_EXT];
142         struct pte_list_desc *more;
143 };
144
145 struct kvm_shadow_walk_iterator {
146         u64 addr;
147         hpa_t shadow_addr;
148         u64 *sptep;
149         int level;
150         unsigned index;
151 };
152
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
154         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
155                                          (_root), (_addr));                \
156              shadow_walk_okay(&(_walker));                                 \
157              shadow_walk_next(&(_walker)))
158
159 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
161              shadow_walk_okay(&(_walker));                      \
162              shadow_walk_next(&(_walker)))
163
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
165         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
166              shadow_walk_okay(&(_walker)) &&                            \
167                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
168              __shadow_walk_next(&(_walker), spte))
169
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180
181
182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184         return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188                 struct kvm_tlb_range *range)
189 {
190         int ret = -ENOTSUPP;
191
192         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
194
195         if (ret)
196                 kvm_flush_remote_tlbs(kvm);
197 }
198
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200                 u64 start_gfn, u64 pages)
201 {
202         struct kvm_tlb_range range;
203
204         range.start_gfn = start_gfn;
205         range.pages = pages;
206
207         kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209
210 bool is_nx_huge_page_enabled(void)
211 {
212         return READ_ONCE(nx_huge_pages);
213 }
214
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216                            unsigned int access)
217 {
218         u64 mask = make_mmio_spte(vcpu, gfn, access);
219
220         trace_mark_mmio_spte(sptep, gfn, mask);
221         mmu_spte_set(sptep, mask);
222 }
223
224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227
228         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229                & shadow_nonpresent_or_rsvd_mask;
230
231         return gpa >> PAGE_SHIFT;
232 }
233
234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236         return spte & shadow_mmio_access_mask;
237 }
238
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240                           kvm_pfn_t pfn, unsigned int access)
241 {
242         if (unlikely(is_noslot_pfn(pfn))) {
243                 mark_mmio_spte(vcpu, sptep, gfn, access);
244                 return true;
245         }
246
247         return false;
248 }
249
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252         u64 kvm_gen, spte_gen, gen;
253
254         gen = kvm_vcpu_memslots(vcpu)->generation;
255         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256                 return false;
257
258         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259         spte_gen = get_mmio_spte_generation(spte);
260
261         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262         return likely(kvm_gen == spte_gen);
263 }
264
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266                                   struct x86_exception *exception)
267 {
268         /* Check if guest physical address doesn't exceed guest maximum */
269         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270                 exception->error_code |= PFERR_RSVD_MASK;
271                 return UNMAPPED_GVA;
272         }
273
274         return gpa;
275 }
276
277 static int is_cpuid_PSE36(void)
278 {
279         return 1;
280 }
281
282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284         return vcpu->arch.efer & EFER_NX;
285 }
286
287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291         return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297         WRITE_ONCE(*sptep, spte);
298 }
299
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302         WRITE_ONCE(*sptep, spte);
303 }
304
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307         return xchg(sptep, spte);
308 }
309
310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312         return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316         struct {
317                 u32 spte_low;
318                 u32 spte_high;
319         };
320         u64 spte;
321 };
322
323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326
327         if (is_shadow_present_pte(spte))
328                 return;
329
330         /* Ensure the spte is completely set before we increase the count */
331         smp_wmb();
332         sp->clear_spte_count++;
333 }
334
335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337         union split_spte *ssptep, sspte;
338
339         ssptep = (union split_spte *)sptep;
340         sspte = (union split_spte)spte;
341
342         ssptep->spte_high = sspte.spte_high;
343
344         /*
345          * If we map the spte from nonpresent to present, We should store
346          * the high bits firstly, then set present bit, so cpu can not
347          * fetch this spte while we are setting the spte.
348          */
349         smp_wmb();
350
351         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356         union split_spte *ssptep, sspte;
357
358         ssptep = (union split_spte *)sptep;
359         sspte = (union split_spte)spte;
360
361         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362
363         /*
364          * If we map the spte from present to nonpresent, we should clear
365          * present bit firstly to avoid vcpu fetch the old high bits.
366          */
367         smp_wmb();
368
369         ssptep->spte_high = sspte.spte_high;
370         count_spte_clear(sptep, spte);
371 }
372
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375         union split_spte *ssptep, sspte, orig;
376
377         ssptep = (union split_spte *)sptep;
378         sspte = (union split_spte)spte;
379
380         /* xchg acts as a barrier before the setting of the high bits */
381         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382         orig.spte_high = ssptep->spte_high;
383         ssptep->spte_high = sspte.spte_high;
384         count_spte_clear(sptep, spte);
385
386         return orig.spte;
387 }
388
389 /*
390  * The idea using the light way get the spte on x86_32 guest is from
391  * gup_get_pte (mm/gup.c).
392  *
393  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394  * coalesces them and we are running out of the MMU lock.  Therefore
395  * we need to protect against in-progress updates of the spte.
396  *
397  * Reading the spte while an update is in progress may get the old value
398  * for the high part of the spte.  The race is fine for a present->non-present
399  * change (because the high part of the spte is ignored for non-present spte),
400  * but for a present->present change we must reread the spte.
401  *
402  * All such changes are done in two steps (present->non-present and
403  * non-present->present), hence it is enough to count the number of
404  * present->non-present updates: if it changed while reading the spte,
405  * we might have hit the race.  This is done using clear_spte_count.
406  */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410         union split_spte spte, *orig = (union split_spte *)sptep;
411         int count;
412
413 retry:
414         count = sp->clear_spte_count;
415         smp_rmb();
416
417         spte.spte_low = orig->spte_low;
418         smp_rmb();
419
420         spte.spte_high = orig->spte_high;
421         smp_rmb();
422
423         if (unlikely(spte.spte_low != orig->spte_low ||
424               count != sp->clear_spte_count))
425                 goto retry;
426
427         return spte.spte;
428 }
429 #endif
430
431 static bool spte_has_volatile_bits(u64 spte)
432 {
433         if (!is_shadow_present_pte(spte))
434                 return false;
435
436         /*
437          * Always atomically update spte if it can be updated
438          * out of mmu-lock, it can ensure dirty bit is not lost,
439          * also, it can help us to get a stable is_writable_pte()
440          * to ensure tlb flush is not missed.
441          */
442         if (spte_can_locklessly_be_made_writable(spte) ||
443             is_access_track_spte(spte))
444                 return true;
445
446         if (spte_ad_enabled(spte)) {
447                 if ((spte & shadow_accessed_mask) == 0 ||
448                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449                         return true;
450         }
451
452         return false;
453 }
454
455 /* Rules for using mmu_spte_set:
456  * Set the sptep from nonpresent to present.
457  * Note: the sptep being assigned *must* be either not present
458  * or in a state where the hardware will not attempt to update
459  * the spte.
460  */
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463         WARN_ON(is_shadow_present_pte(*sptep));
464         __set_spte(sptep, new_spte);
465 }
466
467 /*
468  * Update the SPTE (excluding the PFN), but do not track changes in its
469  * accessed/dirty status.
470  */
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473         u64 old_spte = *sptep;
474
475         WARN_ON(!is_shadow_present_pte(new_spte));
476
477         if (!is_shadow_present_pte(old_spte)) {
478                 mmu_spte_set(sptep, new_spte);
479                 return old_spte;
480         }
481
482         if (!spte_has_volatile_bits(old_spte))
483                 __update_clear_spte_fast(sptep, new_spte);
484         else
485                 old_spte = __update_clear_spte_slow(sptep, new_spte);
486
487         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
489         return old_spte;
490 }
491
492 /* Rules for using mmu_spte_update:
493  * Update the state bits, it means the mapped pfn is not changed.
494  *
495  * Whenever we overwrite a writable spte with a read-only one we
496  * should flush remote TLBs. Otherwise rmap_write_protect
497  * will find a read-only spte, even though the writable spte
498  * might be cached on a CPU's TLB, the return value indicates this
499  * case.
500  *
501  * Returns true if the TLB needs to be flushed
502  */
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505         bool flush = false;
506         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508         if (!is_shadow_present_pte(old_spte))
509                 return false;
510
511         /*
512          * For the spte updated out of mmu-lock is safe, since
513          * we always atomically update it, see the comments in
514          * spte_has_volatile_bits().
515          */
516         if (spte_can_locklessly_be_made_writable(old_spte) &&
517               !is_writable_pte(new_spte))
518                 flush = true;
519
520         /*
521          * Flush TLB when accessed/dirty states are changed in the page tables,
522          * to guarantee consistency between TLB and page tables.
523          */
524
525         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526                 flush = true;
527                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528         }
529
530         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531                 flush = true;
532                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533         }
534
535         return flush;
536 }
537
538 /*
539  * Rules for using mmu_spte_clear_track_bits:
540  * It sets the sptep from present to nonpresent, and track the
541  * state bits, it is used to clear the last level sptep.
542  * Returns non-zero if the PTE was previously valid.
543  */
544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546         kvm_pfn_t pfn;
547         u64 old_spte = *sptep;
548
549         if (!spte_has_volatile_bits(old_spte))
550                 __update_clear_spte_fast(sptep, 0ull);
551         else
552                 old_spte = __update_clear_spte_slow(sptep, 0ull);
553
554         if (!is_shadow_present_pte(old_spte))
555                 return 0;
556
557         pfn = spte_to_pfn(old_spte);
558
559         /*
560          * KVM does not hold the refcount of the page used by
561          * kvm mmu, before reclaiming the page, we should
562          * unmap it from mmu first.
563          */
564         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565
566         if (is_accessed_spte(old_spte))
567                 kvm_set_pfn_accessed(pfn);
568
569         if (is_dirty_spte(old_spte))
570                 kvm_set_pfn_dirty(pfn);
571
572         return 1;
573 }
574
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582         __update_clear_spte_fast(sptep, 0ull);
583 }
584
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587         return __get_spte_lockless(sptep);
588 }
589
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
592 {
593         u64 new_spte = spte;
594         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596
597         WARN_ON_ONCE(spte_ad_enabled(spte));
598         WARN_ON_ONCE(!is_access_track_spte(spte));
599
600         new_spte &= ~shadow_acc_track_mask;
601         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603         new_spte |= saved_bits;
604
605         return new_spte;
606 }
607
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
610 {
611         u64 spte = mmu_spte_get_lockless(sptep);
612
613         if (!is_accessed_spte(spte))
614                 return false;
615
616         if (spte_ad_enabled(spte)) {
617                 clear_bit((ffs(shadow_accessed_mask) - 1),
618                           (unsigned long *)sptep);
619         } else {
620                 /*
621                  * Capture the dirty status of the page, so that it doesn't get
622                  * lost when the SPTE is marked for access tracking.
623                  */
624                 if (is_writable_pte(spte))
625                         kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627                 spte = mark_spte_for_access_track(spte);
628                 mmu_spte_update_no_track(sptep, spte);
629         }
630
631         return true;
632 }
633
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636         /*
637          * Prevent page table teardown by making any free-er wait during
638          * kvm_flush_remote_tlbs() IPI to all active vcpus.
639          */
640         local_irq_disable();
641
642         /*
643          * Make sure a following spte read is not reordered ahead of the write
644          * to vcpu->mode.
645          */
646         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651         /*
652          * Make sure the write to vcpu->mode is not reordered in front of
653          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655          */
656         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657         local_irq_enable();
658 }
659
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662         int r;
663
664         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667         if (r)
668                 return r;
669         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670                                        PT64_ROOT_MAX_LEVEL);
671         if (r)
672                 return r;
673         if (maybe_indirect) {
674                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675                                                PT64_ROOT_MAX_LEVEL);
676                 if (r)
677                         return r;
678         }
679         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680                                           PT64_ROOT_MAX_LEVEL);
681 }
682
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703         if (!sp->role.direct)
704                 return sp->gfns[index];
705
706         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711         if (!sp->role.direct) {
712                 sp->gfns[index] = gfn;
713                 return;
714         }
715
716         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717                 pr_err_ratelimited("gfn mismatch under direct page %llx "
718                                    "(expected %llx, got %llx)\n",
719                                    sp->gfn,
720                                    kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722
723 /*
724  * Return the pointer to the large page information for a given gfn,
725  * handling slots that are not large page aligned.
726  */
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728                                               struct kvm_memory_slot *slot,
729                                               int level)
730 {
731         unsigned long idx;
732
733         idx = gfn_to_index(gfn, slot->base_gfn, level);
734         return &slot->arch.lpage_info[level - 2][idx];
735 }
736
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738                                             gfn_t gfn, int count)
739 {
740         struct kvm_lpage_info *linfo;
741         int i;
742
743         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744                 linfo = lpage_info_slot(gfn, slot, i);
745                 linfo->disallow_lpage += count;
746                 WARN_ON(linfo->disallow_lpage < 0);
747         }
748 }
749
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752         update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757         update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762         struct kvm_memslots *slots;
763         struct kvm_memory_slot *slot;
764         gfn_t gfn;
765
766         kvm->arch.indirect_shadow_pages++;
767         gfn = sp->gfn;
768         slots = kvm_memslots_for_spte_role(kvm, sp->role);
769         slot = __gfn_to_memslot(slots, gfn);
770
771         /* the non-leaf shadow pages are keeping readonly. */
772         if (sp->role.level > PG_LEVEL_4K)
773                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774                                                     KVM_PAGE_TRACK_WRITE);
775
776         kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778
779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781         if (sp->lpage_disallowed)
782                 return;
783
784         ++kvm->stat.nx_lpage_splits;
785         list_add_tail(&sp->lpage_disallowed_link,
786                       &kvm->arch.lpage_disallowed_mmu_pages);
787         sp->lpage_disallowed = true;
788 }
789
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792         struct kvm_memslots *slots;
793         struct kvm_memory_slot *slot;
794         gfn_t gfn;
795
796         kvm->arch.indirect_shadow_pages--;
797         gfn = sp->gfn;
798         slots = kvm_memslots_for_spte_role(kvm, sp->role);
799         slot = __gfn_to_memslot(slots, gfn);
800         if (sp->role.level > PG_LEVEL_4K)
801                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802                                                        KVM_PAGE_TRACK_WRITE);
803
804         kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806
807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809         --kvm->stat.nx_lpage_splits;
810         sp->lpage_disallowed = false;
811         list_del(&sp->lpage_disallowed_link);
812 }
813
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816                             bool no_dirty_log)
817 {
818         struct kvm_memory_slot *slot;
819
820         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822                 return NULL;
823         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
824                 return NULL;
825
826         return slot;
827 }
828
829 /*
830  * About rmap_head encoding:
831  *
832  * If the bit zero of rmap_head->val is clear, then it points to the only spte
833  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834  * pte_list_desc containing more mappings.
835  */
836
837 /*
838  * Returns the number of pointers in the rmap chain, not counting the new one.
839  */
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841                         struct kvm_rmap_head *rmap_head)
842 {
843         struct pte_list_desc *desc;
844         int i, count = 0;
845
846         if (!rmap_head->val) {
847                 rmap_printk("%p %llx 0->1\n", spte, *spte);
848                 rmap_head->val = (unsigned long)spte;
849         } else if (!(rmap_head->val & 1)) {
850                 rmap_printk("%p %llx 1->many\n", spte, *spte);
851                 desc = mmu_alloc_pte_list_desc(vcpu);
852                 desc->sptes[0] = (u64 *)rmap_head->val;
853                 desc->sptes[1] = spte;
854                 rmap_head->val = (unsigned long)desc | 1;
855                 ++count;
856         } else {
857                 rmap_printk("%p %llx many->many\n", spte, *spte);
858                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859                 while (desc->sptes[PTE_LIST_EXT-1]) {
860                         count += PTE_LIST_EXT;
861
862                         if (!desc->more) {
863                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
864                                 desc = desc->more;
865                                 break;
866                         }
867                         desc = desc->more;
868                 }
869                 for (i = 0; desc->sptes[i]; ++i)
870                         ++count;
871                 desc->sptes[i] = spte;
872         }
873         return count;
874 }
875
876 static void
877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878                            struct pte_list_desc *desc, int i,
879                            struct pte_list_desc *prev_desc)
880 {
881         int j;
882
883         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884                 ;
885         desc->sptes[i] = desc->sptes[j];
886         desc->sptes[j] = NULL;
887         if (j != 0)
888                 return;
889         if (!prev_desc && !desc->more)
890                 rmap_head->val = 0;
891         else
892                 if (prev_desc)
893                         prev_desc->more = desc->more;
894                 else
895                         rmap_head->val = (unsigned long)desc->more | 1;
896         mmu_free_pte_list_desc(desc);
897 }
898
899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900 {
901         struct pte_list_desc *desc;
902         struct pte_list_desc *prev_desc;
903         int i;
904
905         if (!rmap_head->val) {
906                 pr_err("%s: %p 0->BUG\n", __func__, spte);
907                 BUG();
908         } else if (!(rmap_head->val & 1)) {
909                 rmap_printk("%p 1->0\n", spte);
910                 if ((u64 *)rmap_head->val != spte) {
911                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
912                         BUG();
913                 }
914                 rmap_head->val = 0;
915         } else {
916                 rmap_printk("%p many->many\n", spte);
917                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918                 prev_desc = NULL;
919                 while (desc) {
920                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921                                 if (desc->sptes[i] == spte) {
922                                         pte_list_desc_remove_entry(rmap_head,
923                                                         desc, i, prev_desc);
924                                         return;
925                                 }
926                         }
927                         prev_desc = desc;
928                         desc = desc->more;
929                 }
930                 pr_err("%s: %p many->many\n", __func__, spte);
931                 BUG();
932         }
933 }
934
935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936 {
937         mmu_spte_clear_track_bits(sptep);
938         __pte_list_remove(sptep, rmap_head);
939 }
940
941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942                                            struct kvm_memory_slot *slot)
943 {
944         unsigned long idx;
945
946         idx = gfn_to_index(gfn, slot->base_gfn, level);
947         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 }
949
950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951                                          struct kvm_mmu_page *sp)
952 {
953         struct kvm_memslots *slots;
954         struct kvm_memory_slot *slot;
955
956         slots = kvm_memslots_for_spte_role(kvm, sp->role);
957         slot = __gfn_to_memslot(slots, gfn);
958         return __gfn_to_rmap(gfn, sp->role.level, slot);
959 }
960
961 static bool rmap_can_add(struct kvm_vcpu *vcpu)
962 {
963         struct kvm_mmu_memory_cache *mc;
964
965         mc = &vcpu->arch.mmu_pte_list_desc_cache;
966         return kvm_mmu_memory_cache_nr_free_objects(mc);
967 }
968
969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970 {
971         struct kvm_mmu_page *sp;
972         struct kvm_rmap_head *rmap_head;
973
974         sp = sptep_to_sp(spte);
975         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977         return pte_list_add(vcpu, spte, rmap_head);
978 }
979
980 static void rmap_remove(struct kvm *kvm, u64 *spte)
981 {
982         struct kvm_mmu_page *sp;
983         gfn_t gfn;
984         struct kvm_rmap_head *rmap_head;
985
986         sp = sptep_to_sp(spte);
987         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988         rmap_head = gfn_to_rmap(kvm, gfn, sp);
989         __pte_list_remove(spte, rmap_head);
990 }
991
992 /*
993  * Used by the following functions to iterate through the sptes linked by a
994  * rmap.  All fields are private and not assumed to be used outside.
995  */
996 struct rmap_iterator {
997         /* private fields */
998         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
999         int pos;                        /* index of the sptep */
1000 };
1001
1002 /*
1003  * Iteration must be started by this function.  This should also be used after
1004  * removing/dropping sptes from the rmap link because in such cases the
1005  * information in the iterator may not be valid.
1006  *
1007  * Returns sptep if found, NULL otherwise.
1008  */
1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010                            struct rmap_iterator *iter)
1011 {
1012         u64 *sptep;
1013
1014         if (!rmap_head->val)
1015                 return NULL;
1016
1017         if (!(rmap_head->val & 1)) {
1018                 iter->desc = NULL;
1019                 sptep = (u64 *)rmap_head->val;
1020                 goto out;
1021         }
1022
1023         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024         iter->pos = 0;
1025         sptep = iter->desc->sptes[iter->pos];
1026 out:
1027         BUG_ON(!is_shadow_present_pte(*sptep));
1028         return sptep;
1029 }
1030
1031 /*
1032  * Must be used with a valid iterator: e.g. after rmap_get_first().
1033  *
1034  * Returns sptep if found, NULL otherwise.
1035  */
1036 static u64 *rmap_get_next(struct rmap_iterator *iter)
1037 {
1038         u64 *sptep;
1039
1040         if (iter->desc) {
1041                 if (iter->pos < PTE_LIST_EXT - 1) {
1042                         ++iter->pos;
1043                         sptep = iter->desc->sptes[iter->pos];
1044                         if (sptep)
1045                                 goto out;
1046                 }
1047
1048                 iter->desc = iter->desc->more;
1049
1050                 if (iter->desc) {
1051                         iter->pos = 0;
1052                         /* desc->sptes[0] cannot be NULL */
1053                         sptep = iter->desc->sptes[iter->pos];
1054                         goto out;
1055                 }
1056         }
1057
1058         return NULL;
1059 out:
1060         BUG_ON(!is_shadow_present_pte(*sptep));
1061         return sptep;
1062 }
1063
1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1065         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1066              _spte_; _spte_ = rmap_get_next(_iter_))
1067
1068 static void drop_spte(struct kvm *kvm, u64 *sptep)
1069 {
1070         if (mmu_spte_clear_track_bits(sptep))
1071                 rmap_remove(kvm, sptep);
1072 }
1073
1074
1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077         if (is_large_pte(*sptep)) {
1078                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079                 drop_spte(kvm, sptep);
1080                 --kvm->stat.lpages;
1081                 return true;
1082         }
1083
1084         return false;
1085 }
1086
1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088 {
1089         if (__drop_large_spte(vcpu->kvm, sptep)) {
1090                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091
1092                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093                         KVM_PAGES_PER_HPAGE(sp->role.level));
1094         }
1095 }
1096
1097 /*
1098  * Write-protect on the specified @sptep, @pt_protect indicates whether
1099  * spte write-protection is caused by protecting shadow page table.
1100  *
1101  * Note: write protection is difference between dirty logging and spte
1102  * protection:
1103  * - for dirty logging, the spte can be set to writable at anytime if
1104  *   its dirty bitmap is properly set.
1105  * - for spte protection, the spte can be writable only after unsync-ing
1106  *   shadow page.
1107  *
1108  * Return true if tlb need be flushed.
1109  */
1110 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 {
1112         u64 spte = *sptep;
1113
1114         if (!is_writable_pte(spte) &&
1115               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116                 return false;
1117
1118         rmap_printk("spte %p %llx\n", sptep, *sptep);
1119
1120         if (pt_protect)
1121                 spte &= ~SPTE_MMU_WRITEABLE;
1122         spte = spte & ~PT_WRITABLE_MASK;
1123
1124         return mmu_spte_update(sptep, spte);
1125 }
1126
1127 static bool __rmap_write_protect(struct kvm *kvm,
1128                                  struct kvm_rmap_head *rmap_head,
1129                                  bool pt_protect)
1130 {
1131         u64 *sptep;
1132         struct rmap_iterator iter;
1133         bool flush = false;
1134
1135         for_each_rmap_spte(rmap_head, &iter, sptep)
1136                 flush |= spte_write_protect(sptep, pt_protect);
1137
1138         return flush;
1139 }
1140
1141 static bool spte_clear_dirty(u64 *sptep)
1142 {
1143         u64 spte = *sptep;
1144
1145         rmap_printk("spte %p %llx\n", sptep, *sptep);
1146
1147         MMU_WARN_ON(!spte_ad_enabled(spte));
1148         spte &= ~shadow_dirty_mask;
1149         return mmu_spte_update(sptep, spte);
1150 }
1151
1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 {
1154         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155                                                (unsigned long *)sptep);
1156         if (was_writable && !spte_ad_enabled(*sptep))
1157                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158
1159         return was_writable;
1160 }
1161
1162 /*
1163  * Gets the GFN ready for another round of dirty logging by clearing the
1164  *      - D bit on ad-enabled SPTEs, and
1165  *      - W bit on ad-disabled SPTEs.
1166  * Returns true iff any D or W bits were cleared.
1167  */
1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1169                                struct kvm_memory_slot *slot)
1170 {
1171         u64 *sptep;
1172         struct rmap_iterator iter;
1173         bool flush = false;
1174
1175         for_each_rmap_spte(rmap_head, &iter, sptep)
1176                 if (spte_ad_need_write_protect(*sptep))
1177                         flush |= spte_wrprot_for_clear_dirty(sptep);
1178                 else
1179                         flush |= spte_clear_dirty(sptep);
1180
1181         return flush;
1182 }
1183
1184 /**
1185  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1186  * @kvm: kvm instance
1187  * @slot: slot to protect
1188  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1189  * @mask: indicates which pages we should protect
1190  *
1191  * Used when we do not need to care about huge page mappings: e.g. during dirty
1192  * logging we do not have any such mappings.
1193  */
1194 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1195                                      struct kvm_memory_slot *slot,
1196                                      gfn_t gfn_offset, unsigned long mask)
1197 {
1198         struct kvm_rmap_head *rmap_head;
1199
1200         if (is_tdp_mmu_enabled(kvm))
1201                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1202                                 slot->base_gfn + gfn_offset, mask, true);
1203         while (mask) {
1204                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1205                                           PG_LEVEL_4K, slot);
1206                 __rmap_write_protect(kvm, rmap_head, false);
1207
1208                 /* clear the first set bit */
1209                 mask &= mask - 1;
1210         }
1211 }
1212
1213 /**
1214  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1215  * protect the page if the D-bit isn't supported.
1216  * @kvm: kvm instance
1217  * @slot: slot to clear D-bit
1218  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1219  * @mask: indicates which pages we should clear D-bit
1220  *
1221  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1222  */
1223 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1224                                          struct kvm_memory_slot *slot,
1225                                          gfn_t gfn_offset, unsigned long mask)
1226 {
1227         struct kvm_rmap_head *rmap_head;
1228
1229         if (is_tdp_mmu_enabled(kvm))
1230                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1231                                 slot->base_gfn + gfn_offset, mask, false);
1232         while (mask) {
1233                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1234                                           PG_LEVEL_4K, slot);
1235                 __rmap_clear_dirty(kvm, rmap_head, slot);
1236
1237                 /* clear the first set bit */
1238                 mask &= mask - 1;
1239         }
1240 }
1241
1242 /**
1243  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1244  * PT level pages.
1245  *
1246  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1247  * enable dirty logging for them.
1248  *
1249  * Used when we do not need to care about huge page mappings: e.g. during dirty
1250  * logging we do not have any such mappings.
1251  */
1252 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1253                                 struct kvm_memory_slot *slot,
1254                                 gfn_t gfn_offset, unsigned long mask)
1255 {
1256         if (kvm_x86_ops.cpu_dirty_log_size)
1257                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1258         else
1259                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1260 }
1261
1262 int kvm_cpu_dirty_log_size(void)
1263 {
1264         return kvm_x86_ops.cpu_dirty_log_size;
1265 }
1266
1267 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1268                                     struct kvm_memory_slot *slot, u64 gfn)
1269 {
1270         struct kvm_rmap_head *rmap_head;
1271         int i;
1272         bool write_protected = false;
1273
1274         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1275                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1276                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1277         }
1278
1279         if (is_tdp_mmu_enabled(kvm))
1280                 write_protected |=
1281                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1282
1283         return write_protected;
1284 }
1285
1286 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1287 {
1288         struct kvm_memory_slot *slot;
1289
1290         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1291         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1292 }
1293
1294 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1295                           struct kvm_memory_slot *slot)
1296 {
1297         u64 *sptep;
1298         struct rmap_iterator iter;
1299         bool flush = false;
1300
1301         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1302                 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1303
1304                 pte_list_remove(rmap_head, sptep);
1305                 flush = true;
1306         }
1307
1308         return flush;
1309 }
1310
1311 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1312                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1313                            unsigned long data)
1314 {
1315         return kvm_zap_rmapp(kvm, rmap_head, slot);
1316 }
1317
1318 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1319                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1320                              unsigned long data)
1321 {
1322         u64 *sptep;
1323         struct rmap_iterator iter;
1324         int need_flush = 0;
1325         u64 new_spte;
1326         pte_t *ptep = (pte_t *)data;
1327         kvm_pfn_t new_pfn;
1328
1329         WARN_ON(pte_huge(*ptep));
1330         new_pfn = pte_pfn(*ptep);
1331
1332 restart:
1333         for_each_rmap_spte(rmap_head, &iter, sptep) {
1334                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1335                             sptep, *sptep, gfn, level);
1336
1337                 need_flush = 1;
1338
1339                 if (pte_write(*ptep)) {
1340                         pte_list_remove(rmap_head, sptep);
1341                         goto restart;
1342                 } else {
1343                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1344                                         *sptep, new_pfn);
1345
1346                         mmu_spte_clear_track_bits(sptep);
1347                         mmu_spte_set(sptep, new_spte);
1348                 }
1349         }
1350
1351         if (need_flush && kvm_available_flush_tlb_with_range()) {
1352                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1353                 return 0;
1354         }
1355
1356         return need_flush;
1357 }
1358
1359 struct slot_rmap_walk_iterator {
1360         /* input fields. */
1361         struct kvm_memory_slot *slot;
1362         gfn_t start_gfn;
1363         gfn_t end_gfn;
1364         int start_level;
1365         int end_level;
1366
1367         /* output fields. */
1368         gfn_t gfn;
1369         struct kvm_rmap_head *rmap;
1370         int level;
1371
1372         /* private field. */
1373         struct kvm_rmap_head *end_rmap;
1374 };
1375
1376 static void
1377 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1378 {
1379         iterator->level = level;
1380         iterator->gfn = iterator->start_gfn;
1381         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1382         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1383                                            iterator->slot);
1384 }
1385
1386 static void
1387 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1388                     struct kvm_memory_slot *slot, int start_level,
1389                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1390 {
1391         iterator->slot = slot;
1392         iterator->start_level = start_level;
1393         iterator->end_level = end_level;
1394         iterator->start_gfn = start_gfn;
1395         iterator->end_gfn = end_gfn;
1396
1397         rmap_walk_init_level(iterator, iterator->start_level);
1398 }
1399
1400 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1401 {
1402         return !!iterator->rmap;
1403 }
1404
1405 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1406 {
1407         if (++iterator->rmap <= iterator->end_rmap) {
1408                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1409                 return;
1410         }
1411
1412         if (++iterator->level > iterator->end_level) {
1413                 iterator->rmap = NULL;
1414                 return;
1415         }
1416
1417         rmap_walk_init_level(iterator, iterator->level);
1418 }
1419
1420 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1421            _start_gfn, _end_gfn, _iter_)                                \
1422         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1423                                  _end_level_, _start_gfn, _end_gfn);    \
1424              slot_rmap_walk_okay(_iter_);                               \
1425              slot_rmap_walk_next(_iter_))
1426
1427 static __always_inline int
1428 kvm_handle_hva_range(struct kvm *kvm,
1429                      unsigned long start,
1430                      unsigned long end,
1431                      unsigned long data,
1432                      int (*handler)(struct kvm *kvm,
1433                                     struct kvm_rmap_head *rmap_head,
1434                                     struct kvm_memory_slot *slot,
1435                                     gfn_t gfn,
1436                                     int level,
1437                                     unsigned long data))
1438 {
1439         struct kvm_memslots *slots;
1440         struct kvm_memory_slot *memslot;
1441         struct slot_rmap_walk_iterator iterator;
1442         int ret = 0;
1443         int i;
1444
1445         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1446                 slots = __kvm_memslots(kvm, i);
1447                 kvm_for_each_memslot(memslot, slots) {
1448                         unsigned long hva_start, hva_end;
1449                         gfn_t gfn_start, gfn_end;
1450
1451                         hva_start = max(start, memslot->userspace_addr);
1452                         hva_end = min(end, memslot->userspace_addr +
1453                                       (memslot->npages << PAGE_SHIFT));
1454                         if (hva_start >= hva_end)
1455                                 continue;
1456                         /*
1457                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1458                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1459                          */
1460                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1461                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1462
1463                         for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1464                                                  KVM_MAX_HUGEPAGE_LEVEL,
1465                                                  gfn_start, gfn_end - 1,
1466                                                  &iterator)
1467                                 ret |= handler(kvm, iterator.rmap, memslot,
1468                                                iterator.gfn, iterator.level, data);
1469                 }
1470         }
1471
1472         return ret;
1473 }
1474
1475 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1476                           unsigned long data,
1477                           int (*handler)(struct kvm *kvm,
1478                                          struct kvm_rmap_head *rmap_head,
1479                                          struct kvm_memory_slot *slot,
1480                                          gfn_t gfn, int level,
1481                                          unsigned long data))
1482 {
1483         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1484 }
1485
1486 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1487                         unsigned flags)
1488 {
1489         int r;
1490
1491         r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1492
1493         if (is_tdp_mmu_enabled(kvm))
1494                 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1495
1496         return r;
1497 }
1498
1499 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1500 {
1501         int r;
1502
1503         r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1504
1505         if (is_tdp_mmu_enabled(kvm))
1506                 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1507
1508         return r;
1509 }
1510
1511 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1512                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1513                          unsigned long data)
1514 {
1515         u64 *sptep;
1516         struct rmap_iterator iter;
1517         int young = 0;
1518
1519         for_each_rmap_spte(rmap_head, &iter, sptep)
1520                 young |= mmu_spte_age(sptep);
1521
1522         trace_kvm_age_page(gfn, level, slot, young);
1523         return young;
1524 }
1525
1526 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1527                               struct kvm_memory_slot *slot, gfn_t gfn,
1528                               int level, unsigned long data)
1529 {
1530         u64 *sptep;
1531         struct rmap_iterator iter;
1532
1533         for_each_rmap_spte(rmap_head, &iter, sptep)
1534                 if (is_accessed_spte(*sptep))
1535                         return 1;
1536         return 0;
1537 }
1538
1539 #define RMAP_RECYCLE_THRESHOLD 1000
1540
1541 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1542 {
1543         struct kvm_rmap_head *rmap_head;
1544         struct kvm_mmu_page *sp;
1545
1546         sp = sptep_to_sp(spte);
1547
1548         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1549
1550         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1551         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1552                         KVM_PAGES_PER_HPAGE(sp->role.level));
1553 }
1554
1555 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1556 {
1557         int young = false;
1558
1559         young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1560         if (is_tdp_mmu_enabled(kvm))
1561                 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1562
1563         return young;
1564 }
1565
1566 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1567 {
1568         int young = false;
1569
1570         young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1571         if (is_tdp_mmu_enabled(kvm))
1572                 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1573
1574         return young;
1575 }
1576
1577 #ifdef MMU_DEBUG
1578 static int is_empty_shadow_page(u64 *spt)
1579 {
1580         u64 *pos;
1581         u64 *end;
1582
1583         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1584                 if (is_shadow_present_pte(*pos)) {
1585                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1586                                pos, *pos);
1587                         return 0;
1588                 }
1589         return 1;
1590 }
1591 #endif
1592
1593 /*
1594  * This value is the sum of all of the kvm instances's
1595  * kvm->arch.n_used_mmu_pages values.  We need a global,
1596  * aggregate version in order to make the slab shrinker
1597  * faster
1598  */
1599 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1600 {
1601         kvm->arch.n_used_mmu_pages += nr;
1602         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1603 }
1604
1605 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1606 {
1607         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1608         hlist_del(&sp->hash_link);
1609         list_del(&sp->link);
1610         free_page((unsigned long)sp->spt);
1611         if (!sp->role.direct)
1612                 free_page((unsigned long)sp->gfns);
1613         kmem_cache_free(mmu_page_header_cache, sp);
1614 }
1615
1616 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1617 {
1618         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1619 }
1620
1621 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1622                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1623 {
1624         if (!parent_pte)
1625                 return;
1626
1627         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1628 }
1629
1630 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1631                                        u64 *parent_pte)
1632 {
1633         __pte_list_remove(parent_pte, &sp->parent_ptes);
1634 }
1635
1636 static void drop_parent_pte(struct kvm_mmu_page *sp,
1637                             u64 *parent_pte)
1638 {
1639         mmu_page_remove_parent_pte(sp, parent_pte);
1640         mmu_spte_clear_no_track(parent_pte);
1641 }
1642
1643 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1644 {
1645         struct kvm_mmu_page *sp;
1646
1647         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1648         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1649         if (!direct)
1650                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1651         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1652
1653         /*
1654          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1655          * depends on valid pages being added to the head of the list.  See
1656          * comments in kvm_zap_obsolete_pages().
1657          */
1658         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1659         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1660         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1661         return sp;
1662 }
1663
1664 static void mark_unsync(u64 *spte);
1665 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1666 {
1667         u64 *sptep;
1668         struct rmap_iterator iter;
1669
1670         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1671                 mark_unsync(sptep);
1672         }
1673 }
1674
1675 static void mark_unsync(u64 *spte)
1676 {
1677         struct kvm_mmu_page *sp;
1678         unsigned int index;
1679
1680         sp = sptep_to_sp(spte);
1681         index = spte - sp->spt;
1682         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1683                 return;
1684         if (sp->unsync_children++)
1685                 return;
1686         kvm_mmu_mark_parents_unsync(sp);
1687 }
1688
1689 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1690                                struct kvm_mmu_page *sp)
1691 {
1692         return 0;
1693 }
1694
1695 #define KVM_PAGE_ARRAY_NR 16
1696
1697 struct kvm_mmu_pages {
1698         struct mmu_page_and_offset {
1699                 struct kvm_mmu_page *sp;
1700                 unsigned int idx;
1701         } page[KVM_PAGE_ARRAY_NR];
1702         unsigned int nr;
1703 };
1704
1705 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1706                          int idx)
1707 {
1708         int i;
1709
1710         if (sp->unsync)
1711                 for (i=0; i < pvec->nr; i++)
1712                         if (pvec->page[i].sp == sp)
1713                                 return 0;
1714
1715         pvec->page[pvec->nr].sp = sp;
1716         pvec->page[pvec->nr].idx = idx;
1717         pvec->nr++;
1718         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1719 }
1720
1721 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1722 {
1723         --sp->unsync_children;
1724         WARN_ON((int)sp->unsync_children < 0);
1725         __clear_bit(idx, sp->unsync_child_bitmap);
1726 }
1727
1728 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1729                            struct kvm_mmu_pages *pvec)
1730 {
1731         int i, ret, nr_unsync_leaf = 0;
1732
1733         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1734                 struct kvm_mmu_page *child;
1735                 u64 ent = sp->spt[i];
1736
1737                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1738                         clear_unsync_child_bit(sp, i);
1739                         continue;
1740                 }
1741
1742                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1743
1744                 if (child->unsync_children) {
1745                         if (mmu_pages_add(pvec, child, i))
1746                                 return -ENOSPC;
1747
1748                         ret = __mmu_unsync_walk(child, pvec);
1749                         if (!ret) {
1750                                 clear_unsync_child_bit(sp, i);
1751                                 continue;
1752                         } else if (ret > 0) {
1753                                 nr_unsync_leaf += ret;
1754                         } else
1755                                 return ret;
1756                 } else if (child->unsync) {
1757                         nr_unsync_leaf++;
1758                         if (mmu_pages_add(pvec, child, i))
1759                                 return -ENOSPC;
1760                 } else
1761                         clear_unsync_child_bit(sp, i);
1762         }
1763
1764         return nr_unsync_leaf;
1765 }
1766
1767 #define INVALID_INDEX (-1)
1768
1769 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1770                            struct kvm_mmu_pages *pvec)
1771 {
1772         pvec->nr = 0;
1773         if (!sp->unsync_children)
1774                 return 0;
1775
1776         mmu_pages_add(pvec, sp, INVALID_INDEX);
1777         return __mmu_unsync_walk(sp, pvec);
1778 }
1779
1780 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1781 {
1782         WARN_ON(!sp->unsync);
1783         trace_kvm_mmu_sync_page(sp);
1784         sp->unsync = 0;
1785         --kvm->stat.mmu_unsync;
1786 }
1787
1788 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1789                                      struct list_head *invalid_list);
1790 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1791                                     struct list_head *invalid_list);
1792
1793 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1794         hlist_for_each_entry(_sp, _list, hash_link)                     \
1795                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1796                 } else
1797
1798 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1799         for_each_valid_sp(_kvm, _sp,                                    \
1800           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1801                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1802
1803 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1804 {
1805         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1806 }
1807
1808 /* @sp->gfn should be write-protected at the call site */
1809 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1810                             struct list_head *invalid_list)
1811 {
1812         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1813             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1814                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1815                 return false;
1816         }
1817
1818         return true;
1819 }
1820
1821 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1822                                         struct list_head *invalid_list,
1823                                         bool remote_flush)
1824 {
1825         if (!remote_flush && list_empty(invalid_list))
1826                 return false;
1827
1828         if (!list_empty(invalid_list))
1829                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1830         else
1831                 kvm_flush_remote_tlbs(kvm);
1832         return true;
1833 }
1834
1835 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1836                                  struct list_head *invalid_list,
1837                                  bool remote_flush, bool local_flush)
1838 {
1839         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1840                 return;
1841
1842         if (local_flush)
1843                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1844 }
1845
1846 #ifdef CONFIG_KVM_MMU_AUDIT
1847 #include "mmu_audit.c"
1848 #else
1849 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1850 static void mmu_audit_disable(void) { }
1851 #endif
1852
1853 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1854 {
1855         return sp->role.invalid ||
1856                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1857 }
1858
1859 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1860                          struct list_head *invalid_list)
1861 {
1862         kvm_unlink_unsync_page(vcpu->kvm, sp);
1863         return __kvm_sync_page(vcpu, sp, invalid_list);
1864 }
1865
1866 /* @gfn should be write-protected at the call site */
1867 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1868                            struct list_head *invalid_list)
1869 {
1870         struct kvm_mmu_page *s;
1871         bool ret = false;
1872
1873         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1874                 if (!s->unsync)
1875                         continue;
1876
1877                 WARN_ON(s->role.level != PG_LEVEL_4K);
1878                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1879         }
1880
1881         return ret;
1882 }
1883
1884 struct mmu_page_path {
1885         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1886         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1887 };
1888
1889 #define for_each_sp(pvec, sp, parents, i)                       \
1890                 for (i = mmu_pages_first(&pvec, &parents);      \
1891                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1892                         i = mmu_pages_next(&pvec, &parents, i))
1893
1894 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1895                           struct mmu_page_path *parents,
1896                           int i)
1897 {
1898         int n;
1899
1900         for (n = i+1; n < pvec->nr; n++) {
1901                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1902                 unsigned idx = pvec->page[n].idx;
1903                 int level = sp->role.level;
1904
1905                 parents->idx[level-1] = idx;
1906                 if (level == PG_LEVEL_4K)
1907                         break;
1908
1909                 parents->parent[level-2] = sp;
1910         }
1911
1912         return n;
1913 }
1914
1915 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1916                            struct mmu_page_path *parents)
1917 {
1918         struct kvm_mmu_page *sp;
1919         int level;
1920
1921         if (pvec->nr == 0)
1922                 return 0;
1923
1924         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1925
1926         sp = pvec->page[0].sp;
1927         level = sp->role.level;
1928         WARN_ON(level == PG_LEVEL_4K);
1929
1930         parents->parent[level-2] = sp;
1931
1932         /* Also set up a sentinel.  Further entries in pvec are all
1933          * children of sp, so this element is never overwritten.
1934          */
1935         parents->parent[level-1] = NULL;
1936         return mmu_pages_next(pvec, parents, 0);
1937 }
1938
1939 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1940 {
1941         struct kvm_mmu_page *sp;
1942         unsigned int level = 0;
1943
1944         do {
1945                 unsigned int idx = parents->idx[level];
1946                 sp = parents->parent[level];
1947                 if (!sp)
1948                         return;
1949
1950                 WARN_ON(idx == INVALID_INDEX);
1951                 clear_unsync_child_bit(sp, idx);
1952                 level++;
1953         } while (!sp->unsync_children);
1954 }
1955
1956 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1957                               struct kvm_mmu_page *parent)
1958 {
1959         int i;
1960         struct kvm_mmu_page *sp;
1961         struct mmu_page_path parents;
1962         struct kvm_mmu_pages pages;
1963         LIST_HEAD(invalid_list);
1964         bool flush = false;
1965
1966         while (mmu_unsync_walk(parent, &pages)) {
1967                 bool protected = false;
1968
1969                 for_each_sp(pages, sp, parents, i)
1970                         protected |= rmap_write_protect(vcpu, sp->gfn);
1971
1972                 if (protected) {
1973                         kvm_flush_remote_tlbs(vcpu->kvm);
1974                         flush = false;
1975                 }
1976
1977                 for_each_sp(pages, sp, parents, i) {
1978                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1979                         mmu_pages_clear_parents(&parents);
1980                 }
1981                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1982                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1983                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1984                         flush = false;
1985                 }
1986         }
1987
1988         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1989 }
1990
1991 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1992 {
1993         atomic_set(&sp->write_flooding_count,  0);
1994 }
1995
1996 static void clear_sp_write_flooding_count(u64 *spte)
1997 {
1998         __clear_sp_write_flooding_count(sptep_to_sp(spte));
1999 }
2000
2001 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2002                                              gfn_t gfn,
2003                                              gva_t gaddr,
2004                                              unsigned level,
2005                                              int direct,
2006                                              unsigned int access)
2007 {
2008         bool direct_mmu = vcpu->arch.mmu->direct_map;
2009         union kvm_mmu_page_role role;
2010         struct hlist_head *sp_list;
2011         unsigned quadrant;
2012         struct kvm_mmu_page *sp;
2013         bool need_sync = false;
2014         bool flush = false;
2015         int collisions = 0;
2016         LIST_HEAD(invalid_list);
2017
2018         role = vcpu->arch.mmu->mmu_role.base;
2019         role.level = level;
2020         role.direct = direct;
2021         if (role.direct)
2022                 role.gpte_is_8_bytes = true;
2023         role.access = access;
2024         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2025                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2026                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2027                 role.quadrant = quadrant;
2028         }
2029
2030         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2031         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2032                 if (sp->gfn != gfn) {
2033                         collisions++;
2034                         continue;
2035                 }
2036
2037                 if (!need_sync && sp->unsync)
2038                         need_sync = true;
2039
2040                 if (sp->role.word != role.word)
2041                         continue;
2042
2043                 if (direct_mmu)
2044                         goto trace_get_page;
2045
2046                 if (sp->unsync) {
2047                         /* The page is good, but __kvm_sync_page might still end
2048                          * up zapping it.  If so, break in order to rebuild it.
2049                          */
2050                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2051                                 break;
2052
2053                         WARN_ON(!list_empty(&invalid_list));
2054                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2055                 }
2056
2057                 if (sp->unsync_children)
2058                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2059
2060                 __clear_sp_write_flooding_count(sp);
2061
2062 trace_get_page:
2063                 trace_kvm_mmu_get_page(sp, false);
2064                 goto out;
2065         }
2066
2067         ++vcpu->kvm->stat.mmu_cache_miss;
2068
2069         sp = kvm_mmu_alloc_page(vcpu, direct);
2070
2071         sp->gfn = gfn;
2072         sp->role = role;
2073         hlist_add_head(&sp->hash_link, sp_list);
2074         if (!direct) {
2075                 /*
2076                  * we should do write protection before syncing pages
2077                  * otherwise the content of the synced shadow page may
2078                  * be inconsistent with guest page table.
2079                  */
2080                 account_shadowed(vcpu->kvm, sp);
2081                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2082                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2083
2084                 if (level > PG_LEVEL_4K && need_sync)
2085                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2086         }
2087         trace_kvm_mmu_get_page(sp, true);
2088
2089         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2090 out:
2091         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2092                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2093         return sp;
2094 }
2095
2096 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2097                                         struct kvm_vcpu *vcpu, hpa_t root,
2098                                         u64 addr)
2099 {
2100         iterator->addr = addr;
2101         iterator->shadow_addr = root;
2102         iterator->level = vcpu->arch.mmu->shadow_root_level;
2103
2104         if (iterator->level == PT64_ROOT_4LEVEL &&
2105             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2106             !vcpu->arch.mmu->direct_map)
2107                 --iterator->level;
2108
2109         if (iterator->level == PT32E_ROOT_LEVEL) {
2110                 /*
2111                  * prev_root is currently only used for 64-bit hosts. So only
2112                  * the active root_hpa is valid here.
2113                  */
2114                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2115
2116                 iterator->shadow_addr
2117                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2118                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2119                 --iterator->level;
2120                 if (!iterator->shadow_addr)
2121                         iterator->level = 0;
2122         }
2123 }
2124
2125 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2126                              struct kvm_vcpu *vcpu, u64 addr)
2127 {
2128         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2129                                     addr);
2130 }
2131
2132 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2133 {
2134         if (iterator->level < PG_LEVEL_4K)
2135                 return false;
2136
2137         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2138         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2139         return true;
2140 }
2141
2142 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2143                                u64 spte)
2144 {
2145         if (is_last_spte(spte, iterator->level)) {
2146                 iterator->level = 0;
2147                 return;
2148         }
2149
2150         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2151         --iterator->level;
2152 }
2153
2154 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2155 {
2156         __shadow_walk_next(iterator, *iterator->sptep);
2157 }
2158
2159 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2160                              struct kvm_mmu_page *sp)
2161 {
2162         u64 spte;
2163
2164         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2165
2166         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2167
2168         mmu_spte_set(sptep, spte);
2169
2170         mmu_page_add_parent_pte(vcpu, sp, sptep);
2171
2172         if (sp->unsync_children || sp->unsync)
2173                 mark_unsync(sptep);
2174 }
2175
2176 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2177                                    unsigned direct_access)
2178 {
2179         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2180                 struct kvm_mmu_page *child;
2181
2182                 /*
2183                  * For the direct sp, if the guest pte's dirty bit
2184                  * changed form clean to dirty, it will corrupt the
2185                  * sp's access: allow writable in the read-only sp,
2186                  * so we should update the spte at this point to get
2187                  * a new sp with the correct access.
2188                  */
2189                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2190                 if (child->role.access == direct_access)
2191                         return;
2192
2193                 drop_parent_pte(child, sptep);
2194                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2195         }
2196 }
2197
2198 /* Returns the number of zapped non-leaf child shadow pages. */
2199 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2200                             u64 *spte, struct list_head *invalid_list)
2201 {
2202         u64 pte;
2203         struct kvm_mmu_page *child;
2204
2205         pte = *spte;
2206         if (is_shadow_present_pte(pte)) {
2207                 if (is_last_spte(pte, sp->role.level)) {
2208                         drop_spte(kvm, spte);
2209                         if (is_large_pte(pte))
2210                                 --kvm->stat.lpages;
2211                 } else {
2212                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2213                         drop_parent_pte(child, spte);
2214
2215                         /*
2216                          * Recursively zap nested TDP SPs, parentless SPs are
2217                          * unlikely to be used again in the near future.  This
2218                          * avoids retaining a large number of stale nested SPs.
2219                          */
2220                         if (tdp_enabled && invalid_list &&
2221                             child->role.guest_mode && !child->parent_ptes.val)
2222                                 return kvm_mmu_prepare_zap_page(kvm, child,
2223                                                                 invalid_list);
2224                 }
2225         } else if (is_mmio_spte(pte)) {
2226                 mmu_spte_clear_no_track(spte);
2227         }
2228         return 0;
2229 }
2230
2231 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2232                                         struct kvm_mmu_page *sp,
2233                                         struct list_head *invalid_list)
2234 {
2235         int zapped = 0;
2236         unsigned i;
2237
2238         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2239                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2240
2241         return zapped;
2242 }
2243
2244 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2245 {
2246         u64 *sptep;
2247         struct rmap_iterator iter;
2248
2249         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2250                 drop_parent_pte(sp, sptep);
2251 }
2252
2253 static int mmu_zap_unsync_children(struct kvm *kvm,
2254                                    struct kvm_mmu_page *parent,
2255                                    struct list_head *invalid_list)
2256 {
2257         int i, zapped = 0;
2258         struct mmu_page_path parents;
2259         struct kvm_mmu_pages pages;
2260
2261         if (parent->role.level == PG_LEVEL_4K)
2262                 return 0;
2263
2264         while (mmu_unsync_walk(parent, &pages)) {
2265                 struct kvm_mmu_page *sp;
2266
2267                 for_each_sp(pages, sp, parents, i) {
2268                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2269                         mmu_pages_clear_parents(&parents);
2270                         zapped++;
2271                 }
2272         }
2273
2274         return zapped;
2275 }
2276
2277 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2278                                        struct kvm_mmu_page *sp,
2279                                        struct list_head *invalid_list,
2280                                        int *nr_zapped)
2281 {
2282         bool list_unstable;
2283
2284         trace_kvm_mmu_prepare_zap_page(sp);
2285         ++kvm->stat.mmu_shadow_zapped;
2286         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2287         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2288         kvm_mmu_unlink_parents(kvm, sp);
2289
2290         /* Zapping children means active_mmu_pages has become unstable. */
2291         list_unstable = *nr_zapped;
2292
2293         if (!sp->role.invalid && !sp->role.direct)
2294                 unaccount_shadowed(kvm, sp);
2295
2296         if (sp->unsync)
2297                 kvm_unlink_unsync_page(kvm, sp);
2298         if (!sp->root_count) {
2299                 /* Count self */
2300                 (*nr_zapped)++;
2301
2302                 /*
2303                  * Already invalid pages (previously active roots) are not on
2304                  * the active page list.  See list_del() in the "else" case of
2305                  * !sp->root_count.
2306                  */
2307                 if (sp->role.invalid)
2308                         list_add(&sp->link, invalid_list);
2309                 else
2310                         list_move(&sp->link, invalid_list);
2311                 kvm_mod_used_mmu_pages(kvm, -1);
2312         } else {
2313                 /*
2314                  * Remove the active root from the active page list, the root
2315                  * will be explicitly freed when the root_count hits zero.
2316                  */
2317                 list_del(&sp->link);
2318
2319                 /*
2320                  * Obsolete pages cannot be used on any vCPUs, see the comment
2321                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2322                  * treats invalid shadow pages as being obsolete.
2323                  */
2324                 if (!is_obsolete_sp(kvm, sp))
2325                         kvm_reload_remote_mmus(kvm);
2326         }
2327
2328         if (sp->lpage_disallowed)
2329                 unaccount_huge_nx_page(kvm, sp);
2330
2331         sp->role.invalid = 1;
2332         return list_unstable;
2333 }
2334
2335 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2336                                      struct list_head *invalid_list)
2337 {
2338         int nr_zapped;
2339
2340         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2341         return nr_zapped;
2342 }
2343
2344 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2345                                     struct list_head *invalid_list)
2346 {
2347         struct kvm_mmu_page *sp, *nsp;
2348
2349         if (list_empty(invalid_list))
2350                 return;
2351
2352         /*
2353          * We need to make sure everyone sees our modifications to
2354          * the page tables and see changes to vcpu->mode here. The barrier
2355          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2356          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2357          *
2358          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2359          * guest mode and/or lockless shadow page table walks.
2360          */
2361         kvm_flush_remote_tlbs(kvm);
2362
2363         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2364                 WARN_ON(!sp->role.invalid || sp->root_count);
2365                 kvm_mmu_free_page(sp);
2366         }
2367 }
2368
2369 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2370                                                   unsigned long nr_to_zap)
2371 {
2372         unsigned long total_zapped = 0;
2373         struct kvm_mmu_page *sp, *tmp;
2374         LIST_HEAD(invalid_list);
2375         bool unstable;
2376         int nr_zapped;
2377
2378         if (list_empty(&kvm->arch.active_mmu_pages))
2379                 return 0;
2380
2381 restart:
2382         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2383                 /*
2384                  * Don't zap active root pages, the page itself can't be freed
2385                  * and zapping it will just force vCPUs to realloc and reload.
2386                  */
2387                 if (sp->root_count)
2388                         continue;
2389
2390                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2391                                                       &nr_zapped);
2392                 total_zapped += nr_zapped;
2393                 if (total_zapped >= nr_to_zap)
2394                         break;
2395
2396                 if (unstable)
2397                         goto restart;
2398         }
2399
2400         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2401
2402         kvm->stat.mmu_recycled += total_zapped;
2403         return total_zapped;
2404 }
2405
2406 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2407 {
2408         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2409                 return kvm->arch.n_max_mmu_pages -
2410                         kvm->arch.n_used_mmu_pages;
2411
2412         return 0;
2413 }
2414
2415 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2416 {
2417         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2418
2419         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2420                 return 0;
2421
2422         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2423
2424         if (!kvm_mmu_available_pages(vcpu->kvm))
2425                 return -ENOSPC;
2426         return 0;
2427 }
2428
2429 /*
2430  * Changing the number of mmu pages allocated to the vm
2431  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2432  */
2433 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2434 {
2435         write_lock(&kvm->mmu_lock);
2436
2437         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2438                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2439                                                   goal_nr_mmu_pages);
2440
2441                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2442         }
2443
2444         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2445
2446         write_unlock(&kvm->mmu_lock);
2447 }
2448
2449 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2450 {
2451         struct kvm_mmu_page *sp;
2452         LIST_HEAD(invalid_list);
2453         int r;
2454
2455         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2456         r = 0;
2457         write_lock(&kvm->mmu_lock);
2458         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2459                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2460                          sp->role.word);
2461                 r = 1;
2462                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2463         }
2464         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2465         write_unlock(&kvm->mmu_lock);
2466
2467         return r;
2468 }
2469
2470 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2471 {
2472         gpa_t gpa;
2473         int r;
2474
2475         if (vcpu->arch.mmu->direct_map)
2476                 return 0;
2477
2478         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2479
2480         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2481
2482         return r;
2483 }
2484
2485 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2486 {
2487         trace_kvm_mmu_unsync_page(sp);
2488         ++vcpu->kvm->stat.mmu_unsync;
2489         sp->unsync = 1;
2490
2491         kvm_mmu_mark_parents_unsync(sp);
2492 }
2493
2494 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2495                             bool can_unsync)
2496 {
2497         struct kvm_mmu_page *sp;
2498
2499         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2500                 return true;
2501
2502         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2503                 if (!can_unsync)
2504                         return true;
2505
2506                 if (sp->unsync)
2507                         continue;
2508
2509                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2510                 kvm_unsync_page(vcpu, sp);
2511         }
2512
2513         /*
2514          * We need to ensure that the marking of unsync pages is visible
2515          * before the SPTE is updated to allow writes because
2516          * kvm_mmu_sync_roots() checks the unsync flags without holding
2517          * the MMU lock and so can race with this. If the SPTE was updated
2518          * before the page had been marked as unsync-ed, something like the
2519          * following could happen:
2520          *
2521          * CPU 1                    CPU 2
2522          * ---------------------------------------------------------------------
2523          * 1.2 Host updates SPTE
2524          *     to be writable
2525          *                      2.1 Guest writes a GPTE for GVA X.
2526          *                          (GPTE being in the guest page table shadowed
2527          *                           by the SP from CPU 1.)
2528          *                          This reads SPTE during the page table walk.
2529          *                          Since SPTE.W is read as 1, there is no
2530          *                          fault.
2531          *
2532          *                      2.2 Guest issues TLB flush.
2533          *                          That causes a VM Exit.
2534          *
2535          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2536          *                          Since it is false, so it just returns.
2537          *
2538          *                      2.4 Guest accesses GVA X.
2539          *                          Since the mapping in the SP was not updated,
2540          *                          so the old mapping for GVA X incorrectly
2541          *                          gets used.
2542          * 1.1 Host marks SP
2543          *     as unsync
2544          *     (sp->unsync = true)
2545          *
2546          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2547          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2548          * pairs with this write barrier.
2549          */
2550         smp_wmb();
2551
2552         return false;
2553 }
2554
2555 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2556                     unsigned int pte_access, int level,
2557                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2558                     bool can_unsync, bool host_writable)
2559 {
2560         u64 spte;
2561         struct kvm_mmu_page *sp;
2562         int ret;
2563
2564         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2565                 return 0;
2566
2567         sp = sptep_to_sp(sptep);
2568
2569         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2570                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2571
2572         if (spte & PT_WRITABLE_MASK)
2573                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2574
2575         if (*sptep == spte)
2576                 ret |= SET_SPTE_SPURIOUS;
2577         else if (mmu_spte_update(sptep, spte))
2578                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2579         return ret;
2580 }
2581
2582 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2583                         unsigned int pte_access, bool write_fault, int level,
2584                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2585                         bool host_writable)
2586 {
2587         int was_rmapped = 0;
2588         int rmap_count;
2589         int set_spte_ret;
2590         int ret = RET_PF_FIXED;
2591         bool flush = false;
2592
2593         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2594                  *sptep, write_fault, gfn);
2595
2596         if (is_shadow_present_pte(*sptep)) {
2597                 /*
2598                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2599                  * the parent of the now unreachable PTE.
2600                  */
2601                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2602                         struct kvm_mmu_page *child;
2603                         u64 pte = *sptep;
2604
2605                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2606                         drop_parent_pte(child, sptep);
2607                         flush = true;
2608                 } else if (pfn != spte_to_pfn(*sptep)) {
2609                         pgprintk("hfn old %llx new %llx\n",
2610                                  spte_to_pfn(*sptep), pfn);
2611                         drop_spte(vcpu->kvm, sptep);
2612                         flush = true;
2613                 } else
2614                         was_rmapped = 1;
2615         }
2616
2617         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2618                                 speculative, true, host_writable);
2619         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2620                 if (write_fault)
2621                         ret = RET_PF_EMULATE;
2622                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2623         }
2624
2625         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2626                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2627                                 KVM_PAGES_PER_HPAGE(level));
2628
2629         if (unlikely(is_mmio_spte(*sptep)))
2630                 ret = RET_PF_EMULATE;
2631
2632         /*
2633          * The fault is fully spurious if and only if the new SPTE and old SPTE
2634          * are identical, and emulation is not required.
2635          */
2636         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2637                 WARN_ON_ONCE(!was_rmapped);
2638                 return RET_PF_SPURIOUS;
2639         }
2640
2641         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2642         trace_kvm_mmu_set_spte(level, gfn, sptep);
2643         if (!was_rmapped && is_large_pte(*sptep))
2644                 ++vcpu->kvm->stat.lpages;
2645
2646         if (is_shadow_present_pte(*sptep)) {
2647                 if (!was_rmapped) {
2648                         rmap_count = rmap_add(vcpu, sptep, gfn);
2649                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2650                                 rmap_recycle(vcpu, sptep, gfn);
2651                 }
2652         }
2653
2654         return ret;
2655 }
2656
2657 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2658                                      bool no_dirty_log)
2659 {
2660         struct kvm_memory_slot *slot;
2661
2662         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2663         if (!slot)
2664                 return KVM_PFN_ERR_FAULT;
2665
2666         return gfn_to_pfn_memslot_atomic(slot, gfn);
2667 }
2668
2669 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2670                                     struct kvm_mmu_page *sp,
2671                                     u64 *start, u64 *end)
2672 {
2673         struct page *pages[PTE_PREFETCH_NUM];
2674         struct kvm_memory_slot *slot;
2675         unsigned int access = sp->role.access;
2676         int i, ret;
2677         gfn_t gfn;
2678
2679         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2680         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2681         if (!slot)
2682                 return -1;
2683
2684         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2685         if (ret <= 0)
2686                 return -1;
2687
2688         for (i = 0; i < ret; i++, gfn++, start++) {
2689                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2690                              page_to_pfn(pages[i]), true, true);
2691                 put_page(pages[i]);
2692         }
2693
2694         return 0;
2695 }
2696
2697 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2698                                   struct kvm_mmu_page *sp, u64 *sptep)
2699 {
2700         u64 *spte, *start = NULL;
2701         int i;
2702
2703         WARN_ON(!sp->role.direct);
2704
2705         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2706         spte = sp->spt + i;
2707
2708         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2709                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2710                         if (!start)
2711                                 continue;
2712                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2713                                 break;
2714                         start = NULL;
2715                 } else if (!start)
2716                         start = spte;
2717         }
2718 }
2719
2720 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2721 {
2722         struct kvm_mmu_page *sp;
2723
2724         sp = sptep_to_sp(sptep);
2725
2726         /*
2727          * Without accessed bits, there's no way to distinguish between
2728          * actually accessed translations and prefetched, so disable pte
2729          * prefetch if accessed bits aren't available.
2730          */
2731         if (sp_ad_disabled(sp))
2732                 return;
2733
2734         if (sp->role.level > PG_LEVEL_4K)
2735                 return;
2736
2737         /*
2738          * If addresses are being invalidated, skip prefetching to avoid
2739          * accidentally prefetching those addresses.
2740          */
2741         if (unlikely(vcpu->kvm->mmu_notifier_count))
2742                 return;
2743
2744         __direct_pte_prefetch(vcpu, sp, sptep);
2745 }
2746
2747 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2748                                   struct kvm_memory_slot *slot)
2749 {
2750         unsigned long hva;
2751         pte_t *pte;
2752         int level;
2753
2754         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2755                 return PG_LEVEL_4K;
2756
2757         /*
2758          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2759          * is not solely for performance, it's also necessary to avoid the
2760          * "writable" check in __gfn_to_hva_many(), which will always fail on
2761          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2762          * page fault steps have already verified the guest isn't writing a
2763          * read-only memslot.
2764          */
2765         hva = __gfn_to_hva_memslot(slot, gfn);
2766
2767         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2768         if (unlikely(!pte))
2769                 return PG_LEVEL_4K;
2770
2771         return level;
2772 }
2773
2774 int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot,
2775                               gfn_t gfn, kvm_pfn_t pfn, int max_level)
2776 {
2777         struct kvm_lpage_info *linfo;
2778
2779         max_level = min(max_level, max_huge_page_level);
2780         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2781                 linfo = lpage_info_slot(gfn, slot, max_level);
2782                 if (!linfo->disallow_lpage)
2783                         break;
2784         }
2785
2786         if (max_level == PG_LEVEL_4K)
2787                 return PG_LEVEL_4K;
2788
2789         return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2790 }
2791
2792 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2793                             int max_level, kvm_pfn_t *pfnp,
2794                             bool huge_page_disallowed, int *req_level)
2795 {
2796         struct kvm_memory_slot *slot;
2797         kvm_pfn_t pfn = *pfnp;
2798         kvm_pfn_t mask;
2799         int level;
2800
2801         *req_level = PG_LEVEL_4K;
2802
2803         if (unlikely(max_level == PG_LEVEL_4K))
2804                 return PG_LEVEL_4K;
2805
2806         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2807                 return PG_LEVEL_4K;
2808
2809         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2810         if (!slot)
2811                 return PG_LEVEL_4K;
2812
2813         level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2814         if (level == PG_LEVEL_4K)
2815                 return level;
2816
2817         *req_level = level = min(level, max_level);
2818
2819         /*
2820          * Enforce the iTLB multihit workaround after capturing the requested
2821          * level, which will be used to do precise, accurate accounting.
2822          */
2823         if (huge_page_disallowed)
2824                 return PG_LEVEL_4K;
2825
2826         /*
2827          * mmu_notifier_retry() was successful and mmu_lock is held, so
2828          * the pmd can't be split from under us.
2829          */
2830         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2831         VM_BUG_ON((gfn & mask) != (pfn & mask));
2832         *pfnp = pfn & ~mask;
2833
2834         return level;
2835 }
2836
2837 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2838                                 kvm_pfn_t *pfnp, int *goal_levelp)
2839 {
2840         int level = *goal_levelp;
2841
2842         if (cur_level == level && level > PG_LEVEL_4K &&
2843             is_shadow_present_pte(spte) &&
2844             !is_large_pte(spte)) {
2845                 /*
2846                  * A small SPTE exists for this pfn, but FNAME(fetch)
2847                  * and __direct_map would like to create a large PTE
2848                  * instead: just force them to go down another level,
2849                  * patching back for them into pfn the next 9 bits of
2850                  * the address.
2851                  */
2852                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2853                                 KVM_PAGES_PER_HPAGE(level - 1);
2854                 *pfnp |= gfn & page_mask;
2855                 (*goal_levelp)--;
2856         }
2857 }
2858
2859 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2860                         int map_writable, int max_level, kvm_pfn_t pfn,
2861                         bool prefault, bool is_tdp)
2862 {
2863         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2864         bool write = error_code & PFERR_WRITE_MASK;
2865         bool exec = error_code & PFERR_FETCH_MASK;
2866         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2867         struct kvm_shadow_walk_iterator it;
2868         struct kvm_mmu_page *sp;
2869         int level, req_level, ret;
2870         gfn_t gfn = gpa >> PAGE_SHIFT;
2871         gfn_t base_gfn = gfn;
2872
2873         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2874                 return RET_PF_RETRY;
2875
2876         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2877                                         huge_page_disallowed, &req_level);
2878
2879         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2880         for_each_shadow_entry(vcpu, gpa, it) {
2881                 /*
2882                  * We cannot overwrite existing page tables with an NX
2883                  * large page, as the leaf could be executable.
2884                  */
2885                 if (nx_huge_page_workaround_enabled)
2886                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2887                                                    &pfn, &level);
2888
2889                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2890                 if (it.level == level)
2891                         break;
2892
2893                 drop_large_spte(vcpu, it.sptep);
2894                 if (!is_shadow_present_pte(*it.sptep)) {
2895                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2896                                               it.level - 1, true, ACC_ALL);
2897
2898                         link_shadow_page(vcpu, it.sptep, sp);
2899                         if (is_tdp && huge_page_disallowed &&
2900                             req_level >= it.level)
2901                                 account_huge_nx_page(vcpu->kvm, sp);
2902                 }
2903         }
2904
2905         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2906                            write, level, base_gfn, pfn, prefault,
2907                            map_writable);
2908         if (ret == RET_PF_SPURIOUS)
2909                 return ret;
2910
2911         direct_pte_prefetch(vcpu, it.sptep);
2912         ++vcpu->stat.pf_fixed;
2913         return ret;
2914 }
2915
2916 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2917 {
2918         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2919 }
2920
2921 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2922 {
2923         /*
2924          * Do not cache the mmio info caused by writing the readonly gfn
2925          * into the spte otherwise read access on readonly gfn also can
2926          * caused mmio page fault and treat it as mmio access.
2927          */
2928         if (pfn == KVM_PFN_ERR_RO_FAULT)
2929                 return RET_PF_EMULATE;
2930
2931         if (pfn == KVM_PFN_ERR_HWPOISON) {
2932                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2933                 return RET_PF_RETRY;
2934         }
2935
2936         return -EFAULT;
2937 }
2938
2939 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2940                                 kvm_pfn_t pfn, unsigned int access,
2941                                 int *ret_val)
2942 {
2943         /* The pfn is invalid, report the error! */
2944         if (unlikely(is_error_pfn(pfn))) {
2945                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2946                 return true;
2947         }
2948
2949         if (unlikely(is_noslot_pfn(pfn)))
2950                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2951                                      access & shadow_mmio_access_mask);
2952
2953         return false;
2954 }
2955
2956 static bool page_fault_can_be_fast(u32 error_code)
2957 {
2958         /*
2959          * Do not fix the mmio spte with invalid generation number which
2960          * need to be updated by slow page fault path.
2961          */
2962         if (unlikely(error_code & PFERR_RSVD_MASK))
2963                 return false;
2964
2965         /* See if the page fault is due to an NX violation */
2966         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2967                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2968                 return false;
2969
2970         /*
2971          * #PF can be fast if:
2972          * 1. The shadow page table entry is not present, which could mean that
2973          *    the fault is potentially caused by access tracking (if enabled).
2974          * 2. The shadow page table entry is present and the fault
2975          *    is caused by write-protect, that means we just need change the W
2976          *    bit of the spte which can be done out of mmu-lock.
2977          *
2978          * However, if access tracking is disabled we know that a non-present
2979          * page must be a genuine page fault where we have to create a new SPTE.
2980          * So, if access tracking is disabled, we return true only for write
2981          * accesses to a present page.
2982          */
2983
2984         return shadow_acc_track_mask != 0 ||
2985                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2986                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2987 }
2988
2989 /*
2990  * Returns true if the SPTE was fixed successfully. Otherwise,
2991  * someone else modified the SPTE from its original value.
2992  */
2993 static bool
2994 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2995                         u64 *sptep, u64 old_spte, u64 new_spte)
2996 {
2997         gfn_t gfn;
2998
2999         WARN_ON(!sp->role.direct);
3000
3001         /*
3002          * Theoretically we could also set dirty bit (and flush TLB) here in
3003          * order to eliminate unnecessary PML logging. See comments in
3004          * set_spte. But fast_page_fault is very unlikely to happen with PML
3005          * enabled, so we do not do this. This might result in the same GPA
3006          * to be logged in PML buffer again when the write really happens, and
3007          * eventually to be called by mark_page_dirty twice. But it's also no
3008          * harm. This also avoids the TLB flush needed after setting dirty bit
3009          * so non-PML cases won't be impacted.
3010          *
3011          * Compare with set_spte where instead shadow_dirty_mask is set.
3012          */
3013         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3014                 return false;
3015
3016         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3017                 /*
3018                  * The gfn of direct spte is stable since it is
3019                  * calculated by sp->gfn.
3020                  */
3021                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3022                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3023         }
3024
3025         return true;
3026 }
3027
3028 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3029 {
3030         if (fault_err_code & PFERR_FETCH_MASK)
3031                 return is_executable_pte(spte);
3032
3033         if (fault_err_code & PFERR_WRITE_MASK)
3034                 return is_writable_pte(spte);
3035
3036         /* Fault was on Read access */
3037         return spte & PT_PRESENT_MASK;
3038 }
3039
3040 /*
3041  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3042  */
3043 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3044                            u32 error_code)
3045 {
3046         struct kvm_shadow_walk_iterator iterator;
3047         struct kvm_mmu_page *sp;
3048         int ret = RET_PF_INVALID;
3049         u64 spte = 0ull;
3050         uint retry_count = 0;
3051
3052         if (!page_fault_can_be_fast(error_code))
3053                 return ret;
3054
3055         walk_shadow_page_lockless_begin(vcpu);
3056
3057         do {
3058                 u64 new_spte;
3059
3060                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3061                         if (!is_shadow_present_pte(spte))
3062                                 break;
3063
3064                 sp = sptep_to_sp(iterator.sptep);
3065                 if (!is_last_spte(spte, sp->role.level))
3066                         break;
3067
3068                 /*
3069                  * Check whether the memory access that caused the fault would
3070                  * still cause it if it were to be performed right now. If not,
3071                  * then this is a spurious fault caused by TLB lazily flushed,
3072                  * or some other CPU has already fixed the PTE after the
3073                  * current CPU took the fault.
3074                  *
3075                  * Need not check the access of upper level table entries since
3076                  * they are always ACC_ALL.
3077                  */
3078                 if (is_access_allowed(error_code, spte)) {
3079                         ret = RET_PF_SPURIOUS;
3080                         break;
3081                 }
3082
3083                 new_spte = spte;
3084
3085                 if (is_access_track_spte(spte))
3086                         new_spte = restore_acc_track_spte(new_spte);
3087
3088                 /*
3089                  * Currently, to simplify the code, write-protection can
3090                  * be removed in the fast path only if the SPTE was
3091                  * write-protected for dirty-logging or access tracking.
3092                  */
3093                 if ((error_code & PFERR_WRITE_MASK) &&
3094                     spte_can_locklessly_be_made_writable(spte)) {
3095                         new_spte |= PT_WRITABLE_MASK;
3096
3097                         /*
3098                          * Do not fix write-permission on the large spte.  Since
3099                          * we only dirty the first page into the dirty-bitmap in
3100                          * fast_pf_fix_direct_spte(), other pages are missed
3101                          * if its slot has dirty logging enabled.
3102                          *
3103                          * Instead, we let the slow page fault path create a
3104                          * normal spte to fix the access.
3105                          *
3106                          * See the comments in kvm_arch_commit_memory_region().
3107                          */
3108                         if (sp->role.level > PG_LEVEL_4K)
3109                                 break;
3110                 }
3111
3112                 /* Verify that the fault can be handled in the fast path */
3113                 if (new_spte == spte ||
3114                     !is_access_allowed(error_code, new_spte))
3115                         break;
3116
3117                 /*
3118                  * Currently, fast page fault only works for direct mapping
3119                  * since the gfn is not stable for indirect shadow page. See
3120                  * Documentation/virt/kvm/locking.rst to get more detail.
3121                  */
3122                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3123                                             new_spte)) {
3124                         ret = RET_PF_FIXED;
3125                         break;
3126                 }
3127
3128                 if (++retry_count > 4) {
3129                         printk_once(KERN_WARNING
3130                                 "kvm: Fast #PF retrying more than 4 times.\n");
3131                         break;
3132                 }
3133
3134         } while (true);
3135
3136         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3137                               spte, ret);
3138         walk_shadow_page_lockless_end(vcpu);
3139
3140         return ret;
3141 }
3142
3143 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3144                                struct list_head *invalid_list)
3145 {
3146         struct kvm_mmu_page *sp;
3147
3148         if (!VALID_PAGE(*root_hpa))
3149                 return;
3150
3151         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3152
3153         if (kvm_mmu_put_root(kvm, sp)) {
3154                 if (is_tdp_mmu_page(sp))
3155                         kvm_tdp_mmu_free_root(kvm, sp);
3156                 else if (sp->role.invalid)
3157                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3158         }
3159
3160         *root_hpa = INVALID_PAGE;
3161 }
3162
3163 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3164 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3165                         ulong roots_to_free)
3166 {
3167         struct kvm *kvm = vcpu->kvm;
3168         int i;
3169         LIST_HEAD(invalid_list);
3170         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3171
3172         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3173
3174         /* Before acquiring the MMU lock, see if we need to do any real work. */
3175         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3176                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3177                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3178                             VALID_PAGE(mmu->prev_roots[i].hpa))
3179                                 break;
3180
3181                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3182                         return;
3183         }
3184
3185         write_lock(&kvm->mmu_lock);
3186
3187         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3188                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3189                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3190                                            &invalid_list);
3191
3192         if (free_active_root) {
3193                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3194                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3195                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3196                 } else if (mmu->pae_root) {
3197                         for (i = 0; i < 4; ++i)
3198                                 if (mmu->pae_root[i] != 0)
3199                                         mmu_free_root_page(kvm,
3200                                                            &mmu->pae_root[i],
3201                                                            &invalid_list);
3202                 }
3203                 mmu->root_hpa = INVALID_PAGE;
3204                 mmu->root_pgd = 0;
3205         }
3206
3207         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3208         write_unlock(&kvm->mmu_lock);
3209 }
3210 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3211
3212 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3213 {
3214         int ret = 0;
3215
3216         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3217                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3218                 ret = 1;
3219         }
3220
3221         return ret;
3222 }
3223
3224 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3225                             u8 level, bool direct)
3226 {
3227         struct kvm_mmu_page *sp;
3228
3229         write_lock(&vcpu->kvm->mmu_lock);
3230
3231         if (make_mmu_pages_available(vcpu)) {
3232                 write_unlock(&vcpu->kvm->mmu_lock);
3233                 return INVALID_PAGE;
3234         }
3235         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3236         ++sp->root_count;
3237
3238         write_unlock(&vcpu->kvm->mmu_lock);
3239         return __pa(sp->spt);
3240 }
3241
3242 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3243 {
3244         u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3245         hpa_t root;
3246         unsigned i;
3247
3248         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3249                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3250
3251                 if (!VALID_PAGE(root))
3252                         return -ENOSPC;
3253                 vcpu->arch.mmu->root_hpa = root;
3254         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3255                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3256                                       true);
3257
3258                 if (!VALID_PAGE(root))
3259                         return -ENOSPC;
3260                 vcpu->arch.mmu->root_hpa = root;
3261         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3262                 for (i = 0; i < 4; ++i) {
3263                         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3264
3265                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3266                                               i << 30, PT32_ROOT_LEVEL, true);
3267                         if (!VALID_PAGE(root))
3268                                 return -ENOSPC;
3269                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3270                 }
3271                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3272         } else
3273                 BUG();
3274
3275         /* root_pgd is ignored for direct MMUs. */
3276         vcpu->arch.mmu->root_pgd = 0;
3277
3278         return 0;
3279 }
3280
3281 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3282 {
3283         u64 pdptr, pm_mask;
3284         gfn_t root_gfn, root_pgd;
3285         hpa_t root;
3286         int i;
3287
3288         root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3289         root_gfn = root_pgd >> PAGE_SHIFT;
3290
3291         if (mmu_check_root(vcpu, root_gfn))
3292                 return 1;
3293
3294         /*
3295          * Do we shadow a long mode page table? If so we need to
3296          * write-protect the guests page table root.
3297          */
3298         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3299                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3300
3301                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3302                                       vcpu->arch.mmu->shadow_root_level, false);
3303                 if (!VALID_PAGE(root))
3304                         return -ENOSPC;
3305                 vcpu->arch.mmu->root_hpa = root;
3306                 goto set_root_pgd;
3307         }
3308
3309         /*
3310          * We shadow a 32 bit page table. This may be a legacy 2-level
3311          * or a PAE 3-level page table. In either case we need to be aware that
3312          * the shadow page table may be a PAE or a long mode page table.
3313          */
3314         pm_mask = PT_PRESENT_MASK;
3315         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3316                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3317
3318                 /*
3319                  * Allocate the page for the PDPTEs when shadowing 32-bit NPT
3320                  * with 64-bit only when needed.  Unlike 32-bit NPT, it doesn't
3321                  * need to be in low mem.  See also lm_root below.
3322                  */
3323                 if (!vcpu->arch.mmu->pae_root) {
3324                         WARN_ON_ONCE(!tdp_enabled);
3325
3326                         vcpu->arch.mmu->pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3327                         if (!vcpu->arch.mmu->pae_root)
3328                                 return -ENOMEM;
3329                 }
3330         }
3331
3332         for (i = 0; i < 4; ++i) {
3333                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3334                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3335                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3336                         if (!(pdptr & PT_PRESENT_MASK)) {
3337                                 vcpu->arch.mmu->pae_root[i] = 0;
3338                                 continue;
3339                         }
3340                         root_gfn = pdptr >> PAGE_SHIFT;
3341                         if (mmu_check_root(vcpu, root_gfn))
3342                                 return 1;
3343                 }
3344
3345                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3346                                       PT32_ROOT_LEVEL, false);
3347                 if (!VALID_PAGE(root))
3348                         return -ENOSPC;
3349                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3350         }
3351         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3352
3353         /*
3354          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3355          * tables are allocated and initialized at MMU creation as there is no
3356          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3357          * on demand, as running a 32-bit L1 VMM is very rare.  The PDP is
3358          * handled above (to share logic with PAE), deal with the PML4 here.
3359          */
3360         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3361                 if (vcpu->arch.mmu->lm_root == NULL) {
3362                         u64 *lm_root;
3363
3364                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3365                         if (!lm_root)
3366                                 return -ENOMEM;
3367
3368                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3369
3370                         vcpu->arch.mmu->lm_root = lm_root;
3371                 }
3372
3373                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3374         }
3375
3376 set_root_pgd:
3377         vcpu->arch.mmu->root_pgd = root_pgd;
3378
3379         return 0;
3380 }
3381
3382 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3383 {
3384         if (vcpu->arch.mmu->direct_map)
3385                 return mmu_alloc_direct_roots(vcpu);
3386         else
3387                 return mmu_alloc_shadow_roots(vcpu);
3388 }
3389
3390 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3391 {
3392         int i;
3393         struct kvm_mmu_page *sp;
3394
3395         if (vcpu->arch.mmu->direct_map)
3396                 return;
3397
3398         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3399                 return;
3400
3401         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3402
3403         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3404                 hpa_t root = vcpu->arch.mmu->root_hpa;
3405                 sp = to_shadow_page(root);
3406
3407                 /*
3408                  * Even if another CPU was marking the SP as unsync-ed
3409                  * simultaneously, any guest page table changes are not
3410                  * guaranteed to be visible anyway until this VCPU issues a TLB
3411                  * flush strictly after those changes are made. We only need to
3412                  * ensure that the other CPU sets these flags before any actual
3413                  * changes to the page tables are made. The comments in
3414                  * mmu_need_write_protect() describe what could go wrong if this
3415                  * requirement isn't satisfied.
3416                  */
3417                 if (!smp_load_acquire(&sp->unsync) &&
3418                     !smp_load_acquire(&sp->unsync_children))
3419                         return;
3420
3421                 write_lock(&vcpu->kvm->mmu_lock);
3422                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3423
3424                 mmu_sync_children(vcpu, sp);
3425
3426                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3427                 write_unlock(&vcpu->kvm->mmu_lock);
3428                 return;
3429         }
3430
3431         write_lock(&vcpu->kvm->mmu_lock);
3432         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3433
3434         for (i = 0; i < 4; ++i) {
3435                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3436
3437                 if (root && VALID_PAGE(root)) {
3438                         root &= PT64_BASE_ADDR_MASK;
3439                         sp = to_shadow_page(root);
3440                         mmu_sync_children(vcpu, sp);
3441                 }
3442         }
3443
3444         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3445         write_unlock(&vcpu->kvm->mmu_lock);
3446 }
3447
3448 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3449                                   u32 access, struct x86_exception *exception)
3450 {
3451         if (exception)
3452                 exception->error_code = 0;
3453         return vaddr;
3454 }
3455
3456 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3457                                          u32 access,
3458                                          struct x86_exception *exception)
3459 {
3460         if (exception)
3461                 exception->error_code = 0;
3462         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3463 }
3464
3465 static bool
3466 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3467 {
3468         int bit7 = (pte >> 7) & 1;
3469
3470         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3471 }
3472
3473 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3474 {
3475         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3476 }
3477
3478 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3479 {
3480         /*
3481          * A nested guest cannot use the MMIO cache if it is using nested
3482          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3483          */
3484         if (mmu_is_nested(vcpu))
3485                 return false;
3486
3487         if (direct)
3488                 return vcpu_match_mmio_gpa(vcpu, addr);
3489
3490         return vcpu_match_mmio_gva(vcpu, addr);
3491 }
3492
3493 /*
3494  * Return the level of the lowest level SPTE added to sptes.
3495  * That SPTE may be non-present.
3496  */
3497 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3498 {
3499         struct kvm_shadow_walk_iterator iterator;
3500         int leaf = -1;
3501         u64 spte;
3502
3503         walk_shadow_page_lockless_begin(vcpu);
3504
3505         for (shadow_walk_init(&iterator, vcpu, addr),
3506              *root_level = iterator.level;
3507              shadow_walk_okay(&iterator);
3508              __shadow_walk_next(&iterator, spte)) {
3509                 leaf = iterator.level;
3510                 spte = mmu_spte_get_lockless(iterator.sptep);
3511
3512                 sptes[leaf] = spte;
3513
3514                 if (!is_shadow_present_pte(spte))
3515                         break;
3516         }
3517
3518         walk_shadow_page_lockless_end(vcpu);
3519
3520         return leaf;
3521 }
3522
3523 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3524 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3525 {
3526         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3527         struct rsvd_bits_validate *rsvd_check;
3528         int root, leaf, level;
3529         bool reserved = false;
3530
3531         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3532                 *sptep = 0ull;
3533                 return reserved;
3534         }
3535
3536         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3537                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3538         else
3539                 leaf = get_walk(vcpu, addr, sptes, &root);
3540
3541         if (unlikely(leaf < 0)) {
3542                 *sptep = 0ull;
3543                 return reserved;
3544         }
3545
3546         *sptep = sptes[leaf];
3547
3548         /*
3549          * Skip reserved bits checks on the terminal leaf if it's not a valid
3550          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3551          * design, always have reserved bits set.  The purpose of the checks is
3552          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3553          */
3554         if (!is_shadow_present_pte(sptes[leaf]))
3555                 leaf++;
3556
3557         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3558
3559         for (level = root; level >= leaf; level--)
3560                 /*
3561                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3562                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3563                  * adding a Jcc in the loop.
3564                  */
3565                 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3566                             __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3567
3568         if (reserved) {
3569                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3570                        __func__, addr);
3571                 for (level = root; level >= leaf; level--)
3572                         pr_err("------ spte 0x%llx level %d.\n",
3573                                sptes[level], level);
3574         }
3575
3576         return reserved;
3577 }
3578
3579 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3580 {
3581         u64 spte;
3582         bool reserved;
3583
3584         if (mmio_info_in_cache(vcpu, addr, direct))
3585                 return RET_PF_EMULATE;
3586
3587         reserved = get_mmio_spte(vcpu, addr, &spte);
3588         if (WARN_ON(reserved))
3589                 return -EINVAL;
3590
3591         if (is_mmio_spte(spte)) {
3592                 gfn_t gfn = get_mmio_spte_gfn(spte);
3593                 unsigned int access = get_mmio_spte_access(spte);
3594
3595                 if (!check_mmio_spte(vcpu, spte))
3596                         return RET_PF_INVALID;
3597
3598                 if (direct)
3599                         addr = 0;
3600
3601                 trace_handle_mmio_page_fault(addr, gfn, access);
3602                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3603                 return RET_PF_EMULATE;
3604         }
3605
3606         /*
3607          * If the page table is zapped by other cpus, let CPU fault again on
3608          * the address.
3609          */
3610         return RET_PF_RETRY;
3611 }
3612
3613 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3614                                          u32 error_code, gfn_t gfn)
3615 {
3616         if (unlikely(error_code & PFERR_RSVD_MASK))
3617                 return false;
3618
3619         if (!(error_code & PFERR_PRESENT_MASK) ||
3620               !(error_code & PFERR_WRITE_MASK))
3621                 return false;
3622
3623         /*
3624          * guest is writing the page which is write tracked which can
3625          * not be fixed by page fault handler.
3626          */
3627         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3628                 return true;
3629
3630         return false;
3631 }
3632
3633 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3634 {
3635         struct kvm_shadow_walk_iterator iterator;
3636         u64 spte;
3637
3638         walk_shadow_page_lockless_begin(vcpu);
3639         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3640                 clear_sp_write_flooding_count(iterator.sptep);
3641                 if (!is_shadow_present_pte(spte))
3642                         break;
3643         }
3644         walk_shadow_page_lockless_end(vcpu);
3645 }
3646
3647 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3648                                     gfn_t gfn)
3649 {
3650         struct kvm_arch_async_pf arch;
3651
3652         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3653         arch.gfn = gfn;
3654         arch.direct_map = vcpu->arch.mmu->direct_map;
3655         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3656
3657         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3658                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3659 }
3660
3661 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3662                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3663                          bool write, bool *writable)
3664 {
3665         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3666         bool async;
3667
3668         /* Don't expose private memslots to L2. */
3669         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3670                 *pfn = KVM_PFN_NOSLOT;
3671                 *writable = false;
3672                 return false;
3673         }
3674
3675         async = false;
3676         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3677                                     write, writable, hva);
3678         if (!async)
3679                 return false; /* *pfn has correct page already */
3680
3681         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3682                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3683                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3684                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3685                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3686                         return true;
3687                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3688                         return true;
3689         }
3690
3691         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3692                                     write, writable, hva);
3693         return false;
3694 }
3695
3696 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3697                              bool prefault, int max_level, bool is_tdp)
3698 {
3699         bool write = error_code & PFERR_WRITE_MASK;
3700         bool map_writable;
3701
3702         gfn_t gfn = gpa >> PAGE_SHIFT;
3703         unsigned long mmu_seq;
3704         kvm_pfn_t pfn;
3705         hva_t hva;
3706         int r;
3707
3708         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3709                 return RET_PF_EMULATE;
3710
3711         if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3712                 r = fast_page_fault(vcpu, gpa, error_code);
3713                 if (r != RET_PF_INVALID)
3714                         return r;
3715         }
3716
3717         r = mmu_topup_memory_caches(vcpu, false);
3718         if (r)
3719                 return r;
3720
3721         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3722         smp_rmb();
3723
3724         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3725                          write, &map_writable))
3726                 return RET_PF_RETRY;
3727
3728         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3729                 return r;
3730
3731         r = RET_PF_RETRY;
3732
3733         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3734                 read_lock(&vcpu->kvm->mmu_lock);
3735         else
3736                 write_lock(&vcpu->kvm->mmu_lock);
3737
3738         if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3739                 goto out_unlock;
3740         r = make_mmu_pages_available(vcpu);
3741         if (r)
3742                 goto out_unlock;
3743
3744         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3745                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3746                                     pfn, prefault);
3747         else
3748                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3749                                  prefault, is_tdp);
3750
3751 out_unlock:
3752         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3753                 read_unlock(&vcpu->kvm->mmu_lock);
3754         else
3755                 write_unlock(&vcpu->kvm->mmu_lock);
3756         kvm_release_pfn_clean(pfn);
3757         return r;
3758 }
3759
3760 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3761                                 u32 error_code, bool prefault)
3762 {
3763         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3764
3765         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3766         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3767                                  PG_LEVEL_2M, false);
3768 }
3769
3770 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3771                                 u64 fault_address, char *insn, int insn_len)
3772 {
3773         int r = 1;
3774         u32 flags = vcpu->arch.apf.host_apf_flags;
3775
3776 #ifndef CONFIG_X86_64
3777         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3778         if (WARN_ON_ONCE(fault_address >> 32))
3779                 return -EFAULT;
3780 #endif
3781
3782         vcpu->arch.l1tf_flush_l1d = true;
3783         if (!flags) {
3784                 trace_kvm_page_fault(fault_address, error_code);
3785
3786                 if (kvm_event_needs_reinjection(vcpu))
3787                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3788                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3789                                 insn_len);
3790         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3791                 vcpu->arch.apf.host_apf_flags = 0;
3792                 local_irq_disable();
3793                 kvm_async_pf_task_wait_schedule(fault_address);
3794                 local_irq_enable();
3795         } else {
3796                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3797         }
3798
3799         return r;
3800 }
3801 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3802
3803 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3804                        bool prefault)
3805 {
3806         int max_level;
3807
3808         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3809              max_level > PG_LEVEL_4K;
3810              max_level--) {
3811                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3812                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3813
3814                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3815                         break;
3816         }
3817
3818         return direct_page_fault(vcpu, gpa, error_code, prefault,
3819                                  max_level, true);
3820 }
3821
3822 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3823                                    struct kvm_mmu *context)
3824 {
3825         context->page_fault = nonpaging_page_fault;
3826         context->gva_to_gpa = nonpaging_gva_to_gpa;
3827         context->sync_page = nonpaging_sync_page;
3828         context->invlpg = NULL;
3829         context->root_level = 0;
3830         context->shadow_root_level = PT32E_ROOT_LEVEL;
3831         context->direct_map = true;
3832         context->nx = false;
3833 }
3834
3835 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3836                                   union kvm_mmu_page_role role)
3837 {
3838         return (role.direct || pgd == root->pgd) &&
3839                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3840                role.word == to_shadow_page(root->hpa)->role.word;
3841 }
3842
3843 /*
3844  * Find out if a previously cached root matching the new pgd/role is available.
3845  * The current root is also inserted into the cache.
3846  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3847  * returned.
3848  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3849  * false is returned. This root should now be freed by the caller.
3850  */
3851 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3852                                   union kvm_mmu_page_role new_role)
3853 {
3854         uint i;
3855         struct kvm_mmu_root_info root;
3856         struct kvm_mmu *mmu = vcpu->arch.mmu;
3857
3858         root.pgd = mmu->root_pgd;
3859         root.hpa = mmu->root_hpa;
3860
3861         if (is_root_usable(&root, new_pgd, new_role))
3862                 return true;
3863
3864         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3865                 swap(root, mmu->prev_roots[i]);
3866
3867                 if (is_root_usable(&root, new_pgd, new_role))
3868                         break;
3869         }
3870
3871         mmu->root_hpa = root.hpa;
3872         mmu->root_pgd = root.pgd;
3873
3874         return i < KVM_MMU_NUM_PREV_ROOTS;
3875 }
3876
3877 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3878                             union kvm_mmu_page_role new_role)
3879 {
3880         struct kvm_mmu *mmu = vcpu->arch.mmu;
3881
3882         /*
3883          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3884          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3885          * later if necessary.
3886          */
3887         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3888             mmu->root_level >= PT64_ROOT_4LEVEL)
3889                 return cached_root_available(vcpu, new_pgd, new_role);
3890
3891         return false;
3892 }
3893
3894 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3895                               union kvm_mmu_page_role new_role,
3896                               bool skip_tlb_flush, bool skip_mmu_sync)
3897 {
3898         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3899                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3900                 return;
3901         }
3902
3903         /*
3904          * It's possible that the cached previous root page is obsolete because
3905          * of a change in the MMU generation number. However, changing the
3906          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3907          * free the root set here and allocate a new one.
3908          */
3909         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3910
3911         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3912                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3913         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3914                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3915
3916         /*
3917          * The last MMIO access's GVA and GPA are cached in the VCPU. When
3918          * switching to a new CR3, that GVA->GPA mapping may no longer be
3919          * valid. So clear any cached MMIO info even when we don't need to sync
3920          * the shadow page tables.
3921          */
3922         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3923
3924         /*
3925          * If this is a direct root page, it doesn't have a write flooding
3926          * count. Otherwise, clear the write flooding count.
3927          */
3928         if (!new_role.direct)
3929                 __clear_sp_write_flooding_count(
3930                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
3931 }
3932
3933 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3934                      bool skip_mmu_sync)
3935 {
3936         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3937                           skip_tlb_flush, skip_mmu_sync);
3938 }
3939 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3940
3941 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3942 {
3943         return kvm_read_cr3(vcpu);
3944 }
3945
3946 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3947                            unsigned int access, int *nr_present)
3948 {
3949         if (unlikely(is_mmio_spte(*sptep))) {
3950                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3951                         mmu_spte_clear_no_track(sptep);
3952                         return true;
3953                 }
3954
3955                 (*nr_present)++;
3956                 mark_mmio_spte(vcpu, sptep, gfn, access);
3957                 return true;
3958         }
3959
3960         return false;
3961 }
3962
3963 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3964                                 unsigned level, unsigned gpte)
3965 {
3966         /*
3967          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3968          * If it is clear, there are no large pages at this level, so clear
3969          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3970          */
3971         gpte &= level - mmu->last_nonleaf_level;
3972
3973         /*
3974          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3975          * iff level <= PG_LEVEL_4K, which for our purpose means
3976          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3977          */
3978         gpte |= level - PG_LEVEL_4K - 1;
3979
3980         return gpte & PT_PAGE_SIZE_MASK;
3981 }
3982
3983 #define PTTYPE_EPT 18 /* arbitrary */
3984 #define PTTYPE PTTYPE_EPT
3985 #include "paging_tmpl.h"
3986 #undef PTTYPE
3987
3988 #define PTTYPE 64
3989 #include "paging_tmpl.h"
3990 #undef PTTYPE
3991
3992 #define PTTYPE 32
3993 #include "paging_tmpl.h"
3994 #undef PTTYPE
3995
3996 static void
3997 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3998                         struct rsvd_bits_validate *rsvd_check,
3999                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4000                         bool pse, bool amd)
4001 {
4002         u64 gbpages_bit_rsvd = 0;
4003         u64 nonleaf_bit8_rsvd = 0;
4004         u64 high_bits_rsvd;
4005
4006         rsvd_check->bad_mt_xwr = 0;
4007
4008         if (!gbpages)
4009                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4010
4011         if (level == PT32E_ROOT_LEVEL)
4012                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4013         else
4014                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4015
4016         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4017         if (!nx)
4018                 high_bits_rsvd |= rsvd_bits(63, 63);
4019
4020         /*
4021          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4022          * leaf entries) on AMD CPUs only.
4023          */
4024         if (amd)
4025                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4026
4027         switch (level) {
4028         case PT32_ROOT_LEVEL:
4029                 /* no rsvd bits for 2 level 4K page table entries */
4030                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4031                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4032                 rsvd_check->rsvd_bits_mask[1][0] =
4033                         rsvd_check->rsvd_bits_mask[0][0];
4034
4035                 if (!pse) {
4036                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4037                         break;
4038                 }
4039
4040                 if (is_cpuid_PSE36())
4041                         /* 36bits PSE 4MB page */
4042                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4043                 else
4044                         /* 32 bits PSE 4MB page */
4045                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4046                 break;
4047         case PT32E_ROOT_LEVEL:
4048                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4049                                                    high_bits_rsvd |
4050                                                    rsvd_bits(5, 8) |
4051                                                    rsvd_bits(1, 2);     /* PDPTE */
4052                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4053                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4054                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4055                                                    rsvd_bits(13, 20);   /* large page */
4056                 rsvd_check->rsvd_bits_mask[1][0] =
4057                         rsvd_check->rsvd_bits_mask[0][0];
4058                 break;
4059         case PT64_ROOT_5LEVEL:
4060                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4061                                                    nonleaf_bit8_rsvd |
4062                                                    rsvd_bits(7, 7);
4063                 rsvd_check->rsvd_bits_mask[1][4] =
4064                         rsvd_check->rsvd_bits_mask[0][4];
4065                 fallthrough;
4066         case PT64_ROOT_4LEVEL:
4067                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4068                                                    nonleaf_bit8_rsvd |
4069                                                    rsvd_bits(7, 7);
4070                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4071                                                    gbpages_bit_rsvd;
4072                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4073                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4074                 rsvd_check->rsvd_bits_mask[1][3] =
4075                         rsvd_check->rsvd_bits_mask[0][3];
4076                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4077                                                    gbpages_bit_rsvd |
4078                                                    rsvd_bits(13, 29);
4079                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4080                                                    rsvd_bits(13, 20); /* large page */
4081                 rsvd_check->rsvd_bits_mask[1][0] =
4082                         rsvd_check->rsvd_bits_mask[0][0];
4083                 break;
4084         }
4085 }
4086
4087 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4088                                   struct kvm_mmu *context)
4089 {
4090         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4091                                 vcpu->arch.reserved_gpa_bits,
4092                                 context->root_level, context->nx,
4093                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4094                                 is_pse(vcpu),
4095                                 guest_cpuid_is_amd_or_hygon(vcpu));
4096 }
4097
4098 static void
4099 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4100                             u64 pa_bits_rsvd, bool execonly)
4101 {
4102         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4103         u64 bad_mt_xwr;
4104
4105         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4106         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4107         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4108         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4109         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4110
4111         /* large page */
4112         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4113         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4114         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4115         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4116         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4117
4118         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4119         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4120         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4121         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4122         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4123         if (!execonly) {
4124                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4125                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4126         }
4127         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4128 }
4129
4130 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4131                 struct kvm_mmu *context, bool execonly)
4132 {
4133         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4134                                     vcpu->arch.reserved_gpa_bits, execonly);
4135 }
4136
4137 static inline u64 reserved_hpa_bits(void)
4138 {
4139         return rsvd_bits(shadow_phys_bits, 63);
4140 }
4141
4142 /*
4143  * the page table on host is the shadow page table for the page
4144  * table in guest or amd nested guest, its mmu features completely
4145  * follow the features in guest.
4146  */
4147 void
4148 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4149 {
4150         bool uses_nx = context->nx ||
4151                 context->mmu_role.base.smep_andnot_wp;
4152         struct rsvd_bits_validate *shadow_zero_check;
4153         int i;
4154
4155         /*
4156          * Passing "true" to the last argument is okay; it adds a check
4157          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4158          */
4159         shadow_zero_check = &context->shadow_zero_check;
4160         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4161                                 reserved_hpa_bits(),
4162                                 context->shadow_root_level, uses_nx,
4163                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4164                                 is_pse(vcpu), true);
4165
4166         if (!shadow_me_mask)
4167                 return;
4168
4169         for (i = context->shadow_root_level; --i >= 0;) {
4170                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4171                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4172         }
4173
4174 }
4175 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4176
4177 static inline bool boot_cpu_is_amd(void)
4178 {
4179         WARN_ON_ONCE(!tdp_enabled);
4180         return shadow_x_mask == 0;
4181 }
4182
4183 /*
4184  * the direct page table on host, use as much mmu features as
4185  * possible, however, kvm currently does not do execution-protection.
4186  */
4187 static void
4188 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4189                                 struct kvm_mmu *context)
4190 {
4191         struct rsvd_bits_validate *shadow_zero_check;
4192         int i;
4193
4194         shadow_zero_check = &context->shadow_zero_check;
4195
4196         if (boot_cpu_is_amd())
4197                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4198                                         reserved_hpa_bits(),
4199                                         context->shadow_root_level, false,
4200                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4201                                         true, true);
4202         else
4203                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4204                                             reserved_hpa_bits(), false);
4205
4206         if (!shadow_me_mask)
4207                 return;
4208
4209         for (i = context->shadow_root_level; --i >= 0;) {
4210                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4211                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4212         }
4213 }
4214
4215 /*
4216  * as the comments in reset_shadow_zero_bits_mask() except it
4217  * is the shadow page table for intel nested guest.
4218  */
4219 static void
4220 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4221                                 struct kvm_mmu *context, bool execonly)
4222 {
4223         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4224                                     reserved_hpa_bits(), execonly);
4225 }
4226
4227 #define BYTE_MASK(access) \
4228         ((1 & (access) ? 2 : 0) | \
4229          (2 & (access) ? 4 : 0) | \
4230          (3 & (access) ? 8 : 0) | \
4231          (4 & (access) ? 16 : 0) | \
4232          (5 & (access) ? 32 : 0) | \
4233          (6 & (access) ? 64 : 0) | \
4234          (7 & (access) ? 128 : 0))
4235
4236
4237 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4238                                       struct kvm_mmu *mmu, bool ept)
4239 {
4240         unsigned byte;
4241
4242         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4243         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4244         const u8 u = BYTE_MASK(ACC_USER_MASK);
4245
4246         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4247         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4248         bool cr0_wp = is_write_protection(vcpu);
4249
4250         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4251                 unsigned pfec = byte << 1;
4252
4253                 /*
4254                  * Each "*f" variable has a 1 bit for each UWX value
4255                  * that causes a fault with the given PFEC.
4256                  */
4257
4258                 /* Faults from writes to non-writable pages */
4259                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4260                 /* Faults from user mode accesses to supervisor pages */
4261                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4262                 /* Faults from fetches of non-executable pages*/
4263                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4264                 /* Faults from kernel mode fetches of user pages */
4265                 u8 smepf = 0;
4266                 /* Faults from kernel mode accesses of user pages */
4267                 u8 smapf = 0;
4268
4269                 if (!ept) {
4270                         /* Faults from kernel mode accesses to user pages */
4271                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4272
4273                         /* Not really needed: !nx will cause pte.nx to fault */
4274                         if (!mmu->nx)
4275                                 ff = 0;
4276
4277                         /* Allow supervisor writes if !cr0.wp */
4278                         if (!cr0_wp)
4279                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4280
4281                         /* Disallow supervisor fetches of user code if cr4.smep */
4282                         if (cr4_smep)
4283                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4284
4285                         /*
4286                          * SMAP:kernel-mode data accesses from user-mode
4287                          * mappings should fault. A fault is considered
4288                          * as a SMAP violation if all of the following
4289                          * conditions are true:
4290                          *   - X86_CR4_SMAP is set in CR4
4291                          *   - A user page is accessed
4292                          *   - The access is not a fetch
4293                          *   - Page fault in kernel mode
4294                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4295                          *
4296                          * Here, we cover the first three conditions.
4297                          * The fourth is computed dynamically in permission_fault();
4298                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4299                          * *not* subject to SMAP restrictions.
4300                          */
4301                         if (cr4_smap)
4302                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4303                 }
4304
4305                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4306         }
4307 }
4308
4309 /*
4310 * PKU is an additional mechanism by which the paging controls access to
4311 * user-mode addresses based on the value in the PKRU register.  Protection
4312 * key violations are reported through a bit in the page fault error code.
4313 * Unlike other bits of the error code, the PK bit is not known at the
4314 * call site of e.g. gva_to_gpa; it must be computed directly in
4315 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4316 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4317 *
4318 * In particular the following conditions come from the error code, the
4319 * page tables and the machine state:
4320 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4321 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4322 * - PK is always zero if U=0 in the page tables
4323 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4324 *
4325 * The PKRU bitmask caches the result of these four conditions.  The error
4326 * code (minus the P bit) and the page table's U bit form an index into the
4327 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4328 * with the two bits of the PKRU register corresponding to the protection key.
4329 * For the first three conditions above the bits will be 00, thus masking
4330 * away both AD and WD.  For all reads or if the last condition holds, WD
4331 * only will be masked away.
4332 */
4333 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4334                                 bool ept)
4335 {
4336         unsigned bit;
4337         bool wp;
4338
4339         if (ept) {
4340                 mmu->pkru_mask = 0;
4341                 return;
4342         }
4343
4344         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4345         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4346                 mmu->pkru_mask = 0;
4347                 return;
4348         }
4349
4350         wp = is_write_protection(vcpu);
4351
4352         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4353                 unsigned pfec, pkey_bits;
4354                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4355
4356                 pfec = bit << 1;
4357                 ff = pfec & PFERR_FETCH_MASK;
4358                 uf = pfec & PFERR_USER_MASK;
4359                 wf = pfec & PFERR_WRITE_MASK;
4360
4361                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4362                 pte_user = pfec & PFERR_RSVD_MASK;
4363
4364                 /*
4365                  * Only need to check the access which is not an
4366                  * instruction fetch and is to a user page.
4367                  */
4368                 check_pkey = (!ff && pte_user);
4369                 /*
4370                  * write access is controlled by PKRU if it is a
4371                  * user access or CR0.WP = 1.
4372                  */
4373                 check_write = check_pkey && wf && (uf || wp);
4374
4375                 /* PKRU.AD stops both read and write access. */
4376                 pkey_bits = !!check_pkey;
4377                 /* PKRU.WD stops write access. */
4378                 pkey_bits |= (!!check_write) << 1;
4379
4380                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4381         }
4382 }
4383
4384 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4385 {
4386         unsigned root_level = mmu->root_level;
4387
4388         mmu->last_nonleaf_level = root_level;
4389         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4390                 mmu->last_nonleaf_level++;
4391 }
4392
4393 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4394                                          struct kvm_mmu *context,
4395                                          int level)
4396 {
4397         context->nx = is_nx(vcpu);
4398         context->root_level = level;
4399
4400         reset_rsvds_bits_mask(vcpu, context);
4401         update_permission_bitmask(vcpu, context, false);
4402         update_pkru_bitmask(vcpu, context, false);
4403         update_last_nonleaf_level(vcpu, context);
4404
4405         MMU_WARN_ON(!is_pae(vcpu));
4406         context->page_fault = paging64_page_fault;
4407         context->gva_to_gpa = paging64_gva_to_gpa;
4408         context->sync_page = paging64_sync_page;
4409         context->invlpg = paging64_invlpg;
4410         context->shadow_root_level = level;
4411         context->direct_map = false;
4412 }
4413
4414 static void paging64_init_context(struct kvm_vcpu *vcpu,
4415                                   struct kvm_mmu *context)
4416 {
4417         int root_level = is_la57_mode(vcpu) ?
4418                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4419
4420         paging64_init_context_common(vcpu, context, root_level);
4421 }
4422
4423 static void paging32_init_context(struct kvm_vcpu *vcpu,
4424                                   struct kvm_mmu *context)
4425 {
4426         context->nx = false;
4427         context->root_level = PT32_ROOT_LEVEL;
4428
4429         reset_rsvds_bits_mask(vcpu, context);
4430         update_permission_bitmask(vcpu, context, false);
4431         update_pkru_bitmask(vcpu, context, false);
4432         update_last_nonleaf_level(vcpu, context);
4433
4434         context->page_fault = paging32_page_fault;
4435         context->gva_to_gpa = paging32_gva_to_gpa;
4436         context->sync_page = paging32_sync_page;
4437         context->invlpg = paging32_invlpg;
4438         context->shadow_root_level = PT32E_ROOT_LEVEL;
4439         context->direct_map = false;
4440 }
4441
4442 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4443                                    struct kvm_mmu *context)
4444 {
4445         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4446 }
4447
4448 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4449 {
4450         union kvm_mmu_extended_role ext = {0};
4451
4452         ext.cr0_pg = !!is_paging(vcpu);
4453         ext.cr4_pae = !!is_pae(vcpu);
4454         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4455         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4456         ext.cr4_pse = !!is_pse(vcpu);
4457         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4458         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4459
4460         ext.valid = 1;
4461
4462         return ext;
4463 }
4464
4465 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4466                                                    bool base_only)
4467 {
4468         union kvm_mmu_role role = {0};
4469
4470         role.base.access = ACC_ALL;
4471         role.base.nxe = !!is_nx(vcpu);
4472         role.base.cr0_wp = is_write_protection(vcpu);
4473         role.base.smm = is_smm(vcpu);
4474         role.base.guest_mode = is_guest_mode(vcpu);
4475
4476         if (base_only)
4477                 return role;
4478
4479         role.ext = kvm_calc_mmu_role_ext(vcpu);
4480
4481         return role;
4482 }
4483
4484 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4485 {
4486         /* Use 5-level TDP if and only if it's useful/necessary. */
4487         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4488                 return 4;
4489
4490         return max_tdp_level;
4491 }
4492
4493 static union kvm_mmu_role
4494 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4495 {
4496         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4497
4498         role.base.ad_disabled = (shadow_accessed_mask == 0);
4499         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4500         role.base.direct = true;
4501         role.base.gpte_is_8_bytes = true;
4502
4503         return role;
4504 }
4505
4506 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4507 {
4508         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4509         union kvm_mmu_role new_role =
4510                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4511
4512         if (new_role.as_u64 == context->mmu_role.as_u64)
4513                 return;
4514
4515         context->mmu_role.as_u64 = new_role.as_u64;
4516         context->page_fault = kvm_tdp_page_fault;
4517         context->sync_page = nonpaging_sync_page;
4518         context->invlpg = NULL;
4519         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4520         context->direct_map = true;
4521         context->get_guest_pgd = get_cr3;
4522         context->get_pdptr = kvm_pdptr_read;
4523         context->inject_page_fault = kvm_inject_page_fault;
4524
4525         if (!is_paging(vcpu)) {
4526                 context->nx = false;
4527                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4528                 context->root_level = 0;
4529         } else if (is_long_mode(vcpu)) {
4530                 context->nx = is_nx(vcpu);
4531                 context->root_level = is_la57_mode(vcpu) ?
4532                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4533                 reset_rsvds_bits_mask(vcpu, context);
4534                 context->gva_to_gpa = paging64_gva_to_gpa;
4535         } else if (is_pae(vcpu)) {
4536                 context->nx = is_nx(vcpu);
4537                 context->root_level = PT32E_ROOT_LEVEL;
4538                 reset_rsvds_bits_mask(vcpu, context);
4539                 context->gva_to_gpa = paging64_gva_to_gpa;
4540         } else {
4541                 context->nx = false;
4542                 context->root_level = PT32_ROOT_LEVEL;
4543                 reset_rsvds_bits_mask(vcpu, context);
4544                 context->gva_to_gpa = paging32_gva_to_gpa;
4545         }
4546
4547         update_permission_bitmask(vcpu, context, false);
4548         update_pkru_bitmask(vcpu, context, false);
4549         update_last_nonleaf_level(vcpu, context);
4550         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4551 }
4552
4553 static union kvm_mmu_role
4554 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4555 {
4556         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4557
4558         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4559                 !is_write_protection(vcpu);
4560         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4561                 !is_write_protection(vcpu);
4562         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4563
4564         return role;
4565 }
4566
4567 static union kvm_mmu_role
4568 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4569 {
4570         union kvm_mmu_role role =
4571                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4572
4573         role.base.direct = !is_paging(vcpu);
4574
4575         if (!is_long_mode(vcpu))
4576                 role.base.level = PT32E_ROOT_LEVEL;
4577         else if (is_la57_mode(vcpu))
4578                 role.base.level = PT64_ROOT_5LEVEL;
4579         else
4580                 role.base.level = PT64_ROOT_4LEVEL;
4581
4582         return role;
4583 }
4584
4585 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4586                                     u32 cr0, u32 cr4, u32 efer,
4587                                     union kvm_mmu_role new_role)
4588 {
4589         if (!(cr0 & X86_CR0_PG))
4590                 nonpaging_init_context(vcpu, context);
4591         else if (efer & EFER_LMA)
4592                 paging64_init_context(vcpu, context);
4593         else if (cr4 & X86_CR4_PAE)
4594                 paging32E_init_context(vcpu, context);
4595         else
4596                 paging32_init_context(vcpu, context);
4597
4598         context->mmu_role.as_u64 = new_role.as_u64;
4599         reset_shadow_zero_bits_mask(vcpu, context);
4600 }
4601
4602 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4603 {
4604         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4605         union kvm_mmu_role new_role =
4606                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4607
4608         if (new_role.as_u64 != context->mmu_role.as_u64)
4609                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4610 }
4611
4612 static union kvm_mmu_role
4613 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4614 {
4615         union kvm_mmu_role role =
4616                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4617
4618         role.base.direct = false;
4619         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4620
4621         return role;
4622 }
4623
4624 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4625                              gpa_t nested_cr3)
4626 {
4627         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4628         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4629
4630         context->shadow_root_level = new_role.base.level;
4631
4632         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4633
4634         if (new_role.as_u64 != context->mmu_role.as_u64)
4635                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4636 }
4637 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4638
4639 static union kvm_mmu_role
4640 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4641                                    bool execonly, u8 level)
4642 {
4643         union kvm_mmu_role role = {0};
4644
4645         /* SMM flag is inherited from root_mmu */
4646         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4647
4648         role.base.level = level;
4649         role.base.gpte_is_8_bytes = true;
4650         role.base.direct = false;
4651         role.base.ad_disabled = !accessed_dirty;
4652         role.base.guest_mode = true;
4653         role.base.access = ACC_ALL;
4654
4655         /*
4656          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4657          * SMAP variation to denote shadow EPT entries.
4658          */
4659         role.base.cr0_wp = true;
4660         role.base.smap_andnot_wp = true;
4661
4662         role.ext = kvm_calc_mmu_role_ext(vcpu);
4663         role.ext.execonly = execonly;
4664
4665         return role;
4666 }
4667
4668 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4669                              bool accessed_dirty, gpa_t new_eptp)
4670 {
4671         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4672         u8 level = vmx_eptp_page_walk_level(new_eptp);
4673         union kvm_mmu_role new_role =
4674                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4675                                                    execonly, level);
4676
4677         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4678
4679         if (new_role.as_u64 == context->mmu_role.as_u64)
4680                 return;
4681
4682         context->shadow_root_level = level;
4683
4684         context->nx = true;
4685         context->ept_ad = accessed_dirty;
4686         context->page_fault = ept_page_fault;
4687         context->gva_to_gpa = ept_gva_to_gpa;
4688         context->sync_page = ept_sync_page;
4689         context->invlpg = ept_invlpg;
4690         context->root_level = level;
4691         context->direct_map = false;
4692         context->mmu_role.as_u64 = new_role.as_u64;
4693
4694         update_permission_bitmask(vcpu, context, true);
4695         update_pkru_bitmask(vcpu, context, true);
4696         update_last_nonleaf_level(vcpu, context);
4697         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4698         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4699 }
4700 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4701
4702 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4703 {
4704         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4705
4706         kvm_init_shadow_mmu(vcpu,
4707                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4708                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4709                             vcpu->arch.efer);
4710
4711         context->get_guest_pgd     = get_cr3;
4712         context->get_pdptr         = kvm_pdptr_read;
4713         context->inject_page_fault = kvm_inject_page_fault;
4714 }
4715
4716 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4717 {
4718         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4719         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4720
4721         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4722                 return;
4723
4724         g_context->mmu_role.as_u64 = new_role.as_u64;
4725         g_context->get_guest_pgd     = get_cr3;
4726         g_context->get_pdptr         = kvm_pdptr_read;
4727         g_context->inject_page_fault = kvm_inject_page_fault;
4728
4729         /*
4730          * L2 page tables are never shadowed, so there is no need to sync
4731          * SPTEs.
4732          */
4733         g_context->invlpg            = NULL;
4734
4735         /*
4736          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4737          * L1's nested page tables (e.g. EPT12). The nested translation
4738          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4739          * L2's page tables as the first level of translation and L1's
4740          * nested page tables as the second level of translation. Basically
4741          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4742          */
4743         if (!is_paging(vcpu)) {
4744                 g_context->nx = false;
4745                 g_context->root_level = 0;
4746                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4747         } else if (is_long_mode(vcpu)) {
4748                 g_context->nx = is_nx(vcpu);
4749                 g_context->root_level = is_la57_mode(vcpu) ?
4750                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4751                 reset_rsvds_bits_mask(vcpu, g_context);
4752                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4753         } else if (is_pae(vcpu)) {
4754                 g_context->nx = is_nx(vcpu);
4755                 g_context->root_level = PT32E_ROOT_LEVEL;
4756                 reset_rsvds_bits_mask(vcpu, g_context);
4757                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4758         } else {
4759                 g_context->nx = false;
4760                 g_context->root_level = PT32_ROOT_LEVEL;
4761                 reset_rsvds_bits_mask(vcpu, g_context);
4762                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4763         }
4764
4765         update_permission_bitmask(vcpu, g_context, false);
4766         update_pkru_bitmask(vcpu, g_context, false);
4767         update_last_nonleaf_level(vcpu, g_context);
4768 }
4769
4770 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4771 {
4772         if (reset_roots) {
4773                 uint i;
4774
4775                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4776
4777                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4778                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4779         }
4780
4781         if (mmu_is_nested(vcpu))
4782                 init_kvm_nested_mmu(vcpu);
4783         else if (tdp_enabled)
4784                 init_kvm_tdp_mmu(vcpu);
4785         else
4786                 init_kvm_softmmu(vcpu);
4787 }
4788 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4789
4790 static union kvm_mmu_page_role
4791 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4792 {
4793         union kvm_mmu_role role;
4794
4795         if (tdp_enabled)
4796                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4797         else
4798                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4799
4800         return role.base;
4801 }
4802
4803 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4804 {
4805         kvm_mmu_unload(vcpu);
4806         kvm_init_mmu(vcpu, true);
4807 }
4808 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4809
4810 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4811 {
4812         int r;
4813
4814         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4815         if (r)
4816                 goto out;
4817         r = mmu_alloc_roots(vcpu);
4818         kvm_mmu_sync_roots(vcpu);
4819         if (r)
4820                 goto out;
4821         kvm_mmu_load_pgd(vcpu);
4822         static_call(kvm_x86_tlb_flush_current)(vcpu);
4823 out:
4824         return r;
4825 }
4826 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4827
4828 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4829 {
4830         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4831         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4832         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4833         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4834 }
4835 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4836
4837 static bool need_remote_flush(u64 old, u64 new)
4838 {
4839         if (!is_shadow_present_pte(old))
4840                 return false;
4841         if (!is_shadow_present_pte(new))
4842                 return true;
4843         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4844                 return true;
4845         old ^= shadow_nx_mask;
4846         new ^= shadow_nx_mask;
4847         return (old & ~new & PT64_PERM_MASK) != 0;
4848 }
4849
4850 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4851                                     int *bytes)
4852 {
4853         u64 gentry = 0;
4854         int r;
4855
4856         /*
4857          * Assume that the pte write on a page table of the same type
4858          * as the current vcpu paging mode since we update the sptes only
4859          * when they have the same mode.
4860          */
4861         if (is_pae(vcpu) && *bytes == 4) {
4862                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4863                 *gpa &= ~(gpa_t)7;
4864                 *bytes = 8;
4865         }
4866
4867         if (*bytes == 4 || *bytes == 8) {
4868                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4869                 if (r)
4870                         gentry = 0;
4871         }
4872
4873         return gentry;
4874 }
4875
4876 /*
4877  * If we're seeing too many writes to a page, it may no longer be a page table,
4878  * or we may be forking, in which case it is better to unmap the page.
4879  */
4880 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4881 {
4882         /*
4883          * Skip write-flooding detected for the sp whose level is 1, because
4884          * it can become unsync, then the guest page is not write-protected.
4885          */
4886         if (sp->role.level == PG_LEVEL_4K)
4887                 return false;
4888
4889         atomic_inc(&sp->write_flooding_count);
4890         return atomic_read(&sp->write_flooding_count) >= 3;
4891 }
4892
4893 /*
4894  * Misaligned accesses are too much trouble to fix up; also, they usually
4895  * indicate a page is not used as a page table.
4896  */
4897 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4898                                     int bytes)
4899 {
4900         unsigned offset, pte_size, misaligned;
4901
4902         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4903                  gpa, bytes, sp->role.word);
4904
4905         offset = offset_in_page(gpa);
4906         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4907
4908         /*
4909          * Sometimes, the OS only writes the last one bytes to update status
4910          * bits, for example, in linux, andb instruction is used in clear_bit().
4911          */
4912         if (!(offset & (pte_size - 1)) && bytes == 1)
4913                 return false;
4914
4915         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4916         misaligned |= bytes < 4;
4917
4918         return misaligned;
4919 }
4920
4921 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4922 {
4923         unsigned page_offset, quadrant;
4924         u64 *spte;
4925         int level;
4926
4927         page_offset = offset_in_page(gpa);
4928         level = sp->role.level;
4929         *nspte = 1;
4930         if (!sp->role.gpte_is_8_bytes) {
4931                 page_offset <<= 1;      /* 32->64 */
4932                 /*
4933                  * A 32-bit pde maps 4MB while the shadow pdes map
4934                  * only 2MB.  So we need to double the offset again
4935                  * and zap two pdes instead of one.
4936                  */
4937                 if (level == PT32_ROOT_LEVEL) {
4938                         page_offset &= ~7; /* kill rounding error */
4939                         page_offset <<= 1;
4940                         *nspte = 2;
4941                 }
4942                 quadrant = page_offset >> PAGE_SHIFT;
4943                 page_offset &= ~PAGE_MASK;
4944                 if (quadrant != sp->role.quadrant)
4945                         return NULL;
4946         }
4947
4948         spte = &sp->spt[page_offset / sizeof(*spte)];
4949         return spte;
4950 }
4951
4952 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4953                               const u8 *new, int bytes,
4954                               struct kvm_page_track_notifier_node *node)
4955 {
4956         gfn_t gfn = gpa >> PAGE_SHIFT;
4957         struct kvm_mmu_page *sp;
4958         LIST_HEAD(invalid_list);
4959         u64 entry, gentry, *spte;
4960         int npte;
4961         bool remote_flush, local_flush;
4962
4963         /*
4964          * If we don't have indirect shadow pages, it means no page is
4965          * write-protected, so we can exit simply.
4966          */
4967         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4968                 return;
4969
4970         remote_flush = local_flush = false;
4971
4972         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4973
4974         /*
4975          * No need to care whether allocation memory is successful
4976          * or not since pte prefetch is skiped if it does not have
4977          * enough objects in the cache.
4978          */
4979         mmu_topup_memory_caches(vcpu, true);
4980
4981         write_lock(&vcpu->kvm->mmu_lock);
4982
4983         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4984
4985         ++vcpu->kvm->stat.mmu_pte_write;
4986         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4987
4988         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4989                 if (detect_write_misaligned(sp, gpa, bytes) ||
4990                       detect_write_flooding(sp)) {
4991                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4992                         ++vcpu->kvm->stat.mmu_flooded;
4993                         continue;
4994                 }
4995
4996                 spte = get_written_sptes(sp, gpa, &npte);
4997                 if (!spte)
4998                         continue;
4999
5000                 local_flush = true;
5001                 while (npte--) {
5002                         entry = *spte;
5003                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5004                         if (gentry && sp->role.level != PG_LEVEL_4K)
5005                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5006                         if (need_remote_flush(entry, *spte))
5007                                 remote_flush = true;
5008                         ++spte;
5009                 }
5010         }
5011         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5012         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5013         write_unlock(&vcpu->kvm->mmu_lock);
5014 }
5015
5016 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5017                        void *insn, int insn_len)
5018 {
5019         int r, emulation_type = EMULTYPE_PF;
5020         bool direct = vcpu->arch.mmu->direct_map;
5021
5022         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5023                 return RET_PF_RETRY;
5024
5025         r = RET_PF_INVALID;
5026         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5027                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5028                 if (r == RET_PF_EMULATE)
5029                         goto emulate;
5030         }
5031
5032         if (r == RET_PF_INVALID) {
5033                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5034                                           lower_32_bits(error_code), false);
5035                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5036                         return -EIO;
5037         }
5038
5039         if (r < 0)
5040                 return r;
5041         if (r != RET_PF_EMULATE)
5042                 return 1;
5043
5044         /*
5045          * Before emulating the instruction, check if the error code
5046          * was due to a RO violation while translating the guest page.
5047          * This can occur when using nested virtualization with nested
5048          * paging in both guests. If true, we simply unprotect the page
5049          * and resume the guest.
5050          */
5051         if (vcpu->arch.mmu->direct_map &&
5052             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5053                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5054                 return 1;
5055         }
5056
5057         /*
5058          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5059          * optimistically try to just unprotect the page and let the processor
5060          * re-execute the instruction that caused the page fault.  Do not allow
5061          * retrying MMIO emulation, as it's not only pointless but could also
5062          * cause us to enter an infinite loop because the processor will keep
5063          * faulting on the non-existent MMIO address.  Retrying an instruction
5064          * from a nested guest is also pointless and dangerous as we are only
5065          * explicitly shadowing L1's page tables, i.e. unprotecting something
5066          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5067          */
5068         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5069                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5070 emulate:
5071         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5072                                        insn_len);
5073 }
5074 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5075
5076 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5077                             gva_t gva, hpa_t root_hpa)
5078 {
5079         int i;
5080
5081         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5082         if (mmu != &vcpu->arch.guest_mmu) {
5083                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5084                 if (is_noncanonical_address(gva, vcpu))
5085                         return;
5086
5087                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5088         }
5089
5090         if (!mmu->invlpg)
5091                 return;
5092
5093         if (root_hpa == INVALID_PAGE) {
5094                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5095
5096                 /*
5097                  * INVLPG is required to invalidate any global mappings for the VA,
5098                  * irrespective of PCID. Since it would take us roughly similar amount
5099                  * of work to determine whether any of the prev_root mappings of the VA
5100                  * is marked global, or to just sync it blindly, so we might as well
5101                  * just always sync it.
5102                  *
5103                  * Mappings not reachable via the current cr3 or the prev_roots will be
5104                  * synced when switching to that cr3, so nothing needs to be done here
5105                  * for them.
5106                  */
5107                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5108                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5109                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5110         } else {
5111                 mmu->invlpg(vcpu, gva, root_hpa);
5112         }
5113 }
5114
5115 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5116 {
5117         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5118         ++vcpu->stat.invlpg;
5119 }
5120 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5121
5122
5123 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5124 {
5125         struct kvm_mmu *mmu = vcpu->arch.mmu;
5126         bool tlb_flush = false;
5127         uint i;
5128
5129         if (pcid == kvm_get_active_pcid(vcpu)) {
5130                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5131                 tlb_flush = true;
5132         }
5133
5134         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5135                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5136                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5137                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5138                         tlb_flush = true;
5139                 }
5140         }
5141
5142         if (tlb_flush)
5143                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5144
5145         ++vcpu->stat.invlpg;
5146
5147         /*
5148          * Mappings not reachable via the current cr3 or the prev_roots will be
5149          * synced when switching to that cr3, so nothing needs to be done here
5150          * for them.
5151          */
5152 }
5153
5154 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5155                        int tdp_huge_page_level)
5156 {
5157         tdp_enabled = enable_tdp;
5158         max_tdp_level = tdp_max_root_level;
5159
5160         /*
5161          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5162          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5163          * the kernel is not.  But, KVM never creates a page size greater than
5164          * what is used by the kernel for any given HVA, i.e. the kernel's
5165          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5166          */
5167         if (tdp_enabled)
5168                 max_huge_page_level = tdp_huge_page_level;
5169         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5170                 max_huge_page_level = PG_LEVEL_1G;
5171         else
5172                 max_huge_page_level = PG_LEVEL_2M;
5173 }
5174 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5175
5176 /* The return value indicates if tlb flush on all vcpus is needed. */
5177 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5178                                     struct kvm_memory_slot *slot);
5179
5180 /* The caller should hold mmu-lock before calling this function. */
5181 static __always_inline bool
5182 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5183                         slot_level_handler fn, int start_level, int end_level,
5184                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5185 {
5186         struct slot_rmap_walk_iterator iterator;
5187         bool flush = false;
5188
5189         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5190                         end_gfn, &iterator) {
5191                 if (iterator.rmap)
5192                         flush |= fn(kvm, iterator.rmap, memslot);
5193
5194                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5195                         if (flush && lock_flush_tlb) {
5196                                 kvm_flush_remote_tlbs_with_address(kvm,
5197                                                 start_gfn,
5198                                                 iterator.gfn - start_gfn + 1);
5199                                 flush = false;
5200                         }
5201                         cond_resched_rwlock_write(&kvm->mmu_lock);
5202                 }
5203         }
5204
5205         if (flush && lock_flush_tlb) {
5206                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5207                                                    end_gfn - start_gfn + 1);
5208                 flush = false;
5209         }
5210
5211         return flush;
5212 }
5213
5214 static __always_inline bool
5215 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5216                   slot_level_handler fn, int start_level, int end_level,
5217                   bool lock_flush_tlb)
5218 {
5219         return slot_handle_level_range(kvm, memslot, fn, start_level,
5220                         end_level, memslot->base_gfn,
5221                         memslot->base_gfn + memslot->npages - 1,
5222                         lock_flush_tlb);
5223 }
5224
5225 static __always_inline bool
5226 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5227                  slot_level_handler fn, bool lock_flush_tlb)
5228 {
5229         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5230                                  PG_LEVEL_4K, lock_flush_tlb);
5231 }
5232
5233 static void free_mmu_pages(struct kvm_mmu *mmu)
5234 {
5235         free_page((unsigned long)mmu->pae_root);
5236         free_page((unsigned long)mmu->lm_root);
5237 }
5238
5239 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5240 {
5241         struct page *page;
5242         int i;
5243
5244         mmu->root_hpa = INVALID_PAGE;
5245         mmu->root_pgd = 0;
5246         mmu->translate_gpa = translate_gpa;
5247         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5248                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5249
5250         /*
5251          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5252          * while the PDP table is a per-vCPU construct that's allocated at MMU
5253          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5254          * x86_64.  Therefore we need to allocate the PDP table in the first
5255          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5256          * generally doesn't use PAE paging and can skip allocating the PDP
5257          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5258          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5259          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5260          */
5261         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5262                 return 0;
5263
5264         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5265         if (!page)
5266                 return -ENOMEM;
5267
5268         mmu->pae_root = page_address(page);
5269         for (i = 0; i < 4; ++i)
5270                 mmu->pae_root[i] = INVALID_PAGE;
5271
5272         return 0;
5273 }
5274
5275 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5276 {
5277         int ret;
5278
5279         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5280         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5281
5282         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5283         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5284
5285         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5286
5287         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5288         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5289
5290         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5291
5292         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5293         if (ret)
5294                 return ret;
5295
5296         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5297         if (ret)
5298                 goto fail_allocate_root;
5299
5300         return ret;
5301  fail_allocate_root:
5302         free_mmu_pages(&vcpu->arch.guest_mmu);
5303         return ret;
5304 }
5305
5306 #define BATCH_ZAP_PAGES 10
5307 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5308 {
5309         struct kvm_mmu_page *sp, *node;
5310         int nr_zapped, batch = 0;
5311
5312 restart:
5313         list_for_each_entry_safe_reverse(sp, node,
5314               &kvm->arch.active_mmu_pages, link) {
5315                 /*
5316                  * No obsolete valid page exists before a newly created page
5317                  * since active_mmu_pages is a FIFO list.
5318                  */
5319                 if (!is_obsolete_sp(kvm, sp))
5320                         break;
5321
5322                 /*
5323                  * Invalid pages should never land back on the list of active
5324                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5325                  * infinite loop if the page gets put back on the list (again).
5326                  */
5327                 if (WARN_ON(sp->role.invalid))
5328                         continue;
5329
5330                 /*
5331                  * No need to flush the TLB since we're only zapping shadow
5332                  * pages with an obsolete generation number and all vCPUS have
5333                  * loaded a new root, i.e. the shadow pages being zapped cannot
5334                  * be in active use by the guest.
5335                  */
5336                 if (batch >= BATCH_ZAP_PAGES &&
5337                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5338                         batch = 0;
5339                         goto restart;
5340                 }
5341
5342                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5343                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5344                         batch += nr_zapped;
5345                         goto restart;
5346                 }
5347         }
5348
5349         /*
5350          * Trigger a remote TLB flush before freeing the page tables to ensure
5351          * KVM is not in the middle of a lockless shadow page table walk, which
5352          * may reference the pages.
5353          */
5354         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5355 }
5356
5357 /*
5358  * Fast invalidate all shadow pages and use lock-break technique
5359  * to zap obsolete pages.
5360  *
5361  * It's required when memslot is being deleted or VM is being
5362  * destroyed, in these cases, we should ensure that KVM MMU does
5363  * not use any resource of the being-deleted slot or all slots
5364  * after calling the function.
5365  */
5366 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5367 {
5368         lockdep_assert_held(&kvm->slots_lock);
5369
5370         write_lock(&kvm->mmu_lock);
5371         trace_kvm_mmu_zap_all_fast(kvm);
5372
5373         /*
5374          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5375          * held for the entire duration of zapping obsolete pages, it's
5376          * impossible for there to be multiple invalid generations associated
5377          * with *valid* shadow pages at any given time, i.e. there is exactly
5378          * one valid generation and (at most) one invalid generation.
5379          */
5380         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5381
5382         /*
5383          * Notify all vcpus to reload its shadow page table and flush TLB.
5384          * Then all vcpus will switch to new shadow page table with the new
5385          * mmu_valid_gen.
5386          *
5387          * Note: we need to do this under the protection of mmu_lock,
5388          * otherwise, vcpu would purge shadow page but miss tlb flush.
5389          */
5390         kvm_reload_remote_mmus(kvm);
5391
5392         kvm_zap_obsolete_pages(kvm);
5393
5394         if (is_tdp_mmu_enabled(kvm))
5395                 kvm_tdp_mmu_zap_all(kvm);
5396
5397         write_unlock(&kvm->mmu_lock);
5398 }
5399
5400 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5401 {
5402         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5403 }
5404
5405 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5406                         struct kvm_memory_slot *slot,
5407                         struct kvm_page_track_notifier_node *node)
5408 {
5409         kvm_mmu_zap_all_fast(kvm);
5410 }
5411
5412 void kvm_mmu_init_vm(struct kvm *kvm)
5413 {
5414         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5415
5416         kvm_mmu_init_tdp_mmu(kvm);
5417
5418         node->track_write = kvm_mmu_pte_write;
5419         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5420         kvm_page_track_register_notifier(kvm, node);
5421 }
5422
5423 void kvm_mmu_uninit_vm(struct kvm *kvm)
5424 {
5425         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5426
5427         kvm_page_track_unregister_notifier(kvm, node);
5428
5429         kvm_mmu_uninit_tdp_mmu(kvm);
5430 }
5431
5432 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5433 {
5434         struct kvm_memslots *slots;
5435         struct kvm_memory_slot *memslot;
5436         int i;
5437         bool flush;
5438
5439         write_lock(&kvm->mmu_lock);
5440         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5441                 slots = __kvm_memslots(kvm, i);
5442                 kvm_for_each_memslot(memslot, slots) {
5443                         gfn_t start, end;
5444
5445                         start = max(gfn_start, memslot->base_gfn);
5446                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5447                         if (start >= end)
5448                                 continue;
5449
5450                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5451                                                 PG_LEVEL_4K,
5452                                                 KVM_MAX_HUGEPAGE_LEVEL,
5453                                                 start, end - 1, true);
5454                 }
5455         }
5456
5457         if (is_tdp_mmu_enabled(kvm)) {
5458                 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5459                 if (flush)
5460                         kvm_flush_remote_tlbs(kvm);
5461         }
5462
5463         write_unlock(&kvm->mmu_lock);
5464 }
5465
5466 static bool slot_rmap_write_protect(struct kvm *kvm,
5467                                     struct kvm_rmap_head *rmap_head,
5468                                     struct kvm_memory_slot *slot)
5469 {
5470         return __rmap_write_protect(kvm, rmap_head, false);
5471 }
5472
5473 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5474                                       struct kvm_memory_slot *memslot,
5475                                       int start_level)
5476 {
5477         bool flush;
5478
5479         write_lock(&kvm->mmu_lock);
5480         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5481                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5482         if (is_tdp_mmu_enabled(kvm))
5483                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5484         write_unlock(&kvm->mmu_lock);
5485
5486         /*
5487          * We can flush all the TLBs out of the mmu lock without TLB
5488          * corruption since we just change the spte from writable to
5489          * readonly so that we only need to care the case of changing
5490          * spte from present to present (changing the spte from present
5491          * to nonpresent will flush all the TLBs immediately), in other
5492          * words, the only case we care is mmu_spte_update() where we
5493          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5494          * instead of PT_WRITABLE_MASK, that means it does not depend
5495          * on PT_WRITABLE_MASK anymore.
5496          */
5497         if (flush)
5498                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5499 }
5500
5501 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5502                                          struct kvm_rmap_head *rmap_head,
5503                                          struct kvm_memory_slot *slot)
5504 {
5505         u64 *sptep;
5506         struct rmap_iterator iter;
5507         int need_tlb_flush = 0;
5508         kvm_pfn_t pfn;
5509         struct kvm_mmu_page *sp;
5510
5511 restart:
5512         for_each_rmap_spte(rmap_head, &iter, sptep) {
5513                 sp = sptep_to_sp(sptep);
5514                 pfn = spte_to_pfn(*sptep);
5515
5516                 /*
5517                  * We cannot do huge page mapping for indirect shadow pages,
5518                  * which are found on the last rmap (level = 1) when not using
5519                  * tdp; such shadow pages are synced with the page table in
5520                  * the guest, and the guest page table is using 4K page size
5521                  * mapping if the indirect sp has level = 1.
5522                  */
5523                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5524                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5525                                                                pfn, PG_LEVEL_NUM)) {
5526                         pte_list_remove(rmap_head, sptep);
5527
5528                         if (kvm_available_flush_tlb_with_range())
5529                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5530                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5531                         else
5532                                 need_tlb_flush = 1;
5533
5534                         goto restart;
5535                 }
5536         }
5537
5538         return need_tlb_flush;
5539 }
5540
5541 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5542                                    const struct kvm_memory_slot *memslot)
5543 {
5544         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5545         struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5546
5547         write_lock(&kvm->mmu_lock);
5548         slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5549
5550         if (is_tdp_mmu_enabled(kvm))
5551                 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5552         write_unlock(&kvm->mmu_lock);
5553 }
5554
5555 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5556                                         struct kvm_memory_slot *memslot)
5557 {
5558         /*
5559          * All current use cases for flushing the TLBs for a specific memslot
5560          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5561          * The interaction between the various operations on memslot must be
5562          * serialized by slots_locks to ensure the TLB flush from one operation
5563          * is observed by any other operation on the same memslot.
5564          */
5565         lockdep_assert_held(&kvm->slots_lock);
5566         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5567                                            memslot->npages);
5568 }
5569
5570 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5571                                    struct kvm_memory_slot *memslot)
5572 {
5573         bool flush;
5574
5575         write_lock(&kvm->mmu_lock);
5576         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5577         if (is_tdp_mmu_enabled(kvm))
5578                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5579         write_unlock(&kvm->mmu_lock);
5580
5581         /*
5582          * It's also safe to flush TLBs out of mmu lock here as currently this
5583          * function is only used for dirty logging, in which case flushing TLB
5584          * out of mmu lock also guarantees no dirty pages will be lost in
5585          * dirty_bitmap.
5586          */
5587         if (flush)
5588                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5589 }
5590
5591 void kvm_mmu_zap_all(struct kvm *kvm)
5592 {
5593         struct kvm_mmu_page *sp, *node;
5594         LIST_HEAD(invalid_list);
5595         int ign;
5596
5597         write_lock(&kvm->mmu_lock);
5598 restart:
5599         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5600                 if (WARN_ON(sp->role.invalid))
5601                         continue;
5602                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5603                         goto restart;
5604                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5605                         goto restart;
5606         }
5607
5608         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5609
5610         if (is_tdp_mmu_enabled(kvm))
5611                 kvm_tdp_mmu_zap_all(kvm);
5612
5613         write_unlock(&kvm->mmu_lock);
5614 }
5615
5616 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5617 {
5618         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5619
5620         gen &= MMIO_SPTE_GEN_MASK;
5621
5622         /*
5623          * Generation numbers are incremented in multiples of the number of
5624          * address spaces in order to provide unique generations across all
5625          * address spaces.  Strip what is effectively the address space
5626          * modifier prior to checking for a wrap of the MMIO generation so
5627          * that a wrap in any address space is detected.
5628          */
5629         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5630
5631         /*
5632          * The very rare case: if the MMIO generation number has wrapped,
5633          * zap all shadow pages.
5634          */
5635         if (unlikely(gen == 0)) {
5636                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5637                 kvm_mmu_zap_all_fast(kvm);
5638         }
5639 }
5640
5641 static unsigned long
5642 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5643 {
5644         struct kvm *kvm;
5645         int nr_to_scan = sc->nr_to_scan;
5646         unsigned long freed = 0;
5647
5648         mutex_lock(&kvm_lock);
5649
5650         list_for_each_entry(kvm, &vm_list, vm_list) {
5651                 int idx;
5652                 LIST_HEAD(invalid_list);
5653
5654                 /*
5655                  * Never scan more than sc->nr_to_scan VM instances.
5656                  * Will not hit this condition practically since we do not try
5657                  * to shrink more than one VM and it is very unlikely to see
5658                  * !n_used_mmu_pages so many times.
5659                  */
5660                 if (!nr_to_scan--)
5661                         break;
5662                 /*
5663                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5664                  * here. We may skip a VM instance errorneosly, but we do not
5665                  * want to shrink a VM that only started to populate its MMU
5666                  * anyway.
5667                  */
5668                 if (!kvm->arch.n_used_mmu_pages &&
5669                     !kvm_has_zapped_obsolete_pages(kvm))
5670                         continue;
5671
5672                 idx = srcu_read_lock(&kvm->srcu);
5673                 write_lock(&kvm->mmu_lock);
5674
5675                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5676                         kvm_mmu_commit_zap_page(kvm,
5677                               &kvm->arch.zapped_obsolete_pages);
5678                         goto unlock;
5679                 }
5680
5681                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5682
5683 unlock:
5684                 write_unlock(&kvm->mmu_lock);
5685                 srcu_read_unlock(&kvm->srcu, idx);
5686
5687                 /*
5688                  * unfair on small ones
5689                  * per-vm shrinkers cry out
5690                  * sadness comes quickly
5691                  */
5692                 list_move_tail(&kvm->vm_list, &vm_list);
5693                 break;
5694         }
5695
5696         mutex_unlock(&kvm_lock);
5697         return freed;
5698 }
5699
5700 static unsigned long
5701 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5702 {
5703         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5704 }
5705
5706 static struct shrinker mmu_shrinker = {
5707         .count_objects = mmu_shrink_count,
5708         .scan_objects = mmu_shrink_scan,
5709         .seeks = DEFAULT_SEEKS * 10,
5710 };
5711
5712 static void mmu_destroy_caches(void)
5713 {
5714         kmem_cache_destroy(pte_list_desc_cache);
5715         kmem_cache_destroy(mmu_page_header_cache);
5716 }
5717
5718 static void kvm_set_mmio_spte_mask(void)
5719 {
5720         u64 mask;
5721
5722         /*
5723          * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5724          * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5725          * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5726          * 52-bit physical addresses then there are no reserved PA bits in the
5727          * PTEs and so the reserved PA approach must be disabled.
5728          */
5729         if (shadow_phys_bits < 52)
5730                 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5731         else
5732                 mask = 0;
5733
5734         kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5735 }
5736
5737 static bool get_nx_auto_mode(void)
5738 {
5739         /* Return true when CPU has the bug, and mitigations are ON */
5740         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5741 }
5742
5743 static void __set_nx_huge_pages(bool val)
5744 {
5745         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5746 }
5747
5748 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5749 {
5750         bool old_val = nx_huge_pages;
5751         bool new_val;
5752
5753         /* In "auto" mode deploy workaround only if CPU has the bug. */
5754         if (sysfs_streq(val, "off"))
5755                 new_val = 0;
5756         else if (sysfs_streq(val, "force"))
5757                 new_val = 1;
5758         else if (sysfs_streq(val, "auto"))
5759                 new_val = get_nx_auto_mode();
5760         else if (strtobool(val, &new_val) < 0)
5761                 return -EINVAL;
5762
5763         __set_nx_huge_pages(new_val);
5764
5765         if (new_val != old_val) {
5766                 struct kvm *kvm;
5767
5768                 mutex_lock(&kvm_lock);
5769
5770                 list_for_each_entry(kvm, &vm_list, vm_list) {
5771                         mutex_lock(&kvm->slots_lock);
5772                         kvm_mmu_zap_all_fast(kvm);
5773                         mutex_unlock(&kvm->slots_lock);
5774
5775                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5776                 }
5777                 mutex_unlock(&kvm_lock);
5778         }
5779
5780         return 0;
5781 }
5782
5783 int kvm_mmu_module_init(void)
5784 {
5785         int ret = -ENOMEM;
5786
5787         if (nx_huge_pages == -1)
5788                 __set_nx_huge_pages(get_nx_auto_mode());
5789
5790         /*
5791          * MMU roles use union aliasing which is, generally speaking, an
5792          * undefined behavior. However, we supposedly know how compilers behave
5793          * and the current status quo is unlikely to change. Guardians below are
5794          * supposed to let us know if the assumption becomes false.
5795          */
5796         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5797         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5798         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5799
5800         kvm_mmu_reset_all_pte_masks();
5801
5802         kvm_set_mmio_spte_mask();
5803
5804         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5805                                             sizeof(struct pte_list_desc),
5806                                             0, SLAB_ACCOUNT, NULL);
5807         if (!pte_list_desc_cache)
5808                 goto out;
5809
5810         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5811                                                   sizeof(struct kvm_mmu_page),
5812                                                   0, SLAB_ACCOUNT, NULL);
5813         if (!mmu_page_header_cache)
5814                 goto out;
5815
5816         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5817                 goto out;
5818
5819         ret = register_shrinker(&mmu_shrinker);
5820         if (ret)
5821                 goto out;
5822
5823         return 0;
5824
5825 out:
5826         mmu_destroy_caches();
5827         return ret;
5828 }
5829
5830 /*
5831  * Calculate mmu pages needed for kvm.
5832  */
5833 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5834 {
5835         unsigned long nr_mmu_pages;
5836         unsigned long nr_pages = 0;
5837         struct kvm_memslots *slots;
5838         struct kvm_memory_slot *memslot;
5839         int i;
5840
5841         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5842                 slots = __kvm_memslots(kvm, i);
5843
5844                 kvm_for_each_memslot(memslot, slots)
5845                         nr_pages += memslot->npages;
5846         }
5847
5848         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5849         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5850
5851         return nr_mmu_pages;
5852 }
5853
5854 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5855 {
5856         kvm_mmu_unload(vcpu);
5857         free_mmu_pages(&vcpu->arch.root_mmu);
5858         free_mmu_pages(&vcpu->arch.guest_mmu);
5859         mmu_free_memory_caches(vcpu);
5860 }
5861
5862 void kvm_mmu_module_exit(void)
5863 {
5864         mmu_destroy_caches();
5865         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5866         unregister_shrinker(&mmu_shrinker);
5867         mmu_audit_disable();
5868 }
5869
5870 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5871 {
5872         unsigned int old_val;
5873         int err;
5874
5875         old_val = nx_huge_pages_recovery_ratio;
5876         err = param_set_uint(val, kp);
5877         if (err)
5878                 return err;
5879
5880         if (READ_ONCE(nx_huge_pages) &&
5881             !old_val && nx_huge_pages_recovery_ratio) {
5882                 struct kvm *kvm;
5883
5884                 mutex_lock(&kvm_lock);
5885
5886                 list_for_each_entry(kvm, &vm_list, vm_list)
5887                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5888
5889                 mutex_unlock(&kvm_lock);
5890         }
5891
5892         return err;
5893 }
5894
5895 static void kvm_recover_nx_lpages(struct kvm *kvm)
5896 {
5897         int rcu_idx;
5898         struct kvm_mmu_page *sp;
5899         unsigned int ratio;
5900         LIST_HEAD(invalid_list);
5901         ulong to_zap;
5902
5903         rcu_idx = srcu_read_lock(&kvm->srcu);
5904         write_lock(&kvm->mmu_lock);
5905
5906         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5907         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5908         for ( ; to_zap; --to_zap) {
5909                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5910                         break;
5911
5912                 /*
5913                  * We use a separate list instead of just using active_mmu_pages
5914                  * because the number of lpage_disallowed pages is expected to
5915                  * be relatively small compared to the total.
5916                  */
5917                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5918                                       struct kvm_mmu_page,
5919                                       lpage_disallowed_link);
5920                 WARN_ON_ONCE(!sp->lpage_disallowed);
5921                 if (is_tdp_mmu_page(sp)) {
5922                         kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
5923                                 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5924                 } else {
5925                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5926                         WARN_ON_ONCE(sp->lpage_disallowed);
5927                 }
5928
5929                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5930                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5931                         cond_resched_rwlock_write(&kvm->mmu_lock);
5932                 }
5933         }
5934         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5935
5936         write_unlock(&kvm->mmu_lock);
5937         srcu_read_unlock(&kvm->srcu, rcu_idx);
5938 }
5939
5940 static long get_nx_lpage_recovery_timeout(u64 start_time)
5941 {
5942         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5943                 ? start_time + 60 * HZ - get_jiffies_64()
5944                 : MAX_SCHEDULE_TIMEOUT;
5945 }
5946
5947 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5948 {
5949         u64 start_time;
5950         long remaining_time;
5951
5952         while (true) {
5953                 start_time = get_jiffies_64();
5954                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5955
5956                 set_current_state(TASK_INTERRUPTIBLE);
5957                 while (!kthread_should_stop() && remaining_time > 0) {
5958                         schedule_timeout(remaining_time);
5959                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
5960                         set_current_state(TASK_INTERRUPTIBLE);
5961                 }
5962
5963                 set_current_state(TASK_RUNNING);
5964
5965                 if (kthread_should_stop())
5966                         return 0;
5967
5968                 kvm_recover_nx_lpages(kvm);
5969         }
5970 }
5971
5972 int kvm_mmu_post_init_vm(struct kvm *kvm)
5973 {
5974         int err;
5975
5976         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
5977                                           "kvm-nx-lpage-recovery",
5978                                           &kvm->arch.nx_lpage_recovery_thread);
5979         if (!err)
5980                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
5981
5982         return err;
5983 }
5984
5985 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
5986 {
5987         if (kvm->arch.nx_lpage_recovery_thread)
5988                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
5989 }