KVM: Pass MMU notifier range flags to kvm_unmap_hva_range()
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "x86.h"
23 #include "kvm_cache_regs.h"
24 #include "kvm_emulate.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43 #include <linux/kthread.h>
44
45 #include <asm/page.h>
46 #include <asm/memtype.h>
47 #include <asm/cmpxchg.h>
48 #include <asm/e820/api.h>
49 #include <asm/io.h>
50 #include <asm/vmx.h>
51 #include <asm/kvm_page_track.h>
52 #include "trace.h"
53
54 extern bool itlb_multihit_kvm_mitigation;
55
56 static int __read_mostly nx_huge_pages = -1;
57 #ifdef CONFIG_PREEMPT_RT
58 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
59 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
60 #else
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
62 #endif
63
64 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
65 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
66
67 static struct kernel_param_ops nx_huge_pages_ops = {
68         .set = set_nx_huge_pages,
69         .get = param_get_bool,
70 };
71
72 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
73         .set = set_nx_huge_pages_recovery_ratio,
74         .get = param_get_uint,
75 };
76
77 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
78 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
79 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
80                 &nx_huge_pages_recovery_ratio, 0644);
81 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
82
83 static bool __read_mostly force_flush_and_sync_on_reuse;
84 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
85
86 /*
87  * When setting this variable to true it enables Two-Dimensional-Paging
88  * where the hardware walks 2 page tables:
89  * 1. the guest-virtual to guest-physical
90  * 2. while doing 1. it walks guest-physical to host-physical
91  * If the hardware supports that we don't need to do shadow paging.
92  */
93 bool tdp_enabled = false;
94
95 static int max_huge_page_level __read_mostly;
96 static int max_tdp_level __read_mostly;
97
98 enum {
99         AUDIT_PRE_PAGE_FAULT,
100         AUDIT_POST_PAGE_FAULT,
101         AUDIT_PRE_PTE_WRITE,
102         AUDIT_POST_PTE_WRITE,
103         AUDIT_PRE_SYNC,
104         AUDIT_POST_SYNC
105 };
106
107 #undef MMU_DEBUG
108
109 #ifdef MMU_DEBUG
110 static bool dbg = 0;
111 module_param(dbg, bool, 0644);
112
113 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
114 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
115 #define MMU_WARN_ON(x) WARN_ON(x)
116 #else
117 #define pgprintk(x...) do { } while (0)
118 #define rmap_printk(x...) do { } while (0)
119 #define MMU_WARN_ON(x) do { } while (0)
120 #endif
121
122 #define PTE_PREFETCH_NUM                8
123
124 #define PT_FIRST_AVAIL_BITS_SHIFT 10
125 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
126
127 /*
128  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
129  * Access Tracking SPTEs.
130  */
131 #define SPTE_SPECIAL_MASK (3ULL << 52)
132 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
133 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
134 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
135 #define SPTE_MMIO_MASK (3ULL << 52)
136
137 #define PT64_LEVEL_BITS 9
138
139 #define PT64_LEVEL_SHIFT(level) \
140                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
141
142 #define PT64_INDEX(address, level)\
143         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
144
145
146 #define PT32_LEVEL_BITS 10
147
148 #define PT32_LEVEL_SHIFT(level) \
149                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
150
151 #define PT32_LVL_OFFSET_MASK(level) \
152         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
153                                                 * PT32_LEVEL_BITS))) - 1))
154
155 #define PT32_INDEX(address, level)\
156         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
157
158
159 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
160 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
161 #else
162 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
163 #endif
164 #define PT64_LVL_ADDR_MASK(level) \
165         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
166                                                 * PT64_LEVEL_BITS))) - 1))
167 #define PT64_LVL_OFFSET_MASK(level) \
168         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
169                                                 * PT64_LEVEL_BITS))) - 1))
170
171 #define PT32_BASE_ADDR_MASK PAGE_MASK
172 #define PT32_DIR_BASE_ADDR_MASK \
173         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
174 #define PT32_LVL_ADDR_MASK(level) \
175         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
176                                             * PT32_LEVEL_BITS))) - 1))
177
178 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
179                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
180
181 #define ACC_EXEC_MASK    1
182 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
183 #define ACC_USER_MASK    PT_USER_MASK
184 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
185
186 /* The mask for the R/X bits in EPT PTEs */
187 #define PT64_EPT_READABLE_MASK                  0x1ull
188 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
189
190 #include <trace/events/kvm.h>
191
192 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
193 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
194
195 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
196
197 /* make pte_list_desc fit well in cache line */
198 #define PTE_LIST_EXT 3
199
200 /*
201  * Return values of handle_mmio_page_fault and mmu.page_fault:
202  * RET_PF_RETRY: let CPU fault again on the address.
203  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
204  *
205  * For handle_mmio_page_fault only:
206  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
207  */
208 enum {
209         RET_PF_RETRY = 0,
210         RET_PF_EMULATE = 1,
211         RET_PF_INVALID = 2,
212 };
213
214 struct pte_list_desc {
215         u64 *sptes[PTE_LIST_EXT];
216         struct pte_list_desc *more;
217 };
218
219 struct kvm_shadow_walk_iterator {
220         u64 addr;
221         hpa_t shadow_addr;
222         u64 *sptep;
223         int level;
224         unsigned index;
225 };
226
227 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
228         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
229                                          (_root), (_addr));                \
230              shadow_walk_okay(&(_walker));                                 \
231              shadow_walk_next(&(_walker)))
232
233 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
234         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
235              shadow_walk_okay(&(_walker));                      \
236              shadow_walk_next(&(_walker)))
237
238 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
239         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
240              shadow_walk_okay(&(_walker)) &&                            \
241                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
242              __shadow_walk_next(&(_walker), spte))
243
244 static struct kmem_cache *pte_list_desc_cache;
245 static struct kmem_cache *mmu_page_header_cache;
246 static struct percpu_counter kvm_total_used_mmu_pages;
247
248 static u64 __read_mostly shadow_nx_mask;
249 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
250 static u64 __read_mostly shadow_user_mask;
251 static u64 __read_mostly shadow_accessed_mask;
252 static u64 __read_mostly shadow_dirty_mask;
253 static u64 __read_mostly shadow_mmio_value;
254 static u64 __read_mostly shadow_mmio_access_mask;
255 static u64 __read_mostly shadow_present_mask;
256 static u64 __read_mostly shadow_me_mask;
257
258 /*
259  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
260  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
261  * pages.
262  */
263 static u64 __read_mostly shadow_acc_track_mask;
264
265 /*
266  * The mask/shift to use for saving the original R/X bits when marking the PTE
267  * as not-present for access tracking purposes. We do not save the W bit as the
268  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
269  * restored only when a write is attempted to the page.
270  */
271 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
272                                                     PT64_EPT_EXECUTABLE_MASK;
273 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
274
275 /*
276  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
277  * to guard against L1TF attacks.
278  */
279 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
280
281 /*
282  * The number of high-order 1 bits to use in the mask above.
283  */
284 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
285
286 /*
287  * In some cases, we need to preserve the GFN of a non-present or reserved
288  * SPTE when we usurp the upper five bits of the physical address space to
289  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
290  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
291  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
292  * high and low parts.  This mask covers the lower bits of the GFN.
293  */
294 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
295
296 /*
297  * The number of non-reserved physical address bits irrespective of features
298  * that repurpose legal bits, e.g. MKTME.
299  */
300 static u8 __read_mostly shadow_phys_bits;
301
302 static void mmu_spte_set(u64 *sptep, u64 spte);
303 static bool is_executable_pte(u64 spte);
304 static union kvm_mmu_page_role
305 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
306
307 #define CREATE_TRACE_POINTS
308 #include "mmutrace.h"
309
310
311 static inline bool kvm_available_flush_tlb_with_range(void)
312 {
313         return kvm_x86_ops.tlb_remote_flush_with_range;
314 }
315
316 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
317                 struct kvm_tlb_range *range)
318 {
319         int ret = -ENOTSUPP;
320
321         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
322                 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
323
324         if (ret)
325                 kvm_flush_remote_tlbs(kvm);
326 }
327
328 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
329                 u64 start_gfn, u64 pages)
330 {
331         struct kvm_tlb_range range;
332
333         range.start_gfn = start_gfn;
334         range.pages = pages;
335
336         kvm_flush_remote_tlbs_with_range(kvm, &range);
337 }
338
339 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
340 {
341         BUG_ON((u64)(unsigned)access_mask != access_mask);
342         WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
343         WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
344         shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
345         shadow_mmio_access_mask = access_mask;
346 }
347 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
348
349 static bool is_mmio_spte(u64 spte)
350 {
351         return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
352 }
353
354 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
355 {
356         return sp->role.ad_disabled;
357 }
358
359 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
360 {
361         /*
362          * When using the EPT page-modification log, the GPAs in the log
363          * would come from L2 rather than L1.  Therefore, we need to rely
364          * on write protection to record dirty pages.  This also bypasses
365          * PML, since writes now result in a vmexit.
366          */
367         return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
368 }
369
370 static inline bool spte_ad_enabled(u64 spte)
371 {
372         MMU_WARN_ON(is_mmio_spte(spte));
373         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
374 }
375
376 static inline bool spte_ad_need_write_protect(u64 spte)
377 {
378         MMU_WARN_ON(is_mmio_spte(spte));
379         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
380 }
381
382 static bool is_nx_huge_page_enabled(void)
383 {
384         return READ_ONCE(nx_huge_pages);
385 }
386
387 static inline u64 spte_shadow_accessed_mask(u64 spte)
388 {
389         MMU_WARN_ON(is_mmio_spte(spte));
390         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
391 }
392
393 static inline u64 spte_shadow_dirty_mask(u64 spte)
394 {
395         MMU_WARN_ON(is_mmio_spte(spte));
396         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
397 }
398
399 static inline bool is_access_track_spte(u64 spte)
400 {
401         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
402 }
403
404 /*
405  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
406  * the memslots generation and is derived as follows:
407  *
408  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
409  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
410  *
411  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
412  * the MMIO generation number, as doing so would require stealing a bit from
413  * the "real" generation number and thus effectively halve the maximum number
414  * of MMIO generations that can be handled before encountering a wrap (which
415  * requires a full MMU zap).  The flag is instead explicitly queried when
416  * checking for MMIO spte cache hits.
417  */
418 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(17, 0)
419
420 #define MMIO_SPTE_GEN_LOW_START         3
421 #define MMIO_SPTE_GEN_LOW_END           11
422 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
423                                                     MMIO_SPTE_GEN_LOW_START)
424
425 #define MMIO_SPTE_GEN_HIGH_START        PT64_SECOND_AVAIL_BITS_SHIFT
426 #define MMIO_SPTE_GEN_HIGH_END          62
427 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
428                                                     MMIO_SPTE_GEN_HIGH_START)
429
430 static u64 generation_mmio_spte_mask(u64 gen)
431 {
432         u64 mask;
433
434         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
435         BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
436
437         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
438         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
439         return mask;
440 }
441
442 static u64 get_mmio_spte_generation(u64 spte)
443 {
444         u64 gen;
445
446         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
447         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
448         return gen;
449 }
450
451 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
452 {
453
454         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
455         u64 mask = generation_mmio_spte_mask(gen);
456         u64 gpa = gfn << PAGE_SHIFT;
457
458         access &= shadow_mmio_access_mask;
459         mask |= shadow_mmio_value | access;
460         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
461         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
462                 << shadow_nonpresent_or_rsvd_mask_len;
463
464         return mask;
465 }
466
467 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
468                            unsigned int access)
469 {
470         u64 mask = make_mmio_spte(vcpu, gfn, access);
471         unsigned int gen = get_mmio_spte_generation(mask);
472
473         access = mask & ACC_ALL;
474
475         trace_mark_mmio_spte(sptep, gfn, access, gen);
476         mmu_spte_set(sptep, mask);
477 }
478
479 static gfn_t get_mmio_spte_gfn(u64 spte)
480 {
481         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
482
483         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
484                & shadow_nonpresent_or_rsvd_mask;
485
486         return gpa >> PAGE_SHIFT;
487 }
488
489 static unsigned get_mmio_spte_access(u64 spte)
490 {
491         return spte & shadow_mmio_access_mask;
492 }
493
494 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
495                           kvm_pfn_t pfn, unsigned int access)
496 {
497         if (unlikely(is_noslot_pfn(pfn))) {
498                 mark_mmio_spte(vcpu, sptep, gfn, access);
499                 return true;
500         }
501
502         return false;
503 }
504
505 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
506 {
507         u64 kvm_gen, spte_gen, gen;
508
509         gen = kvm_vcpu_memslots(vcpu)->generation;
510         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
511                 return false;
512
513         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
514         spte_gen = get_mmio_spte_generation(spte);
515
516         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
517         return likely(kvm_gen == spte_gen);
518 }
519
520 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
521                                   struct x86_exception *exception)
522 {
523         /* Check if guest physical address doesn't exceed guest maximum */
524         if (kvm_mmu_is_illegal_gpa(vcpu, gpa)) {
525                 exception->error_code |= PFERR_RSVD_MASK;
526                 return UNMAPPED_GVA;
527         }
528
529         return gpa;
530 }
531
532 /*
533  * Sets the shadow PTE masks used by the MMU.
534  *
535  * Assumptions:
536  *  - Setting either @accessed_mask or @dirty_mask requires setting both
537  *  - At least one of @accessed_mask or @acc_track_mask must be set
538  */
539 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
540                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
541                 u64 acc_track_mask, u64 me_mask)
542 {
543         BUG_ON(!dirty_mask != !accessed_mask);
544         BUG_ON(!accessed_mask && !acc_track_mask);
545         BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
546
547         shadow_user_mask = user_mask;
548         shadow_accessed_mask = accessed_mask;
549         shadow_dirty_mask = dirty_mask;
550         shadow_nx_mask = nx_mask;
551         shadow_x_mask = x_mask;
552         shadow_present_mask = p_mask;
553         shadow_acc_track_mask = acc_track_mask;
554         shadow_me_mask = me_mask;
555 }
556 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
557
558 static u8 kvm_get_shadow_phys_bits(void)
559 {
560         /*
561          * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
562          * in CPU detection code, but the processor treats those reduced bits as
563          * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
564          * the physical address bits reported by CPUID.
565          */
566         if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
567                 return cpuid_eax(0x80000008) & 0xff;
568
569         /*
570          * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
571          * custom CPUID.  Proceed with whatever the kernel found since these features
572          * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
573          */
574         return boot_cpu_data.x86_phys_bits;
575 }
576
577 static void kvm_mmu_reset_all_pte_masks(void)
578 {
579         u8 low_phys_bits;
580
581         shadow_user_mask = 0;
582         shadow_accessed_mask = 0;
583         shadow_dirty_mask = 0;
584         shadow_nx_mask = 0;
585         shadow_x_mask = 0;
586         shadow_present_mask = 0;
587         shadow_acc_track_mask = 0;
588
589         shadow_phys_bits = kvm_get_shadow_phys_bits();
590
591         /*
592          * If the CPU has 46 or less physical address bits, then set an
593          * appropriate mask to guard against L1TF attacks. Otherwise, it is
594          * assumed that the CPU is not vulnerable to L1TF.
595          *
596          * Some Intel CPUs address the L1 cache using more PA bits than are
597          * reported by CPUID. Use the PA width of the L1 cache when possible
598          * to achieve more effective mitigation, e.g. if system RAM overlaps
599          * the most significant bits of legal physical address space.
600          */
601         shadow_nonpresent_or_rsvd_mask = 0;
602         low_phys_bits = boot_cpu_data.x86_phys_bits;
603         if (boot_cpu_has_bug(X86_BUG_L1TF) &&
604             !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
605                           52 - shadow_nonpresent_or_rsvd_mask_len)) {
606                 low_phys_bits = boot_cpu_data.x86_cache_bits
607                         - shadow_nonpresent_or_rsvd_mask_len;
608                 shadow_nonpresent_or_rsvd_mask =
609                         rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
610         }
611
612         shadow_nonpresent_or_rsvd_lower_gfn_mask =
613                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
614 }
615
616 static int is_cpuid_PSE36(void)
617 {
618         return 1;
619 }
620
621 static int is_nx(struct kvm_vcpu *vcpu)
622 {
623         return vcpu->arch.efer & EFER_NX;
624 }
625
626 static int is_shadow_present_pte(u64 pte)
627 {
628         return (pte != 0) && !is_mmio_spte(pte);
629 }
630
631 static int is_large_pte(u64 pte)
632 {
633         return pte & PT_PAGE_SIZE_MASK;
634 }
635
636 static int is_last_spte(u64 pte, int level)
637 {
638         if (level == PG_LEVEL_4K)
639                 return 1;
640         if (is_large_pte(pte))
641                 return 1;
642         return 0;
643 }
644
645 static bool is_executable_pte(u64 spte)
646 {
647         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
648 }
649
650 static kvm_pfn_t spte_to_pfn(u64 pte)
651 {
652         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
653 }
654
655 static gfn_t pse36_gfn_delta(u32 gpte)
656 {
657         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
658
659         return (gpte & PT32_DIR_PSE36_MASK) << shift;
660 }
661
662 #ifdef CONFIG_X86_64
663 static void __set_spte(u64 *sptep, u64 spte)
664 {
665         WRITE_ONCE(*sptep, spte);
666 }
667
668 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
669 {
670         WRITE_ONCE(*sptep, spte);
671 }
672
673 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
674 {
675         return xchg(sptep, spte);
676 }
677
678 static u64 __get_spte_lockless(u64 *sptep)
679 {
680         return READ_ONCE(*sptep);
681 }
682 #else
683 union split_spte {
684         struct {
685                 u32 spte_low;
686                 u32 spte_high;
687         };
688         u64 spte;
689 };
690
691 static void count_spte_clear(u64 *sptep, u64 spte)
692 {
693         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
694
695         if (is_shadow_present_pte(spte))
696                 return;
697
698         /* Ensure the spte is completely set before we increase the count */
699         smp_wmb();
700         sp->clear_spte_count++;
701 }
702
703 static void __set_spte(u64 *sptep, u64 spte)
704 {
705         union split_spte *ssptep, sspte;
706
707         ssptep = (union split_spte *)sptep;
708         sspte = (union split_spte)spte;
709
710         ssptep->spte_high = sspte.spte_high;
711
712         /*
713          * If we map the spte from nonpresent to present, We should store
714          * the high bits firstly, then set present bit, so cpu can not
715          * fetch this spte while we are setting the spte.
716          */
717         smp_wmb();
718
719         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
720 }
721
722 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
723 {
724         union split_spte *ssptep, sspte;
725
726         ssptep = (union split_spte *)sptep;
727         sspte = (union split_spte)spte;
728
729         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
730
731         /*
732          * If we map the spte from present to nonpresent, we should clear
733          * present bit firstly to avoid vcpu fetch the old high bits.
734          */
735         smp_wmb();
736
737         ssptep->spte_high = sspte.spte_high;
738         count_spte_clear(sptep, spte);
739 }
740
741 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
742 {
743         union split_spte *ssptep, sspte, orig;
744
745         ssptep = (union split_spte *)sptep;
746         sspte = (union split_spte)spte;
747
748         /* xchg acts as a barrier before the setting of the high bits */
749         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
750         orig.spte_high = ssptep->spte_high;
751         ssptep->spte_high = sspte.spte_high;
752         count_spte_clear(sptep, spte);
753
754         return orig.spte;
755 }
756
757 /*
758  * The idea using the light way get the spte on x86_32 guest is from
759  * gup_get_pte (mm/gup.c).
760  *
761  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
762  * coalesces them and we are running out of the MMU lock.  Therefore
763  * we need to protect against in-progress updates of the spte.
764  *
765  * Reading the spte while an update is in progress may get the old value
766  * for the high part of the spte.  The race is fine for a present->non-present
767  * change (because the high part of the spte is ignored for non-present spte),
768  * but for a present->present change we must reread the spte.
769  *
770  * All such changes are done in two steps (present->non-present and
771  * non-present->present), hence it is enough to count the number of
772  * present->non-present updates: if it changed while reading the spte,
773  * we might have hit the race.  This is done using clear_spte_count.
774  */
775 static u64 __get_spte_lockless(u64 *sptep)
776 {
777         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
778         union split_spte spte, *orig = (union split_spte *)sptep;
779         int count;
780
781 retry:
782         count = sp->clear_spte_count;
783         smp_rmb();
784
785         spte.spte_low = orig->spte_low;
786         smp_rmb();
787
788         spte.spte_high = orig->spte_high;
789         smp_rmb();
790
791         if (unlikely(spte.spte_low != orig->spte_low ||
792               count != sp->clear_spte_count))
793                 goto retry;
794
795         return spte.spte;
796 }
797 #endif
798
799 static bool spte_can_locklessly_be_made_writable(u64 spte)
800 {
801         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
802                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
803 }
804
805 static bool spte_has_volatile_bits(u64 spte)
806 {
807         if (!is_shadow_present_pte(spte))
808                 return false;
809
810         /*
811          * Always atomically update spte if it can be updated
812          * out of mmu-lock, it can ensure dirty bit is not lost,
813          * also, it can help us to get a stable is_writable_pte()
814          * to ensure tlb flush is not missed.
815          */
816         if (spte_can_locklessly_be_made_writable(spte) ||
817             is_access_track_spte(spte))
818                 return true;
819
820         if (spte_ad_enabled(spte)) {
821                 if ((spte & shadow_accessed_mask) == 0 ||
822                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
823                         return true;
824         }
825
826         return false;
827 }
828
829 static bool is_accessed_spte(u64 spte)
830 {
831         u64 accessed_mask = spte_shadow_accessed_mask(spte);
832
833         return accessed_mask ? spte & accessed_mask
834                              : !is_access_track_spte(spte);
835 }
836
837 static bool is_dirty_spte(u64 spte)
838 {
839         u64 dirty_mask = spte_shadow_dirty_mask(spte);
840
841         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
842 }
843
844 /* Rules for using mmu_spte_set:
845  * Set the sptep from nonpresent to present.
846  * Note: the sptep being assigned *must* be either not present
847  * or in a state where the hardware will not attempt to update
848  * the spte.
849  */
850 static void mmu_spte_set(u64 *sptep, u64 new_spte)
851 {
852         WARN_ON(is_shadow_present_pte(*sptep));
853         __set_spte(sptep, new_spte);
854 }
855
856 /*
857  * Update the SPTE (excluding the PFN), but do not track changes in its
858  * accessed/dirty status.
859  */
860 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
861 {
862         u64 old_spte = *sptep;
863
864         WARN_ON(!is_shadow_present_pte(new_spte));
865
866         if (!is_shadow_present_pte(old_spte)) {
867                 mmu_spte_set(sptep, new_spte);
868                 return old_spte;
869         }
870
871         if (!spte_has_volatile_bits(old_spte))
872                 __update_clear_spte_fast(sptep, new_spte);
873         else
874                 old_spte = __update_clear_spte_slow(sptep, new_spte);
875
876         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
877
878         return old_spte;
879 }
880
881 /* Rules for using mmu_spte_update:
882  * Update the state bits, it means the mapped pfn is not changed.
883  *
884  * Whenever we overwrite a writable spte with a read-only one we
885  * should flush remote TLBs. Otherwise rmap_write_protect
886  * will find a read-only spte, even though the writable spte
887  * might be cached on a CPU's TLB, the return value indicates this
888  * case.
889  *
890  * Returns true if the TLB needs to be flushed
891  */
892 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
893 {
894         bool flush = false;
895         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
896
897         if (!is_shadow_present_pte(old_spte))
898                 return false;
899
900         /*
901          * For the spte updated out of mmu-lock is safe, since
902          * we always atomically update it, see the comments in
903          * spte_has_volatile_bits().
904          */
905         if (spte_can_locklessly_be_made_writable(old_spte) &&
906               !is_writable_pte(new_spte))
907                 flush = true;
908
909         /*
910          * Flush TLB when accessed/dirty states are changed in the page tables,
911          * to guarantee consistency between TLB and page tables.
912          */
913
914         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
915                 flush = true;
916                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
917         }
918
919         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
920                 flush = true;
921                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
922         }
923
924         return flush;
925 }
926
927 /*
928  * Rules for using mmu_spte_clear_track_bits:
929  * It sets the sptep from present to nonpresent, and track the
930  * state bits, it is used to clear the last level sptep.
931  * Returns non-zero if the PTE was previously valid.
932  */
933 static int mmu_spte_clear_track_bits(u64 *sptep)
934 {
935         kvm_pfn_t pfn;
936         u64 old_spte = *sptep;
937
938         if (!spte_has_volatile_bits(old_spte))
939                 __update_clear_spte_fast(sptep, 0ull);
940         else
941                 old_spte = __update_clear_spte_slow(sptep, 0ull);
942
943         if (!is_shadow_present_pte(old_spte))
944                 return 0;
945
946         pfn = spte_to_pfn(old_spte);
947
948         /*
949          * KVM does not hold the refcount of the page used by
950          * kvm mmu, before reclaiming the page, we should
951          * unmap it from mmu first.
952          */
953         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
954
955         if (is_accessed_spte(old_spte))
956                 kvm_set_pfn_accessed(pfn);
957
958         if (is_dirty_spte(old_spte))
959                 kvm_set_pfn_dirty(pfn);
960
961         return 1;
962 }
963
964 /*
965  * Rules for using mmu_spte_clear_no_track:
966  * Directly clear spte without caring the state bits of sptep,
967  * it is used to set the upper level spte.
968  */
969 static void mmu_spte_clear_no_track(u64 *sptep)
970 {
971         __update_clear_spte_fast(sptep, 0ull);
972 }
973
974 static u64 mmu_spte_get_lockless(u64 *sptep)
975 {
976         return __get_spte_lockless(sptep);
977 }
978
979 static u64 mark_spte_for_access_track(u64 spte)
980 {
981         if (spte_ad_enabled(spte))
982                 return spte & ~shadow_accessed_mask;
983
984         if (is_access_track_spte(spte))
985                 return spte;
986
987         /*
988          * Making an Access Tracking PTE will result in removal of write access
989          * from the PTE. So, verify that we will be able to restore the write
990          * access in the fast page fault path later on.
991          */
992         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
993                   !spte_can_locklessly_be_made_writable(spte),
994                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
995
996         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
997                           shadow_acc_track_saved_bits_shift),
998                   "kvm: Access Tracking saved bit locations are not zero\n");
999
1000         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
1001                 shadow_acc_track_saved_bits_shift;
1002         spte &= ~shadow_acc_track_mask;
1003
1004         return spte;
1005 }
1006
1007 /* Restore an acc-track PTE back to a regular PTE */
1008 static u64 restore_acc_track_spte(u64 spte)
1009 {
1010         u64 new_spte = spte;
1011         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
1012                          & shadow_acc_track_saved_bits_mask;
1013
1014         WARN_ON_ONCE(spte_ad_enabled(spte));
1015         WARN_ON_ONCE(!is_access_track_spte(spte));
1016
1017         new_spte &= ~shadow_acc_track_mask;
1018         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1019                       shadow_acc_track_saved_bits_shift);
1020         new_spte |= saved_bits;
1021
1022         return new_spte;
1023 }
1024
1025 /* Returns the Accessed status of the PTE and resets it at the same time. */
1026 static bool mmu_spte_age(u64 *sptep)
1027 {
1028         u64 spte = mmu_spte_get_lockless(sptep);
1029
1030         if (!is_accessed_spte(spte))
1031                 return false;
1032
1033         if (spte_ad_enabled(spte)) {
1034                 clear_bit((ffs(shadow_accessed_mask) - 1),
1035                           (unsigned long *)sptep);
1036         } else {
1037                 /*
1038                  * Capture the dirty status of the page, so that it doesn't get
1039                  * lost when the SPTE is marked for access tracking.
1040                  */
1041                 if (is_writable_pte(spte))
1042                         kvm_set_pfn_dirty(spte_to_pfn(spte));
1043
1044                 spte = mark_spte_for_access_track(spte);
1045                 mmu_spte_update_no_track(sptep, spte);
1046         }
1047
1048         return true;
1049 }
1050
1051 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1052 {
1053         /*
1054          * Prevent page table teardown by making any free-er wait during
1055          * kvm_flush_remote_tlbs() IPI to all active vcpus.
1056          */
1057         local_irq_disable();
1058
1059         /*
1060          * Make sure a following spte read is not reordered ahead of the write
1061          * to vcpu->mode.
1062          */
1063         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1064 }
1065
1066 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1067 {
1068         /*
1069          * Make sure the write to vcpu->mode is not reordered in front of
1070          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1071          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1072          */
1073         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1074         local_irq_enable();
1075 }
1076
1077 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
1078 {
1079         int r;
1080
1081         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
1082         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1083                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
1084         if (r)
1085                 return r;
1086         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
1087                                        PT64_ROOT_MAX_LEVEL);
1088         if (r)
1089                 return r;
1090         if (maybe_indirect) {
1091                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
1092                                                PT64_ROOT_MAX_LEVEL);
1093                 if (r)
1094                         return r;
1095         }
1096         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1097                                           PT64_ROOT_MAX_LEVEL);
1098 }
1099
1100 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1101 {
1102         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
1103         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
1104         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
1105         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
1106 }
1107
1108 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1109 {
1110         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1111 }
1112
1113 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1114 {
1115         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1116 }
1117
1118 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1119 {
1120         if (!sp->role.direct)
1121                 return sp->gfns[index];
1122
1123         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1124 }
1125
1126 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1127 {
1128         if (!sp->role.direct) {
1129                 sp->gfns[index] = gfn;
1130                 return;
1131         }
1132
1133         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1134                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1135                                    "(expected %llx, got %llx)\n",
1136                                    sp->gfn,
1137                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1138 }
1139
1140 /*
1141  * Return the pointer to the large page information for a given gfn,
1142  * handling slots that are not large page aligned.
1143  */
1144 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1145                                               struct kvm_memory_slot *slot,
1146                                               int level)
1147 {
1148         unsigned long idx;
1149
1150         idx = gfn_to_index(gfn, slot->base_gfn, level);
1151         return &slot->arch.lpage_info[level - 2][idx];
1152 }
1153
1154 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1155                                             gfn_t gfn, int count)
1156 {
1157         struct kvm_lpage_info *linfo;
1158         int i;
1159
1160         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1161                 linfo = lpage_info_slot(gfn, slot, i);
1162                 linfo->disallow_lpage += count;
1163                 WARN_ON(linfo->disallow_lpage < 0);
1164         }
1165 }
1166
1167 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1168 {
1169         update_gfn_disallow_lpage_count(slot, gfn, 1);
1170 }
1171
1172 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1173 {
1174         update_gfn_disallow_lpage_count(slot, gfn, -1);
1175 }
1176
1177 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1178 {
1179         struct kvm_memslots *slots;
1180         struct kvm_memory_slot *slot;
1181         gfn_t gfn;
1182
1183         kvm->arch.indirect_shadow_pages++;
1184         gfn = sp->gfn;
1185         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1186         slot = __gfn_to_memslot(slots, gfn);
1187
1188         /* the non-leaf shadow pages are keeping readonly. */
1189         if (sp->role.level > PG_LEVEL_4K)
1190                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1191                                                     KVM_PAGE_TRACK_WRITE);
1192
1193         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1194 }
1195
1196 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1197 {
1198         if (sp->lpage_disallowed)
1199                 return;
1200
1201         ++kvm->stat.nx_lpage_splits;
1202         list_add_tail(&sp->lpage_disallowed_link,
1203                       &kvm->arch.lpage_disallowed_mmu_pages);
1204         sp->lpage_disallowed = true;
1205 }
1206
1207 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1208 {
1209         struct kvm_memslots *slots;
1210         struct kvm_memory_slot *slot;
1211         gfn_t gfn;
1212
1213         kvm->arch.indirect_shadow_pages--;
1214         gfn = sp->gfn;
1215         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1216         slot = __gfn_to_memslot(slots, gfn);
1217         if (sp->role.level > PG_LEVEL_4K)
1218                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1219                                                        KVM_PAGE_TRACK_WRITE);
1220
1221         kvm_mmu_gfn_allow_lpage(slot, gfn);
1222 }
1223
1224 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1225 {
1226         --kvm->stat.nx_lpage_splits;
1227         sp->lpage_disallowed = false;
1228         list_del(&sp->lpage_disallowed_link);
1229 }
1230
1231 static struct kvm_memory_slot *
1232 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1233                             bool no_dirty_log)
1234 {
1235         struct kvm_memory_slot *slot;
1236
1237         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1238         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1239                 return NULL;
1240         if (no_dirty_log && slot->dirty_bitmap)
1241                 return NULL;
1242
1243         return slot;
1244 }
1245
1246 /*
1247  * About rmap_head encoding:
1248  *
1249  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1250  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1251  * pte_list_desc containing more mappings.
1252  */
1253
1254 /*
1255  * Returns the number of pointers in the rmap chain, not counting the new one.
1256  */
1257 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1258                         struct kvm_rmap_head *rmap_head)
1259 {
1260         struct pte_list_desc *desc;
1261         int i, count = 0;
1262
1263         if (!rmap_head->val) {
1264                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1265                 rmap_head->val = (unsigned long)spte;
1266         } else if (!(rmap_head->val & 1)) {
1267                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1268                 desc = mmu_alloc_pte_list_desc(vcpu);
1269                 desc->sptes[0] = (u64 *)rmap_head->val;
1270                 desc->sptes[1] = spte;
1271                 rmap_head->val = (unsigned long)desc | 1;
1272                 ++count;
1273         } else {
1274                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1275                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1276                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1277                         desc = desc->more;
1278                         count += PTE_LIST_EXT;
1279                 }
1280                 if (desc->sptes[PTE_LIST_EXT-1]) {
1281                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1282                         desc = desc->more;
1283                 }
1284                 for (i = 0; desc->sptes[i]; ++i)
1285                         ++count;
1286                 desc->sptes[i] = spte;
1287         }
1288         return count;
1289 }
1290
1291 static void
1292 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1293                            struct pte_list_desc *desc, int i,
1294                            struct pte_list_desc *prev_desc)
1295 {
1296         int j;
1297
1298         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1299                 ;
1300         desc->sptes[i] = desc->sptes[j];
1301         desc->sptes[j] = NULL;
1302         if (j != 0)
1303                 return;
1304         if (!prev_desc && !desc->more)
1305                 rmap_head->val = 0;
1306         else
1307                 if (prev_desc)
1308                         prev_desc->more = desc->more;
1309                 else
1310                         rmap_head->val = (unsigned long)desc->more | 1;
1311         mmu_free_pte_list_desc(desc);
1312 }
1313
1314 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1315 {
1316         struct pte_list_desc *desc;
1317         struct pte_list_desc *prev_desc;
1318         int i;
1319
1320         if (!rmap_head->val) {
1321                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1322                 BUG();
1323         } else if (!(rmap_head->val & 1)) {
1324                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1325                 if ((u64 *)rmap_head->val != spte) {
1326                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1327                         BUG();
1328                 }
1329                 rmap_head->val = 0;
1330         } else {
1331                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1332                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1333                 prev_desc = NULL;
1334                 while (desc) {
1335                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1336                                 if (desc->sptes[i] == spte) {
1337                                         pte_list_desc_remove_entry(rmap_head,
1338                                                         desc, i, prev_desc);
1339                                         return;
1340                                 }
1341                         }
1342                         prev_desc = desc;
1343                         desc = desc->more;
1344                 }
1345                 pr_err("%s: %p many->many\n", __func__, spte);
1346                 BUG();
1347         }
1348 }
1349
1350 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1351 {
1352         mmu_spte_clear_track_bits(sptep);
1353         __pte_list_remove(sptep, rmap_head);
1354 }
1355
1356 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1357                                            struct kvm_memory_slot *slot)
1358 {
1359         unsigned long idx;
1360
1361         idx = gfn_to_index(gfn, slot->base_gfn, level);
1362         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1363 }
1364
1365 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1366                                          struct kvm_mmu_page *sp)
1367 {
1368         struct kvm_memslots *slots;
1369         struct kvm_memory_slot *slot;
1370
1371         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1372         slot = __gfn_to_memslot(slots, gfn);
1373         return __gfn_to_rmap(gfn, sp->role.level, slot);
1374 }
1375
1376 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1377 {
1378         struct kvm_mmu_memory_cache *mc;
1379
1380         mc = &vcpu->arch.mmu_pte_list_desc_cache;
1381         return kvm_mmu_memory_cache_nr_free_objects(mc);
1382 }
1383
1384 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1385 {
1386         struct kvm_mmu_page *sp;
1387         struct kvm_rmap_head *rmap_head;
1388
1389         sp = sptep_to_sp(spte);
1390         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1391         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1392         return pte_list_add(vcpu, spte, rmap_head);
1393 }
1394
1395 static void rmap_remove(struct kvm *kvm, u64 *spte)
1396 {
1397         struct kvm_mmu_page *sp;
1398         gfn_t gfn;
1399         struct kvm_rmap_head *rmap_head;
1400
1401         sp = sptep_to_sp(spte);
1402         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1403         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1404         __pte_list_remove(spte, rmap_head);
1405 }
1406
1407 /*
1408  * Used by the following functions to iterate through the sptes linked by a
1409  * rmap.  All fields are private and not assumed to be used outside.
1410  */
1411 struct rmap_iterator {
1412         /* private fields */
1413         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1414         int pos;                        /* index of the sptep */
1415 };
1416
1417 /*
1418  * Iteration must be started by this function.  This should also be used after
1419  * removing/dropping sptes from the rmap link because in such cases the
1420  * information in the iterator may not be valid.
1421  *
1422  * Returns sptep if found, NULL otherwise.
1423  */
1424 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1425                            struct rmap_iterator *iter)
1426 {
1427         u64 *sptep;
1428
1429         if (!rmap_head->val)
1430                 return NULL;
1431
1432         if (!(rmap_head->val & 1)) {
1433                 iter->desc = NULL;
1434                 sptep = (u64 *)rmap_head->val;
1435                 goto out;
1436         }
1437
1438         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1439         iter->pos = 0;
1440         sptep = iter->desc->sptes[iter->pos];
1441 out:
1442         BUG_ON(!is_shadow_present_pte(*sptep));
1443         return sptep;
1444 }
1445
1446 /*
1447  * Must be used with a valid iterator: e.g. after rmap_get_first().
1448  *
1449  * Returns sptep if found, NULL otherwise.
1450  */
1451 static u64 *rmap_get_next(struct rmap_iterator *iter)
1452 {
1453         u64 *sptep;
1454
1455         if (iter->desc) {
1456                 if (iter->pos < PTE_LIST_EXT - 1) {
1457                         ++iter->pos;
1458                         sptep = iter->desc->sptes[iter->pos];
1459                         if (sptep)
1460                                 goto out;
1461                 }
1462
1463                 iter->desc = iter->desc->more;
1464
1465                 if (iter->desc) {
1466                         iter->pos = 0;
1467                         /* desc->sptes[0] cannot be NULL */
1468                         sptep = iter->desc->sptes[iter->pos];
1469                         goto out;
1470                 }
1471         }
1472
1473         return NULL;
1474 out:
1475         BUG_ON(!is_shadow_present_pte(*sptep));
1476         return sptep;
1477 }
1478
1479 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1480         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1481              _spte_; _spte_ = rmap_get_next(_iter_))
1482
1483 static void drop_spte(struct kvm *kvm, u64 *sptep)
1484 {
1485         if (mmu_spte_clear_track_bits(sptep))
1486                 rmap_remove(kvm, sptep);
1487 }
1488
1489
1490 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1491 {
1492         if (is_large_pte(*sptep)) {
1493                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1494                 drop_spte(kvm, sptep);
1495                 --kvm->stat.lpages;
1496                 return true;
1497         }
1498
1499         return false;
1500 }
1501
1502 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1503 {
1504         if (__drop_large_spte(vcpu->kvm, sptep)) {
1505                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1506
1507                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1508                         KVM_PAGES_PER_HPAGE(sp->role.level));
1509         }
1510 }
1511
1512 /*
1513  * Write-protect on the specified @sptep, @pt_protect indicates whether
1514  * spte write-protection is caused by protecting shadow page table.
1515  *
1516  * Note: write protection is difference between dirty logging and spte
1517  * protection:
1518  * - for dirty logging, the spte can be set to writable at anytime if
1519  *   its dirty bitmap is properly set.
1520  * - for spte protection, the spte can be writable only after unsync-ing
1521  *   shadow page.
1522  *
1523  * Return true if tlb need be flushed.
1524  */
1525 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1526 {
1527         u64 spte = *sptep;
1528
1529         if (!is_writable_pte(spte) &&
1530               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1531                 return false;
1532
1533         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1534
1535         if (pt_protect)
1536                 spte &= ~SPTE_MMU_WRITEABLE;
1537         spte = spte & ~PT_WRITABLE_MASK;
1538
1539         return mmu_spte_update(sptep, spte);
1540 }
1541
1542 static bool __rmap_write_protect(struct kvm *kvm,
1543                                  struct kvm_rmap_head *rmap_head,
1544                                  bool pt_protect)
1545 {
1546         u64 *sptep;
1547         struct rmap_iterator iter;
1548         bool flush = false;
1549
1550         for_each_rmap_spte(rmap_head, &iter, sptep)
1551                 flush |= spte_write_protect(sptep, pt_protect);
1552
1553         return flush;
1554 }
1555
1556 static bool spte_clear_dirty(u64 *sptep)
1557 {
1558         u64 spte = *sptep;
1559
1560         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1561
1562         MMU_WARN_ON(!spte_ad_enabled(spte));
1563         spte &= ~shadow_dirty_mask;
1564         return mmu_spte_update(sptep, spte);
1565 }
1566
1567 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1568 {
1569         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1570                                                (unsigned long *)sptep);
1571         if (was_writable && !spte_ad_enabled(*sptep))
1572                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1573
1574         return was_writable;
1575 }
1576
1577 /*
1578  * Gets the GFN ready for another round of dirty logging by clearing the
1579  *      - D bit on ad-enabled SPTEs, and
1580  *      - W bit on ad-disabled SPTEs.
1581  * Returns true iff any D or W bits were cleared.
1582  */
1583 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1584 {
1585         u64 *sptep;
1586         struct rmap_iterator iter;
1587         bool flush = false;
1588
1589         for_each_rmap_spte(rmap_head, &iter, sptep)
1590                 if (spte_ad_need_write_protect(*sptep))
1591                         flush |= spte_wrprot_for_clear_dirty(sptep);
1592                 else
1593                         flush |= spte_clear_dirty(sptep);
1594
1595         return flush;
1596 }
1597
1598 static bool spte_set_dirty(u64 *sptep)
1599 {
1600         u64 spte = *sptep;
1601
1602         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1603
1604         /*
1605          * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1606          * do not bother adding back write access to pages marked
1607          * SPTE_AD_WRPROT_ONLY_MASK.
1608          */
1609         spte |= shadow_dirty_mask;
1610
1611         return mmu_spte_update(sptep, spte);
1612 }
1613
1614 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1615 {
1616         u64 *sptep;
1617         struct rmap_iterator iter;
1618         bool flush = false;
1619
1620         for_each_rmap_spte(rmap_head, &iter, sptep)
1621                 if (spte_ad_enabled(*sptep))
1622                         flush |= spte_set_dirty(sptep);
1623
1624         return flush;
1625 }
1626
1627 /**
1628  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1629  * @kvm: kvm instance
1630  * @slot: slot to protect
1631  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1632  * @mask: indicates which pages we should protect
1633  *
1634  * Used when we do not need to care about huge page mappings: e.g. during dirty
1635  * logging we do not have any such mappings.
1636  */
1637 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1638                                      struct kvm_memory_slot *slot,
1639                                      gfn_t gfn_offset, unsigned long mask)
1640 {
1641         struct kvm_rmap_head *rmap_head;
1642
1643         while (mask) {
1644                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1645                                           PG_LEVEL_4K, slot);
1646                 __rmap_write_protect(kvm, rmap_head, false);
1647
1648                 /* clear the first set bit */
1649                 mask &= mask - 1;
1650         }
1651 }
1652
1653 /**
1654  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1655  * protect the page if the D-bit isn't supported.
1656  * @kvm: kvm instance
1657  * @slot: slot to clear D-bit
1658  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1659  * @mask: indicates which pages we should clear D-bit
1660  *
1661  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1662  */
1663 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1664                                      struct kvm_memory_slot *slot,
1665                                      gfn_t gfn_offset, unsigned long mask)
1666 {
1667         struct kvm_rmap_head *rmap_head;
1668
1669         while (mask) {
1670                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1671                                           PG_LEVEL_4K, slot);
1672                 __rmap_clear_dirty(kvm, rmap_head);
1673
1674                 /* clear the first set bit */
1675                 mask &= mask - 1;
1676         }
1677 }
1678 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1679
1680 /**
1681  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1682  * PT level pages.
1683  *
1684  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1685  * enable dirty logging for them.
1686  *
1687  * Used when we do not need to care about huge page mappings: e.g. during dirty
1688  * logging we do not have any such mappings.
1689  */
1690 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1691                                 struct kvm_memory_slot *slot,
1692                                 gfn_t gfn_offset, unsigned long mask)
1693 {
1694         if (kvm_x86_ops.enable_log_dirty_pt_masked)
1695                 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1696                                 mask);
1697         else
1698                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1699 }
1700
1701 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1702                                     struct kvm_memory_slot *slot, u64 gfn)
1703 {
1704         struct kvm_rmap_head *rmap_head;
1705         int i;
1706         bool write_protected = false;
1707
1708         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1709                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1710                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1711         }
1712
1713         return write_protected;
1714 }
1715
1716 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1717 {
1718         struct kvm_memory_slot *slot;
1719
1720         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1721         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1722 }
1723
1724 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1725 {
1726         u64 *sptep;
1727         struct rmap_iterator iter;
1728         bool flush = false;
1729
1730         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1731                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1732
1733                 pte_list_remove(rmap_head, sptep);
1734                 flush = true;
1735         }
1736
1737         return flush;
1738 }
1739
1740 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1741                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1742                            unsigned long data)
1743 {
1744         return kvm_zap_rmapp(kvm, rmap_head);
1745 }
1746
1747 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1748                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1749                              unsigned long data)
1750 {
1751         u64 *sptep;
1752         struct rmap_iterator iter;
1753         int need_flush = 0;
1754         u64 new_spte;
1755         pte_t *ptep = (pte_t *)data;
1756         kvm_pfn_t new_pfn;
1757
1758         WARN_ON(pte_huge(*ptep));
1759         new_pfn = pte_pfn(*ptep);
1760
1761 restart:
1762         for_each_rmap_spte(rmap_head, &iter, sptep) {
1763                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1764                             sptep, *sptep, gfn, level);
1765
1766                 need_flush = 1;
1767
1768                 if (pte_write(*ptep)) {
1769                         pte_list_remove(rmap_head, sptep);
1770                         goto restart;
1771                 } else {
1772                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1773                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1774
1775                         new_spte &= ~PT_WRITABLE_MASK;
1776                         new_spte &= ~SPTE_HOST_WRITEABLE;
1777
1778                         new_spte = mark_spte_for_access_track(new_spte);
1779
1780                         mmu_spte_clear_track_bits(sptep);
1781                         mmu_spte_set(sptep, new_spte);
1782                 }
1783         }
1784
1785         if (need_flush && kvm_available_flush_tlb_with_range()) {
1786                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1787                 return 0;
1788         }
1789
1790         return need_flush;
1791 }
1792
1793 struct slot_rmap_walk_iterator {
1794         /* input fields. */
1795         struct kvm_memory_slot *slot;
1796         gfn_t start_gfn;
1797         gfn_t end_gfn;
1798         int start_level;
1799         int end_level;
1800
1801         /* output fields. */
1802         gfn_t gfn;
1803         struct kvm_rmap_head *rmap;
1804         int level;
1805
1806         /* private field. */
1807         struct kvm_rmap_head *end_rmap;
1808 };
1809
1810 static void
1811 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1812 {
1813         iterator->level = level;
1814         iterator->gfn = iterator->start_gfn;
1815         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1816         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1817                                            iterator->slot);
1818 }
1819
1820 static void
1821 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1822                     struct kvm_memory_slot *slot, int start_level,
1823                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1824 {
1825         iterator->slot = slot;
1826         iterator->start_level = start_level;
1827         iterator->end_level = end_level;
1828         iterator->start_gfn = start_gfn;
1829         iterator->end_gfn = end_gfn;
1830
1831         rmap_walk_init_level(iterator, iterator->start_level);
1832 }
1833
1834 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1835 {
1836         return !!iterator->rmap;
1837 }
1838
1839 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1840 {
1841         if (++iterator->rmap <= iterator->end_rmap) {
1842                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1843                 return;
1844         }
1845
1846         if (++iterator->level > iterator->end_level) {
1847                 iterator->rmap = NULL;
1848                 return;
1849         }
1850
1851         rmap_walk_init_level(iterator, iterator->level);
1852 }
1853
1854 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1855            _start_gfn, _end_gfn, _iter_)                                \
1856         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1857                                  _end_level_, _start_gfn, _end_gfn);    \
1858              slot_rmap_walk_okay(_iter_);                               \
1859              slot_rmap_walk_next(_iter_))
1860
1861 static int kvm_handle_hva_range(struct kvm *kvm,
1862                                 unsigned long start,
1863                                 unsigned long end,
1864                                 unsigned long data,
1865                                 int (*handler)(struct kvm *kvm,
1866                                                struct kvm_rmap_head *rmap_head,
1867                                                struct kvm_memory_slot *slot,
1868                                                gfn_t gfn,
1869                                                int level,
1870                                                unsigned long data))
1871 {
1872         struct kvm_memslots *slots;
1873         struct kvm_memory_slot *memslot;
1874         struct slot_rmap_walk_iterator iterator;
1875         int ret = 0;
1876         int i;
1877
1878         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1879                 slots = __kvm_memslots(kvm, i);
1880                 kvm_for_each_memslot(memslot, slots) {
1881                         unsigned long hva_start, hva_end;
1882                         gfn_t gfn_start, gfn_end;
1883
1884                         hva_start = max(start, memslot->userspace_addr);
1885                         hva_end = min(end, memslot->userspace_addr +
1886                                       (memslot->npages << PAGE_SHIFT));
1887                         if (hva_start >= hva_end)
1888                                 continue;
1889                         /*
1890                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1891                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1892                          */
1893                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1894                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1895
1896                         for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1897                                                  KVM_MAX_HUGEPAGE_LEVEL,
1898                                                  gfn_start, gfn_end - 1,
1899                                                  &iterator)
1900                                 ret |= handler(kvm, iterator.rmap, memslot,
1901                                                iterator.gfn, iterator.level, data);
1902                 }
1903         }
1904
1905         return ret;
1906 }
1907
1908 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1909                           unsigned long data,
1910                           int (*handler)(struct kvm *kvm,
1911                                          struct kvm_rmap_head *rmap_head,
1912                                          struct kvm_memory_slot *slot,
1913                                          gfn_t gfn, int level,
1914                                          unsigned long data))
1915 {
1916         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1917 }
1918
1919 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1920                         unsigned flags)
1921 {
1922         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1923 }
1924
1925 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1926 {
1927         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1928 }
1929
1930 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1931                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1932                          unsigned long data)
1933 {
1934         u64 *sptep;
1935         struct rmap_iterator iter;
1936         int young = 0;
1937
1938         for_each_rmap_spte(rmap_head, &iter, sptep)
1939                 young |= mmu_spte_age(sptep);
1940
1941         trace_kvm_age_page(gfn, level, slot, young);
1942         return young;
1943 }
1944
1945 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1946                               struct kvm_memory_slot *slot, gfn_t gfn,
1947                               int level, unsigned long data)
1948 {
1949         u64 *sptep;
1950         struct rmap_iterator iter;
1951
1952         for_each_rmap_spte(rmap_head, &iter, sptep)
1953                 if (is_accessed_spte(*sptep))
1954                         return 1;
1955         return 0;
1956 }
1957
1958 #define RMAP_RECYCLE_THRESHOLD 1000
1959
1960 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1961 {
1962         struct kvm_rmap_head *rmap_head;
1963         struct kvm_mmu_page *sp;
1964
1965         sp = sptep_to_sp(spte);
1966
1967         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1968
1969         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1970         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1971                         KVM_PAGES_PER_HPAGE(sp->role.level));
1972 }
1973
1974 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1975 {
1976         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1977 }
1978
1979 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1980 {
1981         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1982 }
1983
1984 #ifdef MMU_DEBUG
1985 static int is_empty_shadow_page(u64 *spt)
1986 {
1987         u64 *pos;
1988         u64 *end;
1989
1990         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1991                 if (is_shadow_present_pte(*pos)) {
1992                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1993                                pos, *pos);
1994                         return 0;
1995                 }
1996         return 1;
1997 }
1998 #endif
1999
2000 /*
2001  * This value is the sum of all of the kvm instances's
2002  * kvm->arch.n_used_mmu_pages values.  We need a global,
2003  * aggregate version in order to make the slab shrinker
2004  * faster
2005  */
2006 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2007 {
2008         kvm->arch.n_used_mmu_pages += nr;
2009         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2010 }
2011
2012 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2013 {
2014         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2015         hlist_del(&sp->hash_link);
2016         list_del(&sp->link);
2017         free_page((unsigned long)sp->spt);
2018         if (!sp->role.direct)
2019                 free_page((unsigned long)sp->gfns);
2020         kmem_cache_free(mmu_page_header_cache, sp);
2021 }
2022
2023 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2024 {
2025         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2026 }
2027
2028 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2029                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2030 {
2031         if (!parent_pte)
2032                 return;
2033
2034         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2035 }
2036
2037 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2038                                        u64 *parent_pte)
2039 {
2040         __pte_list_remove(parent_pte, &sp->parent_ptes);
2041 }
2042
2043 static void drop_parent_pte(struct kvm_mmu_page *sp,
2044                             u64 *parent_pte)
2045 {
2046         mmu_page_remove_parent_pte(sp, parent_pte);
2047         mmu_spte_clear_no_track(parent_pte);
2048 }
2049
2050 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2051 {
2052         struct kvm_mmu_page *sp;
2053
2054         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2055         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
2056         if (!direct)
2057                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
2058         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2059
2060         /*
2061          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2062          * depends on valid pages being added to the head of the list.  See
2063          * comments in kvm_zap_obsolete_pages().
2064          */
2065         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2066         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2067         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2068         return sp;
2069 }
2070
2071 static void mark_unsync(u64 *spte);
2072 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2073 {
2074         u64 *sptep;
2075         struct rmap_iterator iter;
2076
2077         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2078                 mark_unsync(sptep);
2079         }
2080 }
2081
2082 static void mark_unsync(u64 *spte)
2083 {
2084         struct kvm_mmu_page *sp;
2085         unsigned int index;
2086
2087         sp = sptep_to_sp(spte);
2088         index = spte - sp->spt;
2089         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2090                 return;
2091         if (sp->unsync_children++)
2092                 return;
2093         kvm_mmu_mark_parents_unsync(sp);
2094 }
2095
2096 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2097                                struct kvm_mmu_page *sp)
2098 {
2099         return 0;
2100 }
2101
2102 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2103                                  struct kvm_mmu_page *sp, u64 *spte,
2104                                  const void *pte)
2105 {
2106         WARN_ON(1);
2107 }
2108
2109 #define KVM_PAGE_ARRAY_NR 16
2110
2111 struct kvm_mmu_pages {
2112         struct mmu_page_and_offset {
2113                 struct kvm_mmu_page *sp;
2114                 unsigned int idx;
2115         } page[KVM_PAGE_ARRAY_NR];
2116         unsigned int nr;
2117 };
2118
2119 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2120                          int idx)
2121 {
2122         int i;
2123
2124         if (sp->unsync)
2125                 for (i=0; i < pvec->nr; i++)
2126                         if (pvec->page[i].sp == sp)
2127                                 return 0;
2128
2129         pvec->page[pvec->nr].sp = sp;
2130         pvec->page[pvec->nr].idx = idx;
2131         pvec->nr++;
2132         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2133 }
2134
2135 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2136 {
2137         --sp->unsync_children;
2138         WARN_ON((int)sp->unsync_children < 0);
2139         __clear_bit(idx, sp->unsync_child_bitmap);
2140 }
2141
2142 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2143                            struct kvm_mmu_pages *pvec)
2144 {
2145         int i, ret, nr_unsync_leaf = 0;
2146
2147         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2148                 struct kvm_mmu_page *child;
2149                 u64 ent = sp->spt[i];
2150
2151                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2152                         clear_unsync_child_bit(sp, i);
2153                         continue;
2154                 }
2155
2156                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
2157
2158                 if (child->unsync_children) {
2159                         if (mmu_pages_add(pvec, child, i))
2160                                 return -ENOSPC;
2161
2162                         ret = __mmu_unsync_walk(child, pvec);
2163                         if (!ret) {
2164                                 clear_unsync_child_bit(sp, i);
2165                                 continue;
2166                         } else if (ret > 0) {
2167                                 nr_unsync_leaf += ret;
2168                         } else
2169                                 return ret;
2170                 } else if (child->unsync) {
2171                         nr_unsync_leaf++;
2172                         if (mmu_pages_add(pvec, child, i))
2173                                 return -ENOSPC;
2174                 } else
2175                         clear_unsync_child_bit(sp, i);
2176         }
2177
2178         return nr_unsync_leaf;
2179 }
2180
2181 #define INVALID_INDEX (-1)
2182
2183 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2184                            struct kvm_mmu_pages *pvec)
2185 {
2186         pvec->nr = 0;
2187         if (!sp->unsync_children)
2188                 return 0;
2189
2190         mmu_pages_add(pvec, sp, INVALID_INDEX);
2191         return __mmu_unsync_walk(sp, pvec);
2192 }
2193
2194 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2195 {
2196         WARN_ON(!sp->unsync);
2197         trace_kvm_mmu_sync_page(sp);
2198         sp->unsync = 0;
2199         --kvm->stat.mmu_unsync;
2200 }
2201
2202 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2203                                      struct list_head *invalid_list);
2204 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2205                                     struct list_head *invalid_list);
2206
2207 #define for_each_valid_sp(_kvm, _sp, _list)                             \
2208         hlist_for_each_entry(_sp, _list, hash_link)                     \
2209                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
2210                 } else
2211
2212 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2213         for_each_valid_sp(_kvm, _sp,                                    \
2214           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
2215                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2216
2217 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2218 {
2219         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2220 }
2221
2222 /* @sp->gfn should be write-protected at the call site */
2223 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2224                             struct list_head *invalid_list)
2225 {
2226         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2227             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2228                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2229                 return false;
2230         }
2231
2232         return true;
2233 }
2234
2235 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2236                                         struct list_head *invalid_list,
2237                                         bool remote_flush)
2238 {
2239         if (!remote_flush && list_empty(invalid_list))
2240                 return false;
2241
2242         if (!list_empty(invalid_list))
2243                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2244         else
2245                 kvm_flush_remote_tlbs(kvm);
2246         return true;
2247 }
2248
2249 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2250                                  struct list_head *invalid_list,
2251                                  bool remote_flush, bool local_flush)
2252 {
2253         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2254                 return;
2255
2256         if (local_flush)
2257                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2258 }
2259
2260 #ifdef CONFIG_KVM_MMU_AUDIT
2261 #include "mmu_audit.c"
2262 #else
2263 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2264 static void mmu_audit_disable(void) { }
2265 #endif
2266
2267 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2268 {
2269         return sp->role.invalid ||
2270                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2271 }
2272
2273 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2274                          struct list_head *invalid_list)
2275 {
2276         kvm_unlink_unsync_page(vcpu->kvm, sp);
2277         return __kvm_sync_page(vcpu, sp, invalid_list);
2278 }
2279
2280 /* @gfn should be write-protected at the call site */
2281 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2282                            struct list_head *invalid_list)
2283 {
2284         struct kvm_mmu_page *s;
2285         bool ret = false;
2286
2287         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2288                 if (!s->unsync)
2289                         continue;
2290
2291                 WARN_ON(s->role.level != PG_LEVEL_4K);
2292                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2293         }
2294
2295         return ret;
2296 }
2297
2298 struct mmu_page_path {
2299         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2300         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2301 };
2302
2303 #define for_each_sp(pvec, sp, parents, i)                       \
2304                 for (i = mmu_pages_first(&pvec, &parents);      \
2305                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2306                         i = mmu_pages_next(&pvec, &parents, i))
2307
2308 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2309                           struct mmu_page_path *parents,
2310                           int i)
2311 {
2312         int n;
2313
2314         for (n = i+1; n < pvec->nr; n++) {
2315                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2316                 unsigned idx = pvec->page[n].idx;
2317                 int level = sp->role.level;
2318
2319                 parents->idx[level-1] = idx;
2320                 if (level == PG_LEVEL_4K)
2321                         break;
2322
2323                 parents->parent[level-2] = sp;
2324         }
2325
2326         return n;
2327 }
2328
2329 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2330                            struct mmu_page_path *parents)
2331 {
2332         struct kvm_mmu_page *sp;
2333         int level;
2334
2335         if (pvec->nr == 0)
2336                 return 0;
2337
2338         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2339
2340         sp = pvec->page[0].sp;
2341         level = sp->role.level;
2342         WARN_ON(level == PG_LEVEL_4K);
2343
2344         parents->parent[level-2] = sp;
2345
2346         /* Also set up a sentinel.  Further entries in pvec are all
2347          * children of sp, so this element is never overwritten.
2348          */
2349         parents->parent[level-1] = NULL;
2350         return mmu_pages_next(pvec, parents, 0);
2351 }
2352
2353 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2354 {
2355         struct kvm_mmu_page *sp;
2356         unsigned int level = 0;
2357
2358         do {
2359                 unsigned int idx = parents->idx[level];
2360                 sp = parents->parent[level];
2361                 if (!sp)
2362                         return;
2363
2364                 WARN_ON(idx == INVALID_INDEX);
2365                 clear_unsync_child_bit(sp, idx);
2366                 level++;
2367         } while (!sp->unsync_children);
2368 }
2369
2370 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2371                               struct kvm_mmu_page *parent)
2372 {
2373         int i;
2374         struct kvm_mmu_page *sp;
2375         struct mmu_page_path parents;
2376         struct kvm_mmu_pages pages;
2377         LIST_HEAD(invalid_list);
2378         bool flush = false;
2379
2380         while (mmu_unsync_walk(parent, &pages)) {
2381                 bool protected = false;
2382
2383                 for_each_sp(pages, sp, parents, i)
2384                         protected |= rmap_write_protect(vcpu, sp->gfn);
2385
2386                 if (protected) {
2387                         kvm_flush_remote_tlbs(vcpu->kvm);
2388                         flush = false;
2389                 }
2390
2391                 for_each_sp(pages, sp, parents, i) {
2392                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2393                         mmu_pages_clear_parents(&parents);
2394                 }
2395                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2396                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2397                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2398                         flush = false;
2399                 }
2400         }
2401
2402         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2403 }
2404
2405 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2406 {
2407         atomic_set(&sp->write_flooding_count,  0);
2408 }
2409
2410 static void clear_sp_write_flooding_count(u64 *spte)
2411 {
2412         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2413 }
2414
2415 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2416                                              gfn_t gfn,
2417                                              gva_t gaddr,
2418                                              unsigned level,
2419                                              int direct,
2420                                              unsigned int access)
2421 {
2422         bool direct_mmu = vcpu->arch.mmu->direct_map;
2423         union kvm_mmu_page_role role;
2424         struct hlist_head *sp_list;
2425         unsigned quadrant;
2426         struct kvm_mmu_page *sp;
2427         bool need_sync = false;
2428         bool flush = false;
2429         int collisions = 0;
2430         LIST_HEAD(invalid_list);
2431
2432         role = vcpu->arch.mmu->mmu_role.base;
2433         role.level = level;
2434         role.direct = direct;
2435         if (role.direct)
2436                 role.gpte_is_8_bytes = true;
2437         role.access = access;
2438         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2439                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2440                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2441                 role.quadrant = quadrant;
2442         }
2443
2444         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2445         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2446                 if (sp->gfn != gfn) {
2447                         collisions++;
2448                         continue;
2449                 }
2450
2451                 if (!need_sync && sp->unsync)
2452                         need_sync = true;
2453
2454                 if (sp->role.word != role.word)
2455                         continue;
2456
2457                 if (direct_mmu)
2458                         goto trace_get_page;
2459
2460                 if (sp->unsync) {
2461                         /* The page is good, but __kvm_sync_page might still end
2462                          * up zapping it.  If so, break in order to rebuild it.
2463                          */
2464                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2465                                 break;
2466
2467                         WARN_ON(!list_empty(&invalid_list));
2468                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2469                 }
2470
2471                 if (sp->unsync_children)
2472                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2473
2474                 __clear_sp_write_flooding_count(sp);
2475
2476 trace_get_page:
2477                 trace_kvm_mmu_get_page(sp, false);
2478                 goto out;
2479         }
2480
2481         ++vcpu->kvm->stat.mmu_cache_miss;
2482
2483         sp = kvm_mmu_alloc_page(vcpu, direct);
2484
2485         sp->gfn = gfn;
2486         sp->role = role;
2487         hlist_add_head(&sp->hash_link, sp_list);
2488         if (!direct) {
2489                 /*
2490                  * we should do write protection before syncing pages
2491                  * otherwise the content of the synced shadow page may
2492                  * be inconsistent with guest page table.
2493                  */
2494                 account_shadowed(vcpu->kvm, sp);
2495                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2496                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2497
2498                 if (level > PG_LEVEL_4K && need_sync)
2499                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2500         }
2501         trace_kvm_mmu_get_page(sp, true);
2502
2503         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2504 out:
2505         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2506                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2507         return sp;
2508 }
2509
2510 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2511                                         struct kvm_vcpu *vcpu, hpa_t root,
2512                                         u64 addr)
2513 {
2514         iterator->addr = addr;
2515         iterator->shadow_addr = root;
2516         iterator->level = vcpu->arch.mmu->shadow_root_level;
2517
2518         if (iterator->level == PT64_ROOT_4LEVEL &&
2519             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2520             !vcpu->arch.mmu->direct_map)
2521                 --iterator->level;
2522
2523         if (iterator->level == PT32E_ROOT_LEVEL) {
2524                 /*
2525                  * prev_root is currently only used for 64-bit hosts. So only
2526                  * the active root_hpa is valid here.
2527                  */
2528                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2529
2530                 iterator->shadow_addr
2531                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2532                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2533                 --iterator->level;
2534                 if (!iterator->shadow_addr)
2535                         iterator->level = 0;
2536         }
2537 }
2538
2539 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2540                              struct kvm_vcpu *vcpu, u64 addr)
2541 {
2542         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2543                                     addr);
2544 }
2545
2546 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2547 {
2548         if (iterator->level < PG_LEVEL_4K)
2549                 return false;
2550
2551         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2552         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2553         return true;
2554 }
2555
2556 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2557                                u64 spte)
2558 {
2559         if (is_last_spte(spte, iterator->level)) {
2560                 iterator->level = 0;
2561                 return;
2562         }
2563
2564         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2565         --iterator->level;
2566 }
2567
2568 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2569 {
2570         __shadow_walk_next(iterator, *iterator->sptep);
2571 }
2572
2573 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2574                              struct kvm_mmu_page *sp)
2575 {
2576         u64 spte;
2577
2578         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2579
2580         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2581                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2582
2583         if (sp_ad_disabled(sp))
2584                 spte |= SPTE_AD_DISABLED_MASK;
2585         else
2586                 spte |= shadow_accessed_mask;
2587
2588         mmu_spte_set(sptep, spte);
2589
2590         mmu_page_add_parent_pte(vcpu, sp, sptep);
2591
2592         if (sp->unsync_children || sp->unsync)
2593                 mark_unsync(sptep);
2594 }
2595
2596 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2597                                    unsigned direct_access)
2598 {
2599         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2600                 struct kvm_mmu_page *child;
2601
2602                 /*
2603                  * For the direct sp, if the guest pte's dirty bit
2604                  * changed form clean to dirty, it will corrupt the
2605                  * sp's access: allow writable in the read-only sp,
2606                  * so we should update the spte at this point to get
2607                  * a new sp with the correct access.
2608                  */
2609                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2610                 if (child->role.access == direct_access)
2611                         return;
2612
2613                 drop_parent_pte(child, sptep);
2614                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2615         }
2616 }
2617
2618 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2619                              u64 *spte)
2620 {
2621         u64 pte;
2622         struct kvm_mmu_page *child;
2623
2624         pte = *spte;
2625         if (is_shadow_present_pte(pte)) {
2626                 if (is_last_spte(pte, sp->role.level)) {
2627                         drop_spte(kvm, spte);
2628                         if (is_large_pte(pte))
2629                                 --kvm->stat.lpages;
2630                 } else {
2631                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2632                         drop_parent_pte(child, spte);
2633                 }
2634                 return true;
2635         }
2636
2637         if (is_mmio_spte(pte))
2638                 mmu_spte_clear_no_track(spte);
2639
2640         return false;
2641 }
2642
2643 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2644                                          struct kvm_mmu_page *sp)
2645 {
2646         unsigned i;
2647
2648         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2649                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2650 }
2651
2652 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2653 {
2654         u64 *sptep;
2655         struct rmap_iterator iter;
2656
2657         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2658                 drop_parent_pte(sp, sptep);
2659 }
2660
2661 static int mmu_zap_unsync_children(struct kvm *kvm,
2662                                    struct kvm_mmu_page *parent,
2663                                    struct list_head *invalid_list)
2664 {
2665         int i, zapped = 0;
2666         struct mmu_page_path parents;
2667         struct kvm_mmu_pages pages;
2668
2669         if (parent->role.level == PG_LEVEL_4K)
2670                 return 0;
2671
2672         while (mmu_unsync_walk(parent, &pages)) {
2673                 struct kvm_mmu_page *sp;
2674
2675                 for_each_sp(pages, sp, parents, i) {
2676                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2677                         mmu_pages_clear_parents(&parents);
2678                         zapped++;
2679                 }
2680         }
2681
2682         return zapped;
2683 }
2684
2685 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2686                                        struct kvm_mmu_page *sp,
2687                                        struct list_head *invalid_list,
2688                                        int *nr_zapped)
2689 {
2690         bool list_unstable;
2691
2692         trace_kvm_mmu_prepare_zap_page(sp);
2693         ++kvm->stat.mmu_shadow_zapped;
2694         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2695         kvm_mmu_page_unlink_children(kvm, sp);
2696         kvm_mmu_unlink_parents(kvm, sp);
2697
2698         /* Zapping children means active_mmu_pages has become unstable. */
2699         list_unstable = *nr_zapped;
2700
2701         if (!sp->role.invalid && !sp->role.direct)
2702                 unaccount_shadowed(kvm, sp);
2703
2704         if (sp->unsync)
2705                 kvm_unlink_unsync_page(kvm, sp);
2706         if (!sp->root_count) {
2707                 /* Count self */
2708                 (*nr_zapped)++;
2709
2710                 /*
2711                  * Already invalid pages (previously active roots) are not on
2712                  * the active page list.  See list_del() in the "else" case of
2713                  * !sp->root_count.
2714                  */
2715                 if (sp->role.invalid)
2716                         list_add(&sp->link, invalid_list);
2717                 else
2718                         list_move(&sp->link, invalid_list);
2719                 kvm_mod_used_mmu_pages(kvm, -1);
2720         } else {
2721                 /*
2722                  * Remove the active root from the active page list, the root
2723                  * will be explicitly freed when the root_count hits zero.
2724                  */
2725                 list_del(&sp->link);
2726
2727                 /*
2728                  * Obsolete pages cannot be used on any vCPUs, see the comment
2729                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2730                  * treats invalid shadow pages as being obsolete.
2731                  */
2732                 if (!is_obsolete_sp(kvm, sp))
2733                         kvm_reload_remote_mmus(kvm);
2734         }
2735
2736         if (sp->lpage_disallowed)
2737                 unaccount_huge_nx_page(kvm, sp);
2738
2739         sp->role.invalid = 1;
2740         return list_unstable;
2741 }
2742
2743 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2744                                      struct list_head *invalid_list)
2745 {
2746         int nr_zapped;
2747
2748         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2749         return nr_zapped;
2750 }
2751
2752 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2753                                     struct list_head *invalid_list)
2754 {
2755         struct kvm_mmu_page *sp, *nsp;
2756
2757         if (list_empty(invalid_list))
2758                 return;
2759
2760         /*
2761          * We need to make sure everyone sees our modifications to
2762          * the page tables and see changes to vcpu->mode here. The barrier
2763          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2764          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2765          *
2766          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2767          * guest mode and/or lockless shadow page table walks.
2768          */
2769         kvm_flush_remote_tlbs(kvm);
2770
2771         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2772                 WARN_ON(!sp->role.invalid || sp->root_count);
2773                 kvm_mmu_free_page(sp);
2774         }
2775 }
2776
2777 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2778                                                   unsigned long nr_to_zap)
2779 {
2780         unsigned long total_zapped = 0;
2781         struct kvm_mmu_page *sp, *tmp;
2782         LIST_HEAD(invalid_list);
2783         bool unstable;
2784         int nr_zapped;
2785
2786         if (list_empty(&kvm->arch.active_mmu_pages))
2787                 return 0;
2788
2789 restart:
2790         list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2791                 /*
2792                  * Don't zap active root pages, the page itself can't be freed
2793                  * and zapping it will just force vCPUs to realloc and reload.
2794                  */
2795                 if (sp->root_count)
2796                         continue;
2797
2798                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2799                                                       &nr_zapped);
2800                 total_zapped += nr_zapped;
2801                 if (total_zapped >= nr_to_zap)
2802                         break;
2803
2804                 if (unstable)
2805                         goto restart;
2806         }
2807
2808         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2809
2810         kvm->stat.mmu_recycled += total_zapped;
2811         return total_zapped;
2812 }
2813
2814 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2815 {
2816         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2817                 return kvm->arch.n_max_mmu_pages -
2818                         kvm->arch.n_used_mmu_pages;
2819
2820         return 0;
2821 }
2822
2823 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2824 {
2825         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2826
2827         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2828                 return 0;
2829
2830         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2831
2832         if (!kvm_mmu_available_pages(vcpu->kvm))
2833                 return -ENOSPC;
2834         return 0;
2835 }
2836
2837 /*
2838  * Changing the number of mmu pages allocated to the vm
2839  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2840  */
2841 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2842 {
2843         spin_lock(&kvm->mmu_lock);
2844
2845         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2846                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2847                                                   goal_nr_mmu_pages);
2848
2849                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2850         }
2851
2852         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2853
2854         spin_unlock(&kvm->mmu_lock);
2855 }
2856
2857 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2858 {
2859         struct kvm_mmu_page *sp;
2860         LIST_HEAD(invalid_list);
2861         int r;
2862
2863         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2864         r = 0;
2865         spin_lock(&kvm->mmu_lock);
2866         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2867                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2868                          sp->role.word);
2869                 r = 1;
2870                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2871         }
2872         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2873         spin_unlock(&kvm->mmu_lock);
2874
2875         return r;
2876 }
2877 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2878
2879 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2880 {
2881         trace_kvm_mmu_unsync_page(sp);
2882         ++vcpu->kvm->stat.mmu_unsync;
2883         sp->unsync = 1;
2884
2885         kvm_mmu_mark_parents_unsync(sp);
2886 }
2887
2888 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2889                                    bool can_unsync)
2890 {
2891         struct kvm_mmu_page *sp;
2892
2893         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2894                 return true;
2895
2896         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2897                 if (!can_unsync)
2898                         return true;
2899
2900                 if (sp->unsync)
2901                         continue;
2902
2903                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2904                 kvm_unsync_page(vcpu, sp);
2905         }
2906
2907         /*
2908          * We need to ensure that the marking of unsync pages is visible
2909          * before the SPTE is updated to allow writes because
2910          * kvm_mmu_sync_roots() checks the unsync flags without holding
2911          * the MMU lock and so can race with this. If the SPTE was updated
2912          * before the page had been marked as unsync-ed, something like the
2913          * following could happen:
2914          *
2915          * CPU 1                    CPU 2
2916          * ---------------------------------------------------------------------
2917          * 1.2 Host updates SPTE
2918          *     to be writable
2919          *                      2.1 Guest writes a GPTE for GVA X.
2920          *                          (GPTE being in the guest page table shadowed
2921          *                           by the SP from CPU 1.)
2922          *                          This reads SPTE during the page table walk.
2923          *                          Since SPTE.W is read as 1, there is no
2924          *                          fault.
2925          *
2926          *                      2.2 Guest issues TLB flush.
2927          *                          That causes a VM Exit.
2928          *
2929          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2930          *                          Since it is false, so it just returns.
2931          *
2932          *                      2.4 Guest accesses GVA X.
2933          *                          Since the mapping in the SP was not updated,
2934          *                          so the old mapping for GVA X incorrectly
2935          *                          gets used.
2936          * 1.1 Host marks SP
2937          *     as unsync
2938          *     (sp->unsync = true)
2939          *
2940          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2941          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2942          * pairs with this write barrier.
2943          */
2944         smp_wmb();
2945
2946         return false;
2947 }
2948
2949 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2950 {
2951         if (pfn_valid(pfn))
2952                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2953                         /*
2954                          * Some reserved pages, such as those from NVDIMM
2955                          * DAX devices, are not for MMIO, and can be mapped
2956                          * with cached memory type for better performance.
2957                          * However, the above check misconceives those pages
2958                          * as MMIO, and results in KVM mapping them with UC
2959                          * memory type, which would hurt the performance.
2960                          * Therefore, we check the host memory type in addition
2961                          * and only treat UC/UC-/WC pages as MMIO.
2962                          */
2963                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2964
2965         return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2966                                      pfn_to_hpa(pfn + 1) - 1,
2967                                      E820_TYPE_RAM);
2968 }
2969
2970 /* Bits which may be returned by set_spte() */
2971 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2972 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2973
2974 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2975                     unsigned int pte_access, int level,
2976                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2977                     bool can_unsync, bool host_writable)
2978 {
2979         u64 spte = 0;
2980         int ret = 0;
2981         struct kvm_mmu_page *sp;
2982
2983         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2984                 return 0;
2985
2986         sp = sptep_to_sp(sptep);
2987         if (sp_ad_disabled(sp))
2988                 spte |= SPTE_AD_DISABLED_MASK;
2989         else if (kvm_vcpu_ad_need_write_protect(vcpu))
2990                 spte |= SPTE_AD_WRPROT_ONLY_MASK;
2991
2992         /*
2993          * For the EPT case, shadow_present_mask is 0 if hardware
2994          * supports exec-only page table entries.  In that case,
2995          * ACC_USER_MASK and shadow_user_mask are used to represent
2996          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2997          */
2998         spte |= shadow_present_mask;
2999         if (!speculative)
3000                 spte |= spte_shadow_accessed_mask(spte);
3001
3002         if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
3003             is_nx_huge_page_enabled()) {
3004                 pte_access &= ~ACC_EXEC_MASK;
3005         }
3006
3007         if (pte_access & ACC_EXEC_MASK)
3008                 spte |= shadow_x_mask;
3009         else
3010                 spte |= shadow_nx_mask;
3011
3012         if (pte_access & ACC_USER_MASK)
3013                 spte |= shadow_user_mask;
3014
3015         if (level > PG_LEVEL_4K)
3016                 spte |= PT_PAGE_SIZE_MASK;
3017         if (tdp_enabled)
3018                 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3019                         kvm_is_mmio_pfn(pfn));
3020
3021         if (host_writable)
3022                 spte |= SPTE_HOST_WRITEABLE;
3023         else
3024                 pte_access &= ~ACC_WRITE_MASK;
3025
3026         if (!kvm_is_mmio_pfn(pfn))
3027                 spte |= shadow_me_mask;
3028
3029         spte |= (u64)pfn << PAGE_SHIFT;
3030
3031         if (pte_access & ACC_WRITE_MASK) {
3032                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3033
3034                 /*
3035                  * Optimization: for pte sync, if spte was writable the hash
3036                  * lookup is unnecessary (and expensive). Write protection
3037                  * is responsibility of mmu_get_page / kvm_sync_page.
3038                  * Same reasoning can be applied to dirty page accounting.
3039                  */
3040                 if (!can_unsync && is_writable_pte(*sptep))
3041                         goto set_pte;
3042
3043                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3044                         pgprintk("%s: found shadow page for %llx, marking ro\n",
3045                                  __func__, gfn);
3046                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
3047                         pte_access &= ~ACC_WRITE_MASK;
3048                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3049                 }
3050         }
3051
3052         if (pte_access & ACC_WRITE_MASK) {
3053                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3054                 spte |= spte_shadow_dirty_mask(spte);
3055         }
3056
3057         if (speculative)
3058                 spte = mark_spte_for_access_track(spte);
3059
3060 set_pte:
3061         if (mmu_spte_update(sptep, spte))
3062                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3063         return ret;
3064 }
3065
3066 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3067                         unsigned int pte_access, int write_fault, int level,
3068                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3069                         bool host_writable)
3070 {
3071         int was_rmapped = 0;
3072         int rmap_count;
3073         int set_spte_ret;
3074         int ret = RET_PF_RETRY;
3075         bool flush = false;
3076
3077         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3078                  *sptep, write_fault, gfn);
3079
3080         if (is_shadow_present_pte(*sptep)) {
3081                 /*
3082                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3083                  * the parent of the now unreachable PTE.
3084                  */
3085                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
3086                         struct kvm_mmu_page *child;
3087                         u64 pte = *sptep;
3088
3089                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
3090                         drop_parent_pte(child, sptep);
3091                         flush = true;
3092                 } else if (pfn != spte_to_pfn(*sptep)) {
3093                         pgprintk("hfn old %llx new %llx\n",
3094                                  spte_to_pfn(*sptep), pfn);
3095                         drop_spte(vcpu->kvm, sptep);
3096                         flush = true;
3097                 } else
3098                         was_rmapped = 1;
3099         }
3100
3101         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3102                                 speculative, true, host_writable);
3103         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3104                 if (write_fault)
3105                         ret = RET_PF_EMULATE;
3106                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3107         }
3108
3109         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3110                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3111                                 KVM_PAGES_PER_HPAGE(level));
3112
3113         if (unlikely(is_mmio_spte(*sptep)))
3114                 ret = RET_PF_EMULATE;
3115
3116         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3117         trace_kvm_mmu_set_spte(level, gfn, sptep);
3118         if (!was_rmapped && is_large_pte(*sptep))
3119                 ++vcpu->kvm->stat.lpages;
3120
3121         if (is_shadow_present_pte(*sptep)) {
3122                 if (!was_rmapped) {
3123                         rmap_count = rmap_add(vcpu, sptep, gfn);
3124                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3125                                 rmap_recycle(vcpu, sptep, gfn);
3126                 }
3127         }
3128
3129         return ret;
3130 }
3131
3132 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3133                                      bool no_dirty_log)
3134 {
3135         struct kvm_memory_slot *slot;
3136
3137         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3138         if (!slot)
3139                 return KVM_PFN_ERR_FAULT;
3140
3141         return gfn_to_pfn_memslot_atomic(slot, gfn);
3142 }
3143
3144 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3145                                     struct kvm_mmu_page *sp,
3146                                     u64 *start, u64 *end)
3147 {
3148         struct page *pages[PTE_PREFETCH_NUM];
3149         struct kvm_memory_slot *slot;
3150         unsigned int access = sp->role.access;
3151         int i, ret;
3152         gfn_t gfn;
3153
3154         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3155         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3156         if (!slot)
3157                 return -1;
3158
3159         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3160         if (ret <= 0)
3161                 return -1;
3162
3163         for (i = 0; i < ret; i++, gfn++, start++) {
3164                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3165                              page_to_pfn(pages[i]), true, true);
3166                 put_page(pages[i]);
3167         }
3168
3169         return 0;
3170 }
3171
3172 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3173                                   struct kvm_mmu_page *sp, u64 *sptep)
3174 {
3175         u64 *spte, *start = NULL;
3176         int i;
3177
3178         WARN_ON(!sp->role.direct);
3179
3180         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3181         spte = sp->spt + i;
3182
3183         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3184                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3185                         if (!start)
3186                                 continue;
3187                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3188                                 break;
3189                         start = NULL;
3190                 } else if (!start)
3191                         start = spte;
3192         }
3193 }
3194
3195 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3196 {
3197         struct kvm_mmu_page *sp;
3198
3199         sp = sptep_to_sp(sptep);
3200
3201         /*
3202          * Without accessed bits, there's no way to distinguish between
3203          * actually accessed translations and prefetched, so disable pte
3204          * prefetch if accessed bits aren't available.
3205          */
3206         if (sp_ad_disabled(sp))
3207                 return;
3208
3209         if (sp->role.level > PG_LEVEL_4K)
3210                 return;
3211
3212         __direct_pte_prefetch(vcpu, sp, sptep);
3213 }
3214
3215 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3216                                   kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3217 {
3218         unsigned long hva;
3219         pte_t *pte;
3220         int level;
3221
3222         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3223                 return PG_LEVEL_4K;
3224
3225         /*
3226          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3227          * is not solely for performance, it's also necessary to avoid the
3228          * "writable" check in __gfn_to_hva_many(), which will always fail on
3229          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3230          * page fault steps have already verified the guest isn't writing a
3231          * read-only memslot.
3232          */
3233         hva = __gfn_to_hva_memslot(slot, gfn);
3234
3235         pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3236         if (unlikely(!pte))
3237                 return PG_LEVEL_4K;
3238
3239         return level;
3240 }
3241
3242 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3243                                    int max_level, kvm_pfn_t *pfnp)
3244 {
3245         struct kvm_memory_slot *slot;
3246         struct kvm_lpage_info *linfo;
3247         kvm_pfn_t pfn = *pfnp;
3248         kvm_pfn_t mask;
3249         int level;
3250
3251         if (unlikely(max_level == PG_LEVEL_4K))
3252                 return PG_LEVEL_4K;
3253
3254         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3255                 return PG_LEVEL_4K;
3256
3257         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3258         if (!slot)
3259                 return PG_LEVEL_4K;
3260
3261         max_level = min(max_level, max_huge_page_level);
3262         for ( ; max_level > PG_LEVEL_4K; max_level--) {
3263                 linfo = lpage_info_slot(gfn, slot, max_level);
3264                 if (!linfo->disallow_lpage)
3265                         break;
3266         }
3267
3268         if (max_level == PG_LEVEL_4K)
3269                 return PG_LEVEL_4K;
3270
3271         level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3272         if (level == PG_LEVEL_4K)
3273                 return level;
3274
3275         level = min(level, max_level);
3276
3277         /*
3278          * mmu_notifier_retry() was successful and mmu_lock is held, so
3279          * the pmd can't be split from under us.
3280          */
3281         mask = KVM_PAGES_PER_HPAGE(level) - 1;
3282         VM_BUG_ON((gfn & mask) != (pfn & mask));
3283         *pfnp = pfn & ~mask;
3284
3285         return level;
3286 }
3287
3288 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3289                                        gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3290 {
3291         int level = *levelp;
3292         u64 spte = *it.sptep;
3293
3294         if (it.level == level && level > PG_LEVEL_4K &&
3295             is_nx_huge_page_enabled() &&
3296             is_shadow_present_pte(spte) &&
3297             !is_large_pte(spte)) {
3298                 /*
3299                  * A small SPTE exists for this pfn, but FNAME(fetch)
3300                  * and __direct_map would like to create a large PTE
3301                  * instead: just force them to go down another level,
3302                  * patching back for them into pfn the next 9 bits of
3303                  * the address.
3304                  */
3305                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3306                 *pfnp |= gfn & page_mask;
3307                 (*levelp)--;
3308         }
3309 }
3310
3311 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3312                         int map_writable, int max_level, kvm_pfn_t pfn,
3313                         bool prefault, bool account_disallowed_nx_lpage)
3314 {
3315         struct kvm_shadow_walk_iterator it;
3316         struct kvm_mmu_page *sp;
3317         int level, ret;
3318         gfn_t gfn = gpa >> PAGE_SHIFT;
3319         gfn_t base_gfn = gfn;
3320
3321         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3322                 return RET_PF_RETRY;
3323
3324         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3325
3326         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3327         for_each_shadow_entry(vcpu, gpa, it) {
3328                 /*
3329                  * We cannot overwrite existing page tables with an NX
3330                  * large page, as the leaf could be executable.
3331                  */
3332                 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3333
3334                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3335                 if (it.level == level)
3336                         break;
3337
3338                 drop_large_spte(vcpu, it.sptep);
3339                 if (!is_shadow_present_pte(*it.sptep)) {
3340                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3341                                               it.level - 1, true, ACC_ALL);
3342
3343                         link_shadow_page(vcpu, it.sptep, sp);
3344                         if (account_disallowed_nx_lpage)
3345                                 account_huge_nx_page(vcpu->kvm, sp);
3346                 }
3347         }
3348
3349         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3350                            write, level, base_gfn, pfn, prefault,
3351                            map_writable);
3352         direct_pte_prefetch(vcpu, it.sptep);
3353         ++vcpu->stat.pf_fixed;
3354         return ret;
3355 }
3356
3357 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3358 {
3359         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3360 }
3361
3362 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3363 {
3364         /*
3365          * Do not cache the mmio info caused by writing the readonly gfn
3366          * into the spte otherwise read access on readonly gfn also can
3367          * caused mmio page fault and treat it as mmio access.
3368          */
3369         if (pfn == KVM_PFN_ERR_RO_FAULT)
3370                 return RET_PF_EMULATE;
3371
3372         if (pfn == KVM_PFN_ERR_HWPOISON) {
3373                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3374                 return RET_PF_RETRY;
3375         }
3376
3377         return -EFAULT;
3378 }
3379
3380 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3381                                 kvm_pfn_t pfn, unsigned int access,
3382                                 int *ret_val)
3383 {
3384         /* The pfn is invalid, report the error! */
3385         if (unlikely(is_error_pfn(pfn))) {
3386                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3387                 return true;
3388         }
3389
3390         if (unlikely(is_noslot_pfn(pfn)))
3391                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3392                                      access & shadow_mmio_access_mask);
3393
3394         return false;
3395 }
3396
3397 static bool page_fault_can_be_fast(u32 error_code)
3398 {
3399         /*
3400          * Do not fix the mmio spte with invalid generation number which
3401          * need to be updated by slow page fault path.
3402          */
3403         if (unlikely(error_code & PFERR_RSVD_MASK))
3404                 return false;
3405
3406         /* See if the page fault is due to an NX violation */
3407         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3408                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3409                 return false;
3410
3411         /*
3412          * #PF can be fast if:
3413          * 1. The shadow page table entry is not present, which could mean that
3414          *    the fault is potentially caused by access tracking (if enabled).
3415          * 2. The shadow page table entry is present and the fault
3416          *    is caused by write-protect, that means we just need change the W
3417          *    bit of the spte which can be done out of mmu-lock.
3418          *
3419          * However, if access tracking is disabled we know that a non-present
3420          * page must be a genuine page fault where we have to create a new SPTE.
3421          * So, if access tracking is disabled, we return true only for write
3422          * accesses to a present page.
3423          */
3424
3425         return shadow_acc_track_mask != 0 ||
3426                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3427                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3428 }
3429
3430 /*
3431  * Returns true if the SPTE was fixed successfully. Otherwise,
3432  * someone else modified the SPTE from its original value.
3433  */
3434 static bool
3435 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3436                         u64 *sptep, u64 old_spte, u64 new_spte)
3437 {
3438         gfn_t gfn;
3439
3440         WARN_ON(!sp->role.direct);
3441
3442         /*
3443          * Theoretically we could also set dirty bit (and flush TLB) here in
3444          * order to eliminate unnecessary PML logging. See comments in
3445          * set_spte. But fast_page_fault is very unlikely to happen with PML
3446          * enabled, so we do not do this. This might result in the same GPA
3447          * to be logged in PML buffer again when the write really happens, and
3448          * eventually to be called by mark_page_dirty twice. But it's also no
3449          * harm. This also avoids the TLB flush needed after setting dirty bit
3450          * so non-PML cases won't be impacted.
3451          *
3452          * Compare with set_spte where instead shadow_dirty_mask is set.
3453          */
3454         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3455                 return false;
3456
3457         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3458                 /*
3459                  * The gfn of direct spte is stable since it is
3460                  * calculated by sp->gfn.
3461                  */
3462                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3463                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3464         }
3465
3466         return true;
3467 }
3468
3469 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3470 {
3471         if (fault_err_code & PFERR_FETCH_MASK)
3472                 return is_executable_pte(spte);
3473
3474         if (fault_err_code & PFERR_WRITE_MASK)
3475                 return is_writable_pte(spte);
3476
3477         /* Fault was on Read access */
3478         return spte & PT_PRESENT_MASK;
3479 }
3480
3481 /*
3482  * Return value:
3483  * - true: let the vcpu to access on the same address again.
3484  * - false: let the real page fault path to fix it.
3485  */
3486 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3487                             u32 error_code)
3488 {
3489         struct kvm_shadow_walk_iterator iterator;
3490         struct kvm_mmu_page *sp;
3491         bool fault_handled = false;
3492         u64 spte = 0ull;
3493         uint retry_count = 0;
3494
3495         if (!page_fault_can_be_fast(error_code))
3496                 return false;
3497
3498         walk_shadow_page_lockless_begin(vcpu);
3499
3500         do {
3501                 u64 new_spte;
3502
3503                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3504                         if (!is_shadow_present_pte(spte))
3505                                 break;
3506
3507                 sp = sptep_to_sp(iterator.sptep);
3508                 if (!is_last_spte(spte, sp->role.level))
3509                         break;
3510
3511                 /*
3512                  * Check whether the memory access that caused the fault would
3513                  * still cause it if it were to be performed right now. If not,
3514                  * then this is a spurious fault caused by TLB lazily flushed,
3515                  * or some other CPU has already fixed the PTE after the
3516                  * current CPU took the fault.
3517                  *
3518                  * Need not check the access of upper level table entries since
3519                  * they are always ACC_ALL.
3520                  */
3521                 if (is_access_allowed(error_code, spte)) {
3522                         fault_handled = true;
3523                         break;
3524                 }
3525
3526                 new_spte = spte;
3527
3528                 if (is_access_track_spte(spte))
3529                         new_spte = restore_acc_track_spte(new_spte);
3530
3531                 /*
3532                  * Currently, to simplify the code, write-protection can
3533                  * be removed in the fast path only if the SPTE was
3534                  * write-protected for dirty-logging or access tracking.
3535                  */
3536                 if ((error_code & PFERR_WRITE_MASK) &&
3537                     spte_can_locklessly_be_made_writable(spte)) {
3538                         new_spte |= PT_WRITABLE_MASK;
3539
3540                         /*
3541                          * Do not fix write-permission on the large spte.  Since
3542                          * we only dirty the first page into the dirty-bitmap in
3543                          * fast_pf_fix_direct_spte(), other pages are missed
3544                          * if its slot has dirty logging enabled.
3545                          *
3546                          * Instead, we let the slow page fault path create a
3547                          * normal spte to fix the access.
3548                          *
3549                          * See the comments in kvm_arch_commit_memory_region().
3550                          */
3551                         if (sp->role.level > PG_LEVEL_4K)
3552                                 break;
3553                 }
3554
3555                 /* Verify that the fault can be handled in the fast path */
3556                 if (new_spte == spte ||
3557                     !is_access_allowed(error_code, new_spte))
3558                         break;
3559
3560                 /*
3561                  * Currently, fast page fault only works for direct mapping
3562                  * since the gfn is not stable for indirect shadow page. See
3563                  * Documentation/virt/kvm/locking.rst to get more detail.
3564                  */
3565                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3566                                                         iterator.sptep, spte,
3567                                                         new_spte);
3568                 if (fault_handled)
3569                         break;
3570
3571                 if (++retry_count > 4) {
3572                         printk_once(KERN_WARNING
3573                                 "kvm: Fast #PF retrying more than 4 times.\n");
3574                         break;
3575                 }
3576
3577         } while (true);
3578
3579         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3580                               spte, fault_handled);
3581         walk_shadow_page_lockless_end(vcpu);
3582
3583         return fault_handled;
3584 }
3585
3586 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3587                                struct list_head *invalid_list)
3588 {
3589         struct kvm_mmu_page *sp;
3590
3591         if (!VALID_PAGE(*root_hpa))
3592                 return;
3593
3594         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3595         --sp->root_count;
3596         if (!sp->root_count && sp->role.invalid)
3597                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3598
3599         *root_hpa = INVALID_PAGE;
3600 }
3601
3602 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3603 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3604                         ulong roots_to_free)
3605 {
3606         int i;
3607         LIST_HEAD(invalid_list);
3608         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3609
3610         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3611
3612         /* Before acquiring the MMU lock, see if we need to do any real work. */
3613         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3614                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3615                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3616                             VALID_PAGE(mmu->prev_roots[i].hpa))
3617                                 break;
3618
3619                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3620                         return;
3621         }
3622
3623         spin_lock(&vcpu->kvm->mmu_lock);
3624
3625         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3626                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3627                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3628                                            &invalid_list);
3629
3630         if (free_active_root) {
3631                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3632                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3633                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3634                                            &invalid_list);
3635                 } else {
3636                         for (i = 0; i < 4; ++i)
3637                                 if (mmu->pae_root[i] != 0)
3638                                         mmu_free_root_page(vcpu->kvm,
3639                                                            &mmu->pae_root[i],
3640                                                            &invalid_list);
3641                         mmu->root_hpa = INVALID_PAGE;
3642                 }
3643                 mmu->root_pgd = 0;
3644         }
3645
3646         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3647         spin_unlock(&vcpu->kvm->mmu_lock);
3648 }
3649 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3650
3651 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3652 {
3653         int ret = 0;
3654
3655         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3656                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3657                 ret = 1;
3658         }
3659
3660         return ret;
3661 }
3662
3663 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3664                             u8 level, bool direct)
3665 {
3666         struct kvm_mmu_page *sp;
3667
3668         spin_lock(&vcpu->kvm->mmu_lock);
3669
3670         if (make_mmu_pages_available(vcpu)) {
3671                 spin_unlock(&vcpu->kvm->mmu_lock);
3672                 return INVALID_PAGE;
3673         }
3674         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3675         ++sp->root_count;
3676
3677         spin_unlock(&vcpu->kvm->mmu_lock);
3678         return __pa(sp->spt);
3679 }
3680
3681 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3682 {
3683         u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3684         hpa_t root;
3685         unsigned i;
3686
3687         if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3688                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3689                 if (!VALID_PAGE(root))
3690                         return -ENOSPC;
3691                 vcpu->arch.mmu->root_hpa = root;
3692         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3693                 for (i = 0; i < 4; ++i) {
3694                         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3695
3696                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3697                                               i << 30, PT32_ROOT_LEVEL, true);
3698                         if (!VALID_PAGE(root))
3699                                 return -ENOSPC;
3700                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3701                 }
3702                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3703         } else
3704                 BUG();
3705
3706         /* root_pgd is ignored for direct MMUs. */
3707         vcpu->arch.mmu->root_pgd = 0;
3708
3709         return 0;
3710 }
3711
3712 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3713 {
3714         u64 pdptr, pm_mask;
3715         gfn_t root_gfn, root_pgd;
3716         hpa_t root;
3717         int i;
3718
3719         root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3720         root_gfn = root_pgd >> PAGE_SHIFT;
3721
3722         if (mmu_check_root(vcpu, root_gfn))
3723                 return 1;
3724
3725         /*
3726          * Do we shadow a long mode page table? If so we need to
3727          * write-protect the guests page table root.
3728          */
3729         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3730                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3731
3732                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3733                                       vcpu->arch.mmu->shadow_root_level, false);
3734                 if (!VALID_PAGE(root))
3735                         return -ENOSPC;
3736                 vcpu->arch.mmu->root_hpa = root;
3737                 goto set_root_pgd;
3738         }
3739
3740         /*
3741          * We shadow a 32 bit page table. This may be a legacy 2-level
3742          * or a PAE 3-level page table. In either case we need to be aware that
3743          * the shadow page table may be a PAE or a long mode page table.
3744          */
3745         pm_mask = PT_PRESENT_MASK;
3746         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3747                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3748
3749         for (i = 0; i < 4; ++i) {
3750                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3751                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3752                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3753                         if (!(pdptr & PT_PRESENT_MASK)) {
3754                                 vcpu->arch.mmu->pae_root[i] = 0;
3755                                 continue;
3756                         }
3757                         root_gfn = pdptr >> PAGE_SHIFT;
3758                         if (mmu_check_root(vcpu, root_gfn))
3759                                 return 1;
3760                 }
3761
3762                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3763                                       PT32_ROOT_LEVEL, false);
3764                 if (!VALID_PAGE(root))
3765                         return -ENOSPC;
3766                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3767         }
3768         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3769
3770         /*
3771          * If we shadow a 32 bit page table with a long mode page
3772          * table we enter this path.
3773          */
3774         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3775                 if (vcpu->arch.mmu->lm_root == NULL) {
3776                         /*
3777                          * The additional page necessary for this is only
3778                          * allocated on demand.
3779                          */
3780
3781                         u64 *lm_root;
3782
3783                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3784                         if (lm_root == NULL)
3785                                 return 1;
3786
3787                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3788
3789                         vcpu->arch.mmu->lm_root = lm_root;
3790                 }
3791
3792                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3793         }
3794
3795 set_root_pgd:
3796         vcpu->arch.mmu->root_pgd = root_pgd;
3797
3798         return 0;
3799 }
3800
3801 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3802 {
3803         if (vcpu->arch.mmu->direct_map)
3804                 return mmu_alloc_direct_roots(vcpu);
3805         else
3806                 return mmu_alloc_shadow_roots(vcpu);
3807 }
3808
3809 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3810 {
3811         int i;
3812         struct kvm_mmu_page *sp;
3813
3814         if (vcpu->arch.mmu->direct_map)
3815                 return;
3816
3817         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3818                 return;
3819
3820         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3821
3822         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3823                 hpa_t root = vcpu->arch.mmu->root_hpa;
3824                 sp = to_shadow_page(root);
3825
3826                 /*
3827                  * Even if another CPU was marking the SP as unsync-ed
3828                  * simultaneously, any guest page table changes are not
3829                  * guaranteed to be visible anyway until this VCPU issues a TLB
3830                  * flush strictly after those changes are made. We only need to
3831                  * ensure that the other CPU sets these flags before any actual
3832                  * changes to the page tables are made. The comments in
3833                  * mmu_need_write_protect() describe what could go wrong if this
3834                  * requirement isn't satisfied.
3835                  */
3836                 if (!smp_load_acquire(&sp->unsync) &&
3837                     !smp_load_acquire(&sp->unsync_children))
3838                         return;
3839
3840                 spin_lock(&vcpu->kvm->mmu_lock);
3841                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3842
3843                 mmu_sync_children(vcpu, sp);
3844
3845                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3846                 spin_unlock(&vcpu->kvm->mmu_lock);
3847                 return;
3848         }
3849
3850         spin_lock(&vcpu->kvm->mmu_lock);
3851         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3852
3853         for (i = 0; i < 4; ++i) {
3854                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3855
3856                 if (root && VALID_PAGE(root)) {
3857                         root &= PT64_BASE_ADDR_MASK;
3858                         sp = to_shadow_page(root);
3859                         mmu_sync_children(vcpu, sp);
3860                 }
3861         }
3862
3863         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3864         spin_unlock(&vcpu->kvm->mmu_lock);
3865 }
3866 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3867
3868 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3869                                   u32 access, struct x86_exception *exception)
3870 {
3871         if (exception)
3872                 exception->error_code = 0;
3873         return vaddr;
3874 }
3875
3876 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3877                                          u32 access,
3878                                          struct x86_exception *exception)
3879 {
3880         if (exception)
3881                 exception->error_code = 0;
3882         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3883 }
3884
3885 static bool
3886 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3887 {
3888         int bit7 = (pte >> 7) & 1;
3889
3890         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3891 }
3892
3893 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3894 {
3895         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3896 }
3897
3898 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3899 {
3900         /*
3901          * A nested guest cannot use the MMIO cache if it is using nested
3902          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3903          */
3904         if (mmu_is_nested(vcpu))
3905                 return false;
3906
3907         if (direct)
3908                 return vcpu_match_mmio_gpa(vcpu, addr);
3909
3910         return vcpu_match_mmio_gva(vcpu, addr);
3911 }
3912
3913 /* return true if reserved bit is detected on spte. */
3914 static bool
3915 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3916 {
3917         struct kvm_shadow_walk_iterator iterator;
3918         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3919         struct rsvd_bits_validate *rsvd_check;
3920         int root, leaf;
3921         bool reserved = false;
3922
3923         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3924
3925         walk_shadow_page_lockless_begin(vcpu);
3926
3927         for (shadow_walk_init(&iterator, vcpu, addr),
3928                  leaf = root = iterator.level;
3929              shadow_walk_okay(&iterator);
3930              __shadow_walk_next(&iterator, spte)) {
3931                 spte = mmu_spte_get_lockless(iterator.sptep);
3932
3933                 sptes[leaf - 1] = spte;
3934                 leaf--;
3935
3936                 if (!is_shadow_present_pte(spte))
3937                         break;
3938
3939                 /*
3940                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3941                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3942                  * adding a Jcc in the loop.
3943                  */
3944                 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3945                             __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3946         }
3947
3948         walk_shadow_page_lockless_end(vcpu);
3949
3950         if (reserved) {
3951                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3952                        __func__, addr);
3953                 while (root > leaf) {
3954                         pr_err("------ spte 0x%llx level %d.\n",
3955                                sptes[root - 1], root);
3956                         root--;
3957                 }
3958         }
3959
3960         *sptep = spte;
3961         return reserved;
3962 }
3963
3964 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3965 {
3966         u64 spte;
3967         bool reserved;
3968
3969         if (mmio_info_in_cache(vcpu, addr, direct))
3970                 return RET_PF_EMULATE;
3971
3972         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3973         if (WARN_ON(reserved))
3974                 return -EINVAL;
3975
3976         if (is_mmio_spte(spte)) {
3977                 gfn_t gfn = get_mmio_spte_gfn(spte);
3978                 unsigned int access = get_mmio_spte_access(spte);
3979
3980                 if (!check_mmio_spte(vcpu, spte))
3981                         return RET_PF_INVALID;
3982
3983                 if (direct)
3984                         addr = 0;
3985
3986                 trace_handle_mmio_page_fault(addr, gfn, access);
3987                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3988                 return RET_PF_EMULATE;
3989         }
3990
3991         /*
3992          * If the page table is zapped by other cpus, let CPU fault again on
3993          * the address.
3994          */
3995         return RET_PF_RETRY;
3996 }
3997
3998 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3999                                          u32 error_code, gfn_t gfn)
4000 {
4001         if (unlikely(error_code & PFERR_RSVD_MASK))
4002                 return false;
4003
4004         if (!(error_code & PFERR_PRESENT_MASK) ||
4005               !(error_code & PFERR_WRITE_MASK))
4006                 return false;
4007
4008         /*
4009          * guest is writing the page which is write tracked which can
4010          * not be fixed by page fault handler.
4011          */
4012         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4013                 return true;
4014
4015         return false;
4016 }
4017
4018 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4019 {
4020         struct kvm_shadow_walk_iterator iterator;
4021         u64 spte;
4022
4023         walk_shadow_page_lockless_begin(vcpu);
4024         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4025                 clear_sp_write_flooding_count(iterator.sptep);
4026                 if (!is_shadow_present_pte(spte))
4027                         break;
4028         }
4029         walk_shadow_page_lockless_end(vcpu);
4030 }
4031
4032 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4033                                     gfn_t gfn)
4034 {
4035         struct kvm_arch_async_pf arch;
4036
4037         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4038         arch.gfn = gfn;
4039         arch.direct_map = vcpu->arch.mmu->direct_map;
4040         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4041
4042         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4043                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4044 }
4045
4046 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4047                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4048                          bool *writable)
4049 {
4050         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4051         bool async;
4052
4053         /* Don't expose private memslots to L2. */
4054         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
4055                 *pfn = KVM_PFN_NOSLOT;
4056                 *writable = false;
4057                 return false;
4058         }
4059
4060         async = false;
4061         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4062         if (!async)
4063                 return false; /* *pfn has correct page already */
4064
4065         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4066                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4067                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4068                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4069                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4070                         return true;
4071                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4072                         return true;
4073         }
4074
4075         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4076         return false;
4077 }
4078
4079 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4080                              bool prefault, int max_level, bool is_tdp)
4081 {
4082         bool write = error_code & PFERR_WRITE_MASK;
4083         bool exec = error_code & PFERR_FETCH_MASK;
4084         bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4085         bool map_writable;
4086
4087         gfn_t gfn = gpa >> PAGE_SHIFT;
4088         unsigned long mmu_seq;
4089         kvm_pfn_t pfn;
4090         int r;
4091
4092         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4093                 return RET_PF_EMULATE;
4094
4095         if (fast_page_fault(vcpu, gpa, error_code))
4096                 return RET_PF_RETRY;
4097
4098         r = mmu_topup_memory_caches(vcpu, false);
4099         if (r)
4100                 return r;
4101
4102         if (lpage_disallowed)
4103                 max_level = PG_LEVEL_4K;
4104
4105         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4106         smp_rmb();
4107
4108         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4109                 return RET_PF_RETRY;
4110
4111         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4112                 return r;
4113
4114         r = RET_PF_RETRY;
4115         spin_lock(&vcpu->kvm->mmu_lock);
4116         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4117                 goto out_unlock;
4118         r = make_mmu_pages_available(vcpu);
4119         if (r)
4120                 goto out_unlock;
4121         r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4122                          prefault, is_tdp && lpage_disallowed);
4123
4124 out_unlock:
4125         spin_unlock(&vcpu->kvm->mmu_lock);
4126         kvm_release_pfn_clean(pfn);
4127         return r;
4128 }
4129
4130 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4131                                 u32 error_code, bool prefault)
4132 {
4133         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4134
4135         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4136         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4137                                  PG_LEVEL_2M, false);
4138 }
4139
4140 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4141                                 u64 fault_address, char *insn, int insn_len)
4142 {
4143         int r = 1;
4144         u32 flags = vcpu->arch.apf.host_apf_flags;
4145
4146 #ifndef CONFIG_X86_64
4147         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4148         if (WARN_ON_ONCE(fault_address >> 32))
4149                 return -EFAULT;
4150 #endif
4151
4152         vcpu->arch.l1tf_flush_l1d = true;
4153         if (!flags) {
4154                 trace_kvm_page_fault(fault_address, error_code);
4155
4156                 if (kvm_event_needs_reinjection(vcpu))
4157                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4158                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4159                                 insn_len);
4160         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4161                 vcpu->arch.apf.host_apf_flags = 0;
4162                 local_irq_disable();
4163                 kvm_async_pf_task_wait_schedule(fault_address);
4164                 local_irq_enable();
4165         } else {
4166                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4167         }
4168
4169         return r;
4170 }
4171 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4172
4173 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4174                        bool prefault)
4175 {
4176         int max_level;
4177
4178         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4179              max_level > PG_LEVEL_4K;
4180              max_level--) {
4181                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4182                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4183
4184                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4185                         break;
4186         }
4187
4188         return direct_page_fault(vcpu, gpa, error_code, prefault,
4189                                  max_level, true);
4190 }
4191
4192 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4193                                    struct kvm_mmu *context)
4194 {
4195         context->page_fault = nonpaging_page_fault;
4196         context->gva_to_gpa = nonpaging_gva_to_gpa;
4197         context->sync_page = nonpaging_sync_page;
4198         context->invlpg = NULL;
4199         context->update_pte = nonpaging_update_pte;
4200         context->root_level = 0;
4201         context->shadow_root_level = PT32E_ROOT_LEVEL;
4202         context->direct_map = true;
4203         context->nx = false;
4204 }
4205
4206 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4207                                   union kvm_mmu_page_role role)
4208 {
4209         return (role.direct || pgd == root->pgd) &&
4210                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4211                role.word == to_shadow_page(root->hpa)->role.word;
4212 }
4213
4214 /*
4215  * Find out if a previously cached root matching the new pgd/role is available.
4216  * The current root is also inserted into the cache.
4217  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4218  * returned.
4219  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4220  * false is returned. This root should now be freed by the caller.
4221  */
4222 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4223                                   union kvm_mmu_page_role new_role)
4224 {
4225         uint i;
4226         struct kvm_mmu_root_info root;
4227         struct kvm_mmu *mmu = vcpu->arch.mmu;
4228
4229         root.pgd = mmu->root_pgd;
4230         root.hpa = mmu->root_hpa;
4231
4232         if (is_root_usable(&root, new_pgd, new_role))
4233                 return true;
4234
4235         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4236                 swap(root, mmu->prev_roots[i]);
4237
4238                 if (is_root_usable(&root, new_pgd, new_role))
4239                         break;
4240         }
4241
4242         mmu->root_hpa = root.hpa;
4243         mmu->root_pgd = root.pgd;
4244
4245         return i < KVM_MMU_NUM_PREV_ROOTS;
4246 }
4247
4248 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4249                             union kvm_mmu_page_role new_role)
4250 {
4251         struct kvm_mmu *mmu = vcpu->arch.mmu;
4252
4253         /*
4254          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4255          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4256          * later if necessary.
4257          */
4258         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4259             mmu->root_level >= PT64_ROOT_4LEVEL)
4260                 return cached_root_available(vcpu, new_pgd, new_role);
4261
4262         return false;
4263 }
4264
4265 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4266                               union kvm_mmu_page_role new_role,
4267                               bool skip_tlb_flush, bool skip_mmu_sync)
4268 {
4269         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4270                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4271                 return;
4272         }
4273
4274         /*
4275          * It's possible that the cached previous root page is obsolete because
4276          * of a change in the MMU generation number. However, changing the
4277          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4278          * free the root set here and allocate a new one.
4279          */
4280         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4281
4282         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
4283                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4284         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
4285                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4286
4287         /*
4288          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4289          * switching to a new CR3, that GVA->GPA mapping may no longer be
4290          * valid. So clear any cached MMIO info even when we don't need to sync
4291          * the shadow page tables.
4292          */
4293         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4294
4295         __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
4296 }
4297
4298 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4299                      bool skip_mmu_sync)
4300 {
4301         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4302                           skip_tlb_flush, skip_mmu_sync);
4303 }
4304 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4305
4306 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4307 {
4308         return kvm_read_cr3(vcpu);
4309 }
4310
4311 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4312                            unsigned int access, int *nr_present)
4313 {
4314         if (unlikely(is_mmio_spte(*sptep))) {
4315                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4316                         mmu_spte_clear_no_track(sptep);
4317                         return true;
4318                 }
4319
4320                 (*nr_present)++;
4321                 mark_mmio_spte(vcpu, sptep, gfn, access);
4322                 return true;
4323         }
4324
4325         return false;
4326 }
4327
4328 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4329                                 unsigned level, unsigned gpte)
4330 {
4331         /*
4332          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4333          * If it is clear, there are no large pages at this level, so clear
4334          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4335          */
4336         gpte &= level - mmu->last_nonleaf_level;
4337
4338         /*
4339          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
4340          * iff level <= PG_LEVEL_4K, which for our purpose means
4341          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4342          */
4343         gpte |= level - PG_LEVEL_4K - 1;
4344
4345         return gpte & PT_PAGE_SIZE_MASK;
4346 }
4347
4348 #define PTTYPE_EPT 18 /* arbitrary */
4349 #define PTTYPE PTTYPE_EPT
4350 #include "paging_tmpl.h"
4351 #undef PTTYPE
4352
4353 #define PTTYPE 64
4354 #include "paging_tmpl.h"
4355 #undef PTTYPE
4356
4357 #define PTTYPE 32
4358 #include "paging_tmpl.h"
4359 #undef PTTYPE
4360
4361 static void
4362 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4363                         struct rsvd_bits_validate *rsvd_check,
4364                         int maxphyaddr, int level, bool nx, bool gbpages,
4365                         bool pse, bool amd)
4366 {
4367         u64 exb_bit_rsvd = 0;
4368         u64 gbpages_bit_rsvd = 0;
4369         u64 nonleaf_bit8_rsvd = 0;
4370
4371         rsvd_check->bad_mt_xwr = 0;
4372
4373         if (!nx)
4374                 exb_bit_rsvd = rsvd_bits(63, 63);
4375         if (!gbpages)
4376                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4377
4378         /*
4379          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4380          * leaf entries) on AMD CPUs only.
4381          */
4382         if (amd)
4383                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4384
4385         switch (level) {
4386         case PT32_ROOT_LEVEL:
4387                 /* no rsvd bits for 2 level 4K page table entries */
4388                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4389                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4390                 rsvd_check->rsvd_bits_mask[1][0] =
4391                         rsvd_check->rsvd_bits_mask[0][0];
4392
4393                 if (!pse) {
4394                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4395                         break;
4396                 }
4397
4398                 if (is_cpuid_PSE36())
4399                         /* 36bits PSE 4MB page */
4400                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4401                 else
4402                         /* 32 bits PSE 4MB page */
4403                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4404                 break;
4405         case PT32E_ROOT_LEVEL:
4406                 rsvd_check->rsvd_bits_mask[0][2] =
4407                         rsvd_bits(maxphyaddr, 63) |
4408                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4409                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4410                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4411                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4412                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4413                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4414                         rsvd_bits(maxphyaddr, 62) |
4415                         rsvd_bits(13, 20);              /* large page */
4416                 rsvd_check->rsvd_bits_mask[1][0] =
4417                         rsvd_check->rsvd_bits_mask[0][0];
4418                 break;
4419         case PT64_ROOT_5LEVEL:
4420                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4421                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4422                         rsvd_bits(maxphyaddr, 51);
4423                 rsvd_check->rsvd_bits_mask[1][4] =
4424                         rsvd_check->rsvd_bits_mask[0][4];
4425                 /* fall through */
4426         case PT64_ROOT_4LEVEL:
4427                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4428                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4429                         rsvd_bits(maxphyaddr, 51);
4430                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4431                         gbpages_bit_rsvd |
4432                         rsvd_bits(maxphyaddr, 51);
4433                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4434                         rsvd_bits(maxphyaddr, 51);
4435                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4436                         rsvd_bits(maxphyaddr, 51);
4437                 rsvd_check->rsvd_bits_mask[1][3] =
4438                         rsvd_check->rsvd_bits_mask[0][3];
4439                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4440                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4441                         rsvd_bits(13, 29);
4442                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4443                         rsvd_bits(maxphyaddr, 51) |
4444                         rsvd_bits(13, 20);              /* large page */
4445                 rsvd_check->rsvd_bits_mask[1][0] =
4446                         rsvd_check->rsvd_bits_mask[0][0];
4447                 break;
4448         }
4449 }
4450
4451 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4452                                   struct kvm_mmu *context)
4453 {
4454         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4455                                 cpuid_maxphyaddr(vcpu), context->root_level,
4456                                 context->nx,
4457                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4458                                 is_pse(vcpu),
4459                                 guest_cpuid_is_amd_or_hygon(vcpu));
4460 }
4461
4462 static void
4463 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4464                             int maxphyaddr, bool execonly)
4465 {
4466         u64 bad_mt_xwr;
4467
4468         rsvd_check->rsvd_bits_mask[0][4] =
4469                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4470         rsvd_check->rsvd_bits_mask[0][3] =
4471                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4472         rsvd_check->rsvd_bits_mask[0][2] =
4473                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4474         rsvd_check->rsvd_bits_mask[0][1] =
4475                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4476         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4477
4478         /* large page */
4479         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4480         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4481         rsvd_check->rsvd_bits_mask[1][2] =
4482                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4483         rsvd_check->rsvd_bits_mask[1][1] =
4484                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4485         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4486
4487         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4488         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4489         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4490         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4491         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4492         if (!execonly) {
4493                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4494                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4495         }
4496         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4497 }
4498
4499 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4500                 struct kvm_mmu *context, bool execonly)
4501 {
4502         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4503                                     cpuid_maxphyaddr(vcpu), execonly);
4504 }
4505
4506 /*
4507  * the page table on host is the shadow page table for the page
4508  * table in guest or amd nested guest, its mmu features completely
4509  * follow the features in guest.
4510  */
4511 void
4512 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4513 {
4514         bool uses_nx = context->nx ||
4515                 context->mmu_role.base.smep_andnot_wp;
4516         struct rsvd_bits_validate *shadow_zero_check;
4517         int i;
4518
4519         /*
4520          * Passing "true" to the last argument is okay; it adds a check
4521          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4522          */
4523         shadow_zero_check = &context->shadow_zero_check;
4524         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4525                                 shadow_phys_bits,
4526                                 context->shadow_root_level, uses_nx,
4527                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4528                                 is_pse(vcpu), true);
4529
4530         if (!shadow_me_mask)
4531                 return;
4532
4533         for (i = context->shadow_root_level; --i >= 0;) {
4534                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4535                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4536         }
4537
4538 }
4539 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4540
4541 static inline bool boot_cpu_is_amd(void)
4542 {
4543         WARN_ON_ONCE(!tdp_enabled);
4544         return shadow_x_mask == 0;
4545 }
4546
4547 /*
4548  * the direct page table on host, use as much mmu features as
4549  * possible, however, kvm currently does not do execution-protection.
4550  */
4551 static void
4552 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4553                                 struct kvm_mmu *context)
4554 {
4555         struct rsvd_bits_validate *shadow_zero_check;
4556         int i;
4557
4558         shadow_zero_check = &context->shadow_zero_check;
4559
4560         if (boot_cpu_is_amd())
4561                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4562                                         shadow_phys_bits,
4563                                         context->shadow_root_level, false,
4564                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4565                                         true, true);
4566         else
4567                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4568                                             shadow_phys_bits,
4569                                             false);
4570
4571         if (!shadow_me_mask)
4572                 return;
4573
4574         for (i = context->shadow_root_level; --i >= 0;) {
4575                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4576                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4577         }
4578 }
4579
4580 /*
4581  * as the comments in reset_shadow_zero_bits_mask() except it
4582  * is the shadow page table for intel nested guest.
4583  */
4584 static void
4585 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4586                                 struct kvm_mmu *context, bool execonly)
4587 {
4588         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4589                                     shadow_phys_bits, execonly);
4590 }
4591
4592 #define BYTE_MASK(access) \
4593         ((1 & (access) ? 2 : 0) | \
4594          (2 & (access) ? 4 : 0) | \
4595          (3 & (access) ? 8 : 0) | \
4596          (4 & (access) ? 16 : 0) | \
4597          (5 & (access) ? 32 : 0) | \
4598          (6 & (access) ? 64 : 0) | \
4599          (7 & (access) ? 128 : 0))
4600
4601
4602 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4603                                       struct kvm_mmu *mmu, bool ept)
4604 {
4605         unsigned byte;
4606
4607         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4608         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4609         const u8 u = BYTE_MASK(ACC_USER_MASK);
4610
4611         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4612         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4613         bool cr0_wp = is_write_protection(vcpu);
4614
4615         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4616                 unsigned pfec = byte << 1;
4617
4618                 /*
4619                  * Each "*f" variable has a 1 bit for each UWX value
4620                  * that causes a fault with the given PFEC.
4621                  */
4622
4623                 /* Faults from writes to non-writable pages */
4624                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4625                 /* Faults from user mode accesses to supervisor pages */
4626                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4627                 /* Faults from fetches of non-executable pages*/
4628                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4629                 /* Faults from kernel mode fetches of user pages */
4630                 u8 smepf = 0;
4631                 /* Faults from kernel mode accesses of user pages */
4632                 u8 smapf = 0;
4633
4634                 if (!ept) {
4635                         /* Faults from kernel mode accesses to user pages */
4636                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4637
4638                         /* Not really needed: !nx will cause pte.nx to fault */
4639                         if (!mmu->nx)
4640                                 ff = 0;
4641
4642                         /* Allow supervisor writes if !cr0.wp */
4643                         if (!cr0_wp)
4644                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4645
4646                         /* Disallow supervisor fetches of user code if cr4.smep */
4647                         if (cr4_smep)
4648                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4649
4650                         /*
4651                          * SMAP:kernel-mode data accesses from user-mode
4652                          * mappings should fault. A fault is considered
4653                          * as a SMAP violation if all of the following
4654                          * conditions are true:
4655                          *   - X86_CR4_SMAP is set in CR4
4656                          *   - A user page is accessed
4657                          *   - The access is not a fetch
4658                          *   - Page fault in kernel mode
4659                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4660                          *
4661                          * Here, we cover the first three conditions.
4662                          * The fourth is computed dynamically in permission_fault();
4663                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4664                          * *not* subject to SMAP restrictions.
4665                          */
4666                         if (cr4_smap)
4667                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4668                 }
4669
4670                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4671         }
4672 }
4673
4674 /*
4675 * PKU is an additional mechanism by which the paging controls access to
4676 * user-mode addresses based on the value in the PKRU register.  Protection
4677 * key violations are reported through a bit in the page fault error code.
4678 * Unlike other bits of the error code, the PK bit is not known at the
4679 * call site of e.g. gva_to_gpa; it must be computed directly in
4680 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4681 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4682 *
4683 * In particular the following conditions come from the error code, the
4684 * page tables and the machine state:
4685 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4686 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4687 * - PK is always zero if U=0 in the page tables
4688 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4689 *
4690 * The PKRU bitmask caches the result of these four conditions.  The error
4691 * code (minus the P bit) and the page table's U bit form an index into the
4692 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4693 * with the two bits of the PKRU register corresponding to the protection key.
4694 * For the first three conditions above the bits will be 00, thus masking
4695 * away both AD and WD.  For all reads or if the last condition holds, WD
4696 * only will be masked away.
4697 */
4698 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4699                                 bool ept)
4700 {
4701         unsigned bit;
4702         bool wp;
4703
4704         if (ept) {
4705                 mmu->pkru_mask = 0;
4706                 return;
4707         }
4708
4709         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4710         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4711                 mmu->pkru_mask = 0;
4712                 return;
4713         }
4714
4715         wp = is_write_protection(vcpu);
4716
4717         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4718                 unsigned pfec, pkey_bits;
4719                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4720
4721                 pfec = bit << 1;
4722                 ff = pfec & PFERR_FETCH_MASK;
4723                 uf = pfec & PFERR_USER_MASK;
4724                 wf = pfec & PFERR_WRITE_MASK;
4725
4726                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4727                 pte_user = pfec & PFERR_RSVD_MASK;
4728
4729                 /*
4730                  * Only need to check the access which is not an
4731                  * instruction fetch and is to a user page.
4732                  */
4733                 check_pkey = (!ff && pte_user);
4734                 /*
4735                  * write access is controlled by PKRU if it is a
4736                  * user access or CR0.WP = 1.
4737                  */
4738                 check_write = check_pkey && wf && (uf || wp);
4739
4740                 /* PKRU.AD stops both read and write access. */
4741                 pkey_bits = !!check_pkey;
4742                 /* PKRU.WD stops write access. */
4743                 pkey_bits |= (!!check_write) << 1;
4744
4745                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4746         }
4747 }
4748
4749 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4750 {
4751         unsigned root_level = mmu->root_level;
4752
4753         mmu->last_nonleaf_level = root_level;
4754         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4755                 mmu->last_nonleaf_level++;
4756 }
4757
4758 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4759                                          struct kvm_mmu *context,
4760                                          int level)
4761 {
4762         context->nx = is_nx(vcpu);
4763         context->root_level = level;
4764
4765         reset_rsvds_bits_mask(vcpu, context);
4766         update_permission_bitmask(vcpu, context, false);
4767         update_pkru_bitmask(vcpu, context, false);
4768         update_last_nonleaf_level(vcpu, context);
4769
4770         MMU_WARN_ON(!is_pae(vcpu));
4771         context->page_fault = paging64_page_fault;
4772         context->gva_to_gpa = paging64_gva_to_gpa;
4773         context->sync_page = paging64_sync_page;
4774         context->invlpg = paging64_invlpg;
4775         context->update_pte = paging64_update_pte;
4776         context->shadow_root_level = level;
4777         context->direct_map = false;
4778 }
4779
4780 static void paging64_init_context(struct kvm_vcpu *vcpu,
4781                                   struct kvm_mmu *context)
4782 {
4783         int root_level = is_la57_mode(vcpu) ?
4784                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4785
4786         paging64_init_context_common(vcpu, context, root_level);
4787 }
4788
4789 static void paging32_init_context(struct kvm_vcpu *vcpu,
4790                                   struct kvm_mmu *context)
4791 {
4792         context->nx = false;
4793         context->root_level = PT32_ROOT_LEVEL;
4794
4795         reset_rsvds_bits_mask(vcpu, context);
4796         update_permission_bitmask(vcpu, context, false);
4797         update_pkru_bitmask(vcpu, context, false);
4798         update_last_nonleaf_level(vcpu, context);
4799
4800         context->page_fault = paging32_page_fault;
4801         context->gva_to_gpa = paging32_gva_to_gpa;
4802         context->sync_page = paging32_sync_page;
4803         context->invlpg = paging32_invlpg;
4804         context->update_pte = paging32_update_pte;
4805         context->shadow_root_level = PT32E_ROOT_LEVEL;
4806         context->direct_map = false;
4807 }
4808
4809 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4810                                    struct kvm_mmu *context)
4811 {
4812         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4813 }
4814
4815 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4816 {
4817         union kvm_mmu_extended_role ext = {0};
4818
4819         ext.cr0_pg = !!is_paging(vcpu);
4820         ext.cr4_pae = !!is_pae(vcpu);
4821         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4822         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4823         ext.cr4_pse = !!is_pse(vcpu);
4824         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4825         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4826
4827         ext.valid = 1;
4828
4829         return ext;
4830 }
4831
4832 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4833                                                    bool base_only)
4834 {
4835         union kvm_mmu_role role = {0};
4836
4837         role.base.access = ACC_ALL;
4838         role.base.nxe = !!is_nx(vcpu);
4839         role.base.cr0_wp = is_write_protection(vcpu);
4840         role.base.smm = is_smm(vcpu);
4841         role.base.guest_mode = is_guest_mode(vcpu);
4842
4843         if (base_only)
4844                 return role;
4845
4846         role.ext = kvm_calc_mmu_role_ext(vcpu);
4847
4848         return role;
4849 }
4850
4851 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4852 {
4853         /* Use 5-level TDP if and only if it's useful/necessary. */
4854         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4855                 return 4;
4856
4857         return max_tdp_level;
4858 }
4859
4860 static union kvm_mmu_role
4861 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4862 {
4863         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4864
4865         role.base.ad_disabled = (shadow_accessed_mask == 0);
4866         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4867         role.base.direct = true;
4868         role.base.gpte_is_8_bytes = true;
4869
4870         return role;
4871 }
4872
4873 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4874 {
4875         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4876         union kvm_mmu_role new_role =
4877                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4878
4879         if (new_role.as_u64 == context->mmu_role.as_u64)
4880                 return;
4881
4882         context->mmu_role.as_u64 = new_role.as_u64;
4883         context->page_fault = kvm_tdp_page_fault;
4884         context->sync_page = nonpaging_sync_page;
4885         context->invlpg = NULL;
4886         context->update_pte = nonpaging_update_pte;
4887         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4888         context->direct_map = true;
4889         context->get_guest_pgd = get_cr3;
4890         context->get_pdptr = kvm_pdptr_read;
4891         context->inject_page_fault = kvm_inject_page_fault;
4892
4893         if (!is_paging(vcpu)) {
4894                 context->nx = false;
4895                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4896                 context->root_level = 0;
4897         } else if (is_long_mode(vcpu)) {
4898                 context->nx = is_nx(vcpu);
4899                 context->root_level = is_la57_mode(vcpu) ?
4900                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4901                 reset_rsvds_bits_mask(vcpu, context);
4902                 context->gva_to_gpa = paging64_gva_to_gpa;
4903         } else if (is_pae(vcpu)) {
4904                 context->nx = is_nx(vcpu);
4905                 context->root_level = PT32E_ROOT_LEVEL;
4906                 reset_rsvds_bits_mask(vcpu, context);
4907                 context->gva_to_gpa = paging64_gva_to_gpa;
4908         } else {
4909                 context->nx = false;
4910                 context->root_level = PT32_ROOT_LEVEL;
4911                 reset_rsvds_bits_mask(vcpu, context);
4912                 context->gva_to_gpa = paging32_gva_to_gpa;
4913         }
4914
4915         update_permission_bitmask(vcpu, context, false);
4916         update_pkru_bitmask(vcpu, context, false);
4917         update_last_nonleaf_level(vcpu, context);
4918         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4919 }
4920
4921 static union kvm_mmu_role
4922 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4923 {
4924         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4925
4926         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4927                 !is_write_protection(vcpu);
4928         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4929                 !is_write_protection(vcpu);
4930         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4931
4932         return role;
4933 }
4934
4935 static union kvm_mmu_role
4936 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4937 {
4938         union kvm_mmu_role role =
4939                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4940
4941         role.base.direct = !is_paging(vcpu);
4942
4943         if (!is_long_mode(vcpu))
4944                 role.base.level = PT32E_ROOT_LEVEL;
4945         else if (is_la57_mode(vcpu))
4946                 role.base.level = PT64_ROOT_5LEVEL;
4947         else
4948                 role.base.level = PT64_ROOT_4LEVEL;
4949
4950         return role;
4951 }
4952
4953 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4954                                     u32 cr0, u32 cr4, u32 efer,
4955                                     union kvm_mmu_role new_role)
4956 {
4957         if (!(cr0 & X86_CR0_PG))
4958                 nonpaging_init_context(vcpu, context);
4959         else if (efer & EFER_LMA)
4960                 paging64_init_context(vcpu, context);
4961         else if (cr4 & X86_CR4_PAE)
4962                 paging32E_init_context(vcpu, context);
4963         else
4964                 paging32_init_context(vcpu, context);
4965
4966         context->mmu_role.as_u64 = new_role.as_u64;
4967         reset_shadow_zero_bits_mask(vcpu, context);
4968 }
4969
4970 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4971 {
4972         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4973         union kvm_mmu_role new_role =
4974                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4975
4976         if (new_role.as_u64 != context->mmu_role.as_u64)
4977                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4978 }
4979
4980 static union kvm_mmu_role
4981 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4982 {
4983         union kvm_mmu_role role =
4984                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4985
4986         role.base.direct = false;
4987         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4988
4989         return role;
4990 }
4991
4992 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4993                              gpa_t nested_cr3)
4994 {
4995         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4996         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4997
4998         context->shadow_root_level = new_role.base.level;
4999
5000         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
5001
5002         if (new_role.as_u64 != context->mmu_role.as_u64)
5003                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
5004 }
5005 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5006
5007 static union kvm_mmu_role
5008 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5009                                    bool execonly, u8 level)
5010 {
5011         union kvm_mmu_role role = {0};
5012
5013         /* SMM flag is inherited from root_mmu */
5014         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5015
5016         role.base.level = level;
5017         role.base.gpte_is_8_bytes = true;
5018         role.base.direct = false;
5019         role.base.ad_disabled = !accessed_dirty;
5020         role.base.guest_mode = true;
5021         role.base.access = ACC_ALL;
5022
5023         /*
5024          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5025          * SMAP variation to denote shadow EPT entries.
5026          */
5027         role.base.cr0_wp = true;
5028         role.base.smap_andnot_wp = true;
5029
5030         role.ext = kvm_calc_mmu_role_ext(vcpu);
5031         role.ext.execonly = execonly;
5032
5033         return role;
5034 }
5035
5036 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5037                              bool accessed_dirty, gpa_t new_eptp)
5038 {
5039         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5040         u8 level = vmx_eptp_page_walk_level(new_eptp);
5041         union kvm_mmu_role new_role =
5042                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5043                                                    execonly, level);
5044
5045         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
5046
5047         if (new_role.as_u64 == context->mmu_role.as_u64)
5048                 return;
5049
5050         context->shadow_root_level = level;
5051
5052         context->nx = true;
5053         context->ept_ad = accessed_dirty;
5054         context->page_fault = ept_page_fault;
5055         context->gva_to_gpa = ept_gva_to_gpa;
5056         context->sync_page = ept_sync_page;
5057         context->invlpg = ept_invlpg;
5058         context->update_pte = ept_update_pte;
5059         context->root_level = level;
5060         context->direct_map = false;
5061         context->mmu_role.as_u64 = new_role.as_u64;
5062
5063         update_permission_bitmask(vcpu, context, true);
5064         update_pkru_bitmask(vcpu, context, true);
5065         update_last_nonleaf_level(vcpu, context);
5066         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5067         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5068 }
5069 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5070
5071 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5072 {
5073         struct kvm_mmu *context = &vcpu->arch.root_mmu;
5074
5075         kvm_init_shadow_mmu(vcpu,
5076                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
5077                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
5078                             vcpu->arch.efer);
5079
5080         context->get_guest_pgd     = get_cr3;
5081         context->get_pdptr         = kvm_pdptr_read;
5082         context->inject_page_fault = kvm_inject_page_fault;
5083 }
5084
5085 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5086 {
5087         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5088         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5089
5090         if (new_role.as_u64 == g_context->mmu_role.as_u64)
5091                 return;
5092
5093         g_context->mmu_role.as_u64 = new_role.as_u64;
5094         g_context->get_guest_pgd     = get_cr3;
5095         g_context->get_pdptr         = kvm_pdptr_read;
5096         g_context->inject_page_fault = kvm_inject_page_fault;
5097
5098         /*
5099          * L2 page tables are never shadowed, so there is no need to sync
5100          * SPTEs.
5101          */
5102         g_context->invlpg            = NULL;
5103
5104         /*
5105          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5106          * L1's nested page tables (e.g. EPT12). The nested translation
5107          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5108          * L2's page tables as the first level of translation and L1's
5109          * nested page tables as the second level of translation. Basically
5110          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5111          */
5112         if (!is_paging(vcpu)) {
5113                 g_context->nx = false;
5114                 g_context->root_level = 0;
5115                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5116         } else if (is_long_mode(vcpu)) {
5117                 g_context->nx = is_nx(vcpu);
5118                 g_context->root_level = is_la57_mode(vcpu) ?
5119                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5120                 reset_rsvds_bits_mask(vcpu, g_context);
5121                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5122         } else if (is_pae(vcpu)) {
5123                 g_context->nx = is_nx(vcpu);
5124                 g_context->root_level = PT32E_ROOT_LEVEL;
5125                 reset_rsvds_bits_mask(vcpu, g_context);
5126                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5127         } else {
5128                 g_context->nx = false;
5129                 g_context->root_level = PT32_ROOT_LEVEL;
5130                 reset_rsvds_bits_mask(vcpu, g_context);
5131                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5132         }
5133
5134         update_permission_bitmask(vcpu, g_context, false);
5135         update_pkru_bitmask(vcpu, g_context, false);
5136         update_last_nonleaf_level(vcpu, g_context);
5137 }
5138
5139 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5140 {
5141         if (reset_roots) {
5142                 uint i;
5143
5144                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5145
5146                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5147                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5148         }
5149
5150         if (mmu_is_nested(vcpu))
5151                 init_kvm_nested_mmu(vcpu);
5152         else if (tdp_enabled)
5153                 init_kvm_tdp_mmu(vcpu);
5154         else
5155                 init_kvm_softmmu(vcpu);
5156 }
5157 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5158
5159 static union kvm_mmu_page_role
5160 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5161 {
5162         union kvm_mmu_role role;
5163
5164         if (tdp_enabled)
5165                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5166         else
5167                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5168
5169         return role.base;
5170 }
5171
5172 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5173 {
5174         kvm_mmu_unload(vcpu);
5175         kvm_init_mmu(vcpu, true);
5176 }
5177 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5178
5179 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5180 {
5181         int r;
5182
5183         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5184         if (r)
5185                 goto out;
5186         r = mmu_alloc_roots(vcpu);
5187         kvm_mmu_sync_roots(vcpu);
5188         if (r)
5189                 goto out;
5190         kvm_mmu_load_pgd(vcpu);
5191         kvm_x86_ops.tlb_flush_current(vcpu);
5192 out:
5193         return r;
5194 }
5195 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5196
5197 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5198 {
5199         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5200         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5201         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5202         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5203 }
5204 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5205
5206 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5207                                   struct kvm_mmu_page *sp, u64 *spte,
5208                                   const void *new)
5209 {
5210         if (sp->role.level != PG_LEVEL_4K) {
5211                 ++vcpu->kvm->stat.mmu_pde_zapped;
5212                 return;
5213         }
5214
5215         ++vcpu->kvm->stat.mmu_pte_updated;
5216         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5217 }
5218
5219 static bool need_remote_flush(u64 old, u64 new)
5220 {
5221         if (!is_shadow_present_pte(old))
5222                 return false;
5223         if (!is_shadow_present_pte(new))
5224                 return true;
5225         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5226                 return true;
5227         old ^= shadow_nx_mask;
5228         new ^= shadow_nx_mask;
5229         return (old & ~new & PT64_PERM_MASK) != 0;
5230 }
5231
5232 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5233                                     int *bytes)
5234 {
5235         u64 gentry = 0;
5236         int r;
5237
5238         /*
5239          * Assume that the pte write on a page table of the same type
5240          * as the current vcpu paging mode since we update the sptes only
5241          * when they have the same mode.
5242          */
5243         if (is_pae(vcpu) && *bytes == 4) {
5244                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5245                 *gpa &= ~(gpa_t)7;
5246                 *bytes = 8;
5247         }
5248
5249         if (*bytes == 4 || *bytes == 8) {
5250                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5251                 if (r)
5252                         gentry = 0;
5253         }
5254
5255         return gentry;
5256 }
5257
5258 /*
5259  * If we're seeing too many writes to a page, it may no longer be a page table,
5260  * or we may be forking, in which case it is better to unmap the page.
5261  */
5262 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5263 {
5264         /*
5265          * Skip write-flooding detected for the sp whose level is 1, because
5266          * it can become unsync, then the guest page is not write-protected.
5267          */
5268         if (sp->role.level == PG_LEVEL_4K)
5269                 return false;
5270
5271         atomic_inc(&sp->write_flooding_count);
5272         return atomic_read(&sp->write_flooding_count) >= 3;
5273 }
5274
5275 /*
5276  * Misaligned accesses are too much trouble to fix up; also, they usually
5277  * indicate a page is not used as a page table.
5278  */
5279 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5280                                     int bytes)
5281 {
5282         unsigned offset, pte_size, misaligned;
5283
5284         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5285                  gpa, bytes, sp->role.word);
5286
5287         offset = offset_in_page(gpa);
5288         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5289
5290         /*
5291          * Sometimes, the OS only writes the last one bytes to update status
5292          * bits, for example, in linux, andb instruction is used in clear_bit().
5293          */
5294         if (!(offset & (pte_size - 1)) && bytes == 1)
5295                 return false;
5296
5297         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5298         misaligned |= bytes < 4;
5299
5300         return misaligned;
5301 }
5302
5303 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5304 {
5305         unsigned page_offset, quadrant;
5306         u64 *spte;
5307         int level;
5308
5309         page_offset = offset_in_page(gpa);
5310         level = sp->role.level;
5311         *nspte = 1;
5312         if (!sp->role.gpte_is_8_bytes) {
5313                 page_offset <<= 1;      /* 32->64 */
5314                 /*
5315                  * A 32-bit pde maps 4MB while the shadow pdes map
5316                  * only 2MB.  So we need to double the offset again
5317                  * and zap two pdes instead of one.
5318                  */
5319                 if (level == PT32_ROOT_LEVEL) {
5320                         page_offset &= ~7; /* kill rounding error */
5321                         page_offset <<= 1;
5322                         *nspte = 2;
5323                 }
5324                 quadrant = page_offset >> PAGE_SHIFT;
5325                 page_offset &= ~PAGE_MASK;
5326                 if (quadrant != sp->role.quadrant)
5327                         return NULL;
5328         }
5329
5330         spte = &sp->spt[page_offset / sizeof(*spte)];
5331         return spte;
5332 }
5333
5334 /*
5335  * Ignore various flags when determining if a SPTE can be immediately
5336  * overwritten for the current MMU.
5337  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5338  *    match the current MMU role, as MMU's level tracks the root level.
5339  *  - access: updated based on the new guest PTE
5340  *  - quadrant: handled by get_written_sptes()
5341  *  - invalid: always false (loop only walks valid shadow pages)
5342  */
5343 static const union kvm_mmu_page_role role_ign = {
5344         .level = 0xf,
5345         .access = 0x7,
5346         .quadrant = 0x3,
5347         .invalid = 0x1,
5348 };
5349
5350 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5351                               const u8 *new, int bytes,
5352                               struct kvm_page_track_notifier_node *node)
5353 {
5354         gfn_t gfn = gpa >> PAGE_SHIFT;
5355         struct kvm_mmu_page *sp;
5356         LIST_HEAD(invalid_list);
5357         u64 entry, gentry, *spte;
5358         int npte;
5359         bool remote_flush, local_flush;
5360
5361         /*
5362          * If we don't have indirect shadow pages, it means no page is
5363          * write-protected, so we can exit simply.
5364          */
5365         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5366                 return;
5367
5368         remote_flush = local_flush = false;
5369
5370         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5371
5372         /*
5373          * No need to care whether allocation memory is successful
5374          * or not since pte prefetch is skiped if it does not have
5375          * enough objects in the cache.
5376          */
5377         mmu_topup_memory_caches(vcpu, true);
5378
5379         spin_lock(&vcpu->kvm->mmu_lock);
5380
5381         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5382
5383         ++vcpu->kvm->stat.mmu_pte_write;
5384         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5385
5386         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5387                 if (detect_write_misaligned(sp, gpa, bytes) ||
5388                       detect_write_flooding(sp)) {
5389                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5390                         ++vcpu->kvm->stat.mmu_flooded;
5391                         continue;
5392                 }
5393
5394                 spte = get_written_sptes(sp, gpa, &npte);
5395                 if (!spte)
5396                         continue;
5397
5398                 local_flush = true;
5399                 while (npte--) {
5400                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5401
5402                         entry = *spte;
5403                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5404                         if (gentry &&
5405                             !((sp->role.word ^ base_role) & ~role_ign.word) &&
5406                             rmap_can_add(vcpu))
5407                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5408                         if (need_remote_flush(entry, *spte))
5409                                 remote_flush = true;
5410                         ++spte;
5411                 }
5412         }
5413         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5414         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5415         spin_unlock(&vcpu->kvm->mmu_lock);
5416 }
5417
5418 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5419 {
5420         gpa_t gpa;
5421         int r;
5422
5423         if (vcpu->arch.mmu->direct_map)
5424                 return 0;
5425
5426         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5427
5428         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5429
5430         return r;
5431 }
5432 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5433
5434 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5435                        void *insn, int insn_len)
5436 {
5437         int r, emulation_type = EMULTYPE_PF;
5438         bool direct = vcpu->arch.mmu->direct_map;
5439
5440         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5441                 return RET_PF_RETRY;
5442
5443         r = RET_PF_INVALID;
5444         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5445                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5446                 if (r == RET_PF_EMULATE)
5447                         goto emulate;
5448         }
5449
5450         if (r == RET_PF_INVALID) {
5451                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5452                                           lower_32_bits(error_code), false);
5453                 WARN_ON(r == RET_PF_INVALID);
5454         }
5455
5456         if (r == RET_PF_RETRY)
5457                 return 1;
5458         if (r < 0)
5459                 return r;
5460
5461         /*
5462          * Before emulating the instruction, check if the error code
5463          * was due to a RO violation while translating the guest page.
5464          * This can occur when using nested virtualization with nested
5465          * paging in both guests. If true, we simply unprotect the page
5466          * and resume the guest.
5467          */
5468         if (vcpu->arch.mmu->direct_map &&
5469             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5470                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5471                 return 1;
5472         }
5473
5474         /*
5475          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5476          * optimistically try to just unprotect the page and let the processor
5477          * re-execute the instruction that caused the page fault.  Do not allow
5478          * retrying MMIO emulation, as it's not only pointless but could also
5479          * cause us to enter an infinite loop because the processor will keep
5480          * faulting on the non-existent MMIO address.  Retrying an instruction
5481          * from a nested guest is also pointless and dangerous as we are only
5482          * explicitly shadowing L1's page tables, i.e. unprotecting something
5483          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5484          */
5485         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5486                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5487 emulate:
5488         /*
5489          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5490          * This can happen if a guest gets a page-fault on data access but the HW
5491          * table walker is not able to read the instruction page (e.g instruction
5492          * page is not present in memory). In those cases we simply restart the
5493          * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5494          */
5495         if (unlikely(insn && !insn_len)) {
5496                 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5497                         return 1;
5498         }
5499
5500         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5501                                        insn_len);
5502 }
5503 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5504
5505 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5506                             gva_t gva, hpa_t root_hpa)
5507 {
5508         int i;
5509
5510         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5511         if (mmu != &vcpu->arch.guest_mmu) {
5512                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5513                 if (is_noncanonical_address(gva, vcpu))
5514                         return;
5515
5516                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5517         }
5518
5519         if (!mmu->invlpg)
5520                 return;
5521
5522         if (root_hpa == INVALID_PAGE) {
5523                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5524
5525                 /*
5526                  * INVLPG is required to invalidate any global mappings for the VA,
5527                  * irrespective of PCID. Since it would take us roughly similar amount
5528                  * of work to determine whether any of the prev_root mappings of the VA
5529                  * is marked global, or to just sync it blindly, so we might as well
5530                  * just always sync it.
5531                  *
5532                  * Mappings not reachable via the current cr3 or the prev_roots will be
5533                  * synced when switching to that cr3, so nothing needs to be done here
5534                  * for them.
5535                  */
5536                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5537                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5538                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5539         } else {
5540                 mmu->invlpg(vcpu, gva, root_hpa);
5541         }
5542 }
5543 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5544
5545 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5546 {
5547         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5548         ++vcpu->stat.invlpg;
5549 }
5550 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5551
5552
5553 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5554 {
5555         struct kvm_mmu *mmu = vcpu->arch.mmu;
5556         bool tlb_flush = false;
5557         uint i;
5558
5559         if (pcid == kvm_get_active_pcid(vcpu)) {
5560                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5561                 tlb_flush = true;
5562         }
5563
5564         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5565                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5566                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5567                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5568                         tlb_flush = true;
5569                 }
5570         }
5571
5572         if (tlb_flush)
5573                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5574
5575         ++vcpu->stat.invlpg;
5576
5577         /*
5578          * Mappings not reachable via the current cr3 or the prev_roots will be
5579          * synced when switching to that cr3, so nothing needs to be done here
5580          * for them.
5581          */
5582 }
5583 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5584
5585 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5586                        int tdp_huge_page_level)
5587 {
5588         tdp_enabled = enable_tdp;
5589         max_tdp_level = tdp_max_root_level;
5590
5591         /*
5592          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5593          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5594          * the kernel is not.  But, KVM never creates a page size greater than
5595          * what is used by the kernel for any given HVA, i.e. the kernel's
5596          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5597          */
5598         if (tdp_enabled)
5599                 max_huge_page_level = tdp_huge_page_level;
5600         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5601                 max_huge_page_level = PG_LEVEL_1G;
5602         else
5603                 max_huge_page_level = PG_LEVEL_2M;
5604 }
5605 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5606
5607 /* The return value indicates if tlb flush on all vcpus is needed. */
5608 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5609
5610 /* The caller should hold mmu-lock before calling this function. */
5611 static __always_inline bool
5612 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5613                         slot_level_handler fn, int start_level, int end_level,
5614                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5615 {
5616         struct slot_rmap_walk_iterator iterator;
5617         bool flush = false;
5618
5619         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5620                         end_gfn, &iterator) {
5621                 if (iterator.rmap)
5622                         flush |= fn(kvm, iterator.rmap);
5623
5624                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5625                         if (flush && lock_flush_tlb) {
5626                                 kvm_flush_remote_tlbs_with_address(kvm,
5627                                                 start_gfn,
5628                                                 iterator.gfn - start_gfn + 1);
5629                                 flush = false;
5630                         }
5631                         cond_resched_lock(&kvm->mmu_lock);
5632                 }
5633         }
5634
5635         if (flush && lock_flush_tlb) {
5636                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5637                                                    end_gfn - start_gfn + 1);
5638                 flush = false;
5639         }
5640
5641         return flush;
5642 }
5643
5644 static __always_inline bool
5645 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5646                   slot_level_handler fn, int start_level, int end_level,
5647                   bool lock_flush_tlb)
5648 {
5649         return slot_handle_level_range(kvm, memslot, fn, start_level,
5650                         end_level, memslot->base_gfn,
5651                         memslot->base_gfn + memslot->npages - 1,
5652                         lock_flush_tlb);
5653 }
5654
5655 static __always_inline bool
5656 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5657                       slot_level_handler fn, bool lock_flush_tlb)
5658 {
5659         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5660                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5661 }
5662
5663 static __always_inline bool
5664 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5665                         slot_level_handler fn, bool lock_flush_tlb)
5666 {
5667         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5668                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5669 }
5670
5671 static __always_inline bool
5672 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5673                  slot_level_handler fn, bool lock_flush_tlb)
5674 {
5675         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5676                                  PG_LEVEL_4K, lock_flush_tlb);
5677 }
5678
5679 static void free_mmu_pages(struct kvm_mmu *mmu)
5680 {
5681         free_page((unsigned long)mmu->pae_root);
5682         free_page((unsigned long)mmu->lm_root);
5683 }
5684
5685 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5686 {
5687         struct page *page;
5688         int i;
5689
5690         /*
5691          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5692          * while the PDP table is a per-vCPU construct that's allocated at MMU
5693          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5694          * x86_64.  Therefore we need to allocate the PDP table in the first
5695          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5696          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5697          * skip allocating the PDP table.
5698          */
5699         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5700                 return 0;
5701
5702         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5703         if (!page)
5704                 return -ENOMEM;
5705
5706         mmu->pae_root = page_address(page);
5707         for (i = 0; i < 4; ++i)
5708                 mmu->pae_root[i] = INVALID_PAGE;
5709
5710         return 0;
5711 }
5712
5713 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5714 {
5715         uint i;
5716         int ret;
5717
5718         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5719         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5720
5721         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5722         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5723
5724         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5725
5726         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5727         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5728
5729         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5730         vcpu->arch.root_mmu.root_pgd = 0;
5731         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5732         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5733                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5734
5735         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5736         vcpu->arch.guest_mmu.root_pgd = 0;
5737         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5738         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5739                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5740
5741         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5742
5743         ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5744         if (ret)
5745                 return ret;
5746
5747         ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5748         if (ret)
5749                 goto fail_allocate_root;
5750
5751         return ret;
5752  fail_allocate_root:
5753         free_mmu_pages(&vcpu->arch.guest_mmu);
5754         return ret;
5755 }
5756
5757 #define BATCH_ZAP_PAGES 10
5758 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5759 {
5760         struct kvm_mmu_page *sp, *node;
5761         int nr_zapped, batch = 0;
5762
5763 restart:
5764         list_for_each_entry_safe_reverse(sp, node,
5765               &kvm->arch.active_mmu_pages, link) {
5766                 /*
5767                  * No obsolete valid page exists before a newly created page
5768                  * since active_mmu_pages is a FIFO list.
5769                  */
5770                 if (!is_obsolete_sp(kvm, sp))
5771                         break;
5772
5773                 /*
5774                  * Invalid pages should never land back on the list of active
5775                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5776                  * infinite loop if the page gets put back on the list (again).
5777                  */
5778                 if (WARN_ON(sp->role.invalid))
5779                         continue;
5780
5781                 /*
5782                  * No need to flush the TLB since we're only zapping shadow
5783                  * pages with an obsolete generation number and all vCPUS have
5784                  * loaded a new root, i.e. the shadow pages being zapped cannot
5785                  * be in active use by the guest.
5786                  */
5787                 if (batch >= BATCH_ZAP_PAGES &&
5788                     cond_resched_lock(&kvm->mmu_lock)) {
5789                         batch = 0;
5790                         goto restart;
5791                 }
5792
5793                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5794                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5795                         batch += nr_zapped;
5796                         goto restart;
5797                 }
5798         }
5799
5800         /*
5801          * Trigger a remote TLB flush before freeing the page tables to ensure
5802          * KVM is not in the middle of a lockless shadow page table walk, which
5803          * may reference the pages.
5804          */
5805         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5806 }
5807
5808 /*
5809  * Fast invalidate all shadow pages and use lock-break technique
5810  * to zap obsolete pages.
5811  *
5812  * It's required when memslot is being deleted or VM is being
5813  * destroyed, in these cases, we should ensure that KVM MMU does
5814  * not use any resource of the being-deleted slot or all slots
5815  * after calling the function.
5816  */
5817 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5818 {
5819         lockdep_assert_held(&kvm->slots_lock);
5820
5821         spin_lock(&kvm->mmu_lock);
5822         trace_kvm_mmu_zap_all_fast(kvm);
5823
5824         /*
5825          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5826          * held for the entire duration of zapping obsolete pages, it's
5827          * impossible for there to be multiple invalid generations associated
5828          * with *valid* shadow pages at any given time, i.e. there is exactly
5829          * one valid generation and (at most) one invalid generation.
5830          */
5831         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5832
5833         /*
5834          * Notify all vcpus to reload its shadow page table and flush TLB.
5835          * Then all vcpus will switch to new shadow page table with the new
5836          * mmu_valid_gen.
5837          *
5838          * Note: we need to do this under the protection of mmu_lock,
5839          * otherwise, vcpu would purge shadow page but miss tlb flush.
5840          */
5841         kvm_reload_remote_mmus(kvm);
5842
5843         kvm_zap_obsolete_pages(kvm);
5844         spin_unlock(&kvm->mmu_lock);
5845 }
5846
5847 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5848 {
5849         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5850 }
5851
5852 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5853                         struct kvm_memory_slot *slot,
5854                         struct kvm_page_track_notifier_node *node)
5855 {
5856         kvm_mmu_zap_all_fast(kvm);
5857 }
5858
5859 void kvm_mmu_init_vm(struct kvm *kvm)
5860 {
5861         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5862
5863         node->track_write = kvm_mmu_pte_write;
5864         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5865         kvm_page_track_register_notifier(kvm, node);
5866 }
5867
5868 void kvm_mmu_uninit_vm(struct kvm *kvm)
5869 {
5870         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5871
5872         kvm_page_track_unregister_notifier(kvm, node);
5873 }
5874
5875 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5876 {
5877         struct kvm_memslots *slots;
5878         struct kvm_memory_slot *memslot;
5879         int i;
5880
5881         spin_lock(&kvm->mmu_lock);
5882         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5883                 slots = __kvm_memslots(kvm, i);
5884                 kvm_for_each_memslot(memslot, slots) {
5885                         gfn_t start, end;
5886
5887                         start = max(gfn_start, memslot->base_gfn);
5888                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5889                         if (start >= end)
5890                                 continue;
5891
5892                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5893                                                 PG_LEVEL_4K,
5894                                                 KVM_MAX_HUGEPAGE_LEVEL,
5895                                                 start, end - 1, true);
5896                 }
5897         }
5898
5899         spin_unlock(&kvm->mmu_lock);
5900 }
5901
5902 static bool slot_rmap_write_protect(struct kvm *kvm,
5903                                     struct kvm_rmap_head *rmap_head)
5904 {
5905         return __rmap_write_protect(kvm, rmap_head, false);
5906 }
5907
5908 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5909                                       struct kvm_memory_slot *memslot,
5910                                       int start_level)
5911 {
5912         bool flush;
5913
5914         spin_lock(&kvm->mmu_lock);
5915         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5916                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5917         spin_unlock(&kvm->mmu_lock);
5918
5919         /*
5920          * We can flush all the TLBs out of the mmu lock without TLB
5921          * corruption since we just change the spte from writable to
5922          * readonly so that we only need to care the case of changing
5923          * spte from present to present (changing the spte from present
5924          * to nonpresent will flush all the TLBs immediately), in other
5925          * words, the only case we care is mmu_spte_update() where we
5926          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5927          * instead of PT_WRITABLE_MASK, that means it does not depend
5928          * on PT_WRITABLE_MASK anymore.
5929          */
5930         if (flush)
5931                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5932 }
5933
5934 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5935                                          struct kvm_rmap_head *rmap_head)
5936 {
5937         u64 *sptep;
5938         struct rmap_iterator iter;
5939         int need_tlb_flush = 0;
5940         kvm_pfn_t pfn;
5941         struct kvm_mmu_page *sp;
5942
5943 restart:
5944         for_each_rmap_spte(rmap_head, &iter, sptep) {
5945                 sp = sptep_to_sp(sptep);
5946                 pfn = spte_to_pfn(*sptep);
5947
5948                 /*
5949                  * We cannot do huge page mapping for indirect shadow pages,
5950                  * which are found on the last rmap (level = 1) when not using
5951                  * tdp; such shadow pages are synced with the page table in
5952                  * the guest, and the guest page table is using 4K page size
5953                  * mapping if the indirect sp has level = 1.
5954                  */
5955                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5956                     (kvm_is_zone_device_pfn(pfn) ||
5957                      PageCompound(pfn_to_page(pfn)))) {
5958                         pte_list_remove(rmap_head, sptep);
5959
5960                         if (kvm_available_flush_tlb_with_range())
5961                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5962                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5963                         else
5964                                 need_tlb_flush = 1;
5965
5966                         goto restart;
5967                 }
5968         }
5969
5970         return need_tlb_flush;
5971 }
5972
5973 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5974                                    const struct kvm_memory_slot *memslot)
5975 {
5976         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5977         spin_lock(&kvm->mmu_lock);
5978         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5979                          kvm_mmu_zap_collapsible_spte, true);
5980         spin_unlock(&kvm->mmu_lock);
5981 }
5982
5983 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5984                                         struct kvm_memory_slot *memslot)
5985 {
5986         /*
5987          * All current use cases for flushing the TLBs for a specific memslot
5988          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5989          * The interaction between the various operations on memslot must be
5990          * serialized by slots_locks to ensure the TLB flush from one operation
5991          * is observed by any other operation on the same memslot.
5992          */
5993         lockdep_assert_held(&kvm->slots_lock);
5994         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5995                                            memslot->npages);
5996 }
5997
5998 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5999                                    struct kvm_memory_slot *memslot)
6000 {
6001         bool flush;
6002
6003         spin_lock(&kvm->mmu_lock);
6004         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6005         spin_unlock(&kvm->mmu_lock);
6006
6007         /*
6008          * It's also safe to flush TLBs out of mmu lock here as currently this
6009          * function is only used for dirty logging, in which case flushing TLB
6010          * out of mmu lock also guarantees no dirty pages will be lost in
6011          * dirty_bitmap.
6012          */
6013         if (flush)
6014                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6015 }
6016 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
6017
6018 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6019                                         struct kvm_memory_slot *memslot)
6020 {
6021         bool flush;
6022
6023         spin_lock(&kvm->mmu_lock);
6024         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6025                                         false);
6026         spin_unlock(&kvm->mmu_lock);
6027
6028         if (flush)
6029                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6030 }
6031 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6032
6033 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6034                             struct kvm_memory_slot *memslot)
6035 {
6036         bool flush;
6037
6038         spin_lock(&kvm->mmu_lock);
6039         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6040         spin_unlock(&kvm->mmu_lock);
6041
6042         if (flush)
6043                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6044 }
6045 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6046
6047 void kvm_mmu_zap_all(struct kvm *kvm)
6048 {
6049         struct kvm_mmu_page *sp, *node;
6050         LIST_HEAD(invalid_list);
6051         int ign;
6052
6053         spin_lock(&kvm->mmu_lock);
6054 restart:
6055         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6056                 if (WARN_ON(sp->role.invalid))
6057                         continue;
6058                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6059                         goto restart;
6060                 if (cond_resched_lock(&kvm->mmu_lock))
6061                         goto restart;
6062         }
6063
6064         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6065         spin_unlock(&kvm->mmu_lock);
6066 }
6067
6068 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6069 {
6070         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6071
6072         gen &= MMIO_SPTE_GEN_MASK;
6073
6074         /*
6075          * Generation numbers are incremented in multiples of the number of
6076          * address spaces in order to provide unique generations across all
6077          * address spaces.  Strip what is effectively the address space
6078          * modifier prior to checking for a wrap of the MMIO generation so
6079          * that a wrap in any address space is detected.
6080          */
6081         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6082
6083         /*
6084          * The very rare case: if the MMIO generation number has wrapped,
6085          * zap all shadow pages.
6086          */
6087         if (unlikely(gen == 0)) {
6088                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6089                 kvm_mmu_zap_all_fast(kvm);
6090         }
6091 }
6092
6093 static unsigned long
6094 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6095 {
6096         struct kvm *kvm;
6097         int nr_to_scan = sc->nr_to_scan;
6098         unsigned long freed = 0;
6099
6100         mutex_lock(&kvm_lock);
6101
6102         list_for_each_entry(kvm, &vm_list, vm_list) {
6103                 int idx;
6104                 LIST_HEAD(invalid_list);
6105
6106                 /*
6107                  * Never scan more than sc->nr_to_scan VM instances.
6108                  * Will not hit this condition practically since we do not try
6109                  * to shrink more than one VM and it is very unlikely to see
6110                  * !n_used_mmu_pages so many times.
6111                  */
6112                 if (!nr_to_scan--)
6113                         break;
6114                 /*
6115                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6116                  * here. We may skip a VM instance errorneosly, but we do not
6117                  * want to shrink a VM that only started to populate its MMU
6118                  * anyway.
6119                  */
6120                 if (!kvm->arch.n_used_mmu_pages &&
6121                     !kvm_has_zapped_obsolete_pages(kvm))
6122                         continue;
6123
6124                 idx = srcu_read_lock(&kvm->srcu);
6125                 spin_lock(&kvm->mmu_lock);
6126
6127                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6128                         kvm_mmu_commit_zap_page(kvm,
6129                               &kvm->arch.zapped_obsolete_pages);
6130                         goto unlock;
6131                 }
6132
6133                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6134
6135 unlock:
6136                 spin_unlock(&kvm->mmu_lock);
6137                 srcu_read_unlock(&kvm->srcu, idx);
6138
6139                 /*
6140                  * unfair on small ones
6141                  * per-vm shrinkers cry out
6142                  * sadness comes quickly
6143                  */
6144                 list_move_tail(&kvm->vm_list, &vm_list);
6145                 break;
6146         }
6147
6148         mutex_unlock(&kvm_lock);
6149         return freed;
6150 }
6151
6152 static unsigned long
6153 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6154 {
6155         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6156 }
6157
6158 static struct shrinker mmu_shrinker = {
6159         .count_objects = mmu_shrink_count,
6160         .scan_objects = mmu_shrink_scan,
6161         .seeks = DEFAULT_SEEKS * 10,
6162 };
6163
6164 static void mmu_destroy_caches(void)
6165 {
6166         kmem_cache_destroy(pte_list_desc_cache);
6167         kmem_cache_destroy(mmu_page_header_cache);
6168 }
6169
6170 static void kvm_set_mmio_spte_mask(void)
6171 {
6172         u64 mask;
6173
6174         /*
6175          * Set a reserved PA bit in MMIO SPTEs to generate page faults with
6176          * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
6177          * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
6178          * 52-bit physical addresses then there are no reserved PA bits in the
6179          * PTEs and so the reserved PA approach must be disabled.
6180          */
6181         if (shadow_phys_bits < 52)
6182                 mask = BIT_ULL(51) | PT_PRESENT_MASK;
6183         else
6184                 mask = 0;
6185
6186         kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
6187 }
6188
6189 static bool get_nx_auto_mode(void)
6190 {
6191         /* Return true when CPU has the bug, and mitigations are ON */
6192         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6193 }
6194
6195 static void __set_nx_huge_pages(bool val)
6196 {
6197         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6198 }
6199
6200 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6201 {
6202         bool old_val = nx_huge_pages;
6203         bool new_val;
6204
6205         /* In "auto" mode deploy workaround only if CPU has the bug. */
6206         if (sysfs_streq(val, "off"))
6207                 new_val = 0;
6208         else if (sysfs_streq(val, "force"))
6209                 new_val = 1;
6210         else if (sysfs_streq(val, "auto"))
6211                 new_val = get_nx_auto_mode();
6212         else if (strtobool(val, &new_val) < 0)
6213                 return -EINVAL;
6214
6215         __set_nx_huge_pages(new_val);
6216
6217         if (new_val != old_val) {
6218                 struct kvm *kvm;
6219
6220                 mutex_lock(&kvm_lock);
6221
6222                 list_for_each_entry(kvm, &vm_list, vm_list) {
6223                         mutex_lock(&kvm->slots_lock);
6224                         kvm_mmu_zap_all_fast(kvm);
6225                         mutex_unlock(&kvm->slots_lock);
6226
6227                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6228                 }
6229                 mutex_unlock(&kvm_lock);
6230         }
6231
6232         return 0;
6233 }
6234
6235 int kvm_mmu_module_init(void)
6236 {
6237         int ret = -ENOMEM;
6238
6239         if (nx_huge_pages == -1)
6240                 __set_nx_huge_pages(get_nx_auto_mode());
6241
6242         /*
6243          * MMU roles use union aliasing which is, generally speaking, an
6244          * undefined behavior. However, we supposedly know how compilers behave
6245          * and the current status quo is unlikely to change. Guardians below are
6246          * supposed to let us know if the assumption becomes false.
6247          */
6248         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6249         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6250         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6251
6252         kvm_mmu_reset_all_pte_masks();
6253
6254         kvm_set_mmio_spte_mask();
6255
6256         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6257                                             sizeof(struct pte_list_desc),
6258                                             0, SLAB_ACCOUNT, NULL);
6259         if (!pte_list_desc_cache)
6260                 goto out;
6261
6262         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6263                                                   sizeof(struct kvm_mmu_page),
6264                                                   0, SLAB_ACCOUNT, NULL);
6265         if (!mmu_page_header_cache)
6266                 goto out;
6267
6268         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6269                 goto out;
6270
6271         ret = register_shrinker(&mmu_shrinker);
6272         if (ret)
6273                 goto out;
6274
6275         return 0;
6276
6277 out:
6278         mmu_destroy_caches();
6279         return ret;
6280 }
6281
6282 /*
6283  * Calculate mmu pages needed for kvm.
6284  */
6285 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6286 {
6287         unsigned long nr_mmu_pages;
6288         unsigned long nr_pages = 0;
6289         struct kvm_memslots *slots;
6290         struct kvm_memory_slot *memslot;
6291         int i;
6292
6293         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6294                 slots = __kvm_memslots(kvm, i);
6295
6296                 kvm_for_each_memslot(memslot, slots)
6297                         nr_pages += memslot->npages;
6298         }
6299
6300         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6301         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6302
6303         return nr_mmu_pages;
6304 }
6305
6306 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6307 {
6308         kvm_mmu_unload(vcpu);
6309         free_mmu_pages(&vcpu->arch.root_mmu);
6310         free_mmu_pages(&vcpu->arch.guest_mmu);
6311         mmu_free_memory_caches(vcpu);
6312 }
6313
6314 void kvm_mmu_module_exit(void)
6315 {
6316         mmu_destroy_caches();
6317         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6318         unregister_shrinker(&mmu_shrinker);
6319         mmu_audit_disable();
6320 }
6321
6322 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6323 {
6324         unsigned int old_val;
6325         int err;
6326
6327         old_val = nx_huge_pages_recovery_ratio;
6328         err = param_set_uint(val, kp);
6329         if (err)
6330                 return err;
6331
6332         if (READ_ONCE(nx_huge_pages) &&
6333             !old_val && nx_huge_pages_recovery_ratio) {
6334                 struct kvm *kvm;
6335
6336                 mutex_lock(&kvm_lock);
6337
6338                 list_for_each_entry(kvm, &vm_list, vm_list)
6339                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6340
6341                 mutex_unlock(&kvm_lock);
6342         }
6343
6344         return err;
6345 }
6346
6347 static void kvm_recover_nx_lpages(struct kvm *kvm)
6348 {
6349         int rcu_idx;
6350         struct kvm_mmu_page *sp;
6351         unsigned int ratio;
6352         LIST_HEAD(invalid_list);
6353         ulong to_zap;
6354
6355         rcu_idx = srcu_read_lock(&kvm->srcu);
6356         spin_lock(&kvm->mmu_lock);
6357
6358         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6359         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6360         while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6361                 /*
6362                  * We use a separate list instead of just using active_mmu_pages
6363                  * because the number of lpage_disallowed pages is expected to
6364                  * be relatively small compared to the total.
6365                  */
6366                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6367                                       struct kvm_mmu_page,
6368                                       lpage_disallowed_link);
6369                 WARN_ON_ONCE(!sp->lpage_disallowed);
6370                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6371                 WARN_ON_ONCE(sp->lpage_disallowed);
6372
6373                 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6374                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6375                         if (to_zap)
6376                                 cond_resched_lock(&kvm->mmu_lock);
6377                 }
6378         }
6379
6380         spin_unlock(&kvm->mmu_lock);
6381         srcu_read_unlock(&kvm->srcu, rcu_idx);
6382 }
6383
6384 static long get_nx_lpage_recovery_timeout(u64 start_time)
6385 {
6386         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6387                 ? start_time + 60 * HZ - get_jiffies_64()
6388                 : MAX_SCHEDULE_TIMEOUT;
6389 }
6390
6391 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6392 {
6393         u64 start_time;
6394         long remaining_time;
6395
6396         while (true) {
6397                 start_time = get_jiffies_64();
6398                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6399
6400                 set_current_state(TASK_INTERRUPTIBLE);
6401                 while (!kthread_should_stop() && remaining_time > 0) {
6402                         schedule_timeout(remaining_time);
6403                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6404                         set_current_state(TASK_INTERRUPTIBLE);
6405                 }
6406
6407                 set_current_state(TASK_RUNNING);
6408
6409                 if (kthread_should_stop())
6410                         return 0;
6411
6412                 kvm_recover_nx_lpages(kvm);
6413         }
6414 }
6415
6416 int kvm_mmu_post_init_vm(struct kvm *kvm)
6417 {
6418         int err;
6419
6420         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6421                                           "kvm-nx-lpage-recovery",
6422                                           &kvm->arch.nx_lpage_recovery_thread);
6423         if (!err)
6424                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6425
6426         return err;
6427 }
6428
6429 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6430 {
6431         if (kvm->arch.nx_lpage_recovery_thread)
6432                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6433 }