a48cd12c01d750524f37a0e39a012f29c7420759
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54
55 extern bool itlb_multihit_kvm_mitigation;
56
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69         .set = set_nx_huge_pages,
70         .get = param_get_bool,
71 };
72
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74         .set = set_nx_huge_pages_recovery_ratio,
75         .get = param_get_uint,
76 };
77
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81                 &nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
87 /*
88  * When setting this variable to true it enables Two-Dimensional-Paging
89  * where the hardware walks 2 page tables:
90  * 1. the guest-virtual to guest-physical
91  * 2. while doing 1. it walks guest-physical to host-physical
92  * If the hardware supports that we don't need to do shadow paging.
93  */
94 bool tdp_enabled = false;
95
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98
99 enum {
100         AUDIT_PRE_PAGE_FAULT,
101         AUDIT_POST_PAGE_FAULT,
102         AUDIT_PRE_PTE_WRITE,
103         AUDIT_POST_PTE_WRITE,
104         AUDIT_PRE_SYNC,
105         AUDIT_POST_SYNC
106 };
107
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112
113 #define PTE_PREFETCH_NUM                8
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119
120 #define PT32_LVL_OFFSET_MASK(level) \
121         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122                                                 * PT32_LEVEL_BITS))) - 1))
123
124 #define PT32_INDEX(address, level)\
125         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #include <trace/events/kvm.h>
136
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139
140 struct pte_list_desc {
141         u64 *sptes[PTE_LIST_EXT];
142         struct pte_list_desc *more;
143 };
144
145 struct kvm_shadow_walk_iterator {
146         u64 addr;
147         hpa_t shadow_addr;
148         u64 *sptep;
149         int level;
150         unsigned index;
151 };
152
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
154         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
155                                          (_root), (_addr));                \
156              shadow_walk_okay(&(_walker));                                 \
157              shadow_walk_next(&(_walker)))
158
159 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
161              shadow_walk_okay(&(_walker));                      \
162              shadow_walk_next(&(_walker)))
163
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
165         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
166              shadow_walk_okay(&(_walker)) &&                            \
167                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
168              __shadow_walk_next(&(_walker), spte))
169
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180
181
182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184         return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188                 struct kvm_tlb_range *range)
189 {
190         int ret = -ENOTSUPP;
191
192         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193                 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
194
195         if (ret)
196                 kvm_flush_remote_tlbs(kvm);
197 }
198
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200                 u64 start_gfn, u64 pages)
201 {
202         struct kvm_tlb_range range;
203
204         range.start_gfn = start_gfn;
205         range.pages = pages;
206
207         kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209
210 bool is_nx_huge_page_enabled(void)
211 {
212         return READ_ONCE(nx_huge_pages);
213 }
214
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216                            unsigned int access)
217 {
218         u64 mask = make_mmio_spte(vcpu, gfn, access);
219
220         trace_mark_mmio_spte(sptep, gfn, mask);
221         mmu_spte_set(sptep, mask);
222 }
223
224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227
228         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229                & shadow_nonpresent_or_rsvd_mask;
230
231         return gpa >> PAGE_SHIFT;
232 }
233
234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236         return spte & shadow_mmio_access_mask;
237 }
238
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240                           kvm_pfn_t pfn, unsigned int access)
241 {
242         if (unlikely(is_noslot_pfn(pfn))) {
243                 mark_mmio_spte(vcpu, sptep, gfn, access);
244                 return true;
245         }
246
247         return false;
248 }
249
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252         u64 kvm_gen, spte_gen, gen;
253
254         gen = kvm_vcpu_memslots(vcpu)->generation;
255         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256                 return false;
257
258         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259         spte_gen = get_mmio_spte_generation(spte);
260
261         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262         return likely(kvm_gen == spte_gen);
263 }
264
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266                                   struct x86_exception *exception)
267 {
268         /* Check if guest physical address doesn't exceed guest maximum */
269         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270                 exception->error_code |= PFERR_RSVD_MASK;
271                 return UNMAPPED_GVA;
272         }
273
274         return gpa;
275 }
276
277 static int is_cpuid_PSE36(void)
278 {
279         return 1;
280 }
281
282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284         return vcpu->arch.efer & EFER_NX;
285 }
286
287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291         return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297         WRITE_ONCE(*sptep, spte);
298 }
299
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302         WRITE_ONCE(*sptep, spte);
303 }
304
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307         return xchg(sptep, spte);
308 }
309
310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312         return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316         struct {
317                 u32 spte_low;
318                 u32 spte_high;
319         };
320         u64 spte;
321 };
322
323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326
327         if (is_shadow_present_pte(spte))
328                 return;
329
330         /* Ensure the spte is completely set before we increase the count */
331         smp_wmb();
332         sp->clear_spte_count++;
333 }
334
335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337         union split_spte *ssptep, sspte;
338
339         ssptep = (union split_spte *)sptep;
340         sspte = (union split_spte)spte;
341
342         ssptep->spte_high = sspte.spte_high;
343
344         /*
345          * If we map the spte from nonpresent to present, We should store
346          * the high bits firstly, then set present bit, so cpu can not
347          * fetch this spte while we are setting the spte.
348          */
349         smp_wmb();
350
351         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356         union split_spte *ssptep, sspte;
357
358         ssptep = (union split_spte *)sptep;
359         sspte = (union split_spte)spte;
360
361         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362
363         /*
364          * If we map the spte from present to nonpresent, we should clear
365          * present bit firstly to avoid vcpu fetch the old high bits.
366          */
367         smp_wmb();
368
369         ssptep->spte_high = sspte.spte_high;
370         count_spte_clear(sptep, spte);
371 }
372
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375         union split_spte *ssptep, sspte, orig;
376
377         ssptep = (union split_spte *)sptep;
378         sspte = (union split_spte)spte;
379
380         /* xchg acts as a barrier before the setting of the high bits */
381         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382         orig.spte_high = ssptep->spte_high;
383         ssptep->spte_high = sspte.spte_high;
384         count_spte_clear(sptep, spte);
385
386         return orig.spte;
387 }
388
389 /*
390  * The idea using the light way get the spte on x86_32 guest is from
391  * gup_get_pte (mm/gup.c).
392  *
393  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394  * coalesces them and we are running out of the MMU lock.  Therefore
395  * we need to protect against in-progress updates of the spte.
396  *
397  * Reading the spte while an update is in progress may get the old value
398  * for the high part of the spte.  The race is fine for a present->non-present
399  * change (because the high part of the spte is ignored for non-present spte),
400  * but for a present->present change we must reread the spte.
401  *
402  * All such changes are done in two steps (present->non-present and
403  * non-present->present), hence it is enough to count the number of
404  * present->non-present updates: if it changed while reading the spte,
405  * we might have hit the race.  This is done using clear_spte_count.
406  */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410         union split_spte spte, *orig = (union split_spte *)sptep;
411         int count;
412
413 retry:
414         count = sp->clear_spte_count;
415         smp_rmb();
416
417         spte.spte_low = orig->spte_low;
418         smp_rmb();
419
420         spte.spte_high = orig->spte_high;
421         smp_rmb();
422
423         if (unlikely(spte.spte_low != orig->spte_low ||
424               count != sp->clear_spte_count))
425                 goto retry;
426
427         return spte.spte;
428 }
429 #endif
430
431 static bool spte_has_volatile_bits(u64 spte)
432 {
433         if (!is_shadow_present_pte(spte))
434                 return false;
435
436         /*
437          * Always atomically update spte if it can be updated
438          * out of mmu-lock, it can ensure dirty bit is not lost,
439          * also, it can help us to get a stable is_writable_pte()
440          * to ensure tlb flush is not missed.
441          */
442         if (spte_can_locklessly_be_made_writable(spte) ||
443             is_access_track_spte(spte))
444                 return true;
445
446         if (spte_ad_enabled(spte)) {
447                 if ((spte & shadow_accessed_mask) == 0 ||
448                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449                         return true;
450         }
451
452         return false;
453 }
454
455 /* Rules for using mmu_spte_set:
456  * Set the sptep from nonpresent to present.
457  * Note: the sptep being assigned *must* be either not present
458  * or in a state where the hardware will not attempt to update
459  * the spte.
460  */
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463         WARN_ON(is_shadow_present_pte(*sptep));
464         __set_spte(sptep, new_spte);
465 }
466
467 /*
468  * Update the SPTE (excluding the PFN), but do not track changes in its
469  * accessed/dirty status.
470  */
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473         u64 old_spte = *sptep;
474
475         WARN_ON(!is_shadow_present_pte(new_spte));
476
477         if (!is_shadow_present_pte(old_spte)) {
478                 mmu_spte_set(sptep, new_spte);
479                 return old_spte;
480         }
481
482         if (!spte_has_volatile_bits(old_spte))
483                 __update_clear_spte_fast(sptep, new_spte);
484         else
485                 old_spte = __update_clear_spte_slow(sptep, new_spte);
486
487         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
489         return old_spte;
490 }
491
492 /* Rules for using mmu_spte_update:
493  * Update the state bits, it means the mapped pfn is not changed.
494  *
495  * Whenever we overwrite a writable spte with a read-only one we
496  * should flush remote TLBs. Otherwise rmap_write_protect
497  * will find a read-only spte, even though the writable spte
498  * might be cached on a CPU's TLB, the return value indicates this
499  * case.
500  *
501  * Returns true if the TLB needs to be flushed
502  */
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505         bool flush = false;
506         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508         if (!is_shadow_present_pte(old_spte))
509                 return false;
510
511         /*
512          * For the spte updated out of mmu-lock is safe, since
513          * we always atomically update it, see the comments in
514          * spte_has_volatile_bits().
515          */
516         if (spte_can_locklessly_be_made_writable(old_spte) &&
517               !is_writable_pte(new_spte))
518                 flush = true;
519
520         /*
521          * Flush TLB when accessed/dirty states are changed in the page tables,
522          * to guarantee consistency between TLB and page tables.
523          */
524
525         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526                 flush = true;
527                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528         }
529
530         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531                 flush = true;
532                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533         }
534
535         return flush;
536 }
537
538 /*
539  * Rules for using mmu_spte_clear_track_bits:
540  * It sets the sptep from present to nonpresent, and track the
541  * state bits, it is used to clear the last level sptep.
542  * Returns non-zero if the PTE was previously valid.
543  */
544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546         kvm_pfn_t pfn;
547         u64 old_spte = *sptep;
548
549         if (!spte_has_volatile_bits(old_spte))
550                 __update_clear_spte_fast(sptep, 0ull);
551         else
552                 old_spte = __update_clear_spte_slow(sptep, 0ull);
553
554         if (!is_shadow_present_pte(old_spte))
555                 return 0;
556
557         pfn = spte_to_pfn(old_spte);
558
559         /*
560          * KVM does not hold the refcount of the page used by
561          * kvm mmu, before reclaiming the page, we should
562          * unmap it from mmu first.
563          */
564         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565
566         if (is_accessed_spte(old_spte))
567                 kvm_set_pfn_accessed(pfn);
568
569         if (is_dirty_spte(old_spte))
570                 kvm_set_pfn_dirty(pfn);
571
572         return 1;
573 }
574
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582         __update_clear_spte_fast(sptep, 0ull);
583 }
584
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587         return __get_spte_lockless(sptep);
588 }
589
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
592 {
593         u64 new_spte = spte;
594         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596
597         WARN_ON_ONCE(spte_ad_enabled(spte));
598         WARN_ON_ONCE(!is_access_track_spte(spte));
599
600         new_spte &= ~shadow_acc_track_mask;
601         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603         new_spte |= saved_bits;
604
605         return new_spte;
606 }
607
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
610 {
611         u64 spte = mmu_spte_get_lockless(sptep);
612
613         if (!is_accessed_spte(spte))
614                 return false;
615
616         if (spte_ad_enabled(spte)) {
617                 clear_bit((ffs(shadow_accessed_mask) - 1),
618                           (unsigned long *)sptep);
619         } else {
620                 /*
621                  * Capture the dirty status of the page, so that it doesn't get
622                  * lost when the SPTE is marked for access tracking.
623                  */
624                 if (is_writable_pte(spte))
625                         kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627                 spte = mark_spte_for_access_track(spte);
628                 mmu_spte_update_no_track(sptep, spte);
629         }
630
631         return true;
632 }
633
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636         /*
637          * Prevent page table teardown by making any free-er wait during
638          * kvm_flush_remote_tlbs() IPI to all active vcpus.
639          */
640         local_irq_disable();
641
642         /*
643          * Make sure a following spte read is not reordered ahead of the write
644          * to vcpu->mode.
645          */
646         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651         /*
652          * Make sure the write to vcpu->mode is not reordered in front of
653          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655          */
656         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657         local_irq_enable();
658 }
659
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662         int r;
663
664         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667         if (r)
668                 return r;
669         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670                                        PT64_ROOT_MAX_LEVEL);
671         if (r)
672                 return r;
673         if (maybe_indirect) {
674                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675                                                PT64_ROOT_MAX_LEVEL);
676                 if (r)
677                         return r;
678         }
679         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680                                           PT64_ROOT_MAX_LEVEL);
681 }
682
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703         if (!sp->role.direct)
704                 return sp->gfns[index];
705
706         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711         if (!sp->role.direct) {
712                 sp->gfns[index] = gfn;
713                 return;
714         }
715
716         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717                 pr_err_ratelimited("gfn mismatch under direct page %llx "
718                                    "(expected %llx, got %llx)\n",
719                                    sp->gfn,
720                                    kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722
723 /*
724  * Return the pointer to the large page information for a given gfn,
725  * handling slots that are not large page aligned.
726  */
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728                                               struct kvm_memory_slot *slot,
729                                               int level)
730 {
731         unsigned long idx;
732
733         idx = gfn_to_index(gfn, slot->base_gfn, level);
734         return &slot->arch.lpage_info[level - 2][idx];
735 }
736
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738                                             gfn_t gfn, int count)
739 {
740         struct kvm_lpage_info *linfo;
741         int i;
742
743         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744                 linfo = lpage_info_slot(gfn, slot, i);
745                 linfo->disallow_lpage += count;
746                 WARN_ON(linfo->disallow_lpage < 0);
747         }
748 }
749
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752         update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757         update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762         struct kvm_memslots *slots;
763         struct kvm_memory_slot *slot;
764         gfn_t gfn;
765
766         kvm->arch.indirect_shadow_pages++;
767         gfn = sp->gfn;
768         slots = kvm_memslots_for_spte_role(kvm, sp->role);
769         slot = __gfn_to_memslot(slots, gfn);
770
771         /* the non-leaf shadow pages are keeping readonly. */
772         if (sp->role.level > PG_LEVEL_4K)
773                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774                                                     KVM_PAGE_TRACK_WRITE);
775
776         kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778
779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781         if (sp->lpage_disallowed)
782                 return;
783
784         ++kvm->stat.nx_lpage_splits;
785         list_add_tail(&sp->lpage_disallowed_link,
786                       &kvm->arch.lpage_disallowed_mmu_pages);
787         sp->lpage_disallowed = true;
788 }
789
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792         struct kvm_memslots *slots;
793         struct kvm_memory_slot *slot;
794         gfn_t gfn;
795
796         kvm->arch.indirect_shadow_pages--;
797         gfn = sp->gfn;
798         slots = kvm_memslots_for_spte_role(kvm, sp->role);
799         slot = __gfn_to_memslot(slots, gfn);
800         if (sp->role.level > PG_LEVEL_4K)
801                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802                                                        KVM_PAGE_TRACK_WRITE);
803
804         kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806
807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809         --kvm->stat.nx_lpage_splits;
810         sp->lpage_disallowed = false;
811         list_del(&sp->lpage_disallowed_link);
812 }
813
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816                             bool no_dirty_log)
817 {
818         struct kvm_memory_slot *slot;
819
820         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822                 return NULL;
823         if (no_dirty_log && slot->dirty_bitmap)
824                 return NULL;
825
826         return slot;
827 }
828
829 /*
830  * About rmap_head encoding:
831  *
832  * If the bit zero of rmap_head->val is clear, then it points to the only spte
833  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834  * pte_list_desc containing more mappings.
835  */
836
837 /*
838  * Returns the number of pointers in the rmap chain, not counting the new one.
839  */
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841                         struct kvm_rmap_head *rmap_head)
842 {
843         struct pte_list_desc *desc;
844         int i, count = 0;
845
846         if (!rmap_head->val) {
847                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
848                 rmap_head->val = (unsigned long)spte;
849         } else if (!(rmap_head->val & 1)) {
850                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851                 desc = mmu_alloc_pte_list_desc(vcpu);
852                 desc->sptes[0] = (u64 *)rmap_head->val;
853                 desc->sptes[1] = spte;
854                 rmap_head->val = (unsigned long)desc | 1;
855                 ++count;
856         } else {
857                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
858                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859                 while (desc->sptes[PTE_LIST_EXT-1]) {
860                         count += PTE_LIST_EXT;
861
862                         if (!desc->more) {
863                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
864                                 desc = desc->more;
865                                 break;
866                         }
867                         desc = desc->more;
868                 }
869                 for (i = 0; desc->sptes[i]; ++i)
870                         ++count;
871                 desc->sptes[i] = spte;
872         }
873         return count;
874 }
875
876 static void
877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878                            struct pte_list_desc *desc, int i,
879                            struct pte_list_desc *prev_desc)
880 {
881         int j;
882
883         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884                 ;
885         desc->sptes[i] = desc->sptes[j];
886         desc->sptes[j] = NULL;
887         if (j != 0)
888                 return;
889         if (!prev_desc && !desc->more)
890                 rmap_head->val = 0;
891         else
892                 if (prev_desc)
893                         prev_desc->more = desc->more;
894                 else
895                         rmap_head->val = (unsigned long)desc->more | 1;
896         mmu_free_pte_list_desc(desc);
897 }
898
899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900 {
901         struct pte_list_desc *desc;
902         struct pte_list_desc *prev_desc;
903         int i;
904
905         if (!rmap_head->val) {
906                 pr_err("%s: %p 0->BUG\n", __func__, spte);
907                 BUG();
908         } else if (!(rmap_head->val & 1)) {
909                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
910                 if ((u64 *)rmap_head->val != spte) {
911                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
912                         BUG();
913                 }
914                 rmap_head->val = 0;
915         } else {
916                 rmap_printk("%s:  %p many->many\n", __func__, spte);
917                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918                 prev_desc = NULL;
919                 while (desc) {
920                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921                                 if (desc->sptes[i] == spte) {
922                                         pte_list_desc_remove_entry(rmap_head,
923                                                         desc, i, prev_desc);
924                                         return;
925                                 }
926                         }
927                         prev_desc = desc;
928                         desc = desc->more;
929                 }
930                 pr_err("%s: %p many->many\n", __func__, spte);
931                 BUG();
932         }
933 }
934
935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936 {
937         mmu_spte_clear_track_bits(sptep);
938         __pte_list_remove(sptep, rmap_head);
939 }
940
941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942                                            struct kvm_memory_slot *slot)
943 {
944         unsigned long idx;
945
946         idx = gfn_to_index(gfn, slot->base_gfn, level);
947         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 }
949
950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951                                          struct kvm_mmu_page *sp)
952 {
953         struct kvm_memslots *slots;
954         struct kvm_memory_slot *slot;
955
956         slots = kvm_memslots_for_spte_role(kvm, sp->role);
957         slot = __gfn_to_memslot(slots, gfn);
958         return __gfn_to_rmap(gfn, sp->role.level, slot);
959 }
960
961 static bool rmap_can_add(struct kvm_vcpu *vcpu)
962 {
963         struct kvm_mmu_memory_cache *mc;
964
965         mc = &vcpu->arch.mmu_pte_list_desc_cache;
966         return kvm_mmu_memory_cache_nr_free_objects(mc);
967 }
968
969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970 {
971         struct kvm_mmu_page *sp;
972         struct kvm_rmap_head *rmap_head;
973
974         sp = sptep_to_sp(spte);
975         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977         return pte_list_add(vcpu, spte, rmap_head);
978 }
979
980 static void rmap_remove(struct kvm *kvm, u64 *spte)
981 {
982         struct kvm_mmu_page *sp;
983         gfn_t gfn;
984         struct kvm_rmap_head *rmap_head;
985
986         sp = sptep_to_sp(spte);
987         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988         rmap_head = gfn_to_rmap(kvm, gfn, sp);
989         __pte_list_remove(spte, rmap_head);
990 }
991
992 /*
993  * Used by the following functions to iterate through the sptes linked by a
994  * rmap.  All fields are private and not assumed to be used outside.
995  */
996 struct rmap_iterator {
997         /* private fields */
998         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
999         int pos;                        /* index of the sptep */
1000 };
1001
1002 /*
1003  * Iteration must be started by this function.  This should also be used after
1004  * removing/dropping sptes from the rmap link because in such cases the
1005  * information in the iterator may not be valid.
1006  *
1007  * Returns sptep if found, NULL otherwise.
1008  */
1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010                            struct rmap_iterator *iter)
1011 {
1012         u64 *sptep;
1013
1014         if (!rmap_head->val)
1015                 return NULL;
1016
1017         if (!(rmap_head->val & 1)) {
1018                 iter->desc = NULL;
1019                 sptep = (u64 *)rmap_head->val;
1020                 goto out;
1021         }
1022
1023         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024         iter->pos = 0;
1025         sptep = iter->desc->sptes[iter->pos];
1026 out:
1027         BUG_ON(!is_shadow_present_pte(*sptep));
1028         return sptep;
1029 }
1030
1031 /*
1032  * Must be used with a valid iterator: e.g. after rmap_get_first().
1033  *
1034  * Returns sptep if found, NULL otherwise.
1035  */
1036 static u64 *rmap_get_next(struct rmap_iterator *iter)
1037 {
1038         u64 *sptep;
1039
1040         if (iter->desc) {
1041                 if (iter->pos < PTE_LIST_EXT - 1) {
1042                         ++iter->pos;
1043                         sptep = iter->desc->sptes[iter->pos];
1044                         if (sptep)
1045                                 goto out;
1046                 }
1047
1048                 iter->desc = iter->desc->more;
1049
1050                 if (iter->desc) {
1051                         iter->pos = 0;
1052                         /* desc->sptes[0] cannot be NULL */
1053                         sptep = iter->desc->sptes[iter->pos];
1054                         goto out;
1055                 }
1056         }
1057
1058         return NULL;
1059 out:
1060         BUG_ON(!is_shadow_present_pte(*sptep));
1061         return sptep;
1062 }
1063
1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1065         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1066              _spte_; _spte_ = rmap_get_next(_iter_))
1067
1068 static void drop_spte(struct kvm *kvm, u64 *sptep)
1069 {
1070         if (mmu_spte_clear_track_bits(sptep))
1071                 rmap_remove(kvm, sptep);
1072 }
1073
1074
1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077         if (is_large_pte(*sptep)) {
1078                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079                 drop_spte(kvm, sptep);
1080                 --kvm->stat.lpages;
1081                 return true;
1082         }
1083
1084         return false;
1085 }
1086
1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088 {
1089         if (__drop_large_spte(vcpu->kvm, sptep)) {
1090                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091
1092                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093                         KVM_PAGES_PER_HPAGE(sp->role.level));
1094         }
1095 }
1096
1097 /*
1098  * Write-protect on the specified @sptep, @pt_protect indicates whether
1099  * spte write-protection is caused by protecting shadow page table.
1100  *
1101  * Note: write protection is difference between dirty logging and spte
1102  * protection:
1103  * - for dirty logging, the spte can be set to writable at anytime if
1104  *   its dirty bitmap is properly set.
1105  * - for spte protection, the spte can be writable only after unsync-ing
1106  *   shadow page.
1107  *
1108  * Return true if tlb need be flushed.
1109  */
1110 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 {
1112         u64 spte = *sptep;
1113
1114         if (!is_writable_pte(spte) &&
1115               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116                 return false;
1117
1118         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1119
1120         if (pt_protect)
1121                 spte &= ~SPTE_MMU_WRITEABLE;
1122         spte = spte & ~PT_WRITABLE_MASK;
1123
1124         return mmu_spte_update(sptep, spte);
1125 }
1126
1127 static bool __rmap_write_protect(struct kvm *kvm,
1128                                  struct kvm_rmap_head *rmap_head,
1129                                  bool pt_protect)
1130 {
1131         u64 *sptep;
1132         struct rmap_iterator iter;
1133         bool flush = false;
1134
1135         for_each_rmap_spte(rmap_head, &iter, sptep)
1136                 flush |= spte_write_protect(sptep, pt_protect);
1137
1138         return flush;
1139 }
1140
1141 static bool spte_clear_dirty(u64 *sptep)
1142 {
1143         u64 spte = *sptep;
1144
1145         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1146
1147         MMU_WARN_ON(!spte_ad_enabled(spte));
1148         spte &= ~shadow_dirty_mask;
1149         return mmu_spte_update(sptep, spte);
1150 }
1151
1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 {
1154         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155                                                (unsigned long *)sptep);
1156         if (was_writable && !spte_ad_enabled(*sptep))
1157                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158
1159         return was_writable;
1160 }
1161
1162 /*
1163  * Gets the GFN ready for another round of dirty logging by clearing the
1164  *      - D bit on ad-enabled SPTEs, and
1165  *      - W bit on ad-disabled SPTEs.
1166  * Returns true iff any D or W bits were cleared.
1167  */
1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1169 {
1170         u64 *sptep;
1171         struct rmap_iterator iter;
1172         bool flush = false;
1173
1174         for_each_rmap_spte(rmap_head, &iter, sptep)
1175                 if (spte_ad_need_write_protect(*sptep))
1176                         flush |= spte_wrprot_for_clear_dirty(sptep);
1177                 else
1178                         flush |= spte_clear_dirty(sptep);
1179
1180         return flush;
1181 }
1182
1183 static bool spte_set_dirty(u64 *sptep)
1184 {
1185         u64 spte = *sptep;
1186
1187         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1188
1189         /*
1190          * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1191          * do not bother adding back write access to pages marked
1192          * SPTE_AD_WRPROT_ONLY_MASK.
1193          */
1194         spte |= shadow_dirty_mask;
1195
1196         return mmu_spte_update(sptep, spte);
1197 }
1198
1199 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1200 {
1201         u64 *sptep;
1202         struct rmap_iterator iter;
1203         bool flush = false;
1204
1205         for_each_rmap_spte(rmap_head, &iter, sptep)
1206                 if (spte_ad_enabled(*sptep))
1207                         flush |= spte_set_dirty(sptep);
1208
1209         return flush;
1210 }
1211
1212 /**
1213  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1214  * @kvm: kvm instance
1215  * @slot: slot to protect
1216  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217  * @mask: indicates which pages we should protect
1218  *
1219  * Used when we do not need to care about huge page mappings: e.g. during dirty
1220  * logging we do not have any such mappings.
1221  */
1222 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1223                                      struct kvm_memory_slot *slot,
1224                                      gfn_t gfn_offset, unsigned long mask)
1225 {
1226         struct kvm_rmap_head *rmap_head;
1227
1228         if (kvm->arch.tdp_mmu_enabled)
1229                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230                                 slot->base_gfn + gfn_offset, mask, true);
1231         while (mask) {
1232                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1233                                           PG_LEVEL_4K, slot);
1234                 __rmap_write_protect(kvm, rmap_head, false);
1235
1236                 /* clear the first set bit */
1237                 mask &= mask - 1;
1238         }
1239 }
1240
1241 /**
1242  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243  * protect the page if the D-bit isn't supported.
1244  * @kvm: kvm instance
1245  * @slot: slot to clear D-bit
1246  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247  * @mask: indicates which pages we should clear D-bit
1248  *
1249  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1250  */
1251 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252                                      struct kvm_memory_slot *slot,
1253                                      gfn_t gfn_offset, unsigned long mask)
1254 {
1255         struct kvm_rmap_head *rmap_head;
1256
1257         if (kvm->arch.tdp_mmu_enabled)
1258                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259                                 slot->base_gfn + gfn_offset, mask, false);
1260         while (mask) {
1261                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262                                           PG_LEVEL_4K, slot);
1263                 __rmap_clear_dirty(kvm, rmap_head);
1264
1265                 /* clear the first set bit */
1266                 mask &= mask - 1;
1267         }
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1270
1271 /**
1272  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273  * PT level pages.
1274  *
1275  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276  * enable dirty logging for them.
1277  *
1278  * Used when we do not need to care about huge page mappings: e.g. during dirty
1279  * logging we do not have any such mappings.
1280  */
1281 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282                                 struct kvm_memory_slot *slot,
1283                                 gfn_t gfn_offset, unsigned long mask)
1284 {
1285         if (kvm_x86_ops.enable_log_dirty_pt_masked)
1286                 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1287                                 mask);
1288         else
1289                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1290 }
1291
1292 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1293                                     struct kvm_memory_slot *slot, u64 gfn)
1294 {
1295         struct kvm_rmap_head *rmap_head;
1296         int i;
1297         bool write_protected = false;
1298
1299         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1300                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1301                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1302         }
1303
1304         if (kvm->arch.tdp_mmu_enabled)
1305                 write_protected |=
1306                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1307
1308         return write_protected;
1309 }
1310
1311 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1312 {
1313         struct kvm_memory_slot *slot;
1314
1315         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1316         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1317 }
1318
1319 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1320 {
1321         u64 *sptep;
1322         struct rmap_iterator iter;
1323         bool flush = false;
1324
1325         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1326                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1327
1328                 pte_list_remove(rmap_head, sptep);
1329                 flush = true;
1330         }
1331
1332         return flush;
1333 }
1334
1335 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1336                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1337                            unsigned long data)
1338 {
1339         return kvm_zap_rmapp(kvm, rmap_head);
1340 }
1341
1342 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1343                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1344                              unsigned long data)
1345 {
1346         u64 *sptep;
1347         struct rmap_iterator iter;
1348         int need_flush = 0;
1349         u64 new_spte;
1350         pte_t *ptep = (pte_t *)data;
1351         kvm_pfn_t new_pfn;
1352
1353         WARN_ON(pte_huge(*ptep));
1354         new_pfn = pte_pfn(*ptep);
1355
1356 restart:
1357         for_each_rmap_spte(rmap_head, &iter, sptep) {
1358                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1359                             sptep, *sptep, gfn, level);
1360
1361                 need_flush = 1;
1362
1363                 if (pte_write(*ptep)) {
1364                         pte_list_remove(rmap_head, sptep);
1365                         goto restart;
1366                 } else {
1367                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1368                                         *sptep, new_pfn);
1369
1370                         mmu_spte_clear_track_bits(sptep);
1371                         mmu_spte_set(sptep, new_spte);
1372                 }
1373         }
1374
1375         if (need_flush && kvm_available_flush_tlb_with_range()) {
1376                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1377                 return 0;
1378         }
1379
1380         return need_flush;
1381 }
1382
1383 struct slot_rmap_walk_iterator {
1384         /* input fields. */
1385         struct kvm_memory_slot *slot;
1386         gfn_t start_gfn;
1387         gfn_t end_gfn;
1388         int start_level;
1389         int end_level;
1390
1391         /* output fields. */
1392         gfn_t gfn;
1393         struct kvm_rmap_head *rmap;
1394         int level;
1395
1396         /* private field. */
1397         struct kvm_rmap_head *end_rmap;
1398 };
1399
1400 static void
1401 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1402 {
1403         iterator->level = level;
1404         iterator->gfn = iterator->start_gfn;
1405         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1406         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1407                                            iterator->slot);
1408 }
1409
1410 static void
1411 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1412                     struct kvm_memory_slot *slot, int start_level,
1413                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1414 {
1415         iterator->slot = slot;
1416         iterator->start_level = start_level;
1417         iterator->end_level = end_level;
1418         iterator->start_gfn = start_gfn;
1419         iterator->end_gfn = end_gfn;
1420
1421         rmap_walk_init_level(iterator, iterator->start_level);
1422 }
1423
1424 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1425 {
1426         return !!iterator->rmap;
1427 }
1428
1429 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1430 {
1431         if (++iterator->rmap <= iterator->end_rmap) {
1432                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1433                 return;
1434         }
1435
1436         if (++iterator->level > iterator->end_level) {
1437                 iterator->rmap = NULL;
1438                 return;
1439         }
1440
1441         rmap_walk_init_level(iterator, iterator->level);
1442 }
1443
1444 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1445            _start_gfn, _end_gfn, _iter_)                                \
1446         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1447                                  _end_level_, _start_gfn, _end_gfn);    \
1448              slot_rmap_walk_okay(_iter_);                               \
1449              slot_rmap_walk_next(_iter_))
1450
1451 static int kvm_handle_hva_range(struct kvm *kvm,
1452                                 unsigned long start,
1453                                 unsigned long end,
1454                                 unsigned long data,
1455                                 int (*handler)(struct kvm *kvm,
1456                                                struct kvm_rmap_head *rmap_head,
1457                                                struct kvm_memory_slot *slot,
1458                                                gfn_t gfn,
1459                                                int level,
1460                                                unsigned long data))
1461 {
1462         struct kvm_memslots *slots;
1463         struct kvm_memory_slot *memslot;
1464         struct slot_rmap_walk_iterator iterator;
1465         int ret = 0;
1466         int i;
1467
1468         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1469                 slots = __kvm_memslots(kvm, i);
1470                 kvm_for_each_memslot(memslot, slots) {
1471                         unsigned long hva_start, hva_end;
1472                         gfn_t gfn_start, gfn_end;
1473
1474                         hva_start = max(start, memslot->userspace_addr);
1475                         hva_end = min(end, memslot->userspace_addr +
1476                                       (memslot->npages << PAGE_SHIFT));
1477                         if (hva_start >= hva_end)
1478                                 continue;
1479                         /*
1480                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1481                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1482                          */
1483                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1484                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1485
1486                         for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1487                                                  KVM_MAX_HUGEPAGE_LEVEL,
1488                                                  gfn_start, gfn_end - 1,
1489                                                  &iterator)
1490                                 ret |= handler(kvm, iterator.rmap, memslot,
1491                                                iterator.gfn, iterator.level, data);
1492                 }
1493         }
1494
1495         return ret;
1496 }
1497
1498 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1499                           unsigned long data,
1500                           int (*handler)(struct kvm *kvm,
1501                                          struct kvm_rmap_head *rmap_head,
1502                                          struct kvm_memory_slot *slot,
1503                                          gfn_t gfn, int level,
1504                                          unsigned long data))
1505 {
1506         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1507 }
1508
1509 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1510                         unsigned flags)
1511 {
1512         int r;
1513
1514         r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1515
1516         if (kvm->arch.tdp_mmu_enabled)
1517                 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1518
1519         return r;
1520 }
1521
1522 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1523 {
1524         int r;
1525
1526         r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1527
1528         if (kvm->arch.tdp_mmu_enabled)
1529                 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1530
1531         return r;
1532 }
1533
1534 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1535                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1536                          unsigned long data)
1537 {
1538         u64 *sptep;
1539         struct rmap_iterator iter;
1540         int young = 0;
1541
1542         for_each_rmap_spte(rmap_head, &iter, sptep)
1543                 young |= mmu_spte_age(sptep);
1544
1545         trace_kvm_age_page(gfn, level, slot, young);
1546         return young;
1547 }
1548
1549 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1550                               struct kvm_memory_slot *slot, gfn_t gfn,
1551                               int level, unsigned long data)
1552 {
1553         u64 *sptep;
1554         struct rmap_iterator iter;
1555
1556         for_each_rmap_spte(rmap_head, &iter, sptep)
1557                 if (is_accessed_spte(*sptep))
1558                         return 1;
1559         return 0;
1560 }
1561
1562 #define RMAP_RECYCLE_THRESHOLD 1000
1563
1564 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1565 {
1566         struct kvm_rmap_head *rmap_head;
1567         struct kvm_mmu_page *sp;
1568
1569         sp = sptep_to_sp(spte);
1570
1571         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1572
1573         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1574         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1575                         KVM_PAGES_PER_HPAGE(sp->role.level));
1576 }
1577
1578 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1579 {
1580         int young = false;
1581
1582         young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1583         if (kvm->arch.tdp_mmu_enabled)
1584                 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1585
1586         return young;
1587 }
1588
1589 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1590 {
1591         int young = false;
1592
1593         young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1594         if (kvm->arch.tdp_mmu_enabled)
1595                 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1596
1597         return young;
1598 }
1599
1600 #ifdef MMU_DEBUG
1601 static int is_empty_shadow_page(u64 *spt)
1602 {
1603         u64 *pos;
1604         u64 *end;
1605
1606         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1607                 if (is_shadow_present_pte(*pos)) {
1608                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1609                                pos, *pos);
1610                         return 0;
1611                 }
1612         return 1;
1613 }
1614 #endif
1615
1616 /*
1617  * This value is the sum of all of the kvm instances's
1618  * kvm->arch.n_used_mmu_pages values.  We need a global,
1619  * aggregate version in order to make the slab shrinker
1620  * faster
1621  */
1622 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1623 {
1624         kvm->arch.n_used_mmu_pages += nr;
1625         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1626 }
1627
1628 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1629 {
1630         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1631         hlist_del(&sp->hash_link);
1632         list_del(&sp->link);
1633         free_page((unsigned long)sp->spt);
1634         if (!sp->role.direct)
1635                 free_page((unsigned long)sp->gfns);
1636         kmem_cache_free(mmu_page_header_cache, sp);
1637 }
1638
1639 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1640 {
1641         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1642 }
1643
1644 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1645                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1646 {
1647         if (!parent_pte)
1648                 return;
1649
1650         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1651 }
1652
1653 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1654                                        u64 *parent_pte)
1655 {
1656         __pte_list_remove(parent_pte, &sp->parent_ptes);
1657 }
1658
1659 static void drop_parent_pte(struct kvm_mmu_page *sp,
1660                             u64 *parent_pte)
1661 {
1662         mmu_page_remove_parent_pte(sp, parent_pte);
1663         mmu_spte_clear_no_track(parent_pte);
1664 }
1665
1666 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1667 {
1668         struct kvm_mmu_page *sp;
1669
1670         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1671         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1672         if (!direct)
1673                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1674         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1675
1676         /*
1677          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1678          * depends on valid pages being added to the head of the list.  See
1679          * comments in kvm_zap_obsolete_pages().
1680          */
1681         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1682         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1683         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1684         return sp;
1685 }
1686
1687 static void mark_unsync(u64 *spte);
1688 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1689 {
1690         u64 *sptep;
1691         struct rmap_iterator iter;
1692
1693         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1694                 mark_unsync(sptep);
1695         }
1696 }
1697
1698 static void mark_unsync(u64 *spte)
1699 {
1700         struct kvm_mmu_page *sp;
1701         unsigned int index;
1702
1703         sp = sptep_to_sp(spte);
1704         index = spte - sp->spt;
1705         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1706                 return;
1707         if (sp->unsync_children++)
1708                 return;
1709         kvm_mmu_mark_parents_unsync(sp);
1710 }
1711
1712 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1713                                struct kvm_mmu_page *sp)
1714 {
1715         return 0;
1716 }
1717
1718 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1719                                  struct kvm_mmu_page *sp, u64 *spte,
1720                                  const void *pte)
1721 {
1722         WARN_ON(1);
1723 }
1724
1725 #define KVM_PAGE_ARRAY_NR 16
1726
1727 struct kvm_mmu_pages {
1728         struct mmu_page_and_offset {
1729                 struct kvm_mmu_page *sp;
1730                 unsigned int idx;
1731         } page[KVM_PAGE_ARRAY_NR];
1732         unsigned int nr;
1733 };
1734
1735 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1736                          int idx)
1737 {
1738         int i;
1739
1740         if (sp->unsync)
1741                 for (i=0; i < pvec->nr; i++)
1742                         if (pvec->page[i].sp == sp)
1743                                 return 0;
1744
1745         pvec->page[pvec->nr].sp = sp;
1746         pvec->page[pvec->nr].idx = idx;
1747         pvec->nr++;
1748         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1749 }
1750
1751 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1752 {
1753         --sp->unsync_children;
1754         WARN_ON((int)sp->unsync_children < 0);
1755         __clear_bit(idx, sp->unsync_child_bitmap);
1756 }
1757
1758 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1759                            struct kvm_mmu_pages *pvec)
1760 {
1761         int i, ret, nr_unsync_leaf = 0;
1762
1763         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1764                 struct kvm_mmu_page *child;
1765                 u64 ent = sp->spt[i];
1766
1767                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1768                         clear_unsync_child_bit(sp, i);
1769                         continue;
1770                 }
1771
1772                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1773
1774                 if (child->unsync_children) {
1775                         if (mmu_pages_add(pvec, child, i))
1776                                 return -ENOSPC;
1777
1778                         ret = __mmu_unsync_walk(child, pvec);
1779                         if (!ret) {
1780                                 clear_unsync_child_bit(sp, i);
1781                                 continue;
1782                         } else if (ret > 0) {
1783                                 nr_unsync_leaf += ret;
1784                         } else
1785                                 return ret;
1786                 } else if (child->unsync) {
1787                         nr_unsync_leaf++;
1788                         if (mmu_pages_add(pvec, child, i))
1789                                 return -ENOSPC;
1790                 } else
1791                         clear_unsync_child_bit(sp, i);
1792         }
1793
1794         return nr_unsync_leaf;
1795 }
1796
1797 #define INVALID_INDEX (-1)
1798
1799 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1800                            struct kvm_mmu_pages *pvec)
1801 {
1802         pvec->nr = 0;
1803         if (!sp->unsync_children)
1804                 return 0;
1805
1806         mmu_pages_add(pvec, sp, INVALID_INDEX);
1807         return __mmu_unsync_walk(sp, pvec);
1808 }
1809
1810 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1811 {
1812         WARN_ON(!sp->unsync);
1813         trace_kvm_mmu_sync_page(sp);
1814         sp->unsync = 0;
1815         --kvm->stat.mmu_unsync;
1816 }
1817
1818 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1819                                      struct list_head *invalid_list);
1820 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1821                                     struct list_head *invalid_list);
1822
1823 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1824         hlist_for_each_entry(_sp, _list, hash_link)                     \
1825                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1826                 } else
1827
1828 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1829         for_each_valid_sp(_kvm, _sp,                                    \
1830           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1831                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1832
1833 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1834 {
1835         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1836 }
1837
1838 /* @sp->gfn should be write-protected at the call site */
1839 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1840                             struct list_head *invalid_list)
1841 {
1842         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1843             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1844                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1845                 return false;
1846         }
1847
1848         return true;
1849 }
1850
1851 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1852                                         struct list_head *invalid_list,
1853                                         bool remote_flush)
1854 {
1855         if (!remote_flush && list_empty(invalid_list))
1856                 return false;
1857
1858         if (!list_empty(invalid_list))
1859                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1860         else
1861                 kvm_flush_remote_tlbs(kvm);
1862         return true;
1863 }
1864
1865 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1866                                  struct list_head *invalid_list,
1867                                  bool remote_flush, bool local_flush)
1868 {
1869         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1870                 return;
1871
1872         if (local_flush)
1873                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1874 }
1875
1876 #ifdef CONFIG_KVM_MMU_AUDIT
1877 #include "mmu_audit.c"
1878 #else
1879 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1880 static void mmu_audit_disable(void) { }
1881 #endif
1882
1883 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1884 {
1885         return sp->role.invalid ||
1886                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1887 }
1888
1889 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1890                          struct list_head *invalid_list)
1891 {
1892         kvm_unlink_unsync_page(vcpu->kvm, sp);
1893         return __kvm_sync_page(vcpu, sp, invalid_list);
1894 }
1895
1896 /* @gfn should be write-protected at the call site */
1897 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1898                            struct list_head *invalid_list)
1899 {
1900         struct kvm_mmu_page *s;
1901         bool ret = false;
1902
1903         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1904                 if (!s->unsync)
1905                         continue;
1906
1907                 WARN_ON(s->role.level != PG_LEVEL_4K);
1908                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1909         }
1910
1911         return ret;
1912 }
1913
1914 struct mmu_page_path {
1915         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1916         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1917 };
1918
1919 #define for_each_sp(pvec, sp, parents, i)                       \
1920                 for (i = mmu_pages_first(&pvec, &parents);      \
1921                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1922                         i = mmu_pages_next(&pvec, &parents, i))
1923
1924 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1925                           struct mmu_page_path *parents,
1926                           int i)
1927 {
1928         int n;
1929
1930         for (n = i+1; n < pvec->nr; n++) {
1931                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1932                 unsigned idx = pvec->page[n].idx;
1933                 int level = sp->role.level;
1934
1935                 parents->idx[level-1] = idx;
1936                 if (level == PG_LEVEL_4K)
1937                         break;
1938
1939                 parents->parent[level-2] = sp;
1940         }
1941
1942         return n;
1943 }
1944
1945 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1946                            struct mmu_page_path *parents)
1947 {
1948         struct kvm_mmu_page *sp;
1949         int level;
1950
1951         if (pvec->nr == 0)
1952                 return 0;
1953
1954         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1955
1956         sp = pvec->page[0].sp;
1957         level = sp->role.level;
1958         WARN_ON(level == PG_LEVEL_4K);
1959
1960         parents->parent[level-2] = sp;
1961
1962         /* Also set up a sentinel.  Further entries in pvec are all
1963          * children of sp, so this element is never overwritten.
1964          */
1965         parents->parent[level-1] = NULL;
1966         return mmu_pages_next(pvec, parents, 0);
1967 }
1968
1969 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1970 {
1971         struct kvm_mmu_page *sp;
1972         unsigned int level = 0;
1973
1974         do {
1975                 unsigned int idx = parents->idx[level];
1976                 sp = parents->parent[level];
1977                 if (!sp)
1978                         return;
1979
1980                 WARN_ON(idx == INVALID_INDEX);
1981                 clear_unsync_child_bit(sp, idx);
1982                 level++;
1983         } while (!sp->unsync_children);
1984 }
1985
1986 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1987                               struct kvm_mmu_page *parent)
1988 {
1989         int i;
1990         struct kvm_mmu_page *sp;
1991         struct mmu_page_path parents;
1992         struct kvm_mmu_pages pages;
1993         LIST_HEAD(invalid_list);
1994         bool flush = false;
1995
1996         while (mmu_unsync_walk(parent, &pages)) {
1997                 bool protected = false;
1998
1999                 for_each_sp(pages, sp, parents, i)
2000                         protected |= rmap_write_protect(vcpu, sp->gfn);
2001
2002                 if (protected) {
2003                         kvm_flush_remote_tlbs(vcpu->kvm);
2004                         flush = false;
2005                 }
2006
2007                 for_each_sp(pages, sp, parents, i) {
2008                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2009                         mmu_pages_clear_parents(&parents);
2010                 }
2011                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2012                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2013                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2014                         flush = false;
2015                 }
2016         }
2017
2018         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2019 }
2020
2021 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2022 {
2023         atomic_set(&sp->write_flooding_count,  0);
2024 }
2025
2026 static void clear_sp_write_flooding_count(u64 *spte)
2027 {
2028         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2029 }
2030
2031 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2032                                              gfn_t gfn,
2033                                              gva_t gaddr,
2034                                              unsigned level,
2035                                              int direct,
2036                                              unsigned int access)
2037 {
2038         bool direct_mmu = vcpu->arch.mmu->direct_map;
2039         union kvm_mmu_page_role role;
2040         struct hlist_head *sp_list;
2041         unsigned quadrant;
2042         struct kvm_mmu_page *sp;
2043         bool need_sync = false;
2044         bool flush = false;
2045         int collisions = 0;
2046         LIST_HEAD(invalid_list);
2047
2048         role = vcpu->arch.mmu->mmu_role.base;
2049         role.level = level;
2050         role.direct = direct;
2051         if (role.direct)
2052                 role.gpte_is_8_bytes = true;
2053         role.access = access;
2054         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2055                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2056                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2057                 role.quadrant = quadrant;
2058         }
2059
2060         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2061         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2062                 if (sp->gfn != gfn) {
2063                         collisions++;
2064                         continue;
2065                 }
2066
2067                 if (!need_sync && sp->unsync)
2068                         need_sync = true;
2069
2070                 if (sp->role.word != role.word)
2071                         continue;
2072
2073                 if (direct_mmu)
2074                         goto trace_get_page;
2075
2076                 if (sp->unsync) {
2077                         /* The page is good, but __kvm_sync_page might still end
2078                          * up zapping it.  If so, break in order to rebuild it.
2079                          */
2080                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2081                                 break;
2082
2083                         WARN_ON(!list_empty(&invalid_list));
2084                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2085                 }
2086
2087                 if (sp->unsync_children)
2088                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2089
2090                 __clear_sp_write_flooding_count(sp);
2091
2092 trace_get_page:
2093                 trace_kvm_mmu_get_page(sp, false);
2094                 goto out;
2095         }
2096
2097         ++vcpu->kvm->stat.mmu_cache_miss;
2098
2099         sp = kvm_mmu_alloc_page(vcpu, direct);
2100
2101         sp->gfn = gfn;
2102         sp->role = role;
2103         hlist_add_head(&sp->hash_link, sp_list);
2104         if (!direct) {
2105                 /*
2106                  * we should do write protection before syncing pages
2107                  * otherwise the content of the synced shadow page may
2108                  * be inconsistent with guest page table.
2109                  */
2110                 account_shadowed(vcpu->kvm, sp);
2111                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2112                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2113
2114                 if (level > PG_LEVEL_4K && need_sync)
2115                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2116         }
2117         trace_kvm_mmu_get_page(sp, true);
2118
2119         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2120 out:
2121         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2122                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2123         return sp;
2124 }
2125
2126 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2127                                         struct kvm_vcpu *vcpu, hpa_t root,
2128                                         u64 addr)
2129 {
2130         iterator->addr = addr;
2131         iterator->shadow_addr = root;
2132         iterator->level = vcpu->arch.mmu->shadow_root_level;
2133
2134         if (iterator->level == PT64_ROOT_4LEVEL &&
2135             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2136             !vcpu->arch.mmu->direct_map)
2137                 --iterator->level;
2138
2139         if (iterator->level == PT32E_ROOT_LEVEL) {
2140                 /*
2141                  * prev_root is currently only used for 64-bit hosts. So only
2142                  * the active root_hpa is valid here.
2143                  */
2144                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2145
2146                 iterator->shadow_addr
2147                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2148                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2149                 --iterator->level;
2150                 if (!iterator->shadow_addr)
2151                         iterator->level = 0;
2152         }
2153 }
2154
2155 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2156                              struct kvm_vcpu *vcpu, u64 addr)
2157 {
2158         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2159                                     addr);
2160 }
2161
2162 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2163 {
2164         if (iterator->level < PG_LEVEL_4K)
2165                 return false;
2166
2167         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2168         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2169         return true;
2170 }
2171
2172 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2173                                u64 spte)
2174 {
2175         if (is_last_spte(spte, iterator->level)) {
2176                 iterator->level = 0;
2177                 return;
2178         }
2179
2180         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2181         --iterator->level;
2182 }
2183
2184 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2185 {
2186         __shadow_walk_next(iterator, *iterator->sptep);
2187 }
2188
2189 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2190                              struct kvm_mmu_page *sp)
2191 {
2192         u64 spte;
2193
2194         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2195
2196         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2197
2198         mmu_spte_set(sptep, spte);
2199
2200         mmu_page_add_parent_pte(vcpu, sp, sptep);
2201
2202         if (sp->unsync_children || sp->unsync)
2203                 mark_unsync(sptep);
2204 }
2205
2206 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2207                                    unsigned direct_access)
2208 {
2209         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2210                 struct kvm_mmu_page *child;
2211
2212                 /*
2213                  * For the direct sp, if the guest pte's dirty bit
2214                  * changed form clean to dirty, it will corrupt the
2215                  * sp's access: allow writable in the read-only sp,
2216                  * so we should update the spte at this point to get
2217                  * a new sp with the correct access.
2218                  */
2219                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2220                 if (child->role.access == direct_access)
2221                         return;
2222
2223                 drop_parent_pte(child, sptep);
2224                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2225         }
2226 }
2227
2228 /* Returns the number of zapped non-leaf child shadow pages. */
2229 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2230                             u64 *spte, struct list_head *invalid_list)
2231 {
2232         u64 pte;
2233         struct kvm_mmu_page *child;
2234
2235         pte = *spte;
2236         if (is_shadow_present_pte(pte)) {
2237                 if (is_last_spte(pte, sp->role.level)) {
2238                         drop_spte(kvm, spte);
2239                         if (is_large_pte(pte))
2240                                 --kvm->stat.lpages;
2241                 } else {
2242                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2243                         drop_parent_pte(child, spte);
2244
2245                         /*
2246                          * Recursively zap nested TDP SPs, parentless SPs are
2247                          * unlikely to be used again in the near future.  This
2248                          * avoids retaining a large number of stale nested SPs.
2249                          */
2250                         if (tdp_enabled && invalid_list &&
2251                             child->role.guest_mode && !child->parent_ptes.val)
2252                                 return kvm_mmu_prepare_zap_page(kvm, child,
2253                                                                 invalid_list);
2254                 }
2255         } else if (is_mmio_spte(pte)) {
2256                 mmu_spte_clear_no_track(spte);
2257         }
2258         return 0;
2259 }
2260
2261 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2262                                         struct kvm_mmu_page *sp,
2263                                         struct list_head *invalid_list)
2264 {
2265         int zapped = 0;
2266         unsigned i;
2267
2268         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2269                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2270
2271         return zapped;
2272 }
2273
2274 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2275 {
2276         u64 *sptep;
2277         struct rmap_iterator iter;
2278
2279         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2280                 drop_parent_pte(sp, sptep);
2281 }
2282
2283 static int mmu_zap_unsync_children(struct kvm *kvm,
2284                                    struct kvm_mmu_page *parent,
2285                                    struct list_head *invalid_list)
2286 {
2287         int i, zapped = 0;
2288         struct mmu_page_path parents;
2289         struct kvm_mmu_pages pages;
2290
2291         if (parent->role.level == PG_LEVEL_4K)
2292                 return 0;
2293
2294         while (mmu_unsync_walk(parent, &pages)) {
2295                 struct kvm_mmu_page *sp;
2296
2297                 for_each_sp(pages, sp, parents, i) {
2298                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2299                         mmu_pages_clear_parents(&parents);
2300                         zapped++;
2301                 }
2302         }
2303
2304         return zapped;
2305 }
2306
2307 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2308                                        struct kvm_mmu_page *sp,
2309                                        struct list_head *invalid_list,
2310                                        int *nr_zapped)
2311 {
2312         bool list_unstable;
2313
2314         trace_kvm_mmu_prepare_zap_page(sp);
2315         ++kvm->stat.mmu_shadow_zapped;
2316         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2317         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2318         kvm_mmu_unlink_parents(kvm, sp);
2319
2320         /* Zapping children means active_mmu_pages has become unstable. */
2321         list_unstable = *nr_zapped;
2322
2323         if (!sp->role.invalid && !sp->role.direct)
2324                 unaccount_shadowed(kvm, sp);
2325
2326         if (sp->unsync)
2327                 kvm_unlink_unsync_page(kvm, sp);
2328         if (!sp->root_count) {
2329                 /* Count self */
2330                 (*nr_zapped)++;
2331
2332                 /*
2333                  * Already invalid pages (previously active roots) are not on
2334                  * the active page list.  See list_del() in the "else" case of
2335                  * !sp->root_count.
2336                  */
2337                 if (sp->role.invalid)
2338                         list_add(&sp->link, invalid_list);
2339                 else
2340                         list_move(&sp->link, invalid_list);
2341                 kvm_mod_used_mmu_pages(kvm, -1);
2342         } else {
2343                 /*
2344                  * Remove the active root from the active page list, the root
2345                  * will be explicitly freed when the root_count hits zero.
2346                  */
2347                 list_del(&sp->link);
2348
2349                 /*
2350                  * Obsolete pages cannot be used on any vCPUs, see the comment
2351                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2352                  * treats invalid shadow pages as being obsolete.
2353                  */
2354                 if (!is_obsolete_sp(kvm, sp))
2355                         kvm_reload_remote_mmus(kvm);
2356         }
2357
2358         if (sp->lpage_disallowed)
2359                 unaccount_huge_nx_page(kvm, sp);
2360
2361         sp->role.invalid = 1;
2362         return list_unstable;
2363 }
2364
2365 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2366                                      struct list_head *invalid_list)
2367 {
2368         int nr_zapped;
2369
2370         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2371         return nr_zapped;
2372 }
2373
2374 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2375                                     struct list_head *invalid_list)
2376 {
2377         struct kvm_mmu_page *sp, *nsp;
2378
2379         if (list_empty(invalid_list))
2380                 return;
2381
2382         /*
2383          * We need to make sure everyone sees our modifications to
2384          * the page tables and see changes to vcpu->mode here. The barrier
2385          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2386          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2387          *
2388          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2389          * guest mode and/or lockless shadow page table walks.
2390          */
2391         kvm_flush_remote_tlbs(kvm);
2392
2393         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2394                 WARN_ON(!sp->role.invalid || sp->root_count);
2395                 kvm_mmu_free_page(sp);
2396         }
2397 }
2398
2399 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2400                                                   unsigned long nr_to_zap)
2401 {
2402         unsigned long total_zapped = 0;
2403         struct kvm_mmu_page *sp, *tmp;
2404         LIST_HEAD(invalid_list);
2405         bool unstable;
2406         int nr_zapped;
2407
2408         if (list_empty(&kvm->arch.active_mmu_pages))
2409                 return 0;
2410
2411 restart:
2412         list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2413                 /*
2414                  * Don't zap active root pages, the page itself can't be freed
2415                  * and zapping it will just force vCPUs to realloc and reload.
2416                  */
2417                 if (sp->root_count)
2418                         continue;
2419
2420                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2421                                                       &nr_zapped);
2422                 total_zapped += nr_zapped;
2423                 if (total_zapped >= nr_to_zap)
2424                         break;
2425
2426                 if (unstable)
2427                         goto restart;
2428         }
2429
2430         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2431
2432         kvm->stat.mmu_recycled += total_zapped;
2433         return total_zapped;
2434 }
2435
2436 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2437 {
2438         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2439                 return kvm->arch.n_max_mmu_pages -
2440                         kvm->arch.n_used_mmu_pages;
2441
2442         return 0;
2443 }
2444
2445 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2446 {
2447         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2448
2449         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2450                 return 0;
2451
2452         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2453
2454         if (!kvm_mmu_available_pages(vcpu->kvm))
2455                 return -ENOSPC;
2456         return 0;
2457 }
2458
2459 /*
2460  * Changing the number of mmu pages allocated to the vm
2461  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2462  */
2463 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2464 {
2465         spin_lock(&kvm->mmu_lock);
2466
2467         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2468                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2469                                                   goal_nr_mmu_pages);
2470
2471                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2472         }
2473
2474         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2475
2476         spin_unlock(&kvm->mmu_lock);
2477 }
2478
2479 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2480 {
2481         struct kvm_mmu_page *sp;
2482         LIST_HEAD(invalid_list);
2483         int r;
2484
2485         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2486         r = 0;
2487         spin_lock(&kvm->mmu_lock);
2488         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2489                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2490                          sp->role.word);
2491                 r = 1;
2492                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2493         }
2494         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2495         spin_unlock(&kvm->mmu_lock);
2496
2497         return r;
2498 }
2499 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2500
2501 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2502 {
2503         trace_kvm_mmu_unsync_page(sp);
2504         ++vcpu->kvm->stat.mmu_unsync;
2505         sp->unsync = 1;
2506
2507         kvm_mmu_mark_parents_unsync(sp);
2508 }
2509
2510 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2511                             bool can_unsync)
2512 {
2513         struct kvm_mmu_page *sp;
2514
2515         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2516                 return true;
2517
2518         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2519                 if (!can_unsync)
2520                         return true;
2521
2522                 if (sp->unsync)
2523                         continue;
2524
2525                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2526                 kvm_unsync_page(vcpu, sp);
2527         }
2528
2529         /*
2530          * We need to ensure that the marking of unsync pages is visible
2531          * before the SPTE is updated to allow writes because
2532          * kvm_mmu_sync_roots() checks the unsync flags without holding
2533          * the MMU lock and so can race with this. If the SPTE was updated
2534          * before the page had been marked as unsync-ed, something like the
2535          * following could happen:
2536          *
2537          * CPU 1                    CPU 2
2538          * ---------------------------------------------------------------------
2539          * 1.2 Host updates SPTE
2540          *     to be writable
2541          *                      2.1 Guest writes a GPTE for GVA X.
2542          *                          (GPTE being in the guest page table shadowed
2543          *                           by the SP from CPU 1.)
2544          *                          This reads SPTE during the page table walk.
2545          *                          Since SPTE.W is read as 1, there is no
2546          *                          fault.
2547          *
2548          *                      2.2 Guest issues TLB flush.
2549          *                          That causes a VM Exit.
2550          *
2551          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2552          *                          Since it is false, so it just returns.
2553          *
2554          *                      2.4 Guest accesses GVA X.
2555          *                          Since the mapping in the SP was not updated,
2556          *                          so the old mapping for GVA X incorrectly
2557          *                          gets used.
2558          * 1.1 Host marks SP
2559          *     as unsync
2560          *     (sp->unsync = true)
2561          *
2562          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2563          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2564          * pairs with this write barrier.
2565          */
2566         smp_wmb();
2567
2568         return false;
2569 }
2570
2571 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2572                     unsigned int pte_access, int level,
2573                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2574                     bool can_unsync, bool host_writable)
2575 {
2576         u64 spte;
2577         struct kvm_mmu_page *sp;
2578         int ret;
2579
2580         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2581                 return 0;
2582
2583         sp = sptep_to_sp(sptep);
2584
2585         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2586                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2587
2588         if (spte & PT_WRITABLE_MASK)
2589                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2590
2591         if (*sptep == spte)
2592                 ret |= SET_SPTE_SPURIOUS;
2593         else if (mmu_spte_update(sptep, spte))
2594                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2595         return ret;
2596 }
2597
2598 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2599                         unsigned int pte_access, bool write_fault, int level,
2600                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2601                         bool host_writable)
2602 {
2603         int was_rmapped = 0;
2604         int rmap_count;
2605         int set_spte_ret;
2606         int ret = RET_PF_FIXED;
2607         bool flush = false;
2608
2609         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2610                  *sptep, write_fault, gfn);
2611
2612         if (is_shadow_present_pte(*sptep)) {
2613                 /*
2614                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2615                  * the parent of the now unreachable PTE.
2616                  */
2617                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2618                         struct kvm_mmu_page *child;
2619                         u64 pte = *sptep;
2620
2621                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2622                         drop_parent_pte(child, sptep);
2623                         flush = true;
2624                 } else if (pfn != spte_to_pfn(*sptep)) {
2625                         pgprintk("hfn old %llx new %llx\n",
2626                                  spte_to_pfn(*sptep), pfn);
2627                         drop_spte(vcpu->kvm, sptep);
2628                         flush = true;
2629                 } else
2630                         was_rmapped = 1;
2631         }
2632
2633         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2634                                 speculative, true, host_writable);
2635         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2636                 if (write_fault)
2637                         ret = RET_PF_EMULATE;
2638                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2639         }
2640
2641         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2642                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2643                                 KVM_PAGES_PER_HPAGE(level));
2644
2645         if (unlikely(is_mmio_spte(*sptep)))
2646                 ret = RET_PF_EMULATE;
2647
2648         /*
2649          * The fault is fully spurious if and only if the new SPTE and old SPTE
2650          * are identical, and emulation is not required.
2651          */
2652         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2653                 WARN_ON_ONCE(!was_rmapped);
2654                 return RET_PF_SPURIOUS;
2655         }
2656
2657         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2658         trace_kvm_mmu_set_spte(level, gfn, sptep);
2659         if (!was_rmapped && is_large_pte(*sptep))
2660                 ++vcpu->kvm->stat.lpages;
2661
2662         if (is_shadow_present_pte(*sptep)) {
2663                 if (!was_rmapped) {
2664                         rmap_count = rmap_add(vcpu, sptep, gfn);
2665                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2666                                 rmap_recycle(vcpu, sptep, gfn);
2667                 }
2668         }
2669
2670         return ret;
2671 }
2672
2673 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2674                                      bool no_dirty_log)
2675 {
2676         struct kvm_memory_slot *slot;
2677
2678         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2679         if (!slot)
2680                 return KVM_PFN_ERR_FAULT;
2681
2682         return gfn_to_pfn_memslot_atomic(slot, gfn);
2683 }
2684
2685 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2686                                     struct kvm_mmu_page *sp,
2687                                     u64 *start, u64 *end)
2688 {
2689         struct page *pages[PTE_PREFETCH_NUM];
2690         struct kvm_memory_slot *slot;
2691         unsigned int access = sp->role.access;
2692         int i, ret;
2693         gfn_t gfn;
2694
2695         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2696         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2697         if (!slot)
2698                 return -1;
2699
2700         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2701         if (ret <= 0)
2702                 return -1;
2703
2704         for (i = 0; i < ret; i++, gfn++, start++) {
2705                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2706                              page_to_pfn(pages[i]), true, true);
2707                 put_page(pages[i]);
2708         }
2709
2710         return 0;
2711 }
2712
2713 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2714                                   struct kvm_mmu_page *sp, u64 *sptep)
2715 {
2716         u64 *spte, *start = NULL;
2717         int i;
2718
2719         WARN_ON(!sp->role.direct);
2720
2721         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2722         spte = sp->spt + i;
2723
2724         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2725                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2726                         if (!start)
2727                                 continue;
2728                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2729                                 break;
2730                         start = NULL;
2731                 } else if (!start)
2732                         start = spte;
2733         }
2734 }
2735
2736 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2737 {
2738         struct kvm_mmu_page *sp;
2739
2740         sp = sptep_to_sp(sptep);
2741
2742         /*
2743          * Without accessed bits, there's no way to distinguish between
2744          * actually accessed translations and prefetched, so disable pte
2745          * prefetch if accessed bits aren't available.
2746          */
2747         if (sp_ad_disabled(sp))
2748                 return;
2749
2750         if (sp->role.level > PG_LEVEL_4K)
2751                 return;
2752
2753         __direct_pte_prefetch(vcpu, sp, sptep);
2754 }
2755
2756 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2757                                   kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2758 {
2759         unsigned long hva;
2760         pte_t *pte;
2761         int level;
2762
2763         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2764                 return PG_LEVEL_4K;
2765
2766         /*
2767          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2768          * is not solely for performance, it's also necessary to avoid the
2769          * "writable" check in __gfn_to_hva_many(), which will always fail on
2770          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2771          * page fault steps have already verified the guest isn't writing a
2772          * read-only memslot.
2773          */
2774         hva = __gfn_to_hva_memslot(slot, gfn);
2775
2776         pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2777         if (unlikely(!pte))
2778                 return PG_LEVEL_4K;
2779
2780         return level;
2781 }
2782
2783 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2784                             int max_level, kvm_pfn_t *pfnp,
2785                             bool huge_page_disallowed, int *req_level)
2786 {
2787         struct kvm_memory_slot *slot;
2788         struct kvm_lpage_info *linfo;
2789         kvm_pfn_t pfn = *pfnp;
2790         kvm_pfn_t mask;
2791         int level;
2792
2793         *req_level = PG_LEVEL_4K;
2794
2795         if (unlikely(max_level == PG_LEVEL_4K))
2796                 return PG_LEVEL_4K;
2797
2798         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2799                 return PG_LEVEL_4K;
2800
2801         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2802         if (!slot)
2803                 return PG_LEVEL_4K;
2804
2805         max_level = min(max_level, max_huge_page_level);
2806         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2807                 linfo = lpage_info_slot(gfn, slot, max_level);
2808                 if (!linfo->disallow_lpage)
2809                         break;
2810         }
2811
2812         if (max_level == PG_LEVEL_4K)
2813                 return PG_LEVEL_4K;
2814
2815         level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2816         if (level == PG_LEVEL_4K)
2817                 return level;
2818
2819         *req_level = level = min(level, max_level);
2820
2821         /*
2822          * Enforce the iTLB multihit workaround after capturing the requested
2823          * level, which will be used to do precise, accurate accounting.
2824          */
2825         if (huge_page_disallowed)
2826                 return PG_LEVEL_4K;
2827
2828         /*
2829          * mmu_notifier_retry() was successful and mmu_lock is held, so
2830          * the pmd can't be split from under us.
2831          */
2832         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2833         VM_BUG_ON((gfn & mask) != (pfn & mask));
2834         *pfnp = pfn & ~mask;
2835
2836         return level;
2837 }
2838
2839 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2840                                 kvm_pfn_t *pfnp, int *goal_levelp)
2841 {
2842         int level = *goal_levelp;
2843
2844         if (cur_level == level && level > PG_LEVEL_4K &&
2845             is_shadow_present_pte(spte) &&
2846             !is_large_pte(spte)) {
2847                 /*
2848                  * A small SPTE exists for this pfn, but FNAME(fetch)
2849                  * and __direct_map would like to create a large PTE
2850                  * instead: just force them to go down another level,
2851                  * patching back for them into pfn the next 9 bits of
2852                  * the address.
2853                  */
2854                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2855                                 KVM_PAGES_PER_HPAGE(level - 1);
2856                 *pfnp |= gfn & page_mask;
2857                 (*goal_levelp)--;
2858         }
2859 }
2860
2861 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2862                         int map_writable, int max_level, kvm_pfn_t pfn,
2863                         bool prefault, bool is_tdp)
2864 {
2865         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2866         bool write = error_code & PFERR_WRITE_MASK;
2867         bool exec = error_code & PFERR_FETCH_MASK;
2868         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2869         struct kvm_shadow_walk_iterator it;
2870         struct kvm_mmu_page *sp;
2871         int level, req_level, ret;
2872         gfn_t gfn = gpa >> PAGE_SHIFT;
2873         gfn_t base_gfn = gfn;
2874
2875         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2876                 return RET_PF_RETRY;
2877
2878         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2879                                         huge_page_disallowed, &req_level);
2880
2881         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2882         for_each_shadow_entry(vcpu, gpa, it) {
2883                 /*
2884                  * We cannot overwrite existing page tables with an NX
2885                  * large page, as the leaf could be executable.
2886                  */
2887                 if (nx_huge_page_workaround_enabled)
2888                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2889                                                    &pfn, &level);
2890
2891                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2892                 if (it.level == level)
2893                         break;
2894
2895                 drop_large_spte(vcpu, it.sptep);
2896                 if (!is_shadow_present_pte(*it.sptep)) {
2897                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2898                                               it.level - 1, true, ACC_ALL);
2899
2900                         link_shadow_page(vcpu, it.sptep, sp);
2901                         if (is_tdp && huge_page_disallowed &&
2902                             req_level >= it.level)
2903                                 account_huge_nx_page(vcpu->kvm, sp);
2904                 }
2905         }
2906
2907         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2908                            write, level, base_gfn, pfn, prefault,
2909                            map_writable);
2910         if (ret == RET_PF_SPURIOUS)
2911                 return ret;
2912
2913         direct_pte_prefetch(vcpu, it.sptep);
2914         ++vcpu->stat.pf_fixed;
2915         return ret;
2916 }
2917
2918 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2919 {
2920         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2921 }
2922
2923 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2924 {
2925         /*
2926          * Do not cache the mmio info caused by writing the readonly gfn
2927          * into the spte otherwise read access on readonly gfn also can
2928          * caused mmio page fault and treat it as mmio access.
2929          */
2930         if (pfn == KVM_PFN_ERR_RO_FAULT)
2931                 return RET_PF_EMULATE;
2932
2933         if (pfn == KVM_PFN_ERR_HWPOISON) {
2934                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2935                 return RET_PF_RETRY;
2936         }
2937
2938         return -EFAULT;
2939 }
2940
2941 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2942                                 kvm_pfn_t pfn, unsigned int access,
2943                                 int *ret_val)
2944 {
2945         /* The pfn is invalid, report the error! */
2946         if (unlikely(is_error_pfn(pfn))) {
2947                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2948                 return true;
2949         }
2950
2951         if (unlikely(is_noslot_pfn(pfn)))
2952                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2953                                      access & shadow_mmio_access_mask);
2954
2955         return false;
2956 }
2957
2958 static bool page_fault_can_be_fast(u32 error_code)
2959 {
2960         /*
2961          * Do not fix the mmio spte with invalid generation number which
2962          * need to be updated by slow page fault path.
2963          */
2964         if (unlikely(error_code & PFERR_RSVD_MASK))
2965                 return false;
2966
2967         /* See if the page fault is due to an NX violation */
2968         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2969                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2970                 return false;
2971
2972         /*
2973          * #PF can be fast if:
2974          * 1. The shadow page table entry is not present, which could mean that
2975          *    the fault is potentially caused by access tracking (if enabled).
2976          * 2. The shadow page table entry is present and the fault
2977          *    is caused by write-protect, that means we just need change the W
2978          *    bit of the spte which can be done out of mmu-lock.
2979          *
2980          * However, if access tracking is disabled we know that a non-present
2981          * page must be a genuine page fault where we have to create a new SPTE.
2982          * So, if access tracking is disabled, we return true only for write
2983          * accesses to a present page.
2984          */
2985
2986         return shadow_acc_track_mask != 0 ||
2987                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2988                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2989 }
2990
2991 /*
2992  * Returns true if the SPTE was fixed successfully. Otherwise,
2993  * someone else modified the SPTE from its original value.
2994  */
2995 static bool
2996 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2997                         u64 *sptep, u64 old_spte, u64 new_spte)
2998 {
2999         gfn_t gfn;
3000
3001         WARN_ON(!sp->role.direct);
3002
3003         /*
3004          * Theoretically we could also set dirty bit (and flush TLB) here in
3005          * order to eliminate unnecessary PML logging. See comments in
3006          * set_spte. But fast_page_fault is very unlikely to happen with PML
3007          * enabled, so we do not do this. This might result in the same GPA
3008          * to be logged in PML buffer again when the write really happens, and
3009          * eventually to be called by mark_page_dirty twice. But it's also no
3010          * harm. This also avoids the TLB flush needed after setting dirty bit
3011          * so non-PML cases won't be impacted.
3012          *
3013          * Compare with set_spte where instead shadow_dirty_mask is set.
3014          */
3015         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3016                 return false;
3017
3018         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3019                 /*
3020                  * The gfn of direct spte is stable since it is
3021                  * calculated by sp->gfn.
3022                  */
3023                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3024                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3025         }
3026
3027         return true;
3028 }
3029
3030 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3031 {
3032         if (fault_err_code & PFERR_FETCH_MASK)
3033                 return is_executable_pte(spte);
3034
3035         if (fault_err_code & PFERR_WRITE_MASK)
3036                 return is_writable_pte(spte);
3037
3038         /* Fault was on Read access */
3039         return spte & PT_PRESENT_MASK;
3040 }
3041
3042 /*
3043  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3044  */
3045 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3046                            u32 error_code)
3047 {
3048         struct kvm_shadow_walk_iterator iterator;
3049         struct kvm_mmu_page *sp;
3050         int ret = RET_PF_INVALID;
3051         u64 spte = 0ull;
3052         uint retry_count = 0;
3053
3054         if (!page_fault_can_be_fast(error_code))
3055                 return ret;
3056
3057         walk_shadow_page_lockless_begin(vcpu);
3058
3059         do {
3060                 u64 new_spte;
3061
3062                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3063                         if (!is_shadow_present_pte(spte))
3064                                 break;
3065
3066                 sp = sptep_to_sp(iterator.sptep);
3067                 if (!is_last_spte(spte, sp->role.level))
3068                         break;
3069
3070                 /*
3071                  * Check whether the memory access that caused the fault would
3072                  * still cause it if it were to be performed right now. If not,
3073                  * then this is a spurious fault caused by TLB lazily flushed,
3074                  * or some other CPU has already fixed the PTE after the
3075                  * current CPU took the fault.
3076                  *
3077                  * Need not check the access of upper level table entries since
3078                  * they are always ACC_ALL.
3079                  */
3080                 if (is_access_allowed(error_code, spte)) {
3081                         ret = RET_PF_SPURIOUS;
3082                         break;
3083                 }
3084
3085                 new_spte = spte;
3086
3087                 if (is_access_track_spte(spte))
3088                         new_spte = restore_acc_track_spte(new_spte);
3089
3090                 /*
3091                  * Currently, to simplify the code, write-protection can
3092                  * be removed in the fast path only if the SPTE was
3093                  * write-protected for dirty-logging or access tracking.
3094                  */
3095                 if ((error_code & PFERR_WRITE_MASK) &&
3096                     spte_can_locklessly_be_made_writable(spte)) {
3097                         new_spte |= PT_WRITABLE_MASK;
3098
3099                         /*
3100                          * Do not fix write-permission on the large spte.  Since
3101                          * we only dirty the first page into the dirty-bitmap in
3102                          * fast_pf_fix_direct_spte(), other pages are missed
3103                          * if its slot has dirty logging enabled.
3104                          *
3105                          * Instead, we let the slow page fault path create a
3106                          * normal spte to fix the access.
3107                          *
3108                          * See the comments in kvm_arch_commit_memory_region().
3109                          */
3110                         if (sp->role.level > PG_LEVEL_4K)
3111                                 break;
3112                 }
3113
3114                 /* Verify that the fault can be handled in the fast path */
3115                 if (new_spte == spte ||
3116                     !is_access_allowed(error_code, new_spte))
3117                         break;
3118
3119                 /*
3120                  * Currently, fast page fault only works for direct mapping
3121                  * since the gfn is not stable for indirect shadow page. See
3122                  * Documentation/virt/kvm/locking.rst to get more detail.
3123                  */
3124                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3125                                             new_spte)) {
3126                         ret = RET_PF_FIXED;
3127                         break;
3128                 }
3129
3130                 if (++retry_count > 4) {
3131                         printk_once(KERN_WARNING
3132                                 "kvm: Fast #PF retrying more than 4 times.\n");
3133                         break;
3134                 }
3135
3136         } while (true);
3137
3138         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3139                               spte, ret);
3140         walk_shadow_page_lockless_end(vcpu);
3141
3142         return ret;
3143 }
3144
3145 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3146                                struct list_head *invalid_list)
3147 {
3148         struct kvm_mmu_page *sp;
3149
3150         if (!VALID_PAGE(*root_hpa))
3151                 return;
3152
3153         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3154
3155         if (kvm_mmu_put_root(kvm, sp)) {
3156                 if (sp->tdp_mmu_page)
3157                         kvm_tdp_mmu_free_root(kvm, sp);
3158                 else if (sp->role.invalid)
3159                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3160         }
3161
3162         *root_hpa = INVALID_PAGE;
3163 }
3164
3165 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3166 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3167                         ulong roots_to_free)
3168 {
3169         struct kvm *kvm = vcpu->kvm;
3170         int i;
3171         LIST_HEAD(invalid_list);
3172         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3173
3174         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3175
3176         /* Before acquiring the MMU lock, see if we need to do any real work. */
3177         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3178                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3179                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3180                             VALID_PAGE(mmu->prev_roots[i].hpa))
3181                                 break;
3182
3183                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3184                         return;
3185         }
3186
3187         spin_lock(&kvm->mmu_lock);
3188
3189         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3190                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3191                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3192                                            &invalid_list);
3193
3194         if (free_active_root) {
3195                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3196                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3197                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3198                 } else {
3199                         for (i = 0; i < 4; ++i)
3200                                 if (mmu->pae_root[i] != 0)
3201                                         mmu_free_root_page(kvm,
3202                                                            &mmu->pae_root[i],
3203                                                            &invalid_list);
3204                         mmu->root_hpa = INVALID_PAGE;
3205                 }
3206                 mmu->root_pgd = 0;
3207         }
3208
3209         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3210         spin_unlock(&kvm->mmu_lock);
3211 }
3212 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3213
3214 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3215 {
3216         int ret = 0;
3217
3218         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3219                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3220                 ret = 1;
3221         }
3222
3223         return ret;
3224 }
3225
3226 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3227                             u8 level, bool direct)
3228 {
3229         struct kvm_mmu_page *sp;
3230
3231         spin_lock(&vcpu->kvm->mmu_lock);
3232
3233         if (make_mmu_pages_available(vcpu)) {
3234                 spin_unlock(&vcpu->kvm->mmu_lock);
3235                 return INVALID_PAGE;
3236         }
3237         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3238         ++sp->root_count;
3239
3240         spin_unlock(&vcpu->kvm->mmu_lock);
3241         return __pa(sp->spt);
3242 }
3243
3244 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3245 {
3246         u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3247         hpa_t root;
3248         unsigned i;
3249
3250         if (vcpu->kvm->arch.tdp_mmu_enabled) {
3251                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3252
3253                 if (!VALID_PAGE(root))
3254                         return -ENOSPC;
3255                 vcpu->arch.mmu->root_hpa = root;
3256         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3257                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3258                                       true);
3259
3260                 if (!VALID_PAGE(root))
3261                         return -ENOSPC;
3262                 vcpu->arch.mmu->root_hpa = root;
3263         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3264                 for (i = 0; i < 4; ++i) {
3265                         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3266
3267                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3268                                               i << 30, PT32_ROOT_LEVEL, true);
3269                         if (!VALID_PAGE(root))
3270                                 return -ENOSPC;
3271                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3272                 }
3273                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3274         } else
3275                 BUG();
3276
3277         /* root_pgd is ignored for direct MMUs. */
3278         vcpu->arch.mmu->root_pgd = 0;
3279
3280         return 0;
3281 }
3282
3283 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3284 {
3285         u64 pdptr, pm_mask;
3286         gfn_t root_gfn, root_pgd;
3287         hpa_t root;
3288         int i;
3289
3290         root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3291         root_gfn = root_pgd >> PAGE_SHIFT;
3292
3293         if (mmu_check_root(vcpu, root_gfn))
3294                 return 1;
3295
3296         /*
3297          * Do we shadow a long mode page table? If so we need to
3298          * write-protect the guests page table root.
3299          */
3300         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3301                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3302
3303                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3304                                       vcpu->arch.mmu->shadow_root_level, false);
3305                 if (!VALID_PAGE(root))
3306                         return -ENOSPC;
3307                 vcpu->arch.mmu->root_hpa = root;
3308                 goto set_root_pgd;
3309         }
3310
3311         /*
3312          * We shadow a 32 bit page table. This may be a legacy 2-level
3313          * or a PAE 3-level page table. In either case we need to be aware that
3314          * the shadow page table may be a PAE or a long mode page table.
3315          */
3316         pm_mask = PT_PRESENT_MASK;
3317         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3318                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3319
3320         for (i = 0; i < 4; ++i) {
3321                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3322                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3323                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3324                         if (!(pdptr & PT_PRESENT_MASK)) {
3325                                 vcpu->arch.mmu->pae_root[i] = 0;
3326                                 continue;
3327                         }
3328                         root_gfn = pdptr >> PAGE_SHIFT;
3329                         if (mmu_check_root(vcpu, root_gfn))
3330                                 return 1;
3331                 }
3332
3333                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3334                                       PT32_ROOT_LEVEL, false);
3335                 if (!VALID_PAGE(root))
3336                         return -ENOSPC;
3337                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3338         }
3339         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3340
3341         /*
3342          * If we shadow a 32 bit page table with a long mode page
3343          * table we enter this path.
3344          */
3345         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3346                 if (vcpu->arch.mmu->lm_root == NULL) {
3347                         /*
3348                          * The additional page necessary for this is only
3349                          * allocated on demand.
3350                          */
3351
3352                         u64 *lm_root;
3353
3354                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3355                         if (lm_root == NULL)
3356                                 return 1;
3357
3358                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3359
3360                         vcpu->arch.mmu->lm_root = lm_root;
3361                 }
3362
3363                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3364         }
3365
3366 set_root_pgd:
3367         vcpu->arch.mmu->root_pgd = root_pgd;
3368
3369         return 0;
3370 }
3371
3372 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3373 {
3374         if (vcpu->arch.mmu->direct_map)
3375                 return mmu_alloc_direct_roots(vcpu);
3376         else
3377                 return mmu_alloc_shadow_roots(vcpu);
3378 }
3379
3380 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3381 {
3382         int i;
3383         struct kvm_mmu_page *sp;
3384
3385         if (vcpu->arch.mmu->direct_map)
3386                 return;
3387
3388         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3389                 return;
3390
3391         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3392
3393         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3394                 hpa_t root = vcpu->arch.mmu->root_hpa;
3395                 sp = to_shadow_page(root);
3396
3397                 /*
3398                  * Even if another CPU was marking the SP as unsync-ed
3399                  * simultaneously, any guest page table changes are not
3400                  * guaranteed to be visible anyway until this VCPU issues a TLB
3401                  * flush strictly after those changes are made. We only need to
3402                  * ensure that the other CPU sets these flags before any actual
3403                  * changes to the page tables are made. The comments in
3404                  * mmu_need_write_protect() describe what could go wrong if this
3405                  * requirement isn't satisfied.
3406                  */
3407                 if (!smp_load_acquire(&sp->unsync) &&
3408                     !smp_load_acquire(&sp->unsync_children))
3409                         return;
3410
3411                 spin_lock(&vcpu->kvm->mmu_lock);
3412                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3413
3414                 mmu_sync_children(vcpu, sp);
3415
3416                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3417                 spin_unlock(&vcpu->kvm->mmu_lock);
3418                 return;
3419         }
3420
3421         spin_lock(&vcpu->kvm->mmu_lock);
3422         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3423
3424         for (i = 0; i < 4; ++i) {
3425                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3426
3427                 if (root && VALID_PAGE(root)) {
3428                         root &= PT64_BASE_ADDR_MASK;
3429                         sp = to_shadow_page(root);
3430                         mmu_sync_children(vcpu, sp);
3431                 }
3432         }
3433
3434         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3435         spin_unlock(&vcpu->kvm->mmu_lock);
3436 }
3437 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3438
3439 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3440                                   u32 access, struct x86_exception *exception)
3441 {
3442         if (exception)
3443                 exception->error_code = 0;
3444         return vaddr;
3445 }
3446
3447 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3448                                          u32 access,
3449                                          struct x86_exception *exception)
3450 {
3451         if (exception)
3452                 exception->error_code = 0;
3453         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3454 }
3455
3456 static bool
3457 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3458 {
3459         int bit7 = (pte >> 7) & 1;
3460
3461         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3462 }
3463
3464 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3465 {
3466         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3467 }
3468
3469 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3470 {
3471         /*
3472          * A nested guest cannot use the MMIO cache if it is using nested
3473          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3474          */
3475         if (mmu_is_nested(vcpu))
3476                 return false;
3477
3478         if (direct)
3479                 return vcpu_match_mmio_gpa(vcpu, addr);
3480
3481         return vcpu_match_mmio_gva(vcpu, addr);
3482 }
3483
3484 /*
3485  * Return the level of the lowest level SPTE added to sptes.
3486  * That SPTE may be non-present.
3487  */
3488 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
3489 {
3490         struct kvm_shadow_walk_iterator iterator;
3491         int leaf = -1;
3492         u64 spte;
3493
3494
3495         walk_shadow_page_lockless_begin(vcpu);
3496
3497         for (shadow_walk_init(&iterator, vcpu, addr);
3498              shadow_walk_okay(&iterator);
3499              __shadow_walk_next(&iterator, spte)) {
3500                 leaf = iterator.level;
3501                 spte = mmu_spte_get_lockless(iterator.sptep);
3502
3503                 sptes[leaf - 1] = spte;
3504
3505                 if (!is_shadow_present_pte(spte))
3506                         break;
3507
3508         }
3509
3510         walk_shadow_page_lockless_end(vcpu);
3511
3512         return leaf;
3513 }
3514
3515 /* return true if reserved bit is detected on spte. */
3516 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3517 {
3518         u64 sptes[PT64_ROOT_MAX_LEVEL];
3519         struct rsvd_bits_validate *rsvd_check;
3520         int root = vcpu->arch.mmu->shadow_root_level;
3521         int leaf;
3522         int level;
3523         bool reserved = false;
3524
3525         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3526                 *sptep = 0ull;
3527                 return reserved;
3528         }
3529
3530         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3531                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes);
3532         else
3533                 leaf = get_walk(vcpu, addr, sptes);
3534
3535         if (unlikely(leaf < 0)) {
3536                 *sptep = 0ull;
3537                 return reserved;
3538         }
3539
3540         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3541
3542         for (level = root; level >= leaf; level--) {
3543                 if (!is_shadow_present_pte(sptes[level - 1]))
3544                         break;
3545                 /*
3546                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3547                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3548                  * adding a Jcc in the loop.
3549                  */
3550                 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) |
3551                             __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
3552                                                level);
3553         }
3554
3555         if (reserved) {
3556                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3557                        __func__, addr);
3558                 for (level = root; level >= leaf; level--)
3559                         pr_err("------ spte 0x%llx level %d.\n",
3560                                sptes[level - 1], level);
3561         }
3562
3563         *sptep = sptes[leaf - 1];
3564
3565         return reserved;
3566 }
3567
3568 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3569 {
3570         u64 spte;
3571         bool reserved;
3572
3573         if (mmio_info_in_cache(vcpu, addr, direct))
3574                 return RET_PF_EMULATE;
3575
3576         reserved = get_mmio_spte(vcpu, addr, &spte);
3577         if (WARN_ON(reserved))
3578                 return -EINVAL;
3579
3580         if (is_mmio_spte(spte)) {
3581                 gfn_t gfn = get_mmio_spte_gfn(spte);
3582                 unsigned int access = get_mmio_spte_access(spte);
3583
3584                 if (!check_mmio_spte(vcpu, spte))
3585                         return RET_PF_INVALID;
3586
3587                 if (direct)
3588                         addr = 0;
3589
3590                 trace_handle_mmio_page_fault(addr, gfn, access);
3591                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3592                 return RET_PF_EMULATE;
3593         }
3594
3595         /*
3596          * If the page table is zapped by other cpus, let CPU fault again on
3597          * the address.
3598          */
3599         return RET_PF_RETRY;
3600 }
3601
3602 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3603                                          u32 error_code, gfn_t gfn)
3604 {
3605         if (unlikely(error_code & PFERR_RSVD_MASK))
3606                 return false;
3607
3608         if (!(error_code & PFERR_PRESENT_MASK) ||
3609               !(error_code & PFERR_WRITE_MASK))
3610                 return false;
3611
3612         /*
3613          * guest is writing the page which is write tracked which can
3614          * not be fixed by page fault handler.
3615          */
3616         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3617                 return true;
3618
3619         return false;
3620 }
3621
3622 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3623 {
3624         struct kvm_shadow_walk_iterator iterator;
3625         u64 spte;
3626
3627         walk_shadow_page_lockless_begin(vcpu);
3628         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3629                 clear_sp_write_flooding_count(iterator.sptep);
3630                 if (!is_shadow_present_pte(spte))
3631                         break;
3632         }
3633         walk_shadow_page_lockless_end(vcpu);
3634 }
3635
3636 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3637                                     gfn_t gfn)
3638 {
3639         struct kvm_arch_async_pf arch;
3640
3641         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3642         arch.gfn = gfn;
3643         arch.direct_map = vcpu->arch.mmu->direct_map;
3644         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3645
3646         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3647                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3648 }
3649
3650 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3651                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3652                          bool *writable)
3653 {
3654         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3655         bool async;
3656
3657         /* Don't expose private memslots to L2. */
3658         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3659                 *pfn = KVM_PFN_NOSLOT;
3660                 *writable = false;
3661                 return false;
3662         }
3663
3664         async = false;
3665         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3666         if (!async)
3667                 return false; /* *pfn has correct page already */
3668
3669         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3670                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3671                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3672                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3673                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3674                         return true;
3675                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3676                         return true;
3677         }
3678
3679         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3680         return false;
3681 }
3682
3683 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3684                              bool prefault, int max_level, bool is_tdp)
3685 {
3686         bool write = error_code & PFERR_WRITE_MASK;
3687         bool map_writable;
3688
3689         gfn_t gfn = gpa >> PAGE_SHIFT;
3690         unsigned long mmu_seq;
3691         kvm_pfn_t pfn;
3692         int r;
3693
3694         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3695                 return RET_PF_EMULATE;
3696
3697         if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3698                 r = fast_page_fault(vcpu, gpa, error_code);
3699                 if (r != RET_PF_INVALID)
3700                         return r;
3701         }
3702
3703         r = mmu_topup_memory_caches(vcpu, false);
3704         if (r)
3705                 return r;
3706
3707         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3708         smp_rmb();
3709
3710         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3711                 return RET_PF_RETRY;
3712
3713         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3714                 return r;
3715
3716         r = RET_PF_RETRY;
3717         spin_lock(&vcpu->kvm->mmu_lock);
3718         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3719                 goto out_unlock;
3720         r = make_mmu_pages_available(vcpu);
3721         if (r)
3722                 goto out_unlock;
3723
3724         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3725                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3726                                     pfn, prefault);
3727         else
3728                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3729                                  prefault, is_tdp);
3730
3731 out_unlock:
3732         spin_unlock(&vcpu->kvm->mmu_lock);
3733         kvm_release_pfn_clean(pfn);
3734         return r;
3735 }
3736
3737 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3738                                 u32 error_code, bool prefault)
3739 {
3740         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3741
3742         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3743         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3744                                  PG_LEVEL_2M, false);
3745 }
3746
3747 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3748                                 u64 fault_address, char *insn, int insn_len)
3749 {
3750         int r = 1;
3751         u32 flags = vcpu->arch.apf.host_apf_flags;
3752
3753 #ifndef CONFIG_X86_64
3754         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3755         if (WARN_ON_ONCE(fault_address >> 32))
3756                 return -EFAULT;
3757 #endif
3758
3759         vcpu->arch.l1tf_flush_l1d = true;
3760         if (!flags) {
3761                 trace_kvm_page_fault(fault_address, error_code);
3762
3763                 if (kvm_event_needs_reinjection(vcpu))
3764                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3765                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3766                                 insn_len);
3767         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3768                 vcpu->arch.apf.host_apf_flags = 0;
3769                 local_irq_disable();
3770                 kvm_async_pf_task_wait_schedule(fault_address);
3771                 local_irq_enable();
3772         } else {
3773                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3774         }
3775
3776         return r;
3777 }
3778 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3779
3780 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3781                        bool prefault)
3782 {
3783         int max_level;
3784
3785         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3786              max_level > PG_LEVEL_4K;
3787              max_level--) {
3788                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3789                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3790
3791                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3792                         break;
3793         }
3794
3795         return direct_page_fault(vcpu, gpa, error_code, prefault,
3796                                  max_level, true);
3797 }
3798
3799 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3800                                    struct kvm_mmu *context)
3801 {
3802         context->page_fault = nonpaging_page_fault;
3803         context->gva_to_gpa = nonpaging_gva_to_gpa;
3804         context->sync_page = nonpaging_sync_page;
3805         context->invlpg = NULL;
3806         context->update_pte = nonpaging_update_pte;
3807         context->root_level = 0;
3808         context->shadow_root_level = PT32E_ROOT_LEVEL;
3809         context->direct_map = true;
3810         context->nx = false;
3811 }
3812
3813 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3814                                   union kvm_mmu_page_role role)
3815 {
3816         return (role.direct || pgd == root->pgd) &&
3817                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3818                role.word == to_shadow_page(root->hpa)->role.word;
3819 }
3820
3821 /*
3822  * Find out if a previously cached root matching the new pgd/role is available.
3823  * The current root is also inserted into the cache.
3824  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3825  * returned.
3826  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3827  * false is returned. This root should now be freed by the caller.
3828  */
3829 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3830                                   union kvm_mmu_page_role new_role)
3831 {
3832         uint i;
3833         struct kvm_mmu_root_info root;
3834         struct kvm_mmu *mmu = vcpu->arch.mmu;
3835
3836         root.pgd = mmu->root_pgd;
3837         root.hpa = mmu->root_hpa;
3838
3839         if (is_root_usable(&root, new_pgd, new_role))
3840                 return true;
3841
3842         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3843                 swap(root, mmu->prev_roots[i]);
3844
3845                 if (is_root_usable(&root, new_pgd, new_role))
3846                         break;
3847         }
3848
3849         mmu->root_hpa = root.hpa;
3850         mmu->root_pgd = root.pgd;
3851
3852         return i < KVM_MMU_NUM_PREV_ROOTS;
3853 }
3854
3855 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3856                             union kvm_mmu_page_role new_role)
3857 {
3858         struct kvm_mmu *mmu = vcpu->arch.mmu;
3859
3860         /*
3861          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3862          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3863          * later if necessary.
3864          */
3865         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3866             mmu->root_level >= PT64_ROOT_4LEVEL)
3867                 return cached_root_available(vcpu, new_pgd, new_role);
3868
3869         return false;
3870 }
3871
3872 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3873                               union kvm_mmu_page_role new_role,
3874                               bool skip_tlb_flush, bool skip_mmu_sync)
3875 {
3876         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3877                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3878                 return;
3879         }
3880
3881         /*
3882          * It's possible that the cached previous root page is obsolete because
3883          * of a change in the MMU generation number. However, changing the
3884          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3885          * free the root set here and allocate a new one.
3886          */
3887         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3888
3889         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3890                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3891         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3892                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3893
3894         /*
3895          * The last MMIO access's GVA and GPA are cached in the VCPU. When
3896          * switching to a new CR3, that GVA->GPA mapping may no longer be
3897          * valid. So clear any cached MMIO info even when we don't need to sync
3898          * the shadow page tables.
3899          */
3900         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3901
3902         /*
3903          * If this is a direct root page, it doesn't have a write flooding
3904          * count. Otherwise, clear the write flooding count.
3905          */
3906         if (!new_role.direct)
3907                 __clear_sp_write_flooding_count(
3908                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
3909 }
3910
3911 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3912                      bool skip_mmu_sync)
3913 {
3914         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3915                           skip_tlb_flush, skip_mmu_sync);
3916 }
3917 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3918
3919 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3920 {
3921         return kvm_read_cr3(vcpu);
3922 }
3923
3924 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3925                            unsigned int access, int *nr_present)
3926 {
3927         if (unlikely(is_mmio_spte(*sptep))) {
3928                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3929                         mmu_spte_clear_no_track(sptep);
3930                         return true;
3931                 }
3932
3933                 (*nr_present)++;
3934                 mark_mmio_spte(vcpu, sptep, gfn, access);
3935                 return true;
3936         }
3937
3938         return false;
3939 }
3940
3941 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3942                                 unsigned level, unsigned gpte)
3943 {
3944         /*
3945          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3946          * If it is clear, there are no large pages at this level, so clear
3947          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3948          */
3949         gpte &= level - mmu->last_nonleaf_level;
3950
3951         /*
3952          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3953          * iff level <= PG_LEVEL_4K, which for our purpose means
3954          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3955          */
3956         gpte |= level - PG_LEVEL_4K - 1;
3957
3958         return gpte & PT_PAGE_SIZE_MASK;
3959 }
3960
3961 #define PTTYPE_EPT 18 /* arbitrary */
3962 #define PTTYPE PTTYPE_EPT
3963 #include "paging_tmpl.h"
3964 #undef PTTYPE
3965
3966 #define PTTYPE 64
3967 #include "paging_tmpl.h"
3968 #undef PTTYPE
3969
3970 #define PTTYPE 32
3971 #include "paging_tmpl.h"
3972 #undef PTTYPE
3973
3974 static void
3975 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3976                         struct rsvd_bits_validate *rsvd_check,
3977                         int maxphyaddr, int level, bool nx, bool gbpages,
3978                         bool pse, bool amd)
3979 {
3980         u64 exb_bit_rsvd = 0;
3981         u64 gbpages_bit_rsvd = 0;
3982         u64 nonleaf_bit8_rsvd = 0;
3983
3984         rsvd_check->bad_mt_xwr = 0;
3985
3986         if (!nx)
3987                 exb_bit_rsvd = rsvd_bits(63, 63);
3988         if (!gbpages)
3989                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3990
3991         /*
3992          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3993          * leaf entries) on AMD CPUs only.
3994          */
3995         if (amd)
3996                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3997
3998         switch (level) {
3999         case PT32_ROOT_LEVEL:
4000                 /* no rsvd bits for 2 level 4K page table entries */
4001                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4002                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4003                 rsvd_check->rsvd_bits_mask[1][0] =
4004                         rsvd_check->rsvd_bits_mask[0][0];
4005
4006                 if (!pse) {
4007                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4008                         break;
4009                 }
4010
4011                 if (is_cpuid_PSE36())
4012                         /* 36bits PSE 4MB page */
4013                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4014                 else
4015                         /* 32 bits PSE 4MB page */
4016                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4017                 break;
4018         case PT32E_ROOT_LEVEL:
4019                 rsvd_check->rsvd_bits_mask[0][2] =
4020                         rsvd_bits(maxphyaddr, 63) |
4021                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4022                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4023                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4024                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4025                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4026                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4027                         rsvd_bits(maxphyaddr, 62) |
4028                         rsvd_bits(13, 20);              /* large page */
4029                 rsvd_check->rsvd_bits_mask[1][0] =
4030                         rsvd_check->rsvd_bits_mask[0][0];
4031                 break;
4032         case PT64_ROOT_5LEVEL:
4033                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4034                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4035                         rsvd_bits(maxphyaddr, 51);
4036                 rsvd_check->rsvd_bits_mask[1][4] =
4037                         rsvd_check->rsvd_bits_mask[0][4];
4038                 fallthrough;
4039         case PT64_ROOT_4LEVEL:
4040                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4041                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4042                         rsvd_bits(maxphyaddr, 51);
4043                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4044                         gbpages_bit_rsvd |
4045                         rsvd_bits(maxphyaddr, 51);
4046                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4047                         rsvd_bits(maxphyaddr, 51);
4048                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4049                         rsvd_bits(maxphyaddr, 51);
4050                 rsvd_check->rsvd_bits_mask[1][3] =
4051                         rsvd_check->rsvd_bits_mask[0][3];
4052                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4053                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4054                         rsvd_bits(13, 29);
4055                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4056                         rsvd_bits(maxphyaddr, 51) |
4057                         rsvd_bits(13, 20);              /* large page */
4058                 rsvd_check->rsvd_bits_mask[1][0] =
4059                         rsvd_check->rsvd_bits_mask[0][0];
4060                 break;
4061         }
4062 }
4063
4064 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4065                                   struct kvm_mmu *context)
4066 {
4067         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4068                                 cpuid_maxphyaddr(vcpu), context->root_level,
4069                                 context->nx,
4070                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4071                                 is_pse(vcpu),
4072                                 guest_cpuid_is_amd_or_hygon(vcpu));
4073 }
4074
4075 static void
4076 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4077                             int maxphyaddr, bool execonly)
4078 {
4079         u64 bad_mt_xwr;
4080
4081         rsvd_check->rsvd_bits_mask[0][4] =
4082                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4083         rsvd_check->rsvd_bits_mask[0][3] =
4084                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4085         rsvd_check->rsvd_bits_mask[0][2] =
4086                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4087         rsvd_check->rsvd_bits_mask[0][1] =
4088                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4089         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4090
4091         /* large page */
4092         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4093         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4094         rsvd_check->rsvd_bits_mask[1][2] =
4095                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4096         rsvd_check->rsvd_bits_mask[1][1] =
4097                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4098         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4099
4100         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4101         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4102         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4103         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4104         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4105         if (!execonly) {
4106                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4107                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4108         }
4109         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4110 }
4111
4112 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4113                 struct kvm_mmu *context, bool execonly)
4114 {
4115         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4116                                     cpuid_maxphyaddr(vcpu), execonly);
4117 }
4118
4119 /*
4120  * the page table on host is the shadow page table for the page
4121  * table in guest or amd nested guest, its mmu features completely
4122  * follow the features in guest.
4123  */
4124 void
4125 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4126 {
4127         bool uses_nx = context->nx ||
4128                 context->mmu_role.base.smep_andnot_wp;
4129         struct rsvd_bits_validate *shadow_zero_check;
4130         int i;
4131
4132         /*
4133          * Passing "true" to the last argument is okay; it adds a check
4134          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4135          */
4136         shadow_zero_check = &context->shadow_zero_check;
4137         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4138                                 shadow_phys_bits,
4139                                 context->shadow_root_level, uses_nx,
4140                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4141                                 is_pse(vcpu), true);
4142
4143         if (!shadow_me_mask)
4144                 return;
4145
4146         for (i = context->shadow_root_level; --i >= 0;) {
4147                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4148                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4149         }
4150
4151 }
4152 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4153
4154 static inline bool boot_cpu_is_amd(void)
4155 {
4156         WARN_ON_ONCE(!tdp_enabled);
4157         return shadow_x_mask == 0;
4158 }
4159
4160 /*
4161  * the direct page table on host, use as much mmu features as
4162  * possible, however, kvm currently does not do execution-protection.
4163  */
4164 static void
4165 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4166                                 struct kvm_mmu *context)
4167 {
4168         struct rsvd_bits_validate *shadow_zero_check;
4169         int i;
4170
4171         shadow_zero_check = &context->shadow_zero_check;
4172
4173         if (boot_cpu_is_amd())
4174                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4175                                         shadow_phys_bits,
4176                                         context->shadow_root_level, false,
4177                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4178                                         true, true);
4179         else
4180                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4181                                             shadow_phys_bits,
4182                                             false);
4183
4184         if (!shadow_me_mask)
4185                 return;
4186
4187         for (i = context->shadow_root_level; --i >= 0;) {
4188                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4189                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4190         }
4191 }
4192
4193 /*
4194  * as the comments in reset_shadow_zero_bits_mask() except it
4195  * is the shadow page table for intel nested guest.
4196  */
4197 static void
4198 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4199                                 struct kvm_mmu *context, bool execonly)
4200 {
4201         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4202                                     shadow_phys_bits, execonly);
4203 }
4204
4205 #define BYTE_MASK(access) \
4206         ((1 & (access) ? 2 : 0) | \
4207          (2 & (access) ? 4 : 0) | \
4208          (3 & (access) ? 8 : 0) | \
4209          (4 & (access) ? 16 : 0) | \
4210          (5 & (access) ? 32 : 0) | \
4211          (6 & (access) ? 64 : 0) | \
4212          (7 & (access) ? 128 : 0))
4213
4214
4215 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4216                                       struct kvm_mmu *mmu, bool ept)
4217 {
4218         unsigned byte;
4219
4220         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4221         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4222         const u8 u = BYTE_MASK(ACC_USER_MASK);
4223
4224         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4225         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4226         bool cr0_wp = is_write_protection(vcpu);
4227
4228         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4229                 unsigned pfec = byte << 1;
4230
4231                 /*
4232                  * Each "*f" variable has a 1 bit for each UWX value
4233                  * that causes a fault with the given PFEC.
4234                  */
4235
4236                 /* Faults from writes to non-writable pages */
4237                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4238                 /* Faults from user mode accesses to supervisor pages */
4239                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4240                 /* Faults from fetches of non-executable pages*/
4241                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4242                 /* Faults from kernel mode fetches of user pages */
4243                 u8 smepf = 0;
4244                 /* Faults from kernel mode accesses of user pages */
4245                 u8 smapf = 0;
4246
4247                 if (!ept) {
4248                         /* Faults from kernel mode accesses to user pages */
4249                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4250
4251                         /* Not really needed: !nx will cause pte.nx to fault */
4252                         if (!mmu->nx)
4253                                 ff = 0;
4254
4255                         /* Allow supervisor writes if !cr0.wp */
4256                         if (!cr0_wp)
4257                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4258
4259                         /* Disallow supervisor fetches of user code if cr4.smep */
4260                         if (cr4_smep)
4261                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4262
4263                         /*
4264                          * SMAP:kernel-mode data accesses from user-mode
4265                          * mappings should fault. A fault is considered
4266                          * as a SMAP violation if all of the following
4267                          * conditions are true:
4268                          *   - X86_CR4_SMAP is set in CR4
4269                          *   - A user page is accessed
4270                          *   - The access is not a fetch
4271                          *   - Page fault in kernel mode
4272                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4273                          *
4274                          * Here, we cover the first three conditions.
4275                          * The fourth is computed dynamically in permission_fault();
4276                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4277                          * *not* subject to SMAP restrictions.
4278                          */
4279                         if (cr4_smap)
4280                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4281                 }
4282
4283                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4284         }
4285 }
4286
4287 /*
4288 * PKU is an additional mechanism by which the paging controls access to
4289 * user-mode addresses based on the value in the PKRU register.  Protection
4290 * key violations are reported through a bit in the page fault error code.
4291 * Unlike other bits of the error code, the PK bit is not known at the
4292 * call site of e.g. gva_to_gpa; it must be computed directly in
4293 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4294 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4295 *
4296 * In particular the following conditions come from the error code, the
4297 * page tables and the machine state:
4298 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4299 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4300 * - PK is always zero if U=0 in the page tables
4301 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4302 *
4303 * The PKRU bitmask caches the result of these four conditions.  The error
4304 * code (minus the P bit) and the page table's U bit form an index into the
4305 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4306 * with the two bits of the PKRU register corresponding to the protection key.
4307 * For the first three conditions above the bits will be 00, thus masking
4308 * away both AD and WD.  For all reads or if the last condition holds, WD
4309 * only will be masked away.
4310 */
4311 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4312                                 bool ept)
4313 {
4314         unsigned bit;
4315         bool wp;
4316
4317         if (ept) {
4318                 mmu->pkru_mask = 0;
4319                 return;
4320         }
4321
4322         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4323         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4324                 mmu->pkru_mask = 0;
4325                 return;
4326         }
4327
4328         wp = is_write_protection(vcpu);
4329
4330         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4331                 unsigned pfec, pkey_bits;
4332                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4333
4334                 pfec = bit << 1;
4335                 ff = pfec & PFERR_FETCH_MASK;
4336                 uf = pfec & PFERR_USER_MASK;
4337                 wf = pfec & PFERR_WRITE_MASK;
4338
4339                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4340                 pte_user = pfec & PFERR_RSVD_MASK;
4341
4342                 /*
4343                  * Only need to check the access which is not an
4344                  * instruction fetch and is to a user page.
4345                  */
4346                 check_pkey = (!ff && pte_user);
4347                 /*
4348                  * write access is controlled by PKRU if it is a
4349                  * user access or CR0.WP = 1.
4350                  */
4351                 check_write = check_pkey && wf && (uf || wp);
4352
4353                 /* PKRU.AD stops both read and write access. */
4354                 pkey_bits = !!check_pkey;
4355                 /* PKRU.WD stops write access. */
4356                 pkey_bits |= (!!check_write) << 1;
4357
4358                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4359         }
4360 }
4361
4362 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4363 {
4364         unsigned root_level = mmu->root_level;
4365
4366         mmu->last_nonleaf_level = root_level;
4367         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4368                 mmu->last_nonleaf_level++;
4369 }
4370
4371 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4372                                          struct kvm_mmu *context,
4373                                          int level)
4374 {
4375         context->nx = is_nx(vcpu);
4376         context->root_level = level;
4377
4378         reset_rsvds_bits_mask(vcpu, context);
4379         update_permission_bitmask(vcpu, context, false);
4380         update_pkru_bitmask(vcpu, context, false);
4381         update_last_nonleaf_level(vcpu, context);
4382
4383         MMU_WARN_ON(!is_pae(vcpu));
4384         context->page_fault = paging64_page_fault;
4385         context->gva_to_gpa = paging64_gva_to_gpa;
4386         context->sync_page = paging64_sync_page;
4387         context->invlpg = paging64_invlpg;
4388         context->update_pte = paging64_update_pte;
4389         context->shadow_root_level = level;
4390         context->direct_map = false;
4391 }
4392
4393 static void paging64_init_context(struct kvm_vcpu *vcpu,
4394                                   struct kvm_mmu *context)
4395 {
4396         int root_level = is_la57_mode(vcpu) ?
4397                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4398
4399         paging64_init_context_common(vcpu, context, root_level);
4400 }
4401
4402 static void paging32_init_context(struct kvm_vcpu *vcpu,
4403                                   struct kvm_mmu *context)
4404 {
4405         context->nx = false;
4406         context->root_level = PT32_ROOT_LEVEL;
4407
4408         reset_rsvds_bits_mask(vcpu, context);
4409         update_permission_bitmask(vcpu, context, false);
4410         update_pkru_bitmask(vcpu, context, false);
4411         update_last_nonleaf_level(vcpu, context);
4412
4413         context->page_fault = paging32_page_fault;
4414         context->gva_to_gpa = paging32_gva_to_gpa;
4415         context->sync_page = paging32_sync_page;
4416         context->invlpg = paging32_invlpg;
4417         context->update_pte = paging32_update_pte;
4418         context->shadow_root_level = PT32E_ROOT_LEVEL;
4419         context->direct_map = false;
4420 }
4421
4422 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4423                                    struct kvm_mmu *context)
4424 {
4425         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4426 }
4427
4428 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4429 {
4430         union kvm_mmu_extended_role ext = {0};
4431
4432         ext.cr0_pg = !!is_paging(vcpu);
4433         ext.cr4_pae = !!is_pae(vcpu);
4434         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4435         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4436         ext.cr4_pse = !!is_pse(vcpu);
4437         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4438         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4439
4440         ext.valid = 1;
4441
4442         return ext;
4443 }
4444
4445 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4446                                                    bool base_only)
4447 {
4448         union kvm_mmu_role role = {0};
4449
4450         role.base.access = ACC_ALL;
4451         role.base.nxe = !!is_nx(vcpu);
4452         role.base.cr0_wp = is_write_protection(vcpu);
4453         role.base.smm = is_smm(vcpu);
4454         role.base.guest_mode = is_guest_mode(vcpu);
4455
4456         if (base_only)
4457                 return role;
4458
4459         role.ext = kvm_calc_mmu_role_ext(vcpu);
4460
4461         return role;
4462 }
4463
4464 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4465 {
4466         /* Use 5-level TDP if and only if it's useful/necessary. */
4467         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4468                 return 4;
4469
4470         return max_tdp_level;
4471 }
4472
4473 static union kvm_mmu_role
4474 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4475 {
4476         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4477
4478         role.base.ad_disabled = (shadow_accessed_mask == 0);
4479         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4480         role.base.direct = true;
4481         role.base.gpte_is_8_bytes = true;
4482
4483         return role;
4484 }
4485
4486 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4487 {
4488         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4489         union kvm_mmu_role new_role =
4490                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4491
4492         if (new_role.as_u64 == context->mmu_role.as_u64)
4493                 return;
4494
4495         context->mmu_role.as_u64 = new_role.as_u64;
4496         context->page_fault = kvm_tdp_page_fault;
4497         context->sync_page = nonpaging_sync_page;
4498         context->invlpg = NULL;
4499         context->update_pte = nonpaging_update_pte;
4500         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4501         context->direct_map = true;
4502         context->get_guest_pgd = get_cr3;
4503         context->get_pdptr = kvm_pdptr_read;
4504         context->inject_page_fault = kvm_inject_page_fault;
4505
4506         if (!is_paging(vcpu)) {
4507                 context->nx = false;
4508                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4509                 context->root_level = 0;
4510         } else if (is_long_mode(vcpu)) {
4511                 context->nx = is_nx(vcpu);
4512                 context->root_level = is_la57_mode(vcpu) ?
4513                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4514                 reset_rsvds_bits_mask(vcpu, context);
4515                 context->gva_to_gpa = paging64_gva_to_gpa;
4516         } else if (is_pae(vcpu)) {
4517                 context->nx = is_nx(vcpu);
4518                 context->root_level = PT32E_ROOT_LEVEL;
4519                 reset_rsvds_bits_mask(vcpu, context);
4520                 context->gva_to_gpa = paging64_gva_to_gpa;
4521         } else {
4522                 context->nx = false;
4523                 context->root_level = PT32_ROOT_LEVEL;
4524                 reset_rsvds_bits_mask(vcpu, context);
4525                 context->gva_to_gpa = paging32_gva_to_gpa;
4526         }
4527
4528         update_permission_bitmask(vcpu, context, false);
4529         update_pkru_bitmask(vcpu, context, false);
4530         update_last_nonleaf_level(vcpu, context);
4531         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4532 }
4533
4534 static union kvm_mmu_role
4535 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4536 {
4537         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4538
4539         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4540                 !is_write_protection(vcpu);
4541         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4542                 !is_write_protection(vcpu);
4543         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4544
4545         return role;
4546 }
4547
4548 static union kvm_mmu_role
4549 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4550 {
4551         union kvm_mmu_role role =
4552                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4553
4554         role.base.direct = !is_paging(vcpu);
4555
4556         if (!is_long_mode(vcpu))
4557                 role.base.level = PT32E_ROOT_LEVEL;
4558         else if (is_la57_mode(vcpu))
4559                 role.base.level = PT64_ROOT_5LEVEL;
4560         else
4561                 role.base.level = PT64_ROOT_4LEVEL;
4562
4563         return role;
4564 }
4565
4566 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4567                                     u32 cr0, u32 cr4, u32 efer,
4568                                     union kvm_mmu_role new_role)
4569 {
4570         if (!(cr0 & X86_CR0_PG))
4571                 nonpaging_init_context(vcpu, context);
4572         else if (efer & EFER_LMA)
4573                 paging64_init_context(vcpu, context);
4574         else if (cr4 & X86_CR4_PAE)
4575                 paging32E_init_context(vcpu, context);
4576         else
4577                 paging32_init_context(vcpu, context);
4578
4579         context->mmu_role.as_u64 = new_role.as_u64;
4580         reset_shadow_zero_bits_mask(vcpu, context);
4581 }
4582
4583 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4584 {
4585         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4586         union kvm_mmu_role new_role =
4587                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4588
4589         if (new_role.as_u64 != context->mmu_role.as_u64)
4590                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4591 }
4592
4593 static union kvm_mmu_role
4594 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4595 {
4596         union kvm_mmu_role role =
4597                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4598
4599         role.base.direct = false;
4600         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4601
4602         return role;
4603 }
4604
4605 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4606                              gpa_t nested_cr3)
4607 {
4608         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4609         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4610
4611         context->shadow_root_level = new_role.base.level;
4612
4613         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4614
4615         if (new_role.as_u64 != context->mmu_role.as_u64)
4616                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4617 }
4618 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4619
4620 static union kvm_mmu_role
4621 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4622                                    bool execonly, u8 level)
4623 {
4624         union kvm_mmu_role role = {0};
4625
4626         /* SMM flag is inherited from root_mmu */
4627         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4628
4629         role.base.level = level;
4630         role.base.gpte_is_8_bytes = true;
4631         role.base.direct = false;
4632         role.base.ad_disabled = !accessed_dirty;
4633         role.base.guest_mode = true;
4634         role.base.access = ACC_ALL;
4635
4636         /*
4637          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4638          * SMAP variation to denote shadow EPT entries.
4639          */
4640         role.base.cr0_wp = true;
4641         role.base.smap_andnot_wp = true;
4642
4643         role.ext = kvm_calc_mmu_role_ext(vcpu);
4644         role.ext.execonly = execonly;
4645
4646         return role;
4647 }
4648
4649 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4650                              bool accessed_dirty, gpa_t new_eptp)
4651 {
4652         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4653         u8 level = vmx_eptp_page_walk_level(new_eptp);
4654         union kvm_mmu_role new_role =
4655                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4656                                                    execonly, level);
4657
4658         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4659
4660         if (new_role.as_u64 == context->mmu_role.as_u64)
4661                 return;
4662
4663         context->shadow_root_level = level;
4664
4665         context->nx = true;
4666         context->ept_ad = accessed_dirty;
4667         context->page_fault = ept_page_fault;
4668         context->gva_to_gpa = ept_gva_to_gpa;
4669         context->sync_page = ept_sync_page;
4670         context->invlpg = ept_invlpg;
4671         context->update_pte = ept_update_pte;
4672         context->root_level = level;
4673         context->direct_map = false;
4674         context->mmu_role.as_u64 = new_role.as_u64;
4675
4676         update_permission_bitmask(vcpu, context, true);
4677         update_pkru_bitmask(vcpu, context, true);
4678         update_last_nonleaf_level(vcpu, context);
4679         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4680         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4681 }
4682 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4683
4684 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4685 {
4686         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4687
4688         kvm_init_shadow_mmu(vcpu,
4689                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4690                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4691                             vcpu->arch.efer);
4692
4693         context->get_guest_pgd     = get_cr3;
4694         context->get_pdptr         = kvm_pdptr_read;
4695         context->inject_page_fault = kvm_inject_page_fault;
4696 }
4697
4698 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4699 {
4700         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4701         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4702
4703         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4704                 return;
4705
4706         g_context->mmu_role.as_u64 = new_role.as_u64;
4707         g_context->get_guest_pgd     = get_cr3;
4708         g_context->get_pdptr         = kvm_pdptr_read;
4709         g_context->inject_page_fault = kvm_inject_page_fault;
4710
4711         /*
4712          * L2 page tables are never shadowed, so there is no need to sync
4713          * SPTEs.
4714          */
4715         g_context->invlpg            = NULL;
4716
4717         /*
4718          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4719          * L1's nested page tables (e.g. EPT12). The nested translation
4720          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4721          * L2's page tables as the first level of translation and L1's
4722          * nested page tables as the second level of translation. Basically
4723          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4724          */
4725         if (!is_paging(vcpu)) {
4726                 g_context->nx = false;
4727                 g_context->root_level = 0;
4728                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4729         } else if (is_long_mode(vcpu)) {
4730                 g_context->nx = is_nx(vcpu);
4731                 g_context->root_level = is_la57_mode(vcpu) ?
4732                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4733                 reset_rsvds_bits_mask(vcpu, g_context);
4734                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4735         } else if (is_pae(vcpu)) {
4736                 g_context->nx = is_nx(vcpu);
4737                 g_context->root_level = PT32E_ROOT_LEVEL;
4738                 reset_rsvds_bits_mask(vcpu, g_context);
4739                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4740         } else {
4741                 g_context->nx = false;
4742                 g_context->root_level = PT32_ROOT_LEVEL;
4743                 reset_rsvds_bits_mask(vcpu, g_context);
4744                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4745         }
4746
4747         update_permission_bitmask(vcpu, g_context, false);
4748         update_pkru_bitmask(vcpu, g_context, false);
4749         update_last_nonleaf_level(vcpu, g_context);
4750 }
4751
4752 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4753 {
4754         if (reset_roots) {
4755                 uint i;
4756
4757                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4758
4759                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4760                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4761         }
4762
4763         if (mmu_is_nested(vcpu))
4764                 init_kvm_nested_mmu(vcpu);
4765         else if (tdp_enabled)
4766                 init_kvm_tdp_mmu(vcpu);
4767         else
4768                 init_kvm_softmmu(vcpu);
4769 }
4770 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4771
4772 static union kvm_mmu_page_role
4773 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4774 {
4775         union kvm_mmu_role role;
4776
4777         if (tdp_enabled)
4778                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4779         else
4780                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4781
4782         return role.base;
4783 }
4784
4785 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4786 {
4787         kvm_mmu_unload(vcpu);
4788         kvm_init_mmu(vcpu, true);
4789 }
4790 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4791
4792 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4793 {
4794         int r;
4795
4796         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4797         if (r)
4798                 goto out;
4799         r = mmu_alloc_roots(vcpu);
4800         kvm_mmu_sync_roots(vcpu);
4801         if (r)
4802                 goto out;
4803         kvm_mmu_load_pgd(vcpu);
4804         kvm_x86_ops.tlb_flush_current(vcpu);
4805 out:
4806         return r;
4807 }
4808 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4809
4810 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4811 {
4812         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4813         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4814         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4815         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4816 }
4817 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4818
4819 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4820                                   struct kvm_mmu_page *sp, u64 *spte,
4821                                   const void *new)
4822 {
4823         if (sp->role.level != PG_LEVEL_4K) {
4824                 ++vcpu->kvm->stat.mmu_pde_zapped;
4825                 return;
4826         }
4827
4828         ++vcpu->kvm->stat.mmu_pte_updated;
4829         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4830 }
4831
4832 static bool need_remote_flush(u64 old, u64 new)
4833 {
4834         if (!is_shadow_present_pte(old))
4835                 return false;
4836         if (!is_shadow_present_pte(new))
4837                 return true;
4838         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4839                 return true;
4840         old ^= shadow_nx_mask;
4841         new ^= shadow_nx_mask;
4842         return (old & ~new & PT64_PERM_MASK) != 0;
4843 }
4844
4845 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4846                                     int *bytes)
4847 {
4848         u64 gentry = 0;
4849         int r;
4850
4851         /*
4852          * Assume that the pte write on a page table of the same type
4853          * as the current vcpu paging mode since we update the sptes only
4854          * when they have the same mode.
4855          */
4856         if (is_pae(vcpu) && *bytes == 4) {
4857                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4858                 *gpa &= ~(gpa_t)7;
4859                 *bytes = 8;
4860         }
4861
4862         if (*bytes == 4 || *bytes == 8) {
4863                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4864                 if (r)
4865                         gentry = 0;
4866         }
4867
4868         return gentry;
4869 }
4870
4871 /*
4872  * If we're seeing too many writes to a page, it may no longer be a page table,
4873  * or we may be forking, in which case it is better to unmap the page.
4874  */
4875 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4876 {
4877         /*
4878          * Skip write-flooding detected for the sp whose level is 1, because
4879          * it can become unsync, then the guest page is not write-protected.
4880          */
4881         if (sp->role.level == PG_LEVEL_4K)
4882                 return false;
4883
4884         atomic_inc(&sp->write_flooding_count);
4885         return atomic_read(&sp->write_flooding_count) >= 3;
4886 }
4887
4888 /*
4889  * Misaligned accesses are too much trouble to fix up; also, they usually
4890  * indicate a page is not used as a page table.
4891  */
4892 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4893                                     int bytes)
4894 {
4895         unsigned offset, pte_size, misaligned;
4896
4897         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4898                  gpa, bytes, sp->role.word);
4899
4900         offset = offset_in_page(gpa);
4901         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4902
4903         /*
4904          * Sometimes, the OS only writes the last one bytes to update status
4905          * bits, for example, in linux, andb instruction is used in clear_bit().
4906          */
4907         if (!(offset & (pte_size - 1)) && bytes == 1)
4908                 return false;
4909
4910         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4911         misaligned |= bytes < 4;
4912
4913         return misaligned;
4914 }
4915
4916 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4917 {
4918         unsigned page_offset, quadrant;
4919         u64 *spte;
4920         int level;
4921
4922         page_offset = offset_in_page(gpa);
4923         level = sp->role.level;
4924         *nspte = 1;
4925         if (!sp->role.gpte_is_8_bytes) {
4926                 page_offset <<= 1;      /* 32->64 */
4927                 /*
4928                  * A 32-bit pde maps 4MB while the shadow pdes map
4929                  * only 2MB.  So we need to double the offset again
4930                  * and zap two pdes instead of one.
4931                  */
4932                 if (level == PT32_ROOT_LEVEL) {
4933                         page_offset &= ~7; /* kill rounding error */
4934                         page_offset <<= 1;
4935                         *nspte = 2;
4936                 }
4937                 quadrant = page_offset >> PAGE_SHIFT;
4938                 page_offset &= ~PAGE_MASK;
4939                 if (quadrant != sp->role.quadrant)
4940                         return NULL;
4941         }
4942
4943         spte = &sp->spt[page_offset / sizeof(*spte)];
4944         return spte;
4945 }
4946
4947 /*
4948  * Ignore various flags when determining if a SPTE can be immediately
4949  * overwritten for the current MMU.
4950  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4951  *    match the current MMU role, as MMU's level tracks the root level.
4952  *  - access: updated based on the new guest PTE
4953  *  - quadrant: handled by get_written_sptes()
4954  *  - invalid: always false (loop only walks valid shadow pages)
4955  */
4956 static const union kvm_mmu_page_role role_ign = {
4957         .level = 0xf,
4958         .access = 0x7,
4959         .quadrant = 0x3,
4960         .invalid = 0x1,
4961 };
4962
4963 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4964                               const u8 *new, int bytes,
4965                               struct kvm_page_track_notifier_node *node)
4966 {
4967         gfn_t gfn = gpa >> PAGE_SHIFT;
4968         struct kvm_mmu_page *sp;
4969         LIST_HEAD(invalid_list);
4970         u64 entry, gentry, *spte;
4971         int npte;
4972         bool remote_flush, local_flush;
4973
4974         /*
4975          * If we don't have indirect shadow pages, it means no page is
4976          * write-protected, so we can exit simply.
4977          */
4978         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4979                 return;
4980
4981         remote_flush = local_flush = false;
4982
4983         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4984
4985         /*
4986          * No need to care whether allocation memory is successful
4987          * or not since pte prefetch is skiped if it does not have
4988          * enough objects in the cache.
4989          */
4990         mmu_topup_memory_caches(vcpu, true);
4991
4992         spin_lock(&vcpu->kvm->mmu_lock);
4993
4994         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4995
4996         ++vcpu->kvm->stat.mmu_pte_write;
4997         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4998
4999         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5000                 if (detect_write_misaligned(sp, gpa, bytes) ||
5001                       detect_write_flooding(sp)) {
5002                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5003                         ++vcpu->kvm->stat.mmu_flooded;
5004                         continue;
5005                 }
5006
5007                 spte = get_written_sptes(sp, gpa, &npte);
5008                 if (!spte)
5009                         continue;
5010
5011                 local_flush = true;
5012                 while (npte--) {
5013                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5014
5015                         entry = *spte;
5016                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5017                         if (gentry &&
5018                             !((sp->role.word ^ base_role) & ~role_ign.word) &&
5019                             rmap_can_add(vcpu))
5020                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5021                         if (need_remote_flush(entry, *spte))
5022                                 remote_flush = true;
5023                         ++spte;
5024                 }
5025         }
5026         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5027         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5028         spin_unlock(&vcpu->kvm->mmu_lock);
5029 }
5030
5031 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5032 {
5033         gpa_t gpa;
5034         int r;
5035
5036         if (vcpu->arch.mmu->direct_map)
5037                 return 0;
5038
5039         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5040
5041         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5042
5043         return r;
5044 }
5045 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5046
5047 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5048                        void *insn, int insn_len)
5049 {
5050         int r, emulation_type = EMULTYPE_PF;
5051         bool direct = vcpu->arch.mmu->direct_map;
5052
5053         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5054                 return RET_PF_RETRY;
5055
5056         r = RET_PF_INVALID;
5057         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5058                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5059                 if (r == RET_PF_EMULATE)
5060                         goto emulate;
5061         }
5062
5063         if (r == RET_PF_INVALID) {
5064                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5065                                           lower_32_bits(error_code), false);
5066                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5067                         return -EIO;
5068         }
5069
5070         if (r < 0)
5071                 return r;
5072         if (r != RET_PF_EMULATE)
5073                 return 1;
5074
5075         /*
5076          * Before emulating the instruction, check if the error code
5077          * was due to a RO violation while translating the guest page.
5078          * This can occur when using nested virtualization with nested
5079          * paging in both guests. If true, we simply unprotect the page
5080          * and resume the guest.
5081          */
5082         if (vcpu->arch.mmu->direct_map &&
5083             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5084                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5085                 return 1;
5086         }
5087
5088         /*
5089          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5090          * optimistically try to just unprotect the page and let the processor
5091          * re-execute the instruction that caused the page fault.  Do not allow
5092          * retrying MMIO emulation, as it's not only pointless but could also
5093          * cause us to enter an infinite loop because the processor will keep
5094          * faulting on the non-existent MMIO address.  Retrying an instruction
5095          * from a nested guest is also pointless and dangerous as we are only
5096          * explicitly shadowing L1's page tables, i.e. unprotecting something
5097          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5098          */
5099         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5100                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5101 emulate:
5102         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5103                                        insn_len);
5104 }
5105 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5106
5107 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5108                             gva_t gva, hpa_t root_hpa)
5109 {
5110         int i;
5111
5112         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5113         if (mmu != &vcpu->arch.guest_mmu) {
5114                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5115                 if (is_noncanonical_address(gva, vcpu))
5116                         return;
5117
5118                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5119         }
5120
5121         if (!mmu->invlpg)
5122                 return;
5123
5124         if (root_hpa == INVALID_PAGE) {
5125                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5126
5127                 /*
5128                  * INVLPG is required to invalidate any global mappings for the VA,
5129                  * irrespective of PCID. Since it would take us roughly similar amount
5130                  * of work to determine whether any of the prev_root mappings of the VA
5131                  * is marked global, or to just sync it blindly, so we might as well
5132                  * just always sync it.
5133                  *
5134                  * Mappings not reachable via the current cr3 or the prev_roots will be
5135                  * synced when switching to that cr3, so nothing needs to be done here
5136                  * for them.
5137                  */
5138                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5139                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5140                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5141         } else {
5142                 mmu->invlpg(vcpu, gva, root_hpa);
5143         }
5144 }
5145 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5146
5147 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5148 {
5149         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5150         ++vcpu->stat.invlpg;
5151 }
5152 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5153
5154
5155 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5156 {
5157         struct kvm_mmu *mmu = vcpu->arch.mmu;
5158         bool tlb_flush = false;
5159         uint i;
5160
5161         if (pcid == kvm_get_active_pcid(vcpu)) {
5162                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5163                 tlb_flush = true;
5164         }
5165
5166         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5167                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5168                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5169                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5170                         tlb_flush = true;
5171                 }
5172         }
5173
5174         if (tlb_flush)
5175                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5176
5177         ++vcpu->stat.invlpg;
5178
5179         /*
5180          * Mappings not reachable via the current cr3 or the prev_roots will be
5181          * synced when switching to that cr3, so nothing needs to be done here
5182          * for them.
5183          */
5184 }
5185 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5186
5187 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5188                        int tdp_huge_page_level)
5189 {
5190         tdp_enabled = enable_tdp;
5191         max_tdp_level = tdp_max_root_level;
5192
5193         /*
5194          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5195          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5196          * the kernel is not.  But, KVM never creates a page size greater than
5197          * what is used by the kernel for any given HVA, i.e. the kernel's
5198          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5199          */
5200         if (tdp_enabled)
5201                 max_huge_page_level = tdp_huge_page_level;
5202         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5203                 max_huge_page_level = PG_LEVEL_1G;
5204         else
5205                 max_huge_page_level = PG_LEVEL_2M;
5206 }
5207 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5208
5209 /* The return value indicates if tlb flush on all vcpus is needed. */
5210 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5211
5212 /* The caller should hold mmu-lock before calling this function. */
5213 static __always_inline bool
5214 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5215                         slot_level_handler fn, int start_level, int end_level,
5216                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5217 {
5218         struct slot_rmap_walk_iterator iterator;
5219         bool flush = false;
5220
5221         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5222                         end_gfn, &iterator) {
5223                 if (iterator.rmap)
5224                         flush |= fn(kvm, iterator.rmap);
5225
5226                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5227                         if (flush && lock_flush_tlb) {
5228                                 kvm_flush_remote_tlbs_with_address(kvm,
5229                                                 start_gfn,
5230                                                 iterator.gfn - start_gfn + 1);
5231                                 flush = false;
5232                         }
5233                         cond_resched_lock(&kvm->mmu_lock);
5234                 }
5235         }
5236
5237         if (flush && lock_flush_tlb) {
5238                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5239                                                    end_gfn - start_gfn + 1);
5240                 flush = false;
5241         }
5242
5243         return flush;
5244 }
5245
5246 static __always_inline bool
5247 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5248                   slot_level_handler fn, int start_level, int end_level,
5249                   bool lock_flush_tlb)
5250 {
5251         return slot_handle_level_range(kvm, memslot, fn, start_level,
5252                         end_level, memslot->base_gfn,
5253                         memslot->base_gfn + memslot->npages - 1,
5254                         lock_flush_tlb);
5255 }
5256
5257 static __always_inline bool
5258 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5259                       slot_level_handler fn, bool lock_flush_tlb)
5260 {
5261         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5262                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5263 }
5264
5265 static __always_inline bool
5266 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5267                         slot_level_handler fn, bool lock_flush_tlb)
5268 {
5269         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5270                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5271 }
5272
5273 static __always_inline bool
5274 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5275                  slot_level_handler fn, bool lock_flush_tlb)
5276 {
5277         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5278                                  PG_LEVEL_4K, lock_flush_tlb);
5279 }
5280
5281 static void free_mmu_pages(struct kvm_mmu *mmu)
5282 {
5283         free_page((unsigned long)mmu->pae_root);
5284         free_page((unsigned long)mmu->lm_root);
5285 }
5286
5287 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5288 {
5289         struct page *page;
5290         int i;
5291
5292         mmu->root_hpa = INVALID_PAGE;
5293         mmu->root_pgd = 0;
5294         mmu->translate_gpa = translate_gpa;
5295         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5296                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5297
5298         /*
5299          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5300          * while the PDP table is a per-vCPU construct that's allocated at MMU
5301          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5302          * x86_64.  Therefore we need to allocate the PDP table in the first
5303          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5304          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5305          * skip allocating the PDP table.
5306          */
5307         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5308                 return 0;
5309
5310         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5311         if (!page)
5312                 return -ENOMEM;
5313
5314         mmu->pae_root = page_address(page);
5315         for (i = 0; i < 4; ++i)
5316                 mmu->pae_root[i] = INVALID_PAGE;
5317
5318         return 0;
5319 }
5320
5321 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5322 {
5323         int ret;
5324
5325         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5326         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5327
5328         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5329         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5330
5331         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5332
5333         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5334         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5335
5336         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5337
5338         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5339         if (ret)
5340                 return ret;
5341
5342         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5343         if (ret)
5344                 goto fail_allocate_root;
5345
5346         return ret;
5347  fail_allocate_root:
5348         free_mmu_pages(&vcpu->arch.guest_mmu);
5349         return ret;
5350 }
5351
5352 #define BATCH_ZAP_PAGES 10
5353 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5354 {
5355         struct kvm_mmu_page *sp, *node;
5356         int nr_zapped, batch = 0;
5357
5358 restart:
5359         list_for_each_entry_safe_reverse(sp, node,
5360               &kvm->arch.active_mmu_pages, link) {
5361                 /*
5362                  * No obsolete valid page exists before a newly created page
5363                  * since active_mmu_pages is a FIFO list.
5364                  */
5365                 if (!is_obsolete_sp(kvm, sp))
5366                         break;
5367
5368                 /*
5369                  * Invalid pages should never land back on the list of active
5370                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5371                  * infinite loop if the page gets put back on the list (again).
5372                  */
5373                 if (WARN_ON(sp->role.invalid))
5374                         continue;
5375
5376                 /*
5377                  * No need to flush the TLB since we're only zapping shadow
5378                  * pages with an obsolete generation number and all vCPUS have
5379                  * loaded a new root, i.e. the shadow pages being zapped cannot
5380                  * be in active use by the guest.
5381                  */
5382                 if (batch >= BATCH_ZAP_PAGES &&
5383                     cond_resched_lock(&kvm->mmu_lock)) {
5384                         batch = 0;
5385                         goto restart;
5386                 }
5387
5388                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5389                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5390                         batch += nr_zapped;
5391                         goto restart;
5392                 }
5393         }
5394
5395         /*
5396          * Trigger a remote TLB flush before freeing the page tables to ensure
5397          * KVM is not in the middle of a lockless shadow page table walk, which
5398          * may reference the pages.
5399          */
5400         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5401 }
5402
5403 /*
5404  * Fast invalidate all shadow pages and use lock-break technique
5405  * to zap obsolete pages.
5406  *
5407  * It's required when memslot is being deleted or VM is being
5408  * destroyed, in these cases, we should ensure that KVM MMU does
5409  * not use any resource of the being-deleted slot or all slots
5410  * after calling the function.
5411  */
5412 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5413 {
5414         lockdep_assert_held(&kvm->slots_lock);
5415
5416         spin_lock(&kvm->mmu_lock);
5417         trace_kvm_mmu_zap_all_fast(kvm);
5418
5419         /*
5420          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5421          * held for the entire duration of zapping obsolete pages, it's
5422          * impossible for there to be multiple invalid generations associated
5423          * with *valid* shadow pages at any given time, i.e. there is exactly
5424          * one valid generation and (at most) one invalid generation.
5425          */
5426         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5427
5428         /*
5429          * Notify all vcpus to reload its shadow page table and flush TLB.
5430          * Then all vcpus will switch to new shadow page table with the new
5431          * mmu_valid_gen.
5432          *
5433          * Note: we need to do this under the protection of mmu_lock,
5434          * otherwise, vcpu would purge shadow page but miss tlb flush.
5435          */
5436         kvm_reload_remote_mmus(kvm);
5437
5438         kvm_zap_obsolete_pages(kvm);
5439
5440         if (kvm->arch.tdp_mmu_enabled)
5441                 kvm_tdp_mmu_zap_all(kvm);
5442
5443         spin_unlock(&kvm->mmu_lock);
5444 }
5445
5446 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5447 {
5448         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5449 }
5450
5451 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5452                         struct kvm_memory_slot *slot,
5453                         struct kvm_page_track_notifier_node *node)
5454 {
5455         kvm_mmu_zap_all_fast(kvm);
5456 }
5457
5458 void kvm_mmu_init_vm(struct kvm *kvm)
5459 {
5460         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5461
5462         kvm_mmu_init_tdp_mmu(kvm);
5463
5464         node->track_write = kvm_mmu_pte_write;
5465         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5466         kvm_page_track_register_notifier(kvm, node);
5467 }
5468
5469 void kvm_mmu_uninit_vm(struct kvm *kvm)
5470 {
5471         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5472
5473         kvm_page_track_unregister_notifier(kvm, node);
5474
5475         kvm_mmu_uninit_tdp_mmu(kvm);
5476 }
5477
5478 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5479 {
5480         struct kvm_memslots *slots;
5481         struct kvm_memory_slot *memslot;
5482         int i;
5483         bool flush;
5484
5485         spin_lock(&kvm->mmu_lock);
5486         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5487                 slots = __kvm_memslots(kvm, i);
5488                 kvm_for_each_memslot(memslot, slots) {
5489                         gfn_t start, end;
5490
5491                         start = max(gfn_start, memslot->base_gfn);
5492                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5493                         if (start >= end)
5494                                 continue;
5495
5496                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5497                                                 PG_LEVEL_4K,
5498                                                 KVM_MAX_HUGEPAGE_LEVEL,
5499                                                 start, end - 1, true);
5500                 }
5501         }
5502
5503         if (kvm->arch.tdp_mmu_enabled) {
5504                 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5505                 if (flush)
5506                         kvm_flush_remote_tlbs(kvm);
5507         }
5508
5509         spin_unlock(&kvm->mmu_lock);
5510 }
5511
5512 static bool slot_rmap_write_protect(struct kvm *kvm,
5513                                     struct kvm_rmap_head *rmap_head)
5514 {
5515         return __rmap_write_protect(kvm, rmap_head, false);
5516 }
5517
5518 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5519                                       struct kvm_memory_slot *memslot,
5520                                       int start_level)
5521 {
5522         bool flush;
5523
5524         spin_lock(&kvm->mmu_lock);
5525         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5526                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5527         if (kvm->arch.tdp_mmu_enabled)
5528                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5529         spin_unlock(&kvm->mmu_lock);
5530
5531         /*
5532          * We can flush all the TLBs out of the mmu lock without TLB
5533          * corruption since we just change the spte from writable to
5534          * readonly so that we only need to care the case of changing
5535          * spte from present to present (changing the spte from present
5536          * to nonpresent will flush all the TLBs immediately), in other
5537          * words, the only case we care is mmu_spte_update() where we
5538          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5539          * instead of PT_WRITABLE_MASK, that means it does not depend
5540          * on PT_WRITABLE_MASK anymore.
5541          */
5542         if (flush)
5543                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5544 }
5545
5546 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5547                                          struct kvm_rmap_head *rmap_head)
5548 {
5549         u64 *sptep;
5550         struct rmap_iterator iter;
5551         int need_tlb_flush = 0;
5552         kvm_pfn_t pfn;
5553         struct kvm_mmu_page *sp;
5554
5555 restart:
5556         for_each_rmap_spte(rmap_head, &iter, sptep) {
5557                 sp = sptep_to_sp(sptep);
5558                 pfn = spte_to_pfn(*sptep);
5559
5560                 /*
5561                  * We cannot do huge page mapping for indirect shadow pages,
5562                  * which are found on the last rmap (level = 1) when not using
5563                  * tdp; such shadow pages are synced with the page table in
5564                  * the guest, and the guest page table is using 4K page size
5565                  * mapping if the indirect sp has level = 1.
5566                  */
5567                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5568                     (kvm_is_zone_device_pfn(pfn) ||
5569                      PageCompound(pfn_to_page(pfn)))) {
5570                         pte_list_remove(rmap_head, sptep);
5571
5572                         if (kvm_available_flush_tlb_with_range())
5573                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5574                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5575                         else
5576                                 need_tlb_flush = 1;
5577
5578                         goto restart;
5579                 }
5580         }
5581
5582         return need_tlb_flush;
5583 }
5584
5585 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5586                                    const struct kvm_memory_slot *memslot)
5587 {
5588         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5589         spin_lock(&kvm->mmu_lock);
5590         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5591                          kvm_mmu_zap_collapsible_spte, true);
5592
5593         if (kvm->arch.tdp_mmu_enabled)
5594                 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5595         spin_unlock(&kvm->mmu_lock);
5596 }
5597
5598 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5599                                         struct kvm_memory_slot *memslot)
5600 {
5601         /*
5602          * All current use cases for flushing the TLBs for a specific memslot
5603          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5604          * The interaction between the various operations on memslot must be
5605          * serialized by slots_locks to ensure the TLB flush from one operation
5606          * is observed by any other operation on the same memslot.
5607          */
5608         lockdep_assert_held(&kvm->slots_lock);
5609         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5610                                            memslot->npages);
5611 }
5612
5613 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5614                                    struct kvm_memory_slot *memslot)
5615 {
5616         bool flush;
5617
5618         spin_lock(&kvm->mmu_lock);
5619         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5620         if (kvm->arch.tdp_mmu_enabled)
5621                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5622         spin_unlock(&kvm->mmu_lock);
5623
5624         /*
5625          * It's also safe to flush TLBs out of mmu lock here as currently this
5626          * function is only used for dirty logging, in which case flushing TLB
5627          * out of mmu lock also guarantees no dirty pages will be lost in
5628          * dirty_bitmap.
5629          */
5630         if (flush)
5631                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5632 }
5633 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5634
5635 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5636                                         struct kvm_memory_slot *memslot)
5637 {
5638         bool flush;
5639
5640         spin_lock(&kvm->mmu_lock);
5641         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5642                                         false);
5643         if (kvm->arch.tdp_mmu_enabled)
5644                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5645         spin_unlock(&kvm->mmu_lock);
5646
5647         if (flush)
5648                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5649 }
5650 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5651
5652 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5653                             struct kvm_memory_slot *memslot)
5654 {
5655         bool flush;
5656
5657         spin_lock(&kvm->mmu_lock);
5658         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5659         if (kvm->arch.tdp_mmu_enabled)
5660                 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5661         spin_unlock(&kvm->mmu_lock);
5662
5663         if (flush)
5664                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5665 }
5666 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5667
5668 void kvm_mmu_zap_all(struct kvm *kvm)
5669 {
5670         struct kvm_mmu_page *sp, *node;
5671         LIST_HEAD(invalid_list);
5672         int ign;
5673
5674         spin_lock(&kvm->mmu_lock);
5675 restart:
5676         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5677                 if (WARN_ON(sp->role.invalid))
5678                         continue;
5679                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5680                         goto restart;
5681                 if (cond_resched_lock(&kvm->mmu_lock))
5682                         goto restart;
5683         }
5684
5685         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5686
5687         if (kvm->arch.tdp_mmu_enabled)
5688                 kvm_tdp_mmu_zap_all(kvm);
5689
5690         spin_unlock(&kvm->mmu_lock);
5691 }
5692
5693 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5694 {
5695         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5696
5697         gen &= MMIO_SPTE_GEN_MASK;
5698
5699         /*
5700          * Generation numbers are incremented in multiples of the number of
5701          * address spaces in order to provide unique generations across all
5702          * address spaces.  Strip what is effectively the address space
5703          * modifier prior to checking for a wrap of the MMIO generation so
5704          * that a wrap in any address space is detected.
5705          */
5706         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5707
5708         /*
5709          * The very rare case: if the MMIO generation number has wrapped,
5710          * zap all shadow pages.
5711          */
5712         if (unlikely(gen == 0)) {
5713                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5714                 kvm_mmu_zap_all_fast(kvm);
5715         }
5716 }
5717
5718 static unsigned long
5719 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5720 {
5721         struct kvm *kvm;
5722         int nr_to_scan = sc->nr_to_scan;
5723         unsigned long freed = 0;
5724
5725         mutex_lock(&kvm_lock);
5726
5727         list_for_each_entry(kvm, &vm_list, vm_list) {
5728                 int idx;
5729                 LIST_HEAD(invalid_list);
5730
5731                 /*
5732                  * Never scan more than sc->nr_to_scan VM instances.
5733                  * Will not hit this condition practically since we do not try
5734                  * to shrink more than one VM and it is very unlikely to see
5735                  * !n_used_mmu_pages so many times.
5736                  */
5737                 if (!nr_to_scan--)
5738                         break;
5739                 /*
5740                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5741                  * here. We may skip a VM instance errorneosly, but we do not
5742                  * want to shrink a VM that only started to populate its MMU
5743                  * anyway.
5744                  */
5745                 if (!kvm->arch.n_used_mmu_pages &&
5746                     !kvm_has_zapped_obsolete_pages(kvm))
5747                         continue;
5748
5749                 idx = srcu_read_lock(&kvm->srcu);
5750                 spin_lock(&kvm->mmu_lock);
5751
5752                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5753                         kvm_mmu_commit_zap_page(kvm,
5754                               &kvm->arch.zapped_obsolete_pages);
5755                         goto unlock;
5756                 }
5757
5758                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5759
5760 unlock:
5761                 spin_unlock(&kvm->mmu_lock);
5762                 srcu_read_unlock(&kvm->srcu, idx);
5763
5764                 /*
5765                  * unfair on small ones
5766                  * per-vm shrinkers cry out
5767                  * sadness comes quickly
5768                  */
5769                 list_move_tail(&kvm->vm_list, &vm_list);
5770                 break;
5771         }
5772
5773         mutex_unlock(&kvm_lock);
5774         return freed;
5775 }
5776
5777 static unsigned long
5778 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5779 {
5780         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5781 }
5782
5783 static struct shrinker mmu_shrinker = {
5784         .count_objects = mmu_shrink_count,
5785         .scan_objects = mmu_shrink_scan,
5786         .seeks = DEFAULT_SEEKS * 10,
5787 };
5788
5789 static void mmu_destroy_caches(void)
5790 {
5791         kmem_cache_destroy(pte_list_desc_cache);
5792         kmem_cache_destroy(mmu_page_header_cache);
5793 }
5794
5795 static void kvm_set_mmio_spte_mask(void)
5796 {
5797         u64 mask;
5798
5799         /*
5800          * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5801          * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5802          * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5803          * 52-bit physical addresses then there are no reserved PA bits in the
5804          * PTEs and so the reserved PA approach must be disabled.
5805          */
5806         if (shadow_phys_bits < 52)
5807                 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5808         else
5809                 mask = 0;
5810
5811         kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5812 }
5813
5814 static bool get_nx_auto_mode(void)
5815 {
5816         /* Return true when CPU has the bug, and mitigations are ON */
5817         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5818 }
5819
5820 static void __set_nx_huge_pages(bool val)
5821 {
5822         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5823 }
5824
5825 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5826 {
5827         bool old_val = nx_huge_pages;
5828         bool new_val;
5829
5830         /* In "auto" mode deploy workaround only if CPU has the bug. */
5831         if (sysfs_streq(val, "off"))
5832                 new_val = 0;
5833         else if (sysfs_streq(val, "force"))
5834                 new_val = 1;
5835         else if (sysfs_streq(val, "auto"))
5836                 new_val = get_nx_auto_mode();
5837         else if (strtobool(val, &new_val) < 0)
5838                 return -EINVAL;
5839
5840         __set_nx_huge_pages(new_val);
5841
5842         if (new_val != old_val) {
5843                 struct kvm *kvm;
5844
5845                 mutex_lock(&kvm_lock);
5846
5847                 list_for_each_entry(kvm, &vm_list, vm_list) {
5848                         mutex_lock(&kvm->slots_lock);
5849                         kvm_mmu_zap_all_fast(kvm);
5850                         mutex_unlock(&kvm->slots_lock);
5851
5852                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5853                 }
5854                 mutex_unlock(&kvm_lock);
5855         }
5856
5857         return 0;
5858 }
5859
5860 int kvm_mmu_module_init(void)
5861 {
5862         int ret = -ENOMEM;
5863
5864         if (nx_huge_pages == -1)
5865                 __set_nx_huge_pages(get_nx_auto_mode());
5866
5867         /*
5868          * MMU roles use union aliasing which is, generally speaking, an
5869          * undefined behavior. However, we supposedly know how compilers behave
5870          * and the current status quo is unlikely to change. Guardians below are
5871          * supposed to let us know if the assumption becomes false.
5872          */
5873         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5874         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5875         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5876
5877         kvm_mmu_reset_all_pte_masks();
5878
5879         kvm_set_mmio_spte_mask();
5880
5881         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5882                                             sizeof(struct pte_list_desc),
5883                                             0, SLAB_ACCOUNT, NULL);
5884         if (!pte_list_desc_cache)
5885                 goto out;
5886
5887         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5888                                                   sizeof(struct kvm_mmu_page),
5889                                                   0, SLAB_ACCOUNT, NULL);
5890         if (!mmu_page_header_cache)
5891                 goto out;
5892
5893         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5894                 goto out;
5895
5896         ret = register_shrinker(&mmu_shrinker);
5897         if (ret)
5898                 goto out;
5899
5900         return 0;
5901
5902 out:
5903         mmu_destroy_caches();
5904         return ret;
5905 }
5906
5907 /*
5908  * Calculate mmu pages needed for kvm.
5909  */
5910 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5911 {
5912         unsigned long nr_mmu_pages;
5913         unsigned long nr_pages = 0;
5914         struct kvm_memslots *slots;
5915         struct kvm_memory_slot *memslot;
5916         int i;
5917
5918         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5919                 slots = __kvm_memslots(kvm, i);
5920
5921                 kvm_for_each_memslot(memslot, slots)
5922                         nr_pages += memslot->npages;
5923         }
5924
5925         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5926         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5927
5928         return nr_mmu_pages;
5929 }
5930
5931 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5932 {
5933         kvm_mmu_unload(vcpu);
5934         free_mmu_pages(&vcpu->arch.root_mmu);
5935         free_mmu_pages(&vcpu->arch.guest_mmu);
5936         mmu_free_memory_caches(vcpu);
5937 }
5938
5939 void kvm_mmu_module_exit(void)
5940 {
5941         mmu_destroy_caches();
5942         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5943         unregister_shrinker(&mmu_shrinker);
5944         mmu_audit_disable();
5945 }
5946
5947 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5948 {
5949         unsigned int old_val;
5950         int err;
5951
5952         old_val = nx_huge_pages_recovery_ratio;
5953         err = param_set_uint(val, kp);
5954         if (err)
5955                 return err;
5956
5957         if (READ_ONCE(nx_huge_pages) &&
5958             !old_val && nx_huge_pages_recovery_ratio) {
5959                 struct kvm *kvm;
5960
5961                 mutex_lock(&kvm_lock);
5962
5963                 list_for_each_entry(kvm, &vm_list, vm_list)
5964                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5965
5966                 mutex_unlock(&kvm_lock);
5967         }
5968
5969         return err;
5970 }
5971
5972 static void kvm_recover_nx_lpages(struct kvm *kvm)
5973 {
5974         int rcu_idx;
5975         struct kvm_mmu_page *sp;
5976         unsigned int ratio;
5977         LIST_HEAD(invalid_list);
5978         ulong to_zap;
5979
5980         rcu_idx = srcu_read_lock(&kvm->srcu);
5981         spin_lock(&kvm->mmu_lock);
5982
5983         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5984         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5985         for ( ; to_zap; --to_zap) {
5986                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5987                         break;
5988
5989                 /*
5990                  * We use a separate list instead of just using active_mmu_pages
5991                  * because the number of lpage_disallowed pages is expected to
5992                  * be relatively small compared to the total.
5993                  */
5994                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5995                                       struct kvm_mmu_page,
5996                                       lpage_disallowed_link);
5997                 WARN_ON_ONCE(!sp->lpage_disallowed);
5998                 if (sp->tdp_mmu_page)
5999                         kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
6000                                 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
6001                 else {
6002                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6003                         WARN_ON_ONCE(sp->lpage_disallowed);
6004                 }
6005
6006                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6007                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6008                         cond_resched_lock(&kvm->mmu_lock);
6009                 }
6010         }
6011         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6012
6013         spin_unlock(&kvm->mmu_lock);
6014         srcu_read_unlock(&kvm->srcu, rcu_idx);
6015 }
6016
6017 static long get_nx_lpage_recovery_timeout(u64 start_time)
6018 {
6019         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6020                 ? start_time + 60 * HZ - get_jiffies_64()
6021                 : MAX_SCHEDULE_TIMEOUT;
6022 }
6023
6024 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6025 {
6026         u64 start_time;
6027         long remaining_time;
6028
6029         while (true) {
6030                 start_time = get_jiffies_64();
6031                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6032
6033                 set_current_state(TASK_INTERRUPTIBLE);
6034                 while (!kthread_should_stop() && remaining_time > 0) {
6035                         schedule_timeout(remaining_time);
6036                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6037                         set_current_state(TASK_INTERRUPTIBLE);
6038                 }
6039
6040                 set_current_state(TASK_RUNNING);
6041
6042                 if (kthread_should_stop())
6043                         return 0;
6044
6045                 kvm_recover_nx_lpages(kvm);
6046         }
6047 }
6048
6049 int kvm_mmu_post_init_vm(struct kvm *kvm)
6050 {
6051         int err;
6052
6053         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6054                                           "kvm-nx-lpage-recovery",
6055                                           &kvm->arch.nx_lpage_recovery_thread);
6056         if (!err)
6057                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6058
6059         return err;
6060 }
6061
6062 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6063 {
6064         if (kvm->arch.nx_lpage_recovery_thread)
6065                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6066 }