KVM: MMU: protect TDP MMU pages only down to required level
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 extern bool itlb_multihit_kvm_mitigation;
57
58 static int __read_mostly nx_huge_pages = -1;
59 #ifdef CONFIG_PREEMPT_RT
60 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62 #else
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64 #endif
65
66 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
68
69 static const struct kernel_param_ops nx_huge_pages_ops = {
70         .set = set_nx_huge_pages,
71         .get = param_get_bool,
72 };
73
74 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75         .set = set_nx_huge_pages_recovery_ratio,
76         .get = param_get_uint,
77 };
78
79 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82                 &nx_huge_pages_recovery_ratio, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
84
85 static bool __read_mostly force_flush_and_sync_on_reuse;
86 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87
88 /*
89  * When setting this variable to true it enables Two-Dimensional-Paging
90  * where the hardware walks 2 page tables:
91  * 1. the guest-virtual to guest-physical
92  * 2. while doing 1. it walks guest-physical to host-physical
93  * If the hardware supports that we don't need to do shadow paging.
94  */
95 bool tdp_enabled = false;
96
97 static int max_huge_page_level __read_mostly;
98 static int max_tdp_level __read_mostly;
99
100 enum {
101         AUDIT_PRE_PAGE_FAULT,
102         AUDIT_POST_PAGE_FAULT,
103         AUDIT_PRE_PTE_WRITE,
104         AUDIT_POST_PTE_WRITE,
105         AUDIT_PRE_SYNC,
106         AUDIT_POST_SYNC
107 };
108
109 #ifdef MMU_DEBUG
110 bool dbg = 0;
111 module_param(dbg, bool, 0644);
112 #endif
113
114 #define PTE_PREFETCH_NUM                8
115
116 #define PT32_LEVEL_BITS 10
117
118 #define PT32_LEVEL_SHIFT(level) \
119                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
120
121 #define PT32_LVL_OFFSET_MASK(level) \
122         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT32_LEVEL_BITS))) - 1))
124
125 #define PT32_INDEX(address, level)\
126         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134                                             * PT32_LEVEL_BITS))) - 1))
135
136 #include <trace/events/kvm.h>
137
138 /* make pte_list_desc fit well in cache line */
139 #define PTE_LIST_EXT 3
140
141 struct pte_list_desc {
142         u64 *sptes[PTE_LIST_EXT];
143         struct pte_list_desc *more;
144 };
145
146 struct kvm_shadow_walk_iterator {
147         u64 addr;
148         hpa_t shadow_addr;
149         u64 *sptep;
150         int level;
151         unsigned index;
152 };
153
154 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
155         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
156                                          (_root), (_addr));                \
157              shadow_walk_okay(&(_walker));                                 \
158              shadow_walk_next(&(_walker)))
159
160 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
161         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
162              shadow_walk_okay(&(_walker));                      \
163              shadow_walk_next(&(_walker)))
164
165 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
166         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
167              shadow_walk_okay(&(_walker)) &&                            \
168                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
169              __shadow_walk_next(&(_walker), spte))
170
171 static struct kmem_cache *pte_list_desc_cache;
172 struct kmem_cache *mmu_page_header_cache;
173 static struct percpu_counter kvm_total_used_mmu_pages;
174
175 static void mmu_spte_set(u64 *sptep, u64 spte);
176 static union kvm_mmu_page_role
177 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178
179 #define CREATE_TRACE_POINTS
180 #include "mmutrace.h"
181
182
183 static inline bool kvm_available_flush_tlb_with_range(void)
184 {
185         return kvm_x86_ops.tlb_remote_flush_with_range;
186 }
187
188 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
189                 struct kvm_tlb_range *range)
190 {
191         int ret = -ENOTSUPP;
192
193         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
194                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
195
196         if (ret)
197                 kvm_flush_remote_tlbs(kvm);
198 }
199
200 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
201                 u64 start_gfn, u64 pages)
202 {
203         struct kvm_tlb_range range;
204
205         range.start_gfn = start_gfn;
206         range.pages = pages;
207
208         kvm_flush_remote_tlbs_with_range(kvm, &range);
209 }
210
211 bool is_nx_huge_page_enabled(void)
212 {
213         return READ_ONCE(nx_huge_pages);
214 }
215
216 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
217                            unsigned int access)
218 {
219         u64 spte = make_mmio_spte(vcpu, gfn, access);
220
221         trace_mark_mmio_spte(sptep, gfn, spte);
222         mmu_spte_set(sptep, spte);
223 }
224
225 static gfn_t get_mmio_spte_gfn(u64 spte)
226 {
227         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
228
229         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
230                & shadow_nonpresent_or_rsvd_mask;
231
232         return gpa >> PAGE_SHIFT;
233 }
234
235 static unsigned get_mmio_spte_access(u64 spte)
236 {
237         return spte & shadow_mmio_access_mask;
238 }
239
240 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
241 {
242         u64 kvm_gen, spte_gen, gen;
243
244         gen = kvm_vcpu_memslots(vcpu)->generation;
245         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
246                 return false;
247
248         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
249         spte_gen = get_mmio_spte_generation(spte);
250
251         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
252         return likely(kvm_gen == spte_gen);
253 }
254
255 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
256                                   struct x86_exception *exception)
257 {
258         /* Check if guest physical address doesn't exceed guest maximum */
259         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
260                 exception->error_code |= PFERR_RSVD_MASK;
261                 return UNMAPPED_GVA;
262         }
263
264         return gpa;
265 }
266
267 static int is_cpuid_PSE36(void)
268 {
269         return 1;
270 }
271
272 static int is_nx(struct kvm_vcpu *vcpu)
273 {
274         return vcpu->arch.efer & EFER_NX;
275 }
276
277 static gfn_t pse36_gfn_delta(u32 gpte)
278 {
279         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
280
281         return (gpte & PT32_DIR_PSE36_MASK) << shift;
282 }
283
284 #ifdef CONFIG_X86_64
285 static void __set_spte(u64 *sptep, u64 spte)
286 {
287         WRITE_ONCE(*sptep, spte);
288 }
289
290 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
291 {
292         WRITE_ONCE(*sptep, spte);
293 }
294
295 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
296 {
297         return xchg(sptep, spte);
298 }
299
300 static u64 __get_spte_lockless(u64 *sptep)
301 {
302         return READ_ONCE(*sptep);
303 }
304 #else
305 union split_spte {
306         struct {
307                 u32 spte_low;
308                 u32 spte_high;
309         };
310         u64 spte;
311 };
312
313 static void count_spte_clear(u64 *sptep, u64 spte)
314 {
315         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
316
317         if (is_shadow_present_pte(spte))
318                 return;
319
320         /* Ensure the spte is completely set before we increase the count */
321         smp_wmb();
322         sp->clear_spte_count++;
323 }
324
325 static void __set_spte(u64 *sptep, u64 spte)
326 {
327         union split_spte *ssptep, sspte;
328
329         ssptep = (union split_spte *)sptep;
330         sspte = (union split_spte)spte;
331
332         ssptep->spte_high = sspte.spte_high;
333
334         /*
335          * If we map the spte from nonpresent to present, We should store
336          * the high bits firstly, then set present bit, so cpu can not
337          * fetch this spte while we are setting the spte.
338          */
339         smp_wmb();
340
341         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
342 }
343
344 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
345 {
346         union split_spte *ssptep, sspte;
347
348         ssptep = (union split_spte *)sptep;
349         sspte = (union split_spte)spte;
350
351         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352
353         /*
354          * If we map the spte from present to nonpresent, we should clear
355          * present bit firstly to avoid vcpu fetch the old high bits.
356          */
357         smp_wmb();
358
359         ssptep->spte_high = sspte.spte_high;
360         count_spte_clear(sptep, spte);
361 }
362
363 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
364 {
365         union split_spte *ssptep, sspte, orig;
366
367         ssptep = (union split_spte *)sptep;
368         sspte = (union split_spte)spte;
369
370         /* xchg acts as a barrier before the setting of the high bits */
371         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
372         orig.spte_high = ssptep->spte_high;
373         ssptep->spte_high = sspte.spte_high;
374         count_spte_clear(sptep, spte);
375
376         return orig.spte;
377 }
378
379 /*
380  * The idea using the light way get the spte on x86_32 guest is from
381  * gup_get_pte (mm/gup.c).
382  *
383  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
384  * coalesces them and we are running out of the MMU lock.  Therefore
385  * we need to protect against in-progress updates of the spte.
386  *
387  * Reading the spte while an update is in progress may get the old value
388  * for the high part of the spte.  The race is fine for a present->non-present
389  * change (because the high part of the spte is ignored for non-present spte),
390  * but for a present->present change we must reread the spte.
391  *
392  * All such changes are done in two steps (present->non-present and
393  * non-present->present), hence it is enough to count the number of
394  * present->non-present updates: if it changed while reading the spte,
395  * we might have hit the race.  This is done using clear_spte_count.
396  */
397 static u64 __get_spte_lockless(u64 *sptep)
398 {
399         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
400         union split_spte spte, *orig = (union split_spte *)sptep;
401         int count;
402
403 retry:
404         count = sp->clear_spte_count;
405         smp_rmb();
406
407         spte.spte_low = orig->spte_low;
408         smp_rmb();
409
410         spte.spte_high = orig->spte_high;
411         smp_rmb();
412
413         if (unlikely(spte.spte_low != orig->spte_low ||
414               count != sp->clear_spte_count))
415                 goto retry;
416
417         return spte.spte;
418 }
419 #endif
420
421 static bool spte_has_volatile_bits(u64 spte)
422 {
423         if (!is_shadow_present_pte(spte))
424                 return false;
425
426         /*
427          * Always atomically update spte if it can be updated
428          * out of mmu-lock, it can ensure dirty bit is not lost,
429          * also, it can help us to get a stable is_writable_pte()
430          * to ensure tlb flush is not missed.
431          */
432         if (spte_can_locklessly_be_made_writable(spte) ||
433             is_access_track_spte(spte))
434                 return true;
435
436         if (spte_ad_enabled(spte)) {
437                 if ((spte & shadow_accessed_mask) == 0 ||
438                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
439                         return true;
440         }
441
442         return false;
443 }
444
445 /* Rules for using mmu_spte_set:
446  * Set the sptep from nonpresent to present.
447  * Note: the sptep being assigned *must* be either not present
448  * or in a state where the hardware will not attempt to update
449  * the spte.
450  */
451 static void mmu_spte_set(u64 *sptep, u64 new_spte)
452 {
453         WARN_ON(is_shadow_present_pte(*sptep));
454         __set_spte(sptep, new_spte);
455 }
456
457 /*
458  * Update the SPTE (excluding the PFN), but do not track changes in its
459  * accessed/dirty status.
460  */
461 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
462 {
463         u64 old_spte = *sptep;
464
465         WARN_ON(!is_shadow_present_pte(new_spte));
466
467         if (!is_shadow_present_pte(old_spte)) {
468                 mmu_spte_set(sptep, new_spte);
469                 return old_spte;
470         }
471
472         if (!spte_has_volatile_bits(old_spte))
473                 __update_clear_spte_fast(sptep, new_spte);
474         else
475                 old_spte = __update_clear_spte_slow(sptep, new_spte);
476
477         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
478
479         return old_spte;
480 }
481
482 /* Rules for using mmu_spte_update:
483  * Update the state bits, it means the mapped pfn is not changed.
484  *
485  * Whenever we overwrite a writable spte with a read-only one we
486  * should flush remote TLBs. Otherwise rmap_write_protect
487  * will find a read-only spte, even though the writable spte
488  * might be cached on a CPU's TLB, the return value indicates this
489  * case.
490  *
491  * Returns true if the TLB needs to be flushed
492  */
493 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
494 {
495         bool flush = false;
496         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
497
498         if (!is_shadow_present_pte(old_spte))
499                 return false;
500
501         /*
502          * For the spte updated out of mmu-lock is safe, since
503          * we always atomically update it, see the comments in
504          * spte_has_volatile_bits().
505          */
506         if (spte_can_locklessly_be_made_writable(old_spte) &&
507               !is_writable_pte(new_spte))
508                 flush = true;
509
510         /*
511          * Flush TLB when accessed/dirty states are changed in the page tables,
512          * to guarantee consistency between TLB and page tables.
513          */
514
515         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
516                 flush = true;
517                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
518         }
519
520         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
521                 flush = true;
522                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
523         }
524
525         return flush;
526 }
527
528 /*
529  * Rules for using mmu_spte_clear_track_bits:
530  * It sets the sptep from present to nonpresent, and track the
531  * state bits, it is used to clear the last level sptep.
532  * Returns non-zero if the PTE was previously valid.
533  */
534 static int mmu_spte_clear_track_bits(u64 *sptep)
535 {
536         kvm_pfn_t pfn;
537         u64 old_spte = *sptep;
538
539         if (!spte_has_volatile_bits(old_spte))
540                 __update_clear_spte_fast(sptep, 0ull);
541         else
542                 old_spte = __update_clear_spte_slow(sptep, 0ull);
543
544         if (!is_shadow_present_pte(old_spte))
545                 return 0;
546
547         pfn = spte_to_pfn(old_spte);
548
549         /*
550          * KVM does not hold the refcount of the page used by
551          * kvm mmu, before reclaiming the page, we should
552          * unmap it from mmu first.
553          */
554         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
555
556         if (is_accessed_spte(old_spte))
557                 kvm_set_pfn_accessed(pfn);
558
559         if (is_dirty_spte(old_spte))
560                 kvm_set_pfn_dirty(pfn);
561
562         return 1;
563 }
564
565 /*
566  * Rules for using mmu_spte_clear_no_track:
567  * Directly clear spte without caring the state bits of sptep,
568  * it is used to set the upper level spte.
569  */
570 static void mmu_spte_clear_no_track(u64 *sptep)
571 {
572         __update_clear_spte_fast(sptep, 0ull);
573 }
574
575 static u64 mmu_spte_get_lockless(u64 *sptep)
576 {
577         return __get_spte_lockless(sptep);
578 }
579
580 /* Restore an acc-track PTE back to a regular PTE */
581 static u64 restore_acc_track_spte(u64 spte)
582 {
583         u64 new_spte = spte;
584         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
585                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
586
587         WARN_ON_ONCE(spte_ad_enabled(spte));
588         WARN_ON_ONCE(!is_access_track_spte(spte));
589
590         new_spte &= ~shadow_acc_track_mask;
591         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
592                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
593         new_spte |= saved_bits;
594
595         return new_spte;
596 }
597
598 /* Returns the Accessed status of the PTE and resets it at the same time. */
599 static bool mmu_spte_age(u64 *sptep)
600 {
601         u64 spte = mmu_spte_get_lockless(sptep);
602
603         if (!is_accessed_spte(spte))
604                 return false;
605
606         if (spte_ad_enabled(spte)) {
607                 clear_bit((ffs(shadow_accessed_mask) - 1),
608                           (unsigned long *)sptep);
609         } else {
610                 /*
611                  * Capture the dirty status of the page, so that it doesn't get
612                  * lost when the SPTE is marked for access tracking.
613                  */
614                 if (is_writable_pte(spte))
615                         kvm_set_pfn_dirty(spte_to_pfn(spte));
616
617                 spte = mark_spte_for_access_track(spte);
618                 mmu_spte_update_no_track(sptep, spte);
619         }
620
621         return true;
622 }
623
624 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
625 {
626         /*
627          * Prevent page table teardown by making any free-er wait during
628          * kvm_flush_remote_tlbs() IPI to all active vcpus.
629          */
630         local_irq_disable();
631
632         /*
633          * Make sure a following spte read is not reordered ahead of the write
634          * to vcpu->mode.
635          */
636         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
637 }
638
639 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
640 {
641         /*
642          * Make sure the write to vcpu->mode is not reordered in front of
643          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
644          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
645          */
646         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
647         local_irq_enable();
648 }
649
650 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
651 {
652         int r;
653
654         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
655         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
656                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
657         if (r)
658                 return r;
659         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
660                                        PT64_ROOT_MAX_LEVEL);
661         if (r)
662                 return r;
663         if (maybe_indirect) {
664                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
665                                                PT64_ROOT_MAX_LEVEL);
666                 if (r)
667                         return r;
668         }
669         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
670                                           PT64_ROOT_MAX_LEVEL);
671 }
672
673 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
674 {
675         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
676         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
677         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
678         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
679 }
680
681 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
682 {
683         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
684 }
685
686 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
687 {
688         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
689 }
690
691 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
692 {
693         if (!sp->role.direct)
694                 return sp->gfns[index];
695
696         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
697 }
698
699 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
700 {
701         if (!sp->role.direct) {
702                 sp->gfns[index] = gfn;
703                 return;
704         }
705
706         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
707                 pr_err_ratelimited("gfn mismatch under direct page %llx "
708                                    "(expected %llx, got %llx)\n",
709                                    sp->gfn,
710                                    kvm_mmu_page_get_gfn(sp, index), gfn);
711 }
712
713 /*
714  * Return the pointer to the large page information for a given gfn,
715  * handling slots that are not large page aligned.
716  */
717 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
718                                               struct kvm_memory_slot *slot,
719                                               int level)
720 {
721         unsigned long idx;
722
723         idx = gfn_to_index(gfn, slot->base_gfn, level);
724         return &slot->arch.lpage_info[level - 2][idx];
725 }
726
727 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
728                                             gfn_t gfn, int count)
729 {
730         struct kvm_lpage_info *linfo;
731         int i;
732
733         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
734                 linfo = lpage_info_slot(gfn, slot, i);
735                 linfo->disallow_lpage += count;
736                 WARN_ON(linfo->disallow_lpage < 0);
737         }
738 }
739
740 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
741 {
742         update_gfn_disallow_lpage_count(slot, gfn, 1);
743 }
744
745 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
746 {
747         update_gfn_disallow_lpage_count(slot, gfn, -1);
748 }
749
750 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
751 {
752         struct kvm_memslots *slots;
753         struct kvm_memory_slot *slot;
754         gfn_t gfn;
755
756         kvm->arch.indirect_shadow_pages++;
757         gfn = sp->gfn;
758         slots = kvm_memslots_for_spte_role(kvm, sp->role);
759         slot = __gfn_to_memslot(slots, gfn);
760
761         /* the non-leaf shadow pages are keeping readonly. */
762         if (sp->role.level > PG_LEVEL_4K)
763                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
764                                                     KVM_PAGE_TRACK_WRITE);
765
766         kvm_mmu_gfn_disallow_lpage(slot, gfn);
767 }
768
769 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
770 {
771         if (sp->lpage_disallowed)
772                 return;
773
774         ++kvm->stat.nx_lpage_splits;
775         list_add_tail(&sp->lpage_disallowed_link,
776                       &kvm->arch.lpage_disallowed_mmu_pages);
777         sp->lpage_disallowed = true;
778 }
779
780 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
781 {
782         struct kvm_memslots *slots;
783         struct kvm_memory_slot *slot;
784         gfn_t gfn;
785
786         kvm->arch.indirect_shadow_pages--;
787         gfn = sp->gfn;
788         slots = kvm_memslots_for_spte_role(kvm, sp->role);
789         slot = __gfn_to_memslot(slots, gfn);
790         if (sp->role.level > PG_LEVEL_4K)
791                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
792                                                        KVM_PAGE_TRACK_WRITE);
793
794         kvm_mmu_gfn_allow_lpage(slot, gfn);
795 }
796
797 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
798 {
799         --kvm->stat.nx_lpage_splits;
800         sp->lpage_disallowed = false;
801         list_del(&sp->lpage_disallowed_link);
802 }
803
804 static struct kvm_memory_slot *
805 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
806                             bool no_dirty_log)
807 {
808         struct kvm_memory_slot *slot;
809
810         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
811         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
812                 return NULL;
813         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
814                 return NULL;
815
816         return slot;
817 }
818
819 /*
820  * About rmap_head encoding:
821  *
822  * If the bit zero of rmap_head->val is clear, then it points to the only spte
823  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
824  * pte_list_desc containing more mappings.
825  */
826
827 /*
828  * Returns the number of pointers in the rmap chain, not counting the new one.
829  */
830 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
831                         struct kvm_rmap_head *rmap_head)
832 {
833         struct pte_list_desc *desc;
834         int i, count = 0;
835
836         if (!rmap_head->val) {
837                 rmap_printk("%p %llx 0->1\n", spte, *spte);
838                 rmap_head->val = (unsigned long)spte;
839         } else if (!(rmap_head->val & 1)) {
840                 rmap_printk("%p %llx 1->many\n", spte, *spte);
841                 desc = mmu_alloc_pte_list_desc(vcpu);
842                 desc->sptes[0] = (u64 *)rmap_head->val;
843                 desc->sptes[1] = spte;
844                 rmap_head->val = (unsigned long)desc | 1;
845                 ++count;
846         } else {
847                 rmap_printk("%p %llx many->many\n", spte, *spte);
848                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
849                 while (desc->sptes[PTE_LIST_EXT-1]) {
850                         count += PTE_LIST_EXT;
851
852                         if (!desc->more) {
853                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
854                                 desc = desc->more;
855                                 break;
856                         }
857                         desc = desc->more;
858                 }
859                 for (i = 0; desc->sptes[i]; ++i)
860                         ++count;
861                 desc->sptes[i] = spte;
862         }
863         return count;
864 }
865
866 static void
867 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
868                            struct pte_list_desc *desc, int i,
869                            struct pte_list_desc *prev_desc)
870 {
871         int j;
872
873         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
874                 ;
875         desc->sptes[i] = desc->sptes[j];
876         desc->sptes[j] = NULL;
877         if (j != 0)
878                 return;
879         if (!prev_desc && !desc->more)
880                 rmap_head->val = 0;
881         else
882                 if (prev_desc)
883                         prev_desc->more = desc->more;
884                 else
885                         rmap_head->val = (unsigned long)desc->more | 1;
886         mmu_free_pte_list_desc(desc);
887 }
888
889 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
890 {
891         struct pte_list_desc *desc;
892         struct pte_list_desc *prev_desc;
893         int i;
894
895         if (!rmap_head->val) {
896                 pr_err("%s: %p 0->BUG\n", __func__, spte);
897                 BUG();
898         } else if (!(rmap_head->val & 1)) {
899                 rmap_printk("%p 1->0\n", spte);
900                 if ((u64 *)rmap_head->val != spte) {
901                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
902                         BUG();
903                 }
904                 rmap_head->val = 0;
905         } else {
906                 rmap_printk("%p many->many\n", spte);
907                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
908                 prev_desc = NULL;
909                 while (desc) {
910                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
911                                 if (desc->sptes[i] == spte) {
912                                         pte_list_desc_remove_entry(rmap_head,
913                                                         desc, i, prev_desc);
914                                         return;
915                                 }
916                         }
917                         prev_desc = desc;
918                         desc = desc->more;
919                 }
920                 pr_err("%s: %p many->many\n", __func__, spte);
921                 BUG();
922         }
923 }
924
925 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
926 {
927         mmu_spte_clear_track_bits(sptep);
928         __pte_list_remove(sptep, rmap_head);
929 }
930
931 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
932                                            struct kvm_memory_slot *slot)
933 {
934         unsigned long idx;
935
936         idx = gfn_to_index(gfn, slot->base_gfn, level);
937         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
938 }
939
940 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
941                                          struct kvm_mmu_page *sp)
942 {
943         struct kvm_memslots *slots;
944         struct kvm_memory_slot *slot;
945
946         slots = kvm_memslots_for_spte_role(kvm, sp->role);
947         slot = __gfn_to_memslot(slots, gfn);
948         return __gfn_to_rmap(gfn, sp->role.level, slot);
949 }
950
951 static bool rmap_can_add(struct kvm_vcpu *vcpu)
952 {
953         struct kvm_mmu_memory_cache *mc;
954
955         mc = &vcpu->arch.mmu_pte_list_desc_cache;
956         return kvm_mmu_memory_cache_nr_free_objects(mc);
957 }
958
959 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
960 {
961         struct kvm_mmu_page *sp;
962         struct kvm_rmap_head *rmap_head;
963
964         sp = sptep_to_sp(spte);
965         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
966         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
967         return pte_list_add(vcpu, spte, rmap_head);
968 }
969
970 static void rmap_remove(struct kvm *kvm, u64 *spte)
971 {
972         struct kvm_mmu_page *sp;
973         gfn_t gfn;
974         struct kvm_rmap_head *rmap_head;
975
976         sp = sptep_to_sp(spte);
977         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
978         rmap_head = gfn_to_rmap(kvm, gfn, sp);
979         __pte_list_remove(spte, rmap_head);
980 }
981
982 /*
983  * Used by the following functions to iterate through the sptes linked by a
984  * rmap.  All fields are private and not assumed to be used outside.
985  */
986 struct rmap_iterator {
987         /* private fields */
988         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
989         int pos;                        /* index of the sptep */
990 };
991
992 /*
993  * Iteration must be started by this function.  This should also be used after
994  * removing/dropping sptes from the rmap link because in such cases the
995  * information in the iterator may not be valid.
996  *
997  * Returns sptep if found, NULL otherwise.
998  */
999 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1000                            struct rmap_iterator *iter)
1001 {
1002         u64 *sptep;
1003
1004         if (!rmap_head->val)
1005                 return NULL;
1006
1007         if (!(rmap_head->val & 1)) {
1008                 iter->desc = NULL;
1009                 sptep = (u64 *)rmap_head->val;
1010                 goto out;
1011         }
1012
1013         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1014         iter->pos = 0;
1015         sptep = iter->desc->sptes[iter->pos];
1016 out:
1017         BUG_ON(!is_shadow_present_pte(*sptep));
1018         return sptep;
1019 }
1020
1021 /*
1022  * Must be used with a valid iterator: e.g. after rmap_get_first().
1023  *
1024  * Returns sptep if found, NULL otherwise.
1025  */
1026 static u64 *rmap_get_next(struct rmap_iterator *iter)
1027 {
1028         u64 *sptep;
1029
1030         if (iter->desc) {
1031                 if (iter->pos < PTE_LIST_EXT - 1) {
1032                         ++iter->pos;
1033                         sptep = iter->desc->sptes[iter->pos];
1034                         if (sptep)
1035                                 goto out;
1036                 }
1037
1038                 iter->desc = iter->desc->more;
1039
1040                 if (iter->desc) {
1041                         iter->pos = 0;
1042                         /* desc->sptes[0] cannot be NULL */
1043                         sptep = iter->desc->sptes[iter->pos];
1044                         goto out;
1045                 }
1046         }
1047
1048         return NULL;
1049 out:
1050         BUG_ON(!is_shadow_present_pte(*sptep));
1051         return sptep;
1052 }
1053
1054 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1055         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1056              _spte_; _spte_ = rmap_get_next(_iter_))
1057
1058 static void drop_spte(struct kvm *kvm, u64 *sptep)
1059 {
1060         if (mmu_spte_clear_track_bits(sptep))
1061                 rmap_remove(kvm, sptep);
1062 }
1063
1064
1065 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1066 {
1067         if (is_large_pte(*sptep)) {
1068                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1069                 drop_spte(kvm, sptep);
1070                 --kvm->stat.lpages;
1071                 return true;
1072         }
1073
1074         return false;
1075 }
1076
1077 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1078 {
1079         if (__drop_large_spte(vcpu->kvm, sptep)) {
1080                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1081
1082                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1083                         KVM_PAGES_PER_HPAGE(sp->role.level));
1084         }
1085 }
1086
1087 /*
1088  * Write-protect on the specified @sptep, @pt_protect indicates whether
1089  * spte write-protection is caused by protecting shadow page table.
1090  *
1091  * Note: write protection is difference between dirty logging and spte
1092  * protection:
1093  * - for dirty logging, the spte can be set to writable at anytime if
1094  *   its dirty bitmap is properly set.
1095  * - for spte protection, the spte can be writable only after unsync-ing
1096  *   shadow page.
1097  *
1098  * Return true if tlb need be flushed.
1099  */
1100 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1101 {
1102         u64 spte = *sptep;
1103
1104         if (!is_writable_pte(spte) &&
1105               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1106                 return false;
1107
1108         rmap_printk("spte %p %llx\n", sptep, *sptep);
1109
1110         if (pt_protect)
1111                 spte &= ~shadow_mmu_writable_mask;
1112         spte = spte & ~PT_WRITABLE_MASK;
1113
1114         return mmu_spte_update(sptep, spte);
1115 }
1116
1117 static bool __rmap_write_protect(struct kvm *kvm,
1118                                  struct kvm_rmap_head *rmap_head,
1119                                  bool pt_protect)
1120 {
1121         u64 *sptep;
1122         struct rmap_iterator iter;
1123         bool flush = false;
1124
1125         for_each_rmap_spte(rmap_head, &iter, sptep)
1126                 flush |= spte_write_protect(sptep, pt_protect);
1127
1128         return flush;
1129 }
1130
1131 static bool spte_clear_dirty(u64 *sptep)
1132 {
1133         u64 spte = *sptep;
1134
1135         rmap_printk("spte %p %llx\n", sptep, *sptep);
1136
1137         MMU_WARN_ON(!spte_ad_enabled(spte));
1138         spte &= ~shadow_dirty_mask;
1139         return mmu_spte_update(sptep, spte);
1140 }
1141
1142 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1143 {
1144         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1145                                                (unsigned long *)sptep);
1146         if (was_writable && !spte_ad_enabled(*sptep))
1147                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1148
1149         return was_writable;
1150 }
1151
1152 /*
1153  * Gets the GFN ready for another round of dirty logging by clearing the
1154  *      - D bit on ad-enabled SPTEs, and
1155  *      - W bit on ad-disabled SPTEs.
1156  * Returns true iff any D or W bits were cleared.
1157  */
1158 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1159                                struct kvm_memory_slot *slot)
1160 {
1161         u64 *sptep;
1162         struct rmap_iterator iter;
1163         bool flush = false;
1164
1165         for_each_rmap_spte(rmap_head, &iter, sptep)
1166                 if (spte_ad_need_write_protect(*sptep))
1167                         flush |= spte_wrprot_for_clear_dirty(sptep);
1168                 else
1169                         flush |= spte_clear_dirty(sptep);
1170
1171         return flush;
1172 }
1173
1174 /**
1175  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1176  * @kvm: kvm instance
1177  * @slot: slot to protect
1178  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1179  * @mask: indicates which pages we should protect
1180  *
1181  * Used when we do not need to care about huge page mappings: e.g. during dirty
1182  * logging we do not have any such mappings.
1183  */
1184 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1185                                      struct kvm_memory_slot *slot,
1186                                      gfn_t gfn_offset, unsigned long mask)
1187 {
1188         struct kvm_rmap_head *rmap_head;
1189
1190         if (is_tdp_mmu_enabled(kvm))
1191                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1192                                 slot->base_gfn + gfn_offset, mask, true);
1193         while (mask) {
1194                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1195                                           PG_LEVEL_4K, slot);
1196                 __rmap_write_protect(kvm, rmap_head, false);
1197
1198                 /* clear the first set bit */
1199                 mask &= mask - 1;
1200         }
1201 }
1202
1203 /**
1204  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1205  * protect the page if the D-bit isn't supported.
1206  * @kvm: kvm instance
1207  * @slot: slot to clear D-bit
1208  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1209  * @mask: indicates which pages we should clear D-bit
1210  *
1211  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1212  */
1213 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1214                                          struct kvm_memory_slot *slot,
1215                                          gfn_t gfn_offset, unsigned long mask)
1216 {
1217         struct kvm_rmap_head *rmap_head;
1218
1219         if (is_tdp_mmu_enabled(kvm))
1220                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1221                                 slot->base_gfn + gfn_offset, mask, false);
1222         while (mask) {
1223                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1224                                           PG_LEVEL_4K, slot);
1225                 __rmap_clear_dirty(kvm, rmap_head, slot);
1226
1227                 /* clear the first set bit */
1228                 mask &= mask - 1;
1229         }
1230 }
1231
1232 /**
1233  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1234  * PT level pages.
1235  *
1236  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1237  * enable dirty logging for them.
1238  *
1239  * Used when we do not need to care about huge page mappings: e.g. during dirty
1240  * logging we do not have any such mappings.
1241  */
1242 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1243                                 struct kvm_memory_slot *slot,
1244                                 gfn_t gfn_offset, unsigned long mask)
1245 {
1246         if (kvm_x86_ops.cpu_dirty_log_size)
1247                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1248         else
1249                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1250 }
1251
1252 int kvm_cpu_dirty_log_size(void)
1253 {
1254         return kvm_x86_ops.cpu_dirty_log_size;
1255 }
1256
1257 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1258                                     struct kvm_memory_slot *slot, u64 gfn)
1259 {
1260         struct kvm_rmap_head *rmap_head;
1261         int i;
1262         bool write_protected = false;
1263
1264         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1265                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1266                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1267         }
1268
1269         if (is_tdp_mmu_enabled(kvm))
1270                 write_protected |=
1271                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1272
1273         return write_protected;
1274 }
1275
1276 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1277 {
1278         struct kvm_memory_slot *slot;
1279
1280         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1281         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1282 }
1283
1284 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1285                           struct kvm_memory_slot *slot)
1286 {
1287         u64 *sptep;
1288         struct rmap_iterator iter;
1289         bool flush = false;
1290
1291         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1292                 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1293
1294                 pte_list_remove(rmap_head, sptep);
1295                 flush = true;
1296         }
1297
1298         return flush;
1299 }
1300
1301 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1302                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1303                            unsigned long data)
1304 {
1305         return kvm_zap_rmapp(kvm, rmap_head, slot);
1306 }
1307
1308 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1309                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1310                              unsigned long data)
1311 {
1312         u64 *sptep;
1313         struct rmap_iterator iter;
1314         int need_flush = 0;
1315         u64 new_spte;
1316         pte_t *ptep = (pte_t *)data;
1317         kvm_pfn_t new_pfn;
1318
1319         WARN_ON(pte_huge(*ptep));
1320         new_pfn = pte_pfn(*ptep);
1321
1322 restart:
1323         for_each_rmap_spte(rmap_head, &iter, sptep) {
1324                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1325                             sptep, *sptep, gfn, level);
1326
1327                 need_flush = 1;
1328
1329                 if (pte_write(*ptep)) {
1330                         pte_list_remove(rmap_head, sptep);
1331                         goto restart;
1332                 } else {
1333                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1334                                         *sptep, new_pfn);
1335
1336                         mmu_spte_clear_track_bits(sptep);
1337                         mmu_spte_set(sptep, new_spte);
1338                 }
1339         }
1340
1341         if (need_flush && kvm_available_flush_tlb_with_range()) {
1342                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1343                 return 0;
1344         }
1345
1346         return need_flush;
1347 }
1348
1349 struct slot_rmap_walk_iterator {
1350         /* input fields. */
1351         struct kvm_memory_slot *slot;
1352         gfn_t start_gfn;
1353         gfn_t end_gfn;
1354         int start_level;
1355         int end_level;
1356
1357         /* output fields. */
1358         gfn_t gfn;
1359         struct kvm_rmap_head *rmap;
1360         int level;
1361
1362         /* private field. */
1363         struct kvm_rmap_head *end_rmap;
1364 };
1365
1366 static void
1367 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1368 {
1369         iterator->level = level;
1370         iterator->gfn = iterator->start_gfn;
1371         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1372         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1373                                            iterator->slot);
1374 }
1375
1376 static void
1377 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1378                     struct kvm_memory_slot *slot, int start_level,
1379                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1380 {
1381         iterator->slot = slot;
1382         iterator->start_level = start_level;
1383         iterator->end_level = end_level;
1384         iterator->start_gfn = start_gfn;
1385         iterator->end_gfn = end_gfn;
1386
1387         rmap_walk_init_level(iterator, iterator->start_level);
1388 }
1389
1390 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1391 {
1392         return !!iterator->rmap;
1393 }
1394
1395 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1396 {
1397         if (++iterator->rmap <= iterator->end_rmap) {
1398                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1399                 return;
1400         }
1401
1402         if (++iterator->level > iterator->end_level) {
1403                 iterator->rmap = NULL;
1404                 return;
1405         }
1406
1407         rmap_walk_init_level(iterator, iterator->level);
1408 }
1409
1410 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1411            _start_gfn, _end_gfn, _iter_)                                \
1412         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1413                                  _end_level_, _start_gfn, _end_gfn);    \
1414              slot_rmap_walk_okay(_iter_);                               \
1415              slot_rmap_walk_next(_iter_))
1416
1417 typedef int (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1418                               struct kvm_memory_slot *slot, gfn_t gfn,
1419                               int level, unsigned long data);
1420
1421 static __always_inline int kvm_handle_hva_range(struct kvm *kvm,
1422                                                 unsigned long start,
1423                                                 unsigned long end,
1424                                                 unsigned long data,
1425                                                 rmap_handler_t handler)
1426 {
1427         struct kvm_memslots *slots;
1428         struct kvm_memory_slot *memslot;
1429         struct slot_rmap_walk_iterator iterator;
1430         int ret = 0;
1431         int i;
1432
1433         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1434                 slots = __kvm_memslots(kvm, i);
1435                 kvm_for_each_memslot(memslot, slots) {
1436                         unsigned long hva_start, hva_end;
1437                         gfn_t gfn_start, gfn_end;
1438
1439                         hva_start = max(start, memslot->userspace_addr);
1440                         hva_end = min(end, memslot->userspace_addr +
1441                                       (memslot->npages << PAGE_SHIFT));
1442                         if (hva_start >= hva_end)
1443                                 continue;
1444                         /*
1445                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1446                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1447                          */
1448                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1449                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1450
1451                         for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1452                                                  KVM_MAX_HUGEPAGE_LEVEL,
1453                                                  gfn_start, gfn_end - 1,
1454                                                  &iterator)
1455                                 ret |= handler(kvm, iterator.rmap, memslot,
1456                                                iterator.gfn, iterator.level, data);
1457                 }
1458         }
1459
1460         return ret;
1461 }
1462
1463 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1464                           unsigned long data, rmap_handler_t handler)
1465 {
1466         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1467 }
1468
1469 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1470                         unsigned flags)
1471 {
1472         int r;
1473
1474         r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1475
1476         if (is_tdp_mmu_enabled(kvm))
1477                 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1478
1479         return r;
1480 }
1481
1482 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1483 {
1484         int r;
1485
1486         r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1487
1488         if (is_tdp_mmu_enabled(kvm))
1489                 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1490
1491         return r;
1492 }
1493
1494 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1495                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1496                          unsigned long data)
1497 {
1498         u64 *sptep;
1499         struct rmap_iterator iter;
1500         int young = 0;
1501
1502         for_each_rmap_spte(rmap_head, &iter, sptep)
1503                 young |= mmu_spte_age(sptep);
1504
1505         return young;
1506 }
1507
1508 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1509                               struct kvm_memory_slot *slot, gfn_t gfn,
1510                               int level, unsigned long data)
1511 {
1512         u64 *sptep;
1513         struct rmap_iterator iter;
1514
1515         for_each_rmap_spte(rmap_head, &iter, sptep)
1516                 if (is_accessed_spte(*sptep))
1517                         return 1;
1518         return 0;
1519 }
1520
1521 #define RMAP_RECYCLE_THRESHOLD 1000
1522
1523 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1524 {
1525         struct kvm_rmap_head *rmap_head;
1526         struct kvm_mmu_page *sp;
1527
1528         sp = sptep_to_sp(spte);
1529
1530         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1531
1532         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1533         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1534                         KVM_PAGES_PER_HPAGE(sp->role.level));
1535 }
1536
1537 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1538 {
1539         int young = false;
1540
1541         young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1542         if (is_tdp_mmu_enabled(kvm))
1543                 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1544
1545         return young;
1546 }
1547
1548 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1549 {
1550         int young = false;
1551
1552         young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1553         if (is_tdp_mmu_enabled(kvm))
1554                 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1555
1556         return young;
1557 }
1558
1559 #ifdef MMU_DEBUG
1560 static int is_empty_shadow_page(u64 *spt)
1561 {
1562         u64 *pos;
1563         u64 *end;
1564
1565         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1566                 if (is_shadow_present_pte(*pos)) {
1567                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1568                                pos, *pos);
1569                         return 0;
1570                 }
1571         return 1;
1572 }
1573 #endif
1574
1575 /*
1576  * This value is the sum of all of the kvm instances's
1577  * kvm->arch.n_used_mmu_pages values.  We need a global,
1578  * aggregate version in order to make the slab shrinker
1579  * faster
1580  */
1581 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1582 {
1583         kvm->arch.n_used_mmu_pages += nr;
1584         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1585 }
1586
1587 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1588 {
1589         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1590         hlist_del(&sp->hash_link);
1591         list_del(&sp->link);
1592         free_page((unsigned long)sp->spt);
1593         if (!sp->role.direct)
1594                 free_page((unsigned long)sp->gfns);
1595         kmem_cache_free(mmu_page_header_cache, sp);
1596 }
1597
1598 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1599 {
1600         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1601 }
1602
1603 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1604                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1605 {
1606         if (!parent_pte)
1607                 return;
1608
1609         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1610 }
1611
1612 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1613                                        u64 *parent_pte)
1614 {
1615         __pte_list_remove(parent_pte, &sp->parent_ptes);
1616 }
1617
1618 static void drop_parent_pte(struct kvm_mmu_page *sp,
1619                             u64 *parent_pte)
1620 {
1621         mmu_page_remove_parent_pte(sp, parent_pte);
1622         mmu_spte_clear_no_track(parent_pte);
1623 }
1624
1625 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1626 {
1627         struct kvm_mmu_page *sp;
1628
1629         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1630         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1631         if (!direct)
1632                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1633         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1634
1635         /*
1636          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1637          * depends on valid pages being added to the head of the list.  See
1638          * comments in kvm_zap_obsolete_pages().
1639          */
1640         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1641         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1642         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1643         return sp;
1644 }
1645
1646 static void mark_unsync(u64 *spte);
1647 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1648 {
1649         u64 *sptep;
1650         struct rmap_iterator iter;
1651
1652         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1653                 mark_unsync(sptep);
1654         }
1655 }
1656
1657 static void mark_unsync(u64 *spte)
1658 {
1659         struct kvm_mmu_page *sp;
1660         unsigned int index;
1661
1662         sp = sptep_to_sp(spte);
1663         index = spte - sp->spt;
1664         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1665                 return;
1666         if (sp->unsync_children++)
1667                 return;
1668         kvm_mmu_mark_parents_unsync(sp);
1669 }
1670
1671 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1672                                struct kvm_mmu_page *sp)
1673 {
1674         return 0;
1675 }
1676
1677 #define KVM_PAGE_ARRAY_NR 16
1678
1679 struct kvm_mmu_pages {
1680         struct mmu_page_and_offset {
1681                 struct kvm_mmu_page *sp;
1682                 unsigned int idx;
1683         } page[KVM_PAGE_ARRAY_NR];
1684         unsigned int nr;
1685 };
1686
1687 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1688                          int idx)
1689 {
1690         int i;
1691
1692         if (sp->unsync)
1693                 for (i=0; i < pvec->nr; i++)
1694                         if (pvec->page[i].sp == sp)
1695                                 return 0;
1696
1697         pvec->page[pvec->nr].sp = sp;
1698         pvec->page[pvec->nr].idx = idx;
1699         pvec->nr++;
1700         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1701 }
1702
1703 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1704 {
1705         --sp->unsync_children;
1706         WARN_ON((int)sp->unsync_children < 0);
1707         __clear_bit(idx, sp->unsync_child_bitmap);
1708 }
1709
1710 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1711                            struct kvm_mmu_pages *pvec)
1712 {
1713         int i, ret, nr_unsync_leaf = 0;
1714
1715         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1716                 struct kvm_mmu_page *child;
1717                 u64 ent = sp->spt[i];
1718
1719                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1720                         clear_unsync_child_bit(sp, i);
1721                         continue;
1722                 }
1723
1724                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1725
1726                 if (child->unsync_children) {
1727                         if (mmu_pages_add(pvec, child, i))
1728                                 return -ENOSPC;
1729
1730                         ret = __mmu_unsync_walk(child, pvec);
1731                         if (!ret) {
1732                                 clear_unsync_child_bit(sp, i);
1733                                 continue;
1734                         } else if (ret > 0) {
1735                                 nr_unsync_leaf += ret;
1736                         } else
1737                                 return ret;
1738                 } else if (child->unsync) {
1739                         nr_unsync_leaf++;
1740                         if (mmu_pages_add(pvec, child, i))
1741                                 return -ENOSPC;
1742                 } else
1743                         clear_unsync_child_bit(sp, i);
1744         }
1745
1746         return nr_unsync_leaf;
1747 }
1748
1749 #define INVALID_INDEX (-1)
1750
1751 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1752                            struct kvm_mmu_pages *pvec)
1753 {
1754         pvec->nr = 0;
1755         if (!sp->unsync_children)
1756                 return 0;
1757
1758         mmu_pages_add(pvec, sp, INVALID_INDEX);
1759         return __mmu_unsync_walk(sp, pvec);
1760 }
1761
1762 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1763 {
1764         WARN_ON(!sp->unsync);
1765         trace_kvm_mmu_sync_page(sp);
1766         sp->unsync = 0;
1767         --kvm->stat.mmu_unsync;
1768 }
1769
1770 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1771                                      struct list_head *invalid_list);
1772 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1773                                     struct list_head *invalid_list);
1774
1775 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1776         hlist_for_each_entry(_sp, _list, hash_link)                     \
1777                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1778                 } else
1779
1780 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1781         for_each_valid_sp(_kvm, _sp,                                    \
1782           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1783                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1784
1785 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1786 {
1787         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1788 }
1789
1790 /* @sp->gfn should be write-protected at the call site */
1791 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1792                             struct list_head *invalid_list)
1793 {
1794         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1795             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1796                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1797                 return false;
1798         }
1799
1800         return true;
1801 }
1802
1803 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1804                                         struct list_head *invalid_list,
1805                                         bool remote_flush)
1806 {
1807         if (!remote_flush && list_empty(invalid_list))
1808                 return false;
1809
1810         if (!list_empty(invalid_list))
1811                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1812         else
1813                 kvm_flush_remote_tlbs(kvm);
1814         return true;
1815 }
1816
1817 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1818                                  struct list_head *invalid_list,
1819                                  bool remote_flush, bool local_flush)
1820 {
1821         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1822                 return;
1823
1824         if (local_flush)
1825                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1826 }
1827
1828 #ifdef CONFIG_KVM_MMU_AUDIT
1829 #include "mmu_audit.c"
1830 #else
1831 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1832 static void mmu_audit_disable(void) { }
1833 #endif
1834
1835 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1836 {
1837         return sp->role.invalid ||
1838                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1839 }
1840
1841 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1842                          struct list_head *invalid_list)
1843 {
1844         kvm_unlink_unsync_page(vcpu->kvm, sp);
1845         return __kvm_sync_page(vcpu, sp, invalid_list);
1846 }
1847
1848 /* @gfn should be write-protected at the call site */
1849 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1850                            struct list_head *invalid_list)
1851 {
1852         struct kvm_mmu_page *s;
1853         bool ret = false;
1854
1855         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1856                 if (!s->unsync)
1857                         continue;
1858
1859                 WARN_ON(s->role.level != PG_LEVEL_4K);
1860                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1861         }
1862
1863         return ret;
1864 }
1865
1866 struct mmu_page_path {
1867         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1868         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1869 };
1870
1871 #define for_each_sp(pvec, sp, parents, i)                       \
1872                 for (i = mmu_pages_first(&pvec, &parents);      \
1873                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1874                         i = mmu_pages_next(&pvec, &parents, i))
1875
1876 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1877                           struct mmu_page_path *parents,
1878                           int i)
1879 {
1880         int n;
1881
1882         for (n = i+1; n < pvec->nr; n++) {
1883                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1884                 unsigned idx = pvec->page[n].idx;
1885                 int level = sp->role.level;
1886
1887                 parents->idx[level-1] = idx;
1888                 if (level == PG_LEVEL_4K)
1889                         break;
1890
1891                 parents->parent[level-2] = sp;
1892         }
1893
1894         return n;
1895 }
1896
1897 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1898                            struct mmu_page_path *parents)
1899 {
1900         struct kvm_mmu_page *sp;
1901         int level;
1902
1903         if (pvec->nr == 0)
1904                 return 0;
1905
1906         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1907
1908         sp = pvec->page[0].sp;
1909         level = sp->role.level;
1910         WARN_ON(level == PG_LEVEL_4K);
1911
1912         parents->parent[level-2] = sp;
1913
1914         /* Also set up a sentinel.  Further entries in pvec are all
1915          * children of sp, so this element is never overwritten.
1916          */
1917         parents->parent[level-1] = NULL;
1918         return mmu_pages_next(pvec, parents, 0);
1919 }
1920
1921 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1922 {
1923         struct kvm_mmu_page *sp;
1924         unsigned int level = 0;
1925
1926         do {
1927                 unsigned int idx = parents->idx[level];
1928                 sp = parents->parent[level];
1929                 if (!sp)
1930                         return;
1931
1932                 WARN_ON(idx == INVALID_INDEX);
1933                 clear_unsync_child_bit(sp, idx);
1934                 level++;
1935         } while (!sp->unsync_children);
1936 }
1937
1938 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1939                               struct kvm_mmu_page *parent)
1940 {
1941         int i;
1942         struct kvm_mmu_page *sp;
1943         struct mmu_page_path parents;
1944         struct kvm_mmu_pages pages;
1945         LIST_HEAD(invalid_list);
1946         bool flush = false;
1947
1948         while (mmu_unsync_walk(parent, &pages)) {
1949                 bool protected = false;
1950
1951                 for_each_sp(pages, sp, parents, i)
1952                         protected |= rmap_write_protect(vcpu, sp->gfn);
1953
1954                 if (protected) {
1955                         kvm_flush_remote_tlbs(vcpu->kvm);
1956                         flush = false;
1957                 }
1958
1959                 for_each_sp(pages, sp, parents, i) {
1960                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1961                         mmu_pages_clear_parents(&parents);
1962                 }
1963                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1964                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1965                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1966                         flush = false;
1967                 }
1968         }
1969
1970         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1971 }
1972
1973 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1974 {
1975         atomic_set(&sp->write_flooding_count,  0);
1976 }
1977
1978 static void clear_sp_write_flooding_count(u64 *spte)
1979 {
1980         __clear_sp_write_flooding_count(sptep_to_sp(spte));
1981 }
1982
1983 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1984                                              gfn_t gfn,
1985                                              gva_t gaddr,
1986                                              unsigned level,
1987                                              int direct,
1988                                              unsigned int access)
1989 {
1990         bool direct_mmu = vcpu->arch.mmu->direct_map;
1991         union kvm_mmu_page_role role;
1992         struct hlist_head *sp_list;
1993         unsigned quadrant;
1994         struct kvm_mmu_page *sp;
1995         bool need_sync = false;
1996         bool flush = false;
1997         int collisions = 0;
1998         LIST_HEAD(invalid_list);
1999
2000         role = vcpu->arch.mmu->mmu_role.base;
2001         role.level = level;
2002         role.direct = direct;
2003         if (role.direct)
2004                 role.gpte_is_8_bytes = true;
2005         role.access = access;
2006         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2007                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2008                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2009                 role.quadrant = quadrant;
2010         }
2011
2012         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2013         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2014                 if (sp->gfn != gfn) {
2015                         collisions++;
2016                         continue;
2017                 }
2018
2019                 if (!need_sync && sp->unsync)
2020                         need_sync = true;
2021
2022                 if (sp->role.word != role.word)
2023                         continue;
2024
2025                 if (direct_mmu)
2026                         goto trace_get_page;
2027
2028                 if (sp->unsync) {
2029                         /* The page is good, but __kvm_sync_page might still end
2030                          * up zapping it.  If so, break in order to rebuild it.
2031                          */
2032                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2033                                 break;
2034
2035                         WARN_ON(!list_empty(&invalid_list));
2036                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2037                 }
2038
2039                 if (sp->unsync_children)
2040                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2041
2042                 __clear_sp_write_flooding_count(sp);
2043
2044 trace_get_page:
2045                 trace_kvm_mmu_get_page(sp, false);
2046                 goto out;
2047         }
2048
2049         ++vcpu->kvm->stat.mmu_cache_miss;
2050
2051         sp = kvm_mmu_alloc_page(vcpu, direct);
2052
2053         sp->gfn = gfn;
2054         sp->role = role;
2055         hlist_add_head(&sp->hash_link, sp_list);
2056         if (!direct) {
2057                 /*
2058                  * we should do write protection before syncing pages
2059                  * otherwise the content of the synced shadow page may
2060                  * be inconsistent with guest page table.
2061                  */
2062                 account_shadowed(vcpu->kvm, sp);
2063                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2064                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2065
2066                 if (level > PG_LEVEL_4K && need_sync)
2067                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2068         }
2069         trace_kvm_mmu_get_page(sp, true);
2070
2071         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2072 out:
2073         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2074                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2075         return sp;
2076 }
2077
2078 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2079                                         struct kvm_vcpu *vcpu, hpa_t root,
2080                                         u64 addr)
2081 {
2082         iterator->addr = addr;
2083         iterator->shadow_addr = root;
2084         iterator->level = vcpu->arch.mmu->shadow_root_level;
2085
2086         if (iterator->level == PT64_ROOT_4LEVEL &&
2087             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2088             !vcpu->arch.mmu->direct_map)
2089                 --iterator->level;
2090
2091         if (iterator->level == PT32E_ROOT_LEVEL) {
2092                 /*
2093                  * prev_root is currently only used for 64-bit hosts. So only
2094                  * the active root_hpa is valid here.
2095                  */
2096                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2097
2098                 iterator->shadow_addr
2099                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2100                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2101                 --iterator->level;
2102                 if (!iterator->shadow_addr)
2103                         iterator->level = 0;
2104         }
2105 }
2106
2107 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2108                              struct kvm_vcpu *vcpu, u64 addr)
2109 {
2110         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2111                                     addr);
2112 }
2113
2114 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2115 {
2116         if (iterator->level < PG_LEVEL_4K)
2117                 return false;
2118
2119         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2120         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2121         return true;
2122 }
2123
2124 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2125                                u64 spte)
2126 {
2127         if (is_last_spte(spte, iterator->level)) {
2128                 iterator->level = 0;
2129                 return;
2130         }
2131
2132         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2133         --iterator->level;
2134 }
2135
2136 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2137 {
2138         __shadow_walk_next(iterator, *iterator->sptep);
2139 }
2140
2141 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2142                              struct kvm_mmu_page *sp)
2143 {
2144         u64 spte;
2145
2146         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2147
2148         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2149
2150         mmu_spte_set(sptep, spte);
2151
2152         mmu_page_add_parent_pte(vcpu, sp, sptep);
2153
2154         if (sp->unsync_children || sp->unsync)
2155                 mark_unsync(sptep);
2156 }
2157
2158 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2159                                    unsigned direct_access)
2160 {
2161         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2162                 struct kvm_mmu_page *child;
2163
2164                 /*
2165                  * For the direct sp, if the guest pte's dirty bit
2166                  * changed form clean to dirty, it will corrupt the
2167                  * sp's access: allow writable in the read-only sp,
2168                  * so we should update the spte at this point to get
2169                  * a new sp with the correct access.
2170                  */
2171                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2172                 if (child->role.access == direct_access)
2173                         return;
2174
2175                 drop_parent_pte(child, sptep);
2176                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2177         }
2178 }
2179
2180 /* Returns the number of zapped non-leaf child shadow pages. */
2181 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2182                             u64 *spte, struct list_head *invalid_list)
2183 {
2184         u64 pte;
2185         struct kvm_mmu_page *child;
2186
2187         pte = *spte;
2188         if (is_shadow_present_pte(pte)) {
2189                 if (is_last_spte(pte, sp->role.level)) {
2190                         drop_spte(kvm, spte);
2191                         if (is_large_pte(pte))
2192                                 --kvm->stat.lpages;
2193                 } else {
2194                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2195                         drop_parent_pte(child, spte);
2196
2197                         /*
2198                          * Recursively zap nested TDP SPs, parentless SPs are
2199                          * unlikely to be used again in the near future.  This
2200                          * avoids retaining a large number of stale nested SPs.
2201                          */
2202                         if (tdp_enabled && invalid_list &&
2203                             child->role.guest_mode && !child->parent_ptes.val)
2204                                 return kvm_mmu_prepare_zap_page(kvm, child,
2205                                                                 invalid_list);
2206                 }
2207         } else if (is_mmio_spte(pte)) {
2208                 mmu_spte_clear_no_track(spte);
2209         }
2210         return 0;
2211 }
2212
2213 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2214                                         struct kvm_mmu_page *sp,
2215                                         struct list_head *invalid_list)
2216 {
2217         int zapped = 0;
2218         unsigned i;
2219
2220         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2221                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2222
2223         return zapped;
2224 }
2225
2226 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2227 {
2228         u64 *sptep;
2229         struct rmap_iterator iter;
2230
2231         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2232                 drop_parent_pte(sp, sptep);
2233 }
2234
2235 static int mmu_zap_unsync_children(struct kvm *kvm,
2236                                    struct kvm_mmu_page *parent,
2237                                    struct list_head *invalid_list)
2238 {
2239         int i, zapped = 0;
2240         struct mmu_page_path parents;
2241         struct kvm_mmu_pages pages;
2242
2243         if (parent->role.level == PG_LEVEL_4K)
2244                 return 0;
2245
2246         while (mmu_unsync_walk(parent, &pages)) {
2247                 struct kvm_mmu_page *sp;
2248
2249                 for_each_sp(pages, sp, parents, i) {
2250                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2251                         mmu_pages_clear_parents(&parents);
2252                         zapped++;
2253                 }
2254         }
2255
2256         return zapped;
2257 }
2258
2259 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2260                                        struct kvm_mmu_page *sp,
2261                                        struct list_head *invalid_list,
2262                                        int *nr_zapped)
2263 {
2264         bool list_unstable;
2265
2266         trace_kvm_mmu_prepare_zap_page(sp);
2267         ++kvm->stat.mmu_shadow_zapped;
2268         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2269         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2270         kvm_mmu_unlink_parents(kvm, sp);
2271
2272         /* Zapping children means active_mmu_pages has become unstable. */
2273         list_unstable = *nr_zapped;
2274
2275         if (!sp->role.invalid && !sp->role.direct)
2276                 unaccount_shadowed(kvm, sp);
2277
2278         if (sp->unsync)
2279                 kvm_unlink_unsync_page(kvm, sp);
2280         if (!sp->root_count) {
2281                 /* Count self */
2282                 (*nr_zapped)++;
2283
2284                 /*
2285                  * Already invalid pages (previously active roots) are not on
2286                  * the active page list.  See list_del() in the "else" case of
2287                  * !sp->root_count.
2288                  */
2289                 if (sp->role.invalid)
2290                         list_add(&sp->link, invalid_list);
2291                 else
2292                         list_move(&sp->link, invalid_list);
2293                 kvm_mod_used_mmu_pages(kvm, -1);
2294         } else {
2295                 /*
2296                  * Remove the active root from the active page list, the root
2297                  * will be explicitly freed when the root_count hits zero.
2298                  */
2299                 list_del(&sp->link);
2300
2301                 /*
2302                  * Obsolete pages cannot be used on any vCPUs, see the comment
2303                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2304                  * treats invalid shadow pages as being obsolete.
2305                  */
2306                 if (!is_obsolete_sp(kvm, sp))
2307                         kvm_reload_remote_mmus(kvm);
2308         }
2309
2310         if (sp->lpage_disallowed)
2311                 unaccount_huge_nx_page(kvm, sp);
2312
2313         sp->role.invalid = 1;
2314         return list_unstable;
2315 }
2316
2317 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2318                                      struct list_head *invalid_list)
2319 {
2320         int nr_zapped;
2321
2322         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2323         return nr_zapped;
2324 }
2325
2326 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2327                                     struct list_head *invalid_list)
2328 {
2329         struct kvm_mmu_page *sp, *nsp;
2330
2331         if (list_empty(invalid_list))
2332                 return;
2333
2334         /*
2335          * We need to make sure everyone sees our modifications to
2336          * the page tables and see changes to vcpu->mode here. The barrier
2337          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2338          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2339          *
2340          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2341          * guest mode and/or lockless shadow page table walks.
2342          */
2343         kvm_flush_remote_tlbs(kvm);
2344
2345         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2346                 WARN_ON(!sp->role.invalid || sp->root_count);
2347                 kvm_mmu_free_page(sp);
2348         }
2349 }
2350
2351 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2352                                                   unsigned long nr_to_zap)
2353 {
2354         unsigned long total_zapped = 0;
2355         struct kvm_mmu_page *sp, *tmp;
2356         LIST_HEAD(invalid_list);
2357         bool unstable;
2358         int nr_zapped;
2359
2360         if (list_empty(&kvm->arch.active_mmu_pages))
2361                 return 0;
2362
2363 restart:
2364         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2365                 /*
2366                  * Don't zap active root pages, the page itself can't be freed
2367                  * and zapping it will just force vCPUs to realloc and reload.
2368                  */
2369                 if (sp->root_count)
2370                         continue;
2371
2372                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2373                                                       &nr_zapped);
2374                 total_zapped += nr_zapped;
2375                 if (total_zapped >= nr_to_zap)
2376                         break;
2377
2378                 if (unstable)
2379                         goto restart;
2380         }
2381
2382         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2383
2384         kvm->stat.mmu_recycled += total_zapped;
2385         return total_zapped;
2386 }
2387
2388 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2389 {
2390         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2391                 return kvm->arch.n_max_mmu_pages -
2392                         kvm->arch.n_used_mmu_pages;
2393
2394         return 0;
2395 }
2396
2397 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2398 {
2399         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2400
2401         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2402                 return 0;
2403
2404         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2405
2406         /*
2407          * Note, this check is intentionally soft, it only guarantees that one
2408          * page is available, while the caller may end up allocating as many as
2409          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2410          * exceeding the (arbitrary by default) limit will not harm the host,
2411          * being too agressive may unnecessarily kill the guest, and getting an
2412          * exact count is far more trouble than it's worth, especially in the
2413          * page fault paths.
2414          */
2415         if (!kvm_mmu_available_pages(vcpu->kvm))
2416                 return -ENOSPC;
2417         return 0;
2418 }
2419
2420 /*
2421  * Changing the number of mmu pages allocated to the vm
2422  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2423  */
2424 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2425 {
2426         write_lock(&kvm->mmu_lock);
2427
2428         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2429                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2430                                                   goal_nr_mmu_pages);
2431
2432                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2433         }
2434
2435         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2436
2437         write_unlock(&kvm->mmu_lock);
2438 }
2439
2440 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2441 {
2442         struct kvm_mmu_page *sp;
2443         LIST_HEAD(invalid_list);
2444         int r;
2445
2446         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2447         r = 0;
2448         write_lock(&kvm->mmu_lock);
2449         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2450                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2451                          sp->role.word);
2452                 r = 1;
2453                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2454         }
2455         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2456         write_unlock(&kvm->mmu_lock);
2457
2458         return r;
2459 }
2460
2461 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2462 {
2463         gpa_t gpa;
2464         int r;
2465
2466         if (vcpu->arch.mmu->direct_map)
2467                 return 0;
2468
2469         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2470
2471         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2472
2473         return r;
2474 }
2475
2476 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2477 {
2478         trace_kvm_mmu_unsync_page(sp);
2479         ++vcpu->kvm->stat.mmu_unsync;
2480         sp->unsync = 1;
2481
2482         kvm_mmu_mark_parents_unsync(sp);
2483 }
2484
2485 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2486                             bool can_unsync)
2487 {
2488         struct kvm_mmu_page *sp;
2489
2490         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2491                 return true;
2492
2493         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2494                 if (!can_unsync)
2495                         return true;
2496
2497                 if (sp->unsync)
2498                         continue;
2499
2500                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2501                 kvm_unsync_page(vcpu, sp);
2502         }
2503
2504         /*
2505          * We need to ensure that the marking of unsync pages is visible
2506          * before the SPTE is updated to allow writes because
2507          * kvm_mmu_sync_roots() checks the unsync flags without holding
2508          * the MMU lock and so can race with this. If the SPTE was updated
2509          * before the page had been marked as unsync-ed, something like the
2510          * following could happen:
2511          *
2512          * CPU 1                    CPU 2
2513          * ---------------------------------------------------------------------
2514          * 1.2 Host updates SPTE
2515          *     to be writable
2516          *                      2.1 Guest writes a GPTE for GVA X.
2517          *                          (GPTE being in the guest page table shadowed
2518          *                           by the SP from CPU 1.)
2519          *                          This reads SPTE during the page table walk.
2520          *                          Since SPTE.W is read as 1, there is no
2521          *                          fault.
2522          *
2523          *                      2.2 Guest issues TLB flush.
2524          *                          That causes a VM Exit.
2525          *
2526          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2527          *                          Since it is false, so it just returns.
2528          *
2529          *                      2.4 Guest accesses GVA X.
2530          *                          Since the mapping in the SP was not updated,
2531          *                          so the old mapping for GVA X incorrectly
2532          *                          gets used.
2533          * 1.1 Host marks SP
2534          *     as unsync
2535          *     (sp->unsync = true)
2536          *
2537          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2538          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2539          * pairs with this write barrier.
2540          */
2541         smp_wmb();
2542
2543         return false;
2544 }
2545
2546 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2547                     unsigned int pte_access, int level,
2548                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2549                     bool can_unsync, bool host_writable)
2550 {
2551         u64 spte;
2552         struct kvm_mmu_page *sp;
2553         int ret;
2554
2555         sp = sptep_to_sp(sptep);
2556
2557         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2558                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2559
2560         if (spte & PT_WRITABLE_MASK)
2561                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2562
2563         if (*sptep == spte)
2564                 ret |= SET_SPTE_SPURIOUS;
2565         else if (mmu_spte_update(sptep, spte))
2566                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2567         return ret;
2568 }
2569
2570 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2571                         unsigned int pte_access, bool write_fault, int level,
2572                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2573                         bool host_writable)
2574 {
2575         int was_rmapped = 0;
2576         int rmap_count;
2577         int set_spte_ret;
2578         int ret = RET_PF_FIXED;
2579         bool flush = false;
2580
2581         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2582                  *sptep, write_fault, gfn);
2583
2584         if (unlikely(is_noslot_pfn(pfn))) {
2585                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2586                 return RET_PF_EMULATE;
2587         }
2588
2589         if (is_shadow_present_pte(*sptep)) {
2590                 /*
2591                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2592                  * the parent of the now unreachable PTE.
2593                  */
2594                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2595                         struct kvm_mmu_page *child;
2596                         u64 pte = *sptep;
2597
2598                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2599                         drop_parent_pte(child, sptep);
2600                         flush = true;
2601                 } else if (pfn != spte_to_pfn(*sptep)) {
2602                         pgprintk("hfn old %llx new %llx\n",
2603                                  spte_to_pfn(*sptep), pfn);
2604                         drop_spte(vcpu->kvm, sptep);
2605                         flush = true;
2606                 } else
2607                         was_rmapped = 1;
2608         }
2609
2610         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2611                                 speculative, true, host_writable);
2612         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2613                 if (write_fault)
2614                         ret = RET_PF_EMULATE;
2615                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2616         }
2617
2618         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2619                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2620                                 KVM_PAGES_PER_HPAGE(level));
2621
2622         /*
2623          * The fault is fully spurious if and only if the new SPTE and old SPTE
2624          * are identical, and emulation is not required.
2625          */
2626         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2627                 WARN_ON_ONCE(!was_rmapped);
2628                 return RET_PF_SPURIOUS;
2629         }
2630
2631         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2632         trace_kvm_mmu_set_spte(level, gfn, sptep);
2633         if (!was_rmapped && is_large_pte(*sptep))
2634                 ++vcpu->kvm->stat.lpages;
2635
2636         if (is_shadow_present_pte(*sptep)) {
2637                 if (!was_rmapped) {
2638                         rmap_count = rmap_add(vcpu, sptep, gfn);
2639                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2640                                 rmap_recycle(vcpu, sptep, gfn);
2641                 }
2642         }
2643
2644         return ret;
2645 }
2646
2647 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2648                                      bool no_dirty_log)
2649 {
2650         struct kvm_memory_slot *slot;
2651
2652         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2653         if (!slot)
2654                 return KVM_PFN_ERR_FAULT;
2655
2656         return gfn_to_pfn_memslot_atomic(slot, gfn);
2657 }
2658
2659 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2660                                     struct kvm_mmu_page *sp,
2661                                     u64 *start, u64 *end)
2662 {
2663         struct page *pages[PTE_PREFETCH_NUM];
2664         struct kvm_memory_slot *slot;
2665         unsigned int access = sp->role.access;
2666         int i, ret;
2667         gfn_t gfn;
2668
2669         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2670         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2671         if (!slot)
2672                 return -1;
2673
2674         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2675         if (ret <= 0)
2676                 return -1;
2677
2678         for (i = 0; i < ret; i++, gfn++, start++) {
2679                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2680                              page_to_pfn(pages[i]), true, true);
2681                 put_page(pages[i]);
2682         }
2683
2684         return 0;
2685 }
2686
2687 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2688                                   struct kvm_mmu_page *sp, u64 *sptep)
2689 {
2690         u64 *spte, *start = NULL;
2691         int i;
2692
2693         WARN_ON(!sp->role.direct);
2694
2695         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2696         spte = sp->spt + i;
2697
2698         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2699                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2700                         if (!start)
2701                                 continue;
2702                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2703                                 break;
2704                         start = NULL;
2705                 } else if (!start)
2706                         start = spte;
2707         }
2708 }
2709
2710 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2711 {
2712         struct kvm_mmu_page *sp;
2713
2714         sp = sptep_to_sp(sptep);
2715
2716         /*
2717          * Without accessed bits, there's no way to distinguish between
2718          * actually accessed translations and prefetched, so disable pte
2719          * prefetch if accessed bits aren't available.
2720          */
2721         if (sp_ad_disabled(sp))
2722                 return;
2723
2724         if (sp->role.level > PG_LEVEL_4K)
2725                 return;
2726
2727         /*
2728          * If addresses are being invalidated, skip prefetching to avoid
2729          * accidentally prefetching those addresses.
2730          */
2731         if (unlikely(vcpu->kvm->mmu_notifier_count))
2732                 return;
2733
2734         __direct_pte_prefetch(vcpu, sp, sptep);
2735 }
2736
2737 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2738                                   struct kvm_memory_slot *slot)
2739 {
2740         unsigned long hva;
2741         pte_t *pte;
2742         int level;
2743
2744         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2745                 return PG_LEVEL_4K;
2746
2747         /*
2748          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2749          * is not solely for performance, it's also necessary to avoid the
2750          * "writable" check in __gfn_to_hva_many(), which will always fail on
2751          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2752          * page fault steps have already verified the guest isn't writing a
2753          * read-only memslot.
2754          */
2755         hva = __gfn_to_hva_memslot(slot, gfn);
2756
2757         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2758         if (unlikely(!pte))
2759                 return PG_LEVEL_4K;
2760
2761         return level;
2762 }
2763
2764 int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot,
2765                               gfn_t gfn, kvm_pfn_t pfn, int max_level)
2766 {
2767         struct kvm_lpage_info *linfo;
2768
2769         max_level = min(max_level, max_huge_page_level);
2770         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2771                 linfo = lpage_info_slot(gfn, slot, max_level);
2772                 if (!linfo->disallow_lpage)
2773                         break;
2774         }
2775
2776         if (max_level == PG_LEVEL_4K)
2777                 return PG_LEVEL_4K;
2778
2779         return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2780 }
2781
2782 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2783                             int max_level, kvm_pfn_t *pfnp,
2784                             bool huge_page_disallowed, int *req_level)
2785 {
2786         struct kvm_memory_slot *slot;
2787         kvm_pfn_t pfn = *pfnp;
2788         kvm_pfn_t mask;
2789         int level;
2790
2791         *req_level = PG_LEVEL_4K;
2792
2793         if (unlikely(max_level == PG_LEVEL_4K))
2794                 return PG_LEVEL_4K;
2795
2796         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2797                 return PG_LEVEL_4K;
2798
2799         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2800         if (!slot)
2801                 return PG_LEVEL_4K;
2802
2803         level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2804         if (level == PG_LEVEL_4K)
2805                 return level;
2806
2807         *req_level = level = min(level, max_level);
2808
2809         /*
2810          * Enforce the iTLB multihit workaround after capturing the requested
2811          * level, which will be used to do precise, accurate accounting.
2812          */
2813         if (huge_page_disallowed)
2814                 return PG_LEVEL_4K;
2815
2816         /*
2817          * mmu_notifier_retry() was successful and mmu_lock is held, so
2818          * the pmd can't be split from under us.
2819          */
2820         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2821         VM_BUG_ON((gfn & mask) != (pfn & mask));
2822         *pfnp = pfn & ~mask;
2823
2824         return level;
2825 }
2826
2827 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2828                                 kvm_pfn_t *pfnp, int *goal_levelp)
2829 {
2830         int level = *goal_levelp;
2831
2832         if (cur_level == level && level > PG_LEVEL_4K &&
2833             is_shadow_present_pte(spte) &&
2834             !is_large_pte(spte)) {
2835                 /*
2836                  * A small SPTE exists for this pfn, but FNAME(fetch)
2837                  * and __direct_map would like to create a large PTE
2838                  * instead: just force them to go down another level,
2839                  * patching back for them into pfn the next 9 bits of
2840                  * the address.
2841                  */
2842                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2843                                 KVM_PAGES_PER_HPAGE(level - 1);
2844                 *pfnp |= gfn & page_mask;
2845                 (*goal_levelp)--;
2846         }
2847 }
2848
2849 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2850                         int map_writable, int max_level, kvm_pfn_t pfn,
2851                         bool prefault, bool is_tdp)
2852 {
2853         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2854         bool write = error_code & PFERR_WRITE_MASK;
2855         bool exec = error_code & PFERR_FETCH_MASK;
2856         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2857         struct kvm_shadow_walk_iterator it;
2858         struct kvm_mmu_page *sp;
2859         int level, req_level, ret;
2860         gfn_t gfn = gpa >> PAGE_SHIFT;
2861         gfn_t base_gfn = gfn;
2862
2863         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2864                 return RET_PF_RETRY;
2865
2866         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2867                                         huge_page_disallowed, &req_level);
2868
2869         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2870         for_each_shadow_entry(vcpu, gpa, it) {
2871                 /*
2872                  * We cannot overwrite existing page tables with an NX
2873                  * large page, as the leaf could be executable.
2874                  */
2875                 if (nx_huge_page_workaround_enabled)
2876                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2877                                                    &pfn, &level);
2878
2879                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2880                 if (it.level == level)
2881                         break;
2882
2883                 drop_large_spte(vcpu, it.sptep);
2884                 if (!is_shadow_present_pte(*it.sptep)) {
2885                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2886                                               it.level - 1, true, ACC_ALL);
2887
2888                         link_shadow_page(vcpu, it.sptep, sp);
2889                         if (is_tdp && huge_page_disallowed &&
2890                             req_level >= it.level)
2891                                 account_huge_nx_page(vcpu->kvm, sp);
2892                 }
2893         }
2894
2895         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2896                            write, level, base_gfn, pfn, prefault,
2897                            map_writable);
2898         if (ret == RET_PF_SPURIOUS)
2899                 return ret;
2900
2901         direct_pte_prefetch(vcpu, it.sptep);
2902         ++vcpu->stat.pf_fixed;
2903         return ret;
2904 }
2905
2906 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2907 {
2908         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2909 }
2910
2911 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2912 {
2913         /*
2914          * Do not cache the mmio info caused by writing the readonly gfn
2915          * into the spte otherwise read access on readonly gfn also can
2916          * caused mmio page fault and treat it as mmio access.
2917          */
2918         if (pfn == KVM_PFN_ERR_RO_FAULT)
2919                 return RET_PF_EMULATE;
2920
2921         if (pfn == KVM_PFN_ERR_HWPOISON) {
2922                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2923                 return RET_PF_RETRY;
2924         }
2925
2926         return -EFAULT;
2927 }
2928
2929 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2930                                 kvm_pfn_t pfn, unsigned int access,
2931                                 int *ret_val)
2932 {
2933         /* The pfn is invalid, report the error! */
2934         if (unlikely(is_error_pfn(pfn))) {
2935                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2936                 return true;
2937         }
2938
2939         if (unlikely(is_noslot_pfn(pfn))) {
2940                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2941                                      access & shadow_mmio_access_mask);
2942                 /*
2943                  * If MMIO caching is disabled, emulate immediately without
2944                  * touching the shadow page tables as attempting to install an
2945                  * MMIO SPTE will just be an expensive nop.
2946                  */
2947                 if (unlikely(!shadow_mmio_value)) {
2948                         *ret_val = RET_PF_EMULATE;
2949                         return true;
2950                 }
2951         }
2952
2953         return false;
2954 }
2955
2956 static bool page_fault_can_be_fast(u32 error_code)
2957 {
2958         /*
2959          * Do not fix the mmio spte with invalid generation number which
2960          * need to be updated by slow page fault path.
2961          */
2962         if (unlikely(error_code & PFERR_RSVD_MASK))
2963                 return false;
2964
2965         /* See if the page fault is due to an NX violation */
2966         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2967                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2968                 return false;
2969
2970         /*
2971          * #PF can be fast if:
2972          * 1. The shadow page table entry is not present, which could mean that
2973          *    the fault is potentially caused by access tracking (if enabled).
2974          * 2. The shadow page table entry is present and the fault
2975          *    is caused by write-protect, that means we just need change the W
2976          *    bit of the spte which can be done out of mmu-lock.
2977          *
2978          * However, if access tracking is disabled we know that a non-present
2979          * page must be a genuine page fault where we have to create a new SPTE.
2980          * So, if access tracking is disabled, we return true only for write
2981          * accesses to a present page.
2982          */
2983
2984         return shadow_acc_track_mask != 0 ||
2985                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2986                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2987 }
2988
2989 /*
2990  * Returns true if the SPTE was fixed successfully. Otherwise,
2991  * someone else modified the SPTE from its original value.
2992  */
2993 static bool
2994 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2995                         u64 *sptep, u64 old_spte, u64 new_spte)
2996 {
2997         gfn_t gfn;
2998
2999         WARN_ON(!sp->role.direct);
3000
3001         /*
3002          * Theoretically we could also set dirty bit (and flush TLB) here in
3003          * order to eliminate unnecessary PML logging. See comments in
3004          * set_spte. But fast_page_fault is very unlikely to happen with PML
3005          * enabled, so we do not do this. This might result in the same GPA
3006          * to be logged in PML buffer again when the write really happens, and
3007          * eventually to be called by mark_page_dirty twice. But it's also no
3008          * harm. This also avoids the TLB flush needed after setting dirty bit
3009          * so non-PML cases won't be impacted.
3010          *
3011          * Compare with set_spte where instead shadow_dirty_mask is set.
3012          */
3013         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3014                 return false;
3015
3016         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3017                 /*
3018                  * The gfn of direct spte is stable since it is
3019                  * calculated by sp->gfn.
3020                  */
3021                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3022                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3023         }
3024
3025         return true;
3026 }
3027
3028 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3029 {
3030         if (fault_err_code & PFERR_FETCH_MASK)
3031                 return is_executable_pte(spte);
3032
3033         if (fault_err_code & PFERR_WRITE_MASK)
3034                 return is_writable_pte(spte);
3035
3036         /* Fault was on Read access */
3037         return spte & PT_PRESENT_MASK;
3038 }
3039
3040 /*
3041  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3042  */
3043 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3044                            u32 error_code)
3045 {
3046         struct kvm_shadow_walk_iterator iterator;
3047         struct kvm_mmu_page *sp;
3048         int ret = RET_PF_INVALID;
3049         u64 spte = 0ull;
3050         uint retry_count = 0;
3051
3052         if (!page_fault_can_be_fast(error_code))
3053                 return ret;
3054
3055         walk_shadow_page_lockless_begin(vcpu);
3056
3057         do {
3058                 u64 new_spte;
3059
3060                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3061                         if (!is_shadow_present_pte(spte))
3062                                 break;
3063
3064                 if (!is_shadow_present_pte(spte))
3065                         break;
3066
3067                 sp = sptep_to_sp(iterator.sptep);
3068                 if (!is_last_spte(spte, sp->role.level))
3069                         break;
3070
3071                 /*
3072                  * Check whether the memory access that caused the fault would
3073                  * still cause it if it were to be performed right now. If not,
3074                  * then this is a spurious fault caused by TLB lazily flushed,
3075                  * or some other CPU has already fixed the PTE after the
3076                  * current CPU took the fault.
3077                  *
3078                  * Need not check the access of upper level table entries since
3079                  * they are always ACC_ALL.
3080                  */
3081                 if (is_access_allowed(error_code, spte)) {
3082                         ret = RET_PF_SPURIOUS;
3083                         break;
3084                 }
3085
3086                 new_spte = spte;
3087
3088                 if (is_access_track_spte(spte))
3089                         new_spte = restore_acc_track_spte(new_spte);
3090
3091                 /*
3092                  * Currently, to simplify the code, write-protection can
3093                  * be removed in the fast path only if the SPTE was
3094                  * write-protected for dirty-logging or access tracking.
3095                  */
3096                 if ((error_code & PFERR_WRITE_MASK) &&
3097                     spte_can_locklessly_be_made_writable(spte)) {
3098                         new_spte |= PT_WRITABLE_MASK;
3099
3100                         /*
3101                          * Do not fix write-permission on the large spte.  Since
3102                          * we only dirty the first page into the dirty-bitmap in
3103                          * fast_pf_fix_direct_spte(), other pages are missed
3104                          * if its slot has dirty logging enabled.
3105                          *
3106                          * Instead, we let the slow page fault path create a
3107                          * normal spte to fix the access.
3108                          *
3109                          * See the comments in kvm_arch_commit_memory_region().
3110                          */
3111                         if (sp->role.level > PG_LEVEL_4K)
3112                                 break;
3113                 }
3114
3115                 /* Verify that the fault can be handled in the fast path */
3116                 if (new_spte == spte ||
3117                     !is_access_allowed(error_code, new_spte))
3118                         break;
3119
3120                 /*
3121                  * Currently, fast page fault only works for direct mapping
3122                  * since the gfn is not stable for indirect shadow page. See
3123                  * Documentation/virt/kvm/locking.rst to get more detail.
3124                  */
3125                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3126                                             new_spte)) {
3127                         ret = RET_PF_FIXED;
3128                         break;
3129                 }
3130
3131                 if (++retry_count > 4) {
3132                         printk_once(KERN_WARNING
3133                                 "kvm: Fast #PF retrying more than 4 times.\n");
3134                         break;
3135                 }
3136
3137         } while (true);
3138
3139         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3140                               spte, ret);
3141         walk_shadow_page_lockless_end(vcpu);
3142
3143         return ret;
3144 }
3145
3146 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3147                                struct list_head *invalid_list)
3148 {
3149         struct kvm_mmu_page *sp;
3150
3151         if (!VALID_PAGE(*root_hpa))
3152                 return;
3153
3154         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3155
3156         if (kvm_mmu_put_root(kvm, sp)) {
3157                 if (is_tdp_mmu_page(sp))
3158                         kvm_tdp_mmu_free_root(kvm, sp);
3159                 else if (sp->role.invalid)
3160                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3161         }
3162
3163         *root_hpa = INVALID_PAGE;
3164 }
3165
3166 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3167 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3168                         ulong roots_to_free)
3169 {
3170         struct kvm *kvm = vcpu->kvm;
3171         int i;
3172         LIST_HEAD(invalid_list);
3173         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3174
3175         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3176
3177         /* Before acquiring the MMU lock, see if we need to do any real work. */
3178         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3179                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3180                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3181                             VALID_PAGE(mmu->prev_roots[i].hpa))
3182                                 break;
3183
3184                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3185                         return;
3186         }
3187
3188         write_lock(&kvm->mmu_lock);
3189
3190         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3191                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3192                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3193                                            &invalid_list);
3194
3195         if (free_active_root) {
3196                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3197                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3198                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3199                 } else if (mmu->pae_root) {
3200                         for (i = 0; i < 4; ++i) {
3201                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3202                                         continue;
3203
3204                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3205                                                    &invalid_list);
3206                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3207                         }
3208                 }
3209                 mmu->root_hpa = INVALID_PAGE;
3210                 mmu->root_pgd = 0;
3211         }
3212
3213         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3214         write_unlock(&kvm->mmu_lock);
3215 }
3216 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3217
3218 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3219 {
3220         int ret = 0;
3221
3222         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3223                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3224                 ret = 1;
3225         }
3226
3227         return ret;
3228 }
3229
3230 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3231                             u8 level, bool direct)
3232 {
3233         struct kvm_mmu_page *sp;
3234
3235         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3236         ++sp->root_count;
3237
3238         return __pa(sp->spt);
3239 }
3240
3241 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3242 {
3243         struct kvm_mmu *mmu = vcpu->arch.mmu;
3244         u8 shadow_root_level = mmu->shadow_root_level;
3245         hpa_t root;
3246         unsigned i;
3247         int r;
3248
3249         write_lock(&vcpu->kvm->mmu_lock);
3250         r = make_mmu_pages_available(vcpu);
3251         if (r < 0)
3252                 goto out_unlock;
3253
3254         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3255                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3256                 mmu->root_hpa = root;
3257         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3258                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3259                 mmu->root_hpa = root;
3260         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3261                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3262                         r = -EIO;
3263                         goto out_unlock;
3264                 }
3265
3266                 for (i = 0; i < 4; ++i) {
3267                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3268
3269                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3270                                               i << 30, PT32_ROOT_LEVEL, true);
3271                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3272                                            shadow_me_mask;
3273                 }
3274                 mmu->root_hpa = __pa(mmu->pae_root);
3275         } else {
3276                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3277                 r = -EIO;
3278                 goto out_unlock;
3279         }
3280
3281         /* root_pgd is ignored for direct MMUs. */
3282         mmu->root_pgd = 0;
3283 out_unlock:
3284         write_unlock(&vcpu->kvm->mmu_lock);
3285         return r;
3286 }
3287
3288 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3289 {
3290         struct kvm_mmu *mmu = vcpu->arch.mmu;
3291         u64 pdptrs[4], pm_mask;
3292         gfn_t root_gfn, root_pgd;
3293         hpa_t root;
3294         unsigned i;
3295         int r;
3296
3297         root_pgd = mmu->get_guest_pgd(vcpu);
3298         root_gfn = root_pgd >> PAGE_SHIFT;
3299
3300         if (mmu_check_root(vcpu, root_gfn))
3301                 return 1;
3302
3303         /*
3304          * On SVM, reading PDPTRs might access guest memory, which might fault
3305          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3306          */
3307         if (mmu->root_level == PT32E_ROOT_LEVEL) {
3308                 for (i = 0; i < 4; ++i) {
3309                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3310                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3311                                 continue;
3312
3313                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3314                                 return 1;
3315                 }
3316         }
3317
3318         write_lock(&vcpu->kvm->mmu_lock);
3319         r = make_mmu_pages_available(vcpu);
3320         if (r < 0)
3321                 goto out_unlock;
3322
3323         /*
3324          * Do we shadow a long mode page table? If so we need to
3325          * write-protect the guests page table root.
3326          */
3327         if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3328                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3329                                       mmu->shadow_root_level, false);
3330                 mmu->root_hpa = root;
3331                 goto set_root_pgd;
3332         }
3333
3334         if (WARN_ON_ONCE(!mmu->pae_root)) {
3335                 r = -EIO;
3336                 goto out_unlock;
3337         }
3338
3339         /*
3340          * We shadow a 32 bit page table. This may be a legacy 2-level
3341          * or a PAE 3-level page table. In either case we need to be aware that
3342          * the shadow page table may be a PAE or a long mode page table.
3343          */
3344         pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3345         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3346                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3347
3348                 if (WARN_ON_ONCE(!mmu->lm_root)) {
3349                         r = -EIO;
3350                         goto out_unlock;
3351                 }
3352
3353                 mmu->lm_root[0] = __pa(mmu->pae_root) | pm_mask;
3354         }
3355
3356         for (i = 0; i < 4; ++i) {
3357                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3358
3359                 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3360                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3361                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3362                                 continue;
3363                         }
3364                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3365                 }
3366
3367                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3368                                       PT32_ROOT_LEVEL, false);
3369                 mmu->pae_root[i] = root | pm_mask;
3370         }
3371
3372         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3373                 mmu->root_hpa = __pa(mmu->lm_root);
3374         else
3375                 mmu->root_hpa = __pa(mmu->pae_root);
3376
3377 set_root_pgd:
3378         mmu->root_pgd = root_pgd;
3379 out_unlock:
3380         write_unlock(&vcpu->kvm->mmu_lock);
3381
3382         return 0;
3383 }
3384
3385 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3386 {
3387         struct kvm_mmu *mmu = vcpu->arch.mmu;
3388         u64 *lm_root, *pae_root;
3389
3390         /*
3391          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3392          * tables are allocated and initialized at root creation as there is no
3393          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3394          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3395          */
3396         if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3397             mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3398                 return 0;
3399
3400         /*
3401          * This mess only works with 4-level paging and needs to be updated to
3402          * work with 5-level paging.
3403          */
3404         if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3405                 return -EIO;
3406
3407         if (mmu->pae_root && mmu->lm_root)
3408                 return 0;
3409
3410         /*
3411          * The special roots should always be allocated in concert.  Yell and
3412          * bail if KVM ends up in a state where only one of the roots is valid.
3413          */
3414         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->lm_root))
3415                 return -EIO;
3416
3417         /*
3418          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3419          * doesn't need to be decrypted.
3420          */
3421         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3422         if (!pae_root)
3423                 return -ENOMEM;
3424
3425         lm_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3426         if (!lm_root) {
3427                 free_page((unsigned long)pae_root);
3428                 return -ENOMEM;
3429         }
3430
3431         mmu->pae_root = pae_root;
3432         mmu->lm_root = lm_root;
3433
3434         return 0;
3435 }
3436
3437 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3438 {
3439         int i;
3440         struct kvm_mmu_page *sp;
3441
3442         if (vcpu->arch.mmu->direct_map)
3443                 return;
3444
3445         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3446                 return;
3447
3448         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3449
3450         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3451                 hpa_t root = vcpu->arch.mmu->root_hpa;
3452                 sp = to_shadow_page(root);
3453
3454                 /*
3455                  * Even if another CPU was marking the SP as unsync-ed
3456                  * simultaneously, any guest page table changes are not
3457                  * guaranteed to be visible anyway until this VCPU issues a TLB
3458                  * flush strictly after those changes are made. We only need to
3459                  * ensure that the other CPU sets these flags before any actual
3460                  * changes to the page tables are made. The comments in
3461                  * mmu_need_write_protect() describe what could go wrong if this
3462                  * requirement isn't satisfied.
3463                  */
3464                 if (!smp_load_acquire(&sp->unsync) &&
3465                     !smp_load_acquire(&sp->unsync_children))
3466                         return;
3467
3468                 write_lock(&vcpu->kvm->mmu_lock);
3469                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3470
3471                 mmu_sync_children(vcpu, sp);
3472
3473                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3474                 write_unlock(&vcpu->kvm->mmu_lock);
3475                 return;
3476         }
3477
3478         write_lock(&vcpu->kvm->mmu_lock);
3479         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3480
3481         for (i = 0; i < 4; ++i) {
3482                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3483
3484                 if (IS_VALID_PAE_ROOT(root)) {
3485                         root &= PT64_BASE_ADDR_MASK;
3486                         sp = to_shadow_page(root);
3487                         mmu_sync_children(vcpu, sp);
3488                 }
3489         }
3490
3491         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3492         write_unlock(&vcpu->kvm->mmu_lock);
3493 }
3494
3495 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3496                                   u32 access, struct x86_exception *exception)
3497 {
3498         if (exception)
3499                 exception->error_code = 0;
3500         return vaddr;
3501 }
3502
3503 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3504                                          u32 access,
3505                                          struct x86_exception *exception)
3506 {
3507         if (exception)
3508                 exception->error_code = 0;
3509         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3510 }
3511
3512 static bool
3513 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3514 {
3515         int bit7 = (pte >> 7) & 1;
3516
3517         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3518 }
3519
3520 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3521 {
3522         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3523 }
3524
3525 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3526 {
3527         /*
3528          * A nested guest cannot use the MMIO cache if it is using nested
3529          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3530          */
3531         if (mmu_is_nested(vcpu))
3532                 return false;
3533
3534         if (direct)
3535                 return vcpu_match_mmio_gpa(vcpu, addr);
3536
3537         return vcpu_match_mmio_gva(vcpu, addr);
3538 }
3539
3540 /*
3541  * Return the level of the lowest level SPTE added to sptes.
3542  * That SPTE may be non-present.
3543  */
3544 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3545 {
3546         struct kvm_shadow_walk_iterator iterator;
3547         int leaf = -1;
3548         u64 spte;
3549
3550         walk_shadow_page_lockless_begin(vcpu);
3551
3552         for (shadow_walk_init(&iterator, vcpu, addr),
3553              *root_level = iterator.level;
3554              shadow_walk_okay(&iterator);
3555              __shadow_walk_next(&iterator, spte)) {
3556                 leaf = iterator.level;
3557                 spte = mmu_spte_get_lockless(iterator.sptep);
3558
3559                 sptes[leaf] = spte;
3560
3561                 if (!is_shadow_present_pte(spte))
3562                         break;
3563         }
3564
3565         walk_shadow_page_lockless_end(vcpu);
3566
3567         return leaf;
3568 }
3569
3570 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3571 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3572 {
3573         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3574         struct rsvd_bits_validate *rsvd_check;
3575         int root, leaf, level;
3576         bool reserved = false;
3577
3578         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3579                 *sptep = 0ull;
3580                 return reserved;
3581         }
3582
3583         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3584                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3585         else
3586                 leaf = get_walk(vcpu, addr, sptes, &root);
3587
3588         if (unlikely(leaf < 0)) {
3589                 *sptep = 0ull;
3590                 return reserved;
3591         }
3592
3593         *sptep = sptes[leaf];
3594
3595         /*
3596          * Skip reserved bits checks on the terminal leaf if it's not a valid
3597          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3598          * design, always have reserved bits set.  The purpose of the checks is
3599          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3600          */
3601         if (!is_shadow_present_pte(sptes[leaf]))
3602                 leaf++;
3603
3604         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3605
3606         for (level = root; level >= leaf; level--)
3607                 /*
3608                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3609                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3610                  * adding a Jcc in the loop.
3611                  */
3612                 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3613                             __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3614
3615         if (reserved) {
3616                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3617                        __func__, addr);
3618                 for (level = root; level >= leaf; level--)
3619                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3620                                sptes[level], level,
3621                                rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
3622         }
3623
3624         return reserved;
3625 }
3626
3627 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3628 {
3629         u64 spte;
3630         bool reserved;
3631
3632         if (mmio_info_in_cache(vcpu, addr, direct))
3633                 return RET_PF_EMULATE;
3634
3635         reserved = get_mmio_spte(vcpu, addr, &spte);
3636         if (WARN_ON(reserved))
3637                 return -EINVAL;
3638
3639         if (is_mmio_spte(spte)) {
3640                 gfn_t gfn = get_mmio_spte_gfn(spte);
3641                 unsigned int access = get_mmio_spte_access(spte);
3642
3643                 if (!check_mmio_spte(vcpu, spte))
3644                         return RET_PF_INVALID;
3645
3646                 if (direct)
3647                         addr = 0;
3648
3649                 trace_handle_mmio_page_fault(addr, gfn, access);
3650                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3651                 return RET_PF_EMULATE;
3652         }
3653
3654         /*
3655          * If the page table is zapped by other cpus, let CPU fault again on
3656          * the address.
3657          */
3658         return RET_PF_RETRY;
3659 }
3660
3661 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3662                                          u32 error_code, gfn_t gfn)
3663 {
3664         if (unlikely(error_code & PFERR_RSVD_MASK))
3665                 return false;
3666
3667         if (!(error_code & PFERR_PRESENT_MASK) ||
3668               !(error_code & PFERR_WRITE_MASK))
3669                 return false;
3670
3671         /*
3672          * guest is writing the page which is write tracked which can
3673          * not be fixed by page fault handler.
3674          */
3675         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3676                 return true;
3677
3678         return false;
3679 }
3680
3681 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3682 {
3683         struct kvm_shadow_walk_iterator iterator;
3684         u64 spte;
3685
3686         walk_shadow_page_lockless_begin(vcpu);
3687         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3688                 clear_sp_write_flooding_count(iterator.sptep);
3689                 if (!is_shadow_present_pte(spte))
3690                         break;
3691         }
3692         walk_shadow_page_lockless_end(vcpu);
3693 }
3694
3695 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3696                                     gfn_t gfn)
3697 {
3698         struct kvm_arch_async_pf arch;
3699
3700         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3701         arch.gfn = gfn;
3702         arch.direct_map = vcpu->arch.mmu->direct_map;
3703         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3704
3705         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3706                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3707 }
3708
3709 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3710                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3711                          bool write, bool *writable)
3712 {
3713         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3714         bool async;
3715
3716         /*
3717          * Retry the page fault if the gfn hit a memslot that is being deleted
3718          * or moved.  This ensures any existing SPTEs for the old memslot will
3719          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3720          */
3721         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3722                 return true;
3723
3724         /* Don't expose private memslots to L2. */
3725         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3726                 *pfn = KVM_PFN_NOSLOT;
3727                 *writable = false;
3728                 return false;
3729         }
3730
3731         async = false;
3732         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3733                                     write, writable, hva);
3734         if (!async)
3735                 return false; /* *pfn has correct page already */
3736
3737         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3738                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3739                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3740                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3741                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3742                         return true;
3743                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3744                         return true;
3745         }
3746
3747         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3748                                     write, writable, hva);
3749         return false;
3750 }
3751
3752 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3753                              bool prefault, int max_level, bool is_tdp)
3754 {
3755         bool write = error_code & PFERR_WRITE_MASK;
3756         bool map_writable;
3757
3758         gfn_t gfn = gpa >> PAGE_SHIFT;
3759         unsigned long mmu_seq;
3760         kvm_pfn_t pfn;
3761         hva_t hva;
3762         int r;
3763
3764         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3765                 return RET_PF_EMULATE;
3766
3767         if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3768                 r = fast_page_fault(vcpu, gpa, error_code);
3769                 if (r != RET_PF_INVALID)
3770                         return r;
3771         }
3772
3773         r = mmu_topup_memory_caches(vcpu, false);
3774         if (r)
3775                 return r;
3776
3777         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3778         smp_rmb();
3779
3780         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3781                          write, &map_writable))
3782                 return RET_PF_RETRY;
3783
3784         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3785                 return r;
3786
3787         r = RET_PF_RETRY;
3788
3789         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3790                 read_lock(&vcpu->kvm->mmu_lock);
3791         else
3792                 write_lock(&vcpu->kvm->mmu_lock);
3793
3794         if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3795                 goto out_unlock;
3796         r = make_mmu_pages_available(vcpu);
3797         if (r)
3798                 goto out_unlock;
3799
3800         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3801                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3802                                     pfn, prefault);
3803         else
3804                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3805                                  prefault, is_tdp);
3806
3807 out_unlock:
3808         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3809                 read_unlock(&vcpu->kvm->mmu_lock);
3810         else
3811                 write_unlock(&vcpu->kvm->mmu_lock);
3812         kvm_release_pfn_clean(pfn);
3813         return r;
3814 }
3815
3816 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3817                                 u32 error_code, bool prefault)
3818 {
3819         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3820
3821         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3822         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3823                                  PG_LEVEL_2M, false);
3824 }
3825
3826 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3827                                 u64 fault_address, char *insn, int insn_len)
3828 {
3829         int r = 1;
3830         u32 flags = vcpu->arch.apf.host_apf_flags;
3831
3832 #ifndef CONFIG_X86_64
3833         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3834         if (WARN_ON_ONCE(fault_address >> 32))
3835                 return -EFAULT;
3836 #endif
3837
3838         vcpu->arch.l1tf_flush_l1d = true;
3839         if (!flags) {
3840                 trace_kvm_page_fault(fault_address, error_code);
3841
3842                 if (kvm_event_needs_reinjection(vcpu))
3843                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3844                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3845                                 insn_len);
3846         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3847                 vcpu->arch.apf.host_apf_flags = 0;
3848                 local_irq_disable();
3849                 kvm_async_pf_task_wait_schedule(fault_address);
3850                 local_irq_enable();
3851         } else {
3852                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3853         }
3854
3855         return r;
3856 }
3857 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3858
3859 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3860                        bool prefault)
3861 {
3862         int max_level;
3863
3864         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3865              max_level > PG_LEVEL_4K;
3866              max_level--) {
3867                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3868                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3869
3870                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3871                         break;
3872         }
3873
3874         return direct_page_fault(vcpu, gpa, error_code, prefault,
3875                                  max_level, true);
3876 }
3877
3878 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3879                                    struct kvm_mmu *context)
3880 {
3881         context->page_fault = nonpaging_page_fault;
3882         context->gva_to_gpa = nonpaging_gva_to_gpa;
3883         context->sync_page = nonpaging_sync_page;
3884         context->invlpg = NULL;
3885         context->root_level = 0;
3886         context->shadow_root_level = PT32E_ROOT_LEVEL;
3887         context->direct_map = true;
3888         context->nx = false;
3889 }
3890
3891 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3892                                   union kvm_mmu_page_role role)
3893 {
3894         return (role.direct || pgd == root->pgd) &&
3895                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3896                role.word == to_shadow_page(root->hpa)->role.word;
3897 }
3898
3899 /*
3900  * Find out if a previously cached root matching the new pgd/role is available.
3901  * The current root is also inserted into the cache.
3902  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3903  * returned.
3904  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3905  * false is returned. This root should now be freed by the caller.
3906  */
3907 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3908                                   union kvm_mmu_page_role new_role)
3909 {
3910         uint i;
3911         struct kvm_mmu_root_info root;
3912         struct kvm_mmu *mmu = vcpu->arch.mmu;
3913
3914         root.pgd = mmu->root_pgd;
3915         root.hpa = mmu->root_hpa;
3916
3917         if (is_root_usable(&root, new_pgd, new_role))
3918                 return true;
3919
3920         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3921                 swap(root, mmu->prev_roots[i]);
3922
3923                 if (is_root_usable(&root, new_pgd, new_role))
3924                         break;
3925         }
3926
3927         mmu->root_hpa = root.hpa;
3928         mmu->root_pgd = root.pgd;
3929
3930         return i < KVM_MMU_NUM_PREV_ROOTS;
3931 }
3932
3933 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3934                             union kvm_mmu_page_role new_role)
3935 {
3936         struct kvm_mmu *mmu = vcpu->arch.mmu;
3937
3938         /*
3939          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3940          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3941          * later if necessary.
3942          */
3943         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3944             mmu->root_level >= PT64_ROOT_4LEVEL)
3945                 return cached_root_available(vcpu, new_pgd, new_role);
3946
3947         return false;
3948 }
3949
3950 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3951                               union kvm_mmu_page_role new_role,
3952                               bool skip_tlb_flush, bool skip_mmu_sync)
3953 {
3954         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3955                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3956                 return;
3957         }
3958
3959         /*
3960          * It's possible that the cached previous root page is obsolete because
3961          * of a change in the MMU generation number. However, changing the
3962          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3963          * free the root set here and allocate a new one.
3964          */
3965         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3966
3967         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3968                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3969         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3970                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3971
3972         /*
3973          * The last MMIO access's GVA and GPA are cached in the VCPU. When
3974          * switching to a new CR3, that GVA->GPA mapping may no longer be
3975          * valid. So clear any cached MMIO info even when we don't need to sync
3976          * the shadow page tables.
3977          */
3978         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3979
3980         /*
3981          * If this is a direct root page, it doesn't have a write flooding
3982          * count. Otherwise, clear the write flooding count.
3983          */
3984         if (!new_role.direct)
3985                 __clear_sp_write_flooding_count(
3986                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
3987 }
3988
3989 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3990                      bool skip_mmu_sync)
3991 {
3992         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3993                           skip_tlb_flush, skip_mmu_sync);
3994 }
3995 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3996
3997 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3998 {
3999         return kvm_read_cr3(vcpu);
4000 }
4001
4002 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4003                            unsigned int access, int *nr_present)
4004 {
4005         if (unlikely(is_mmio_spte(*sptep))) {
4006                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4007                         mmu_spte_clear_no_track(sptep);
4008                         return true;
4009                 }
4010
4011                 (*nr_present)++;
4012                 mark_mmio_spte(vcpu, sptep, gfn, access);
4013                 return true;
4014         }
4015
4016         return false;
4017 }
4018
4019 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4020                                 unsigned level, unsigned gpte)
4021 {
4022         /*
4023          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4024          * If it is clear, there are no large pages at this level, so clear
4025          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4026          */
4027         gpte &= level - mmu->last_nonleaf_level;
4028
4029         /*
4030          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
4031          * iff level <= PG_LEVEL_4K, which for our purpose means
4032          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4033          */
4034         gpte |= level - PG_LEVEL_4K - 1;
4035
4036         return gpte & PT_PAGE_SIZE_MASK;
4037 }
4038
4039 #define PTTYPE_EPT 18 /* arbitrary */
4040 #define PTTYPE PTTYPE_EPT
4041 #include "paging_tmpl.h"
4042 #undef PTTYPE
4043
4044 #define PTTYPE 64
4045 #include "paging_tmpl.h"
4046 #undef PTTYPE
4047
4048 #define PTTYPE 32
4049 #include "paging_tmpl.h"
4050 #undef PTTYPE
4051
4052 static void
4053 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4054                         struct rsvd_bits_validate *rsvd_check,
4055                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4056                         bool pse, bool amd)
4057 {
4058         u64 gbpages_bit_rsvd = 0;
4059         u64 nonleaf_bit8_rsvd = 0;
4060         u64 high_bits_rsvd;
4061
4062         rsvd_check->bad_mt_xwr = 0;
4063
4064         if (!gbpages)
4065                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4066
4067         if (level == PT32E_ROOT_LEVEL)
4068                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4069         else
4070                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4071
4072         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4073         if (!nx)
4074                 high_bits_rsvd |= rsvd_bits(63, 63);
4075
4076         /*
4077          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4078          * leaf entries) on AMD CPUs only.
4079          */
4080         if (amd)
4081                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4082
4083         switch (level) {
4084         case PT32_ROOT_LEVEL:
4085                 /* no rsvd bits for 2 level 4K page table entries */
4086                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4087                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4088                 rsvd_check->rsvd_bits_mask[1][0] =
4089                         rsvd_check->rsvd_bits_mask[0][0];
4090
4091                 if (!pse) {
4092                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4093                         break;
4094                 }
4095
4096                 if (is_cpuid_PSE36())
4097                         /* 36bits PSE 4MB page */
4098                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4099                 else
4100                         /* 32 bits PSE 4MB page */
4101                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4102                 break;
4103         case PT32E_ROOT_LEVEL:
4104                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4105                                                    high_bits_rsvd |
4106                                                    rsvd_bits(5, 8) |
4107                                                    rsvd_bits(1, 2);     /* PDPTE */
4108                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4109                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4110                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4111                                                    rsvd_bits(13, 20);   /* large page */
4112                 rsvd_check->rsvd_bits_mask[1][0] =
4113                         rsvd_check->rsvd_bits_mask[0][0];
4114                 break;
4115         case PT64_ROOT_5LEVEL:
4116                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4117                                                    nonleaf_bit8_rsvd |
4118                                                    rsvd_bits(7, 7);
4119                 rsvd_check->rsvd_bits_mask[1][4] =
4120                         rsvd_check->rsvd_bits_mask[0][4];
4121                 fallthrough;
4122         case PT64_ROOT_4LEVEL:
4123                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4124                                                    nonleaf_bit8_rsvd |
4125                                                    rsvd_bits(7, 7);
4126                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4127                                                    gbpages_bit_rsvd;
4128                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4129                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4130                 rsvd_check->rsvd_bits_mask[1][3] =
4131                         rsvd_check->rsvd_bits_mask[0][3];
4132                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4133                                                    gbpages_bit_rsvd |
4134                                                    rsvd_bits(13, 29);
4135                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4136                                                    rsvd_bits(13, 20); /* large page */
4137                 rsvd_check->rsvd_bits_mask[1][0] =
4138                         rsvd_check->rsvd_bits_mask[0][0];
4139                 break;
4140         }
4141 }
4142
4143 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4144                                   struct kvm_mmu *context)
4145 {
4146         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4147                                 vcpu->arch.reserved_gpa_bits,
4148                                 context->root_level, context->nx,
4149                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4150                                 is_pse(vcpu),
4151                                 guest_cpuid_is_amd_or_hygon(vcpu));
4152 }
4153
4154 static void
4155 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4156                             u64 pa_bits_rsvd, bool execonly)
4157 {
4158         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4159         u64 bad_mt_xwr;
4160
4161         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4162         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4163         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4164         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4165         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4166
4167         /* large page */
4168         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4169         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4170         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4171         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4172         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4173
4174         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4175         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4176         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4177         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4178         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4179         if (!execonly) {
4180                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4181                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4182         }
4183         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4184 }
4185
4186 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4187                 struct kvm_mmu *context, bool execonly)
4188 {
4189         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4190                                     vcpu->arch.reserved_gpa_bits, execonly);
4191 }
4192
4193 static inline u64 reserved_hpa_bits(void)
4194 {
4195         return rsvd_bits(shadow_phys_bits, 63);
4196 }
4197
4198 /*
4199  * the page table on host is the shadow page table for the page
4200  * table in guest or amd nested guest, its mmu features completely
4201  * follow the features in guest.
4202  */
4203 void
4204 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4205 {
4206         bool uses_nx = context->nx ||
4207                 context->mmu_role.base.smep_andnot_wp;
4208         struct rsvd_bits_validate *shadow_zero_check;
4209         int i;
4210
4211         /*
4212          * Passing "true" to the last argument is okay; it adds a check
4213          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4214          */
4215         shadow_zero_check = &context->shadow_zero_check;
4216         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4217                                 reserved_hpa_bits(),
4218                                 context->shadow_root_level, uses_nx,
4219                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4220                                 is_pse(vcpu), true);
4221
4222         if (!shadow_me_mask)
4223                 return;
4224
4225         for (i = context->shadow_root_level; --i >= 0;) {
4226                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4227                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4228         }
4229
4230 }
4231 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4232
4233 static inline bool boot_cpu_is_amd(void)
4234 {
4235         WARN_ON_ONCE(!tdp_enabled);
4236         return shadow_x_mask == 0;
4237 }
4238
4239 /*
4240  * the direct page table on host, use as much mmu features as
4241  * possible, however, kvm currently does not do execution-protection.
4242  */
4243 static void
4244 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4245                                 struct kvm_mmu *context)
4246 {
4247         struct rsvd_bits_validate *shadow_zero_check;
4248         int i;
4249
4250         shadow_zero_check = &context->shadow_zero_check;
4251
4252         if (boot_cpu_is_amd())
4253                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4254                                         reserved_hpa_bits(),
4255                                         context->shadow_root_level, false,
4256                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4257                                         true, true);
4258         else
4259                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4260                                             reserved_hpa_bits(), false);
4261
4262         if (!shadow_me_mask)
4263                 return;
4264
4265         for (i = context->shadow_root_level; --i >= 0;) {
4266                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4267                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4268         }
4269 }
4270
4271 /*
4272  * as the comments in reset_shadow_zero_bits_mask() except it
4273  * is the shadow page table for intel nested guest.
4274  */
4275 static void
4276 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4277                                 struct kvm_mmu *context, bool execonly)
4278 {
4279         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4280                                     reserved_hpa_bits(), execonly);
4281 }
4282
4283 #define BYTE_MASK(access) \
4284         ((1 & (access) ? 2 : 0) | \
4285          (2 & (access) ? 4 : 0) | \
4286          (3 & (access) ? 8 : 0) | \
4287          (4 & (access) ? 16 : 0) | \
4288          (5 & (access) ? 32 : 0) | \
4289          (6 & (access) ? 64 : 0) | \
4290          (7 & (access) ? 128 : 0))
4291
4292
4293 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4294                                       struct kvm_mmu *mmu, bool ept)
4295 {
4296         unsigned byte;
4297
4298         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4299         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4300         const u8 u = BYTE_MASK(ACC_USER_MASK);
4301
4302         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4303         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4304         bool cr0_wp = is_write_protection(vcpu);
4305
4306         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4307                 unsigned pfec = byte << 1;
4308
4309                 /*
4310                  * Each "*f" variable has a 1 bit for each UWX value
4311                  * that causes a fault with the given PFEC.
4312                  */
4313
4314                 /* Faults from writes to non-writable pages */
4315                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4316                 /* Faults from user mode accesses to supervisor pages */
4317                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4318                 /* Faults from fetches of non-executable pages*/
4319                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4320                 /* Faults from kernel mode fetches of user pages */
4321                 u8 smepf = 0;
4322                 /* Faults from kernel mode accesses of user pages */
4323                 u8 smapf = 0;
4324
4325                 if (!ept) {
4326                         /* Faults from kernel mode accesses to user pages */
4327                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4328
4329                         /* Not really needed: !nx will cause pte.nx to fault */
4330                         if (!mmu->nx)
4331                                 ff = 0;
4332
4333                         /* Allow supervisor writes if !cr0.wp */
4334                         if (!cr0_wp)
4335                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4336
4337                         /* Disallow supervisor fetches of user code if cr4.smep */
4338                         if (cr4_smep)
4339                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4340
4341                         /*
4342                          * SMAP:kernel-mode data accesses from user-mode
4343                          * mappings should fault. A fault is considered
4344                          * as a SMAP violation if all of the following
4345                          * conditions are true:
4346                          *   - X86_CR4_SMAP is set in CR4
4347                          *   - A user page is accessed
4348                          *   - The access is not a fetch
4349                          *   - Page fault in kernel mode
4350                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4351                          *
4352                          * Here, we cover the first three conditions.
4353                          * The fourth is computed dynamically in permission_fault();
4354                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4355                          * *not* subject to SMAP restrictions.
4356                          */
4357                         if (cr4_smap)
4358                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4359                 }
4360
4361                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4362         }
4363 }
4364
4365 /*
4366 * PKU is an additional mechanism by which the paging controls access to
4367 * user-mode addresses based on the value in the PKRU register.  Protection
4368 * key violations are reported through a bit in the page fault error code.
4369 * Unlike other bits of the error code, the PK bit is not known at the
4370 * call site of e.g. gva_to_gpa; it must be computed directly in
4371 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4372 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4373 *
4374 * In particular the following conditions come from the error code, the
4375 * page tables and the machine state:
4376 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4377 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4378 * - PK is always zero if U=0 in the page tables
4379 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4380 *
4381 * The PKRU bitmask caches the result of these four conditions.  The error
4382 * code (minus the P bit) and the page table's U bit form an index into the
4383 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4384 * with the two bits of the PKRU register corresponding to the protection key.
4385 * For the first three conditions above the bits will be 00, thus masking
4386 * away both AD and WD.  For all reads or if the last condition holds, WD
4387 * only will be masked away.
4388 */
4389 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4390                                 bool ept)
4391 {
4392         unsigned bit;
4393         bool wp;
4394
4395         if (ept) {
4396                 mmu->pkru_mask = 0;
4397                 return;
4398         }
4399
4400         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4401         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4402                 mmu->pkru_mask = 0;
4403                 return;
4404         }
4405
4406         wp = is_write_protection(vcpu);
4407
4408         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4409                 unsigned pfec, pkey_bits;
4410                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4411
4412                 pfec = bit << 1;
4413                 ff = pfec & PFERR_FETCH_MASK;
4414                 uf = pfec & PFERR_USER_MASK;
4415                 wf = pfec & PFERR_WRITE_MASK;
4416
4417                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4418                 pte_user = pfec & PFERR_RSVD_MASK;
4419
4420                 /*
4421                  * Only need to check the access which is not an
4422                  * instruction fetch and is to a user page.
4423                  */
4424                 check_pkey = (!ff && pte_user);
4425                 /*
4426                  * write access is controlled by PKRU if it is a
4427                  * user access or CR0.WP = 1.
4428                  */
4429                 check_write = check_pkey && wf && (uf || wp);
4430
4431                 /* PKRU.AD stops both read and write access. */
4432                 pkey_bits = !!check_pkey;
4433                 /* PKRU.WD stops write access. */
4434                 pkey_bits |= (!!check_write) << 1;
4435
4436                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4437         }
4438 }
4439
4440 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4441 {
4442         unsigned root_level = mmu->root_level;
4443
4444         mmu->last_nonleaf_level = root_level;
4445         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4446                 mmu->last_nonleaf_level++;
4447 }
4448
4449 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4450                                          struct kvm_mmu *context,
4451                                          int level)
4452 {
4453         context->nx = is_nx(vcpu);
4454         context->root_level = level;
4455
4456         reset_rsvds_bits_mask(vcpu, context);
4457         update_permission_bitmask(vcpu, context, false);
4458         update_pkru_bitmask(vcpu, context, false);
4459         update_last_nonleaf_level(vcpu, context);
4460
4461         MMU_WARN_ON(!is_pae(vcpu));
4462         context->page_fault = paging64_page_fault;
4463         context->gva_to_gpa = paging64_gva_to_gpa;
4464         context->sync_page = paging64_sync_page;
4465         context->invlpg = paging64_invlpg;
4466         context->shadow_root_level = level;
4467         context->direct_map = false;
4468 }
4469
4470 static void paging64_init_context(struct kvm_vcpu *vcpu,
4471                                   struct kvm_mmu *context)
4472 {
4473         int root_level = is_la57_mode(vcpu) ?
4474                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4475
4476         paging64_init_context_common(vcpu, context, root_level);
4477 }
4478
4479 static void paging32_init_context(struct kvm_vcpu *vcpu,
4480                                   struct kvm_mmu *context)
4481 {
4482         context->nx = false;
4483         context->root_level = PT32_ROOT_LEVEL;
4484
4485         reset_rsvds_bits_mask(vcpu, context);
4486         update_permission_bitmask(vcpu, context, false);
4487         update_pkru_bitmask(vcpu, context, false);
4488         update_last_nonleaf_level(vcpu, context);
4489
4490         context->page_fault = paging32_page_fault;
4491         context->gva_to_gpa = paging32_gva_to_gpa;
4492         context->sync_page = paging32_sync_page;
4493         context->invlpg = paging32_invlpg;
4494         context->shadow_root_level = PT32E_ROOT_LEVEL;
4495         context->direct_map = false;
4496 }
4497
4498 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4499                                    struct kvm_mmu *context)
4500 {
4501         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4502 }
4503
4504 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4505 {
4506         union kvm_mmu_extended_role ext = {0};
4507
4508         ext.cr0_pg = !!is_paging(vcpu);
4509         ext.cr4_pae = !!is_pae(vcpu);
4510         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4511         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4512         ext.cr4_pse = !!is_pse(vcpu);
4513         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4514         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4515
4516         ext.valid = 1;
4517
4518         return ext;
4519 }
4520
4521 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4522                                                    bool base_only)
4523 {
4524         union kvm_mmu_role role = {0};
4525
4526         role.base.access = ACC_ALL;
4527         role.base.nxe = !!is_nx(vcpu);
4528         role.base.cr0_wp = is_write_protection(vcpu);
4529         role.base.smm = is_smm(vcpu);
4530         role.base.guest_mode = is_guest_mode(vcpu);
4531
4532         if (base_only)
4533                 return role;
4534
4535         role.ext = kvm_calc_mmu_role_ext(vcpu);
4536
4537         return role;
4538 }
4539
4540 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4541 {
4542         /* Use 5-level TDP if and only if it's useful/necessary. */
4543         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4544                 return 4;
4545
4546         return max_tdp_level;
4547 }
4548
4549 static union kvm_mmu_role
4550 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4551 {
4552         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4553
4554         role.base.ad_disabled = (shadow_accessed_mask == 0);
4555         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4556         role.base.direct = true;
4557         role.base.gpte_is_8_bytes = true;
4558
4559         return role;
4560 }
4561
4562 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4563 {
4564         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4565         union kvm_mmu_role new_role =
4566                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4567
4568         if (new_role.as_u64 == context->mmu_role.as_u64)
4569                 return;
4570
4571         context->mmu_role.as_u64 = new_role.as_u64;
4572         context->page_fault = kvm_tdp_page_fault;
4573         context->sync_page = nonpaging_sync_page;
4574         context->invlpg = NULL;
4575         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4576         context->direct_map = true;
4577         context->get_guest_pgd = get_cr3;
4578         context->get_pdptr = kvm_pdptr_read;
4579         context->inject_page_fault = kvm_inject_page_fault;
4580
4581         if (!is_paging(vcpu)) {
4582                 context->nx = false;
4583                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4584                 context->root_level = 0;
4585         } else if (is_long_mode(vcpu)) {
4586                 context->nx = is_nx(vcpu);
4587                 context->root_level = is_la57_mode(vcpu) ?
4588                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4589                 reset_rsvds_bits_mask(vcpu, context);
4590                 context->gva_to_gpa = paging64_gva_to_gpa;
4591         } else if (is_pae(vcpu)) {
4592                 context->nx = is_nx(vcpu);
4593                 context->root_level = PT32E_ROOT_LEVEL;
4594                 reset_rsvds_bits_mask(vcpu, context);
4595                 context->gva_to_gpa = paging64_gva_to_gpa;
4596         } else {
4597                 context->nx = false;
4598                 context->root_level = PT32_ROOT_LEVEL;
4599                 reset_rsvds_bits_mask(vcpu, context);
4600                 context->gva_to_gpa = paging32_gva_to_gpa;
4601         }
4602
4603         update_permission_bitmask(vcpu, context, false);
4604         update_pkru_bitmask(vcpu, context, false);
4605         update_last_nonleaf_level(vcpu, context);
4606         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4607 }
4608
4609 static union kvm_mmu_role
4610 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4611 {
4612         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4613
4614         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4615                 !is_write_protection(vcpu);
4616         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4617                 !is_write_protection(vcpu);
4618         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4619
4620         return role;
4621 }
4622
4623 static union kvm_mmu_role
4624 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4625 {
4626         union kvm_mmu_role role =
4627                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4628
4629         role.base.direct = !is_paging(vcpu);
4630
4631         if (!is_long_mode(vcpu))
4632                 role.base.level = PT32E_ROOT_LEVEL;
4633         else if (is_la57_mode(vcpu))
4634                 role.base.level = PT64_ROOT_5LEVEL;
4635         else
4636                 role.base.level = PT64_ROOT_4LEVEL;
4637
4638         return role;
4639 }
4640
4641 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4642                                     u32 cr0, u32 cr4, u32 efer,
4643                                     union kvm_mmu_role new_role)
4644 {
4645         if (!(cr0 & X86_CR0_PG))
4646                 nonpaging_init_context(vcpu, context);
4647         else if (efer & EFER_LMA)
4648                 paging64_init_context(vcpu, context);
4649         else if (cr4 & X86_CR4_PAE)
4650                 paging32E_init_context(vcpu, context);
4651         else
4652                 paging32_init_context(vcpu, context);
4653
4654         context->mmu_role.as_u64 = new_role.as_u64;
4655         reset_shadow_zero_bits_mask(vcpu, context);
4656 }
4657
4658 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4659 {
4660         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4661         union kvm_mmu_role new_role =
4662                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4663
4664         if (new_role.as_u64 != context->mmu_role.as_u64)
4665                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4666 }
4667
4668 static union kvm_mmu_role
4669 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4670 {
4671         union kvm_mmu_role role =
4672                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4673
4674         role.base.direct = false;
4675         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4676
4677         return role;
4678 }
4679
4680 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4681                              gpa_t nested_cr3)
4682 {
4683         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4684         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4685
4686         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4687
4688         if (new_role.as_u64 != context->mmu_role.as_u64) {
4689                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4690
4691                 /*
4692                  * Override the level set by the common init helper, nested TDP
4693                  * always uses the host's TDP configuration.
4694                  */
4695                 context->shadow_root_level = new_role.base.level;
4696         }
4697 }
4698 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4699
4700 static union kvm_mmu_role
4701 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4702                                    bool execonly, u8 level)
4703 {
4704         union kvm_mmu_role role = {0};
4705
4706         /* SMM flag is inherited from root_mmu */
4707         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4708
4709         role.base.level = level;
4710         role.base.gpte_is_8_bytes = true;
4711         role.base.direct = false;
4712         role.base.ad_disabled = !accessed_dirty;
4713         role.base.guest_mode = true;
4714         role.base.access = ACC_ALL;
4715
4716         /*
4717          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4718          * SMAP variation to denote shadow EPT entries.
4719          */
4720         role.base.cr0_wp = true;
4721         role.base.smap_andnot_wp = true;
4722
4723         role.ext = kvm_calc_mmu_role_ext(vcpu);
4724         role.ext.execonly = execonly;
4725
4726         return role;
4727 }
4728
4729 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4730                              bool accessed_dirty, gpa_t new_eptp)
4731 {
4732         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4733         u8 level = vmx_eptp_page_walk_level(new_eptp);
4734         union kvm_mmu_role new_role =
4735                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4736                                                    execonly, level);
4737
4738         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4739
4740         if (new_role.as_u64 == context->mmu_role.as_u64)
4741                 return;
4742
4743         context->shadow_root_level = level;
4744
4745         context->nx = true;
4746         context->ept_ad = accessed_dirty;
4747         context->page_fault = ept_page_fault;
4748         context->gva_to_gpa = ept_gva_to_gpa;
4749         context->sync_page = ept_sync_page;
4750         context->invlpg = ept_invlpg;
4751         context->root_level = level;
4752         context->direct_map = false;
4753         context->mmu_role.as_u64 = new_role.as_u64;
4754
4755         update_permission_bitmask(vcpu, context, true);
4756         update_pkru_bitmask(vcpu, context, true);
4757         update_last_nonleaf_level(vcpu, context);
4758         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4759         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4760 }
4761 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4762
4763 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4764 {
4765         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4766
4767         kvm_init_shadow_mmu(vcpu,
4768                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4769                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4770                             vcpu->arch.efer);
4771
4772         context->get_guest_pgd     = get_cr3;
4773         context->get_pdptr         = kvm_pdptr_read;
4774         context->inject_page_fault = kvm_inject_page_fault;
4775 }
4776
4777 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4778 {
4779         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4780         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4781
4782         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4783                 return;
4784
4785         g_context->mmu_role.as_u64 = new_role.as_u64;
4786         g_context->get_guest_pgd     = get_cr3;
4787         g_context->get_pdptr         = kvm_pdptr_read;
4788         g_context->inject_page_fault = kvm_inject_page_fault;
4789
4790         /*
4791          * L2 page tables are never shadowed, so there is no need to sync
4792          * SPTEs.
4793          */
4794         g_context->invlpg            = NULL;
4795
4796         /*
4797          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4798          * L1's nested page tables (e.g. EPT12). The nested translation
4799          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4800          * L2's page tables as the first level of translation and L1's
4801          * nested page tables as the second level of translation. Basically
4802          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4803          */
4804         if (!is_paging(vcpu)) {
4805                 g_context->nx = false;
4806                 g_context->root_level = 0;
4807                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4808         } else if (is_long_mode(vcpu)) {
4809                 g_context->nx = is_nx(vcpu);
4810                 g_context->root_level = is_la57_mode(vcpu) ?
4811                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4812                 reset_rsvds_bits_mask(vcpu, g_context);
4813                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4814         } else if (is_pae(vcpu)) {
4815                 g_context->nx = is_nx(vcpu);
4816                 g_context->root_level = PT32E_ROOT_LEVEL;
4817                 reset_rsvds_bits_mask(vcpu, g_context);
4818                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4819         } else {
4820                 g_context->nx = false;
4821                 g_context->root_level = PT32_ROOT_LEVEL;
4822                 reset_rsvds_bits_mask(vcpu, g_context);
4823                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4824         }
4825
4826         update_permission_bitmask(vcpu, g_context, false);
4827         update_pkru_bitmask(vcpu, g_context, false);
4828         update_last_nonleaf_level(vcpu, g_context);
4829 }
4830
4831 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4832 {
4833         if (reset_roots) {
4834                 uint i;
4835
4836                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4837
4838                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4839                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4840         }
4841
4842         if (mmu_is_nested(vcpu))
4843                 init_kvm_nested_mmu(vcpu);
4844         else if (tdp_enabled)
4845                 init_kvm_tdp_mmu(vcpu);
4846         else
4847                 init_kvm_softmmu(vcpu);
4848 }
4849 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4850
4851 static union kvm_mmu_page_role
4852 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4853 {
4854         union kvm_mmu_role role;
4855
4856         if (tdp_enabled)
4857                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4858         else
4859                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4860
4861         return role.base;
4862 }
4863
4864 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4865 {
4866         kvm_mmu_unload(vcpu);
4867         kvm_init_mmu(vcpu, true);
4868 }
4869 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4870
4871 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4872 {
4873         int r;
4874
4875         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4876         if (r)
4877                 goto out;
4878         r = mmu_alloc_special_roots(vcpu);
4879         if (r)
4880                 goto out;
4881         if (vcpu->arch.mmu->direct_map)
4882                 r = mmu_alloc_direct_roots(vcpu);
4883         else
4884                 r = mmu_alloc_shadow_roots(vcpu);
4885         if (r)
4886                 goto out;
4887
4888         kvm_mmu_sync_roots(vcpu);
4889
4890         kvm_mmu_load_pgd(vcpu);
4891         static_call(kvm_x86_tlb_flush_current)(vcpu);
4892 out:
4893         return r;
4894 }
4895
4896 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4897 {
4898         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4899         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4900         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4901         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4902 }
4903
4904 static bool need_remote_flush(u64 old, u64 new)
4905 {
4906         if (!is_shadow_present_pte(old))
4907                 return false;
4908         if (!is_shadow_present_pte(new))
4909                 return true;
4910         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4911                 return true;
4912         old ^= shadow_nx_mask;
4913         new ^= shadow_nx_mask;
4914         return (old & ~new & PT64_PERM_MASK) != 0;
4915 }
4916
4917 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4918                                     int *bytes)
4919 {
4920         u64 gentry = 0;
4921         int r;
4922
4923         /*
4924          * Assume that the pte write on a page table of the same type
4925          * as the current vcpu paging mode since we update the sptes only
4926          * when they have the same mode.
4927          */
4928         if (is_pae(vcpu) && *bytes == 4) {
4929                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4930                 *gpa &= ~(gpa_t)7;
4931                 *bytes = 8;
4932         }
4933
4934         if (*bytes == 4 || *bytes == 8) {
4935                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4936                 if (r)
4937                         gentry = 0;
4938         }
4939
4940         return gentry;
4941 }
4942
4943 /*
4944  * If we're seeing too many writes to a page, it may no longer be a page table,
4945  * or we may be forking, in which case it is better to unmap the page.
4946  */
4947 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4948 {
4949         /*
4950          * Skip write-flooding detected for the sp whose level is 1, because
4951          * it can become unsync, then the guest page is not write-protected.
4952          */
4953         if (sp->role.level == PG_LEVEL_4K)
4954                 return false;
4955
4956         atomic_inc(&sp->write_flooding_count);
4957         return atomic_read(&sp->write_flooding_count) >= 3;
4958 }
4959
4960 /*
4961  * Misaligned accesses are too much trouble to fix up; also, they usually
4962  * indicate a page is not used as a page table.
4963  */
4964 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4965                                     int bytes)
4966 {
4967         unsigned offset, pte_size, misaligned;
4968
4969         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4970                  gpa, bytes, sp->role.word);
4971
4972         offset = offset_in_page(gpa);
4973         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4974
4975         /*
4976          * Sometimes, the OS only writes the last one bytes to update status
4977          * bits, for example, in linux, andb instruction is used in clear_bit().
4978          */
4979         if (!(offset & (pte_size - 1)) && bytes == 1)
4980                 return false;
4981
4982         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4983         misaligned |= bytes < 4;
4984
4985         return misaligned;
4986 }
4987
4988 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4989 {
4990         unsigned page_offset, quadrant;
4991         u64 *spte;
4992         int level;
4993
4994         page_offset = offset_in_page(gpa);
4995         level = sp->role.level;
4996         *nspte = 1;
4997         if (!sp->role.gpte_is_8_bytes) {
4998                 page_offset <<= 1;      /* 32->64 */
4999                 /*
5000                  * A 32-bit pde maps 4MB while the shadow pdes map
5001                  * only 2MB.  So we need to double the offset again
5002                  * and zap two pdes instead of one.
5003                  */
5004                 if (level == PT32_ROOT_LEVEL) {
5005                         page_offset &= ~7; /* kill rounding error */
5006                         page_offset <<= 1;
5007                         *nspte = 2;
5008                 }
5009                 quadrant = page_offset >> PAGE_SHIFT;
5010                 page_offset &= ~PAGE_MASK;
5011                 if (quadrant != sp->role.quadrant)
5012                         return NULL;
5013         }
5014
5015         spte = &sp->spt[page_offset / sizeof(*spte)];
5016         return spte;
5017 }
5018
5019 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5020                               const u8 *new, int bytes,
5021                               struct kvm_page_track_notifier_node *node)
5022 {
5023         gfn_t gfn = gpa >> PAGE_SHIFT;
5024         struct kvm_mmu_page *sp;
5025         LIST_HEAD(invalid_list);
5026         u64 entry, gentry, *spte;
5027         int npte;
5028         bool remote_flush, local_flush;
5029
5030         /*
5031          * If we don't have indirect shadow pages, it means no page is
5032          * write-protected, so we can exit simply.
5033          */
5034         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5035                 return;
5036
5037         remote_flush = local_flush = false;
5038
5039         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5040
5041         /*
5042          * No need to care whether allocation memory is successful
5043          * or not since pte prefetch is skiped if it does not have
5044          * enough objects in the cache.
5045          */
5046         mmu_topup_memory_caches(vcpu, true);
5047
5048         write_lock(&vcpu->kvm->mmu_lock);
5049
5050         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5051
5052         ++vcpu->kvm->stat.mmu_pte_write;
5053         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5054
5055         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5056                 if (detect_write_misaligned(sp, gpa, bytes) ||
5057                       detect_write_flooding(sp)) {
5058                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5059                         ++vcpu->kvm->stat.mmu_flooded;
5060                         continue;
5061                 }
5062
5063                 spte = get_written_sptes(sp, gpa, &npte);
5064                 if (!spte)
5065                         continue;
5066
5067                 local_flush = true;
5068                 while (npte--) {
5069                         entry = *spte;
5070                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5071                         if (gentry && sp->role.level != PG_LEVEL_4K)
5072                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5073                         if (need_remote_flush(entry, *spte))
5074                                 remote_flush = true;
5075                         ++spte;
5076                 }
5077         }
5078         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5079         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5080         write_unlock(&vcpu->kvm->mmu_lock);
5081 }
5082
5083 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5084                        void *insn, int insn_len)
5085 {
5086         int r, emulation_type = EMULTYPE_PF;
5087         bool direct = vcpu->arch.mmu->direct_map;
5088
5089         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5090                 return RET_PF_RETRY;
5091
5092         r = RET_PF_INVALID;
5093         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5094                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5095                 if (r == RET_PF_EMULATE)
5096                         goto emulate;
5097         }
5098
5099         if (r == RET_PF_INVALID) {
5100                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5101                                           lower_32_bits(error_code), false);
5102                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5103                         return -EIO;
5104         }
5105
5106         if (r < 0)
5107                 return r;
5108         if (r != RET_PF_EMULATE)
5109                 return 1;
5110
5111         /*
5112          * Before emulating the instruction, check if the error code
5113          * was due to a RO violation while translating the guest page.
5114          * This can occur when using nested virtualization with nested
5115          * paging in both guests. If true, we simply unprotect the page
5116          * and resume the guest.
5117          */
5118         if (vcpu->arch.mmu->direct_map &&
5119             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5120                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5121                 return 1;
5122         }
5123
5124         /*
5125          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5126          * optimistically try to just unprotect the page and let the processor
5127          * re-execute the instruction that caused the page fault.  Do not allow
5128          * retrying MMIO emulation, as it's not only pointless but could also
5129          * cause us to enter an infinite loop because the processor will keep
5130          * faulting on the non-existent MMIO address.  Retrying an instruction
5131          * from a nested guest is also pointless and dangerous as we are only
5132          * explicitly shadowing L1's page tables, i.e. unprotecting something
5133          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5134          */
5135         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5136                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5137 emulate:
5138         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5139                                        insn_len);
5140 }
5141 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5142
5143 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5144                             gva_t gva, hpa_t root_hpa)
5145 {
5146         int i;
5147
5148         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5149         if (mmu != &vcpu->arch.guest_mmu) {
5150                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5151                 if (is_noncanonical_address(gva, vcpu))
5152                         return;
5153
5154                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5155         }
5156
5157         if (!mmu->invlpg)
5158                 return;
5159
5160         if (root_hpa == INVALID_PAGE) {
5161                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5162
5163                 /*
5164                  * INVLPG is required to invalidate any global mappings for the VA,
5165                  * irrespective of PCID. Since it would take us roughly similar amount
5166                  * of work to determine whether any of the prev_root mappings of the VA
5167                  * is marked global, or to just sync it blindly, so we might as well
5168                  * just always sync it.
5169                  *
5170                  * Mappings not reachable via the current cr3 or the prev_roots will be
5171                  * synced when switching to that cr3, so nothing needs to be done here
5172                  * for them.
5173                  */
5174                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5175                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5176                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5177         } else {
5178                 mmu->invlpg(vcpu, gva, root_hpa);
5179         }
5180 }
5181
5182 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5183 {
5184         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5185         ++vcpu->stat.invlpg;
5186 }
5187 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5188
5189
5190 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5191 {
5192         struct kvm_mmu *mmu = vcpu->arch.mmu;
5193         bool tlb_flush = false;
5194         uint i;
5195
5196         if (pcid == kvm_get_active_pcid(vcpu)) {
5197                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5198                 tlb_flush = true;
5199         }
5200
5201         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5202                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5203                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5204                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5205                         tlb_flush = true;
5206                 }
5207         }
5208
5209         if (tlb_flush)
5210                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5211
5212         ++vcpu->stat.invlpg;
5213
5214         /*
5215          * Mappings not reachable via the current cr3 or the prev_roots will be
5216          * synced when switching to that cr3, so nothing needs to be done here
5217          * for them.
5218          */
5219 }
5220
5221 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5222                        int tdp_huge_page_level)
5223 {
5224         tdp_enabled = enable_tdp;
5225         max_tdp_level = tdp_max_root_level;
5226
5227         /*
5228          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5229          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5230          * the kernel is not.  But, KVM never creates a page size greater than
5231          * what is used by the kernel for any given HVA, i.e. the kernel's
5232          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5233          */
5234         if (tdp_enabled)
5235                 max_huge_page_level = tdp_huge_page_level;
5236         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5237                 max_huge_page_level = PG_LEVEL_1G;
5238         else
5239                 max_huge_page_level = PG_LEVEL_2M;
5240 }
5241 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5242
5243 /* The return value indicates if tlb flush on all vcpus is needed. */
5244 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5245                                     struct kvm_memory_slot *slot);
5246
5247 /* The caller should hold mmu-lock before calling this function. */
5248 static __always_inline bool
5249 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5250                         slot_level_handler fn, int start_level, int end_level,
5251                         gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5252                         bool flush)
5253 {
5254         struct slot_rmap_walk_iterator iterator;
5255
5256         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5257                         end_gfn, &iterator) {
5258                 if (iterator.rmap)
5259                         flush |= fn(kvm, iterator.rmap, memslot);
5260
5261                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5262                         if (flush && flush_on_yield) {
5263                                 kvm_flush_remote_tlbs_with_address(kvm,
5264                                                 start_gfn,
5265                                                 iterator.gfn - start_gfn + 1);
5266                                 flush = false;
5267                         }
5268                         cond_resched_rwlock_write(&kvm->mmu_lock);
5269                 }
5270         }
5271
5272         return flush;
5273 }
5274
5275 static __always_inline bool
5276 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5277                   slot_level_handler fn, int start_level, int end_level,
5278                   bool flush_on_yield)
5279 {
5280         return slot_handle_level_range(kvm, memslot, fn, start_level,
5281                         end_level, memslot->base_gfn,
5282                         memslot->base_gfn + memslot->npages - 1,
5283                         flush_on_yield, false);
5284 }
5285
5286 static __always_inline bool
5287 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5288                  slot_level_handler fn, bool flush_on_yield)
5289 {
5290         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5291                                  PG_LEVEL_4K, flush_on_yield);
5292 }
5293
5294 static void free_mmu_pages(struct kvm_mmu *mmu)
5295 {
5296         if (!tdp_enabled && mmu->pae_root)
5297                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5298         free_page((unsigned long)mmu->pae_root);
5299         free_page((unsigned long)mmu->lm_root);
5300 }
5301
5302 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5303 {
5304         struct page *page;
5305         int i;
5306
5307         mmu->root_hpa = INVALID_PAGE;
5308         mmu->root_pgd = 0;
5309         mmu->translate_gpa = translate_gpa;
5310         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5311                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5312
5313         /*
5314          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5315          * while the PDP table is a per-vCPU construct that's allocated at MMU
5316          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5317          * x86_64.  Therefore we need to allocate the PDP table in the first
5318          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5319          * generally doesn't use PAE paging and can skip allocating the PDP
5320          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5321          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5322          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5323          */
5324         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5325                 return 0;
5326
5327         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5328         if (!page)
5329                 return -ENOMEM;
5330
5331         mmu->pae_root = page_address(page);
5332
5333         /*
5334          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5335          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5336          * that KVM's writes and the CPU's reads get along.  Note, this is
5337          * only necessary when using shadow paging, as 64-bit NPT can get at
5338          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5339          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5340          */
5341         if (!tdp_enabled)
5342                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5343         else
5344                 WARN_ON_ONCE(shadow_me_mask);
5345
5346         for (i = 0; i < 4; ++i)
5347                 mmu->pae_root[i] = INVALID_PAE_ROOT;
5348
5349         return 0;
5350 }
5351
5352 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5353 {
5354         int ret;
5355
5356         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5357         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5358
5359         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5360         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5361
5362         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5363
5364         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5365         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5366
5367         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5368
5369         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5370         if (ret)
5371                 return ret;
5372
5373         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5374         if (ret)
5375                 goto fail_allocate_root;
5376
5377         return ret;
5378  fail_allocate_root:
5379         free_mmu_pages(&vcpu->arch.guest_mmu);
5380         return ret;
5381 }
5382
5383 #define BATCH_ZAP_PAGES 10
5384 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5385 {
5386         struct kvm_mmu_page *sp, *node;
5387         int nr_zapped, batch = 0;
5388
5389 restart:
5390         list_for_each_entry_safe_reverse(sp, node,
5391               &kvm->arch.active_mmu_pages, link) {
5392                 /*
5393                  * No obsolete valid page exists before a newly created page
5394                  * since active_mmu_pages is a FIFO list.
5395                  */
5396                 if (!is_obsolete_sp(kvm, sp))
5397                         break;
5398
5399                 /*
5400                  * Invalid pages should never land back on the list of active
5401                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5402                  * infinite loop if the page gets put back on the list (again).
5403                  */
5404                 if (WARN_ON(sp->role.invalid))
5405                         continue;
5406
5407                 /*
5408                  * No need to flush the TLB since we're only zapping shadow
5409                  * pages with an obsolete generation number and all vCPUS have
5410                  * loaded a new root, i.e. the shadow pages being zapped cannot
5411                  * be in active use by the guest.
5412                  */
5413                 if (batch >= BATCH_ZAP_PAGES &&
5414                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5415                         batch = 0;
5416                         goto restart;
5417                 }
5418
5419                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5420                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5421                         batch += nr_zapped;
5422                         goto restart;
5423                 }
5424         }
5425
5426         /*
5427          * Trigger a remote TLB flush before freeing the page tables to ensure
5428          * KVM is not in the middle of a lockless shadow page table walk, which
5429          * may reference the pages.
5430          */
5431         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5432 }
5433
5434 /*
5435  * Fast invalidate all shadow pages and use lock-break technique
5436  * to zap obsolete pages.
5437  *
5438  * It's required when memslot is being deleted or VM is being
5439  * destroyed, in these cases, we should ensure that KVM MMU does
5440  * not use any resource of the being-deleted slot or all slots
5441  * after calling the function.
5442  */
5443 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5444 {
5445         lockdep_assert_held(&kvm->slots_lock);
5446
5447         write_lock(&kvm->mmu_lock);
5448         trace_kvm_mmu_zap_all_fast(kvm);
5449
5450         /*
5451          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5452          * held for the entire duration of zapping obsolete pages, it's
5453          * impossible for there to be multiple invalid generations associated
5454          * with *valid* shadow pages at any given time, i.e. there is exactly
5455          * one valid generation and (at most) one invalid generation.
5456          */
5457         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5458
5459         /*
5460          * Notify all vcpus to reload its shadow page table and flush TLB.
5461          * Then all vcpus will switch to new shadow page table with the new
5462          * mmu_valid_gen.
5463          *
5464          * Note: we need to do this under the protection of mmu_lock,
5465          * otherwise, vcpu would purge shadow page but miss tlb flush.
5466          */
5467         kvm_reload_remote_mmus(kvm);
5468
5469         kvm_zap_obsolete_pages(kvm);
5470
5471         if (is_tdp_mmu_enabled(kvm))
5472                 kvm_tdp_mmu_zap_all(kvm);
5473
5474         write_unlock(&kvm->mmu_lock);
5475 }
5476
5477 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5478 {
5479         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5480 }
5481
5482 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5483                         struct kvm_memory_slot *slot,
5484                         struct kvm_page_track_notifier_node *node)
5485 {
5486         kvm_mmu_zap_all_fast(kvm);
5487 }
5488
5489 void kvm_mmu_init_vm(struct kvm *kvm)
5490 {
5491         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5492
5493         kvm_mmu_init_tdp_mmu(kvm);
5494
5495         node->track_write = kvm_mmu_pte_write;
5496         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5497         kvm_page_track_register_notifier(kvm, node);
5498 }
5499
5500 void kvm_mmu_uninit_vm(struct kvm *kvm)
5501 {
5502         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5503
5504         kvm_page_track_unregister_notifier(kvm, node);
5505
5506         kvm_mmu_uninit_tdp_mmu(kvm);
5507 }
5508
5509 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5510 {
5511         struct kvm_memslots *slots;
5512         struct kvm_memory_slot *memslot;
5513         int i;
5514         bool flush = false;
5515
5516         write_lock(&kvm->mmu_lock);
5517         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5518                 slots = __kvm_memslots(kvm, i);
5519                 kvm_for_each_memslot(memslot, slots) {
5520                         gfn_t start, end;
5521
5522                         start = max(gfn_start, memslot->base_gfn);
5523                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5524                         if (start >= end)
5525                                 continue;
5526
5527                         flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5528                                                         PG_LEVEL_4K,
5529                                                         KVM_MAX_HUGEPAGE_LEVEL,
5530                                                         start, end - 1, true, flush);
5531                 }
5532         }
5533
5534         if (is_tdp_mmu_enabled(kvm)) {
5535                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5536                         flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5537                                                           gfn_end, flush);
5538         }
5539
5540         if (flush)
5541                 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5542
5543         write_unlock(&kvm->mmu_lock);
5544 }
5545
5546 static bool slot_rmap_write_protect(struct kvm *kvm,
5547                                     struct kvm_rmap_head *rmap_head,
5548                                     struct kvm_memory_slot *slot)
5549 {
5550         return __rmap_write_protect(kvm, rmap_head, false);
5551 }
5552
5553 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5554                                       struct kvm_memory_slot *memslot,
5555                                       int start_level)
5556 {
5557         bool flush;
5558
5559         write_lock(&kvm->mmu_lock);
5560         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5561                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5562         if (is_tdp_mmu_enabled(kvm))
5563                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5564         write_unlock(&kvm->mmu_lock);
5565
5566         /*
5567          * We can flush all the TLBs out of the mmu lock without TLB
5568          * corruption since we just change the spte from writable to
5569          * readonly so that we only need to care the case of changing
5570          * spte from present to present (changing the spte from present
5571          * to nonpresent will flush all the TLBs immediately), in other
5572          * words, the only case we care is mmu_spte_update() where we
5573          * have checked Host-writable | MMU-writable instead of
5574          * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5575          * anymore.
5576          */
5577         if (flush)
5578                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5579 }
5580
5581 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5582                                          struct kvm_rmap_head *rmap_head,
5583                                          struct kvm_memory_slot *slot)
5584 {
5585         u64 *sptep;
5586         struct rmap_iterator iter;
5587         int need_tlb_flush = 0;
5588         kvm_pfn_t pfn;
5589         struct kvm_mmu_page *sp;
5590
5591 restart:
5592         for_each_rmap_spte(rmap_head, &iter, sptep) {
5593                 sp = sptep_to_sp(sptep);
5594                 pfn = spte_to_pfn(*sptep);
5595
5596                 /*
5597                  * We cannot do huge page mapping for indirect shadow pages,
5598                  * which are found on the last rmap (level = 1) when not using
5599                  * tdp; such shadow pages are synced with the page table in
5600                  * the guest, and the guest page table is using 4K page size
5601                  * mapping if the indirect sp has level = 1.
5602                  */
5603                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5604                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5605                                                                pfn, PG_LEVEL_NUM)) {
5606                         pte_list_remove(rmap_head, sptep);
5607
5608                         if (kvm_available_flush_tlb_with_range())
5609                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5610                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5611                         else
5612                                 need_tlb_flush = 1;
5613
5614                         goto restart;
5615                 }
5616         }
5617
5618         return need_tlb_flush;
5619 }
5620
5621 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5622                                    const struct kvm_memory_slot *memslot)
5623 {
5624         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5625         struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5626         bool flush;
5627
5628         write_lock(&kvm->mmu_lock);
5629         flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5630
5631         if (is_tdp_mmu_enabled(kvm))
5632                 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5633
5634         if (flush)
5635                 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5636
5637         write_unlock(&kvm->mmu_lock);
5638 }
5639
5640 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5641                                         struct kvm_memory_slot *memslot)
5642 {
5643         /*
5644          * All current use cases for flushing the TLBs for a specific memslot
5645          * related to dirty logging, and many do the TLB flush out of mmu_lock.
5646          * The interaction between the various operations on memslot must be
5647          * serialized by slots_locks to ensure the TLB flush from one operation
5648          * is observed by any other operation on the same memslot.
5649          */
5650         lockdep_assert_held(&kvm->slots_lock);
5651         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5652                                            memslot->npages);
5653 }
5654
5655 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5656                                    struct kvm_memory_slot *memslot)
5657 {
5658         bool flush;
5659
5660         write_lock(&kvm->mmu_lock);
5661         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5662         if (is_tdp_mmu_enabled(kvm))
5663                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5664         write_unlock(&kvm->mmu_lock);
5665
5666         /*
5667          * It's also safe to flush TLBs out of mmu lock here as currently this
5668          * function is only used for dirty logging, in which case flushing TLB
5669          * out of mmu lock also guarantees no dirty pages will be lost in
5670          * dirty_bitmap.
5671          */
5672         if (flush)
5673                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5674 }
5675
5676 void kvm_mmu_zap_all(struct kvm *kvm)
5677 {
5678         struct kvm_mmu_page *sp, *node;
5679         LIST_HEAD(invalid_list);
5680         int ign;
5681
5682         write_lock(&kvm->mmu_lock);
5683 restart:
5684         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5685                 if (WARN_ON(sp->role.invalid))
5686                         continue;
5687                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5688                         goto restart;
5689                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5690                         goto restart;
5691         }
5692
5693         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5694
5695         if (is_tdp_mmu_enabled(kvm))
5696                 kvm_tdp_mmu_zap_all(kvm);
5697
5698         write_unlock(&kvm->mmu_lock);
5699 }
5700
5701 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5702 {
5703         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5704
5705         gen &= MMIO_SPTE_GEN_MASK;
5706
5707         /*
5708          * Generation numbers are incremented in multiples of the number of
5709          * address spaces in order to provide unique generations across all
5710          * address spaces.  Strip what is effectively the address space
5711          * modifier prior to checking for a wrap of the MMIO generation so
5712          * that a wrap in any address space is detected.
5713          */
5714         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5715
5716         /*
5717          * The very rare case: if the MMIO generation number has wrapped,
5718          * zap all shadow pages.
5719          */
5720         if (unlikely(gen == 0)) {
5721                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5722                 kvm_mmu_zap_all_fast(kvm);
5723         }
5724 }
5725
5726 static unsigned long
5727 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5728 {
5729         struct kvm *kvm;
5730         int nr_to_scan = sc->nr_to_scan;
5731         unsigned long freed = 0;
5732
5733         mutex_lock(&kvm_lock);
5734
5735         list_for_each_entry(kvm, &vm_list, vm_list) {
5736                 int idx;
5737                 LIST_HEAD(invalid_list);
5738
5739                 /*
5740                  * Never scan more than sc->nr_to_scan VM instances.
5741                  * Will not hit this condition practically since we do not try
5742                  * to shrink more than one VM and it is very unlikely to see
5743                  * !n_used_mmu_pages so many times.
5744                  */
5745                 if (!nr_to_scan--)
5746                         break;
5747                 /*
5748                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5749                  * here. We may skip a VM instance errorneosly, but we do not
5750                  * want to shrink a VM that only started to populate its MMU
5751                  * anyway.
5752                  */
5753                 if (!kvm->arch.n_used_mmu_pages &&
5754                     !kvm_has_zapped_obsolete_pages(kvm))
5755                         continue;
5756
5757                 idx = srcu_read_lock(&kvm->srcu);
5758                 write_lock(&kvm->mmu_lock);
5759
5760                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5761                         kvm_mmu_commit_zap_page(kvm,
5762                               &kvm->arch.zapped_obsolete_pages);
5763                         goto unlock;
5764                 }
5765
5766                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5767
5768 unlock:
5769                 write_unlock(&kvm->mmu_lock);
5770                 srcu_read_unlock(&kvm->srcu, idx);
5771
5772                 /*
5773                  * unfair on small ones
5774                  * per-vm shrinkers cry out
5775                  * sadness comes quickly
5776                  */
5777                 list_move_tail(&kvm->vm_list, &vm_list);
5778                 break;
5779         }
5780
5781         mutex_unlock(&kvm_lock);
5782         return freed;
5783 }
5784
5785 static unsigned long
5786 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5787 {
5788         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5789 }
5790
5791 static struct shrinker mmu_shrinker = {
5792         .count_objects = mmu_shrink_count,
5793         .scan_objects = mmu_shrink_scan,
5794         .seeks = DEFAULT_SEEKS * 10,
5795 };
5796
5797 static void mmu_destroy_caches(void)
5798 {
5799         kmem_cache_destroy(pte_list_desc_cache);
5800         kmem_cache_destroy(mmu_page_header_cache);
5801 }
5802
5803 static bool get_nx_auto_mode(void)
5804 {
5805         /* Return true when CPU has the bug, and mitigations are ON */
5806         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5807 }
5808
5809 static void __set_nx_huge_pages(bool val)
5810 {
5811         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5812 }
5813
5814 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5815 {
5816         bool old_val = nx_huge_pages;
5817         bool new_val;
5818
5819         /* In "auto" mode deploy workaround only if CPU has the bug. */
5820         if (sysfs_streq(val, "off"))
5821                 new_val = 0;
5822         else if (sysfs_streq(val, "force"))
5823                 new_val = 1;
5824         else if (sysfs_streq(val, "auto"))
5825                 new_val = get_nx_auto_mode();
5826         else if (strtobool(val, &new_val) < 0)
5827                 return -EINVAL;
5828
5829         __set_nx_huge_pages(new_val);
5830
5831         if (new_val != old_val) {
5832                 struct kvm *kvm;
5833
5834                 mutex_lock(&kvm_lock);
5835
5836                 list_for_each_entry(kvm, &vm_list, vm_list) {
5837                         mutex_lock(&kvm->slots_lock);
5838                         kvm_mmu_zap_all_fast(kvm);
5839                         mutex_unlock(&kvm->slots_lock);
5840
5841                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5842                 }
5843                 mutex_unlock(&kvm_lock);
5844         }
5845
5846         return 0;
5847 }
5848
5849 int kvm_mmu_module_init(void)
5850 {
5851         int ret = -ENOMEM;
5852
5853         if (nx_huge_pages == -1)
5854                 __set_nx_huge_pages(get_nx_auto_mode());
5855
5856         /*
5857          * MMU roles use union aliasing which is, generally speaking, an
5858          * undefined behavior. However, we supposedly know how compilers behave
5859          * and the current status quo is unlikely to change. Guardians below are
5860          * supposed to let us know if the assumption becomes false.
5861          */
5862         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5863         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5864         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5865
5866         kvm_mmu_reset_all_pte_masks();
5867
5868         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5869                                             sizeof(struct pte_list_desc),
5870                                             0, SLAB_ACCOUNT, NULL);
5871         if (!pte_list_desc_cache)
5872                 goto out;
5873
5874         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5875                                                   sizeof(struct kvm_mmu_page),
5876                                                   0, SLAB_ACCOUNT, NULL);
5877         if (!mmu_page_header_cache)
5878                 goto out;
5879
5880         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5881                 goto out;
5882
5883         ret = register_shrinker(&mmu_shrinker);
5884         if (ret)
5885                 goto out;
5886
5887         return 0;
5888
5889 out:
5890         mmu_destroy_caches();
5891         return ret;
5892 }
5893
5894 /*
5895  * Calculate mmu pages needed for kvm.
5896  */
5897 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5898 {
5899         unsigned long nr_mmu_pages;
5900         unsigned long nr_pages = 0;
5901         struct kvm_memslots *slots;
5902         struct kvm_memory_slot *memslot;
5903         int i;
5904
5905         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5906                 slots = __kvm_memslots(kvm, i);
5907
5908                 kvm_for_each_memslot(memslot, slots)
5909                         nr_pages += memslot->npages;
5910         }
5911
5912         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5913         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5914
5915         return nr_mmu_pages;
5916 }
5917
5918 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5919 {
5920         kvm_mmu_unload(vcpu);
5921         free_mmu_pages(&vcpu->arch.root_mmu);
5922         free_mmu_pages(&vcpu->arch.guest_mmu);
5923         mmu_free_memory_caches(vcpu);
5924 }
5925
5926 void kvm_mmu_module_exit(void)
5927 {
5928         mmu_destroy_caches();
5929         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5930         unregister_shrinker(&mmu_shrinker);
5931         mmu_audit_disable();
5932 }
5933
5934 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5935 {
5936         unsigned int old_val;
5937         int err;
5938
5939         old_val = nx_huge_pages_recovery_ratio;
5940         err = param_set_uint(val, kp);
5941         if (err)
5942                 return err;
5943
5944         if (READ_ONCE(nx_huge_pages) &&
5945             !old_val && nx_huge_pages_recovery_ratio) {
5946                 struct kvm *kvm;
5947
5948                 mutex_lock(&kvm_lock);
5949
5950                 list_for_each_entry(kvm, &vm_list, vm_list)
5951                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5952
5953                 mutex_unlock(&kvm_lock);
5954         }
5955
5956         return err;
5957 }
5958
5959 static void kvm_recover_nx_lpages(struct kvm *kvm)
5960 {
5961         int rcu_idx;
5962         struct kvm_mmu_page *sp;
5963         unsigned int ratio;
5964         LIST_HEAD(invalid_list);
5965         bool flush = false;
5966         ulong to_zap;
5967
5968         rcu_idx = srcu_read_lock(&kvm->srcu);
5969         write_lock(&kvm->mmu_lock);
5970
5971         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5972         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5973         for ( ; to_zap; --to_zap) {
5974                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5975                         break;
5976
5977                 /*
5978                  * We use a separate list instead of just using active_mmu_pages
5979                  * because the number of lpage_disallowed pages is expected to
5980                  * be relatively small compared to the total.
5981                  */
5982                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5983                                       struct kvm_mmu_page,
5984                                       lpage_disallowed_link);
5985                 WARN_ON_ONCE(!sp->lpage_disallowed);
5986                 if (is_tdp_mmu_page(sp)) {
5987                         flush = kvm_tdp_mmu_zap_sp(kvm, sp);
5988                 } else {
5989                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5990                         WARN_ON_ONCE(sp->lpage_disallowed);
5991                 }
5992
5993                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5994                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5995                         cond_resched_rwlock_write(&kvm->mmu_lock);
5996                         flush = false;
5997                 }
5998         }
5999         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6000
6001         write_unlock(&kvm->mmu_lock);
6002         srcu_read_unlock(&kvm->srcu, rcu_idx);
6003 }
6004
6005 static long get_nx_lpage_recovery_timeout(u64 start_time)
6006 {
6007         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6008                 ? start_time + 60 * HZ - get_jiffies_64()
6009                 : MAX_SCHEDULE_TIMEOUT;
6010 }
6011
6012 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6013 {
6014         u64 start_time;
6015         long remaining_time;
6016
6017         while (true) {
6018                 start_time = get_jiffies_64();
6019                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6020
6021                 set_current_state(TASK_INTERRUPTIBLE);
6022                 while (!kthread_should_stop() && remaining_time > 0) {
6023                         schedule_timeout(remaining_time);
6024                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6025                         set_current_state(TASK_INTERRUPTIBLE);
6026                 }
6027
6028                 set_current_state(TASK_RUNNING);
6029
6030                 if (kthread_should_stop())
6031                         return 0;
6032
6033                 kvm_recover_nx_lpages(kvm);
6034         }
6035 }
6036
6037 int kvm_mmu_post_init_vm(struct kvm *kvm)
6038 {
6039         int err;
6040
6041         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6042                                           "kvm-nx-lpage-recovery",
6043                                           &kvm->arch.nx_lpage_recovery_thread);
6044         if (!err)
6045                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6046
6047         return err;
6048 }
6049
6050 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6051 {
6052         if (kvm->arch.nx_lpage_recovery_thread)
6053                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6054 }