KVM: x86/mmu: Add separate override for MMU sync during fast CR3 switch
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "kvm_emulate.h"
23 #include "cpuid.h"
24
25 #include <linux/kvm_host.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/moduleparam.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/sched/signal.h>
38 #include <linux/uaccess.h>
39 #include <linux/hash.h>
40 #include <linux/kern_levels.h>
41 #include <linux/kthread.h>
42
43 #include <asm/page.h>
44 #include <asm/memtype.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/e820/api.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51
52 extern bool itlb_multihit_kvm_mitigation;
53
54 static int __read_mostly nx_huge_pages = -1;
55 #ifdef CONFIG_PREEMPT_RT
56 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
57 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
58 #else
59 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
60 #endif
61
62 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
63 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
64
65 static struct kernel_param_ops nx_huge_pages_ops = {
66         .set = set_nx_huge_pages,
67         .get = param_get_bool,
68 };
69
70 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
71         .set = set_nx_huge_pages_recovery_ratio,
72         .get = param_get_uint,
73 };
74
75 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
76 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
77 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
78                 &nx_huge_pages_recovery_ratio, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
80
81 /*
82  * When setting this variable to true it enables Two-Dimensional-Paging
83  * where the hardware walks 2 page tables:
84  * 1. the guest-virtual to guest-physical
85  * 2. while doing 1. it walks guest-physical to host-physical
86  * If the hardware supports that we don't need to do shadow paging.
87  */
88 bool tdp_enabled = false;
89
90 static int max_page_level __read_mostly;
91
92 enum {
93         AUDIT_PRE_PAGE_FAULT,
94         AUDIT_POST_PAGE_FAULT,
95         AUDIT_PRE_PTE_WRITE,
96         AUDIT_POST_PTE_WRITE,
97         AUDIT_PRE_SYNC,
98         AUDIT_POST_SYNC
99 };
100
101 #undef MMU_DEBUG
102
103 #ifdef MMU_DEBUG
104 static bool dbg = 0;
105 module_param(dbg, bool, 0644);
106
107 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
108 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
109 #define MMU_WARN_ON(x) WARN_ON(x)
110 #else
111 #define pgprintk(x...) do { } while (0)
112 #define rmap_printk(x...) do { } while (0)
113 #define MMU_WARN_ON(x) do { } while (0)
114 #endif
115
116 #define PTE_PREFETCH_NUM                8
117
118 #define PT_FIRST_AVAIL_BITS_SHIFT 10
119 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
120
121 /*
122  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
123  * Access Tracking SPTEs.
124  */
125 #define SPTE_SPECIAL_MASK (3ULL << 52)
126 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
127 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
128 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
129 #define SPTE_MMIO_MASK (3ULL << 52)
130
131 #define PT64_LEVEL_BITS 9
132
133 #define PT64_LEVEL_SHIFT(level) \
134                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
135
136 #define PT64_INDEX(address, level)\
137         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
138
139
140 #define PT32_LEVEL_BITS 10
141
142 #define PT32_LEVEL_SHIFT(level) \
143                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
144
145 #define PT32_LVL_OFFSET_MASK(level) \
146         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
147                                                 * PT32_LEVEL_BITS))) - 1))
148
149 #define PT32_INDEX(address, level)\
150         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
151
152
153 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
154 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
155 #else
156 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
157 #endif
158 #define PT64_LVL_ADDR_MASK(level) \
159         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
160                                                 * PT64_LEVEL_BITS))) - 1))
161 #define PT64_LVL_OFFSET_MASK(level) \
162         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
163                                                 * PT64_LEVEL_BITS))) - 1))
164
165 #define PT32_BASE_ADDR_MASK PAGE_MASK
166 #define PT32_DIR_BASE_ADDR_MASK \
167         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
168 #define PT32_LVL_ADDR_MASK(level) \
169         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
170                                             * PT32_LEVEL_BITS))) - 1))
171
172 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
173                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
174
175 #define ACC_EXEC_MASK    1
176 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
177 #define ACC_USER_MASK    PT_USER_MASK
178 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
179
180 /* The mask for the R/X bits in EPT PTEs */
181 #define PT64_EPT_READABLE_MASK                  0x1ull
182 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
183
184 #include <trace/events/kvm.h>
185
186 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
187 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
188
189 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
190
191 /* make pte_list_desc fit well in cache line */
192 #define PTE_LIST_EXT 3
193
194 /*
195  * Return values of handle_mmio_page_fault and mmu.page_fault:
196  * RET_PF_RETRY: let CPU fault again on the address.
197  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
198  *
199  * For handle_mmio_page_fault only:
200  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
201  */
202 enum {
203         RET_PF_RETRY = 0,
204         RET_PF_EMULATE = 1,
205         RET_PF_INVALID = 2,
206 };
207
208 struct pte_list_desc {
209         u64 *sptes[PTE_LIST_EXT];
210         struct pte_list_desc *more;
211 };
212
213 struct kvm_shadow_walk_iterator {
214         u64 addr;
215         hpa_t shadow_addr;
216         u64 *sptep;
217         int level;
218         unsigned index;
219 };
220
221 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
222         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
223                                          (_root), (_addr));                \
224              shadow_walk_okay(&(_walker));                                 \
225              shadow_walk_next(&(_walker)))
226
227 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
228         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
229              shadow_walk_okay(&(_walker));                      \
230              shadow_walk_next(&(_walker)))
231
232 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
233         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
234              shadow_walk_okay(&(_walker)) &&                            \
235                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
236              __shadow_walk_next(&(_walker), spte))
237
238 static struct kmem_cache *pte_list_desc_cache;
239 static struct kmem_cache *mmu_page_header_cache;
240 static struct percpu_counter kvm_total_used_mmu_pages;
241
242 static u64 __read_mostly shadow_nx_mask;
243 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
244 static u64 __read_mostly shadow_user_mask;
245 static u64 __read_mostly shadow_accessed_mask;
246 static u64 __read_mostly shadow_dirty_mask;
247 static u64 __read_mostly shadow_mmio_mask;
248 static u64 __read_mostly shadow_mmio_value;
249 static u64 __read_mostly shadow_mmio_access_mask;
250 static u64 __read_mostly shadow_present_mask;
251 static u64 __read_mostly shadow_me_mask;
252
253 /*
254  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
255  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
256  * pages.
257  */
258 static u64 __read_mostly shadow_acc_track_mask;
259
260 /*
261  * The mask/shift to use for saving the original R/X bits when marking the PTE
262  * as not-present for access tracking purposes. We do not save the W bit as the
263  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
264  * restored only when a write is attempted to the page.
265  */
266 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
267                                                     PT64_EPT_EXECUTABLE_MASK;
268 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
269
270 /*
271  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
272  * to guard against L1TF attacks.
273  */
274 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
275
276 /*
277  * The number of high-order 1 bits to use in the mask above.
278  */
279 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
280
281 /*
282  * In some cases, we need to preserve the GFN of a non-present or reserved
283  * SPTE when we usurp the upper five bits of the physical address space to
284  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
285  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
286  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
287  * high and low parts.  This mask covers the lower bits of the GFN.
288  */
289 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
290
291 /*
292  * The number of non-reserved physical address bits irrespective of features
293  * that repurpose legal bits, e.g. MKTME.
294  */
295 static u8 __read_mostly shadow_phys_bits;
296
297 static void mmu_spte_set(u64 *sptep, u64 spte);
298 static bool is_executable_pte(u64 spte);
299 static union kvm_mmu_page_role
300 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
301
302 #define CREATE_TRACE_POINTS
303 #include "mmutrace.h"
304
305
306 static inline bool kvm_available_flush_tlb_with_range(void)
307 {
308         return kvm_x86_ops.tlb_remote_flush_with_range;
309 }
310
311 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
312                 struct kvm_tlb_range *range)
313 {
314         int ret = -ENOTSUPP;
315
316         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
317                 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
318
319         if (ret)
320                 kvm_flush_remote_tlbs(kvm);
321 }
322
323 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
324                 u64 start_gfn, u64 pages)
325 {
326         struct kvm_tlb_range range;
327
328         range.start_gfn = start_gfn;
329         range.pages = pages;
330
331         kvm_flush_remote_tlbs_with_range(kvm, &range);
332 }
333
334 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
335 {
336         BUG_ON((u64)(unsigned)access_mask != access_mask);
337         BUG_ON((mmio_mask & mmio_value) != mmio_value);
338         shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
339         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
340         shadow_mmio_access_mask = access_mask;
341 }
342 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
343
344 static bool is_mmio_spte(u64 spte)
345 {
346         return (spte & shadow_mmio_mask) == shadow_mmio_value;
347 }
348
349 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
350 {
351         return sp->role.ad_disabled;
352 }
353
354 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
355 {
356         /*
357          * When using the EPT page-modification log, the GPAs in the log
358          * would come from L2 rather than L1.  Therefore, we need to rely
359          * on write protection to record dirty pages.  This also bypasses
360          * PML, since writes now result in a vmexit.
361          */
362         return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
363 }
364
365 static inline bool spte_ad_enabled(u64 spte)
366 {
367         MMU_WARN_ON(is_mmio_spte(spte));
368         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
369 }
370
371 static inline bool spte_ad_need_write_protect(u64 spte)
372 {
373         MMU_WARN_ON(is_mmio_spte(spte));
374         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
375 }
376
377 static bool is_nx_huge_page_enabled(void)
378 {
379         return READ_ONCE(nx_huge_pages);
380 }
381
382 static inline u64 spte_shadow_accessed_mask(u64 spte)
383 {
384         MMU_WARN_ON(is_mmio_spte(spte));
385         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
386 }
387
388 static inline u64 spte_shadow_dirty_mask(u64 spte)
389 {
390         MMU_WARN_ON(is_mmio_spte(spte));
391         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
392 }
393
394 static inline bool is_access_track_spte(u64 spte)
395 {
396         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
397 }
398
399 /*
400  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
401  * the memslots generation and is derived as follows:
402  *
403  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
404  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
405  *
406  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
407  * the MMIO generation number, as doing so would require stealing a bit from
408  * the "real" generation number and thus effectively halve the maximum number
409  * of MMIO generations that can be handled before encountering a wrap (which
410  * requires a full MMU zap).  The flag is instead explicitly queried when
411  * checking for MMIO spte cache hits.
412  */
413 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(17, 0)
414
415 #define MMIO_SPTE_GEN_LOW_START         3
416 #define MMIO_SPTE_GEN_LOW_END           11
417 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
418                                                     MMIO_SPTE_GEN_LOW_START)
419
420 #define MMIO_SPTE_GEN_HIGH_START        PT64_SECOND_AVAIL_BITS_SHIFT
421 #define MMIO_SPTE_GEN_HIGH_END          62
422 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
423                                                     MMIO_SPTE_GEN_HIGH_START)
424
425 static u64 generation_mmio_spte_mask(u64 gen)
426 {
427         u64 mask;
428
429         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
430         BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
431
432         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
433         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
434         return mask;
435 }
436
437 static u64 get_mmio_spte_generation(u64 spte)
438 {
439         u64 gen;
440
441         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
442         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
443         return gen;
444 }
445
446 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
447 {
448
449         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
450         u64 mask = generation_mmio_spte_mask(gen);
451         u64 gpa = gfn << PAGE_SHIFT;
452
453         access &= shadow_mmio_access_mask;
454         mask |= shadow_mmio_value | access;
455         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
456         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
457                 << shadow_nonpresent_or_rsvd_mask_len;
458
459         return mask;
460 }
461
462 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
463                            unsigned int access)
464 {
465         u64 mask = make_mmio_spte(vcpu, gfn, access);
466         unsigned int gen = get_mmio_spte_generation(mask);
467
468         access = mask & ACC_ALL;
469
470         trace_mark_mmio_spte(sptep, gfn, access, gen);
471         mmu_spte_set(sptep, mask);
472 }
473
474 static gfn_t get_mmio_spte_gfn(u64 spte)
475 {
476         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
477
478         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
479                & shadow_nonpresent_or_rsvd_mask;
480
481         return gpa >> PAGE_SHIFT;
482 }
483
484 static unsigned get_mmio_spte_access(u64 spte)
485 {
486         return spte & shadow_mmio_access_mask;
487 }
488
489 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
490                           kvm_pfn_t pfn, unsigned int access)
491 {
492         if (unlikely(is_noslot_pfn(pfn))) {
493                 mark_mmio_spte(vcpu, sptep, gfn, access);
494                 return true;
495         }
496
497         return false;
498 }
499
500 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
501 {
502         u64 kvm_gen, spte_gen, gen;
503
504         gen = kvm_vcpu_memslots(vcpu)->generation;
505         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
506                 return false;
507
508         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
509         spte_gen = get_mmio_spte_generation(spte);
510
511         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
512         return likely(kvm_gen == spte_gen);
513 }
514
515 /*
516  * Sets the shadow PTE masks used by the MMU.
517  *
518  * Assumptions:
519  *  - Setting either @accessed_mask or @dirty_mask requires setting both
520  *  - At least one of @accessed_mask or @acc_track_mask must be set
521  */
522 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
523                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
524                 u64 acc_track_mask, u64 me_mask)
525 {
526         BUG_ON(!dirty_mask != !accessed_mask);
527         BUG_ON(!accessed_mask && !acc_track_mask);
528         BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
529
530         shadow_user_mask = user_mask;
531         shadow_accessed_mask = accessed_mask;
532         shadow_dirty_mask = dirty_mask;
533         shadow_nx_mask = nx_mask;
534         shadow_x_mask = x_mask;
535         shadow_present_mask = p_mask;
536         shadow_acc_track_mask = acc_track_mask;
537         shadow_me_mask = me_mask;
538 }
539 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
540
541 static u8 kvm_get_shadow_phys_bits(void)
542 {
543         /*
544          * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
545          * in CPU detection code, but the processor treats those reduced bits as
546          * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
547          * the physical address bits reported by CPUID.
548          */
549         if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
550                 return cpuid_eax(0x80000008) & 0xff;
551
552         /*
553          * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
554          * custom CPUID.  Proceed with whatever the kernel found since these features
555          * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
556          */
557         return boot_cpu_data.x86_phys_bits;
558 }
559
560 static void kvm_mmu_reset_all_pte_masks(void)
561 {
562         u8 low_phys_bits;
563
564         shadow_user_mask = 0;
565         shadow_accessed_mask = 0;
566         shadow_dirty_mask = 0;
567         shadow_nx_mask = 0;
568         shadow_x_mask = 0;
569         shadow_mmio_mask = 0;
570         shadow_present_mask = 0;
571         shadow_acc_track_mask = 0;
572
573         shadow_phys_bits = kvm_get_shadow_phys_bits();
574
575         /*
576          * If the CPU has 46 or less physical address bits, then set an
577          * appropriate mask to guard against L1TF attacks. Otherwise, it is
578          * assumed that the CPU is not vulnerable to L1TF.
579          *
580          * Some Intel CPUs address the L1 cache using more PA bits than are
581          * reported by CPUID. Use the PA width of the L1 cache when possible
582          * to achieve more effective mitigation, e.g. if system RAM overlaps
583          * the most significant bits of legal physical address space.
584          */
585         shadow_nonpresent_or_rsvd_mask = 0;
586         low_phys_bits = boot_cpu_data.x86_cache_bits;
587         if (boot_cpu_data.x86_cache_bits <
588             52 - shadow_nonpresent_or_rsvd_mask_len) {
589                 shadow_nonpresent_or_rsvd_mask =
590                         rsvd_bits(boot_cpu_data.x86_cache_bits -
591                                   shadow_nonpresent_or_rsvd_mask_len,
592                                   boot_cpu_data.x86_cache_bits - 1);
593                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
594         } else
595                 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
596
597         shadow_nonpresent_or_rsvd_lower_gfn_mask =
598                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
599 }
600
601 static int is_cpuid_PSE36(void)
602 {
603         return 1;
604 }
605
606 static int is_nx(struct kvm_vcpu *vcpu)
607 {
608         return vcpu->arch.efer & EFER_NX;
609 }
610
611 static int is_shadow_present_pte(u64 pte)
612 {
613         return (pte != 0) && !is_mmio_spte(pte);
614 }
615
616 static int is_large_pte(u64 pte)
617 {
618         return pte & PT_PAGE_SIZE_MASK;
619 }
620
621 static int is_last_spte(u64 pte, int level)
622 {
623         if (level == PT_PAGE_TABLE_LEVEL)
624                 return 1;
625         if (is_large_pte(pte))
626                 return 1;
627         return 0;
628 }
629
630 static bool is_executable_pte(u64 spte)
631 {
632         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
633 }
634
635 static kvm_pfn_t spte_to_pfn(u64 pte)
636 {
637         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
638 }
639
640 static gfn_t pse36_gfn_delta(u32 gpte)
641 {
642         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
643
644         return (gpte & PT32_DIR_PSE36_MASK) << shift;
645 }
646
647 #ifdef CONFIG_X86_64
648 static void __set_spte(u64 *sptep, u64 spte)
649 {
650         WRITE_ONCE(*sptep, spte);
651 }
652
653 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
654 {
655         WRITE_ONCE(*sptep, spte);
656 }
657
658 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
659 {
660         return xchg(sptep, spte);
661 }
662
663 static u64 __get_spte_lockless(u64 *sptep)
664 {
665         return READ_ONCE(*sptep);
666 }
667 #else
668 union split_spte {
669         struct {
670                 u32 spte_low;
671                 u32 spte_high;
672         };
673         u64 spte;
674 };
675
676 static void count_spte_clear(u64 *sptep, u64 spte)
677 {
678         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
679
680         if (is_shadow_present_pte(spte))
681                 return;
682
683         /* Ensure the spte is completely set before we increase the count */
684         smp_wmb();
685         sp->clear_spte_count++;
686 }
687
688 static void __set_spte(u64 *sptep, u64 spte)
689 {
690         union split_spte *ssptep, sspte;
691
692         ssptep = (union split_spte *)sptep;
693         sspte = (union split_spte)spte;
694
695         ssptep->spte_high = sspte.spte_high;
696
697         /*
698          * If we map the spte from nonpresent to present, We should store
699          * the high bits firstly, then set present bit, so cpu can not
700          * fetch this spte while we are setting the spte.
701          */
702         smp_wmb();
703
704         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
705 }
706
707 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
708 {
709         union split_spte *ssptep, sspte;
710
711         ssptep = (union split_spte *)sptep;
712         sspte = (union split_spte)spte;
713
714         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
715
716         /*
717          * If we map the spte from present to nonpresent, we should clear
718          * present bit firstly to avoid vcpu fetch the old high bits.
719          */
720         smp_wmb();
721
722         ssptep->spte_high = sspte.spte_high;
723         count_spte_clear(sptep, spte);
724 }
725
726 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
727 {
728         union split_spte *ssptep, sspte, orig;
729
730         ssptep = (union split_spte *)sptep;
731         sspte = (union split_spte)spte;
732
733         /* xchg acts as a barrier before the setting of the high bits */
734         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
735         orig.spte_high = ssptep->spte_high;
736         ssptep->spte_high = sspte.spte_high;
737         count_spte_clear(sptep, spte);
738
739         return orig.spte;
740 }
741
742 /*
743  * The idea using the light way get the spte on x86_32 guest is from
744  * gup_get_pte (mm/gup.c).
745  *
746  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
747  * coalesces them and we are running out of the MMU lock.  Therefore
748  * we need to protect against in-progress updates of the spte.
749  *
750  * Reading the spte while an update is in progress may get the old value
751  * for the high part of the spte.  The race is fine for a present->non-present
752  * change (because the high part of the spte is ignored for non-present spte),
753  * but for a present->present change we must reread the spte.
754  *
755  * All such changes are done in two steps (present->non-present and
756  * non-present->present), hence it is enough to count the number of
757  * present->non-present updates: if it changed while reading the spte,
758  * we might have hit the race.  This is done using clear_spte_count.
759  */
760 static u64 __get_spte_lockless(u64 *sptep)
761 {
762         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
763         union split_spte spte, *orig = (union split_spte *)sptep;
764         int count;
765
766 retry:
767         count = sp->clear_spte_count;
768         smp_rmb();
769
770         spte.spte_low = orig->spte_low;
771         smp_rmb();
772
773         spte.spte_high = orig->spte_high;
774         smp_rmb();
775
776         if (unlikely(spte.spte_low != orig->spte_low ||
777               count != sp->clear_spte_count))
778                 goto retry;
779
780         return spte.spte;
781 }
782 #endif
783
784 static bool spte_can_locklessly_be_made_writable(u64 spte)
785 {
786         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
787                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
788 }
789
790 static bool spte_has_volatile_bits(u64 spte)
791 {
792         if (!is_shadow_present_pte(spte))
793                 return false;
794
795         /*
796          * Always atomically update spte if it can be updated
797          * out of mmu-lock, it can ensure dirty bit is not lost,
798          * also, it can help us to get a stable is_writable_pte()
799          * to ensure tlb flush is not missed.
800          */
801         if (spte_can_locklessly_be_made_writable(spte) ||
802             is_access_track_spte(spte))
803                 return true;
804
805         if (spte_ad_enabled(spte)) {
806                 if ((spte & shadow_accessed_mask) == 0 ||
807                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
808                         return true;
809         }
810
811         return false;
812 }
813
814 static bool is_accessed_spte(u64 spte)
815 {
816         u64 accessed_mask = spte_shadow_accessed_mask(spte);
817
818         return accessed_mask ? spte & accessed_mask
819                              : !is_access_track_spte(spte);
820 }
821
822 static bool is_dirty_spte(u64 spte)
823 {
824         u64 dirty_mask = spte_shadow_dirty_mask(spte);
825
826         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
827 }
828
829 /* Rules for using mmu_spte_set:
830  * Set the sptep from nonpresent to present.
831  * Note: the sptep being assigned *must* be either not present
832  * or in a state where the hardware will not attempt to update
833  * the spte.
834  */
835 static void mmu_spte_set(u64 *sptep, u64 new_spte)
836 {
837         WARN_ON(is_shadow_present_pte(*sptep));
838         __set_spte(sptep, new_spte);
839 }
840
841 /*
842  * Update the SPTE (excluding the PFN), but do not track changes in its
843  * accessed/dirty status.
844  */
845 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
846 {
847         u64 old_spte = *sptep;
848
849         WARN_ON(!is_shadow_present_pte(new_spte));
850
851         if (!is_shadow_present_pte(old_spte)) {
852                 mmu_spte_set(sptep, new_spte);
853                 return old_spte;
854         }
855
856         if (!spte_has_volatile_bits(old_spte))
857                 __update_clear_spte_fast(sptep, new_spte);
858         else
859                 old_spte = __update_clear_spte_slow(sptep, new_spte);
860
861         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
862
863         return old_spte;
864 }
865
866 /* Rules for using mmu_spte_update:
867  * Update the state bits, it means the mapped pfn is not changed.
868  *
869  * Whenever we overwrite a writable spte with a read-only one we
870  * should flush remote TLBs. Otherwise rmap_write_protect
871  * will find a read-only spte, even though the writable spte
872  * might be cached on a CPU's TLB, the return value indicates this
873  * case.
874  *
875  * Returns true if the TLB needs to be flushed
876  */
877 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
878 {
879         bool flush = false;
880         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
881
882         if (!is_shadow_present_pte(old_spte))
883                 return false;
884
885         /*
886          * For the spte updated out of mmu-lock is safe, since
887          * we always atomically update it, see the comments in
888          * spte_has_volatile_bits().
889          */
890         if (spte_can_locklessly_be_made_writable(old_spte) &&
891               !is_writable_pte(new_spte))
892                 flush = true;
893
894         /*
895          * Flush TLB when accessed/dirty states are changed in the page tables,
896          * to guarantee consistency between TLB and page tables.
897          */
898
899         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
900                 flush = true;
901                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
902         }
903
904         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
905                 flush = true;
906                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
907         }
908
909         return flush;
910 }
911
912 /*
913  * Rules for using mmu_spte_clear_track_bits:
914  * It sets the sptep from present to nonpresent, and track the
915  * state bits, it is used to clear the last level sptep.
916  * Returns non-zero if the PTE was previously valid.
917  */
918 static int mmu_spte_clear_track_bits(u64 *sptep)
919 {
920         kvm_pfn_t pfn;
921         u64 old_spte = *sptep;
922
923         if (!spte_has_volatile_bits(old_spte))
924                 __update_clear_spte_fast(sptep, 0ull);
925         else
926                 old_spte = __update_clear_spte_slow(sptep, 0ull);
927
928         if (!is_shadow_present_pte(old_spte))
929                 return 0;
930
931         pfn = spte_to_pfn(old_spte);
932
933         /*
934          * KVM does not hold the refcount of the page used by
935          * kvm mmu, before reclaiming the page, we should
936          * unmap it from mmu first.
937          */
938         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
939
940         if (is_accessed_spte(old_spte))
941                 kvm_set_pfn_accessed(pfn);
942
943         if (is_dirty_spte(old_spte))
944                 kvm_set_pfn_dirty(pfn);
945
946         return 1;
947 }
948
949 /*
950  * Rules for using mmu_spte_clear_no_track:
951  * Directly clear spte without caring the state bits of sptep,
952  * it is used to set the upper level spte.
953  */
954 static void mmu_spte_clear_no_track(u64 *sptep)
955 {
956         __update_clear_spte_fast(sptep, 0ull);
957 }
958
959 static u64 mmu_spte_get_lockless(u64 *sptep)
960 {
961         return __get_spte_lockless(sptep);
962 }
963
964 static u64 mark_spte_for_access_track(u64 spte)
965 {
966         if (spte_ad_enabled(spte))
967                 return spte & ~shadow_accessed_mask;
968
969         if (is_access_track_spte(spte))
970                 return spte;
971
972         /*
973          * Making an Access Tracking PTE will result in removal of write access
974          * from the PTE. So, verify that we will be able to restore the write
975          * access in the fast page fault path later on.
976          */
977         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
978                   !spte_can_locklessly_be_made_writable(spte),
979                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
980
981         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
982                           shadow_acc_track_saved_bits_shift),
983                   "kvm: Access Tracking saved bit locations are not zero\n");
984
985         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
986                 shadow_acc_track_saved_bits_shift;
987         spte &= ~shadow_acc_track_mask;
988
989         return spte;
990 }
991
992 /* Restore an acc-track PTE back to a regular PTE */
993 static u64 restore_acc_track_spte(u64 spte)
994 {
995         u64 new_spte = spte;
996         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
997                          & shadow_acc_track_saved_bits_mask;
998
999         WARN_ON_ONCE(spte_ad_enabled(spte));
1000         WARN_ON_ONCE(!is_access_track_spte(spte));
1001
1002         new_spte &= ~shadow_acc_track_mask;
1003         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1004                       shadow_acc_track_saved_bits_shift);
1005         new_spte |= saved_bits;
1006
1007         return new_spte;
1008 }
1009
1010 /* Returns the Accessed status of the PTE and resets it at the same time. */
1011 static bool mmu_spte_age(u64 *sptep)
1012 {
1013         u64 spte = mmu_spte_get_lockless(sptep);
1014
1015         if (!is_accessed_spte(spte))
1016                 return false;
1017
1018         if (spte_ad_enabled(spte)) {
1019                 clear_bit((ffs(shadow_accessed_mask) - 1),
1020                           (unsigned long *)sptep);
1021         } else {
1022                 /*
1023                  * Capture the dirty status of the page, so that it doesn't get
1024                  * lost when the SPTE is marked for access tracking.
1025                  */
1026                 if (is_writable_pte(spte))
1027                         kvm_set_pfn_dirty(spte_to_pfn(spte));
1028
1029                 spte = mark_spte_for_access_track(spte);
1030                 mmu_spte_update_no_track(sptep, spte);
1031         }
1032
1033         return true;
1034 }
1035
1036 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1037 {
1038         /*
1039          * Prevent page table teardown by making any free-er wait during
1040          * kvm_flush_remote_tlbs() IPI to all active vcpus.
1041          */
1042         local_irq_disable();
1043
1044         /*
1045          * Make sure a following spte read is not reordered ahead of the write
1046          * to vcpu->mode.
1047          */
1048         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1049 }
1050
1051 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1052 {
1053         /*
1054          * Make sure the write to vcpu->mode is not reordered in front of
1055          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1056          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1057          */
1058         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1059         local_irq_enable();
1060 }
1061
1062 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1063                                   struct kmem_cache *base_cache, int min)
1064 {
1065         void *obj;
1066
1067         if (cache->nobjs >= min)
1068                 return 0;
1069         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1070                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1071                 if (!obj)
1072                         return cache->nobjs >= min ? 0 : -ENOMEM;
1073                 cache->objects[cache->nobjs++] = obj;
1074         }
1075         return 0;
1076 }
1077
1078 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1079 {
1080         return cache->nobjs;
1081 }
1082
1083 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1084                                   struct kmem_cache *cache)
1085 {
1086         while (mc->nobjs)
1087                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1088 }
1089
1090 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1091                                        int min)
1092 {
1093         void *page;
1094
1095         if (cache->nobjs >= min)
1096                 return 0;
1097         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1098                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1099                 if (!page)
1100                         return cache->nobjs >= min ? 0 : -ENOMEM;
1101                 cache->objects[cache->nobjs++] = page;
1102         }
1103         return 0;
1104 }
1105
1106 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1107 {
1108         while (mc->nobjs)
1109                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1110 }
1111
1112 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1113 {
1114         int r;
1115
1116         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1117                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1118         if (r)
1119                 goto out;
1120         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1121         if (r)
1122                 goto out;
1123         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1124                                    mmu_page_header_cache, 4);
1125 out:
1126         return r;
1127 }
1128
1129 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1130 {
1131         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1132                                 pte_list_desc_cache);
1133         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1134         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1135                                 mmu_page_header_cache);
1136 }
1137
1138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1139 {
1140         void *p;
1141
1142         BUG_ON(!mc->nobjs);
1143         p = mc->objects[--mc->nobjs];
1144         return p;
1145 }
1146
1147 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1148 {
1149         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1150 }
1151
1152 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1153 {
1154         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1155 }
1156
1157 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1158 {
1159         if (!sp->role.direct)
1160                 return sp->gfns[index];
1161
1162         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1163 }
1164
1165 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1166 {
1167         if (!sp->role.direct) {
1168                 sp->gfns[index] = gfn;
1169                 return;
1170         }
1171
1172         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1173                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1174                                    "(expected %llx, got %llx)\n",
1175                                    sp->gfn,
1176                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1177 }
1178
1179 /*
1180  * Return the pointer to the large page information for a given gfn,
1181  * handling slots that are not large page aligned.
1182  */
1183 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1184                                               struct kvm_memory_slot *slot,
1185                                               int level)
1186 {
1187         unsigned long idx;
1188
1189         idx = gfn_to_index(gfn, slot->base_gfn, level);
1190         return &slot->arch.lpage_info[level - 2][idx];
1191 }
1192
1193 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1194                                             gfn_t gfn, int count)
1195 {
1196         struct kvm_lpage_info *linfo;
1197         int i;
1198
1199         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1200                 linfo = lpage_info_slot(gfn, slot, i);
1201                 linfo->disallow_lpage += count;
1202                 WARN_ON(linfo->disallow_lpage < 0);
1203         }
1204 }
1205
1206 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1207 {
1208         update_gfn_disallow_lpage_count(slot, gfn, 1);
1209 }
1210
1211 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1212 {
1213         update_gfn_disallow_lpage_count(slot, gfn, -1);
1214 }
1215
1216 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1217 {
1218         struct kvm_memslots *slots;
1219         struct kvm_memory_slot *slot;
1220         gfn_t gfn;
1221
1222         kvm->arch.indirect_shadow_pages++;
1223         gfn = sp->gfn;
1224         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1225         slot = __gfn_to_memslot(slots, gfn);
1226
1227         /* the non-leaf shadow pages are keeping readonly. */
1228         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1229                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1230                                                     KVM_PAGE_TRACK_WRITE);
1231
1232         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1233 }
1234
1235 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1236 {
1237         if (sp->lpage_disallowed)
1238                 return;
1239
1240         ++kvm->stat.nx_lpage_splits;
1241         list_add_tail(&sp->lpage_disallowed_link,
1242                       &kvm->arch.lpage_disallowed_mmu_pages);
1243         sp->lpage_disallowed = true;
1244 }
1245
1246 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1247 {
1248         struct kvm_memslots *slots;
1249         struct kvm_memory_slot *slot;
1250         gfn_t gfn;
1251
1252         kvm->arch.indirect_shadow_pages--;
1253         gfn = sp->gfn;
1254         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1255         slot = __gfn_to_memslot(slots, gfn);
1256         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1257                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1258                                                        KVM_PAGE_TRACK_WRITE);
1259
1260         kvm_mmu_gfn_allow_lpage(slot, gfn);
1261 }
1262
1263 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1264 {
1265         --kvm->stat.nx_lpage_splits;
1266         sp->lpage_disallowed = false;
1267         list_del(&sp->lpage_disallowed_link);
1268 }
1269
1270 static struct kvm_memory_slot *
1271 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1272                             bool no_dirty_log)
1273 {
1274         struct kvm_memory_slot *slot;
1275
1276         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1277         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1278                 return NULL;
1279         if (no_dirty_log && slot->dirty_bitmap)
1280                 return NULL;
1281
1282         return slot;
1283 }
1284
1285 /*
1286  * About rmap_head encoding:
1287  *
1288  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1289  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1290  * pte_list_desc containing more mappings.
1291  */
1292
1293 /*
1294  * Returns the number of pointers in the rmap chain, not counting the new one.
1295  */
1296 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1297                         struct kvm_rmap_head *rmap_head)
1298 {
1299         struct pte_list_desc *desc;
1300         int i, count = 0;
1301
1302         if (!rmap_head->val) {
1303                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1304                 rmap_head->val = (unsigned long)spte;
1305         } else if (!(rmap_head->val & 1)) {
1306                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1307                 desc = mmu_alloc_pte_list_desc(vcpu);
1308                 desc->sptes[0] = (u64 *)rmap_head->val;
1309                 desc->sptes[1] = spte;
1310                 rmap_head->val = (unsigned long)desc | 1;
1311                 ++count;
1312         } else {
1313                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1314                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1315                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1316                         desc = desc->more;
1317                         count += PTE_LIST_EXT;
1318                 }
1319                 if (desc->sptes[PTE_LIST_EXT-1]) {
1320                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1321                         desc = desc->more;
1322                 }
1323                 for (i = 0; desc->sptes[i]; ++i)
1324                         ++count;
1325                 desc->sptes[i] = spte;
1326         }
1327         return count;
1328 }
1329
1330 static void
1331 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1332                            struct pte_list_desc *desc, int i,
1333                            struct pte_list_desc *prev_desc)
1334 {
1335         int j;
1336
1337         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1338                 ;
1339         desc->sptes[i] = desc->sptes[j];
1340         desc->sptes[j] = NULL;
1341         if (j != 0)
1342                 return;
1343         if (!prev_desc && !desc->more)
1344                 rmap_head->val = 0;
1345         else
1346                 if (prev_desc)
1347                         prev_desc->more = desc->more;
1348                 else
1349                         rmap_head->val = (unsigned long)desc->more | 1;
1350         mmu_free_pte_list_desc(desc);
1351 }
1352
1353 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1354 {
1355         struct pte_list_desc *desc;
1356         struct pte_list_desc *prev_desc;
1357         int i;
1358
1359         if (!rmap_head->val) {
1360                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1361                 BUG();
1362         } else if (!(rmap_head->val & 1)) {
1363                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1364                 if ((u64 *)rmap_head->val != spte) {
1365                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1366                         BUG();
1367                 }
1368                 rmap_head->val = 0;
1369         } else {
1370                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1371                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1372                 prev_desc = NULL;
1373                 while (desc) {
1374                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1375                                 if (desc->sptes[i] == spte) {
1376                                         pte_list_desc_remove_entry(rmap_head,
1377                                                         desc, i, prev_desc);
1378                                         return;
1379                                 }
1380                         }
1381                         prev_desc = desc;
1382                         desc = desc->more;
1383                 }
1384                 pr_err("%s: %p many->many\n", __func__, spte);
1385                 BUG();
1386         }
1387 }
1388
1389 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1390 {
1391         mmu_spte_clear_track_bits(sptep);
1392         __pte_list_remove(sptep, rmap_head);
1393 }
1394
1395 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1396                                            struct kvm_memory_slot *slot)
1397 {
1398         unsigned long idx;
1399
1400         idx = gfn_to_index(gfn, slot->base_gfn, level);
1401         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1402 }
1403
1404 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1405                                          struct kvm_mmu_page *sp)
1406 {
1407         struct kvm_memslots *slots;
1408         struct kvm_memory_slot *slot;
1409
1410         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1411         slot = __gfn_to_memslot(slots, gfn);
1412         return __gfn_to_rmap(gfn, sp->role.level, slot);
1413 }
1414
1415 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1416 {
1417         struct kvm_mmu_memory_cache *cache;
1418
1419         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1420         return mmu_memory_cache_free_objects(cache);
1421 }
1422
1423 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1424 {
1425         struct kvm_mmu_page *sp;
1426         struct kvm_rmap_head *rmap_head;
1427
1428         sp = page_header(__pa(spte));
1429         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1430         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1431         return pte_list_add(vcpu, spte, rmap_head);
1432 }
1433
1434 static void rmap_remove(struct kvm *kvm, u64 *spte)
1435 {
1436         struct kvm_mmu_page *sp;
1437         gfn_t gfn;
1438         struct kvm_rmap_head *rmap_head;
1439
1440         sp = page_header(__pa(spte));
1441         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1442         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1443         __pte_list_remove(spte, rmap_head);
1444 }
1445
1446 /*
1447  * Used by the following functions to iterate through the sptes linked by a
1448  * rmap.  All fields are private and not assumed to be used outside.
1449  */
1450 struct rmap_iterator {
1451         /* private fields */
1452         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1453         int pos;                        /* index of the sptep */
1454 };
1455
1456 /*
1457  * Iteration must be started by this function.  This should also be used after
1458  * removing/dropping sptes from the rmap link because in such cases the
1459  * information in the iterator may not be valid.
1460  *
1461  * Returns sptep if found, NULL otherwise.
1462  */
1463 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1464                            struct rmap_iterator *iter)
1465 {
1466         u64 *sptep;
1467
1468         if (!rmap_head->val)
1469                 return NULL;
1470
1471         if (!(rmap_head->val & 1)) {
1472                 iter->desc = NULL;
1473                 sptep = (u64 *)rmap_head->val;
1474                 goto out;
1475         }
1476
1477         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1478         iter->pos = 0;
1479         sptep = iter->desc->sptes[iter->pos];
1480 out:
1481         BUG_ON(!is_shadow_present_pte(*sptep));
1482         return sptep;
1483 }
1484
1485 /*
1486  * Must be used with a valid iterator: e.g. after rmap_get_first().
1487  *
1488  * Returns sptep if found, NULL otherwise.
1489  */
1490 static u64 *rmap_get_next(struct rmap_iterator *iter)
1491 {
1492         u64 *sptep;
1493
1494         if (iter->desc) {
1495                 if (iter->pos < PTE_LIST_EXT - 1) {
1496                         ++iter->pos;
1497                         sptep = iter->desc->sptes[iter->pos];
1498                         if (sptep)
1499                                 goto out;
1500                 }
1501
1502                 iter->desc = iter->desc->more;
1503
1504                 if (iter->desc) {
1505                         iter->pos = 0;
1506                         /* desc->sptes[0] cannot be NULL */
1507                         sptep = iter->desc->sptes[iter->pos];
1508                         goto out;
1509                 }
1510         }
1511
1512         return NULL;
1513 out:
1514         BUG_ON(!is_shadow_present_pte(*sptep));
1515         return sptep;
1516 }
1517
1518 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1519         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1520              _spte_; _spte_ = rmap_get_next(_iter_))
1521
1522 static void drop_spte(struct kvm *kvm, u64 *sptep)
1523 {
1524         if (mmu_spte_clear_track_bits(sptep))
1525                 rmap_remove(kvm, sptep);
1526 }
1527
1528
1529 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1530 {
1531         if (is_large_pte(*sptep)) {
1532                 WARN_ON(page_header(__pa(sptep))->role.level ==
1533                         PT_PAGE_TABLE_LEVEL);
1534                 drop_spte(kvm, sptep);
1535                 --kvm->stat.lpages;
1536                 return true;
1537         }
1538
1539         return false;
1540 }
1541
1542 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1543 {
1544         if (__drop_large_spte(vcpu->kvm, sptep)) {
1545                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1546
1547                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1548                         KVM_PAGES_PER_HPAGE(sp->role.level));
1549         }
1550 }
1551
1552 /*
1553  * Write-protect on the specified @sptep, @pt_protect indicates whether
1554  * spte write-protection is caused by protecting shadow page table.
1555  *
1556  * Note: write protection is difference between dirty logging and spte
1557  * protection:
1558  * - for dirty logging, the spte can be set to writable at anytime if
1559  *   its dirty bitmap is properly set.
1560  * - for spte protection, the spte can be writable only after unsync-ing
1561  *   shadow page.
1562  *
1563  * Return true if tlb need be flushed.
1564  */
1565 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1566 {
1567         u64 spte = *sptep;
1568
1569         if (!is_writable_pte(spte) &&
1570               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1571                 return false;
1572
1573         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1574
1575         if (pt_protect)
1576                 spte &= ~SPTE_MMU_WRITEABLE;
1577         spte = spte & ~PT_WRITABLE_MASK;
1578
1579         return mmu_spte_update(sptep, spte);
1580 }
1581
1582 static bool __rmap_write_protect(struct kvm *kvm,
1583                                  struct kvm_rmap_head *rmap_head,
1584                                  bool pt_protect)
1585 {
1586         u64 *sptep;
1587         struct rmap_iterator iter;
1588         bool flush = false;
1589
1590         for_each_rmap_spte(rmap_head, &iter, sptep)
1591                 flush |= spte_write_protect(sptep, pt_protect);
1592
1593         return flush;
1594 }
1595
1596 static bool spte_clear_dirty(u64 *sptep)
1597 {
1598         u64 spte = *sptep;
1599
1600         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1601
1602         MMU_WARN_ON(!spte_ad_enabled(spte));
1603         spte &= ~shadow_dirty_mask;
1604         return mmu_spte_update(sptep, spte);
1605 }
1606
1607 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1608 {
1609         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1610                                                (unsigned long *)sptep);
1611         if (was_writable && !spte_ad_enabled(*sptep))
1612                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1613
1614         return was_writable;
1615 }
1616
1617 /*
1618  * Gets the GFN ready for another round of dirty logging by clearing the
1619  *      - D bit on ad-enabled SPTEs, and
1620  *      - W bit on ad-disabled SPTEs.
1621  * Returns true iff any D or W bits were cleared.
1622  */
1623 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1624 {
1625         u64 *sptep;
1626         struct rmap_iterator iter;
1627         bool flush = false;
1628
1629         for_each_rmap_spte(rmap_head, &iter, sptep)
1630                 if (spte_ad_need_write_protect(*sptep))
1631                         flush |= spte_wrprot_for_clear_dirty(sptep);
1632                 else
1633                         flush |= spte_clear_dirty(sptep);
1634
1635         return flush;
1636 }
1637
1638 static bool spte_set_dirty(u64 *sptep)
1639 {
1640         u64 spte = *sptep;
1641
1642         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1643
1644         /*
1645          * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1646          * do not bother adding back write access to pages marked
1647          * SPTE_AD_WRPROT_ONLY_MASK.
1648          */
1649         spte |= shadow_dirty_mask;
1650
1651         return mmu_spte_update(sptep, spte);
1652 }
1653
1654 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1655 {
1656         u64 *sptep;
1657         struct rmap_iterator iter;
1658         bool flush = false;
1659
1660         for_each_rmap_spte(rmap_head, &iter, sptep)
1661                 if (spte_ad_enabled(*sptep))
1662                         flush |= spte_set_dirty(sptep);
1663
1664         return flush;
1665 }
1666
1667 /**
1668  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1669  * @kvm: kvm instance
1670  * @slot: slot to protect
1671  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1672  * @mask: indicates which pages we should protect
1673  *
1674  * Used when we do not need to care about huge page mappings: e.g. during dirty
1675  * logging we do not have any such mappings.
1676  */
1677 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1678                                      struct kvm_memory_slot *slot,
1679                                      gfn_t gfn_offset, unsigned long mask)
1680 {
1681         struct kvm_rmap_head *rmap_head;
1682
1683         while (mask) {
1684                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1685                                           PT_PAGE_TABLE_LEVEL, slot);
1686                 __rmap_write_protect(kvm, rmap_head, false);
1687
1688                 /* clear the first set bit */
1689                 mask &= mask - 1;
1690         }
1691 }
1692
1693 /**
1694  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1695  * protect the page if the D-bit isn't supported.
1696  * @kvm: kvm instance
1697  * @slot: slot to clear D-bit
1698  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1699  * @mask: indicates which pages we should clear D-bit
1700  *
1701  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1702  */
1703 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1704                                      struct kvm_memory_slot *slot,
1705                                      gfn_t gfn_offset, unsigned long mask)
1706 {
1707         struct kvm_rmap_head *rmap_head;
1708
1709         while (mask) {
1710                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1711                                           PT_PAGE_TABLE_LEVEL, slot);
1712                 __rmap_clear_dirty(kvm, rmap_head);
1713
1714                 /* clear the first set bit */
1715                 mask &= mask - 1;
1716         }
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1719
1720 /**
1721  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1722  * PT level pages.
1723  *
1724  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1725  * enable dirty logging for them.
1726  *
1727  * Used when we do not need to care about huge page mappings: e.g. during dirty
1728  * logging we do not have any such mappings.
1729  */
1730 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1731                                 struct kvm_memory_slot *slot,
1732                                 gfn_t gfn_offset, unsigned long mask)
1733 {
1734         if (kvm_x86_ops.enable_log_dirty_pt_masked)
1735                 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1736                                 mask);
1737         else
1738                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1739 }
1740
1741 /**
1742  * kvm_arch_write_log_dirty - emulate dirty page logging
1743  * @vcpu: Guest mode vcpu
1744  *
1745  * Emulate arch specific page modification logging for the
1746  * nested hypervisor
1747  */
1748 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1749 {
1750         if (kvm_x86_ops.write_log_dirty)
1751                 return kvm_x86_ops.write_log_dirty(vcpu);
1752
1753         return 0;
1754 }
1755
1756 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1757                                     struct kvm_memory_slot *slot, u64 gfn)
1758 {
1759         struct kvm_rmap_head *rmap_head;
1760         int i;
1761         bool write_protected = false;
1762
1763         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1764                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1765                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1766         }
1767
1768         return write_protected;
1769 }
1770
1771 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1772 {
1773         struct kvm_memory_slot *slot;
1774
1775         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1776         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1777 }
1778
1779 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1780 {
1781         u64 *sptep;
1782         struct rmap_iterator iter;
1783         bool flush = false;
1784
1785         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1786                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1787
1788                 pte_list_remove(rmap_head, sptep);
1789                 flush = true;
1790         }
1791
1792         return flush;
1793 }
1794
1795 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1796                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1797                            unsigned long data)
1798 {
1799         return kvm_zap_rmapp(kvm, rmap_head);
1800 }
1801
1802 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1803                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1804                              unsigned long data)
1805 {
1806         u64 *sptep;
1807         struct rmap_iterator iter;
1808         int need_flush = 0;
1809         u64 new_spte;
1810         pte_t *ptep = (pte_t *)data;
1811         kvm_pfn_t new_pfn;
1812
1813         WARN_ON(pte_huge(*ptep));
1814         new_pfn = pte_pfn(*ptep);
1815
1816 restart:
1817         for_each_rmap_spte(rmap_head, &iter, sptep) {
1818                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1819                             sptep, *sptep, gfn, level);
1820
1821                 need_flush = 1;
1822
1823                 if (pte_write(*ptep)) {
1824                         pte_list_remove(rmap_head, sptep);
1825                         goto restart;
1826                 } else {
1827                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1828                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1829
1830                         new_spte &= ~PT_WRITABLE_MASK;
1831                         new_spte &= ~SPTE_HOST_WRITEABLE;
1832
1833                         new_spte = mark_spte_for_access_track(new_spte);
1834
1835                         mmu_spte_clear_track_bits(sptep);
1836                         mmu_spte_set(sptep, new_spte);
1837                 }
1838         }
1839
1840         if (need_flush && kvm_available_flush_tlb_with_range()) {
1841                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1842                 return 0;
1843         }
1844
1845         return need_flush;
1846 }
1847
1848 struct slot_rmap_walk_iterator {
1849         /* input fields. */
1850         struct kvm_memory_slot *slot;
1851         gfn_t start_gfn;
1852         gfn_t end_gfn;
1853         int start_level;
1854         int end_level;
1855
1856         /* output fields. */
1857         gfn_t gfn;
1858         struct kvm_rmap_head *rmap;
1859         int level;
1860
1861         /* private field. */
1862         struct kvm_rmap_head *end_rmap;
1863 };
1864
1865 static void
1866 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1867 {
1868         iterator->level = level;
1869         iterator->gfn = iterator->start_gfn;
1870         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1871         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1872                                            iterator->slot);
1873 }
1874
1875 static void
1876 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1877                     struct kvm_memory_slot *slot, int start_level,
1878                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1879 {
1880         iterator->slot = slot;
1881         iterator->start_level = start_level;
1882         iterator->end_level = end_level;
1883         iterator->start_gfn = start_gfn;
1884         iterator->end_gfn = end_gfn;
1885
1886         rmap_walk_init_level(iterator, iterator->start_level);
1887 }
1888
1889 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1890 {
1891         return !!iterator->rmap;
1892 }
1893
1894 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1895 {
1896         if (++iterator->rmap <= iterator->end_rmap) {
1897                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1898                 return;
1899         }
1900
1901         if (++iterator->level > iterator->end_level) {
1902                 iterator->rmap = NULL;
1903                 return;
1904         }
1905
1906         rmap_walk_init_level(iterator, iterator->level);
1907 }
1908
1909 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1910            _start_gfn, _end_gfn, _iter_)                                \
1911         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1912                                  _end_level_, _start_gfn, _end_gfn);    \
1913              slot_rmap_walk_okay(_iter_);                               \
1914              slot_rmap_walk_next(_iter_))
1915
1916 static int kvm_handle_hva_range(struct kvm *kvm,
1917                                 unsigned long start,
1918                                 unsigned long end,
1919                                 unsigned long data,
1920                                 int (*handler)(struct kvm *kvm,
1921                                                struct kvm_rmap_head *rmap_head,
1922                                                struct kvm_memory_slot *slot,
1923                                                gfn_t gfn,
1924                                                int level,
1925                                                unsigned long data))
1926 {
1927         struct kvm_memslots *slots;
1928         struct kvm_memory_slot *memslot;
1929         struct slot_rmap_walk_iterator iterator;
1930         int ret = 0;
1931         int i;
1932
1933         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1934                 slots = __kvm_memslots(kvm, i);
1935                 kvm_for_each_memslot(memslot, slots) {
1936                         unsigned long hva_start, hva_end;
1937                         gfn_t gfn_start, gfn_end;
1938
1939                         hva_start = max(start, memslot->userspace_addr);
1940                         hva_end = min(end, memslot->userspace_addr +
1941                                       (memslot->npages << PAGE_SHIFT));
1942                         if (hva_start >= hva_end)
1943                                 continue;
1944                         /*
1945                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1946                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1947                          */
1948                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1949                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1950
1951                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1952                                                  PT_MAX_HUGEPAGE_LEVEL,
1953                                                  gfn_start, gfn_end - 1,
1954                                                  &iterator)
1955                                 ret |= handler(kvm, iterator.rmap, memslot,
1956                                                iterator.gfn, iterator.level, data);
1957                 }
1958         }
1959
1960         return ret;
1961 }
1962
1963 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1964                           unsigned long data,
1965                           int (*handler)(struct kvm *kvm,
1966                                          struct kvm_rmap_head *rmap_head,
1967                                          struct kvm_memory_slot *slot,
1968                                          gfn_t gfn, int level,
1969                                          unsigned long data))
1970 {
1971         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1972 }
1973
1974 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1975 {
1976         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1977 }
1978
1979 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1980 {
1981         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1982 }
1983
1984 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1985                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1986                          unsigned long data)
1987 {
1988         u64 *sptep;
1989         struct rmap_iterator uninitialized_var(iter);
1990         int young = 0;
1991
1992         for_each_rmap_spte(rmap_head, &iter, sptep)
1993                 young |= mmu_spte_age(sptep);
1994
1995         trace_kvm_age_page(gfn, level, slot, young);
1996         return young;
1997 }
1998
1999 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2000                               struct kvm_memory_slot *slot, gfn_t gfn,
2001                               int level, unsigned long data)
2002 {
2003         u64 *sptep;
2004         struct rmap_iterator iter;
2005
2006         for_each_rmap_spte(rmap_head, &iter, sptep)
2007                 if (is_accessed_spte(*sptep))
2008                         return 1;
2009         return 0;
2010 }
2011
2012 #define RMAP_RECYCLE_THRESHOLD 1000
2013
2014 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2015 {
2016         struct kvm_rmap_head *rmap_head;
2017         struct kvm_mmu_page *sp;
2018
2019         sp = page_header(__pa(spte));
2020
2021         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2022
2023         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2024         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2025                         KVM_PAGES_PER_HPAGE(sp->role.level));
2026 }
2027
2028 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2029 {
2030         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2031 }
2032
2033 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2034 {
2035         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2036 }
2037
2038 #ifdef MMU_DEBUG
2039 static int is_empty_shadow_page(u64 *spt)
2040 {
2041         u64 *pos;
2042         u64 *end;
2043
2044         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2045                 if (is_shadow_present_pte(*pos)) {
2046                         printk(KERN_ERR "%s: %p %llx\n", __func__,
2047                                pos, *pos);
2048                         return 0;
2049                 }
2050         return 1;
2051 }
2052 #endif
2053
2054 /*
2055  * This value is the sum of all of the kvm instances's
2056  * kvm->arch.n_used_mmu_pages values.  We need a global,
2057  * aggregate version in order to make the slab shrinker
2058  * faster
2059  */
2060 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2061 {
2062         kvm->arch.n_used_mmu_pages += nr;
2063         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2064 }
2065
2066 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2067 {
2068         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2069         hlist_del(&sp->hash_link);
2070         list_del(&sp->link);
2071         free_page((unsigned long)sp->spt);
2072         if (!sp->role.direct)
2073                 free_page((unsigned long)sp->gfns);
2074         kmem_cache_free(mmu_page_header_cache, sp);
2075 }
2076
2077 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2078 {
2079         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2080 }
2081
2082 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2083                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2084 {
2085         if (!parent_pte)
2086                 return;
2087
2088         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2089 }
2090
2091 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2092                                        u64 *parent_pte)
2093 {
2094         __pte_list_remove(parent_pte, &sp->parent_ptes);
2095 }
2096
2097 static void drop_parent_pte(struct kvm_mmu_page *sp,
2098                             u64 *parent_pte)
2099 {
2100         mmu_page_remove_parent_pte(sp, parent_pte);
2101         mmu_spte_clear_no_track(parent_pte);
2102 }
2103
2104 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2105 {
2106         struct kvm_mmu_page *sp;
2107
2108         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2109         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2110         if (!direct)
2111                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2112         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2113
2114         /*
2115          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2116          * depends on valid pages being added to the head of the list.  See
2117          * comments in kvm_zap_obsolete_pages().
2118          */
2119         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2120         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2121         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2122         return sp;
2123 }
2124
2125 static void mark_unsync(u64 *spte);
2126 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2127 {
2128         u64 *sptep;
2129         struct rmap_iterator iter;
2130
2131         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2132                 mark_unsync(sptep);
2133         }
2134 }
2135
2136 static void mark_unsync(u64 *spte)
2137 {
2138         struct kvm_mmu_page *sp;
2139         unsigned int index;
2140
2141         sp = page_header(__pa(spte));
2142         index = spte - sp->spt;
2143         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2144                 return;
2145         if (sp->unsync_children++)
2146                 return;
2147         kvm_mmu_mark_parents_unsync(sp);
2148 }
2149
2150 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2151                                struct kvm_mmu_page *sp)
2152 {
2153         return 0;
2154 }
2155
2156 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2157                                  struct kvm_mmu_page *sp, u64 *spte,
2158                                  const void *pte)
2159 {
2160         WARN_ON(1);
2161 }
2162
2163 #define KVM_PAGE_ARRAY_NR 16
2164
2165 struct kvm_mmu_pages {
2166         struct mmu_page_and_offset {
2167                 struct kvm_mmu_page *sp;
2168                 unsigned int idx;
2169         } page[KVM_PAGE_ARRAY_NR];
2170         unsigned int nr;
2171 };
2172
2173 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2174                          int idx)
2175 {
2176         int i;
2177
2178         if (sp->unsync)
2179                 for (i=0; i < pvec->nr; i++)
2180                         if (pvec->page[i].sp == sp)
2181                                 return 0;
2182
2183         pvec->page[pvec->nr].sp = sp;
2184         pvec->page[pvec->nr].idx = idx;
2185         pvec->nr++;
2186         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2187 }
2188
2189 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2190 {
2191         --sp->unsync_children;
2192         WARN_ON((int)sp->unsync_children < 0);
2193         __clear_bit(idx, sp->unsync_child_bitmap);
2194 }
2195
2196 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2197                            struct kvm_mmu_pages *pvec)
2198 {
2199         int i, ret, nr_unsync_leaf = 0;
2200
2201         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2202                 struct kvm_mmu_page *child;
2203                 u64 ent = sp->spt[i];
2204
2205                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2206                         clear_unsync_child_bit(sp, i);
2207                         continue;
2208                 }
2209
2210                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2211
2212                 if (child->unsync_children) {
2213                         if (mmu_pages_add(pvec, child, i))
2214                                 return -ENOSPC;
2215
2216                         ret = __mmu_unsync_walk(child, pvec);
2217                         if (!ret) {
2218                                 clear_unsync_child_bit(sp, i);
2219                                 continue;
2220                         } else if (ret > 0) {
2221                                 nr_unsync_leaf += ret;
2222                         } else
2223                                 return ret;
2224                 } else if (child->unsync) {
2225                         nr_unsync_leaf++;
2226                         if (mmu_pages_add(pvec, child, i))
2227                                 return -ENOSPC;
2228                 } else
2229                         clear_unsync_child_bit(sp, i);
2230         }
2231
2232         return nr_unsync_leaf;
2233 }
2234
2235 #define INVALID_INDEX (-1)
2236
2237 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2238                            struct kvm_mmu_pages *pvec)
2239 {
2240         pvec->nr = 0;
2241         if (!sp->unsync_children)
2242                 return 0;
2243
2244         mmu_pages_add(pvec, sp, INVALID_INDEX);
2245         return __mmu_unsync_walk(sp, pvec);
2246 }
2247
2248 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2249 {
2250         WARN_ON(!sp->unsync);
2251         trace_kvm_mmu_sync_page(sp);
2252         sp->unsync = 0;
2253         --kvm->stat.mmu_unsync;
2254 }
2255
2256 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2257                                      struct list_head *invalid_list);
2258 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2259                                     struct list_head *invalid_list);
2260
2261
2262 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2263         hlist_for_each_entry(_sp,                                       \
2264           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2265                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
2266                 } else
2267
2268 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2269         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2270                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2271
2272 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2273 {
2274         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2275 }
2276
2277 /* @sp->gfn should be write-protected at the call site */
2278 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2279                             struct list_head *invalid_list)
2280 {
2281         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2282             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2283                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2284                 return false;
2285         }
2286
2287         return true;
2288 }
2289
2290 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2291                                         struct list_head *invalid_list,
2292                                         bool remote_flush)
2293 {
2294         if (!remote_flush && list_empty(invalid_list))
2295                 return false;
2296
2297         if (!list_empty(invalid_list))
2298                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2299         else
2300                 kvm_flush_remote_tlbs(kvm);
2301         return true;
2302 }
2303
2304 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2305                                  struct list_head *invalid_list,
2306                                  bool remote_flush, bool local_flush)
2307 {
2308         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2309                 return;
2310
2311         if (local_flush)
2312                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2313 }
2314
2315 #ifdef CONFIG_KVM_MMU_AUDIT
2316 #include "mmu_audit.c"
2317 #else
2318 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2319 static void mmu_audit_disable(void) { }
2320 #endif
2321
2322 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2323 {
2324         return sp->role.invalid ||
2325                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2326 }
2327
2328 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2329                          struct list_head *invalid_list)
2330 {
2331         kvm_unlink_unsync_page(vcpu->kvm, sp);
2332         return __kvm_sync_page(vcpu, sp, invalid_list);
2333 }
2334
2335 /* @gfn should be write-protected at the call site */
2336 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2337                            struct list_head *invalid_list)
2338 {
2339         struct kvm_mmu_page *s;
2340         bool ret = false;
2341
2342         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2343                 if (!s->unsync)
2344                         continue;
2345
2346                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2347                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2348         }
2349
2350         return ret;
2351 }
2352
2353 struct mmu_page_path {
2354         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2355         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2356 };
2357
2358 #define for_each_sp(pvec, sp, parents, i)                       \
2359                 for (i = mmu_pages_first(&pvec, &parents);      \
2360                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2361                         i = mmu_pages_next(&pvec, &parents, i))
2362
2363 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2364                           struct mmu_page_path *parents,
2365                           int i)
2366 {
2367         int n;
2368
2369         for (n = i+1; n < pvec->nr; n++) {
2370                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2371                 unsigned idx = pvec->page[n].idx;
2372                 int level = sp->role.level;
2373
2374                 parents->idx[level-1] = idx;
2375                 if (level == PT_PAGE_TABLE_LEVEL)
2376                         break;
2377
2378                 parents->parent[level-2] = sp;
2379         }
2380
2381         return n;
2382 }
2383
2384 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2385                            struct mmu_page_path *parents)
2386 {
2387         struct kvm_mmu_page *sp;
2388         int level;
2389
2390         if (pvec->nr == 0)
2391                 return 0;
2392
2393         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2394
2395         sp = pvec->page[0].sp;
2396         level = sp->role.level;
2397         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2398
2399         parents->parent[level-2] = sp;
2400
2401         /* Also set up a sentinel.  Further entries in pvec are all
2402          * children of sp, so this element is never overwritten.
2403          */
2404         parents->parent[level-1] = NULL;
2405         return mmu_pages_next(pvec, parents, 0);
2406 }
2407
2408 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2409 {
2410         struct kvm_mmu_page *sp;
2411         unsigned int level = 0;
2412
2413         do {
2414                 unsigned int idx = parents->idx[level];
2415                 sp = parents->parent[level];
2416                 if (!sp)
2417                         return;
2418
2419                 WARN_ON(idx == INVALID_INDEX);
2420                 clear_unsync_child_bit(sp, idx);
2421                 level++;
2422         } while (!sp->unsync_children);
2423 }
2424
2425 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2426                               struct kvm_mmu_page *parent)
2427 {
2428         int i;
2429         struct kvm_mmu_page *sp;
2430         struct mmu_page_path parents;
2431         struct kvm_mmu_pages pages;
2432         LIST_HEAD(invalid_list);
2433         bool flush = false;
2434
2435         while (mmu_unsync_walk(parent, &pages)) {
2436                 bool protected = false;
2437
2438                 for_each_sp(pages, sp, parents, i)
2439                         protected |= rmap_write_protect(vcpu, sp->gfn);
2440
2441                 if (protected) {
2442                         kvm_flush_remote_tlbs(vcpu->kvm);
2443                         flush = false;
2444                 }
2445
2446                 for_each_sp(pages, sp, parents, i) {
2447                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2448                         mmu_pages_clear_parents(&parents);
2449                 }
2450                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2451                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2452                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2453                         flush = false;
2454                 }
2455         }
2456
2457         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2458 }
2459
2460 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2461 {
2462         atomic_set(&sp->write_flooding_count,  0);
2463 }
2464
2465 static void clear_sp_write_flooding_count(u64 *spte)
2466 {
2467         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2468
2469         __clear_sp_write_flooding_count(sp);
2470 }
2471
2472 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2473                                              gfn_t gfn,
2474                                              gva_t gaddr,
2475                                              unsigned level,
2476                                              int direct,
2477                                              unsigned int access)
2478 {
2479         union kvm_mmu_page_role role;
2480         unsigned quadrant;
2481         struct kvm_mmu_page *sp;
2482         bool need_sync = false;
2483         bool flush = false;
2484         int collisions = 0;
2485         LIST_HEAD(invalid_list);
2486
2487         role = vcpu->arch.mmu->mmu_role.base;
2488         role.level = level;
2489         role.direct = direct;
2490         if (role.direct)
2491                 role.gpte_is_8_bytes = true;
2492         role.access = access;
2493         if (!vcpu->arch.mmu->direct_map
2494             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2495                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2496                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2497                 role.quadrant = quadrant;
2498         }
2499         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2500                 if (sp->gfn != gfn) {
2501                         collisions++;
2502                         continue;
2503                 }
2504
2505                 if (!need_sync && sp->unsync)
2506                         need_sync = true;
2507
2508                 if (sp->role.word != role.word)
2509                         continue;
2510
2511                 if (sp->unsync) {
2512                         /* The page is good, but __kvm_sync_page might still end
2513                          * up zapping it.  If so, break in order to rebuild it.
2514                          */
2515                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2516                                 break;
2517
2518                         WARN_ON(!list_empty(&invalid_list));
2519                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2520                 }
2521
2522                 if (sp->unsync_children)
2523                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2524
2525                 __clear_sp_write_flooding_count(sp);
2526                 trace_kvm_mmu_get_page(sp, false);
2527                 goto out;
2528         }
2529
2530         ++vcpu->kvm->stat.mmu_cache_miss;
2531
2532         sp = kvm_mmu_alloc_page(vcpu, direct);
2533
2534         sp->gfn = gfn;
2535         sp->role = role;
2536         hlist_add_head(&sp->hash_link,
2537                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2538         if (!direct) {
2539                 /*
2540                  * we should do write protection before syncing pages
2541                  * otherwise the content of the synced shadow page may
2542                  * be inconsistent with guest page table.
2543                  */
2544                 account_shadowed(vcpu->kvm, sp);
2545                 if (level == PT_PAGE_TABLE_LEVEL &&
2546                       rmap_write_protect(vcpu, gfn))
2547                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2548
2549                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2550                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2551         }
2552         clear_page(sp->spt);
2553         trace_kvm_mmu_get_page(sp, true);
2554
2555         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2556 out:
2557         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2558                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2559         return sp;
2560 }
2561
2562 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2563                                         struct kvm_vcpu *vcpu, hpa_t root,
2564                                         u64 addr)
2565 {
2566         iterator->addr = addr;
2567         iterator->shadow_addr = root;
2568         iterator->level = vcpu->arch.mmu->shadow_root_level;
2569
2570         if (iterator->level == PT64_ROOT_4LEVEL &&
2571             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2572             !vcpu->arch.mmu->direct_map)
2573                 --iterator->level;
2574
2575         if (iterator->level == PT32E_ROOT_LEVEL) {
2576                 /*
2577                  * prev_root is currently only used for 64-bit hosts. So only
2578                  * the active root_hpa is valid here.
2579                  */
2580                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2581
2582                 iterator->shadow_addr
2583                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2584                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2585                 --iterator->level;
2586                 if (!iterator->shadow_addr)
2587                         iterator->level = 0;
2588         }
2589 }
2590
2591 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2592                              struct kvm_vcpu *vcpu, u64 addr)
2593 {
2594         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2595                                     addr);
2596 }
2597
2598 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2599 {
2600         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2601                 return false;
2602
2603         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2604         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2605         return true;
2606 }
2607
2608 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2609                                u64 spte)
2610 {
2611         if (is_last_spte(spte, iterator->level)) {
2612                 iterator->level = 0;
2613                 return;
2614         }
2615
2616         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2617         --iterator->level;
2618 }
2619
2620 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2621 {
2622         __shadow_walk_next(iterator, *iterator->sptep);
2623 }
2624
2625 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2626                              struct kvm_mmu_page *sp)
2627 {
2628         u64 spte;
2629
2630         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2631
2632         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2633                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2634
2635         if (sp_ad_disabled(sp))
2636                 spte |= SPTE_AD_DISABLED_MASK;
2637         else
2638                 spte |= shadow_accessed_mask;
2639
2640         mmu_spte_set(sptep, spte);
2641
2642         mmu_page_add_parent_pte(vcpu, sp, sptep);
2643
2644         if (sp->unsync_children || sp->unsync)
2645                 mark_unsync(sptep);
2646 }
2647
2648 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2649                                    unsigned direct_access)
2650 {
2651         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2652                 struct kvm_mmu_page *child;
2653
2654                 /*
2655                  * For the direct sp, if the guest pte's dirty bit
2656                  * changed form clean to dirty, it will corrupt the
2657                  * sp's access: allow writable in the read-only sp,
2658                  * so we should update the spte at this point to get
2659                  * a new sp with the correct access.
2660                  */
2661                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2662                 if (child->role.access == direct_access)
2663                         return;
2664
2665                 drop_parent_pte(child, sptep);
2666                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2667         }
2668 }
2669
2670 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2671                              u64 *spte)
2672 {
2673         u64 pte;
2674         struct kvm_mmu_page *child;
2675
2676         pte = *spte;
2677         if (is_shadow_present_pte(pte)) {
2678                 if (is_last_spte(pte, sp->role.level)) {
2679                         drop_spte(kvm, spte);
2680                         if (is_large_pte(pte))
2681                                 --kvm->stat.lpages;
2682                 } else {
2683                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2684                         drop_parent_pte(child, spte);
2685                 }
2686                 return true;
2687         }
2688
2689         if (is_mmio_spte(pte))
2690                 mmu_spte_clear_no_track(spte);
2691
2692         return false;
2693 }
2694
2695 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2696                                          struct kvm_mmu_page *sp)
2697 {
2698         unsigned i;
2699
2700         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2701                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2702 }
2703
2704 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2705 {
2706         u64 *sptep;
2707         struct rmap_iterator iter;
2708
2709         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2710                 drop_parent_pte(sp, sptep);
2711 }
2712
2713 static int mmu_zap_unsync_children(struct kvm *kvm,
2714                                    struct kvm_mmu_page *parent,
2715                                    struct list_head *invalid_list)
2716 {
2717         int i, zapped = 0;
2718         struct mmu_page_path parents;
2719         struct kvm_mmu_pages pages;
2720
2721         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2722                 return 0;
2723
2724         while (mmu_unsync_walk(parent, &pages)) {
2725                 struct kvm_mmu_page *sp;
2726
2727                 for_each_sp(pages, sp, parents, i) {
2728                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2729                         mmu_pages_clear_parents(&parents);
2730                         zapped++;
2731                 }
2732         }
2733
2734         return zapped;
2735 }
2736
2737 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2738                                        struct kvm_mmu_page *sp,
2739                                        struct list_head *invalid_list,
2740                                        int *nr_zapped)
2741 {
2742         bool list_unstable;
2743
2744         trace_kvm_mmu_prepare_zap_page(sp);
2745         ++kvm->stat.mmu_shadow_zapped;
2746         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2747         kvm_mmu_page_unlink_children(kvm, sp);
2748         kvm_mmu_unlink_parents(kvm, sp);
2749
2750         /* Zapping children means active_mmu_pages has become unstable. */
2751         list_unstable = *nr_zapped;
2752
2753         if (!sp->role.invalid && !sp->role.direct)
2754                 unaccount_shadowed(kvm, sp);
2755
2756         if (sp->unsync)
2757                 kvm_unlink_unsync_page(kvm, sp);
2758         if (!sp->root_count) {
2759                 /* Count self */
2760                 (*nr_zapped)++;
2761                 list_move(&sp->link, invalid_list);
2762                 kvm_mod_used_mmu_pages(kvm, -1);
2763         } else {
2764                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2765
2766                 /*
2767                  * Obsolete pages cannot be used on any vCPUs, see the comment
2768                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2769                  * treats invalid shadow pages as being obsolete.
2770                  */
2771                 if (!is_obsolete_sp(kvm, sp))
2772                         kvm_reload_remote_mmus(kvm);
2773         }
2774
2775         if (sp->lpage_disallowed)
2776                 unaccount_huge_nx_page(kvm, sp);
2777
2778         sp->role.invalid = 1;
2779         return list_unstable;
2780 }
2781
2782 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2783                                      struct list_head *invalid_list)
2784 {
2785         int nr_zapped;
2786
2787         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2788         return nr_zapped;
2789 }
2790
2791 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2792                                     struct list_head *invalid_list)
2793 {
2794         struct kvm_mmu_page *sp, *nsp;
2795
2796         if (list_empty(invalid_list))
2797                 return;
2798
2799         /*
2800          * We need to make sure everyone sees our modifications to
2801          * the page tables and see changes to vcpu->mode here. The barrier
2802          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2803          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2804          *
2805          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2806          * guest mode and/or lockless shadow page table walks.
2807          */
2808         kvm_flush_remote_tlbs(kvm);
2809
2810         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2811                 WARN_ON(!sp->role.invalid || sp->root_count);
2812                 kvm_mmu_free_page(sp);
2813         }
2814 }
2815
2816 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2817                                         struct list_head *invalid_list)
2818 {
2819         struct kvm_mmu_page *sp;
2820
2821         if (list_empty(&kvm->arch.active_mmu_pages))
2822                 return false;
2823
2824         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2825                              struct kvm_mmu_page, link);
2826         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2827 }
2828
2829 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2830 {
2831         LIST_HEAD(invalid_list);
2832
2833         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2834                 return 0;
2835
2836         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2837                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2838                         break;
2839
2840                 ++vcpu->kvm->stat.mmu_recycled;
2841         }
2842         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2843
2844         if (!kvm_mmu_available_pages(vcpu->kvm))
2845                 return -ENOSPC;
2846         return 0;
2847 }
2848
2849 /*
2850  * Changing the number of mmu pages allocated to the vm
2851  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2852  */
2853 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2854 {
2855         LIST_HEAD(invalid_list);
2856
2857         spin_lock(&kvm->mmu_lock);
2858
2859         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2860                 /* Need to free some mmu pages to achieve the goal. */
2861                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2862                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2863                                 break;
2864
2865                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2866                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2867         }
2868
2869         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2870
2871         spin_unlock(&kvm->mmu_lock);
2872 }
2873
2874 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2875 {
2876         struct kvm_mmu_page *sp;
2877         LIST_HEAD(invalid_list);
2878         int r;
2879
2880         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2881         r = 0;
2882         spin_lock(&kvm->mmu_lock);
2883         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2884                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2885                          sp->role.word);
2886                 r = 1;
2887                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2888         }
2889         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2890         spin_unlock(&kvm->mmu_lock);
2891
2892         return r;
2893 }
2894 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2895
2896 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2897 {
2898         trace_kvm_mmu_unsync_page(sp);
2899         ++vcpu->kvm->stat.mmu_unsync;
2900         sp->unsync = 1;
2901
2902         kvm_mmu_mark_parents_unsync(sp);
2903 }
2904
2905 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2906                                    bool can_unsync)
2907 {
2908         struct kvm_mmu_page *sp;
2909
2910         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2911                 return true;
2912
2913         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2914                 if (!can_unsync)
2915                         return true;
2916
2917                 if (sp->unsync)
2918                         continue;
2919
2920                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2921                 kvm_unsync_page(vcpu, sp);
2922         }
2923
2924         /*
2925          * We need to ensure that the marking of unsync pages is visible
2926          * before the SPTE is updated to allow writes because
2927          * kvm_mmu_sync_roots() checks the unsync flags without holding
2928          * the MMU lock and so can race with this. If the SPTE was updated
2929          * before the page had been marked as unsync-ed, something like the
2930          * following could happen:
2931          *
2932          * CPU 1                    CPU 2
2933          * ---------------------------------------------------------------------
2934          * 1.2 Host updates SPTE
2935          *     to be writable
2936          *                      2.1 Guest writes a GPTE for GVA X.
2937          *                          (GPTE being in the guest page table shadowed
2938          *                           by the SP from CPU 1.)
2939          *                          This reads SPTE during the page table walk.
2940          *                          Since SPTE.W is read as 1, there is no
2941          *                          fault.
2942          *
2943          *                      2.2 Guest issues TLB flush.
2944          *                          That causes a VM Exit.
2945          *
2946          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2947          *                          Since it is false, so it just returns.
2948          *
2949          *                      2.4 Guest accesses GVA X.
2950          *                          Since the mapping in the SP was not updated,
2951          *                          so the old mapping for GVA X incorrectly
2952          *                          gets used.
2953          * 1.1 Host marks SP
2954          *     as unsync
2955          *     (sp->unsync = true)
2956          *
2957          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2958          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2959          * pairs with this write barrier.
2960          */
2961         smp_wmb();
2962
2963         return false;
2964 }
2965
2966 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2967 {
2968         if (pfn_valid(pfn))
2969                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2970                         /*
2971                          * Some reserved pages, such as those from NVDIMM
2972                          * DAX devices, are not for MMIO, and can be mapped
2973                          * with cached memory type for better performance.
2974                          * However, the above check misconceives those pages
2975                          * as MMIO, and results in KVM mapping them with UC
2976                          * memory type, which would hurt the performance.
2977                          * Therefore, we check the host memory type in addition
2978                          * and only treat UC/UC-/WC pages as MMIO.
2979                          */
2980                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2981
2982         return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2983                                      pfn_to_hpa(pfn + 1) - 1,
2984                                      E820_TYPE_RAM);
2985 }
2986
2987 /* Bits which may be returned by set_spte() */
2988 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2989 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2990
2991 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2992                     unsigned int pte_access, int level,
2993                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2994                     bool can_unsync, bool host_writable)
2995 {
2996         u64 spte = 0;
2997         int ret = 0;
2998         struct kvm_mmu_page *sp;
2999
3000         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3001                 return 0;
3002
3003         sp = page_header(__pa(sptep));
3004         if (sp_ad_disabled(sp))
3005                 spte |= SPTE_AD_DISABLED_MASK;
3006         else if (kvm_vcpu_ad_need_write_protect(vcpu))
3007                 spte |= SPTE_AD_WRPROT_ONLY_MASK;
3008
3009         /*
3010          * For the EPT case, shadow_present_mask is 0 if hardware
3011          * supports exec-only page table entries.  In that case,
3012          * ACC_USER_MASK and shadow_user_mask are used to represent
3013          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
3014          */
3015         spte |= shadow_present_mask;
3016         if (!speculative)
3017                 spte |= spte_shadow_accessed_mask(spte);
3018
3019         if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3020             is_nx_huge_page_enabled()) {
3021                 pte_access &= ~ACC_EXEC_MASK;
3022         }
3023
3024         if (pte_access & ACC_EXEC_MASK)
3025                 spte |= shadow_x_mask;
3026         else
3027                 spte |= shadow_nx_mask;
3028
3029         if (pte_access & ACC_USER_MASK)
3030                 spte |= shadow_user_mask;
3031
3032         if (level > PT_PAGE_TABLE_LEVEL)
3033                 spte |= PT_PAGE_SIZE_MASK;
3034         if (tdp_enabled)
3035                 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3036                         kvm_is_mmio_pfn(pfn));
3037
3038         if (host_writable)
3039                 spte |= SPTE_HOST_WRITEABLE;
3040         else
3041                 pte_access &= ~ACC_WRITE_MASK;
3042
3043         if (!kvm_is_mmio_pfn(pfn))
3044                 spte |= shadow_me_mask;
3045
3046         spte |= (u64)pfn << PAGE_SHIFT;
3047
3048         if (pte_access & ACC_WRITE_MASK) {
3049                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3050
3051                 /*
3052                  * Optimization: for pte sync, if spte was writable the hash
3053                  * lookup is unnecessary (and expensive). Write protection
3054                  * is responsibility of mmu_get_page / kvm_sync_page.
3055                  * Same reasoning can be applied to dirty page accounting.
3056                  */
3057                 if (!can_unsync && is_writable_pte(*sptep))
3058                         goto set_pte;
3059
3060                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3061                         pgprintk("%s: found shadow page for %llx, marking ro\n",
3062                                  __func__, gfn);
3063                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
3064                         pte_access &= ~ACC_WRITE_MASK;
3065                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3066                 }
3067         }
3068
3069         if (pte_access & ACC_WRITE_MASK) {
3070                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3071                 spte |= spte_shadow_dirty_mask(spte);
3072         }
3073
3074         if (speculative)
3075                 spte = mark_spte_for_access_track(spte);
3076
3077 set_pte:
3078         if (mmu_spte_update(sptep, spte))
3079                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3080         return ret;
3081 }
3082
3083 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3084                         unsigned int pte_access, int write_fault, int level,
3085                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3086                         bool host_writable)
3087 {
3088         int was_rmapped = 0;
3089         int rmap_count;
3090         int set_spte_ret;
3091         int ret = RET_PF_RETRY;
3092         bool flush = false;
3093
3094         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3095                  *sptep, write_fault, gfn);
3096
3097         if (is_shadow_present_pte(*sptep)) {
3098                 /*
3099                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3100                  * the parent of the now unreachable PTE.
3101                  */
3102                 if (level > PT_PAGE_TABLE_LEVEL &&
3103                     !is_large_pte(*sptep)) {
3104                         struct kvm_mmu_page *child;
3105                         u64 pte = *sptep;
3106
3107                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3108                         drop_parent_pte(child, sptep);
3109                         flush = true;
3110                 } else if (pfn != spte_to_pfn(*sptep)) {
3111                         pgprintk("hfn old %llx new %llx\n",
3112                                  spte_to_pfn(*sptep), pfn);
3113                         drop_spte(vcpu->kvm, sptep);
3114                         flush = true;
3115                 } else
3116                         was_rmapped = 1;
3117         }
3118
3119         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3120                                 speculative, true, host_writable);
3121         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3122                 if (write_fault)
3123                         ret = RET_PF_EMULATE;
3124                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3125         }
3126
3127         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3128                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3129                                 KVM_PAGES_PER_HPAGE(level));
3130
3131         if (unlikely(is_mmio_spte(*sptep)))
3132                 ret = RET_PF_EMULATE;
3133
3134         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3135         trace_kvm_mmu_set_spte(level, gfn, sptep);
3136         if (!was_rmapped && is_large_pte(*sptep))
3137                 ++vcpu->kvm->stat.lpages;
3138
3139         if (is_shadow_present_pte(*sptep)) {
3140                 if (!was_rmapped) {
3141                         rmap_count = rmap_add(vcpu, sptep, gfn);
3142                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3143                                 rmap_recycle(vcpu, sptep, gfn);
3144                 }
3145         }
3146
3147         return ret;
3148 }
3149
3150 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3151                                      bool no_dirty_log)
3152 {
3153         struct kvm_memory_slot *slot;
3154
3155         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3156         if (!slot)
3157                 return KVM_PFN_ERR_FAULT;
3158
3159         return gfn_to_pfn_memslot_atomic(slot, gfn);
3160 }
3161
3162 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3163                                     struct kvm_mmu_page *sp,
3164                                     u64 *start, u64 *end)
3165 {
3166         struct page *pages[PTE_PREFETCH_NUM];
3167         struct kvm_memory_slot *slot;
3168         unsigned int access = sp->role.access;
3169         int i, ret;
3170         gfn_t gfn;
3171
3172         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3173         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3174         if (!slot)
3175                 return -1;
3176
3177         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3178         if (ret <= 0)
3179                 return -1;
3180
3181         for (i = 0; i < ret; i++, gfn++, start++) {
3182                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3183                              page_to_pfn(pages[i]), true, true);
3184                 put_page(pages[i]);
3185         }
3186
3187         return 0;
3188 }
3189
3190 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3191                                   struct kvm_mmu_page *sp, u64 *sptep)
3192 {
3193         u64 *spte, *start = NULL;
3194         int i;
3195
3196         WARN_ON(!sp->role.direct);
3197
3198         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3199         spte = sp->spt + i;
3200
3201         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3202                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3203                         if (!start)
3204                                 continue;
3205                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3206                                 break;
3207                         start = NULL;
3208                 } else if (!start)
3209                         start = spte;
3210         }
3211 }
3212
3213 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3214 {
3215         struct kvm_mmu_page *sp;
3216
3217         sp = page_header(__pa(sptep));
3218
3219         /*
3220          * Without accessed bits, there's no way to distinguish between
3221          * actually accessed translations and prefetched, so disable pte
3222          * prefetch if accessed bits aren't available.
3223          */
3224         if (sp_ad_disabled(sp))
3225                 return;
3226
3227         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3228                 return;
3229
3230         __direct_pte_prefetch(vcpu, sp, sptep);
3231 }
3232
3233 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3234                                   kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3235 {
3236         unsigned long hva;
3237         pte_t *pte;
3238         int level;
3239
3240         BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K ||
3241                      PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M ||
3242                      PT_PDPE_LEVEL != (int)PG_LEVEL_1G);
3243
3244         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3245                 return PT_PAGE_TABLE_LEVEL;
3246
3247         /*
3248          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3249          * is not solely for performance, it's also necessary to avoid the
3250          * "writable" check in __gfn_to_hva_many(), which will always fail on
3251          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3252          * page fault steps have already verified the guest isn't writing a
3253          * read-only memslot.
3254          */
3255         hva = __gfn_to_hva_memslot(slot, gfn);
3256
3257         pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3258         if (unlikely(!pte))
3259                 return PT_PAGE_TABLE_LEVEL;
3260
3261         return level;
3262 }
3263
3264 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3265                                    int max_level, kvm_pfn_t *pfnp)
3266 {
3267         struct kvm_memory_slot *slot;
3268         struct kvm_lpage_info *linfo;
3269         kvm_pfn_t pfn = *pfnp;
3270         kvm_pfn_t mask;
3271         int level;
3272
3273         if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
3274                 return PT_PAGE_TABLE_LEVEL;
3275
3276         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3277                 return PT_PAGE_TABLE_LEVEL;
3278
3279         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3280         if (!slot)
3281                 return PT_PAGE_TABLE_LEVEL;
3282
3283         max_level = min(max_level, max_page_level);
3284         for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
3285                 linfo = lpage_info_slot(gfn, slot, max_level);
3286                 if (!linfo->disallow_lpage)
3287                         break;
3288         }
3289
3290         if (max_level == PT_PAGE_TABLE_LEVEL)
3291                 return PT_PAGE_TABLE_LEVEL;
3292
3293         level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3294         if (level == PT_PAGE_TABLE_LEVEL)
3295                 return level;
3296
3297         level = min(level, max_level);
3298
3299         /*
3300          * mmu_notifier_retry() was successful and mmu_lock is held, so
3301          * the pmd can't be split from under us.
3302          */
3303         mask = KVM_PAGES_PER_HPAGE(level) - 1;
3304         VM_BUG_ON((gfn & mask) != (pfn & mask));
3305         *pfnp = pfn & ~mask;
3306
3307         return level;
3308 }
3309
3310 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3311                                        gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3312 {
3313         int level = *levelp;
3314         u64 spte = *it.sptep;
3315
3316         if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3317             is_nx_huge_page_enabled() &&
3318             is_shadow_present_pte(spte) &&
3319             !is_large_pte(spte)) {
3320                 /*
3321                  * A small SPTE exists for this pfn, but FNAME(fetch)
3322                  * and __direct_map would like to create a large PTE
3323                  * instead: just force them to go down another level,
3324                  * patching back for them into pfn the next 9 bits of
3325                  * the address.
3326                  */
3327                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3328                 *pfnp |= gfn & page_mask;
3329                 (*levelp)--;
3330         }
3331 }
3332
3333 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3334                         int map_writable, int max_level, kvm_pfn_t pfn,
3335                         bool prefault, bool account_disallowed_nx_lpage)
3336 {
3337         struct kvm_shadow_walk_iterator it;
3338         struct kvm_mmu_page *sp;
3339         int level, ret;
3340         gfn_t gfn = gpa >> PAGE_SHIFT;
3341         gfn_t base_gfn = gfn;
3342
3343         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3344                 return RET_PF_RETRY;
3345
3346         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3347
3348         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3349         for_each_shadow_entry(vcpu, gpa, it) {
3350                 /*
3351                  * We cannot overwrite existing page tables with an NX
3352                  * large page, as the leaf could be executable.
3353                  */
3354                 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3355
3356                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3357                 if (it.level == level)
3358                         break;
3359
3360                 drop_large_spte(vcpu, it.sptep);
3361                 if (!is_shadow_present_pte(*it.sptep)) {
3362                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3363                                               it.level - 1, true, ACC_ALL);
3364
3365                         link_shadow_page(vcpu, it.sptep, sp);
3366                         if (account_disallowed_nx_lpage)
3367                                 account_huge_nx_page(vcpu->kvm, sp);
3368                 }
3369         }
3370
3371         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3372                            write, level, base_gfn, pfn, prefault,
3373                            map_writable);
3374         direct_pte_prefetch(vcpu, it.sptep);
3375         ++vcpu->stat.pf_fixed;
3376         return ret;
3377 }
3378
3379 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3380 {
3381         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3382 }
3383
3384 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3385 {
3386         /*
3387          * Do not cache the mmio info caused by writing the readonly gfn
3388          * into the spte otherwise read access on readonly gfn also can
3389          * caused mmio page fault and treat it as mmio access.
3390          */
3391         if (pfn == KVM_PFN_ERR_RO_FAULT)
3392                 return RET_PF_EMULATE;
3393
3394         if (pfn == KVM_PFN_ERR_HWPOISON) {
3395                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3396                 return RET_PF_RETRY;
3397         }
3398
3399         return -EFAULT;
3400 }
3401
3402 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3403                                 kvm_pfn_t pfn, unsigned int access,
3404                                 int *ret_val)
3405 {
3406         /* The pfn is invalid, report the error! */
3407         if (unlikely(is_error_pfn(pfn))) {
3408                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3409                 return true;
3410         }
3411
3412         if (unlikely(is_noslot_pfn(pfn)))
3413                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3414                                      access & shadow_mmio_access_mask);
3415
3416         return false;
3417 }
3418
3419 static bool page_fault_can_be_fast(u32 error_code)
3420 {
3421         /*
3422          * Do not fix the mmio spte with invalid generation number which
3423          * need to be updated by slow page fault path.
3424          */
3425         if (unlikely(error_code & PFERR_RSVD_MASK))
3426                 return false;
3427
3428         /* See if the page fault is due to an NX violation */
3429         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3430                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3431                 return false;
3432
3433         /*
3434          * #PF can be fast if:
3435          * 1. The shadow page table entry is not present, which could mean that
3436          *    the fault is potentially caused by access tracking (if enabled).
3437          * 2. The shadow page table entry is present and the fault
3438          *    is caused by write-protect, that means we just need change the W
3439          *    bit of the spte which can be done out of mmu-lock.
3440          *
3441          * However, if access tracking is disabled we know that a non-present
3442          * page must be a genuine page fault where we have to create a new SPTE.
3443          * So, if access tracking is disabled, we return true only for write
3444          * accesses to a present page.
3445          */
3446
3447         return shadow_acc_track_mask != 0 ||
3448                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3449                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3450 }
3451
3452 /*
3453  * Returns true if the SPTE was fixed successfully. Otherwise,
3454  * someone else modified the SPTE from its original value.
3455  */
3456 static bool
3457 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3458                         u64 *sptep, u64 old_spte, u64 new_spte)
3459 {
3460         gfn_t gfn;
3461
3462         WARN_ON(!sp->role.direct);
3463
3464         /*
3465          * Theoretically we could also set dirty bit (and flush TLB) here in
3466          * order to eliminate unnecessary PML logging. See comments in
3467          * set_spte. But fast_page_fault is very unlikely to happen with PML
3468          * enabled, so we do not do this. This might result in the same GPA
3469          * to be logged in PML buffer again when the write really happens, and
3470          * eventually to be called by mark_page_dirty twice. But it's also no
3471          * harm. This also avoids the TLB flush needed after setting dirty bit
3472          * so non-PML cases won't be impacted.
3473          *
3474          * Compare with set_spte where instead shadow_dirty_mask is set.
3475          */
3476         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3477                 return false;
3478
3479         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3480                 /*
3481                  * The gfn of direct spte is stable since it is
3482                  * calculated by sp->gfn.
3483                  */
3484                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3485                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3486         }
3487
3488         return true;
3489 }
3490
3491 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3492 {
3493         if (fault_err_code & PFERR_FETCH_MASK)
3494                 return is_executable_pte(spte);
3495
3496         if (fault_err_code & PFERR_WRITE_MASK)
3497                 return is_writable_pte(spte);
3498
3499         /* Fault was on Read access */
3500         return spte & PT_PRESENT_MASK;
3501 }
3502
3503 /*
3504  * Return value:
3505  * - true: let the vcpu to access on the same address again.
3506  * - false: let the real page fault path to fix it.
3507  */
3508 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3509                             u32 error_code)
3510 {
3511         struct kvm_shadow_walk_iterator iterator;
3512         struct kvm_mmu_page *sp;
3513         bool fault_handled = false;
3514         u64 spte = 0ull;
3515         uint retry_count = 0;
3516
3517         if (!page_fault_can_be_fast(error_code))
3518                 return false;
3519
3520         walk_shadow_page_lockless_begin(vcpu);
3521
3522         do {
3523                 u64 new_spte;
3524
3525                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3526                         if (!is_shadow_present_pte(spte))
3527                                 break;
3528
3529                 sp = page_header(__pa(iterator.sptep));
3530                 if (!is_last_spte(spte, sp->role.level))
3531                         break;
3532
3533                 /*
3534                  * Check whether the memory access that caused the fault would
3535                  * still cause it if it were to be performed right now. If not,
3536                  * then this is a spurious fault caused by TLB lazily flushed,
3537                  * or some other CPU has already fixed the PTE after the
3538                  * current CPU took the fault.
3539                  *
3540                  * Need not check the access of upper level table entries since
3541                  * they are always ACC_ALL.
3542                  */
3543                 if (is_access_allowed(error_code, spte)) {
3544                         fault_handled = true;
3545                         break;
3546                 }
3547
3548                 new_spte = spte;
3549
3550                 if (is_access_track_spte(spte))
3551                         new_spte = restore_acc_track_spte(new_spte);
3552
3553                 /*
3554                  * Currently, to simplify the code, write-protection can
3555                  * be removed in the fast path only if the SPTE was
3556                  * write-protected for dirty-logging or access tracking.
3557                  */
3558                 if ((error_code & PFERR_WRITE_MASK) &&
3559                     spte_can_locklessly_be_made_writable(spte)) {
3560                         new_spte |= PT_WRITABLE_MASK;
3561
3562                         /*
3563                          * Do not fix write-permission on the large spte.  Since
3564                          * we only dirty the first page into the dirty-bitmap in
3565                          * fast_pf_fix_direct_spte(), other pages are missed
3566                          * if its slot has dirty logging enabled.
3567                          *
3568                          * Instead, we let the slow page fault path create a
3569                          * normal spte to fix the access.
3570                          *
3571                          * See the comments in kvm_arch_commit_memory_region().
3572                          */
3573                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3574                                 break;
3575                 }
3576
3577                 /* Verify that the fault can be handled in the fast path */
3578                 if (new_spte == spte ||
3579                     !is_access_allowed(error_code, new_spte))
3580                         break;
3581
3582                 /*
3583                  * Currently, fast page fault only works for direct mapping
3584                  * since the gfn is not stable for indirect shadow page. See
3585                  * Documentation/virt/kvm/locking.txt to get more detail.
3586                  */
3587                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3588                                                         iterator.sptep, spte,
3589                                                         new_spte);
3590                 if (fault_handled)
3591                         break;
3592
3593                 if (++retry_count > 4) {
3594                         printk_once(KERN_WARNING
3595                                 "kvm: Fast #PF retrying more than 4 times.\n");
3596                         break;
3597                 }
3598
3599         } while (true);
3600
3601         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3602                               spte, fault_handled);
3603         walk_shadow_page_lockless_end(vcpu);
3604
3605         return fault_handled;
3606 }
3607
3608 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3609                                struct list_head *invalid_list)
3610 {
3611         struct kvm_mmu_page *sp;
3612
3613         if (!VALID_PAGE(*root_hpa))
3614                 return;
3615
3616         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3617         --sp->root_count;
3618         if (!sp->root_count && sp->role.invalid)
3619                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3620
3621         *root_hpa = INVALID_PAGE;
3622 }
3623
3624 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3625 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3626                         ulong roots_to_free)
3627 {
3628         int i;
3629         LIST_HEAD(invalid_list);
3630         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3631
3632         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3633
3634         /* Before acquiring the MMU lock, see if we need to do any real work. */
3635         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3636                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3637                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3638                             VALID_PAGE(mmu->prev_roots[i].hpa))
3639                                 break;
3640
3641                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3642                         return;
3643         }
3644
3645         spin_lock(&vcpu->kvm->mmu_lock);
3646
3647         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3648                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3649                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3650                                            &invalid_list);
3651
3652         if (free_active_root) {
3653                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3654                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3655                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3656                                            &invalid_list);
3657                 } else {
3658                         for (i = 0; i < 4; ++i)
3659                                 if (mmu->pae_root[i] != 0)
3660                                         mmu_free_root_page(vcpu->kvm,
3661                                                            &mmu->pae_root[i],
3662                                                            &invalid_list);
3663                         mmu->root_hpa = INVALID_PAGE;
3664                 }
3665                 mmu->root_cr3 = 0;
3666         }
3667
3668         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3669         spin_unlock(&vcpu->kvm->mmu_lock);
3670 }
3671 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3672
3673 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3674 {
3675         int ret = 0;
3676
3677         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3678                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3679                 ret = 1;
3680         }
3681
3682         return ret;
3683 }
3684
3685 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3686 {
3687         struct kvm_mmu_page *sp;
3688         unsigned i;
3689
3690         if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3691                 spin_lock(&vcpu->kvm->mmu_lock);
3692                 if(make_mmu_pages_available(vcpu) < 0) {
3693                         spin_unlock(&vcpu->kvm->mmu_lock);
3694                         return -ENOSPC;
3695                 }
3696                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3697                                 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3698                 ++sp->root_count;
3699                 spin_unlock(&vcpu->kvm->mmu_lock);
3700                 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3701         } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3702                 for (i = 0; i < 4; ++i) {
3703                         hpa_t root = vcpu->arch.mmu->pae_root[i];
3704
3705                         MMU_WARN_ON(VALID_PAGE(root));
3706                         spin_lock(&vcpu->kvm->mmu_lock);
3707                         if (make_mmu_pages_available(vcpu) < 0) {
3708                                 spin_unlock(&vcpu->kvm->mmu_lock);
3709                                 return -ENOSPC;
3710                         }
3711                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3712                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3713                         root = __pa(sp->spt);
3714                         ++sp->root_count;
3715                         spin_unlock(&vcpu->kvm->mmu_lock);
3716                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3717                 }
3718                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3719         } else
3720                 BUG();
3721
3722         /* root_cr3 is ignored for direct MMUs. */
3723         vcpu->arch.mmu->root_cr3 = 0;
3724
3725         return 0;
3726 }
3727
3728 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3729 {
3730         struct kvm_mmu_page *sp;
3731         u64 pdptr, pm_mask;
3732         gfn_t root_gfn, root_cr3;
3733         int i;
3734
3735         root_cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3736         root_gfn = root_cr3 >> PAGE_SHIFT;
3737
3738         if (mmu_check_root(vcpu, root_gfn))
3739                 return 1;
3740
3741         /*
3742          * Do we shadow a long mode page table? If so we need to
3743          * write-protect the guests page table root.
3744          */
3745         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3746                 hpa_t root = vcpu->arch.mmu->root_hpa;
3747
3748                 MMU_WARN_ON(VALID_PAGE(root));
3749
3750                 spin_lock(&vcpu->kvm->mmu_lock);
3751                 if (make_mmu_pages_available(vcpu) < 0) {
3752                         spin_unlock(&vcpu->kvm->mmu_lock);
3753                         return -ENOSPC;
3754                 }
3755                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3756                                 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3757                 root = __pa(sp->spt);
3758                 ++sp->root_count;
3759                 spin_unlock(&vcpu->kvm->mmu_lock);
3760                 vcpu->arch.mmu->root_hpa = root;
3761                 goto set_root_cr3;
3762         }
3763
3764         /*
3765          * We shadow a 32 bit page table. This may be a legacy 2-level
3766          * or a PAE 3-level page table. In either case we need to be aware that
3767          * the shadow page table may be a PAE or a long mode page table.
3768          */
3769         pm_mask = PT_PRESENT_MASK;
3770         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3771                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3772
3773         for (i = 0; i < 4; ++i) {
3774                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3775
3776                 MMU_WARN_ON(VALID_PAGE(root));
3777                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3778                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3779                         if (!(pdptr & PT_PRESENT_MASK)) {
3780                                 vcpu->arch.mmu->pae_root[i] = 0;
3781                                 continue;
3782                         }
3783                         root_gfn = pdptr >> PAGE_SHIFT;
3784                         if (mmu_check_root(vcpu, root_gfn))
3785                                 return 1;
3786                 }
3787                 spin_lock(&vcpu->kvm->mmu_lock);
3788                 if (make_mmu_pages_available(vcpu) < 0) {
3789                         spin_unlock(&vcpu->kvm->mmu_lock);
3790                         return -ENOSPC;
3791                 }
3792                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3793                                       0, ACC_ALL);
3794                 root = __pa(sp->spt);
3795                 ++sp->root_count;
3796                 spin_unlock(&vcpu->kvm->mmu_lock);
3797
3798                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3799         }
3800         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3801
3802         /*
3803          * If we shadow a 32 bit page table with a long mode page
3804          * table we enter this path.
3805          */
3806         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3807                 if (vcpu->arch.mmu->lm_root == NULL) {
3808                         /*
3809                          * The additional page necessary for this is only
3810                          * allocated on demand.
3811                          */
3812
3813                         u64 *lm_root;
3814
3815                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3816                         if (lm_root == NULL)
3817                                 return 1;
3818
3819                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3820
3821                         vcpu->arch.mmu->lm_root = lm_root;
3822                 }
3823
3824                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3825         }
3826
3827 set_root_cr3:
3828         vcpu->arch.mmu->root_cr3 = root_cr3;
3829
3830         return 0;
3831 }
3832
3833 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3834 {
3835         if (vcpu->arch.mmu->direct_map)
3836                 return mmu_alloc_direct_roots(vcpu);
3837         else
3838                 return mmu_alloc_shadow_roots(vcpu);
3839 }
3840
3841 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3842 {
3843         int i;
3844         struct kvm_mmu_page *sp;
3845
3846         if (vcpu->arch.mmu->direct_map)
3847                 return;
3848
3849         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3850                 return;
3851
3852         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3853
3854         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3855                 hpa_t root = vcpu->arch.mmu->root_hpa;
3856                 sp = page_header(root);
3857
3858                 /*
3859                  * Even if another CPU was marking the SP as unsync-ed
3860                  * simultaneously, any guest page table changes are not
3861                  * guaranteed to be visible anyway until this VCPU issues a TLB
3862                  * flush strictly after those changes are made. We only need to
3863                  * ensure that the other CPU sets these flags before any actual
3864                  * changes to the page tables are made. The comments in
3865                  * mmu_need_write_protect() describe what could go wrong if this
3866                  * requirement isn't satisfied.
3867                  */
3868                 if (!smp_load_acquire(&sp->unsync) &&
3869                     !smp_load_acquire(&sp->unsync_children))
3870                         return;
3871
3872                 spin_lock(&vcpu->kvm->mmu_lock);
3873                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3874
3875                 mmu_sync_children(vcpu, sp);
3876
3877                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3878                 spin_unlock(&vcpu->kvm->mmu_lock);
3879                 return;
3880         }
3881
3882         spin_lock(&vcpu->kvm->mmu_lock);
3883         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3884
3885         for (i = 0; i < 4; ++i) {
3886                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3887
3888                 if (root && VALID_PAGE(root)) {
3889                         root &= PT64_BASE_ADDR_MASK;
3890                         sp = page_header(root);
3891                         mmu_sync_children(vcpu, sp);
3892                 }
3893         }
3894
3895         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3896         spin_unlock(&vcpu->kvm->mmu_lock);
3897 }
3898 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3899
3900 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3901                                   u32 access, struct x86_exception *exception)
3902 {
3903         if (exception)
3904                 exception->error_code = 0;
3905         return vaddr;
3906 }
3907
3908 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3909                                          u32 access,
3910                                          struct x86_exception *exception)
3911 {
3912         if (exception)
3913                 exception->error_code = 0;
3914         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3915 }
3916
3917 static bool
3918 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3919 {
3920         int bit7 = (pte >> 7) & 1;
3921
3922         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3923 }
3924
3925 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3926 {
3927         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3928 }
3929
3930 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3931 {
3932         /*
3933          * A nested guest cannot use the MMIO cache if it is using nested
3934          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3935          */
3936         if (mmu_is_nested(vcpu))
3937                 return false;
3938
3939         if (direct)
3940                 return vcpu_match_mmio_gpa(vcpu, addr);
3941
3942         return vcpu_match_mmio_gva(vcpu, addr);
3943 }
3944
3945 /* return true if reserved bit is detected on spte. */
3946 static bool
3947 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3948 {
3949         struct kvm_shadow_walk_iterator iterator;
3950         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3951         struct rsvd_bits_validate *rsvd_check;
3952         int root, leaf;
3953         bool reserved = false;
3954
3955         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3956
3957         walk_shadow_page_lockless_begin(vcpu);
3958
3959         for (shadow_walk_init(&iterator, vcpu, addr),
3960                  leaf = root = iterator.level;
3961              shadow_walk_okay(&iterator);
3962              __shadow_walk_next(&iterator, spte)) {
3963                 spte = mmu_spte_get_lockless(iterator.sptep);
3964
3965                 sptes[leaf - 1] = spte;
3966                 leaf--;
3967
3968                 if (!is_shadow_present_pte(spte))
3969                         break;
3970
3971                 /*
3972                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3973                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3974                  * adding a Jcc in the loop.
3975                  */
3976                 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3977                             __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3978         }
3979
3980         walk_shadow_page_lockless_end(vcpu);
3981
3982         if (reserved) {
3983                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3984                        __func__, addr);
3985                 while (root > leaf) {
3986                         pr_err("------ spte 0x%llx level %d.\n",
3987                                sptes[root - 1], root);
3988                         root--;
3989                 }
3990         }
3991
3992         *sptep = spte;
3993         return reserved;
3994 }
3995
3996 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3997 {
3998         u64 spte;
3999         bool reserved;
4000
4001         if (mmio_info_in_cache(vcpu, addr, direct))
4002                 return RET_PF_EMULATE;
4003
4004         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4005         if (WARN_ON(reserved))
4006                 return -EINVAL;
4007
4008         if (is_mmio_spte(spte)) {
4009                 gfn_t gfn = get_mmio_spte_gfn(spte);
4010                 unsigned int access = get_mmio_spte_access(spte);
4011
4012                 if (!check_mmio_spte(vcpu, spte))
4013                         return RET_PF_INVALID;
4014
4015                 if (direct)
4016                         addr = 0;
4017
4018                 trace_handle_mmio_page_fault(addr, gfn, access);
4019                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4020                 return RET_PF_EMULATE;
4021         }
4022
4023         /*
4024          * If the page table is zapped by other cpus, let CPU fault again on
4025          * the address.
4026          */
4027         return RET_PF_RETRY;
4028 }
4029
4030 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4031                                          u32 error_code, gfn_t gfn)
4032 {
4033         if (unlikely(error_code & PFERR_RSVD_MASK))
4034                 return false;
4035
4036         if (!(error_code & PFERR_PRESENT_MASK) ||
4037               !(error_code & PFERR_WRITE_MASK))
4038                 return false;
4039
4040         /*
4041          * guest is writing the page which is write tracked which can
4042          * not be fixed by page fault handler.
4043          */
4044         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4045                 return true;
4046
4047         return false;
4048 }
4049
4050 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4051 {
4052         struct kvm_shadow_walk_iterator iterator;
4053         u64 spte;
4054
4055         walk_shadow_page_lockless_begin(vcpu);
4056         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4057                 clear_sp_write_flooding_count(iterator.sptep);
4058                 if (!is_shadow_present_pte(spte))
4059                         break;
4060         }
4061         walk_shadow_page_lockless_end(vcpu);
4062 }
4063
4064 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4065                                    gfn_t gfn)
4066 {
4067         struct kvm_arch_async_pf arch;
4068
4069         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4070         arch.gfn = gfn;
4071         arch.direct_map = vcpu->arch.mmu->direct_map;
4072         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4073
4074         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4075                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4076 }
4077
4078 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4079                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4080                          bool *writable)
4081 {
4082         struct kvm_memory_slot *slot;
4083         bool async;
4084
4085         /*
4086          * Don't expose private memslots to L2.
4087          */
4088         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4089                 *pfn = KVM_PFN_NOSLOT;
4090                 return false;
4091         }
4092
4093         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4094         async = false;
4095         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4096         if (!async)
4097                 return false; /* *pfn has correct page already */
4098
4099         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4100                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4101                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4102                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4103                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4104                         return true;
4105                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4106                         return true;
4107         }
4108
4109         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4110         return false;
4111 }
4112
4113 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4114                              bool prefault, int max_level, bool is_tdp)
4115 {
4116         bool write = error_code & PFERR_WRITE_MASK;
4117         bool exec = error_code & PFERR_FETCH_MASK;
4118         bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4119         bool map_writable;
4120
4121         gfn_t gfn = gpa >> PAGE_SHIFT;
4122         unsigned long mmu_seq;
4123         kvm_pfn_t pfn;
4124         int r;
4125
4126         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4127                 return RET_PF_EMULATE;
4128
4129         r = mmu_topup_memory_caches(vcpu);
4130         if (r)
4131                 return r;
4132
4133         if (lpage_disallowed)
4134                 max_level = PT_PAGE_TABLE_LEVEL;
4135
4136         if (fast_page_fault(vcpu, gpa, error_code))
4137                 return RET_PF_RETRY;
4138
4139         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4140         smp_rmb();
4141
4142         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4143                 return RET_PF_RETRY;
4144
4145         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4146                 return r;
4147
4148         r = RET_PF_RETRY;
4149         spin_lock(&vcpu->kvm->mmu_lock);
4150         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4151                 goto out_unlock;
4152         if (make_mmu_pages_available(vcpu) < 0)
4153                 goto out_unlock;
4154         r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4155                          prefault, is_tdp && lpage_disallowed);
4156
4157 out_unlock:
4158         spin_unlock(&vcpu->kvm->mmu_lock);
4159         kvm_release_pfn_clean(pfn);
4160         return r;
4161 }
4162
4163 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4164                                 u32 error_code, bool prefault)
4165 {
4166         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4167
4168         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4169         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4170                                  PT_DIRECTORY_LEVEL, false);
4171 }
4172
4173 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4174                                 u64 fault_address, char *insn, int insn_len)
4175 {
4176         int r = 1;
4177
4178 #ifndef CONFIG_X86_64
4179         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4180         if (WARN_ON_ONCE(fault_address >> 32))
4181                 return -EFAULT;
4182 #endif
4183
4184         vcpu->arch.l1tf_flush_l1d = true;
4185         switch (vcpu->arch.apf.host_apf_reason) {
4186         default:
4187                 trace_kvm_page_fault(fault_address, error_code);
4188
4189                 if (kvm_event_needs_reinjection(vcpu))
4190                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4191                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4192                                 insn_len);
4193                 break;
4194         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4195                 vcpu->arch.apf.host_apf_reason = 0;
4196                 local_irq_disable();
4197                 kvm_async_pf_task_wait(fault_address, 0);
4198                 local_irq_enable();
4199                 break;
4200         case KVM_PV_REASON_PAGE_READY:
4201                 vcpu->arch.apf.host_apf_reason = 0;
4202                 local_irq_disable();
4203                 kvm_async_pf_task_wake(fault_address);
4204                 local_irq_enable();
4205                 break;
4206         }
4207         return r;
4208 }
4209 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4210
4211 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4212                        bool prefault)
4213 {
4214         int max_level;
4215
4216         for (max_level = PT_MAX_HUGEPAGE_LEVEL;
4217              max_level > PT_PAGE_TABLE_LEVEL;
4218              max_level--) {
4219                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4220                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4221
4222                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4223                         break;
4224         }
4225
4226         return direct_page_fault(vcpu, gpa, error_code, prefault,
4227                                  max_level, true);
4228 }
4229
4230 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4231                                    struct kvm_mmu *context)
4232 {
4233         context->page_fault = nonpaging_page_fault;
4234         context->gva_to_gpa = nonpaging_gva_to_gpa;
4235         context->sync_page = nonpaging_sync_page;
4236         context->invlpg = NULL;
4237         context->update_pte = nonpaging_update_pte;
4238         context->root_level = 0;
4239         context->shadow_root_level = PT32E_ROOT_LEVEL;
4240         context->direct_map = true;
4241         context->nx = false;
4242 }
4243
4244 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t cr3,
4245                                   union kvm_mmu_page_role role)
4246 {
4247         return (role.direct || cr3 == root->cr3) &&
4248                VALID_PAGE(root->hpa) && page_header(root->hpa) &&
4249                role.word == page_header(root->hpa)->role.word;
4250 }
4251
4252 /*
4253  * Find out if a previously cached root matching the new CR3/role is available.
4254  * The current root is also inserted into the cache.
4255  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4256  * returned.
4257  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4258  * false is returned. This root should now be freed by the caller.
4259  */
4260 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4261                                   union kvm_mmu_page_role new_role)
4262 {
4263         uint i;
4264         struct kvm_mmu_root_info root;
4265         struct kvm_mmu *mmu = vcpu->arch.mmu;
4266
4267         root.cr3 = mmu->root_cr3;
4268         root.hpa = mmu->root_hpa;
4269
4270         if (is_root_usable(&root, new_cr3, new_role))
4271                 return true;
4272
4273         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4274                 swap(root, mmu->prev_roots[i]);
4275
4276                 if (is_root_usable(&root, new_cr3, new_role))
4277                         break;
4278         }
4279
4280         mmu->root_hpa = root.hpa;
4281         mmu->root_cr3 = root.cr3;
4282
4283         return i < KVM_MMU_NUM_PREV_ROOTS;
4284 }
4285
4286 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4287                             union kvm_mmu_page_role new_role)
4288 {
4289         struct kvm_mmu *mmu = vcpu->arch.mmu;
4290
4291         /*
4292          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4293          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4294          * later if necessary.
4295          */
4296         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4297             mmu->root_level >= PT64_ROOT_4LEVEL)
4298                 return !mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT) &&
4299                        cached_root_available(vcpu, new_cr3, new_role);
4300
4301         return false;
4302 }
4303
4304 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4305                               union kvm_mmu_page_role new_role,
4306                               bool skip_tlb_flush, bool skip_mmu_sync)
4307 {
4308         if (!fast_cr3_switch(vcpu, new_cr3, new_role)) {
4309                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4310                 return;
4311         }
4312
4313         /*
4314          * It's possible that the cached previous root page is obsolete because
4315          * of a change in the MMU generation number. However, changing the
4316          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4317          * free the root set here and allocate a new one.
4318          */
4319         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4320
4321         if (!skip_mmu_sync)
4322                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4323         if (!skip_tlb_flush)
4324                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4325
4326         /*
4327          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4328          * switching to a new CR3, that GVA->GPA mapping may no longer be
4329          * valid. So clear any cached MMIO info even when we don't need to sync
4330          * the shadow page tables.
4331          */
4332         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4333
4334         __clear_sp_write_flooding_count(page_header(vcpu->arch.mmu->root_hpa));
4335 }
4336
4337 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush,
4338                      bool skip_mmu_sync)
4339 {
4340         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4341                           skip_tlb_flush, skip_mmu_sync);
4342 }
4343 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4344
4345 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4346 {
4347         return kvm_read_cr3(vcpu);
4348 }
4349
4350 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4351                            unsigned int access, int *nr_present)
4352 {
4353         if (unlikely(is_mmio_spte(*sptep))) {
4354                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4355                         mmu_spte_clear_no_track(sptep);
4356                         return true;
4357                 }
4358
4359                 (*nr_present)++;
4360                 mark_mmio_spte(vcpu, sptep, gfn, access);
4361                 return true;
4362         }
4363
4364         return false;
4365 }
4366
4367 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4368                                 unsigned level, unsigned gpte)
4369 {
4370         /*
4371          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4372          * If it is clear, there are no large pages at this level, so clear
4373          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4374          */
4375         gpte &= level - mmu->last_nonleaf_level;
4376
4377         /*
4378          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4379          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4380          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4381          */
4382         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4383
4384         return gpte & PT_PAGE_SIZE_MASK;
4385 }
4386
4387 #define PTTYPE_EPT 18 /* arbitrary */
4388 #define PTTYPE PTTYPE_EPT
4389 #include "paging_tmpl.h"
4390 #undef PTTYPE
4391
4392 #define PTTYPE 64
4393 #include "paging_tmpl.h"
4394 #undef PTTYPE
4395
4396 #define PTTYPE 32
4397 #include "paging_tmpl.h"
4398 #undef PTTYPE
4399
4400 static void
4401 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4402                         struct rsvd_bits_validate *rsvd_check,
4403                         int maxphyaddr, int level, bool nx, bool gbpages,
4404                         bool pse, bool amd)
4405 {
4406         u64 exb_bit_rsvd = 0;
4407         u64 gbpages_bit_rsvd = 0;
4408         u64 nonleaf_bit8_rsvd = 0;
4409
4410         rsvd_check->bad_mt_xwr = 0;
4411
4412         if (!nx)
4413                 exb_bit_rsvd = rsvd_bits(63, 63);
4414         if (!gbpages)
4415                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4416
4417         /*
4418          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4419          * leaf entries) on AMD CPUs only.
4420          */
4421         if (amd)
4422                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4423
4424         switch (level) {
4425         case PT32_ROOT_LEVEL:
4426                 /* no rsvd bits for 2 level 4K page table entries */
4427                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4428                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4429                 rsvd_check->rsvd_bits_mask[1][0] =
4430                         rsvd_check->rsvd_bits_mask[0][0];
4431
4432                 if (!pse) {
4433                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4434                         break;
4435                 }
4436
4437                 if (is_cpuid_PSE36())
4438                         /* 36bits PSE 4MB page */
4439                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4440                 else
4441                         /* 32 bits PSE 4MB page */
4442                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4443                 break;
4444         case PT32E_ROOT_LEVEL:
4445                 rsvd_check->rsvd_bits_mask[0][2] =
4446                         rsvd_bits(maxphyaddr, 63) |
4447                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4448                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4449                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4450                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4451                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4452                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4453                         rsvd_bits(maxphyaddr, 62) |
4454                         rsvd_bits(13, 20);              /* large page */
4455                 rsvd_check->rsvd_bits_mask[1][0] =
4456                         rsvd_check->rsvd_bits_mask[0][0];
4457                 break;
4458         case PT64_ROOT_5LEVEL:
4459                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4460                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4461                         rsvd_bits(maxphyaddr, 51);
4462                 rsvd_check->rsvd_bits_mask[1][4] =
4463                         rsvd_check->rsvd_bits_mask[0][4];
4464                 /* fall through */
4465         case PT64_ROOT_4LEVEL:
4466                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4467                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4468                         rsvd_bits(maxphyaddr, 51);
4469                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4470                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4471                         rsvd_bits(maxphyaddr, 51);
4472                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4473                         rsvd_bits(maxphyaddr, 51);
4474                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4475                         rsvd_bits(maxphyaddr, 51);
4476                 rsvd_check->rsvd_bits_mask[1][3] =
4477                         rsvd_check->rsvd_bits_mask[0][3];
4478                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4479                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4480                         rsvd_bits(13, 29);
4481                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4482                         rsvd_bits(maxphyaddr, 51) |
4483                         rsvd_bits(13, 20);              /* large page */
4484                 rsvd_check->rsvd_bits_mask[1][0] =
4485                         rsvd_check->rsvd_bits_mask[0][0];
4486                 break;
4487         }
4488 }
4489
4490 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4491                                   struct kvm_mmu *context)
4492 {
4493         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4494                                 cpuid_maxphyaddr(vcpu), context->root_level,
4495                                 context->nx,
4496                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4497                                 is_pse(vcpu),
4498                                 guest_cpuid_is_amd_or_hygon(vcpu));
4499 }
4500
4501 static void
4502 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4503                             int maxphyaddr, bool execonly)
4504 {
4505         u64 bad_mt_xwr;
4506
4507         rsvd_check->rsvd_bits_mask[0][4] =
4508                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4509         rsvd_check->rsvd_bits_mask[0][3] =
4510                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4511         rsvd_check->rsvd_bits_mask[0][2] =
4512                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4513         rsvd_check->rsvd_bits_mask[0][1] =
4514                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4515         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4516
4517         /* large page */
4518         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4519         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4520         rsvd_check->rsvd_bits_mask[1][2] =
4521                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4522         rsvd_check->rsvd_bits_mask[1][1] =
4523                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4524         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4525
4526         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4527         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4528         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4529         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4530         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4531         if (!execonly) {
4532                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4533                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4534         }
4535         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4536 }
4537
4538 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4539                 struct kvm_mmu *context, bool execonly)
4540 {
4541         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4542                                     cpuid_maxphyaddr(vcpu), execonly);
4543 }
4544
4545 /*
4546  * the page table on host is the shadow page table for the page
4547  * table in guest or amd nested guest, its mmu features completely
4548  * follow the features in guest.
4549  */
4550 void
4551 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4552 {
4553         bool uses_nx = context->nx ||
4554                 context->mmu_role.base.smep_andnot_wp;
4555         struct rsvd_bits_validate *shadow_zero_check;
4556         int i;
4557
4558         /*
4559          * Passing "true" to the last argument is okay; it adds a check
4560          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4561          */
4562         shadow_zero_check = &context->shadow_zero_check;
4563         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4564                                 shadow_phys_bits,
4565                                 context->shadow_root_level, uses_nx,
4566                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4567                                 is_pse(vcpu), true);
4568
4569         if (!shadow_me_mask)
4570                 return;
4571
4572         for (i = context->shadow_root_level; --i >= 0;) {
4573                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4574                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4575         }
4576
4577 }
4578 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4579
4580 static inline bool boot_cpu_is_amd(void)
4581 {
4582         WARN_ON_ONCE(!tdp_enabled);
4583         return shadow_x_mask == 0;
4584 }
4585
4586 /*
4587  * the direct page table on host, use as much mmu features as
4588  * possible, however, kvm currently does not do execution-protection.
4589  */
4590 static void
4591 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4592                                 struct kvm_mmu *context)
4593 {
4594         struct rsvd_bits_validate *shadow_zero_check;
4595         int i;
4596
4597         shadow_zero_check = &context->shadow_zero_check;
4598
4599         if (boot_cpu_is_amd())
4600                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4601                                         shadow_phys_bits,
4602                                         context->shadow_root_level, false,
4603                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4604                                         true, true);
4605         else
4606                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4607                                             shadow_phys_bits,
4608                                             false);
4609
4610         if (!shadow_me_mask)
4611                 return;
4612
4613         for (i = context->shadow_root_level; --i >= 0;) {
4614                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4615                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4616         }
4617 }
4618
4619 /*
4620  * as the comments in reset_shadow_zero_bits_mask() except it
4621  * is the shadow page table for intel nested guest.
4622  */
4623 static void
4624 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4625                                 struct kvm_mmu *context, bool execonly)
4626 {
4627         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4628                                     shadow_phys_bits, execonly);
4629 }
4630
4631 #define BYTE_MASK(access) \
4632         ((1 & (access) ? 2 : 0) | \
4633          (2 & (access) ? 4 : 0) | \
4634          (3 & (access) ? 8 : 0) | \
4635          (4 & (access) ? 16 : 0) | \
4636          (5 & (access) ? 32 : 0) | \
4637          (6 & (access) ? 64 : 0) | \
4638          (7 & (access) ? 128 : 0))
4639
4640
4641 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4642                                       struct kvm_mmu *mmu, bool ept)
4643 {
4644         unsigned byte;
4645
4646         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4647         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4648         const u8 u = BYTE_MASK(ACC_USER_MASK);
4649
4650         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4651         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4652         bool cr0_wp = is_write_protection(vcpu);
4653
4654         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4655                 unsigned pfec = byte << 1;
4656
4657                 /*
4658                  * Each "*f" variable has a 1 bit for each UWX value
4659                  * that causes a fault with the given PFEC.
4660                  */
4661
4662                 /* Faults from writes to non-writable pages */
4663                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4664                 /* Faults from user mode accesses to supervisor pages */
4665                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4666                 /* Faults from fetches of non-executable pages*/
4667                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4668                 /* Faults from kernel mode fetches of user pages */
4669                 u8 smepf = 0;
4670                 /* Faults from kernel mode accesses of user pages */
4671                 u8 smapf = 0;
4672
4673                 if (!ept) {
4674                         /* Faults from kernel mode accesses to user pages */
4675                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4676
4677                         /* Not really needed: !nx will cause pte.nx to fault */
4678                         if (!mmu->nx)
4679                                 ff = 0;
4680
4681                         /* Allow supervisor writes if !cr0.wp */
4682                         if (!cr0_wp)
4683                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4684
4685                         /* Disallow supervisor fetches of user code if cr4.smep */
4686                         if (cr4_smep)
4687                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4688
4689                         /*
4690                          * SMAP:kernel-mode data accesses from user-mode
4691                          * mappings should fault. A fault is considered
4692                          * as a SMAP violation if all of the following
4693                          * conditions are true:
4694                          *   - X86_CR4_SMAP is set in CR4
4695                          *   - A user page is accessed
4696                          *   - The access is not a fetch
4697                          *   - Page fault in kernel mode
4698                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4699                          *
4700                          * Here, we cover the first three conditions.
4701                          * The fourth is computed dynamically in permission_fault();
4702                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4703                          * *not* subject to SMAP restrictions.
4704                          */
4705                         if (cr4_smap)
4706                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4707                 }
4708
4709                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4710         }
4711 }
4712
4713 /*
4714 * PKU is an additional mechanism by which the paging controls access to
4715 * user-mode addresses based on the value in the PKRU register.  Protection
4716 * key violations are reported through a bit in the page fault error code.
4717 * Unlike other bits of the error code, the PK bit is not known at the
4718 * call site of e.g. gva_to_gpa; it must be computed directly in
4719 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4720 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4721 *
4722 * In particular the following conditions come from the error code, the
4723 * page tables and the machine state:
4724 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4725 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4726 * - PK is always zero if U=0 in the page tables
4727 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4728 *
4729 * The PKRU bitmask caches the result of these four conditions.  The error
4730 * code (minus the P bit) and the page table's U bit form an index into the
4731 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4732 * with the two bits of the PKRU register corresponding to the protection key.
4733 * For the first three conditions above the bits will be 00, thus masking
4734 * away both AD and WD.  For all reads or if the last condition holds, WD
4735 * only will be masked away.
4736 */
4737 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4738                                 bool ept)
4739 {
4740         unsigned bit;
4741         bool wp;
4742
4743         if (ept) {
4744                 mmu->pkru_mask = 0;
4745                 return;
4746         }
4747
4748         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4749         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4750                 mmu->pkru_mask = 0;
4751                 return;
4752         }
4753
4754         wp = is_write_protection(vcpu);
4755
4756         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4757                 unsigned pfec, pkey_bits;
4758                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4759
4760                 pfec = bit << 1;
4761                 ff = pfec & PFERR_FETCH_MASK;
4762                 uf = pfec & PFERR_USER_MASK;
4763                 wf = pfec & PFERR_WRITE_MASK;
4764
4765                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4766                 pte_user = pfec & PFERR_RSVD_MASK;
4767
4768                 /*
4769                  * Only need to check the access which is not an
4770                  * instruction fetch and is to a user page.
4771                  */
4772                 check_pkey = (!ff && pte_user);
4773                 /*
4774                  * write access is controlled by PKRU if it is a
4775                  * user access or CR0.WP = 1.
4776                  */
4777                 check_write = check_pkey && wf && (uf || wp);
4778
4779                 /* PKRU.AD stops both read and write access. */
4780                 pkey_bits = !!check_pkey;
4781                 /* PKRU.WD stops write access. */
4782                 pkey_bits |= (!!check_write) << 1;
4783
4784                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4785         }
4786 }
4787
4788 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4789 {
4790         unsigned root_level = mmu->root_level;
4791
4792         mmu->last_nonleaf_level = root_level;
4793         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4794                 mmu->last_nonleaf_level++;
4795 }
4796
4797 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4798                                          struct kvm_mmu *context,
4799                                          int level)
4800 {
4801         context->nx = is_nx(vcpu);
4802         context->root_level = level;
4803
4804         reset_rsvds_bits_mask(vcpu, context);
4805         update_permission_bitmask(vcpu, context, false);
4806         update_pkru_bitmask(vcpu, context, false);
4807         update_last_nonleaf_level(vcpu, context);
4808
4809         MMU_WARN_ON(!is_pae(vcpu));
4810         context->page_fault = paging64_page_fault;
4811         context->gva_to_gpa = paging64_gva_to_gpa;
4812         context->sync_page = paging64_sync_page;
4813         context->invlpg = paging64_invlpg;
4814         context->update_pte = paging64_update_pte;
4815         context->shadow_root_level = level;
4816         context->direct_map = false;
4817 }
4818
4819 static void paging64_init_context(struct kvm_vcpu *vcpu,
4820                                   struct kvm_mmu *context)
4821 {
4822         int root_level = is_la57_mode(vcpu) ?
4823                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4824
4825         paging64_init_context_common(vcpu, context, root_level);
4826 }
4827
4828 static void paging32_init_context(struct kvm_vcpu *vcpu,
4829                                   struct kvm_mmu *context)
4830 {
4831         context->nx = false;
4832         context->root_level = PT32_ROOT_LEVEL;
4833
4834         reset_rsvds_bits_mask(vcpu, context);
4835         update_permission_bitmask(vcpu, context, false);
4836         update_pkru_bitmask(vcpu, context, false);
4837         update_last_nonleaf_level(vcpu, context);
4838
4839         context->page_fault = paging32_page_fault;
4840         context->gva_to_gpa = paging32_gva_to_gpa;
4841         context->sync_page = paging32_sync_page;
4842         context->invlpg = paging32_invlpg;
4843         context->update_pte = paging32_update_pte;
4844         context->shadow_root_level = PT32E_ROOT_LEVEL;
4845         context->direct_map = false;
4846 }
4847
4848 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4849                                    struct kvm_mmu *context)
4850 {
4851         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4852 }
4853
4854 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4855 {
4856         union kvm_mmu_extended_role ext = {0};
4857
4858         ext.cr0_pg = !!is_paging(vcpu);
4859         ext.cr4_pae = !!is_pae(vcpu);
4860         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4861         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4862         ext.cr4_pse = !!is_pse(vcpu);
4863         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4864         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4865
4866         ext.valid = 1;
4867
4868         return ext;
4869 }
4870
4871 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4872                                                    bool base_only)
4873 {
4874         union kvm_mmu_role role = {0};
4875
4876         role.base.access = ACC_ALL;
4877         role.base.nxe = !!is_nx(vcpu);
4878         role.base.cr0_wp = is_write_protection(vcpu);
4879         role.base.smm = is_smm(vcpu);
4880         role.base.guest_mode = is_guest_mode(vcpu);
4881
4882         if (base_only)
4883                 return role;
4884
4885         role.ext = kvm_calc_mmu_role_ext(vcpu);
4886
4887         return role;
4888 }
4889
4890 static union kvm_mmu_role
4891 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4892 {
4893         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4894
4895         role.base.ad_disabled = (shadow_accessed_mask == 0);
4896         role.base.level = kvm_x86_ops.get_tdp_level(vcpu);
4897         role.base.direct = true;
4898         role.base.gpte_is_8_bytes = true;
4899
4900         return role;
4901 }
4902
4903 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4904 {
4905         struct kvm_mmu *context = vcpu->arch.mmu;
4906         union kvm_mmu_role new_role =
4907                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4908
4909         if (new_role.as_u64 == context->mmu_role.as_u64)
4910                 return;
4911
4912         context->mmu_role.as_u64 = new_role.as_u64;
4913         context->page_fault = kvm_tdp_page_fault;
4914         context->sync_page = nonpaging_sync_page;
4915         context->invlpg = NULL;
4916         context->update_pte = nonpaging_update_pte;
4917         context->shadow_root_level = kvm_x86_ops.get_tdp_level(vcpu);
4918         context->direct_map = true;
4919         context->get_guest_pgd = get_cr3;
4920         context->get_pdptr = kvm_pdptr_read;
4921         context->inject_page_fault = kvm_inject_page_fault;
4922
4923         if (!is_paging(vcpu)) {
4924                 context->nx = false;
4925                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4926                 context->root_level = 0;
4927         } else if (is_long_mode(vcpu)) {
4928                 context->nx = is_nx(vcpu);
4929                 context->root_level = is_la57_mode(vcpu) ?
4930                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4931                 reset_rsvds_bits_mask(vcpu, context);
4932                 context->gva_to_gpa = paging64_gva_to_gpa;
4933         } else if (is_pae(vcpu)) {
4934                 context->nx = is_nx(vcpu);
4935                 context->root_level = PT32E_ROOT_LEVEL;
4936                 reset_rsvds_bits_mask(vcpu, context);
4937                 context->gva_to_gpa = paging64_gva_to_gpa;
4938         } else {
4939                 context->nx = false;
4940                 context->root_level = PT32_ROOT_LEVEL;
4941                 reset_rsvds_bits_mask(vcpu, context);
4942                 context->gva_to_gpa = paging32_gva_to_gpa;
4943         }
4944
4945         update_permission_bitmask(vcpu, context, false);
4946         update_pkru_bitmask(vcpu, context, false);
4947         update_last_nonleaf_level(vcpu, context);
4948         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4949 }
4950
4951 static union kvm_mmu_role
4952 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4953 {
4954         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4955
4956         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4957                 !is_write_protection(vcpu);
4958         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4959                 !is_write_protection(vcpu);
4960         role.base.direct = !is_paging(vcpu);
4961         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4962
4963         if (!is_long_mode(vcpu))
4964                 role.base.level = PT32E_ROOT_LEVEL;
4965         else if (is_la57_mode(vcpu))
4966                 role.base.level = PT64_ROOT_5LEVEL;
4967         else
4968                 role.base.level = PT64_ROOT_4LEVEL;
4969
4970         return role;
4971 }
4972
4973 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4974 {
4975         struct kvm_mmu *context = vcpu->arch.mmu;
4976         union kvm_mmu_role new_role =
4977                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4978
4979         if (new_role.as_u64 == context->mmu_role.as_u64)
4980                 return;
4981
4982         if (!is_paging(vcpu))
4983                 nonpaging_init_context(vcpu, context);
4984         else if (is_long_mode(vcpu))
4985                 paging64_init_context(vcpu, context);
4986         else if (is_pae(vcpu))
4987                 paging32E_init_context(vcpu, context);
4988         else
4989                 paging32_init_context(vcpu, context);
4990
4991         context->mmu_role.as_u64 = new_role.as_u64;
4992         reset_shadow_zero_bits_mask(vcpu, context);
4993 }
4994 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4995
4996 static union kvm_mmu_role
4997 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4998                                    bool execonly, u8 level)
4999 {
5000         union kvm_mmu_role role = {0};
5001
5002         /* SMM flag is inherited from root_mmu */
5003         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5004
5005         role.base.level = level;
5006         role.base.gpte_is_8_bytes = true;
5007         role.base.direct = false;
5008         role.base.ad_disabled = !accessed_dirty;
5009         role.base.guest_mode = true;
5010         role.base.access = ACC_ALL;
5011
5012         /*
5013          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5014          * SMAP variation to denote shadow EPT entries.
5015          */
5016         role.base.cr0_wp = true;
5017         role.base.smap_andnot_wp = true;
5018
5019         role.ext = kvm_calc_mmu_role_ext(vcpu);
5020         role.ext.execonly = execonly;
5021
5022         return role;
5023 }
5024
5025 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5026                              bool accessed_dirty, gpa_t new_eptp)
5027 {
5028         struct kvm_mmu *context = vcpu->arch.mmu;
5029         u8 level = vmx_eptp_page_walk_level(new_eptp);
5030         union kvm_mmu_role new_role =
5031                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5032                                                    execonly, level);
5033
5034         __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false, false);
5035
5036         if (new_role.as_u64 == context->mmu_role.as_u64)
5037                 return;
5038
5039         context->shadow_root_level = level;
5040
5041         context->nx = true;
5042         context->ept_ad = accessed_dirty;
5043         context->page_fault = ept_page_fault;
5044         context->gva_to_gpa = ept_gva_to_gpa;
5045         context->sync_page = ept_sync_page;
5046         context->invlpg = ept_invlpg;
5047         context->update_pte = ept_update_pte;
5048         context->root_level = level;
5049         context->direct_map = false;
5050         context->mmu_role.as_u64 = new_role.as_u64;
5051
5052         update_permission_bitmask(vcpu, context, true);
5053         update_pkru_bitmask(vcpu, context, true);
5054         update_last_nonleaf_level(vcpu, context);
5055         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5056         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5057 }
5058 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5059
5060 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5061 {
5062         struct kvm_mmu *context = vcpu->arch.mmu;
5063
5064         kvm_init_shadow_mmu(vcpu);
5065         context->get_guest_pgd     = get_cr3;
5066         context->get_pdptr         = kvm_pdptr_read;
5067         context->inject_page_fault = kvm_inject_page_fault;
5068 }
5069
5070 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5071 {
5072         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5073         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5074
5075         if (new_role.as_u64 == g_context->mmu_role.as_u64)
5076                 return;
5077
5078         g_context->mmu_role.as_u64 = new_role.as_u64;
5079         g_context->get_guest_pgd     = get_cr3;
5080         g_context->get_pdptr         = kvm_pdptr_read;
5081         g_context->inject_page_fault = kvm_inject_page_fault;
5082
5083         /*
5084          * L2 page tables are never shadowed, so there is no need to sync
5085          * SPTEs.
5086          */
5087         g_context->invlpg            = NULL;
5088
5089         /*
5090          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5091          * L1's nested page tables (e.g. EPT12). The nested translation
5092          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5093          * L2's page tables as the first level of translation and L1's
5094          * nested page tables as the second level of translation. Basically
5095          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5096          */
5097         if (!is_paging(vcpu)) {
5098                 g_context->nx = false;
5099                 g_context->root_level = 0;
5100                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5101         } else if (is_long_mode(vcpu)) {
5102                 g_context->nx = is_nx(vcpu);
5103                 g_context->root_level = is_la57_mode(vcpu) ?
5104                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5105                 reset_rsvds_bits_mask(vcpu, g_context);
5106                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5107         } else if (is_pae(vcpu)) {
5108                 g_context->nx = is_nx(vcpu);
5109                 g_context->root_level = PT32E_ROOT_LEVEL;
5110                 reset_rsvds_bits_mask(vcpu, g_context);
5111                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5112         } else {
5113                 g_context->nx = false;
5114                 g_context->root_level = PT32_ROOT_LEVEL;
5115                 reset_rsvds_bits_mask(vcpu, g_context);
5116                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5117         }
5118
5119         update_permission_bitmask(vcpu, g_context, false);
5120         update_pkru_bitmask(vcpu, g_context, false);
5121         update_last_nonleaf_level(vcpu, g_context);
5122 }
5123
5124 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5125 {
5126         if (reset_roots) {
5127                 uint i;
5128
5129                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5130
5131                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5132                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5133         }
5134
5135         if (mmu_is_nested(vcpu))
5136                 init_kvm_nested_mmu(vcpu);
5137         else if (tdp_enabled)
5138                 init_kvm_tdp_mmu(vcpu);
5139         else
5140                 init_kvm_softmmu(vcpu);
5141 }
5142 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5143
5144 static union kvm_mmu_page_role
5145 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5146 {
5147         union kvm_mmu_role role;
5148
5149         if (tdp_enabled)
5150                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5151         else
5152                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5153
5154         return role.base;
5155 }
5156
5157 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5158 {
5159         kvm_mmu_unload(vcpu);
5160         kvm_init_mmu(vcpu, true);
5161 }
5162 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5163
5164 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5165 {
5166         int r;
5167
5168         r = mmu_topup_memory_caches(vcpu);
5169         if (r)
5170                 goto out;
5171         r = mmu_alloc_roots(vcpu);
5172         kvm_mmu_sync_roots(vcpu);
5173         if (r)
5174                 goto out;
5175         kvm_mmu_load_pgd(vcpu);
5176         kvm_x86_ops.tlb_flush_current(vcpu);
5177 out:
5178         return r;
5179 }
5180 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5181
5182 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5183 {
5184         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5185         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5186         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5187         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5188 }
5189 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5190
5191 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5192                                   struct kvm_mmu_page *sp, u64 *spte,
5193                                   const void *new)
5194 {
5195         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5196                 ++vcpu->kvm->stat.mmu_pde_zapped;
5197                 return;
5198         }
5199
5200         ++vcpu->kvm->stat.mmu_pte_updated;
5201         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5202 }
5203
5204 static bool need_remote_flush(u64 old, u64 new)
5205 {
5206         if (!is_shadow_present_pte(old))
5207                 return false;
5208         if (!is_shadow_present_pte(new))
5209                 return true;
5210         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5211                 return true;
5212         old ^= shadow_nx_mask;
5213         new ^= shadow_nx_mask;
5214         return (old & ~new & PT64_PERM_MASK) != 0;
5215 }
5216
5217 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5218                                     int *bytes)
5219 {
5220         u64 gentry = 0;
5221         int r;
5222
5223         /*
5224          * Assume that the pte write on a page table of the same type
5225          * as the current vcpu paging mode since we update the sptes only
5226          * when they have the same mode.
5227          */
5228         if (is_pae(vcpu) && *bytes == 4) {
5229                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5230                 *gpa &= ~(gpa_t)7;
5231                 *bytes = 8;
5232         }
5233
5234         if (*bytes == 4 || *bytes == 8) {
5235                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5236                 if (r)
5237                         gentry = 0;
5238         }
5239
5240         return gentry;
5241 }
5242
5243 /*
5244  * If we're seeing too many writes to a page, it may no longer be a page table,
5245  * or we may be forking, in which case it is better to unmap the page.
5246  */
5247 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5248 {
5249         /*
5250          * Skip write-flooding detected for the sp whose level is 1, because
5251          * it can become unsync, then the guest page is not write-protected.
5252          */
5253         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5254                 return false;
5255
5256         atomic_inc(&sp->write_flooding_count);
5257         return atomic_read(&sp->write_flooding_count) >= 3;
5258 }
5259
5260 /*
5261  * Misaligned accesses are too much trouble to fix up; also, they usually
5262  * indicate a page is not used as a page table.
5263  */
5264 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5265                                     int bytes)
5266 {
5267         unsigned offset, pte_size, misaligned;
5268
5269         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5270                  gpa, bytes, sp->role.word);
5271
5272         offset = offset_in_page(gpa);
5273         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5274
5275         /*
5276          * Sometimes, the OS only writes the last one bytes to update status
5277          * bits, for example, in linux, andb instruction is used in clear_bit().
5278          */
5279         if (!(offset & (pte_size - 1)) && bytes == 1)
5280                 return false;
5281
5282         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5283         misaligned |= bytes < 4;
5284
5285         return misaligned;
5286 }
5287
5288 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5289 {
5290         unsigned page_offset, quadrant;
5291         u64 *spte;
5292         int level;
5293
5294         page_offset = offset_in_page(gpa);
5295         level = sp->role.level;
5296         *nspte = 1;
5297         if (!sp->role.gpte_is_8_bytes) {
5298                 page_offset <<= 1;      /* 32->64 */
5299                 /*
5300                  * A 32-bit pde maps 4MB while the shadow pdes map
5301                  * only 2MB.  So we need to double the offset again
5302                  * and zap two pdes instead of one.
5303                  */
5304                 if (level == PT32_ROOT_LEVEL) {
5305                         page_offset &= ~7; /* kill rounding error */
5306                         page_offset <<= 1;
5307                         *nspte = 2;
5308                 }
5309                 quadrant = page_offset >> PAGE_SHIFT;
5310                 page_offset &= ~PAGE_MASK;
5311                 if (quadrant != sp->role.quadrant)
5312                         return NULL;
5313         }
5314
5315         spte = &sp->spt[page_offset / sizeof(*spte)];
5316         return spte;
5317 }
5318
5319 /*
5320  * Ignore various flags when determining if a SPTE can be immediately
5321  * overwritten for the current MMU.
5322  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5323  *    match the current MMU role, as MMU's level tracks the root level.
5324  *  - access: updated based on the new guest PTE
5325  *  - quadrant: handled by get_written_sptes()
5326  *  - invalid: always false (loop only walks valid shadow pages)
5327  */
5328 static const union kvm_mmu_page_role role_ign = {
5329         .level = 0xf,
5330         .access = 0x7,
5331         .quadrant = 0x3,
5332         .invalid = 0x1,
5333 };
5334
5335 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5336                               const u8 *new, int bytes,
5337                               struct kvm_page_track_notifier_node *node)
5338 {
5339         gfn_t gfn = gpa >> PAGE_SHIFT;
5340         struct kvm_mmu_page *sp;
5341         LIST_HEAD(invalid_list);
5342         u64 entry, gentry, *spte;
5343         int npte;
5344         bool remote_flush, local_flush;
5345
5346         /*
5347          * If we don't have indirect shadow pages, it means no page is
5348          * write-protected, so we can exit simply.
5349          */
5350         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5351                 return;
5352
5353         remote_flush = local_flush = false;
5354
5355         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5356
5357         /*
5358          * No need to care whether allocation memory is successful
5359          * or not since pte prefetch is skiped if it does not have
5360          * enough objects in the cache.
5361          */
5362         mmu_topup_memory_caches(vcpu);
5363
5364         spin_lock(&vcpu->kvm->mmu_lock);
5365
5366         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5367
5368         ++vcpu->kvm->stat.mmu_pte_write;
5369         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5370
5371         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5372                 if (detect_write_misaligned(sp, gpa, bytes) ||
5373                       detect_write_flooding(sp)) {
5374                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5375                         ++vcpu->kvm->stat.mmu_flooded;
5376                         continue;
5377                 }
5378
5379                 spte = get_written_sptes(sp, gpa, &npte);
5380                 if (!spte)
5381                         continue;
5382
5383                 local_flush = true;
5384                 while (npte--) {
5385                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5386
5387                         entry = *spte;
5388                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5389                         if (gentry &&
5390                             !((sp->role.word ^ base_role) & ~role_ign.word) &&
5391                             rmap_can_add(vcpu))
5392                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5393                         if (need_remote_flush(entry, *spte))
5394                                 remote_flush = true;
5395                         ++spte;
5396                 }
5397         }
5398         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5399         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5400         spin_unlock(&vcpu->kvm->mmu_lock);
5401 }
5402
5403 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5404 {
5405         gpa_t gpa;
5406         int r;
5407
5408         if (vcpu->arch.mmu->direct_map)
5409                 return 0;
5410
5411         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5412
5413         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5414
5415         return r;
5416 }
5417 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5418
5419 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5420                        void *insn, int insn_len)
5421 {
5422         int r, emulation_type = EMULTYPE_PF;
5423         bool direct = vcpu->arch.mmu->direct_map;
5424
5425         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5426                 return RET_PF_RETRY;
5427
5428         r = RET_PF_INVALID;
5429         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5430                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5431                 if (r == RET_PF_EMULATE)
5432                         goto emulate;
5433         }
5434
5435         if (r == RET_PF_INVALID) {
5436                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5437                                           lower_32_bits(error_code), false);
5438                 WARN_ON(r == RET_PF_INVALID);
5439         }
5440
5441         if (r == RET_PF_RETRY)
5442                 return 1;
5443         if (r < 0)
5444                 return r;
5445
5446         /*
5447          * Before emulating the instruction, check if the error code
5448          * was due to a RO violation while translating the guest page.
5449          * This can occur when using nested virtualization with nested
5450          * paging in both guests. If true, we simply unprotect the page
5451          * and resume the guest.
5452          */
5453         if (vcpu->arch.mmu->direct_map &&
5454             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5455                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5456                 return 1;
5457         }
5458
5459         /*
5460          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5461          * optimistically try to just unprotect the page and let the processor
5462          * re-execute the instruction that caused the page fault.  Do not allow
5463          * retrying MMIO emulation, as it's not only pointless but could also
5464          * cause us to enter an infinite loop because the processor will keep
5465          * faulting on the non-existent MMIO address.  Retrying an instruction
5466          * from a nested guest is also pointless and dangerous as we are only
5467          * explicitly shadowing L1's page tables, i.e. unprotecting something
5468          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5469          */
5470         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5471                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5472 emulate:
5473         /*
5474          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5475          * This can happen if a guest gets a page-fault on data access but the HW
5476          * table walker is not able to read the instruction page (e.g instruction
5477          * page is not present in memory). In those cases we simply restart the
5478          * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5479          */
5480         if (unlikely(insn && !insn_len)) {
5481                 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5482                         return 1;
5483         }
5484
5485         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5486                                        insn_len);
5487 }
5488 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5489
5490 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5491                             gva_t gva, hpa_t root_hpa)
5492 {
5493         int i;
5494
5495         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5496         if (mmu != &vcpu->arch.guest_mmu) {
5497                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5498                 if (is_noncanonical_address(gva, vcpu))
5499                         return;
5500
5501                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5502         }
5503
5504         if (!mmu->invlpg)
5505                 return;
5506
5507         if (root_hpa == INVALID_PAGE) {
5508                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5509
5510                 /*
5511                  * INVLPG is required to invalidate any global mappings for the VA,
5512                  * irrespective of PCID. Since it would take us roughly similar amount
5513                  * of work to determine whether any of the prev_root mappings of the VA
5514                  * is marked global, or to just sync it blindly, so we might as well
5515                  * just always sync it.
5516                  *
5517                  * Mappings not reachable via the current cr3 or the prev_roots will be
5518                  * synced when switching to that cr3, so nothing needs to be done here
5519                  * for them.
5520                  */
5521                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5522                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5523                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5524         } else {
5525                 mmu->invlpg(vcpu, gva, root_hpa);
5526         }
5527 }
5528 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5529
5530 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5531 {
5532         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5533         ++vcpu->stat.invlpg;
5534 }
5535 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5536
5537
5538 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5539 {
5540         struct kvm_mmu *mmu = vcpu->arch.mmu;
5541         bool tlb_flush = false;
5542         uint i;
5543
5544         if (pcid == kvm_get_active_pcid(vcpu)) {
5545                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5546                 tlb_flush = true;
5547         }
5548
5549         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5550                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5551                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5552                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5553                         tlb_flush = true;
5554                 }
5555         }
5556
5557         if (tlb_flush)
5558                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5559
5560         ++vcpu->stat.invlpg;
5561
5562         /*
5563          * Mappings not reachable via the current cr3 or the prev_roots will be
5564          * synced when switching to that cr3, so nothing needs to be done here
5565          * for them.
5566          */
5567 }
5568 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5569
5570 void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
5571 {
5572         tdp_enabled = enable_tdp;
5573
5574         /*
5575          * max_page_level reflects the capabilities of KVM's MMU irrespective
5576          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5577          * the kernel is not.  But, KVM never creates a page size greater than
5578          * what is used by the kernel for any given HVA, i.e. the kernel's
5579          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5580          */
5581         if (tdp_enabled)
5582                 max_page_level = tdp_page_level;
5583         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5584                 max_page_level = PT_PDPE_LEVEL;
5585         else
5586                 max_page_level = PT_DIRECTORY_LEVEL;
5587 }
5588 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5589
5590 /* The return value indicates if tlb flush on all vcpus is needed. */
5591 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5592
5593 /* The caller should hold mmu-lock before calling this function. */
5594 static __always_inline bool
5595 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5596                         slot_level_handler fn, int start_level, int end_level,
5597                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5598 {
5599         struct slot_rmap_walk_iterator iterator;
5600         bool flush = false;
5601
5602         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5603                         end_gfn, &iterator) {
5604                 if (iterator.rmap)
5605                         flush |= fn(kvm, iterator.rmap);
5606
5607                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5608                         if (flush && lock_flush_tlb) {
5609                                 kvm_flush_remote_tlbs_with_address(kvm,
5610                                                 start_gfn,
5611                                                 iterator.gfn - start_gfn + 1);
5612                                 flush = false;
5613                         }
5614                         cond_resched_lock(&kvm->mmu_lock);
5615                 }
5616         }
5617
5618         if (flush && lock_flush_tlb) {
5619                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5620                                                    end_gfn - start_gfn + 1);
5621                 flush = false;
5622         }
5623
5624         return flush;
5625 }
5626
5627 static __always_inline bool
5628 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5629                   slot_level_handler fn, int start_level, int end_level,
5630                   bool lock_flush_tlb)
5631 {
5632         return slot_handle_level_range(kvm, memslot, fn, start_level,
5633                         end_level, memslot->base_gfn,
5634                         memslot->base_gfn + memslot->npages - 1,
5635                         lock_flush_tlb);
5636 }
5637
5638 static __always_inline bool
5639 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5640                       slot_level_handler fn, bool lock_flush_tlb)
5641 {
5642         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5643                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5644 }
5645
5646 static __always_inline bool
5647 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5648                         slot_level_handler fn, bool lock_flush_tlb)
5649 {
5650         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5651                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5652 }
5653
5654 static __always_inline bool
5655 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5656                  slot_level_handler fn, bool lock_flush_tlb)
5657 {
5658         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5659                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5660 }
5661
5662 static void free_mmu_pages(struct kvm_mmu *mmu)
5663 {
5664         free_page((unsigned long)mmu->pae_root);
5665         free_page((unsigned long)mmu->lm_root);
5666 }
5667
5668 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5669 {
5670         struct page *page;
5671         int i;
5672
5673         /*
5674          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5675          * while the PDP table is a per-vCPU construct that's allocated at MMU
5676          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5677          * x86_64.  Therefore we need to allocate the PDP table in the first
5678          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5679          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5680          * skip allocating the PDP table.
5681          */
5682         if (tdp_enabled && kvm_x86_ops.get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5683                 return 0;
5684
5685         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5686         if (!page)
5687                 return -ENOMEM;
5688
5689         mmu->pae_root = page_address(page);
5690         for (i = 0; i < 4; ++i)
5691                 mmu->pae_root[i] = INVALID_PAGE;
5692
5693         return 0;
5694 }
5695
5696 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5697 {
5698         uint i;
5699         int ret;
5700
5701         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5702         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5703
5704         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5705         vcpu->arch.root_mmu.root_cr3 = 0;
5706         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5707         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5708                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5709
5710         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5711         vcpu->arch.guest_mmu.root_cr3 = 0;
5712         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5713         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5714                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5715
5716         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5717
5718         ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5719         if (ret)
5720                 return ret;
5721
5722         ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5723         if (ret)
5724                 goto fail_allocate_root;
5725
5726         return ret;
5727  fail_allocate_root:
5728         free_mmu_pages(&vcpu->arch.guest_mmu);
5729         return ret;
5730 }
5731
5732 #define BATCH_ZAP_PAGES 10
5733 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5734 {
5735         struct kvm_mmu_page *sp, *node;
5736         int nr_zapped, batch = 0;
5737
5738 restart:
5739         list_for_each_entry_safe_reverse(sp, node,
5740               &kvm->arch.active_mmu_pages, link) {
5741                 /*
5742                  * No obsolete valid page exists before a newly created page
5743                  * since active_mmu_pages is a FIFO list.
5744                  */
5745                 if (!is_obsolete_sp(kvm, sp))
5746                         break;
5747
5748                 /*
5749                  * Skip invalid pages with a non-zero root count, zapping pages
5750                  * with a non-zero root count will never succeed, i.e. the page
5751                  * will get thrown back on active_mmu_pages and we'll get stuck
5752                  * in an infinite loop.
5753                  */
5754                 if (sp->role.invalid && sp->root_count)
5755                         continue;
5756
5757                 /*
5758                  * No need to flush the TLB since we're only zapping shadow
5759                  * pages with an obsolete generation number and all vCPUS have
5760                  * loaded a new root, i.e. the shadow pages being zapped cannot
5761                  * be in active use by the guest.
5762                  */
5763                 if (batch >= BATCH_ZAP_PAGES &&
5764                     cond_resched_lock(&kvm->mmu_lock)) {
5765                         batch = 0;
5766                         goto restart;
5767                 }
5768
5769                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5770                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5771                         batch += nr_zapped;
5772                         goto restart;
5773                 }
5774         }
5775
5776         /*
5777          * Trigger a remote TLB flush before freeing the page tables to ensure
5778          * KVM is not in the middle of a lockless shadow page table walk, which
5779          * may reference the pages.
5780          */
5781         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5782 }
5783
5784 /*
5785  * Fast invalidate all shadow pages and use lock-break technique
5786  * to zap obsolete pages.
5787  *
5788  * It's required when memslot is being deleted or VM is being
5789  * destroyed, in these cases, we should ensure that KVM MMU does
5790  * not use any resource of the being-deleted slot or all slots
5791  * after calling the function.
5792  */
5793 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5794 {
5795         lockdep_assert_held(&kvm->slots_lock);
5796
5797         spin_lock(&kvm->mmu_lock);
5798         trace_kvm_mmu_zap_all_fast(kvm);
5799
5800         /*
5801          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5802          * held for the entire duration of zapping obsolete pages, it's
5803          * impossible for there to be multiple invalid generations associated
5804          * with *valid* shadow pages at any given time, i.e. there is exactly
5805          * one valid generation and (at most) one invalid generation.
5806          */
5807         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5808
5809         /*
5810          * Notify all vcpus to reload its shadow page table and flush TLB.
5811          * Then all vcpus will switch to new shadow page table with the new
5812          * mmu_valid_gen.
5813          *
5814          * Note: we need to do this under the protection of mmu_lock,
5815          * otherwise, vcpu would purge shadow page but miss tlb flush.
5816          */
5817         kvm_reload_remote_mmus(kvm);
5818
5819         kvm_zap_obsolete_pages(kvm);
5820         spin_unlock(&kvm->mmu_lock);
5821 }
5822
5823 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5824 {
5825         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5826 }
5827
5828 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5829                         struct kvm_memory_slot *slot,
5830                         struct kvm_page_track_notifier_node *node)
5831 {
5832         kvm_mmu_zap_all_fast(kvm);
5833 }
5834
5835 void kvm_mmu_init_vm(struct kvm *kvm)
5836 {
5837         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5838
5839         node->track_write = kvm_mmu_pte_write;
5840         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5841         kvm_page_track_register_notifier(kvm, node);
5842 }
5843
5844 void kvm_mmu_uninit_vm(struct kvm *kvm)
5845 {
5846         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5847
5848         kvm_page_track_unregister_notifier(kvm, node);
5849 }
5850
5851 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5852 {
5853         struct kvm_memslots *slots;
5854         struct kvm_memory_slot *memslot;
5855         int i;
5856
5857         spin_lock(&kvm->mmu_lock);
5858         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5859                 slots = __kvm_memslots(kvm, i);
5860                 kvm_for_each_memslot(memslot, slots) {
5861                         gfn_t start, end;
5862
5863                         start = max(gfn_start, memslot->base_gfn);
5864                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5865                         if (start >= end)
5866                                 continue;
5867
5868                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5869                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5870                                                 start, end - 1, true);
5871                 }
5872         }
5873
5874         spin_unlock(&kvm->mmu_lock);
5875 }
5876
5877 static bool slot_rmap_write_protect(struct kvm *kvm,
5878                                     struct kvm_rmap_head *rmap_head)
5879 {
5880         return __rmap_write_protect(kvm, rmap_head, false);
5881 }
5882
5883 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5884                                       struct kvm_memory_slot *memslot,
5885                                       int start_level)
5886 {
5887         bool flush;
5888
5889         spin_lock(&kvm->mmu_lock);
5890         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5891                                 start_level, PT_MAX_HUGEPAGE_LEVEL, false);
5892         spin_unlock(&kvm->mmu_lock);
5893
5894         /*
5895          * We can flush all the TLBs out of the mmu lock without TLB
5896          * corruption since we just change the spte from writable to
5897          * readonly so that we only need to care the case of changing
5898          * spte from present to present (changing the spte from present
5899          * to nonpresent will flush all the TLBs immediately), in other
5900          * words, the only case we care is mmu_spte_update() where we
5901          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5902          * instead of PT_WRITABLE_MASK, that means it does not depend
5903          * on PT_WRITABLE_MASK anymore.
5904          */
5905         if (flush)
5906                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5907 }
5908
5909 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5910                                          struct kvm_rmap_head *rmap_head)
5911 {
5912         u64 *sptep;
5913         struct rmap_iterator iter;
5914         int need_tlb_flush = 0;
5915         kvm_pfn_t pfn;
5916         struct kvm_mmu_page *sp;
5917
5918 restart:
5919         for_each_rmap_spte(rmap_head, &iter, sptep) {
5920                 sp = page_header(__pa(sptep));
5921                 pfn = spte_to_pfn(*sptep);
5922
5923                 /*
5924                  * We cannot do huge page mapping for indirect shadow pages,
5925                  * which are found on the last rmap (level = 1) when not using
5926                  * tdp; such shadow pages are synced with the page table in
5927                  * the guest, and the guest page table is using 4K page size
5928                  * mapping if the indirect sp has level = 1.
5929                  */
5930                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5931                     (kvm_is_zone_device_pfn(pfn) ||
5932                      PageCompound(pfn_to_page(pfn)))) {
5933                         pte_list_remove(rmap_head, sptep);
5934
5935                         if (kvm_available_flush_tlb_with_range())
5936                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5937                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5938                         else
5939                                 need_tlb_flush = 1;
5940
5941                         goto restart;
5942                 }
5943         }
5944
5945         return need_tlb_flush;
5946 }
5947
5948 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5949                                    const struct kvm_memory_slot *memslot)
5950 {
5951         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5952         spin_lock(&kvm->mmu_lock);
5953         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5954                          kvm_mmu_zap_collapsible_spte, true);
5955         spin_unlock(&kvm->mmu_lock);
5956 }
5957
5958 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5959                                         struct kvm_memory_slot *memslot)
5960 {
5961         /*
5962          * All current use cases for flushing the TLBs for a specific memslot
5963          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5964          * The interaction between the various operations on memslot must be
5965          * serialized by slots_locks to ensure the TLB flush from one operation
5966          * is observed by any other operation on the same memslot.
5967          */
5968         lockdep_assert_held(&kvm->slots_lock);
5969         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5970                                            memslot->npages);
5971 }
5972
5973 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5974                                    struct kvm_memory_slot *memslot)
5975 {
5976         bool flush;
5977
5978         spin_lock(&kvm->mmu_lock);
5979         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5980         spin_unlock(&kvm->mmu_lock);
5981
5982         /*
5983          * It's also safe to flush TLBs out of mmu lock here as currently this
5984          * function is only used for dirty logging, in which case flushing TLB
5985          * out of mmu lock also guarantees no dirty pages will be lost in
5986          * dirty_bitmap.
5987          */
5988         if (flush)
5989                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5990 }
5991 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5992
5993 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5994                                         struct kvm_memory_slot *memslot)
5995 {
5996         bool flush;
5997
5998         spin_lock(&kvm->mmu_lock);
5999         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6000                                         false);
6001         spin_unlock(&kvm->mmu_lock);
6002
6003         if (flush)
6004                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6005 }
6006 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6007
6008 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6009                             struct kvm_memory_slot *memslot)
6010 {
6011         bool flush;
6012
6013         spin_lock(&kvm->mmu_lock);
6014         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6015         spin_unlock(&kvm->mmu_lock);
6016
6017         if (flush)
6018                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6019 }
6020 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6021
6022 void kvm_mmu_zap_all(struct kvm *kvm)
6023 {
6024         struct kvm_mmu_page *sp, *node;
6025         LIST_HEAD(invalid_list);
6026         int ign;
6027
6028         spin_lock(&kvm->mmu_lock);
6029 restart:
6030         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6031                 if (sp->role.invalid && sp->root_count)
6032                         continue;
6033                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6034                         goto restart;
6035                 if (cond_resched_lock(&kvm->mmu_lock))
6036                         goto restart;
6037         }
6038
6039         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6040         spin_unlock(&kvm->mmu_lock);
6041 }
6042
6043 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6044 {
6045         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6046
6047         gen &= MMIO_SPTE_GEN_MASK;
6048
6049         /*
6050          * Generation numbers are incremented in multiples of the number of
6051          * address spaces in order to provide unique generations across all
6052          * address spaces.  Strip what is effectively the address space
6053          * modifier prior to checking for a wrap of the MMIO generation so
6054          * that a wrap in any address space is detected.
6055          */
6056         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6057
6058         /*
6059          * The very rare case: if the MMIO generation number has wrapped,
6060          * zap all shadow pages.
6061          */
6062         if (unlikely(gen == 0)) {
6063                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6064                 kvm_mmu_zap_all_fast(kvm);
6065         }
6066 }
6067
6068 static unsigned long
6069 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6070 {
6071         struct kvm *kvm;
6072         int nr_to_scan = sc->nr_to_scan;
6073         unsigned long freed = 0;
6074
6075         mutex_lock(&kvm_lock);
6076
6077         list_for_each_entry(kvm, &vm_list, vm_list) {
6078                 int idx;
6079                 LIST_HEAD(invalid_list);
6080
6081                 /*
6082                  * Never scan more than sc->nr_to_scan VM instances.
6083                  * Will not hit this condition practically since we do not try
6084                  * to shrink more than one VM and it is very unlikely to see
6085                  * !n_used_mmu_pages so many times.
6086                  */
6087                 if (!nr_to_scan--)
6088                         break;
6089                 /*
6090                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6091                  * here. We may skip a VM instance errorneosly, but we do not
6092                  * want to shrink a VM that only started to populate its MMU
6093                  * anyway.
6094                  */
6095                 if (!kvm->arch.n_used_mmu_pages &&
6096                     !kvm_has_zapped_obsolete_pages(kvm))
6097                         continue;
6098
6099                 idx = srcu_read_lock(&kvm->srcu);
6100                 spin_lock(&kvm->mmu_lock);
6101
6102                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6103                         kvm_mmu_commit_zap_page(kvm,
6104                               &kvm->arch.zapped_obsolete_pages);
6105                         goto unlock;
6106                 }
6107
6108                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6109                         freed++;
6110                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6111
6112 unlock:
6113                 spin_unlock(&kvm->mmu_lock);
6114                 srcu_read_unlock(&kvm->srcu, idx);
6115
6116                 /*
6117                  * unfair on small ones
6118                  * per-vm shrinkers cry out
6119                  * sadness comes quickly
6120                  */
6121                 list_move_tail(&kvm->vm_list, &vm_list);
6122                 break;
6123         }
6124
6125         mutex_unlock(&kvm_lock);
6126         return freed;
6127 }
6128
6129 static unsigned long
6130 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6131 {
6132         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6133 }
6134
6135 static struct shrinker mmu_shrinker = {
6136         .count_objects = mmu_shrink_count,
6137         .scan_objects = mmu_shrink_scan,
6138         .seeks = DEFAULT_SEEKS * 10,
6139 };
6140
6141 static void mmu_destroy_caches(void)
6142 {
6143         kmem_cache_destroy(pte_list_desc_cache);
6144         kmem_cache_destroy(mmu_page_header_cache);
6145 }
6146
6147 static void kvm_set_mmio_spte_mask(void)
6148 {
6149         u64 mask;
6150
6151         /*
6152          * Set the reserved bits and the present bit of an paging-structure
6153          * entry to generate page fault with PFER.RSV = 1.
6154          */
6155
6156         /*
6157          * Mask the uppermost physical address bit, which would be reserved as
6158          * long as the supported physical address width is less than 52.
6159          */
6160         mask = 1ull << 51;
6161
6162         /* Set the present bit. */
6163         mask |= 1ull;
6164
6165         /*
6166          * If reserved bit is not supported, clear the present bit to disable
6167          * mmio page fault.
6168          */
6169         if (shadow_phys_bits == 52)
6170                 mask &= ~1ull;
6171
6172         kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6173 }
6174
6175 static bool get_nx_auto_mode(void)
6176 {
6177         /* Return true when CPU has the bug, and mitigations are ON */
6178         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6179 }
6180
6181 static void __set_nx_huge_pages(bool val)
6182 {
6183         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6184 }
6185
6186 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6187 {
6188         bool old_val = nx_huge_pages;
6189         bool new_val;
6190
6191         /* In "auto" mode deploy workaround only if CPU has the bug. */
6192         if (sysfs_streq(val, "off"))
6193                 new_val = 0;
6194         else if (sysfs_streq(val, "force"))
6195                 new_val = 1;
6196         else if (sysfs_streq(val, "auto"))
6197                 new_val = get_nx_auto_mode();
6198         else if (strtobool(val, &new_val) < 0)
6199                 return -EINVAL;
6200
6201         __set_nx_huge_pages(new_val);
6202
6203         if (new_val != old_val) {
6204                 struct kvm *kvm;
6205
6206                 mutex_lock(&kvm_lock);
6207
6208                 list_for_each_entry(kvm, &vm_list, vm_list) {
6209                         mutex_lock(&kvm->slots_lock);
6210                         kvm_mmu_zap_all_fast(kvm);
6211                         mutex_unlock(&kvm->slots_lock);
6212
6213                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6214                 }
6215                 mutex_unlock(&kvm_lock);
6216         }
6217
6218         return 0;
6219 }
6220
6221 int kvm_mmu_module_init(void)
6222 {
6223         int ret = -ENOMEM;
6224
6225         if (nx_huge_pages == -1)
6226                 __set_nx_huge_pages(get_nx_auto_mode());
6227
6228         /*
6229          * MMU roles use union aliasing which is, generally speaking, an
6230          * undefined behavior. However, we supposedly know how compilers behave
6231          * and the current status quo is unlikely to change. Guardians below are
6232          * supposed to let us know if the assumption becomes false.
6233          */
6234         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6235         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6236         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6237
6238         kvm_mmu_reset_all_pte_masks();
6239
6240         kvm_set_mmio_spte_mask();
6241
6242         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6243                                             sizeof(struct pte_list_desc),
6244                                             0, SLAB_ACCOUNT, NULL);
6245         if (!pte_list_desc_cache)
6246                 goto out;
6247
6248         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6249                                                   sizeof(struct kvm_mmu_page),
6250                                                   0, SLAB_ACCOUNT, NULL);
6251         if (!mmu_page_header_cache)
6252                 goto out;
6253
6254         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6255                 goto out;
6256
6257         ret = register_shrinker(&mmu_shrinker);
6258         if (ret)
6259                 goto out;
6260
6261         return 0;
6262
6263 out:
6264         mmu_destroy_caches();
6265         return ret;
6266 }
6267
6268 /*
6269  * Calculate mmu pages needed for kvm.
6270  */
6271 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6272 {
6273         unsigned long nr_mmu_pages;
6274         unsigned long nr_pages = 0;
6275         struct kvm_memslots *slots;
6276         struct kvm_memory_slot *memslot;
6277         int i;
6278
6279         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6280                 slots = __kvm_memslots(kvm, i);
6281
6282                 kvm_for_each_memslot(memslot, slots)
6283                         nr_pages += memslot->npages;
6284         }
6285
6286         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6287         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6288
6289         return nr_mmu_pages;
6290 }
6291
6292 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6293 {
6294         kvm_mmu_unload(vcpu);
6295         free_mmu_pages(&vcpu->arch.root_mmu);
6296         free_mmu_pages(&vcpu->arch.guest_mmu);
6297         mmu_free_memory_caches(vcpu);
6298 }
6299
6300 void kvm_mmu_module_exit(void)
6301 {
6302         mmu_destroy_caches();
6303         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6304         unregister_shrinker(&mmu_shrinker);
6305         mmu_audit_disable();
6306 }
6307
6308 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6309 {
6310         unsigned int old_val;
6311         int err;
6312
6313         old_val = nx_huge_pages_recovery_ratio;
6314         err = param_set_uint(val, kp);
6315         if (err)
6316                 return err;
6317
6318         if (READ_ONCE(nx_huge_pages) &&
6319             !old_val && nx_huge_pages_recovery_ratio) {
6320                 struct kvm *kvm;
6321
6322                 mutex_lock(&kvm_lock);
6323
6324                 list_for_each_entry(kvm, &vm_list, vm_list)
6325                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6326
6327                 mutex_unlock(&kvm_lock);
6328         }
6329
6330         return err;
6331 }
6332
6333 static void kvm_recover_nx_lpages(struct kvm *kvm)
6334 {
6335         int rcu_idx;
6336         struct kvm_mmu_page *sp;
6337         unsigned int ratio;
6338         LIST_HEAD(invalid_list);
6339         ulong to_zap;
6340
6341         rcu_idx = srcu_read_lock(&kvm->srcu);
6342         spin_lock(&kvm->mmu_lock);
6343
6344         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6345         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6346         while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6347                 /*
6348                  * We use a separate list instead of just using active_mmu_pages
6349                  * because the number of lpage_disallowed pages is expected to
6350                  * be relatively small compared to the total.
6351                  */
6352                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6353                                       struct kvm_mmu_page,
6354                                       lpage_disallowed_link);
6355                 WARN_ON_ONCE(!sp->lpage_disallowed);
6356                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6357                 WARN_ON_ONCE(sp->lpage_disallowed);
6358
6359                 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6360                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6361                         if (to_zap)
6362                                 cond_resched_lock(&kvm->mmu_lock);
6363                 }
6364         }
6365
6366         spin_unlock(&kvm->mmu_lock);
6367         srcu_read_unlock(&kvm->srcu, rcu_idx);
6368 }
6369
6370 static long get_nx_lpage_recovery_timeout(u64 start_time)
6371 {
6372         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6373                 ? start_time + 60 * HZ - get_jiffies_64()
6374                 : MAX_SCHEDULE_TIMEOUT;
6375 }
6376
6377 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6378 {
6379         u64 start_time;
6380         long remaining_time;
6381
6382         while (true) {
6383                 start_time = get_jiffies_64();
6384                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6385
6386                 set_current_state(TASK_INTERRUPTIBLE);
6387                 while (!kthread_should_stop() && remaining_time > 0) {
6388                         schedule_timeout(remaining_time);
6389                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6390                         set_current_state(TASK_INTERRUPTIBLE);
6391                 }
6392
6393                 set_current_state(TASK_RUNNING);
6394
6395                 if (kthread_should_stop())
6396                         return 0;
6397
6398                 kvm_recover_nx_lpages(kvm);
6399         }
6400 }
6401
6402 int kvm_mmu_post_init_vm(struct kvm *kvm)
6403 {
6404         int err;
6405
6406         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6407                                           "kvm-nx-lpage-recovery",
6408                                           &kvm->arch.nx_lpage_recovery_thread);
6409         if (!err)
6410                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6411
6412         return err;
6413 }
6414
6415 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6416 {
6417         if (kvm->arch.nx_lpage_recovery_thread)
6418                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6419 }