KVM: x86/mmu: Batch zap MMU pages when shrinking the slab
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "x86.h"
22 #include "kvm_cache_regs.h"
23 #include "kvm_emulate.h"
24 #include "cpuid.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/moduleparam.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/sched/signal.h>
39 #include <linux/uaccess.h>
40 #include <linux/hash.h>
41 #include <linux/kern_levels.h>
42 #include <linux/kthread.h>
43
44 #include <asm/page.h>
45 #include <asm/memtype.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/e820/api.h>
48 #include <asm/io.h>
49 #include <asm/vmx.h>
50 #include <asm/kvm_page_track.h>
51 #include "trace.h"
52
53 extern bool itlb_multihit_kvm_mitigation;
54
55 static int __read_mostly nx_huge_pages = -1;
56 #ifdef CONFIG_PREEMPT_RT
57 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
58 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
59 #else
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
61 #endif
62
63 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
64 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
65
66 static struct kernel_param_ops nx_huge_pages_ops = {
67         .set = set_nx_huge_pages,
68         .get = param_get_bool,
69 };
70
71 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
72         .set = set_nx_huge_pages_recovery_ratio,
73         .get = param_get_uint,
74 };
75
76 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
77 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
78 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
79                 &nx_huge_pages_recovery_ratio, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
81
82 static bool __read_mostly force_flush_and_sync_on_reuse;
83 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
84
85 /*
86  * When setting this variable to true it enables Two-Dimensional-Paging
87  * where the hardware walks 2 page tables:
88  * 1. the guest-virtual to guest-physical
89  * 2. while doing 1. it walks guest-physical to host-physical
90  * If the hardware supports that we don't need to do shadow paging.
91  */
92 bool tdp_enabled = false;
93
94 static int max_page_level __read_mostly;
95
96 enum {
97         AUDIT_PRE_PAGE_FAULT,
98         AUDIT_POST_PAGE_FAULT,
99         AUDIT_PRE_PTE_WRITE,
100         AUDIT_POST_PTE_WRITE,
101         AUDIT_PRE_SYNC,
102         AUDIT_POST_SYNC
103 };
104
105 #undef MMU_DEBUG
106
107 #ifdef MMU_DEBUG
108 static bool dbg = 0;
109 module_param(dbg, bool, 0644);
110
111 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
112 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
113 #define MMU_WARN_ON(x) WARN_ON(x)
114 #else
115 #define pgprintk(x...) do { } while (0)
116 #define rmap_printk(x...) do { } while (0)
117 #define MMU_WARN_ON(x) do { } while (0)
118 #endif
119
120 #define PTE_PREFETCH_NUM                8
121
122 #define PT_FIRST_AVAIL_BITS_SHIFT 10
123 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
124
125 /*
126  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
127  * Access Tracking SPTEs.
128  */
129 #define SPTE_SPECIAL_MASK (3ULL << 52)
130 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
131 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
132 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
133 #define SPTE_MMIO_MASK (3ULL << 52)
134
135 #define PT64_LEVEL_BITS 9
136
137 #define PT64_LEVEL_SHIFT(level) \
138                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
139
140 #define PT64_INDEX(address, level)\
141         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
142
143
144 #define PT32_LEVEL_BITS 10
145
146 #define PT32_LEVEL_SHIFT(level) \
147                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
148
149 #define PT32_LVL_OFFSET_MASK(level) \
150         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
151                                                 * PT32_LEVEL_BITS))) - 1))
152
153 #define PT32_INDEX(address, level)\
154         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
155
156
157 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
158 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
159 #else
160 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
161 #endif
162 #define PT64_LVL_ADDR_MASK(level) \
163         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
164                                                 * PT64_LEVEL_BITS))) - 1))
165 #define PT64_LVL_OFFSET_MASK(level) \
166         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
167                                                 * PT64_LEVEL_BITS))) - 1))
168
169 #define PT32_BASE_ADDR_MASK PAGE_MASK
170 #define PT32_DIR_BASE_ADDR_MASK \
171         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
172 #define PT32_LVL_ADDR_MASK(level) \
173         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
174                                             * PT32_LEVEL_BITS))) - 1))
175
176 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
177                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
178
179 #define ACC_EXEC_MASK    1
180 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
181 #define ACC_USER_MASK    PT_USER_MASK
182 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
183
184 /* The mask for the R/X bits in EPT PTEs */
185 #define PT64_EPT_READABLE_MASK                  0x1ull
186 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
187
188 #include <trace/events/kvm.h>
189
190 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
191 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
192
193 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
194
195 /* make pte_list_desc fit well in cache line */
196 #define PTE_LIST_EXT 3
197
198 /*
199  * Return values of handle_mmio_page_fault and mmu.page_fault:
200  * RET_PF_RETRY: let CPU fault again on the address.
201  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
202  *
203  * For handle_mmio_page_fault only:
204  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
205  */
206 enum {
207         RET_PF_RETRY = 0,
208         RET_PF_EMULATE = 1,
209         RET_PF_INVALID = 2,
210 };
211
212 struct pte_list_desc {
213         u64 *sptes[PTE_LIST_EXT];
214         struct pte_list_desc *more;
215 };
216
217 struct kvm_shadow_walk_iterator {
218         u64 addr;
219         hpa_t shadow_addr;
220         u64 *sptep;
221         int level;
222         unsigned index;
223 };
224
225 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
226         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
227                                          (_root), (_addr));                \
228              shadow_walk_okay(&(_walker));                                 \
229              shadow_walk_next(&(_walker)))
230
231 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
232         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
233              shadow_walk_okay(&(_walker));                      \
234              shadow_walk_next(&(_walker)))
235
236 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
237         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
238              shadow_walk_okay(&(_walker)) &&                            \
239                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
240              __shadow_walk_next(&(_walker), spte))
241
242 static struct kmem_cache *pte_list_desc_cache;
243 static struct kmem_cache *mmu_page_header_cache;
244 static struct percpu_counter kvm_total_used_mmu_pages;
245
246 static u64 __read_mostly shadow_nx_mask;
247 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
248 static u64 __read_mostly shadow_user_mask;
249 static u64 __read_mostly shadow_accessed_mask;
250 static u64 __read_mostly shadow_dirty_mask;
251 static u64 __read_mostly shadow_mmio_value;
252 static u64 __read_mostly shadow_mmio_access_mask;
253 static u64 __read_mostly shadow_present_mask;
254 static u64 __read_mostly shadow_me_mask;
255
256 /*
257  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
258  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
259  * pages.
260  */
261 static u64 __read_mostly shadow_acc_track_mask;
262
263 /*
264  * The mask/shift to use for saving the original R/X bits when marking the PTE
265  * as not-present for access tracking purposes. We do not save the W bit as the
266  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
267  * restored only when a write is attempted to the page.
268  */
269 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
270                                                     PT64_EPT_EXECUTABLE_MASK;
271 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
272
273 /*
274  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
275  * to guard against L1TF attacks.
276  */
277 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
278
279 /*
280  * The number of high-order 1 bits to use in the mask above.
281  */
282 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
283
284 /*
285  * In some cases, we need to preserve the GFN of a non-present or reserved
286  * SPTE when we usurp the upper five bits of the physical address space to
287  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
288  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
289  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
290  * high and low parts.  This mask covers the lower bits of the GFN.
291  */
292 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
293
294 /*
295  * The number of non-reserved physical address bits irrespective of features
296  * that repurpose legal bits, e.g. MKTME.
297  */
298 static u8 __read_mostly shadow_phys_bits;
299
300 static void mmu_spte_set(u64 *sptep, u64 spte);
301 static bool is_executable_pte(u64 spte);
302 static union kvm_mmu_page_role
303 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
304
305 #define CREATE_TRACE_POINTS
306 #include "mmutrace.h"
307
308
309 static inline bool kvm_available_flush_tlb_with_range(void)
310 {
311         return kvm_x86_ops.tlb_remote_flush_with_range;
312 }
313
314 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
315                 struct kvm_tlb_range *range)
316 {
317         int ret = -ENOTSUPP;
318
319         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
320                 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
321
322         if (ret)
323                 kvm_flush_remote_tlbs(kvm);
324 }
325
326 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
327                 u64 start_gfn, u64 pages)
328 {
329         struct kvm_tlb_range range;
330
331         range.start_gfn = start_gfn;
332         range.pages = pages;
333
334         kvm_flush_remote_tlbs_with_range(kvm, &range);
335 }
336
337 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
338 {
339         BUG_ON((u64)(unsigned)access_mask != access_mask);
340         WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
341         WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
342         shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
343         shadow_mmio_access_mask = access_mask;
344 }
345 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
346
347 static bool is_mmio_spte(u64 spte)
348 {
349         return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
350 }
351
352 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
353 {
354         return sp->role.ad_disabled;
355 }
356
357 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
358 {
359         /*
360          * When using the EPT page-modification log, the GPAs in the log
361          * would come from L2 rather than L1.  Therefore, we need to rely
362          * on write protection to record dirty pages.  This also bypasses
363          * PML, since writes now result in a vmexit.
364          */
365         return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
366 }
367
368 static inline bool spte_ad_enabled(u64 spte)
369 {
370         MMU_WARN_ON(is_mmio_spte(spte));
371         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
372 }
373
374 static inline bool spte_ad_need_write_protect(u64 spte)
375 {
376         MMU_WARN_ON(is_mmio_spte(spte));
377         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
378 }
379
380 static bool is_nx_huge_page_enabled(void)
381 {
382         return READ_ONCE(nx_huge_pages);
383 }
384
385 static inline u64 spte_shadow_accessed_mask(u64 spte)
386 {
387         MMU_WARN_ON(is_mmio_spte(spte));
388         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
389 }
390
391 static inline u64 spte_shadow_dirty_mask(u64 spte)
392 {
393         MMU_WARN_ON(is_mmio_spte(spte));
394         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
395 }
396
397 static inline bool is_access_track_spte(u64 spte)
398 {
399         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
400 }
401
402 /*
403  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
404  * the memslots generation and is derived as follows:
405  *
406  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
407  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
408  *
409  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
410  * the MMIO generation number, as doing so would require stealing a bit from
411  * the "real" generation number and thus effectively halve the maximum number
412  * of MMIO generations that can be handled before encountering a wrap (which
413  * requires a full MMU zap).  The flag is instead explicitly queried when
414  * checking for MMIO spte cache hits.
415  */
416 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(17, 0)
417
418 #define MMIO_SPTE_GEN_LOW_START         3
419 #define MMIO_SPTE_GEN_LOW_END           11
420 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
421                                                     MMIO_SPTE_GEN_LOW_START)
422
423 #define MMIO_SPTE_GEN_HIGH_START        PT64_SECOND_AVAIL_BITS_SHIFT
424 #define MMIO_SPTE_GEN_HIGH_END          62
425 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
426                                                     MMIO_SPTE_GEN_HIGH_START)
427
428 static u64 generation_mmio_spte_mask(u64 gen)
429 {
430         u64 mask;
431
432         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
433         BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
434
435         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
436         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
437         return mask;
438 }
439
440 static u64 get_mmio_spte_generation(u64 spte)
441 {
442         u64 gen;
443
444         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
445         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
446         return gen;
447 }
448
449 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
450 {
451
452         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
453         u64 mask = generation_mmio_spte_mask(gen);
454         u64 gpa = gfn << PAGE_SHIFT;
455
456         access &= shadow_mmio_access_mask;
457         mask |= shadow_mmio_value | access;
458         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
459         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
460                 << shadow_nonpresent_or_rsvd_mask_len;
461
462         return mask;
463 }
464
465 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
466                            unsigned int access)
467 {
468         u64 mask = make_mmio_spte(vcpu, gfn, access);
469         unsigned int gen = get_mmio_spte_generation(mask);
470
471         access = mask & ACC_ALL;
472
473         trace_mark_mmio_spte(sptep, gfn, access, gen);
474         mmu_spte_set(sptep, mask);
475 }
476
477 static gfn_t get_mmio_spte_gfn(u64 spte)
478 {
479         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
480
481         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
482                & shadow_nonpresent_or_rsvd_mask;
483
484         return gpa >> PAGE_SHIFT;
485 }
486
487 static unsigned get_mmio_spte_access(u64 spte)
488 {
489         return spte & shadow_mmio_access_mask;
490 }
491
492 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
493                           kvm_pfn_t pfn, unsigned int access)
494 {
495         if (unlikely(is_noslot_pfn(pfn))) {
496                 mark_mmio_spte(vcpu, sptep, gfn, access);
497                 return true;
498         }
499
500         return false;
501 }
502
503 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
504 {
505         u64 kvm_gen, spte_gen, gen;
506
507         gen = kvm_vcpu_memslots(vcpu)->generation;
508         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
509                 return false;
510
511         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
512         spte_gen = get_mmio_spte_generation(spte);
513
514         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
515         return likely(kvm_gen == spte_gen);
516 }
517
518 /*
519  * Sets the shadow PTE masks used by the MMU.
520  *
521  * Assumptions:
522  *  - Setting either @accessed_mask or @dirty_mask requires setting both
523  *  - At least one of @accessed_mask or @acc_track_mask must be set
524  */
525 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
526                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
527                 u64 acc_track_mask, u64 me_mask)
528 {
529         BUG_ON(!dirty_mask != !accessed_mask);
530         BUG_ON(!accessed_mask && !acc_track_mask);
531         BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
532
533         shadow_user_mask = user_mask;
534         shadow_accessed_mask = accessed_mask;
535         shadow_dirty_mask = dirty_mask;
536         shadow_nx_mask = nx_mask;
537         shadow_x_mask = x_mask;
538         shadow_present_mask = p_mask;
539         shadow_acc_track_mask = acc_track_mask;
540         shadow_me_mask = me_mask;
541 }
542 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
543
544 static u8 kvm_get_shadow_phys_bits(void)
545 {
546         /*
547          * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
548          * in CPU detection code, but the processor treats those reduced bits as
549          * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
550          * the physical address bits reported by CPUID.
551          */
552         if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
553                 return cpuid_eax(0x80000008) & 0xff;
554
555         /*
556          * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
557          * custom CPUID.  Proceed with whatever the kernel found since these features
558          * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
559          */
560         return boot_cpu_data.x86_phys_bits;
561 }
562
563 static void kvm_mmu_reset_all_pte_masks(void)
564 {
565         u8 low_phys_bits;
566
567         shadow_user_mask = 0;
568         shadow_accessed_mask = 0;
569         shadow_dirty_mask = 0;
570         shadow_nx_mask = 0;
571         shadow_x_mask = 0;
572         shadow_present_mask = 0;
573         shadow_acc_track_mask = 0;
574
575         shadow_phys_bits = kvm_get_shadow_phys_bits();
576
577         /*
578          * If the CPU has 46 or less physical address bits, then set an
579          * appropriate mask to guard against L1TF attacks. Otherwise, it is
580          * assumed that the CPU is not vulnerable to L1TF.
581          *
582          * Some Intel CPUs address the L1 cache using more PA bits than are
583          * reported by CPUID. Use the PA width of the L1 cache when possible
584          * to achieve more effective mitigation, e.g. if system RAM overlaps
585          * the most significant bits of legal physical address space.
586          */
587         shadow_nonpresent_or_rsvd_mask = 0;
588         low_phys_bits = boot_cpu_data.x86_phys_bits;
589         if (boot_cpu_has_bug(X86_BUG_L1TF) &&
590             !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
591                           52 - shadow_nonpresent_or_rsvd_mask_len)) {
592                 low_phys_bits = boot_cpu_data.x86_cache_bits
593                         - shadow_nonpresent_or_rsvd_mask_len;
594                 shadow_nonpresent_or_rsvd_mask =
595                         rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
596         }
597
598         shadow_nonpresent_or_rsvd_lower_gfn_mask =
599                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
600 }
601
602 static int is_cpuid_PSE36(void)
603 {
604         return 1;
605 }
606
607 static int is_nx(struct kvm_vcpu *vcpu)
608 {
609         return vcpu->arch.efer & EFER_NX;
610 }
611
612 static int is_shadow_present_pte(u64 pte)
613 {
614         return (pte != 0) && !is_mmio_spte(pte);
615 }
616
617 static int is_large_pte(u64 pte)
618 {
619         return pte & PT_PAGE_SIZE_MASK;
620 }
621
622 static int is_last_spte(u64 pte, int level)
623 {
624         if (level == PG_LEVEL_4K)
625                 return 1;
626         if (is_large_pte(pte))
627                 return 1;
628         return 0;
629 }
630
631 static bool is_executable_pte(u64 spte)
632 {
633         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
634 }
635
636 static kvm_pfn_t spte_to_pfn(u64 pte)
637 {
638         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
639 }
640
641 static gfn_t pse36_gfn_delta(u32 gpte)
642 {
643         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
644
645         return (gpte & PT32_DIR_PSE36_MASK) << shift;
646 }
647
648 #ifdef CONFIG_X86_64
649 static void __set_spte(u64 *sptep, u64 spte)
650 {
651         WRITE_ONCE(*sptep, spte);
652 }
653
654 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
655 {
656         WRITE_ONCE(*sptep, spte);
657 }
658
659 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
660 {
661         return xchg(sptep, spte);
662 }
663
664 static u64 __get_spte_lockless(u64 *sptep)
665 {
666         return READ_ONCE(*sptep);
667 }
668 #else
669 union split_spte {
670         struct {
671                 u32 spte_low;
672                 u32 spte_high;
673         };
674         u64 spte;
675 };
676
677 static void count_spte_clear(u64 *sptep, u64 spte)
678 {
679         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
680
681         if (is_shadow_present_pte(spte))
682                 return;
683
684         /* Ensure the spte is completely set before we increase the count */
685         smp_wmb();
686         sp->clear_spte_count++;
687 }
688
689 static void __set_spte(u64 *sptep, u64 spte)
690 {
691         union split_spte *ssptep, sspte;
692
693         ssptep = (union split_spte *)sptep;
694         sspte = (union split_spte)spte;
695
696         ssptep->spte_high = sspte.spte_high;
697
698         /*
699          * If we map the spte from nonpresent to present, We should store
700          * the high bits firstly, then set present bit, so cpu can not
701          * fetch this spte while we are setting the spte.
702          */
703         smp_wmb();
704
705         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
706 }
707
708 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
709 {
710         union split_spte *ssptep, sspte;
711
712         ssptep = (union split_spte *)sptep;
713         sspte = (union split_spte)spte;
714
715         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
716
717         /*
718          * If we map the spte from present to nonpresent, we should clear
719          * present bit firstly to avoid vcpu fetch the old high bits.
720          */
721         smp_wmb();
722
723         ssptep->spte_high = sspte.spte_high;
724         count_spte_clear(sptep, spte);
725 }
726
727 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
728 {
729         union split_spte *ssptep, sspte, orig;
730
731         ssptep = (union split_spte *)sptep;
732         sspte = (union split_spte)spte;
733
734         /* xchg acts as a barrier before the setting of the high bits */
735         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
736         orig.spte_high = ssptep->spte_high;
737         ssptep->spte_high = sspte.spte_high;
738         count_spte_clear(sptep, spte);
739
740         return orig.spte;
741 }
742
743 /*
744  * The idea using the light way get the spte on x86_32 guest is from
745  * gup_get_pte (mm/gup.c).
746  *
747  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
748  * coalesces them and we are running out of the MMU lock.  Therefore
749  * we need to protect against in-progress updates of the spte.
750  *
751  * Reading the spte while an update is in progress may get the old value
752  * for the high part of the spte.  The race is fine for a present->non-present
753  * change (because the high part of the spte is ignored for non-present spte),
754  * but for a present->present change we must reread the spte.
755  *
756  * All such changes are done in two steps (present->non-present and
757  * non-present->present), hence it is enough to count the number of
758  * present->non-present updates: if it changed while reading the spte,
759  * we might have hit the race.  This is done using clear_spte_count.
760  */
761 static u64 __get_spte_lockless(u64 *sptep)
762 {
763         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
764         union split_spte spte, *orig = (union split_spte *)sptep;
765         int count;
766
767 retry:
768         count = sp->clear_spte_count;
769         smp_rmb();
770
771         spte.spte_low = orig->spte_low;
772         smp_rmb();
773
774         spte.spte_high = orig->spte_high;
775         smp_rmb();
776
777         if (unlikely(spte.spte_low != orig->spte_low ||
778               count != sp->clear_spte_count))
779                 goto retry;
780
781         return spte.spte;
782 }
783 #endif
784
785 static bool spte_can_locklessly_be_made_writable(u64 spte)
786 {
787         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
788                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
789 }
790
791 static bool spte_has_volatile_bits(u64 spte)
792 {
793         if (!is_shadow_present_pte(spte))
794                 return false;
795
796         /*
797          * Always atomically update spte if it can be updated
798          * out of mmu-lock, it can ensure dirty bit is not lost,
799          * also, it can help us to get a stable is_writable_pte()
800          * to ensure tlb flush is not missed.
801          */
802         if (spte_can_locklessly_be_made_writable(spte) ||
803             is_access_track_spte(spte))
804                 return true;
805
806         if (spte_ad_enabled(spte)) {
807                 if ((spte & shadow_accessed_mask) == 0 ||
808                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
809                         return true;
810         }
811
812         return false;
813 }
814
815 static bool is_accessed_spte(u64 spte)
816 {
817         u64 accessed_mask = spte_shadow_accessed_mask(spte);
818
819         return accessed_mask ? spte & accessed_mask
820                              : !is_access_track_spte(spte);
821 }
822
823 static bool is_dirty_spte(u64 spte)
824 {
825         u64 dirty_mask = spte_shadow_dirty_mask(spte);
826
827         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
828 }
829
830 /* Rules for using mmu_spte_set:
831  * Set the sptep from nonpresent to present.
832  * Note: the sptep being assigned *must* be either not present
833  * or in a state where the hardware will not attempt to update
834  * the spte.
835  */
836 static void mmu_spte_set(u64 *sptep, u64 new_spte)
837 {
838         WARN_ON(is_shadow_present_pte(*sptep));
839         __set_spte(sptep, new_spte);
840 }
841
842 /*
843  * Update the SPTE (excluding the PFN), but do not track changes in its
844  * accessed/dirty status.
845  */
846 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
847 {
848         u64 old_spte = *sptep;
849
850         WARN_ON(!is_shadow_present_pte(new_spte));
851
852         if (!is_shadow_present_pte(old_spte)) {
853                 mmu_spte_set(sptep, new_spte);
854                 return old_spte;
855         }
856
857         if (!spte_has_volatile_bits(old_spte))
858                 __update_clear_spte_fast(sptep, new_spte);
859         else
860                 old_spte = __update_clear_spte_slow(sptep, new_spte);
861
862         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
863
864         return old_spte;
865 }
866
867 /* Rules for using mmu_spte_update:
868  * Update the state bits, it means the mapped pfn is not changed.
869  *
870  * Whenever we overwrite a writable spte with a read-only one we
871  * should flush remote TLBs. Otherwise rmap_write_protect
872  * will find a read-only spte, even though the writable spte
873  * might be cached on a CPU's TLB, the return value indicates this
874  * case.
875  *
876  * Returns true if the TLB needs to be flushed
877  */
878 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
879 {
880         bool flush = false;
881         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
882
883         if (!is_shadow_present_pte(old_spte))
884                 return false;
885
886         /*
887          * For the spte updated out of mmu-lock is safe, since
888          * we always atomically update it, see the comments in
889          * spte_has_volatile_bits().
890          */
891         if (spte_can_locklessly_be_made_writable(old_spte) &&
892               !is_writable_pte(new_spte))
893                 flush = true;
894
895         /*
896          * Flush TLB when accessed/dirty states are changed in the page tables,
897          * to guarantee consistency between TLB and page tables.
898          */
899
900         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
901                 flush = true;
902                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
903         }
904
905         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
906                 flush = true;
907                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
908         }
909
910         return flush;
911 }
912
913 /*
914  * Rules for using mmu_spte_clear_track_bits:
915  * It sets the sptep from present to nonpresent, and track the
916  * state bits, it is used to clear the last level sptep.
917  * Returns non-zero if the PTE was previously valid.
918  */
919 static int mmu_spte_clear_track_bits(u64 *sptep)
920 {
921         kvm_pfn_t pfn;
922         u64 old_spte = *sptep;
923
924         if (!spte_has_volatile_bits(old_spte))
925                 __update_clear_spte_fast(sptep, 0ull);
926         else
927                 old_spte = __update_clear_spte_slow(sptep, 0ull);
928
929         if (!is_shadow_present_pte(old_spte))
930                 return 0;
931
932         pfn = spte_to_pfn(old_spte);
933
934         /*
935          * KVM does not hold the refcount of the page used by
936          * kvm mmu, before reclaiming the page, we should
937          * unmap it from mmu first.
938          */
939         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
940
941         if (is_accessed_spte(old_spte))
942                 kvm_set_pfn_accessed(pfn);
943
944         if (is_dirty_spte(old_spte))
945                 kvm_set_pfn_dirty(pfn);
946
947         return 1;
948 }
949
950 /*
951  * Rules for using mmu_spte_clear_no_track:
952  * Directly clear spte without caring the state bits of sptep,
953  * it is used to set the upper level spte.
954  */
955 static void mmu_spte_clear_no_track(u64 *sptep)
956 {
957         __update_clear_spte_fast(sptep, 0ull);
958 }
959
960 static u64 mmu_spte_get_lockless(u64 *sptep)
961 {
962         return __get_spte_lockless(sptep);
963 }
964
965 static u64 mark_spte_for_access_track(u64 spte)
966 {
967         if (spte_ad_enabled(spte))
968                 return spte & ~shadow_accessed_mask;
969
970         if (is_access_track_spte(spte))
971                 return spte;
972
973         /*
974          * Making an Access Tracking PTE will result in removal of write access
975          * from the PTE. So, verify that we will be able to restore the write
976          * access in the fast page fault path later on.
977          */
978         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
979                   !spte_can_locklessly_be_made_writable(spte),
980                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
981
982         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
983                           shadow_acc_track_saved_bits_shift),
984                   "kvm: Access Tracking saved bit locations are not zero\n");
985
986         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
987                 shadow_acc_track_saved_bits_shift;
988         spte &= ~shadow_acc_track_mask;
989
990         return spte;
991 }
992
993 /* Restore an acc-track PTE back to a regular PTE */
994 static u64 restore_acc_track_spte(u64 spte)
995 {
996         u64 new_spte = spte;
997         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
998                          & shadow_acc_track_saved_bits_mask;
999
1000         WARN_ON_ONCE(spte_ad_enabled(spte));
1001         WARN_ON_ONCE(!is_access_track_spte(spte));
1002
1003         new_spte &= ~shadow_acc_track_mask;
1004         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1005                       shadow_acc_track_saved_bits_shift);
1006         new_spte |= saved_bits;
1007
1008         return new_spte;
1009 }
1010
1011 /* Returns the Accessed status of the PTE and resets it at the same time. */
1012 static bool mmu_spte_age(u64 *sptep)
1013 {
1014         u64 spte = mmu_spte_get_lockless(sptep);
1015
1016         if (!is_accessed_spte(spte))
1017                 return false;
1018
1019         if (spte_ad_enabled(spte)) {
1020                 clear_bit((ffs(shadow_accessed_mask) - 1),
1021                           (unsigned long *)sptep);
1022         } else {
1023                 /*
1024                  * Capture the dirty status of the page, so that it doesn't get
1025                  * lost when the SPTE is marked for access tracking.
1026                  */
1027                 if (is_writable_pte(spte))
1028                         kvm_set_pfn_dirty(spte_to_pfn(spte));
1029
1030                 spte = mark_spte_for_access_track(spte);
1031                 mmu_spte_update_no_track(sptep, spte);
1032         }
1033
1034         return true;
1035 }
1036
1037 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1038 {
1039         /*
1040          * Prevent page table teardown by making any free-er wait during
1041          * kvm_flush_remote_tlbs() IPI to all active vcpus.
1042          */
1043         local_irq_disable();
1044
1045         /*
1046          * Make sure a following spte read is not reordered ahead of the write
1047          * to vcpu->mode.
1048          */
1049         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1050 }
1051
1052 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1053 {
1054         /*
1055          * Make sure the write to vcpu->mode is not reordered in front of
1056          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1057          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1058          */
1059         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1060         local_irq_enable();
1061 }
1062
1063 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1064                                   struct kmem_cache *base_cache, int min)
1065 {
1066         void *obj;
1067
1068         if (cache->nobjs >= min)
1069                 return 0;
1070         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1071                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1072                 if (!obj)
1073                         return cache->nobjs >= min ? 0 : -ENOMEM;
1074                 cache->objects[cache->nobjs++] = obj;
1075         }
1076         return 0;
1077 }
1078
1079 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1080 {
1081         return cache->nobjs;
1082 }
1083
1084 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1085                                   struct kmem_cache *cache)
1086 {
1087         while (mc->nobjs)
1088                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1089 }
1090
1091 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1092                                        int min)
1093 {
1094         void *page;
1095
1096         if (cache->nobjs >= min)
1097                 return 0;
1098         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1099                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1100                 if (!page)
1101                         return cache->nobjs >= min ? 0 : -ENOMEM;
1102                 cache->objects[cache->nobjs++] = page;
1103         }
1104         return 0;
1105 }
1106
1107 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1108 {
1109         while (mc->nobjs)
1110                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1111 }
1112
1113 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1114 {
1115         int r;
1116
1117         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1118                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1119         if (r)
1120                 goto out;
1121         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1122         if (r)
1123                 goto out;
1124         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1125                                    mmu_page_header_cache, 4);
1126 out:
1127         return r;
1128 }
1129
1130 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1131 {
1132         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1133                                 pte_list_desc_cache);
1134         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1135         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1136                                 mmu_page_header_cache);
1137 }
1138
1139 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1140 {
1141         void *p;
1142
1143         BUG_ON(!mc->nobjs);
1144         p = mc->objects[--mc->nobjs];
1145         return p;
1146 }
1147
1148 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1149 {
1150         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1151 }
1152
1153 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1154 {
1155         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1156 }
1157
1158 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1159 {
1160         if (!sp->role.direct)
1161                 return sp->gfns[index];
1162
1163         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1164 }
1165
1166 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1167 {
1168         if (!sp->role.direct) {
1169                 sp->gfns[index] = gfn;
1170                 return;
1171         }
1172
1173         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1174                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1175                                    "(expected %llx, got %llx)\n",
1176                                    sp->gfn,
1177                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1178 }
1179
1180 /*
1181  * Return the pointer to the large page information for a given gfn,
1182  * handling slots that are not large page aligned.
1183  */
1184 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1185                                               struct kvm_memory_slot *slot,
1186                                               int level)
1187 {
1188         unsigned long idx;
1189
1190         idx = gfn_to_index(gfn, slot->base_gfn, level);
1191         return &slot->arch.lpage_info[level - 2][idx];
1192 }
1193
1194 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1195                                             gfn_t gfn, int count)
1196 {
1197         struct kvm_lpage_info *linfo;
1198         int i;
1199
1200         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1201                 linfo = lpage_info_slot(gfn, slot, i);
1202                 linfo->disallow_lpage += count;
1203                 WARN_ON(linfo->disallow_lpage < 0);
1204         }
1205 }
1206
1207 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1208 {
1209         update_gfn_disallow_lpage_count(slot, gfn, 1);
1210 }
1211
1212 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1213 {
1214         update_gfn_disallow_lpage_count(slot, gfn, -1);
1215 }
1216
1217 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1218 {
1219         struct kvm_memslots *slots;
1220         struct kvm_memory_slot *slot;
1221         gfn_t gfn;
1222
1223         kvm->arch.indirect_shadow_pages++;
1224         gfn = sp->gfn;
1225         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1226         slot = __gfn_to_memslot(slots, gfn);
1227
1228         /* the non-leaf shadow pages are keeping readonly. */
1229         if (sp->role.level > PG_LEVEL_4K)
1230                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1231                                                     KVM_PAGE_TRACK_WRITE);
1232
1233         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1234 }
1235
1236 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1237 {
1238         if (sp->lpage_disallowed)
1239                 return;
1240
1241         ++kvm->stat.nx_lpage_splits;
1242         list_add_tail(&sp->lpage_disallowed_link,
1243                       &kvm->arch.lpage_disallowed_mmu_pages);
1244         sp->lpage_disallowed = true;
1245 }
1246
1247 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1248 {
1249         struct kvm_memslots *slots;
1250         struct kvm_memory_slot *slot;
1251         gfn_t gfn;
1252
1253         kvm->arch.indirect_shadow_pages--;
1254         gfn = sp->gfn;
1255         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1256         slot = __gfn_to_memslot(slots, gfn);
1257         if (sp->role.level > PG_LEVEL_4K)
1258                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1259                                                        KVM_PAGE_TRACK_WRITE);
1260
1261         kvm_mmu_gfn_allow_lpage(slot, gfn);
1262 }
1263
1264 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1265 {
1266         --kvm->stat.nx_lpage_splits;
1267         sp->lpage_disallowed = false;
1268         list_del(&sp->lpage_disallowed_link);
1269 }
1270
1271 static struct kvm_memory_slot *
1272 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1273                             bool no_dirty_log)
1274 {
1275         struct kvm_memory_slot *slot;
1276
1277         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1278         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1279                 return NULL;
1280         if (no_dirty_log && slot->dirty_bitmap)
1281                 return NULL;
1282
1283         return slot;
1284 }
1285
1286 /*
1287  * About rmap_head encoding:
1288  *
1289  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1290  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1291  * pte_list_desc containing more mappings.
1292  */
1293
1294 /*
1295  * Returns the number of pointers in the rmap chain, not counting the new one.
1296  */
1297 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1298                         struct kvm_rmap_head *rmap_head)
1299 {
1300         struct pte_list_desc *desc;
1301         int i, count = 0;
1302
1303         if (!rmap_head->val) {
1304                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1305                 rmap_head->val = (unsigned long)spte;
1306         } else if (!(rmap_head->val & 1)) {
1307                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1308                 desc = mmu_alloc_pte_list_desc(vcpu);
1309                 desc->sptes[0] = (u64 *)rmap_head->val;
1310                 desc->sptes[1] = spte;
1311                 rmap_head->val = (unsigned long)desc | 1;
1312                 ++count;
1313         } else {
1314                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1315                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1316                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1317                         desc = desc->more;
1318                         count += PTE_LIST_EXT;
1319                 }
1320                 if (desc->sptes[PTE_LIST_EXT-1]) {
1321                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1322                         desc = desc->more;
1323                 }
1324                 for (i = 0; desc->sptes[i]; ++i)
1325                         ++count;
1326                 desc->sptes[i] = spte;
1327         }
1328         return count;
1329 }
1330
1331 static void
1332 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1333                            struct pte_list_desc *desc, int i,
1334                            struct pte_list_desc *prev_desc)
1335 {
1336         int j;
1337
1338         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1339                 ;
1340         desc->sptes[i] = desc->sptes[j];
1341         desc->sptes[j] = NULL;
1342         if (j != 0)
1343                 return;
1344         if (!prev_desc && !desc->more)
1345                 rmap_head->val = 0;
1346         else
1347                 if (prev_desc)
1348                         prev_desc->more = desc->more;
1349                 else
1350                         rmap_head->val = (unsigned long)desc->more | 1;
1351         mmu_free_pte_list_desc(desc);
1352 }
1353
1354 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1355 {
1356         struct pte_list_desc *desc;
1357         struct pte_list_desc *prev_desc;
1358         int i;
1359
1360         if (!rmap_head->val) {
1361                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1362                 BUG();
1363         } else if (!(rmap_head->val & 1)) {
1364                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1365                 if ((u64 *)rmap_head->val != spte) {
1366                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1367                         BUG();
1368                 }
1369                 rmap_head->val = 0;
1370         } else {
1371                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1372                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1373                 prev_desc = NULL;
1374                 while (desc) {
1375                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1376                                 if (desc->sptes[i] == spte) {
1377                                         pte_list_desc_remove_entry(rmap_head,
1378                                                         desc, i, prev_desc);
1379                                         return;
1380                                 }
1381                         }
1382                         prev_desc = desc;
1383                         desc = desc->more;
1384                 }
1385                 pr_err("%s: %p many->many\n", __func__, spte);
1386                 BUG();
1387         }
1388 }
1389
1390 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1391 {
1392         mmu_spte_clear_track_bits(sptep);
1393         __pte_list_remove(sptep, rmap_head);
1394 }
1395
1396 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1397                                            struct kvm_memory_slot *slot)
1398 {
1399         unsigned long idx;
1400
1401         idx = gfn_to_index(gfn, slot->base_gfn, level);
1402         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1403 }
1404
1405 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1406                                          struct kvm_mmu_page *sp)
1407 {
1408         struct kvm_memslots *slots;
1409         struct kvm_memory_slot *slot;
1410
1411         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1412         slot = __gfn_to_memslot(slots, gfn);
1413         return __gfn_to_rmap(gfn, sp->role.level, slot);
1414 }
1415
1416 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1417 {
1418         struct kvm_mmu_memory_cache *cache;
1419
1420         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1421         return mmu_memory_cache_free_objects(cache);
1422 }
1423
1424 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1425 {
1426         struct kvm_mmu_page *sp;
1427         struct kvm_rmap_head *rmap_head;
1428
1429         sp = page_header(__pa(spte));
1430         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1431         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1432         return pte_list_add(vcpu, spte, rmap_head);
1433 }
1434
1435 static void rmap_remove(struct kvm *kvm, u64 *spte)
1436 {
1437         struct kvm_mmu_page *sp;
1438         gfn_t gfn;
1439         struct kvm_rmap_head *rmap_head;
1440
1441         sp = page_header(__pa(spte));
1442         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1443         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1444         __pte_list_remove(spte, rmap_head);
1445 }
1446
1447 /*
1448  * Used by the following functions to iterate through the sptes linked by a
1449  * rmap.  All fields are private and not assumed to be used outside.
1450  */
1451 struct rmap_iterator {
1452         /* private fields */
1453         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1454         int pos;                        /* index of the sptep */
1455 };
1456
1457 /*
1458  * Iteration must be started by this function.  This should also be used after
1459  * removing/dropping sptes from the rmap link because in such cases the
1460  * information in the iterator may not be valid.
1461  *
1462  * Returns sptep if found, NULL otherwise.
1463  */
1464 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1465                            struct rmap_iterator *iter)
1466 {
1467         u64 *sptep;
1468
1469         if (!rmap_head->val)
1470                 return NULL;
1471
1472         if (!(rmap_head->val & 1)) {
1473                 iter->desc = NULL;
1474                 sptep = (u64 *)rmap_head->val;
1475                 goto out;
1476         }
1477
1478         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1479         iter->pos = 0;
1480         sptep = iter->desc->sptes[iter->pos];
1481 out:
1482         BUG_ON(!is_shadow_present_pte(*sptep));
1483         return sptep;
1484 }
1485
1486 /*
1487  * Must be used with a valid iterator: e.g. after rmap_get_first().
1488  *
1489  * Returns sptep if found, NULL otherwise.
1490  */
1491 static u64 *rmap_get_next(struct rmap_iterator *iter)
1492 {
1493         u64 *sptep;
1494
1495         if (iter->desc) {
1496                 if (iter->pos < PTE_LIST_EXT - 1) {
1497                         ++iter->pos;
1498                         sptep = iter->desc->sptes[iter->pos];
1499                         if (sptep)
1500                                 goto out;
1501                 }
1502
1503                 iter->desc = iter->desc->more;
1504
1505                 if (iter->desc) {
1506                         iter->pos = 0;
1507                         /* desc->sptes[0] cannot be NULL */
1508                         sptep = iter->desc->sptes[iter->pos];
1509                         goto out;
1510                 }
1511         }
1512
1513         return NULL;
1514 out:
1515         BUG_ON(!is_shadow_present_pte(*sptep));
1516         return sptep;
1517 }
1518
1519 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1520         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1521              _spte_; _spte_ = rmap_get_next(_iter_))
1522
1523 static void drop_spte(struct kvm *kvm, u64 *sptep)
1524 {
1525         if (mmu_spte_clear_track_bits(sptep))
1526                 rmap_remove(kvm, sptep);
1527 }
1528
1529
1530 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1531 {
1532         if (is_large_pte(*sptep)) {
1533                 WARN_ON(page_header(__pa(sptep))->role.level == PG_LEVEL_4K);
1534                 drop_spte(kvm, sptep);
1535                 --kvm->stat.lpages;
1536                 return true;
1537         }
1538
1539         return false;
1540 }
1541
1542 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1543 {
1544         if (__drop_large_spte(vcpu->kvm, sptep)) {
1545                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1546
1547                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1548                         KVM_PAGES_PER_HPAGE(sp->role.level));
1549         }
1550 }
1551
1552 /*
1553  * Write-protect on the specified @sptep, @pt_protect indicates whether
1554  * spte write-protection is caused by protecting shadow page table.
1555  *
1556  * Note: write protection is difference between dirty logging and spte
1557  * protection:
1558  * - for dirty logging, the spte can be set to writable at anytime if
1559  *   its dirty bitmap is properly set.
1560  * - for spte protection, the spte can be writable only after unsync-ing
1561  *   shadow page.
1562  *
1563  * Return true if tlb need be flushed.
1564  */
1565 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1566 {
1567         u64 spte = *sptep;
1568
1569         if (!is_writable_pte(spte) &&
1570               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1571                 return false;
1572
1573         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1574
1575         if (pt_protect)
1576                 spte &= ~SPTE_MMU_WRITEABLE;
1577         spte = spte & ~PT_WRITABLE_MASK;
1578
1579         return mmu_spte_update(sptep, spte);
1580 }
1581
1582 static bool __rmap_write_protect(struct kvm *kvm,
1583                                  struct kvm_rmap_head *rmap_head,
1584                                  bool pt_protect)
1585 {
1586         u64 *sptep;
1587         struct rmap_iterator iter;
1588         bool flush = false;
1589
1590         for_each_rmap_spte(rmap_head, &iter, sptep)
1591                 flush |= spte_write_protect(sptep, pt_protect);
1592
1593         return flush;
1594 }
1595
1596 static bool spte_clear_dirty(u64 *sptep)
1597 {
1598         u64 spte = *sptep;
1599
1600         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1601
1602         MMU_WARN_ON(!spte_ad_enabled(spte));
1603         spte &= ~shadow_dirty_mask;
1604         return mmu_spte_update(sptep, spte);
1605 }
1606
1607 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1608 {
1609         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1610                                                (unsigned long *)sptep);
1611         if (was_writable && !spte_ad_enabled(*sptep))
1612                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1613
1614         return was_writable;
1615 }
1616
1617 /*
1618  * Gets the GFN ready for another round of dirty logging by clearing the
1619  *      - D bit on ad-enabled SPTEs, and
1620  *      - W bit on ad-disabled SPTEs.
1621  * Returns true iff any D or W bits were cleared.
1622  */
1623 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1624 {
1625         u64 *sptep;
1626         struct rmap_iterator iter;
1627         bool flush = false;
1628
1629         for_each_rmap_spte(rmap_head, &iter, sptep)
1630                 if (spte_ad_need_write_protect(*sptep))
1631                         flush |= spte_wrprot_for_clear_dirty(sptep);
1632                 else
1633                         flush |= spte_clear_dirty(sptep);
1634
1635         return flush;
1636 }
1637
1638 static bool spte_set_dirty(u64 *sptep)
1639 {
1640         u64 spte = *sptep;
1641
1642         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1643
1644         /*
1645          * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1646          * do not bother adding back write access to pages marked
1647          * SPTE_AD_WRPROT_ONLY_MASK.
1648          */
1649         spte |= shadow_dirty_mask;
1650
1651         return mmu_spte_update(sptep, spte);
1652 }
1653
1654 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1655 {
1656         u64 *sptep;
1657         struct rmap_iterator iter;
1658         bool flush = false;
1659
1660         for_each_rmap_spte(rmap_head, &iter, sptep)
1661                 if (spte_ad_enabled(*sptep))
1662                         flush |= spte_set_dirty(sptep);
1663
1664         return flush;
1665 }
1666
1667 /**
1668  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1669  * @kvm: kvm instance
1670  * @slot: slot to protect
1671  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1672  * @mask: indicates which pages we should protect
1673  *
1674  * Used when we do not need to care about huge page mappings: e.g. during dirty
1675  * logging we do not have any such mappings.
1676  */
1677 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1678                                      struct kvm_memory_slot *slot,
1679                                      gfn_t gfn_offset, unsigned long mask)
1680 {
1681         struct kvm_rmap_head *rmap_head;
1682
1683         while (mask) {
1684                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1685                                           PG_LEVEL_4K, slot);
1686                 __rmap_write_protect(kvm, rmap_head, false);
1687
1688                 /* clear the first set bit */
1689                 mask &= mask - 1;
1690         }
1691 }
1692
1693 /**
1694  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1695  * protect the page if the D-bit isn't supported.
1696  * @kvm: kvm instance
1697  * @slot: slot to clear D-bit
1698  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1699  * @mask: indicates which pages we should clear D-bit
1700  *
1701  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1702  */
1703 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1704                                      struct kvm_memory_slot *slot,
1705                                      gfn_t gfn_offset, unsigned long mask)
1706 {
1707         struct kvm_rmap_head *rmap_head;
1708
1709         while (mask) {
1710                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1711                                           PG_LEVEL_4K, slot);
1712                 __rmap_clear_dirty(kvm, rmap_head);
1713
1714                 /* clear the first set bit */
1715                 mask &= mask - 1;
1716         }
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1719
1720 /**
1721  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1722  * PT level pages.
1723  *
1724  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1725  * enable dirty logging for them.
1726  *
1727  * Used when we do not need to care about huge page mappings: e.g. during dirty
1728  * logging we do not have any such mappings.
1729  */
1730 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1731                                 struct kvm_memory_slot *slot,
1732                                 gfn_t gfn_offset, unsigned long mask)
1733 {
1734         if (kvm_x86_ops.enable_log_dirty_pt_masked)
1735                 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1736                                 mask);
1737         else
1738                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1739 }
1740
1741 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1742                                     struct kvm_memory_slot *slot, u64 gfn)
1743 {
1744         struct kvm_rmap_head *rmap_head;
1745         int i;
1746         bool write_protected = false;
1747
1748         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1749                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1750                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1751         }
1752
1753         return write_protected;
1754 }
1755
1756 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1757 {
1758         struct kvm_memory_slot *slot;
1759
1760         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1761         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1762 }
1763
1764 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1765 {
1766         u64 *sptep;
1767         struct rmap_iterator iter;
1768         bool flush = false;
1769
1770         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1771                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1772
1773                 pte_list_remove(rmap_head, sptep);
1774                 flush = true;
1775         }
1776
1777         return flush;
1778 }
1779
1780 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1781                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1782                            unsigned long data)
1783 {
1784         return kvm_zap_rmapp(kvm, rmap_head);
1785 }
1786
1787 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1788                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1789                              unsigned long data)
1790 {
1791         u64 *sptep;
1792         struct rmap_iterator iter;
1793         int need_flush = 0;
1794         u64 new_spte;
1795         pte_t *ptep = (pte_t *)data;
1796         kvm_pfn_t new_pfn;
1797
1798         WARN_ON(pte_huge(*ptep));
1799         new_pfn = pte_pfn(*ptep);
1800
1801 restart:
1802         for_each_rmap_spte(rmap_head, &iter, sptep) {
1803                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1804                             sptep, *sptep, gfn, level);
1805
1806                 need_flush = 1;
1807
1808                 if (pte_write(*ptep)) {
1809                         pte_list_remove(rmap_head, sptep);
1810                         goto restart;
1811                 } else {
1812                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1813                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1814
1815                         new_spte &= ~PT_WRITABLE_MASK;
1816                         new_spte &= ~SPTE_HOST_WRITEABLE;
1817
1818                         new_spte = mark_spte_for_access_track(new_spte);
1819
1820                         mmu_spte_clear_track_bits(sptep);
1821                         mmu_spte_set(sptep, new_spte);
1822                 }
1823         }
1824
1825         if (need_flush && kvm_available_flush_tlb_with_range()) {
1826                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1827                 return 0;
1828         }
1829
1830         return need_flush;
1831 }
1832
1833 struct slot_rmap_walk_iterator {
1834         /* input fields. */
1835         struct kvm_memory_slot *slot;
1836         gfn_t start_gfn;
1837         gfn_t end_gfn;
1838         int start_level;
1839         int end_level;
1840
1841         /* output fields. */
1842         gfn_t gfn;
1843         struct kvm_rmap_head *rmap;
1844         int level;
1845
1846         /* private field. */
1847         struct kvm_rmap_head *end_rmap;
1848 };
1849
1850 static void
1851 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1852 {
1853         iterator->level = level;
1854         iterator->gfn = iterator->start_gfn;
1855         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1856         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1857                                            iterator->slot);
1858 }
1859
1860 static void
1861 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1862                     struct kvm_memory_slot *slot, int start_level,
1863                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1864 {
1865         iterator->slot = slot;
1866         iterator->start_level = start_level;
1867         iterator->end_level = end_level;
1868         iterator->start_gfn = start_gfn;
1869         iterator->end_gfn = end_gfn;
1870
1871         rmap_walk_init_level(iterator, iterator->start_level);
1872 }
1873
1874 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1875 {
1876         return !!iterator->rmap;
1877 }
1878
1879 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1880 {
1881         if (++iterator->rmap <= iterator->end_rmap) {
1882                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1883                 return;
1884         }
1885
1886         if (++iterator->level > iterator->end_level) {
1887                 iterator->rmap = NULL;
1888                 return;
1889         }
1890
1891         rmap_walk_init_level(iterator, iterator->level);
1892 }
1893
1894 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1895            _start_gfn, _end_gfn, _iter_)                                \
1896         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1897                                  _end_level_, _start_gfn, _end_gfn);    \
1898              slot_rmap_walk_okay(_iter_);                               \
1899              slot_rmap_walk_next(_iter_))
1900
1901 static int kvm_handle_hva_range(struct kvm *kvm,
1902                                 unsigned long start,
1903                                 unsigned long end,
1904                                 unsigned long data,
1905                                 int (*handler)(struct kvm *kvm,
1906                                                struct kvm_rmap_head *rmap_head,
1907                                                struct kvm_memory_slot *slot,
1908                                                gfn_t gfn,
1909                                                int level,
1910                                                unsigned long data))
1911 {
1912         struct kvm_memslots *slots;
1913         struct kvm_memory_slot *memslot;
1914         struct slot_rmap_walk_iterator iterator;
1915         int ret = 0;
1916         int i;
1917
1918         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1919                 slots = __kvm_memslots(kvm, i);
1920                 kvm_for_each_memslot(memslot, slots) {
1921                         unsigned long hva_start, hva_end;
1922                         gfn_t gfn_start, gfn_end;
1923
1924                         hva_start = max(start, memslot->userspace_addr);
1925                         hva_end = min(end, memslot->userspace_addr +
1926                                       (memslot->npages << PAGE_SHIFT));
1927                         if (hva_start >= hva_end)
1928                                 continue;
1929                         /*
1930                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1931                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1932                          */
1933                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1934                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1935
1936                         for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1937                                                  KVM_MAX_HUGEPAGE_LEVEL,
1938                                                  gfn_start, gfn_end - 1,
1939                                                  &iterator)
1940                                 ret |= handler(kvm, iterator.rmap, memslot,
1941                                                iterator.gfn, iterator.level, data);
1942                 }
1943         }
1944
1945         return ret;
1946 }
1947
1948 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1949                           unsigned long data,
1950                           int (*handler)(struct kvm *kvm,
1951                                          struct kvm_rmap_head *rmap_head,
1952                                          struct kvm_memory_slot *slot,
1953                                          gfn_t gfn, int level,
1954                                          unsigned long data))
1955 {
1956         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1957 }
1958
1959 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1960 {
1961         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1962 }
1963
1964 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1965 {
1966         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1967 }
1968
1969 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1970                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1971                          unsigned long data)
1972 {
1973         u64 *sptep;
1974         struct rmap_iterator uninitialized_var(iter);
1975         int young = 0;
1976
1977         for_each_rmap_spte(rmap_head, &iter, sptep)
1978                 young |= mmu_spte_age(sptep);
1979
1980         trace_kvm_age_page(gfn, level, slot, young);
1981         return young;
1982 }
1983
1984 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1985                               struct kvm_memory_slot *slot, gfn_t gfn,
1986                               int level, unsigned long data)
1987 {
1988         u64 *sptep;
1989         struct rmap_iterator iter;
1990
1991         for_each_rmap_spte(rmap_head, &iter, sptep)
1992                 if (is_accessed_spte(*sptep))
1993                         return 1;
1994         return 0;
1995 }
1996
1997 #define RMAP_RECYCLE_THRESHOLD 1000
1998
1999 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2000 {
2001         struct kvm_rmap_head *rmap_head;
2002         struct kvm_mmu_page *sp;
2003
2004         sp = page_header(__pa(spte));
2005
2006         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2007
2008         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2009         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2010                         KVM_PAGES_PER_HPAGE(sp->role.level));
2011 }
2012
2013 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2014 {
2015         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2016 }
2017
2018 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2019 {
2020         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2021 }
2022
2023 #ifdef MMU_DEBUG
2024 static int is_empty_shadow_page(u64 *spt)
2025 {
2026         u64 *pos;
2027         u64 *end;
2028
2029         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2030                 if (is_shadow_present_pte(*pos)) {
2031                         printk(KERN_ERR "%s: %p %llx\n", __func__,
2032                                pos, *pos);
2033                         return 0;
2034                 }
2035         return 1;
2036 }
2037 #endif
2038
2039 /*
2040  * This value is the sum of all of the kvm instances's
2041  * kvm->arch.n_used_mmu_pages values.  We need a global,
2042  * aggregate version in order to make the slab shrinker
2043  * faster
2044  */
2045 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2046 {
2047         kvm->arch.n_used_mmu_pages += nr;
2048         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2049 }
2050
2051 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2052 {
2053         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2054         hlist_del(&sp->hash_link);
2055         list_del(&sp->link);
2056         free_page((unsigned long)sp->spt);
2057         if (!sp->role.direct)
2058                 free_page((unsigned long)sp->gfns);
2059         kmem_cache_free(mmu_page_header_cache, sp);
2060 }
2061
2062 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2063 {
2064         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2065 }
2066
2067 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2068                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2069 {
2070         if (!parent_pte)
2071                 return;
2072
2073         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2074 }
2075
2076 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2077                                        u64 *parent_pte)
2078 {
2079         __pte_list_remove(parent_pte, &sp->parent_ptes);
2080 }
2081
2082 static void drop_parent_pte(struct kvm_mmu_page *sp,
2083                             u64 *parent_pte)
2084 {
2085         mmu_page_remove_parent_pte(sp, parent_pte);
2086         mmu_spte_clear_no_track(parent_pte);
2087 }
2088
2089 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2090 {
2091         struct kvm_mmu_page *sp;
2092
2093         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2094         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2095         if (!direct)
2096                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2097         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2098
2099         /*
2100          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2101          * depends on valid pages being added to the head of the list.  See
2102          * comments in kvm_zap_obsolete_pages().
2103          */
2104         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2105         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2106         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2107         return sp;
2108 }
2109
2110 static void mark_unsync(u64 *spte);
2111 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2112 {
2113         u64 *sptep;
2114         struct rmap_iterator iter;
2115
2116         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2117                 mark_unsync(sptep);
2118         }
2119 }
2120
2121 static void mark_unsync(u64 *spte)
2122 {
2123         struct kvm_mmu_page *sp;
2124         unsigned int index;
2125
2126         sp = page_header(__pa(spte));
2127         index = spte - sp->spt;
2128         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2129                 return;
2130         if (sp->unsync_children++)
2131                 return;
2132         kvm_mmu_mark_parents_unsync(sp);
2133 }
2134
2135 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2136                                struct kvm_mmu_page *sp)
2137 {
2138         return 0;
2139 }
2140
2141 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2142                                  struct kvm_mmu_page *sp, u64 *spte,
2143                                  const void *pte)
2144 {
2145         WARN_ON(1);
2146 }
2147
2148 #define KVM_PAGE_ARRAY_NR 16
2149
2150 struct kvm_mmu_pages {
2151         struct mmu_page_and_offset {
2152                 struct kvm_mmu_page *sp;
2153                 unsigned int idx;
2154         } page[KVM_PAGE_ARRAY_NR];
2155         unsigned int nr;
2156 };
2157
2158 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2159                          int idx)
2160 {
2161         int i;
2162
2163         if (sp->unsync)
2164                 for (i=0; i < pvec->nr; i++)
2165                         if (pvec->page[i].sp == sp)
2166                                 return 0;
2167
2168         pvec->page[pvec->nr].sp = sp;
2169         pvec->page[pvec->nr].idx = idx;
2170         pvec->nr++;
2171         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2172 }
2173
2174 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2175 {
2176         --sp->unsync_children;
2177         WARN_ON((int)sp->unsync_children < 0);
2178         __clear_bit(idx, sp->unsync_child_bitmap);
2179 }
2180
2181 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2182                            struct kvm_mmu_pages *pvec)
2183 {
2184         int i, ret, nr_unsync_leaf = 0;
2185
2186         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2187                 struct kvm_mmu_page *child;
2188                 u64 ent = sp->spt[i];
2189
2190                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2191                         clear_unsync_child_bit(sp, i);
2192                         continue;
2193                 }
2194
2195                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2196
2197                 if (child->unsync_children) {
2198                         if (mmu_pages_add(pvec, child, i))
2199                                 return -ENOSPC;
2200
2201                         ret = __mmu_unsync_walk(child, pvec);
2202                         if (!ret) {
2203                                 clear_unsync_child_bit(sp, i);
2204                                 continue;
2205                         } else if (ret > 0) {
2206                                 nr_unsync_leaf += ret;
2207                         } else
2208                                 return ret;
2209                 } else if (child->unsync) {
2210                         nr_unsync_leaf++;
2211                         if (mmu_pages_add(pvec, child, i))
2212                                 return -ENOSPC;
2213                 } else
2214                         clear_unsync_child_bit(sp, i);
2215         }
2216
2217         return nr_unsync_leaf;
2218 }
2219
2220 #define INVALID_INDEX (-1)
2221
2222 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2223                            struct kvm_mmu_pages *pvec)
2224 {
2225         pvec->nr = 0;
2226         if (!sp->unsync_children)
2227                 return 0;
2228
2229         mmu_pages_add(pvec, sp, INVALID_INDEX);
2230         return __mmu_unsync_walk(sp, pvec);
2231 }
2232
2233 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2234 {
2235         WARN_ON(!sp->unsync);
2236         trace_kvm_mmu_sync_page(sp);
2237         sp->unsync = 0;
2238         --kvm->stat.mmu_unsync;
2239 }
2240
2241 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2242                                      struct list_head *invalid_list);
2243 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2244                                     struct list_head *invalid_list);
2245
2246 #define for_each_valid_sp(_kvm, _sp, _list)                             \
2247         hlist_for_each_entry(_sp, _list, hash_link)                     \
2248                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
2249                 } else
2250
2251 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2252         for_each_valid_sp(_kvm, _sp,                                    \
2253           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
2254                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2255
2256 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2257 {
2258         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2259 }
2260
2261 /* @sp->gfn should be write-protected at the call site */
2262 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2263                             struct list_head *invalid_list)
2264 {
2265         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2266             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2267                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2268                 return false;
2269         }
2270
2271         return true;
2272 }
2273
2274 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2275                                         struct list_head *invalid_list,
2276                                         bool remote_flush)
2277 {
2278         if (!remote_flush && list_empty(invalid_list))
2279                 return false;
2280
2281         if (!list_empty(invalid_list))
2282                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2283         else
2284                 kvm_flush_remote_tlbs(kvm);
2285         return true;
2286 }
2287
2288 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2289                                  struct list_head *invalid_list,
2290                                  bool remote_flush, bool local_flush)
2291 {
2292         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2293                 return;
2294
2295         if (local_flush)
2296                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2297 }
2298
2299 #ifdef CONFIG_KVM_MMU_AUDIT
2300 #include "mmu_audit.c"
2301 #else
2302 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2303 static void mmu_audit_disable(void) { }
2304 #endif
2305
2306 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2307 {
2308         return sp->role.invalid ||
2309                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2310 }
2311
2312 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2313                          struct list_head *invalid_list)
2314 {
2315         kvm_unlink_unsync_page(vcpu->kvm, sp);
2316         return __kvm_sync_page(vcpu, sp, invalid_list);
2317 }
2318
2319 /* @gfn should be write-protected at the call site */
2320 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2321                            struct list_head *invalid_list)
2322 {
2323         struct kvm_mmu_page *s;
2324         bool ret = false;
2325
2326         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2327                 if (!s->unsync)
2328                         continue;
2329
2330                 WARN_ON(s->role.level != PG_LEVEL_4K);
2331                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2332         }
2333
2334         return ret;
2335 }
2336
2337 struct mmu_page_path {
2338         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2339         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2340 };
2341
2342 #define for_each_sp(pvec, sp, parents, i)                       \
2343                 for (i = mmu_pages_first(&pvec, &parents);      \
2344                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2345                         i = mmu_pages_next(&pvec, &parents, i))
2346
2347 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2348                           struct mmu_page_path *parents,
2349                           int i)
2350 {
2351         int n;
2352
2353         for (n = i+1; n < pvec->nr; n++) {
2354                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2355                 unsigned idx = pvec->page[n].idx;
2356                 int level = sp->role.level;
2357
2358                 parents->idx[level-1] = idx;
2359                 if (level == PG_LEVEL_4K)
2360                         break;
2361
2362                 parents->parent[level-2] = sp;
2363         }
2364
2365         return n;
2366 }
2367
2368 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2369                            struct mmu_page_path *parents)
2370 {
2371         struct kvm_mmu_page *sp;
2372         int level;
2373
2374         if (pvec->nr == 0)
2375                 return 0;
2376
2377         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2378
2379         sp = pvec->page[0].sp;
2380         level = sp->role.level;
2381         WARN_ON(level == PG_LEVEL_4K);
2382
2383         parents->parent[level-2] = sp;
2384
2385         /* Also set up a sentinel.  Further entries in pvec are all
2386          * children of sp, so this element is never overwritten.
2387          */
2388         parents->parent[level-1] = NULL;
2389         return mmu_pages_next(pvec, parents, 0);
2390 }
2391
2392 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2393 {
2394         struct kvm_mmu_page *sp;
2395         unsigned int level = 0;
2396
2397         do {
2398                 unsigned int idx = parents->idx[level];
2399                 sp = parents->parent[level];
2400                 if (!sp)
2401                         return;
2402
2403                 WARN_ON(idx == INVALID_INDEX);
2404                 clear_unsync_child_bit(sp, idx);
2405                 level++;
2406         } while (!sp->unsync_children);
2407 }
2408
2409 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2410                               struct kvm_mmu_page *parent)
2411 {
2412         int i;
2413         struct kvm_mmu_page *sp;
2414         struct mmu_page_path parents;
2415         struct kvm_mmu_pages pages;
2416         LIST_HEAD(invalid_list);
2417         bool flush = false;
2418
2419         while (mmu_unsync_walk(parent, &pages)) {
2420                 bool protected = false;
2421
2422                 for_each_sp(pages, sp, parents, i)
2423                         protected |= rmap_write_protect(vcpu, sp->gfn);
2424
2425                 if (protected) {
2426                         kvm_flush_remote_tlbs(vcpu->kvm);
2427                         flush = false;
2428                 }
2429
2430                 for_each_sp(pages, sp, parents, i) {
2431                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2432                         mmu_pages_clear_parents(&parents);
2433                 }
2434                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2435                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2436                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2437                         flush = false;
2438                 }
2439         }
2440
2441         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2442 }
2443
2444 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2445 {
2446         atomic_set(&sp->write_flooding_count,  0);
2447 }
2448
2449 static void clear_sp_write_flooding_count(u64 *spte)
2450 {
2451         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2452
2453         __clear_sp_write_flooding_count(sp);
2454 }
2455
2456 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2457                                              gfn_t gfn,
2458                                              gva_t gaddr,
2459                                              unsigned level,
2460                                              int direct,
2461                                              unsigned int access)
2462 {
2463         bool direct_mmu = vcpu->arch.mmu->direct_map;
2464         union kvm_mmu_page_role role;
2465         struct hlist_head *sp_list;
2466         unsigned quadrant;
2467         struct kvm_mmu_page *sp;
2468         bool need_sync = false;
2469         bool flush = false;
2470         int collisions = 0;
2471         LIST_HEAD(invalid_list);
2472
2473         role = vcpu->arch.mmu->mmu_role.base;
2474         role.level = level;
2475         role.direct = direct;
2476         if (role.direct)
2477                 role.gpte_is_8_bytes = true;
2478         role.access = access;
2479         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2480                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2481                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2482                 role.quadrant = quadrant;
2483         }
2484
2485         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2486         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2487                 if (sp->gfn != gfn) {
2488                         collisions++;
2489                         continue;
2490                 }
2491
2492                 if (!need_sync && sp->unsync)
2493                         need_sync = true;
2494
2495                 if (sp->role.word != role.word)
2496                         continue;
2497
2498                 if (direct_mmu)
2499                         goto trace_get_page;
2500
2501                 if (sp->unsync) {
2502                         /* The page is good, but __kvm_sync_page might still end
2503                          * up zapping it.  If so, break in order to rebuild it.
2504                          */
2505                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2506                                 break;
2507
2508                         WARN_ON(!list_empty(&invalid_list));
2509                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2510                 }
2511
2512                 if (sp->unsync_children)
2513                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2514
2515                 __clear_sp_write_flooding_count(sp);
2516
2517 trace_get_page:
2518                 trace_kvm_mmu_get_page(sp, false);
2519                 goto out;
2520         }
2521
2522         ++vcpu->kvm->stat.mmu_cache_miss;
2523
2524         sp = kvm_mmu_alloc_page(vcpu, direct);
2525
2526         sp->gfn = gfn;
2527         sp->role = role;
2528         hlist_add_head(&sp->hash_link, sp_list);
2529         if (!direct) {
2530                 /*
2531                  * we should do write protection before syncing pages
2532                  * otherwise the content of the synced shadow page may
2533                  * be inconsistent with guest page table.
2534                  */
2535                 account_shadowed(vcpu->kvm, sp);
2536                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2537                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2538
2539                 if (level > PG_LEVEL_4K && need_sync)
2540                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2541         }
2542         clear_page(sp->spt);
2543         trace_kvm_mmu_get_page(sp, true);
2544
2545         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2546 out:
2547         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2548                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2549         return sp;
2550 }
2551
2552 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2553                                         struct kvm_vcpu *vcpu, hpa_t root,
2554                                         u64 addr)
2555 {
2556         iterator->addr = addr;
2557         iterator->shadow_addr = root;
2558         iterator->level = vcpu->arch.mmu->shadow_root_level;
2559
2560         if (iterator->level == PT64_ROOT_4LEVEL &&
2561             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2562             !vcpu->arch.mmu->direct_map)
2563                 --iterator->level;
2564
2565         if (iterator->level == PT32E_ROOT_LEVEL) {
2566                 /*
2567                  * prev_root is currently only used for 64-bit hosts. So only
2568                  * the active root_hpa is valid here.
2569                  */
2570                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2571
2572                 iterator->shadow_addr
2573                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2574                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2575                 --iterator->level;
2576                 if (!iterator->shadow_addr)
2577                         iterator->level = 0;
2578         }
2579 }
2580
2581 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2582                              struct kvm_vcpu *vcpu, u64 addr)
2583 {
2584         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2585                                     addr);
2586 }
2587
2588 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2589 {
2590         if (iterator->level < PG_LEVEL_4K)
2591                 return false;
2592
2593         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2594         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2595         return true;
2596 }
2597
2598 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2599                                u64 spte)
2600 {
2601         if (is_last_spte(spte, iterator->level)) {
2602                 iterator->level = 0;
2603                 return;
2604         }
2605
2606         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2607         --iterator->level;
2608 }
2609
2610 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2611 {
2612         __shadow_walk_next(iterator, *iterator->sptep);
2613 }
2614
2615 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2616                              struct kvm_mmu_page *sp)
2617 {
2618         u64 spte;
2619
2620         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2621
2622         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2623                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2624
2625         if (sp_ad_disabled(sp))
2626                 spte |= SPTE_AD_DISABLED_MASK;
2627         else
2628                 spte |= shadow_accessed_mask;
2629
2630         mmu_spte_set(sptep, spte);
2631
2632         mmu_page_add_parent_pte(vcpu, sp, sptep);
2633
2634         if (sp->unsync_children || sp->unsync)
2635                 mark_unsync(sptep);
2636 }
2637
2638 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2639                                    unsigned direct_access)
2640 {
2641         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2642                 struct kvm_mmu_page *child;
2643
2644                 /*
2645                  * For the direct sp, if the guest pte's dirty bit
2646                  * changed form clean to dirty, it will corrupt the
2647                  * sp's access: allow writable in the read-only sp,
2648                  * so we should update the spte at this point to get
2649                  * a new sp with the correct access.
2650                  */
2651                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2652                 if (child->role.access == direct_access)
2653                         return;
2654
2655                 drop_parent_pte(child, sptep);
2656                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2657         }
2658 }
2659
2660 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2661                              u64 *spte)
2662 {
2663         u64 pte;
2664         struct kvm_mmu_page *child;
2665
2666         pte = *spte;
2667         if (is_shadow_present_pte(pte)) {
2668                 if (is_last_spte(pte, sp->role.level)) {
2669                         drop_spte(kvm, spte);
2670                         if (is_large_pte(pte))
2671                                 --kvm->stat.lpages;
2672                 } else {
2673                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2674                         drop_parent_pte(child, spte);
2675                 }
2676                 return true;
2677         }
2678
2679         if (is_mmio_spte(pte))
2680                 mmu_spte_clear_no_track(spte);
2681
2682         return false;
2683 }
2684
2685 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2686                                          struct kvm_mmu_page *sp)
2687 {
2688         unsigned i;
2689
2690         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2691                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2692 }
2693
2694 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2695 {
2696         u64 *sptep;
2697         struct rmap_iterator iter;
2698
2699         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2700                 drop_parent_pte(sp, sptep);
2701 }
2702
2703 static int mmu_zap_unsync_children(struct kvm *kvm,
2704                                    struct kvm_mmu_page *parent,
2705                                    struct list_head *invalid_list)
2706 {
2707         int i, zapped = 0;
2708         struct mmu_page_path parents;
2709         struct kvm_mmu_pages pages;
2710
2711         if (parent->role.level == PG_LEVEL_4K)
2712                 return 0;
2713
2714         while (mmu_unsync_walk(parent, &pages)) {
2715                 struct kvm_mmu_page *sp;
2716
2717                 for_each_sp(pages, sp, parents, i) {
2718                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2719                         mmu_pages_clear_parents(&parents);
2720                         zapped++;
2721                 }
2722         }
2723
2724         return zapped;
2725 }
2726
2727 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2728                                        struct kvm_mmu_page *sp,
2729                                        struct list_head *invalid_list,
2730                                        int *nr_zapped)
2731 {
2732         bool list_unstable;
2733
2734         trace_kvm_mmu_prepare_zap_page(sp);
2735         ++kvm->stat.mmu_shadow_zapped;
2736         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2737         kvm_mmu_page_unlink_children(kvm, sp);
2738         kvm_mmu_unlink_parents(kvm, sp);
2739
2740         /* Zapping children means active_mmu_pages has become unstable. */
2741         list_unstable = *nr_zapped;
2742
2743         if (!sp->role.invalid && !sp->role.direct)
2744                 unaccount_shadowed(kvm, sp);
2745
2746         if (sp->unsync)
2747                 kvm_unlink_unsync_page(kvm, sp);
2748         if (!sp->root_count) {
2749                 /* Count self */
2750                 (*nr_zapped)++;
2751
2752                 /*
2753                  * Already invalid pages (previously active roots) are not on
2754                  * the active page list.  See list_del() in the "else" case of
2755                  * !sp->root_count.
2756                  */
2757                 if (sp->role.invalid)
2758                         list_add(&sp->link, invalid_list);
2759                 else
2760                         list_move(&sp->link, invalid_list);
2761                 kvm_mod_used_mmu_pages(kvm, -1);
2762         } else {
2763                 /*
2764                  * Remove the active root from the active page list, the root
2765                  * will be explicitly freed when the root_count hits zero.
2766                  */
2767                 list_del(&sp->link);
2768
2769                 /*
2770                  * Obsolete pages cannot be used on any vCPUs, see the comment
2771                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2772                  * treats invalid shadow pages as being obsolete.
2773                  */
2774                 if (!is_obsolete_sp(kvm, sp))
2775                         kvm_reload_remote_mmus(kvm);
2776         }
2777
2778         if (sp->lpage_disallowed)
2779                 unaccount_huge_nx_page(kvm, sp);
2780
2781         sp->role.invalid = 1;
2782         return list_unstable;
2783 }
2784
2785 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2786                                      struct list_head *invalid_list)
2787 {
2788         int nr_zapped;
2789
2790         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2791         return nr_zapped;
2792 }
2793
2794 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2795                                     struct list_head *invalid_list)
2796 {
2797         struct kvm_mmu_page *sp, *nsp;
2798
2799         if (list_empty(invalid_list))
2800                 return;
2801
2802         /*
2803          * We need to make sure everyone sees our modifications to
2804          * the page tables and see changes to vcpu->mode here. The barrier
2805          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2806          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2807          *
2808          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2809          * guest mode and/or lockless shadow page table walks.
2810          */
2811         kvm_flush_remote_tlbs(kvm);
2812
2813         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2814                 WARN_ON(!sp->role.invalid || sp->root_count);
2815                 kvm_mmu_free_page(sp);
2816         }
2817 }
2818
2819 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2820                                                   unsigned long nr_to_zap)
2821 {
2822         unsigned long total_zapped = 0;
2823         struct kvm_mmu_page *sp, *tmp;
2824         LIST_HEAD(invalid_list);
2825         bool unstable;
2826         int nr_zapped;
2827
2828         if (list_empty(&kvm->arch.active_mmu_pages))
2829                 return 0;
2830
2831 restart:
2832         list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2833                 /*
2834                  * Don't zap active root pages, the page itself can't be freed
2835                  * and zapping it will just force vCPUs to realloc and reload.
2836                  */
2837                 if (sp->root_count)
2838                         continue;
2839
2840                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2841                                                       &nr_zapped);
2842                 total_zapped += nr_zapped;
2843                 if (total_zapped >= nr_to_zap)
2844                         break;
2845
2846                 if (unstable)
2847                         goto restart;
2848         }
2849
2850         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2851
2852         kvm->stat.mmu_recycled += total_zapped;
2853         return total_zapped;
2854 }
2855
2856 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2857 {
2858         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2859
2860         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2861                 return 0;
2862
2863         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2864
2865         if (!kvm_mmu_available_pages(vcpu->kvm))
2866                 return -ENOSPC;
2867         return 0;
2868 }
2869
2870 /*
2871  * Changing the number of mmu pages allocated to the vm
2872  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2873  */
2874 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2875 {
2876         spin_lock(&kvm->mmu_lock);
2877
2878         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2879                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2880                                                   goal_nr_mmu_pages);
2881
2882                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2883         }
2884
2885         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2886
2887         spin_unlock(&kvm->mmu_lock);
2888 }
2889
2890 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2891 {
2892         struct kvm_mmu_page *sp;
2893         LIST_HEAD(invalid_list);
2894         int r;
2895
2896         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2897         r = 0;
2898         spin_lock(&kvm->mmu_lock);
2899         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2900                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2901                          sp->role.word);
2902                 r = 1;
2903                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2904         }
2905         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2906         spin_unlock(&kvm->mmu_lock);
2907
2908         return r;
2909 }
2910 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2911
2912 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2913 {
2914         trace_kvm_mmu_unsync_page(sp);
2915         ++vcpu->kvm->stat.mmu_unsync;
2916         sp->unsync = 1;
2917
2918         kvm_mmu_mark_parents_unsync(sp);
2919 }
2920
2921 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2922                                    bool can_unsync)
2923 {
2924         struct kvm_mmu_page *sp;
2925
2926         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2927                 return true;
2928
2929         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2930                 if (!can_unsync)
2931                         return true;
2932
2933                 if (sp->unsync)
2934                         continue;
2935
2936                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2937                 kvm_unsync_page(vcpu, sp);
2938         }
2939
2940         /*
2941          * We need to ensure that the marking of unsync pages is visible
2942          * before the SPTE is updated to allow writes because
2943          * kvm_mmu_sync_roots() checks the unsync flags without holding
2944          * the MMU lock and so can race with this. If the SPTE was updated
2945          * before the page had been marked as unsync-ed, something like the
2946          * following could happen:
2947          *
2948          * CPU 1                    CPU 2
2949          * ---------------------------------------------------------------------
2950          * 1.2 Host updates SPTE
2951          *     to be writable
2952          *                      2.1 Guest writes a GPTE for GVA X.
2953          *                          (GPTE being in the guest page table shadowed
2954          *                           by the SP from CPU 1.)
2955          *                          This reads SPTE during the page table walk.
2956          *                          Since SPTE.W is read as 1, there is no
2957          *                          fault.
2958          *
2959          *                      2.2 Guest issues TLB flush.
2960          *                          That causes a VM Exit.
2961          *
2962          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2963          *                          Since it is false, so it just returns.
2964          *
2965          *                      2.4 Guest accesses GVA X.
2966          *                          Since the mapping in the SP was not updated,
2967          *                          so the old mapping for GVA X incorrectly
2968          *                          gets used.
2969          * 1.1 Host marks SP
2970          *     as unsync
2971          *     (sp->unsync = true)
2972          *
2973          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2974          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2975          * pairs with this write barrier.
2976          */
2977         smp_wmb();
2978
2979         return false;
2980 }
2981
2982 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2983 {
2984         if (pfn_valid(pfn))
2985                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2986                         /*
2987                          * Some reserved pages, such as those from NVDIMM
2988                          * DAX devices, are not for MMIO, and can be mapped
2989                          * with cached memory type for better performance.
2990                          * However, the above check misconceives those pages
2991                          * as MMIO, and results in KVM mapping them with UC
2992                          * memory type, which would hurt the performance.
2993                          * Therefore, we check the host memory type in addition
2994                          * and only treat UC/UC-/WC pages as MMIO.
2995                          */
2996                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2997
2998         return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2999                                      pfn_to_hpa(pfn + 1) - 1,
3000                                      E820_TYPE_RAM);
3001 }
3002
3003 /* Bits which may be returned by set_spte() */
3004 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
3005 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
3006
3007 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3008                     unsigned int pte_access, int level,
3009                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3010                     bool can_unsync, bool host_writable)
3011 {
3012         u64 spte = 0;
3013         int ret = 0;
3014         struct kvm_mmu_page *sp;
3015
3016         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3017                 return 0;
3018
3019         sp = page_header(__pa(sptep));
3020         if (sp_ad_disabled(sp))
3021                 spte |= SPTE_AD_DISABLED_MASK;
3022         else if (kvm_vcpu_ad_need_write_protect(vcpu))
3023                 spte |= SPTE_AD_WRPROT_ONLY_MASK;
3024
3025         /*
3026          * For the EPT case, shadow_present_mask is 0 if hardware
3027          * supports exec-only page table entries.  In that case,
3028          * ACC_USER_MASK and shadow_user_mask are used to represent
3029          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
3030          */
3031         spte |= shadow_present_mask;
3032         if (!speculative)
3033                 spte |= spte_shadow_accessed_mask(spte);
3034
3035         if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
3036             is_nx_huge_page_enabled()) {
3037                 pte_access &= ~ACC_EXEC_MASK;
3038         }
3039
3040         if (pte_access & ACC_EXEC_MASK)
3041                 spte |= shadow_x_mask;
3042         else
3043                 spte |= shadow_nx_mask;
3044
3045         if (pte_access & ACC_USER_MASK)
3046                 spte |= shadow_user_mask;
3047
3048         if (level > PG_LEVEL_4K)
3049                 spte |= PT_PAGE_SIZE_MASK;
3050         if (tdp_enabled)
3051                 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3052                         kvm_is_mmio_pfn(pfn));
3053
3054         if (host_writable)
3055                 spte |= SPTE_HOST_WRITEABLE;
3056         else
3057                 pte_access &= ~ACC_WRITE_MASK;
3058
3059         if (!kvm_is_mmio_pfn(pfn))
3060                 spte |= shadow_me_mask;
3061
3062         spte |= (u64)pfn << PAGE_SHIFT;
3063
3064         if (pte_access & ACC_WRITE_MASK) {
3065                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3066
3067                 /*
3068                  * Optimization: for pte sync, if spte was writable the hash
3069                  * lookup is unnecessary (and expensive). Write protection
3070                  * is responsibility of mmu_get_page / kvm_sync_page.
3071                  * Same reasoning can be applied to dirty page accounting.
3072                  */
3073                 if (!can_unsync && is_writable_pte(*sptep))
3074                         goto set_pte;
3075
3076                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3077                         pgprintk("%s: found shadow page for %llx, marking ro\n",
3078                                  __func__, gfn);
3079                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
3080                         pte_access &= ~ACC_WRITE_MASK;
3081                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3082                 }
3083         }
3084
3085         if (pte_access & ACC_WRITE_MASK) {
3086                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3087                 spte |= spte_shadow_dirty_mask(spte);
3088         }
3089
3090         if (speculative)
3091                 spte = mark_spte_for_access_track(spte);
3092
3093 set_pte:
3094         if (mmu_spte_update(sptep, spte))
3095                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3096         return ret;
3097 }
3098
3099 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3100                         unsigned int pte_access, int write_fault, int level,
3101                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3102                         bool host_writable)
3103 {
3104         int was_rmapped = 0;
3105         int rmap_count;
3106         int set_spte_ret;
3107         int ret = RET_PF_RETRY;
3108         bool flush = false;
3109
3110         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3111                  *sptep, write_fault, gfn);
3112
3113         if (is_shadow_present_pte(*sptep)) {
3114                 /*
3115                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3116                  * the parent of the now unreachable PTE.
3117                  */
3118                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
3119                         struct kvm_mmu_page *child;
3120                         u64 pte = *sptep;
3121
3122                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3123                         drop_parent_pte(child, sptep);
3124                         flush = true;
3125                 } else if (pfn != spte_to_pfn(*sptep)) {
3126                         pgprintk("hfn old %llx new %llx\n",
3127                                  spte_to_pfn(*sptep), pfn);
3128                         drop_spte(vcpu->kvm, sptep);
3129                         flush = true;
3130                 } else
3131                         was_rmapped = 1;
3132         }
3133
3134         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3135                                 speculative, true, host_writable);
3136         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3137                 if (write_fault)
3138                         ret = RET_PF_EMULATE;
3139                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3140         }
3141
3142         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3143                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3144                                 KVM_PAGES_PER_HPAGE(level));
3145
3146         if (unlikely(is_mmio_spte(*sptep)))
3147                 ret = RET_PF_EMULATE;
3148
3149         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3150         trace_kvm_mmu_set_spte(level, gfn, sptep);
3151         if (!was_rmapped && is_large_pte(*sptep))
3152                 ++vcpu->kvm->stat.lpages;
3153
3154         if (is_shadow_present_pte(*sptep)) {
3155                 if (!was_rmapped) {
3156                         rmap_count = rmap_add(vcpu, sptep, gfn);
3157                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3158                                 rmap_recycle(vcpu, sptep, gfn);
3159                 }
3160         }
3161
3162         return ret;
3163 }
3164
3165 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3166                                      bool no_dirty_log)
3167 {
3168         struct kvm_memory_slot *slot;
3169
3170         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3171         if (!slot)
3172                 return KVM_PFN_ERR_FAULT;
3173
3174         return gfn_to_pfn_memslot_atomic(slot, gfn);
3175 }
3176
3177 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3178                                     struct kvm_mmu_page *sp,
3179                                     u64 *start, u64 *end)
3180 {
3181         struct page *pages[PTE_PREFETCH_NUM];
3182         struct kvm_memory_slot *slot;
3183         unsigned int access = sp->role.access;
3184         int i, ret;
3185         gfn_t gfn;
3186
3187         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3188         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3189         if (!slot)
3190                 return -1;
3191
3192         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3193         if (ret <= 0)
3194                 return -1;
3195
3196         for (i = 0; i < ret; i++, gfn++, start++) {
3197                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3198                              page_to_pfn(pages[i]), true, true);
3199                 put_page(pages[i]);
3200         }
3201
3202         return 0;
3203 }
3204
3205 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3206                                   struct kvm_mmu_page *sp, u64 *sptep)
3207 {
3208         u64 *spte, *start = NULL;
3209         int i;
3210
3211         WARN_ON(!sp->role.direct);
3212
3213         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3214         spte = sp->spt + i;
3215
3216         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3217                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3218                         if (!start)
3219                                 continue;
3220                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3221                                 break;
3222                         start = NULL;
3223                 } else if (!start)
3224                         start = spte;
3225         }
3226 }
3227
3228 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3229 {
3230         struct kvm_mmu_page *sp;
3231
3232         sp = page_header(__pa(sptep));
3233
3234         /*
3235          * Without accessed bits, there's no way to distinguish between
3236          * actually accessed translations and prefetched, so disable pte
3237          * prefetch if accessed bits aren't available.
3238          */
3239         if (sp_ad_disabled(sp))
3240                 return;
3241
3242         if (sp->role.level > PG_LEVEL_4K)
3243                 return;
3244
3245         __direct_pte_prefetch(vcpu, sp, sptep);
3246 }
3247
3248 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3249                                   kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3250 {
3251         unsigned long hva;
3252         pte_t *pte;
3253         int level;
3254
3255         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3256                 return PG_LEVEL_4K;
3257
3258         /*
3259          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3260          * is not solely for performance, it's also necessary to avoid the
3261          * "writable" check in __gfn_to_hva_many(), which will always fail on
3262          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3263          * page fault steps have already verified the guest isn't writing a
3264          * read-only memslot.
3265          */
3266         hva = __gfn_to_hva_memslot(slot, gfn);
3267
3268         pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3269         if (unlikely(!pte))
3270                 return PG_LEVEL_4K;
3271
3272         return level;
3273 }
3274
3275 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3276                                    int max_level, kvm_pfn_t *pfnp)
3277 {
3278         struct kvm_memory_slot *slot;
3279         struct kvm_lpage_info *linfo;
3280         kvm_pfn_t pfn = *pfnp;
3281         kvm_pfn_t mask;
3282         int level;
3283
3284         if (unlikely(max_level == PG_LEVEL_4K))
3285                 return PG_LEVEL_4K;
3286
3287         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3288                 return PG_LEVEL_4K;
3289
3290         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3291         if (!slot)
3292                 return PG_LEVEL_4K;
3293
3294         max_level = min(max_level, max_page_level);
3295         for ( ; max_level > PG_LEVEL_4K; max_level--) {
3296                 linfo = lpage_info_slot(gfn, slot, max_level);
3297                 if (!linfo->disallow_lpage)
3298                         break;
3299         }
3300
3301         if (max_level == PG_LEVEL_4K)
3302                 return PG_LEVEL_4K;
3303
3304         level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3305         if (level == PG_LEVEL_4K)
3306                 return level;
3307
3308         level = min(level, max_level);
3309
3310         /*
3311          * mmu_notifier_retry() was successful and mmu_lock is held, so
3312          * the pmd can't be split from under us.
3313          */
3314         mask = KVM_PAGES_PER_HPAGE(level) - 1;
3315         VM_BUG_ON((gfn & mask) != (pfn & mask));
3316         *pfnp = pfn & ~mask;
3317
3318         return level;
3319 }
3320
3321 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3322                                        gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3323 {
3324         int level = *levelp;
3325         u64 spte = *it.sptep;
3326
3327         if (it.level == level && level > PG_LEVEL_4K &&
3328             is_nx_huge_page_enabled() &&
3329             is_shadow_present_pte(spte) &&
3330             !is_large_pte(spte)) {
3331                 /*
3332                  * A small SPTE exists for this pfn, but FNAME(fetch)
3333                  * and __direct_map would like to create a large PTE
3334                  * instead: just force them to go down another level,
3335                  * patching back for them into pfn the next 9 bits of
3336                  * the address.
3337                  */
3338                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3339                 *pfnp |= gfn & page_mask;
3340                 (*levelp)--;
3341         }
3342 }
3343
3344 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3345                         int map_writable, int max_level, kvm_pfn_t pfn,
3346                         bool prefault, bool account_disallowed_nx_lpage)
3347 {
3348         struct kvm_shadow_walk_iterator it;
3349         struct kvm_mmu_page *sp;
3350         int level, ret;
3351         gfn_t gfn = gpa >> PAGE_SHIFT;
3352         gfn_t base_gfn = gfn;
3353
3354         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3355                 return RET_PF_RETRY;
3356
3357         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3358
3359         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3360         for_each_shadow_entry(vcpu, gpa, it) {
3361                 /*
3362                  * We cannot overwrite existing page tables with an NX
3363                  * large page, as the leaf could be executable.
3364                  */
3365                 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3366
3367                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3368                 if (it.level == level)
3369                         break;
3370
3371                 drop_large_spte(vcpu, it.sptep);
3372                 if (!is_shadow_present_pte(*it.sptep)) {
3373                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3374                                               it.level - 1, true, ACC_ALL);
3375
3376                         link_shadow_page(vcpu, it.sptep, sp);
3377                         if (account_disallowed_nx_lpage)
3378                                 account_huge_nx_page(vcpu->kvm, sp);
3379                 }
3380         }
3381
3382         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3383                            write, level, base_gfn, pfn, prefault,
3384                            map_writable);
3385         direct_pte_prefetch(vcpu, it.sptep);
3386         ++vcpu->stat.pf_fixed;
3387         return ret;
3388 }
3389
3390 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3391 {
3392         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3393 }
3394
3395 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3396 {
3397         /*
3398          * Do not cache the mmio info caused by writing the readonly gfn
3399          * into the spte otherwise read access on readonly gfn also can
3400          * caused mmio page fault and treat it as mmio access.
3401          */
3402         if (pfn == KVM_PFN_ERR_RO_FAULT)
3403                 return RET_PF_EMULATE;
3404
3405         if (pfn == KVM_PFN_ERR_HWPOISON) {
3406                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3407                 return RET_PF_RETRY;
3408         }
3409
3410         return -EFAULT;
3411 }
3412
3413 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3414                                 kvm_pfn_t pfn, unsigned int access,
3415                                 int *ret_val)
3416 {
3417         /* The pfn is invalid, report the error! */
3418         if (unlikely(is_error_pfn(pfn))) {
3419                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3420                 return true;
3421         }
3422
3423         if (unlikely(is_noslot_pfn(pfn)))
3424                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3425                                      access & shadow_mmio_access_mask);
3426
3427         return false;
3428 }
3429
3430 static bool page_fault_can_be_fast(u32 error_code)
3431 {
3432         /*
3433          * Do not fix the mmio spte with invalid generation number which
3434          * need to be updated by slow page fault path.
3435          */
3436         if (unlikely(error_code & PFERR_RSVD_MASK))
3437                 return false;
3438
3439         /* See if the page fault is due to an NX violation */
3440         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3441                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3442                 return false;
3443
3444         /*
3445          * #PF can be fast if:
3446          * 1. The shadow page table entry is not present, which could mean that
3447          *    the fault is potentially caused by access tracking (if enabled).
3448          * 2. The shadow page table entry is present and the fault
3449          *    is caused by write-protect, that means we just need change the W
3450          *    bit of the spte which can be done out of mmu-lock.
3451          *
3452          * However, if access tracking is disabled we know that a non-present
3453          * page must be a genuine page fault where we have to create a new SPTE.
3454          * So, if access tracking is disabled, we return true only for write
3455          * accesses to a present page.
3456          */
3457
3458         return shadow_acc_track_mask != 0 ||
3459                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3460                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3461 }
3462
3463 /*
3464  * Returns true if the SPTE was fixed successfully. Otherwise,
3465  * someone else modified the SPTE from its original value.
3466  */
3467 static bool
3468 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3469                         u64 *sptep, u64 old_spte, u64 new_spte)
3470 {
3471         gfn_t gfn;
3472
3473         WARN_ON(!sp->role.direct);
3474
3475         /*
3476          * Theoretically we could also set dirty bit (and flush TLB) here in
3477          * order to eliminate unnecessary PML logging. See comments in
3478          * set_spte. But fast_page_fault is very unlikely to happen with PML
3479          * enabled, so we do not do this. This might result in the same GPA
3480          * to be logged in PML buffer again when the write really happens, and
3481          * eventually to be called by mark_page_dirty twice. But it's also no
3482          * harm. This also avoids the TLB flush needed after setting dirty bit
3483          * so non-PML cases won't be impacted.
3484          *
3485          * Compare with set_spte where instead shadow_dirty_mask is set.
3486          */
3487         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3488                 return false;
3489
3490         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3491                 /*
3492                  * The gfn of direct spte is stable since it is
3493                  * calculated by sp->gfn.
3494                  */
3495                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3496                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3497         }
3498
3499         return true;
3500 }
3501
3502 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3503 {
3504         if (fault_err_code & PFERR_FETCH_MASK)
3505                 return is_executable_pte(spte);
3506
3507         if (fault_err_code & PFERR_WRITE_MASK)
3508                 return is_writable_pte(spte);
3509
3510         /* Fault was on Read access */
3511         return spte & PT_PRESENT_MASK;
3512 }
3513
3514 /*
3515  * Return value:
3516  * - true: let the vcpu to access on the same address again.
3517  * - false: let the real page fault path to fix it.
3518  */
3519 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3520                             u32 error_code)
3521 {
3522         struct kvm_shadow_walk_iterator iterator;
3523         struct kvm_mmu_page *sp;
3524         bool fault_handled = false;
3525         u64 spte = 0ull;
3526         uint retry_count = 0;
3527
3528         if (!page_fault_can_be_fast(error_code))
3529                 return false;
3530
3531         walk_shadow_page_lockless_begin(vcpu);
3532
3533         do {
3534                 u64 new_spte;
3535
3536                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3537                         if (!is_shadow_present_pte(spte))
3538                                 break;
3539
3540                 sp = page_header(__pa(iterator.sptep));
3541                 if (!is_last_spte(spte, sp->role.level))
3542                         break;
3543
3544                 /*
3545                  * Check whether the memory access that caused the fault would
3546                  * still cause it if it were to be performed right now. If not,
3547                  * then this is a spurious fault caused by TLB lazily flushed,
3548                  * or some other CPU has already fixed the PTE after the
3549                  * current CPU took the fault.
3550                  *
3551                  * Need not check the access of upper level table entries since
3552                  * they are always ACC_ALL.
3553                  */
3554                 if (is_access_allowed(error_code, spte)) {
3555                         fault_handled = true;
3556                         break;
3557                 }
3558
3559                 new_spte = spte;
3560
3561                 if (is_access_track_spte(spte))
3562                         new_spte = restore_acc_track_spte(new_spte);
3563
3564                 /*
3565                  * Currently, to simplify the code, write-protection can
3566                  * be removed in the fast path only if the SPTE was
3567                  * write-protected for dirty-logging or access tracking.
3568                  */
3569                 if ((error_code & PFERR_WRITE_MASK) &&
3570                     spte_can_locklessly_be_made_writable(spte)) {
3571                         new_spte |= PT_WRITABLE_MASK;
3572
3573                         /*
3574                          * Do not fix write-permission on the large spte.  Since
3575                          * we only dirty the first page into the dirty-bitmap in
3576                          * fast_pf_fix_direct_spte(), other pages are missed
3577                          * if its slot has dirty logging enabled.
3578                          *
3579                          * Instead, we let the slow page fault path create a
3580                          * normal spte to fix the access.
3581                          *
3582                          * See the comments in kvm_arch_commit_memory_region().
3583                          */
3584                         if (sp->role.level > PG_LEVEL_4K)
3585                                 break;
3586                 }
3587
3588                 /* Verify that the fault can be handled in the fast path */
3589                 if (new_spte == spte ||
3590                     !is_access_allowed(error_code, new_spte))
3591                         break;
3592
3593                 /*
3594                  * Currently, fast page fault only works for direct mapping
3595                  * since the gfn is not stable for indirect shadow page. See
3596                  * Documentation/virt/kvm/locking.rst to get more detail.
3597                  */
3598                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3599                                                         iterator.sptep, spte,
3600                                                         new_spte);
3601                 if (fault_handled)
3602                         break;
3603
3604                 if (++retry_count > 4) {
3605                         printk_once(KERN_WARNING
3606                                 "kvm: Fast #PF retrying more than 4 times.\n");
3607                         break;
3608                 }
3609
3610         } while (true);
3611
3612         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3613                               spte, fault_handled);
3614         walk_shadow_page_lockless_end(vcpu);
3615
3616         return fault_handled;
3617 }
3618
3619 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3620                                struct list_head *invalid_list)
3621 {
3622         struct kvm_mmu_page *sp;
3623
3624         if (!VALID_PAGE(*root_hpa))
3625                 return;
3626
3627         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3628         --sp->root_count;
3629         if (!sp->root_count && sp->role.invalid)
3630                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3631
3632         *root_hpa = INVALID_PAGE;
3633 }
3634
3635 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3636 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3637                         ulong roots_to_free)
3638 {
3639         int i;
3640         LIST_HEAD(invalid_list);
3641         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3642
3643         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3644
3645         /* Before acquiring the MMU lock, see if we need to do any real work. */
3646         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3647                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3648                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3649                             VALID_PAGE(mmu->prev_roots[i].hpa))
3650                                 break;
3651
3652                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3653                         return;
3654         }
3655
3656         spin_lock(&vcpu->kvm->mmu_lock);
3657
3658         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3659                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3660                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3661                                            &invalid_list);
3662
3663         if (free_active_root) {
3664                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3665                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3666                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3667                                            &invalid_list);
3668                 } else {
3669                         for (i = 0; i < 4; ++i)
3670                                 if (mmu->pae_root[i] != 0)
3671                                         mmu_free_root_page(vcpu->kvm,
3672                                                            &mmu->pae_root[i],
3673                                                            &invalid_list);
3674                         mmu->root_hpa = INVALID_PAGE;
3675                 }
3676                 mmu->root_pgd = 0;
3677         }
3678
3679         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3680         spin_unlock(&vcpu->kvm->mmu_lock);
3681 }
3682 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3683
3684 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3685 {
3686         int ret = 0;
3687
3688         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3689                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3690                 ret = 1;
3691         }
3692
3693         return ret;
3694 }
3695
3696 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3697                             u8 level, bool direct)
3698 {
3699         struct kvm_mmu_page *sp;
3700
3701         spin_lock(&vcpu->kvm->mmu_lock);
3702
3703         if (make_mmu_pages_available(vcpu)) {
3704                 spin_unlock(&vcpu->kvm->mmu_lock);
3705                 return INVALID_PAGE;
3706         }
3707         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3708         ++sp->root_count;
3709
3710         spin_unlock(&vcpu->kvm->mmu_lock);
3711         return __pa(sp->spt);
3712 }
3713
3714 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3715 {
3716         u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3717         hpa_t root;
3718         unsigned i;
3719
3720         if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3721                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3722                 if (!VALID_PAGE(root))
3723                         return -ENOSPC;
3724                 vcpu->arch.mmu->root_hpa = root;
3725         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3726                 for (i = 0; i < 4; ++i) {
3727                         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3728
3729                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3730                                               i << 30, PT32_ROOT_LEVEL, true);
3731                         if (!VALID_PAGE(root))
3732                                 return -ENOSPC;
3733                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3734                 }
3735                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3736         } else
3737                 BUG();
3738
3739         /* root_pgd is ignored for direct MMUs. */
3740         vcpu->arch.mmu->root_pgd = 0;
3741
3742         return 0;
3743 }
3744
3745 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3746 {
3747         u64 pdptr, pm_mask;
3748         gfn_t root_gfn, root_pgd;
3749         hpa_t root;
3750         int i;
3751
3752         root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3753         root_gfn = root_pgd >> PAGE_SHIFT;
3754
3755         if (mmu_check_root(vcpu, root_gfn))
3756                 return 1;
3757
3758         /*
3759          * Do we shadow a long mode page table? If so we need to
3760          * write-protect the guests page table root.
3761          */
3762         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3763                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3764
3765                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3766                                       vcpu->arch.mmu->shadow_root_level, false);
3767                 if (!VALID_PAGE(root))
3768                         return -ENOSPC;
3769                 vcpu->arch.mmu->root_hpa = root;
3770                 goto set_root_pgd;
3771         }
3772
3773         /*
3774          * We shadow a 32 bit page table. This may be a legacy 2-level
3775          * or a PAE 3-level page table. In either case we need to be aware that
3776          * the shadow page table may be a PAE or a long mode page table.
3777          */
3778         pm_mask = PT_PRESENT_MASK;
3779         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3780                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3781
3782         for (i = 0; i < 4; ++i) {
3783                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3784                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3785                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3786                         if (!(pdptr & PT_PRESENT_MASK)) {
3787                                 vcpu->arch.mmu->pae_root[i] = 0;
3788                                 continue;
3789                         }
3790                         root_gfn = pdptr >> PAGE_SHIFT;
3791                         if (mmu_check_root(vcpu, root_gfn))
3792                                 return 1;
3793                 }
3794
3795                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3796                                       PT32_ROOT_LEVEL, false);
3797                 if (!VALID_PAGE(root))
3798                         return -ENOSPC;
3799                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3800         }
3801         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3802
3803         /*
3804          * If we shadow a 32 bit page table with a long mode page
3805          * table we enter this path.
3806          */
3807         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3808                 if (vcpu->arch.mmu->lm_root == NULL) {
3809                         /*
3810                          * The additional page necessary for this is only
3811                          * allocated on demand.
3812                          */
3813
3814                         u64 *lm_root;
3815
3816                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3817                         if (lm_root == NULL)
3818                                 return 1;
3819
3820                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3821
3822                         vcpu->arch.mmu->lm_root = lm_root;
3823                 }
3824
3825                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3826         }
3827
3828 set_root_pgd:
3829         vcpu->arch.mmu->root_pgd = root_pgd;
3830
3831         return 0;
3832 }
3833
3834 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3835 {
3836         if (vcpu->arch.mmu->direct_map)
3837                 return mmu_alloc_direct_roots(vcpu);
3838         else
3839                 return mmu_alloc_shadow_roots(vcpu);
3840 }
3841
3842 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3843 {
3844         int i;
3845         struct kvm_mmu_page *sp;
3846
3847         if (vcpu->arch.mmu->direct_map)
3848                 return;
3849
3850         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3851                 return;
3852
3853         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3854
3855         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3856                 hpa_t root = vcpu->arch.mmu->root_hpa;
3857                 sp = page_header(root);
3858
3859                 /*
3860                  * Even if another CPU was marking the SP as unsync-ed
3861                  * simultaneously, any guest page table changes are not
3862                  * guaranteed to be visible anyway until this VCPU issues a TLB
3863                  * flush strictly after those changes are made. We only need to
3864                  * ensure that the other CPU sets these flags before any actual
3865                  * changes to the page tables are made. The comments in
3866                  * mmu_need_write_protect() describe what could go wrong if this
3867                  * requirement isn't satisfied.
3868                  */
3869                 if (!smp_load_acquire(&sp->unsync) &&
3870                     !smp_load_acquire(&sp->unsync_children))
3871                         return;
3872
3873                 spin_lock(&vcpu->kvm->mmu_lock);
3874                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3875
3876                 mmu_sync_children(vcpu, sp);
3877
3878                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3879                 spin_unlock(&vcpu->kvm->mmu_lock);
3880                 return;
3881         }
3882
3883         spin_lock(&vcpu->kvm->mmu_lock);
3884         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3885
3886         for (i = 0; i < 4; ++i) {
3887                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3888
3889                 if (root && VALID_PAGE(root)) {
3890                         root &= PT64_BASE_ADDR_MASK;
3891                         sp = page_header(root);
3892                         mmu_sync_children(vcpu, sp);
3893                 }
3894         }
3895
3896         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3897         spin_unlock(&vcpu->kvm->mmu_lock);
3898 }
3899 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3900
3901 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3902                                   u32 access, struct x86_exception *exception)
3903 {
3904         if (exception)
3905                 exception->error_code = 0;
3906         return vaddr;
3907 }
3908
3909 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3910                                          u32 access,
3911                                          struct x86_exception *exception)
3912 {
3913         if (exception)
3914                 exception->error_code = 0;
3915         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3916 }
3917
3918 static bool
3919 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3920 {
3921         int bit7 = (pte >> 7) & 1;
3922
3923         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3924 }
3925
3926 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3927 {
3928         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3929 }
3930
3931 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3932 {
3933         /*
3934          * A nested guest cannot use the MMIO cache if it is using nested
3935          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3936          */
3937         if (mmu_is_nested(vcpu))
3938                 return false;
3939
3940         if (direct)
3941                 return vcpu_match_mmio_gpa(vcpu, addr);
3942
3943         return vcpu_match_mmio_gva(vcpu, addr);
3944 }
3945
3946 /* return true if reserved bit is detected on spte. */
3947 static bool
3948 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3949 {
3950         struct kvm_shadow_walk_iterator iterator;
3951         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3952         struct rsvd_bits_validate *rsvd_check;
3953         int root, leaf;
3954         bool reserved = false;
3955
3956         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3957
3958         walk_shadow_page_lockless_begin(vcpu);
3959
3960         for (shadow_walk_init(&iterator, vcpu, addr),
3961                  leaf = root = iterator.level;
3962              shadow_walk_okay(&iterator);
3963              __shadow_walk_next(&iterator, spte)) {
3964                 spte = mmu_spte_get_lockless(iterator.sptep);
3965
3966                 sptes[leaf - 1] = spte;
3967                 leaf--;
3968
3969                 if (!is_shadow_present_pte(spte))
3970                         break;
3971
3972                 /*
3973                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3974                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3975                  * adding a Jcc in the loop.
3976                  */
3977                 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3978                             __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3979         }
3980
3981         walk_shadow_page_lockless_end(vcpu);
3982
3983         if (reserved) {
3984                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3985                        __func__, addr);
3986                 while (root > leaf) {
3987                         pr_err("------ spte 0x%llx level %d.\n",
3988                                sptes[root - 1], root);
3989                         root--;
3990                 }
3991         }
3992
3993         *sptep = spte;
3994         return reserved;
3995 }
3996
3997 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3998 {
3999         u64 spte;
4000         bool reserved;
4001
4002         if (mmio_info_in_cache(vcpu, addr, direct))
4003                 return RET_PF_EMULATE;
4004
4005         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4006         if (WARN_ON(reserved))
4007                 return -EINVAL;
4008
4009         if (is_mmio_spte(spte)) {
4010                 gfn_t gfn = get_mmio_spte_gfn(spte);
4011                 unsigned int access = get_mmio_spte_access(spte);
4012
4013                 if (!check_mmio_spte(vcpu, spte))
4014                         return RET_PF_INVALID;
4015
4016                 if (direct)
4017                         addr = 0;
4018
4019                 trace_handle_mmio_page_fault(addr, gfn, access);
4020                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4021                 return RET_PF_EMULATE;
4022         }
4023
4024         /*
4025          * If the page table is zapped by other cpus, let CPU fault again on
4026          * the address.
4027          */
4028         return RET_PF_RETRY;
4029 }
4030
4031 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4032                                          u32 error_code, gfn_t gfn)
4033 {
4034         if (unlikely(error_code & PFERR_RSVD_MASK))
4035                 return false;
4036
4037         if (!(error_code & PFERR_PRESENT_MASK) ||
4038               !(error_code & PFERR_WRITE_MASK))
4039                 return false;
4040
4041         /*
4042          * guest is writing the page which is write tracked which can
4043          * not be fixed by page fault handler.
4044          */
4045         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4046                 return true;
4047
4048         return false;
4049 }
4050
4051 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4052 {
4053         struct kvm_shadow_walk_iterator iterator;
4054         u64 spte;
4055
4056         walk_shadow_page_lockless_begin(vcpu);
4057         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4058                 clear_sp_write_flooding_count(iterator.sptep);
4059                 if (!is_shadow_present_pte(spte))
4060                         break;
4061         }
4062         walk_shadow_page_lockless_end(vcpu);
4063 }
4064
4065 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4066                                     gfn_t gfn)
4067 {
4068         struct kvm_arch_async_pf arch;
4069
4070         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4071         arch.gfn = gfn;
4072         arch.direct_map = vcpu->arch.mmu->direct_map;
4073         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4074
4075         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4076                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4077 }
4078
4079 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4080                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4081                          bool *writable)
4082 {
4083         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4084         bool async;
4085
4086         /* Don't expose private memslots to L2. */
4087         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
4088                 *pfn = KVM_PFN_NOSLOT;
4089                 *writable = false;
4090                 return false;
4091         }
4092
4093         async = false;
4094         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4095         if (!async)
4096                 return false; /* *pfn has correct page already */
4097
4098         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4099                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4100                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4101                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4102                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4103                         return true;
4104                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4105                         return true;
4106         }
4107
4108         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4109         return false;
4110 }
4111
4112 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4113                              bool prefault, int max_level, bool is_tdp)
4114 {
4115         bool write = error_code & PFERR_WRITE_MASK;
4116         bool exec = error_code & PFERR_FETCH_MASK;
4117         bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4118         bool map_writable;
4119
4120         gfn_t gfn = gpa >> PAGE_SHIFT;
4121         unsigned long mmu_seq;
4122         kvm_pfn_t pfn;
4123         int r;
4124
4125         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4126                 return RET_PF_EMULATE;
4127
4128         r = mmu_topup_memory_caches(vcpu);
4129         if (r)
4130                 return r;
4131
4132         if (lpage_disallowed)
4133                 max_level = PG_LEVEL_4K;
4134
4135         if (fast_page_fault(vcpu, gpa, error_code))
4136                 return RET_PF_RETRY;
4137
4138         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4139         smp_rmb();
4140
4141         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4142                 return RET_PF_RETRY;
4143
4144         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4145                 return r;
4146
4147         r = RET_PF_RETRY;
4148         spin_lock(&vcpu->kvm->mmu_lock);
4149         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4150                 goto out_unlock;
4151         if (make_mmu_pages_available(vcpu) < 0)
4152                 goto out_unlock;
4153         r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4154                          prefault, is_tdp && lpage_disallowed);
4155
4156 out_unlock:
4157         spin_unlock(&vcpu->kvm->mmu_lock);
4158         kvm_release_pfn_clean(pfn);
4159         return r;
4160 }
4161
4162 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4163                                 u32 error_code, bool prefault)
4164 {
4165         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4166
4167         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4168         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4169                                  PG_LEVEL_2M, false);
4170 }
4171
4172 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4173                                 u64 fault_address, char *insn, int insn_len)
4174 {
4175         int r = 1;
4176         u32 flags = vcpu->arch.apf.host_apf_flags;
4177
4178 #ifndef CONFIG_X86_64
4179         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4180         if (WARN_ON_ONCE(fault_address >> 32))
4181                 return -EFAULT;
4182 #endif
4183
4184         vcpu->arch.l1tf_flush_l1d = true;
4185         if (!flags) {
4186                 trace_kvm_page_fault(fault_address, error_code);
4187
4188                 if (kvm_event_needs_reinjection(vcpu))
4189                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4190                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4191                                 insn_len);
4192         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4193                 vcpu->arch.apf.host_apf_flags = 0;
4194                 local_irq_disable();
4195                 kvm_async_pf_task_wait_schedule(fault_address);
4196                 local_irq_enable();
4197         } else {
4198                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4199         }
4200
4201         return r;
4202 }
4203 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4204
4205 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4206                        bool prefault)
4207 {
4208         int max_level;
4209
4210         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4211              max_level > PG_LEVEL_4K;
4212              max_level--) {
4213                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4214                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4215
4216                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4217                         break;
4218         }
4219
4220         return direct_page_fault(vcpu, gpa, error_code, prefault,
4221                                  max_level, true);
4222 }
4223
4224 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4225                                    struct kvm_mmu *context)
4226 {
4227         context->page_fault = nonpaging_page_fault;
4228         context->gva_to_gpa = nonpaging_gva_to_gpa;
4229         context->sync_page = nonpaging_sync_page;
4230         context->invlpg = NULL;
4231         context->update_pte = nonpaging_update_pte;
4232         context->root_level = 0;
4233         context->shadow_root_level = PT32E_ROOT_LEVEL;
4234         context->direct_map = true;
4235         context->nx = false;
4236 }
4237
4238 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4239                                   union kvm_mmu_page_role role)
4240 {
4241         return (role.direct || pgd == root->pgd) &&
4242                VALID_PAGE(root->hpa) && page_header(root->hpa) &&
4243                role.word == page_header(root->hpa)->role.word;
4244 }
4245
4246 /*
4247  * Find out if a previously cached root matching the new pgd/role is available.
4248  * The current root is also inserted into the cache.
4249  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4250  * returned.
4251  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4252  * false is returned. This root should now be freed by the caller.
4253  */
4254 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4255                                   union kvm_mmu_page_role new_role)
4256 {
4257         uint i;
4258         struct kvm_mmu_root_info root;
4259         struct kvm_mmu *mmu = vcpu->arch.mmu;
4260
4261         root.pgd = mmu->root_pgd;
4262         root.hpa = mmu->root_hpa;
4263
4264         if (is_root_usable(&root, new_pgd, new_role))
4265                 return true;
4266
4267         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4268                 swap(root, mmu->prev_roots[i]);
4269
4270                 if (is_root_usable(&root, new_pgd, new_role))
4271                         break;
4272         }
4273
4274         mmu->root_hpa = root.hpa;
4275         mmu->root_pgd = root.pgd;
4276
4277         return i < KVM_MMU_NUM_PREV_ROOTS;
4278 }
4279
4280 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4281                             union kvm_mmu_page_role new_role)
4282 {
4283         struct kvm_mmu *mmu = vcpu->arch.mmu;
4284
4285         /*
4286          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4287          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4288          * later if necessary.
4289          */
4290         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4291             mmu->root_level >= PT64_ROOT_4LEVEL)
4292                 return !mmu_check_root(vcpu, new_pgd >> PAGE_SHIFT) &&
4293                        cached_root_available(vcpu, new_pgd, new_role);
4294
4295         return false;
4296 }
4297
4298 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4299                               union kvm_mmu_page_role new_role,
4300                               bool skip_tlb_flush, bool skip_mmu_sync)
4301 {
4302         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4303                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4304                 return;
4305         }
4306
4307         /*
4308          * It's possible that the cached previous root page is obsolete because
4309          * of a change in the MMU generation number. However, changing the
4310          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4311          * free the root set here and allocate a new one.
4312          */
4313         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4314
4315         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
4316                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4317         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
4318                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4319
4320         /*
4321          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4322          * switching to a new CR3, that GVA->GPA mapping may no longer be
4323          * valid. So clear any cached MMIO info even when we don't need to sync
4324          * the shadow page tables.
4325          */
4326         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4327
4328         __clear_sp_write_flooding_count(page_header(vcpu->arch.mmu->root_hpa));
4329 }
4330
4331 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4332                      bool skip_mmu_sync)
4333 {
4334         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4335                           skip_tlb_flush, skip_mmu_sync);
4336 }
4337 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4338
4339 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4340 {
4341         return kvm_read_cr3(vcpu);
4342 }
4343
4344 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4345                            unsigned int access, int *nr_present)
4346 {
4347         if (unlikely(is_mmio_spte(*sptep))) {
4348                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4349                         mmu_spte_clear_no_track(sptep);
4350                         return true;
4351                 }
4352
4353                 (*nr_present)++;
4354                 mark_mmio_spte(vcpu, sptep, gfn, access);
4355                 return true;
4356         }
4357
4358         return false;
4359 }
4360
4361 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4362                                 unsigned level, unsigned gpte)
4363 {
4364         /*
4365          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4366          * If it is clear, there are no large pages at this level, so clear
4367          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4368          */
4369         gpte &= level - mmu->last_nonleaf_level;
4370
4371         /*
4372          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
4373          * iff level <= PG_LEVEL_4K, which for our purpose means
4374          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4375          */
4376         gpte |= level - PG_LEVEL_4K - 1;
4377
4378         return gpte & PT_PAGE_SIZE_MASK;
4379 }
4380
4381 #define PTTYPE_EPT 18 /* arbitrary */
4382 #define PTTYPE PTTYPE_EPT
4383 #include "paging_tmpl.h"
4384 #undef PTTYPE
4385
4386 #define PTTYPE 64
4387 #include "paging_tmpl.h"
4388 #undef PTTYPE
4389
4390 #define PTTYPE 32
4391 #include "paging_tmpl.h"
4392 #undef PTTYPE
4393
4394 static void
4395 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4396                         struct rsvd_bits_validate *rsvd_check,
4397                         int maxphyaddr, int level, bool nx, bool gbpages,
4398                         bool pse, bool amd)
4399 {
4400         u64 exb_bit_rsvd = 0;
4401         u64 gbpages_bit_rsvd = 0;
4402         u64 nonleaf_bit8_rsvd = 0;
4403
4404         rsvd_check->bad_mt_xwr = 0;
4405
4406         if (!nx)
4407                 exb_bit_rsvd = rsvd_bits(63, 63);
4408         if (!gbpages)
4409                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4410
4411         /*
4412          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4413          * leaf entries) on AMD CPUs only.
4414          */
4415         if (amd)
4416                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4417
4418         switch (level) {
4419         case PT32_ROOT_LEVEL:
4420                 /* no rsvd bits for 2 level 4K page table entries */
4421                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4422                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4423                 rsvd_check->rsvd_bits_mask[1][0] =
4424                         rsvd_check->rsvd_bits_mask[0][0];
4425
4426                 if (!pse) {
4427                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4428                         break;
4429                 }
4430
4431                 if (is_cpuid_PSE36())
4432                         /* 36bits PSE 4MB page */
4433                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4434                 else
4435                         /* 32 bits PSE 4MB page */
4436                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4437                 break;
4438         case PT32E_ROOT_LEVEL:
4439                 rsvd_check->rsvd_bits_mask[0][2] =
4440                         rsvd_bits(maxphyaddr, 63) |
4441                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4442                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4443                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4444                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4445                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4446                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4447                         rsvd_bits(maxphyaddr, 62) |
4448                         rsvd_bits(13, 20);              /* large page */
4449                 rsvd_check->rsvd_bits_mask[1][0] =
4450                         rsvd_check->rsvd_bits_mask[0][0];
4451                 break;
4452         case PT64_ROOT_5LEVEL:
4453                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4454                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4455                         rsvd_bits(maxphyaddr, 51);
4456                 rsvd_check->rsvd_bits_mask[1][4] =
4457                         rsvd_check->rsvd_bits_mask[0][4];
4458                 /* fall through */
4459         case PT64_ROOT_4LEVEL:
4460                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4461                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4462                         rsvd_bits(maxphyaddr, 51);
4463                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4464                         gbpages_bit_rsvd |
4465                         rsvd_bits(maxphyaddr, 51);
4466                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4467                         rsvd_bits(maxphyaddr, 51);
4468                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4469                         rsvd_bits(maxphyaddr, 51);
4470                 rsvd_check->rsvd_bits_mask[1][3] =
4471                         rsvd_check->rsvd_bits_mask[0][3];
4472                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4473                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4474                         rsvd_bits(13, 29);
4475                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4476                         rsvd_bits(maxphyaddr, 51) |
4477                         rsvd_bits(13, 20);              /* large page */
4478                 rsvd_check->rsvd_bits_mask[1][0] =
4479                         rsvd_check->rsvd_bits_mask[0][0];
4480                 break;
4481         }
4482 }
4483
4484 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4485                                   struct kvm_mmu *context)
4486 {
4487         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4488                                 cpuid_maxphyaddr(vcpu), context->root_level,
4489                                 context->nx,
4490                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4491                                 is_pse(vcpu),
4492                                 guest_cpuid_is_amd_or_hygon(vcpu));
4493 }
4494
4495 static void
4496 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4497                             int maxphyaddr, bool execonly)
4498 {
4499         u64 bad_mt_xwr;
4500
4501         rsvd_check->rsvd_bits_mask[0][4] =
4502                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4503         rsvd_check->rsvd_bits_mask[0][3] =
4504                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4505         rsvd_check->rsvd_bits_mask[0][2] =
4506                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4507         rsvd_check->rsvd_bits_mask[0][1] =
4508                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4509         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4510
4511         /* large page */
4512         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4513         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4514         rsvd_check->rsvd_bits_mask[1][2] =
4515                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4516         rsvd_check->rsvd_bits_mask[1][1] =
4517                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4518         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4519
4520         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4521         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4522         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4523         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4524         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4525         if (!execonly) {
4526                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4527                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4528         }
4529         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4530 }
4531
4532 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4533                 struct kvm_mmu *context, bool execonly)
4534 {
4535         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4536                                     cpuid_maxphyaddr(vcpu), execonly);
4537 }
4538
4539 /*
4540  * the page table on host is the shadow page table for the page
4541  * table in guest or amd nested guest, its mmu features completely
4542  * follow the features in guest.
4543  */
4544 void
4545 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4546 {
4547         bool uses_nx = context->nx ||
4548                 context->mmu_role.base.smep_andnot_wp;
4549         struct rsvd_bits_validate *shadow_zero_check;
4550         int i;
4551
4552         /*
4553          * Passing "true" to the last argument is okay; it adds a check
4554          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4555          */
4556         shadow_zero_check = &context->shadow_zero_check;
4557         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4558                                 shadow_phys_bits,
4559                                 context->shadow_root_level, uses_nx,
4560                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4561                                 is_pse(vcpu), true);
4562
4563         if (!shadow_me_mask)
4564                 return;
4565
4566         for (i = context->shadow_root_level; --i >= 0;) {
4567                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4568                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4569         }
4570
4571 }
4572 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4573
4574 static inline bool boot_cpu_is_amd(void)
4575 {
4576         WARN_ON_ONCE(!tdp_enabled);
4577         return shadow_x_mask == 0;
4578 }
4579
4580 /*
4581  * the direct page table on host, use as much mmu features as
4582  * possible, however, kvm currently does not do execution-protection.
4583  */
4584 static void
4585 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4586                                 struct kvm_mmu *context)
4587 {
4588         struct rsvd_bits_validate *shadow_zero_check;
4589         int i;
4590
4591         shadow_zero_check = &context->shadow_zero_check;
4592
4593         if (boot_cpu_is_amd())
4594                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4595                                         shadow_phys_bits,
4596                                         context->shadow_root_level, false,
4597                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4598                                         true, true);
4599         else
4600                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4601                                             shadow_phys_bits,
4602                                             false);
4603
4604         if (!shadow_me_mask)
4605                 return;
4606
4607         for (i = context->shadow_root_level; --i >= 0;) {
4608                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4609                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4610         }
4611 }
4612
4613 /*
4614  * as the comments in reset_shadow_zero_bits_mask() except it
4615  * is the shadow page table for intel nested guest.
4616  */
4617 static void
4618 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4619                                 struct kvm_mmu *context, bool execonly)
4620 {
4621         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4622                                     shadow_phys_bits, execonly);
4623 }
4624
4625 #define BYTE_MASK(access) \
4626         ((1 & (access) ? 2 : 0) | \
4627          (2 & (access) ? 4 : 0) | \
4628          (3 & (access) ? 8 : 0) | \
4629          (4 & (access) ? 16 : 0) | \
4630          (5 & (access) ? 32 : 0) | \
4631          (6 & (access) ? 64 : 0) | \
4632          (7 & (access) ? 128 : 0))
4633
4634
4635 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4636                                       struct kvm_mmu *mmu, bool ept)
4637 {
4638         unsigned byte;
4639
4640         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4641         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4642         const u8 u = BYTE_MASK(ACC_USER_MASK);
4643
4644         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4645         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4646         bool cr0_wp = is_write_protection(vcpu);
4647
4648         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4649                 unsigned pfec = byte << 1;
4650
4651                 /*
4652                  * Each "*f" variable has a 1 bit for each UWX value
4653                  * that causes a fault with the given PFEC.
4654                  */
4655
4656                 /* Faults from writes to non-writable pages */
4657                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4658                 /* Faults from user mode accesses to supervisor pages */
4659                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4660                 /* Faults from fetches of non-executable pages*/
4661                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4662                 /* Faults from kernel mode fetches of user pages */
4663                 u8 smepf = 0;
4664                 /* Faults from kernel mode accesses of user pages */
4665                 u8 smapf = 0;
4666
4667                 if (!ept) {
4668                         /* Faults from kernel mode accesses to user pages */
4669                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4670
4671                         /* Not really needed: !nx will cause pte.nx to fault */
4672                         if (!mmu->nx)
4673                                 ff = 0;
4674
4675                         /* Allow supervisor writes if !cr0.wp */
4676                         if (!cr0_wp)
4677                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4678
4679                         /* Disallow supervisor fetches of user code if cr4.smep */
4680                         if (cr4_smep)
4681                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4682
4683                         /*
4684                          * SMAP:kernel-mode data accesses from user-mode
4685                          * mappings should fault. A fault is considered
4686                          * as a SMAP violation if all of the following
4687                          * conditions are true:
4688                          *   - X86_CR4_SMAP is set in CR4
4689                          *   - A user page is accessed
4690                          *   - The access is not a fetch
4691                          *   - Page fault in kernel mode
4692                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4693                          *
4694                          * Here, we cover the first three conditions.
4695                          * The fourth is computed dynamically in permission_fault();
4696                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4697                          * *not* subject to SMAP restrictions.
4698                          */
4699                         if (cr4_smap)
4700                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4701                 }
4702
4703                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4704         }
4705 }
4706
4707 /*
4708 * PKU is an additional mechanism by which the paging controls access to
4709 * user-mode addresses based on the value in the PKRU register.  Protection
4710 * key violations are reported through a bit in the page fault error code.
4711 * Unlike other bits of the error code, the PK bit is not known at the
4712 * call site of e.g. gva_to_gpa; it must be computed directly in
4713 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4714 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4715 *
4716 * In particular the following conditions come from the error code, the
4717 * page tables and the machine state:
4718 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4719 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4720 * - PK is always zero if U=0 in the page tables
4721 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4722 *
4723 * The PKRU bitmask caches the result of these four conditions.  The error
4724 * code (minus the P bit) and the page table's U bit form an index into the
4725 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4726 * with the two bits of the PKRU register corresponding to the protection key.
4727 * For the first three conditions above the bits will be 00, thus masking
4728 * away both AD and WD.  For all reads or if the last condition holds, WD
4729 * only will be masked away.
4730 */
4731 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4732                                 bool ept)
4733 {
4734         unsigned bit;
4735         bool wp;
4736
4737         if (ept) {
4738                 mmu->pkru_mask = 0;
4739                 return;
4740         }
4741
4742         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4743         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4744                 mmu->pkru_mask = 0;
4745                 return;
4746         }
4747
4748         wp = is_write_protection(vcpu);
4749
4750         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4751                 unsigned pfec, pkey_bits;
4752                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4753
4754                 pfec = bit << 1;
4755                 ff = pfec & PFERR_FETCH_MASK;
4756                 uf = pfec & PFERR_USER_MASK;
4757                 wf = pfec & PFERR_WRITE_MASK;
4758
4759                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4760                 pte_user = pfec & PFERR_RSVD_MASK;
4761
4762                 /*
4763                  * Only need to check the access which is not an
4764                  * instruction fetch and is to a user page.
4765                  */
4766                 check_pkey = (!ff && pte_user);
4767                 /*
4768                  * write access is controlled by PKRU if it is a
4769                  * user access or CR0.WP = 1.
4770                  */
4771                 check_write = check_pkey && wf && (uf || wp);
4772
4773                 /* PKRU.AD stops both read and write access. */
4774                 pkey_bits = !!check_pkey;
4775                 /* PKRU.WD stops write access. */
4776                 pkey_bits |= (!!check_write) << 1;
4777
4778                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4779         }
4780 }
4781
4782 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4783 {
4784         unsigned root_level = mmu->root_level;
4785
4786         mmu->last_nonleaf_level = root_level;
4787         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4788                 mmu->last_nonleaf_level++;
4789 }
4790
4791 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4792                                          struct kvm_mmu *context,
4793                                          int level)
4794 {
4795         context->nx = is_nx(vcpu);
4796         context->root_level = level;
4797
4798         reset_rsvds_bits_mask(vcpu, context);
4799         update_permission_bitmask(vcpu, context, false);
4800         update_pkru_bitmask(vcpu, context, false);
4801         update_last_nonleaf_level(vcpu, context);
4802
4803         MMU_WARN_ON(!is_pae(vcpu));
4804         context->page_fault = paging64_page_fault;
4805         context->gva_to_gpa = paging64_gva_to_gpa;
4806         context->sync_page = paging64_sync_page;
4807         context->invlpg = paging64_invlpg;
4808         context->update_pte = paging64_update_pte;
4809         context->shadow_root_level = level;
4810         context->direct_map = false;
4811 }
4812
4813 static void paging64_init_context(struct kvm_vcpu *vcpu,
4814                                   struct kvm_mmu *context)
4815 {
4816         int root_level = is_la57_mode(vcpu) ?
4817                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4818
4819         paging64_init_context_common(vcpu, context, root_level);
4820 }
4821
4822 static void paging32_init_context(struct kvm_vcpu *vcpu,
4823                                   struct kvm_mmu *context)
4824 {
4825         context->nx = false;
4826         context->root_level = PT32_ROOT_LEVEL;
4827
4828         reset_rsvds_bits_mask(vcpu, context);
4829         update_permission_bitmask(vcpu, context, false);
4830         update_pkru_bitmask(vcpu, context, false);
4831         update_last_nonleaf_level(vcpu, context);
4832
4833         context->page_fault = paging32_page_fault;
4834         context->gva_to_gpa = paging32_gva_to_gpa;
4835         context->sync_page = paging32_sync_page;
4836         context->invlpg = paging32_invlpg;
4837         context->update_pte = paging32_update_pte;
4838         context->shadow_root_level = PT32E_ROOT_LEVEL;
4839         context->direct_map = false;
4840 }
4841
4842 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4843                                    struct kvm_mmu *context)
4844 {
4845         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4846 }
4847
4848 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4849 {
4850         union kvm_mmu_extended_role ext = {0};
4851
4852         ext.cr0_pg = !!is_paging(vcpu);
4853         ext.cr4_pae = !!is_pae(vcpu);
4854         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4855         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4856         ext.cr4_pse = !!is_pse(vcpu);
4857         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4858         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4859
4860         ext.valid = 1;
4861
4862         return ext;
4863 }
4864
4865 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4866                                                    bool base_only)
4867 {
4868         union kvm_mmu_role role = {0};
4869
4870         role.base.access = ACC_ALL;
4871         role.base.nxe = !!is_nx(vcpu);
4872         role.base.cr0_wp = is_write_protection(vcpu);
4873         role.base.smm = is_smm(vcpu);
4874         role.base.guest_mode = is_guest_mode(vcpu);
4875
4876         if (base_only)
4877                 return role;
4878
4879         role.ext = kvm_calc_mmu_role_ext(vcpu);
4880
4881         return role;
4882 }
4883
4884 static union kvm_mmu_role
4885 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4886 {
4887         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4888
4889         role.base.ad_disabled = (shadow_accessed_mask == 0);
4890         role.base.level = vcpu->arch.tdp_level;
4891         role.base.direct = true;
4892         role.base.gpte_is_8_bytes = true;
4893
4894         return role;
4895 }
4896
4897 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4898 {
4899         struct kvm_mmu *context = vcpu->arch.mmu;
4900         union kvm_mmu_role new_role =
4901                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4902
4903         if (new_role.as_u64 == context->mmu_role.as_u64)
4904                 return;
4905
4906         context->mmu_role.as_u64 = new_role.as_u64;
4907         context->page_fault = kvm_tdp_page_fault;
4908         context->sync_page = nonpaging_sync_page;
4909         context->invlpg = NULL;
4910         context->update_pte = nonpaging_update_pte;
4911         context->shadow_root_level = vcpu->arch.tdp_level;
4912         context->direct_map = true;
4913         context->get_guest_pgd = get_cr3;
4914         context->get_pdptr = kvm_pdptr_read;
4915         context->inject_page_fault = kvm_inject_page_fault;
4916
4917         if (!is_paging(vcpu)) {
4918                 context->nx = false;
4919                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4920                 context->root_level = 0;
4921         } else if (is_long_mode(vcpu)) {
4922                 context->nx = is_nx(vcpu);
4923                 context->root_level = is_la57_mode(vcpu) ?
4924                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4925                 reset_rsvds_bits_mask(vcpu, context);
4926                 context->gva_to_gpa = paging64_gva_to_gpa;
4927         } else if (is_pae(vcpu)) {
4928                 context->nx = is_nx(vcpu);
4929                 context->root_level = PT32E_ROOT_LEVEL;
4930                 reset_rsvds_bits_mask(vcpu, context);
4931                 context->gva_to_gpa = paging64_gva_to_gpa;
4932         } else {
4933                 context->nx = false;
4934                 context->root_level = PT32_ROOT_LEVEL;
4935                 reset_rsvds_bits_mask(vcpu, context);
4936                 context->gva_to_gpa = paging32_gva_to_gpa;
4937         }
4938
4939         update_permission_bitmask(vcpu, context, false);
4940         update_pkru_bitmask(vcpu, context, false);
4941         update_last_nonleaf_level(vcpu, context);
4942         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4943 }
4944
4945 static union kvm_mmu_role
4946 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4947 {
4948         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4949
4950         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4951                 !is_write_protection(vcpu);
4952         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4953                 !is_write_protection(vcpu);
4954         role.base.direct = !is_paging(vcpu);
4955         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4956
4957         if (!is_long_mode(vcpu))
4958                 role.base.level = PT32E_ROOT_LEVEL;
4959         else if (is_la57_mode(vcpu))
4960                 role.base.level = PT64_ROOT_5LEVEL;
4961         else
4962                 role.base.level = PT64_ROOT_4LEVEL;
4963
4964         return role;
4965 }
4966
4967 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4968 {
4969         struct kvm_mmu *context = vcpu->arch.mmu;
4970         union kvm_mmu_role new_role =
4971                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4972
4973         if (new_role.as_u64 == context->mmu_role.as_u64)
4974                 return;
4975
4976         if (!(cr0 & X86_CR0_PG))
4977                 nonpaging_init_context(vcpu, context);
4978         else if (efer & EFER_LMA)
4979                 paging64_init_context(vcpu, context);
4980         else if (cr4 & X86_CR4_PAE)
4981                 paging32E_init_context(vcpu, context);
4982         else
4983                 paging32_init_context(vcpu, context);
4984
4985         context->mmu_role.as_u64 = new_role.as_u64;
4986         reset_shadow_zero_bits_mask(vcpu, context);
4987 }
4988 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4989
4990 static union kvm_mmu_role
4991 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4992                                    bool execonly, u8 level)
4993 {
4994         union kvm_mmu_role role = {0};
4995
4996         /* SMM flag is inherited from root_mmu */
4997         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4998
4999         role.base.level = level;
5000         role.base.gpte_is_8_bytes = true;
5001         role.base.direct = false;
5002         role.base.ad_disabled = !accessed_dirty;
5003         role.base.guest_mode = true;
5004         role.base.access = ACC_ALL;
5005
5006         /*
5007          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5008          * SMAP variation to denote shadow EPT entries.
5009          */
5010         role.base.cr0_wp = true;
5011         role.base.smap_andnot_wp = true;
5012
5013         role.ext = kvm_calc_mmu_role_ext(vcpu);
5014         role.ext.execonly = execonly;
5015
5016         return role;
5017 }
5018
5019 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5020                              bool accessed_dirty, gpa_t new_eptp)
5021 {
5022         struct kvm_mmu *context = vcpu->arch.mmu;
5023         u8 level = vmx_eptp_page_walk_level(new_eptp);
5024         union kvm_mmu_role new_role =
5025                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5026                                                    execonly, level);
5027
5028         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
5029
5030         if (new_role.as_u64 == context->mmu_role.as_u64)
5031                 return;
5032
5033         context->shadow_root_level = level;
5034
5035         context->nx = true;
5036         context->ept_ad = accessed_dirty;
5037         context->page_fault = ept_page_fault;
5038         context->gva_to_gpa = ept_gva_to_gpa;
5039         context->sync_page = ept_sync_page;
5040         context->invlpg = ept_invlpg;
5041         context->update_pte = ept_update_pte;
5042         context->root_level = level;
5043         context->direct_map = false;
5044         context->mmu_role.as_u64 = new_role.as_u64;
5045
5046         update_permission_bitmask(vcpu, context, true);
5047         update_pkru_bitmask(vcpu, context, true);
5048         update_last_nonleaf_level(vcpu, context);
5049         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5050         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5051 }
5052 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5053
5054 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5055 {
5056         struct kvm_mmu *context = vcpu->arch.mmu;
5057
5058         kvm_init_shadow_mmu(vcpu,
5059                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
5060                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
5061                             vcpu->arch.efer);
5062
5063         context->get_guest_pgd     = get_cr3;
5064         context->get_pdptr         = kvm_pdptr_read;
5065         context->inject_page_fault = kvm_inject_page_fault;
5066 }
5067
5068 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5069 {
5070         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5071         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5072
5073         if (new_role.as_u64 == g_context->mmu_role.as_u64)
5074                 return;
5075
5076         g_context->mmu_role.as_u64 = new_role.as_u64;
5077         g_context->get_guest_pgd     = get_cr3;
5078         g_context->get_pdptr         = kvm_pdptr_read;
5079         g_context->inject_page_fault = kvm_inject_page_fault;
5080
5081         /*
5082          * L2 page tables are never shadowed, so there is no need to sync
5083          * SPTEs.
5084          */
5085         g_context->invlpg            = NULL;
5086
5087         /*
5088          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5089          * L1's nested page tables (e.g. EPT12). The nested translation
5090          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5091          * L2's page tables as the first level of translation and L1's
5092          * nested page tables as the second level of translation. Basically
5093          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5094          */
5095         if (!is_paging(vcpu)) {
5096                 g_context->nx = false;
5097                 g_context->root_level = 0;
5098                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5099         } else if (is_long_mode(vcpu)) {
5100                 g_context->nx = is_nx(vcpu);
5101                 g_context->root_level = is_la57_mode(vcpu) ?
5102                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5103                 reset_rsvds_bits_mask(vcpu, g_context);
5104                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5105         } else if (is_pae(vcpu)) {
5106                 g_context->nx = is_nx(vcpu);
5107                 g_context->root_level = PT32E_ROOT_LEVEL;
5108                 reset_rsvds_bits_mask(vcpu, g_context);
5109                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5110         } else {
5111                 g_context->nx = false;
5112                 g_context->root_level = PT32_ROOT_LEVEL;
5113                 reset_rsvds_bits_mask(vcpu, g_context);
5114                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5115         }
5116
5117         update_permission_bitmask(vcpu, g_context, false);
5118         update_pkru_bitmask(vcpu, g_context, false);
5119         update_last_nonleaf_level(vcpu, g_context);
5120 }
5121
5122 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5123 {
5124         if (reset_roots) {
5125                 uint i;
5126
5127                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5128
5129                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5130                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5131         }
5132
5133         if (mmu_is_nested(vcpu))
5134                 init_kvm_nested_mmu(vcpu);
5135         else if (tdp_enabled)
5136                 init_kvm_tdp_mmu(vcpu);
5137         else
5138                 init_kvm_softmmu(vcpu);
5139 }
5140 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5141
5142 static union kvm_mmu_page_role
5143 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5144 {
5145         union kvm_mmu_role role;
5146
5147         if (tdp_enabled)
5148                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5149         else
5150                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5151
5152         return role.base;
5153 }
5154
5155 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5156 {
5157         kvm_mmu_unload(vcpu);
5158         kvm_init_mmu(vcpu, true);
5159 }
5160 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5161
5162 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5163 {
5164         int r;
5165
5166         r = mmu_topup_memory_caches(vcpu);
5167         if (r)
5168                 goto out;
5169         r = mmu_alloc_roots(vcpu);
5170         kvm_mmu_sync_roots(vcpu);
5171         if (r)
5172                 goto out;
5173         kvm_mmu_load_pgd(vcpu);
5174         kvm_x86_ops.tlb_flush_current(vcpu);
5175 out:
5176         return r;
5177 }
5178 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5179
5180 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5181 {
5182         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5183         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5184         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5185         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5186 }
5187 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5188
5189 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5190                                   struct kvm_mmu_page *sp, u64 *spte,
5191                                   const void *new)
5192 {
5193         if (sp->role.level != PG_LEVEL_4K) {
5194                 ++vcpu->kvm->stat.mmu_pde_zapped;
5195                 return;
5196         }
5197
5198         ++vcpu->kvm->stat.mmu_pte_updated;
5199         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5200 }
5201
5202 static bool need_remote_flush(u64 old, u64 new)
5203 {
5204         if (!is_shadow_present_pte(old))
5205                 return false;
5206         if (!is_shadow_present_pte(new))
5207                 return true;
5208         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5209                 return true;
5210         old ^= shadow_nx_mask;
5211         new ^= shadow_nx_mask;
5212         return (old & ~new & PT64_PERM_MASK) != 0;
5213 }
5214
5215 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5216                                     int *bytes)
5217 {
5218         u64 gentry = 0;
5219         int r;
5220
5221         /*
5222          * Assume that the pte write on a page table of the same type
5223          * as the current vcpu paging mode since we update the sptes only
5224          * when they have the same mode.
5225          */
5226         if (is_pae(vcpu) && *bytes == 4) {
5227                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5228                 *gpa &= ~(gpa_t)7;
5229                 *bytes = 8;
5230         }
5231
5232         if (*bytes == 4 || *bytes == 8) {
5233                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5234                 if (r)
5235                         gentry = 0;
5236         }
5237
5238         return gentry;
5239 }
5240
5241 /*
5242  * If we're seeing too many writes to a page, it may no longer be a page table,
5243  * or we may be forking, in which case it is better to unmap the page.
5244  */
5245 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5246 {
5247         /*
5248          * Skip write-flooding detected for the sp whose level is 1, because
5249          * it can become unsync, then the guest page is not write-protected.
5250          */
5251         if (sp->role.level == PG_LEVEL_4K)
5252                 return false;
5253
5254         atomic_inc(&sp->write_flooding_count);
5255         return atomic_read(&sp->write_flooding_count) >= 3;
5256 }
5257
5258 /*
5259  * Misaligned accesses are too much trouble to fix up; also, they usually
5260  * indicate a page is not used as a page table.
5261  */
5262 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5263                                     int bytes)
5264 {
5265         unsigned offset, pte_size, misaligned;
5266
5267         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5268                  gpa, bytes, sp->role.word);
5269
5270         offset = offset_in_page(gpa);
5271         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5272
5273         /*
5274          * Sometimes, the OS only writes the last one bytes to update status
5275          * bits, for example, in linux, andb instruction is used in clear_bit().
5276          */
5277         if (!(offset & (pte_size - 1)) && bytes == 1)
5278                 return false;
5279
5280         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5281         misaligned |= bytes < 4;
5282
5283         return misaligned;
5284 }
5285
5286 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5287 {
5288         unsigned page_offset, quadrant;
5289         u64 *spte;
5290         int level;
5291
5292         page_offset = offset_in_page(gpa);
5293         level = sp->role.level;
5294         *nspte = 1;
5295         if (!sp->role.gpte_is_8_bytes) {
5296                 page_offset <<= 1;      /* 32->64 */
5297                 /*
5298                  * A 32-bit pde maps 4MB while the shadow pdes map
5299                  * only 2MB.  So we need to double the offset again
5300                  * and zap two pdes instead of one.
5301                  */
5302                 if (level == PT32_ROOT_LEVEL) {
5303                         page_offset &= ~7; /* kill rounding error */
5304                         page_offset <<= 1;
5305                         *nspte = 2;
5306                 }
5307                 quadrant = page_offset >> PAGE_SHIFT;
5308                 page_offset &= ~PAGE_MASK;
5309                 if (quadrant != sp->role.quadrant)
5310                         return NULL;
5311         }
5312
5313         spte = &sp->spt[page_offset / sizeof(*spte)];
5314         return spte;
5315 }
5316
5317 /*
5318  * Ignore various flags when determining if a SPTE can be immediately
5319  * overwritten for the current MMU.
5320  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5321  *    match the current MMU role, as MMU's level tracks the root level.
5322  *  - access: updated based on the new guest PTE
5323  *  - quadrant: handled by get_written_sptes()
5324  *  - invalid: always false (loop only walks valid shadow pages)
5325  */
5326 static const union kvm_mmu_page_role role_ign = {
5327         .level = 0xf,
5328         .access = 0x7,
5329         .quadrant = 0x3,
5330         .invalid = 0x1,
5331 };
5332
5333 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5334                               const u8 *new, int bytes,
5335                               struct kvm_page_track_notifier_node *node)
5336 {
5337         gfn_t gfn = gpa >> PAGE_SHIFT;
5338         struct kvm_mmu_page *sp;
5339         LIST_HEAD(invalid_list);
5340         u64 entry, gentry, *spte;
5341         int npte;
5342         bool remote_flush, local_flush;
5343
5344         /*
5345          * If we don't have indirect shadow pages, it means no page is
5346          * write-protected, so we can exit simply.
5347          */
5348         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5349                 return;
5350
5351         remote_flush = local_flush = false;
5352
5353         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5354
5355         /*
5356          * No need to care whether allocation memory is successful
5357          * or not since pte prefetch is skiped if it does not have
5358          * enough objects in the cache.
5359          */
5360         mmu_topup_memory_caches(vcpu);
5361
5362         spin_lock(&vcpu->kvm->mmu_lock);
5363
5364         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5365
5366         ++vcpu->kvm->stat.mmu_pte_write;
5367         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5368
5369         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5370                 if (detect_write_misaligned(sp, gpa, bytes) ||
5371                       detect_write_flooding(sp)) {
5372                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5373                         ++vcpu->kvm->stat.mmu_flooded;
5374                         continue;
5375                 }
5376
5377                 spte = get_written_sptes(sp, gpa, &npte);
5378                 if (!spte)
5379                         continue;
5380
5381                 local_flush = true;
5382                 while (npte--) {
5383                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5384
5385                         entry = *spte;
5386                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5387                         if (gentry &&
5388                             !((sp->role.word ^ base_role) & ~role_ign.word) &&
5389                             rmap_can_add(vcpu))
5390                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5391                         if (need_remote_flush(entry, *spte))
5392                                 remote_flush = true;
5393                         ++spte;
5394                 }
5395         }
5396         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5397         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5398         spin_unlock(&vcpu->kvm->mmu_lock);
5399 }
5400
5401 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5402 {
5403         gpa_t gpa;
5404         int r;
5405
5406         if (vcpu->arch.mmu->direct_map)
5407                 return 0;
5408
5409         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5410
5411         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5412
5413         return r;
5414 }
5415 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5416
5417 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5418                        void *insn, int insn_len)
5419 {
5420         int r, emulation_type = EMULTYPE_PF;
5421         bool direct = vcpu->arch.mmu->direct_map;
5422
5423         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5424                 return RET_PF_RETRY;
5425
5426         r = RET_PF_INVALID;
5427         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5428                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5429                 if (r == RET_PF_EMULATE)
5430                         goto emulate;
5431         }
5432
5433         if (r == RET_PF_INVALID) {
5434                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5435                                           lower_32_bits(error_code), false);
5436                 WARN_ON(r == RET_PF_INVALID);
5437         }
5438
5439         if (r == RET_PF_RETRY)
5440                 return 1;
5441         if (r < 0)
5442                 return r;
5443
5444         /*
5445          * Before emulating the instruction, check if the error code
5446          * was due to a RO violation while translating the guest page.
5447          * This can occur when using nested virtualization with nested
5448          * paging in both guests. If true, we simply unprotect the page
5449          * and resume the guest.
5450          */
5451         if (vcpu->arch.mmu->direct_map &&
5452             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5453                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5454                 return 1;
5455         }
5456
5457         /*
5458          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5459          * optimistically try to just unprotect the page and let the processor
5460          * re-execute the instruction that caused the page fault.  Do not allow
5461          * retrying MMIO emulation, as it's not only pointless but could also
5462          * cause us to enter an infinite loop because the processor will keep
5463          * faulting on the non-existent MMIO address.  Retrying an instruction
5464          * from a nested guest is also pointless and dangerous as we are only
5465          * explicitly shadowing L1's page tables, i.e. unprotecting something
5466          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5467          */
5468         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5469                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5470 emulate:
5471         /*
5472          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5473          * This can happen if a guest gets a page-fault on data access but the HW
5474          * table walker is not able to read the instruction page (e.g instruction
5475          * page is not present in memory). In those cases we simply restart the
5476          * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5477          */
5478         if (unlikely(insn && !insn_len)) {
5479                 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5480                         return 1;
5481         }
5482
5483         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5484                                        insn_len);
5485 }
5486 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5487
5488 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5489                             gva_t gva, hpa_t root_hpa)
5490 {
5491         int i;
5492
5493         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5494         if (mmu != &vcpu->arch.guest_mmu) {
5495                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5496                 if (is_noncanonical_address(gva, vcpu))
5497                         return;
5498
5499                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5500         }
5501
5502         if (!mmu->invlpg)
5503                 return;
5504
5505         if (root_hpa == INVALID_PAGE) {
5506                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5507
5508                 /*
5509                  * INVLPG is required to invalidate any global mappings for the VA,
5510                  * irrespective of PCID. Since it would take us roughly similar amount
5511                  * of work to determine whether any of the prev_root mappings of the VA
5512                  * is marked global, or to just sync it blindly, so we might as well
5513                  * just always sync it.
5514                  *
5515                  * Mappings not reachable via the current cr3 or the prev_roots will be
5516                  * synced when switching to that cr3, so nothing needs to be done here
5517                  * for them.
5518                  */
5519                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5520                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5521                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5522         } else {
5523                 mmu->invlpg(vcpu, gva, root_hpa);
5524         }
5525 }
5526 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5527
5528 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5529 {
5530         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5531         ++vcpu->stat.invlpg;
5532 }
5533 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5534
5535
5536 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5537 {
5538         struct kvm_mmu *mmu = vcpu->arch.mmu;
5539         bool tlb_flush = false;
5540         uint i;
5541
5542         if (pcid == kvm_get_active_pcid(vcpu)) {
5543                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5544                 tlb_flush = true;
5545         }
5546
5547         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5548                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5549                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5550                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5551                         tlb_flush = true;
5552                 }
5553         }
5554
5555         if (tlb_flush)
5556                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5557
5558         ++vcpu->stat.invlpg;
5559
5560         /*
5561          * Mappings not reachable via the current cr3 or the prev_roots will be
5562          * synced when switching to that cr3, so nothing needs to be done here
5563          * for them.
5564          */
5565 }
5566 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5567
5568 void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
5569 {
5570         tdp_enabled = enable_tdp;
5571
5572         /*
5573          * max_page_level reflects the capabilities of KVM's MMU irrespective
5574          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5575          * the kernel is not.  But, KVM never creates a page size greater than
5576          * what is used by the kernel for any given HVA, i.e. the kernel's
5577          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5578          */
5579         if (tdp_enabled)
5580                 max_page_level = tdp_page_level;
5581         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5582                 max_page_level = PG_LEVEL_1G;
5583         else
5584                 max_page_level = PG_LEVEL_2M;
5585 }
5586 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5587
5588 /* The return value indicates if tlb flush on all vcpus is needed. */
5589 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5590
5591 /* The caller should hold mmu-lock before calling this function. */
5592 static __always_inline bool
5593 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5594                         slot_level_handler fn, int start_level, int end_level,
5595                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5596 {
5597         struct slot_rmap_walk_iterator iterator;
5598         bool flush = false;
5599
5600         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5601                         end_gfn, &iterator) {
5602                 if (iterator.rmap)
5603                         flush |= fn(kvm, iterator.rmap);
5604
5605                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5606                         if (flush && lock_flush_tlb) {
5607                                 kvm_flush_remote_tlbs_with_address(kvm,
5608                                                 start_gfn,
5609                                                 iterator.gfn - start_gfn + 1);
5610                                 flush = false;
5611                         }
5612                         cond_resched_lock(&kvm->mmu_lock);
5613                 }
5614         }
5615
5616         if (flush && lock_flush_tlb) {
5617                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5618                                                    end_gfn - start_gfn + 1);
5619                 flush = false;
5620         }
5621
5622         return flush;
5623 }
5624
5625 static __always_inline bool
5626 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5627                   slot_level_handler fn, int start_level, int end_level,
5628                   bool lock_flush_tlb)
5629 {
5630         return slot_handle_level_range(kvm, memslot, fn, start_level,
5631                         end_level, memslot->base_gfn,
5632                         memslot->base_gfn + memslot->npages - 1,
5633                         lock_flush_tlb);
5634 }
5635
5636 static __always_inline bool
5637 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5638                       slot_level_handler fn, bool lock_flush_tlb)
5639 {
5640         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5641                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5642 }
5643
5644 static __always_inline bool
5645 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5646                         slot_level_handler fn, bool lock_flush_tlb)
5647 {
5648         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5649                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5650 }
5651
5652 static __always_inline bool
5653 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5654                  slot_level_handler fn, bool lock_flush_tlb)
5655 {
5656         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5657                                  PG_LEVEL_4K, lock_flush_tlb);
5658 }
5659
5660 static void free_mmu_pages(struct kvm_mmu *mmu)
5661 {
5662         free_page((unsigned long)mmu->pae_root);
5663         free_page((unsigned long)mmu->lm_root);
5664 }
5665
5666 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5667 {
5668         struct page *page;
5669         int i;
5670
5671         /*
5672          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5673          * while the PDP table is a per-vCPU construct that's allocated at MMU
5674          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5675          * x86_64.  Therefore we need to allocate the PDP table in the first
5676          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5677          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5678          * skip allocating the PDP table.
5679          */
5680         if (tdp_enabled && vcpu->arch.tdp_level > PT32E_ROOT_LEVEL)
5681                 return 0;
5682
5683         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5684         if (!page)
5685                 return -ENOMEM;
5686
5687         mmu->pae_root = page_address(page);
5688         for (i = 0; i < 4; ++i)
5689                 mmu->pae_root[i] = INVALID_PAGE;
5690
5691         return 0;
5692 }
5693
5694 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5695 {
5696         uint i;
5697         int ret;
5698
5699         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5700         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5701
5702         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5703         vcpu->arch.root_mmu.root_pgd = 0;
5704         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5705         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5706                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5707
5708         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5709         vcpu->arch.guest_mmu.root_pgd = 0;
5710         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5711         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5712                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5713
5714         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5715
5716         ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5717         if (ret)
5718                 return ret;
5719
5720         ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5721         if (ret)
5722                 goto fail_allocate_root;
5723
5724         return ret;
5725  fail_allocate_root:
5726         free_mmu_pages(&vcpu->arch.guest_mmu);
5727         return ret;
5728 }
5729
5730 #define BATCH_ZAP_PAGES 10
5731 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5732 {
5733         struct kvm_mmu_page *sp, *node;
5734         int nr_zapped, batch = 0;
5735
5736 restart:
5737         list_for_each_entry_safe_reverse(sp, node,
5738               &kvm->arch.active_mmu_pages, link) {
5739                 /*
5740                  * No obsolete valid page exists before a newly created page
5741                  * since active_mmu_pages is a FIFO list.
5742                  */
5743                 if (!is_obsolete_sp(kvm, sp))
5744                         break;
5745
5746                 /*
5747                  * Invalid pages should never land back on the list of active
5748                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5749                  * infinite loop if the page gets put back on the list (again).
5750                  */
5751                 if (WARN_ON(sp->role.invalid))
5752                         continue;
5753
5754                 /*
5755                  * No need to flush the TLB since we're only zapping shadow
5756                  * pages with an obsolete generation number and all vCPUS have
5757                  * loaded a new root, i.e. the shadow pages being zapped cannot
5758                  * be in active use by the guest.
5759                  */
5760                 if (batch >= BATCH_ZAP_PAGES &&
5761                     cond_resched_lock(&kvm->mmu_lock)) {
5762                         batch = 0;
5763                         goto restart;
5764                 }
5765
5766                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5767                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5768                         batch += nr_zapped;
5769                         goto restart;
5770                 }
5771         }
5772
5773         /*
5774          * Trigger a remote TLB flush before freeing the page tables to ensure
5775          * KVM is not in the middle of a lockless shadow page table walk, which
5776          * may reference the pages.
5777          */
5778         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5779 }
5780
5781 /*
5782  * Fast invalidate all shadow pages and use lock-break technique
5783  * to zap obsolete pages.
5784  *
5785  * It's required when memslot is being deleted or VM is being
5786  * destroyed, in these cases, we should ensure that KVM MMU does
5787  * not use any resource of the being-deleted slot or all slots
5788  * after calling the function.
5789  */
5790 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5791 {
5792         lockdep_assert_held(&kvm->slots_lock);
5793
5794         spin_lock(&kvm->mmu_lock);
5795         trace_kvm_mmu_zap_all_fast(kvm);
5796
5797         /*
5798          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5799          * held for the entire duration of zapping obsolete pages, it's
5800          * impossible for there to be multiple invalid generations associated
5801          * with *valid* shadow pages at any given time, i.e. there is exactly
5802          * one valid generation and (at most) one invalid generation.
5803          */
5804         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5805
5806         /*
5807          * Notify all vcpus to reload its shadow page table and flush TLB.
5808          * Then all vcpus will switch to new shadow page table with the new
5809          * mmu_valid_gen.
5810          *
5811          * Note: we need to do this under the protection of mmu_lock,
5812          * otherwise, vcpu would purge shadow page but miss tlb flush.
5813          */
5814         kvm_reload_remote_mmus(kvm);
5815
5816         kvm_zap_obsolete_pages(kvm);
5817         spin_unlock(&kvm->mmu_lock);
5818 }
5819
5820 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5821 {
5822         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5823 }
5824
5825 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5826                         struct kvm_memory_slot *slot,
5827                         struct kvm_page_track_notifier_node *node)
5828 {
5829         kvm_mmu_zap_all_fast(kvm);
5830 }
5831
5832 void kvm_mmu_init_vm(struct kvm *kvm)
5833 {
5834         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5835
5836         node->track_write = kvm_mmu_pte_write;
5837         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5838         kvm_page_track_register_notifier(kvm, node);
5839 }
5840
5841 void kvm_mmu_uninit_vm(struct kvm *kvm)
5842 {
5843         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5844
5845         kvm_page_track_unregister_notifier(kvm, node);
5846 }
5847
5848 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5849 {
5850         struct kvm_memslots *slots;
5851         struct kvm_memory_slot *memslot;
5852         int i;
5853
5854         spin_lock(&kvm->mmu_lock);
5855         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5856                 slots = __kvm_memslots(kvm, i);
5857                 kvm_for_each_memslot(memslot, slots) {
5858                         gfn_t start, end;
5859
5860                         start = max(gfn_start, memslot->base_gfn);
5861                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5862                         if (start >= end)
5863                                 continue;
5864
5865                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5866                                                 PG_LEVEL_4K,
5867                                                 KVM_MAX_HUGEPAGE_LEVEL,
5868                                                 start, end - 1, true);
5869                 }
5870         }
5871
5872         spin_unlock(&kvm->mmu_lock);
5873 }
5874
5875 static bool slot_rmap_write_protect(struct kvm *kvm,
5876                                     struct kvm_rmap_head *rmap_head)
5877 {
5878         return __rmap_write_protect(kvm, rmap_head, false);
5879 }
5880
5881 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5882                                       struct kvm_memory_slot *memslot,
5883                                       int start_level)
5884 {
5885         bool flush;
5886
5887         spin_lock(&kvm->mmu_lock);
5888         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5889                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5890         spin_unlock(&kvm->mmu_lock);
5891
5892         /*
5893          * We can flush all the TLBs out of the mmu lock without TLB
5894          * corruption since we just change the spte from writable to
5895          * readonly so that we only need to care the case of changing
5896          * spte from present to present (changing the spte from present
5897          * to nonpresent will flush all the TLBs immediately), in other
5898          * words, the only case we care is mmu_spte_update() where we
5899          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5900          * instead of PT_WRITABLE_MASK, that means it does not depend
5901          * on PT_WRITABLE_MASK anymore.
5902          */
5903         if (flush)
5904                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5905 }
5906
5907 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5908                                          struct kvm_rmap_head *rmap_head)
5909 {
5910         u64 *sptep;
5911         struct rmap_iterator iter;
5912         int need_tlb_flush = 0;
5913         kvm_pfn_t pfn;
5914         struct kvm_mmu_page *sp;
5915
5916 restart:
5917         for_each_rmap_spte(rmap_head, &iter, sptep) {
5918                 sp = page_header(__pa(sptep));
5919                 pfn = spte_to_pfn(*sptep);
5920
5921                 /*
5922                  * We cannot do huge page mapping for indirect shadow pages,
5923                  * which are found on the last rmap (level = 1) when not using
5924                  * tdp; such shadow pages are synced with the page table in
5925                  * the guest, and the guest page table is using 4K page size
5926                  * mapping if the indirect sp has level = 1.
5927                  */
5928                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5929                     (kvm_is_zone_device_pfn(pfn) ||
5930                      PageCompound(pfn_to_page(pfn)))) {
5931                         pte_list_remove(rmap_head, sptep);
5932
5933                         if (kvm_available_flush_tlb_with_range())
5934                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5935                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5936                         else
5937                                 need_tlb_flush = 1;
5938
5939                         goto restart;
5940                 }
5941         }
5942
5943         return need_tlb_flush;
5944 }
5945
5946 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5947                                    const struct kvm_memory_slot *memslot)
5948 {
5949         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5950         spin_lock(&kvm->mmu_lock);
5951         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5952                          kvm_mmu_zap_collapsible_spte, true);
5953         spin_unlock(&kvm->mmu_lock);
5954 }
5955
5956 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5957                                         struct kvm_memory_slot *memslot)
5958 {
5959         /*
5960          * All current use cases for flushing the TLBs for a specific memslot
5961          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5962          * The interaction between the various operations on memslot must be
5963          * serialized by slots_locks to ensure the TLB flush from one operation
5964          * is observed by any other operation on the same memslot.
5965          */
5966         lockdep_assert_held(&kvm->slots_lock);
5967         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5968                                            memslot->npages);
5969 }
5970
5971 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5972                                    struct kvm_memory_slot *memslot)
5973 {
5974         bool flush;
5975
5976         spin_lock(&kvm->mmu_lock);
5977         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5978         spin_unlock(&kvm->mmu_lock);
5979
5980         /*
5981          * It's also safe to flush TLBs out of mmu lock here as currently this
5982          * function is only used for dirty logging, in which case flushing TLB
5983          * out of mmu lock also guarantees no dirty pages will be lost in
5984          * dirty_bitmap.
5985          */
5986         if (flush)
5987                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5988 }
5989 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5990
5991 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5992                                         struct kvm_memory_slot *memslot)
5993 {
5994         bool flush;
5995
5996         spin_lock(&kvm->mmu_lock);
5997         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5998                                         false);
5999         spin_unlock(&kvm->mmu_lock);
6000
6001         if (flush)
6002                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6003 }
6004 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6005
6006 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6007                             struct kvm_memory_slot *memslot)
6008 {
6009         bool flush;
6010
6011         spin_lock(&kvm->mmu_lock);
6012         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6013         spin_unlock(&kvm->mmu_lock);
6014
6015         if (flush)
6016                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6017 }
6018 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6019
6020 void kvm_mmu_zap_all(struct kvm *kvm)
6021 {
6022         struct kvm_mmu_page *sp, *node;
6023         LIST_HEAD(invalid_list);
6024         int ign;
6025
6026         spin_lock(&kvm->mmu_lock);
6027 restart:
6028         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6029                 if (WARN_ON(sp->role.invalid))
6030                         continue;
6031                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6032                         goto restart;
6033                 if (cond_resched_lock(&kvm->mmu_lock))
6034                         goto restart;
6035         }
6036
6037         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6038         spin_unlock(&kvm->mmu_lock);
6039 }
6040
6041 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6042 {
6043         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6044
6045         gen &= MMIO_SPTE_GEN_MASK;
6046
6047         /*
6048          * Generation numbers are incremented in multiples of the number of
6049          * address spaces in order to provide unique generations across all
6050          * address spaces.  Strip what is effectively the address space
6051          * modifier prior to checking for a wrap of the MMIO generation so
6052          * that a wrap in any address space is detected.
6053          */
6054         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6055
6056         /*
6057          * The very rare case: if the MMIO generation number has wrapped,
6058          * zap all shadow pages.
6059          */
6060         if (unlikely(gen == 0)) {
6061                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6062                 kvm_mmu_zap_all_fast(kvm);
6063         }
6064 }
6065
6066 static unsigned long
6067 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6068 {
6069         struct kvm *kvm;
6070         int nr_to_scan = sc->nr_to_scan;
6071         unsigned long freed = 0;
6072
6073         mutex_lock(&kvm_lock);
6074
6075         list_for_each_entry(kvm, &vm_list, vm_list) {
6076                 int idx;
6077                 LIST_HEAD(invalid_list);
6078
6079                 /*
6080                  * Never scan more than sc->nr_to_scan VM instances.
6081                  * Will not hit this condition practically since we do not try
6082                  * to shrink more than one VM and it is very unlikely to see
6083                  * !n_used_mmu_pages so many times.
6084                  */
6085                 if (!nr_to_scan--)
6086                         break;
6087                 /*
6088                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6089                  * here. We may skip a VM instance errorneosly, but we do not
6090                  * want to shrink a VM that only started to populate its MMU
6091                  * anyway.
6092                  */
6093                 if (!kvm->arch.n_used_mmu_pages &&
6094                     !kvm_has_zapped_obsolete_pages(kvm))
6095                         continue;
6096
6097                 idx = srcu_read_lock(&kvm->srcu);
6098                 spin_lock(&kvm->mmu_lock);
6099
6100                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6101                         kvm_mmu_commit_zap_page(kvm,
6102                               &kvm->arch.zapped_obsolete_pages);
6103                         goto unlock;
6104                 }
6105
6106                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6107
6108 unlock:
6109                 spin_unlock(&kvm->mmu_lock);
6110                 srcu_read_unlock(&kvm->srcu, idx);
6111
6112                 /*
6113                  * unfair on small ones
6114                  * per-vm shrinkers cry out
6115                  * sadness comes quickly
6116                  */
6117                 list_move_tail(&kvm->vm_list, &vm_list);
6118                 break;
6119         }
6120
6121         mutex_unlock(&kvm_lock);
6122         return freed;
6123 }
6124
6125 static unsigned long
6126 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6127 {
6128         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6129 }
6130
6131 static struct shrinker mmu_shrinker = {
6132         .count_objects = mmu_shrink_count,
6133         .scan_objects = mmu_shrink_scan,
6134         .seeks = DEFAULT_SEEKS * 10,
6135 };
6136
6137 static void mmu_destroy_caches(void)
6138 {
6139         kmem_cache_destroy(pte_list_desc_cache);
6140         kmem_cache_destroy(mmu_page_header_cache);
6141 }
6142
6143 static void kvm_set_mmio_spte_mask(void)
6144 {
6145         u64 mask;
6146
6147         /*
6148          * Set a reserved PA bit in MMIO SPTEs to generate page faults with
6149          * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
6150          * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
6151          * 52-bit physical addresses then there are no reserved PA bits in the
6152          * PTEs and so the reserved PA approach must be disabled.
6153          */
6154         if (shadow_phys_bits < 52)
6155                 mask = BIT_ULL(51) | PT_PRESENT_MASK;
6156         else
6157                 mask = 0;
6158
6159         kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
6160 }
6161
6162 static bool get_nx_auto_mode(void)
6163 {
6164         /* Return true when CPU has the bug, and mitigations are ON */
6165         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6166 }
6167
6168 static void __set_nx_huge_pages(bool val)
6169 {
6170         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6171 }
6172
6173 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6174 {
6175         bool old_val = nx_huge_pages;
6176         bool new_val;
6177
6178         /* In "auto" mode deploy workaround only if CPU has the bug. */
6179         if (sysfs_streq(val, "off"))
6180                 new_val = 0;
6181         else if (sysfs_streq(val, "force"))
6182                 new_val = 1;
6183         else if (sysfs_streq(val, "auto"))
6184                 new_val = get_nx_auto_mode();
6185         else if (strtobool(val, &new_val) < 0)
6186                 return -EINVAL;
6187
6188         __set_nx_huge_pages(new_val);
6189
6190         if (new_val != old_val) {
6191                 struct kvm *kvm;
6192
6193                 mutex_lock(&kvm_lock);
6194
6195                 list_for_each_entry(kvm, &vm_list, vm_list) {
6196                         mutex_lock(&kvm->slots_lock);
6197                         kvm_mmu_zap_all_fast(kvm);
6198                         mutex_unlock(&kvm->slots_lock);
6199
6200                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6201                 }
6202                 mutex_unlock(&kvm_lock);
6203         }
6204
6205         return 0;
6206 }
6207
6208 int kvm_mmu_module_init(void)
6209 {
6210         int ret = -ENOMEM;
6211
6212         if (nx_huge_pages == -1)
6213                 __set_nx_huge_pages(get_nx_auto_mode());
6214
6215         /*
6216          * MMU roles use union aliasing which is, generally speaking, an
6217          * undefined behavior. However, we supposedly know how compilers behave
6218          * and the current status quo is unlikely to change. Guardians below are
6219          * supposed to let us know if the assumption becomes false.
6220          */
6221         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6222         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6223         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6224
6225         kvm_mmu_reset_all_pte_masks();
6226
6227         kvm_set_mmio_spte_mask();
6228
6229         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6230                                             sizeof(struct pte_list_desc),
6231                                             0, SLAB_ACCOUNT, NULL);
6232         if (!pte_list_desc_cache)
6233                 goto out;
6234
6235         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6236                                                   sizeof(struct kvm_mmu_page),
6237                                                   0, SLAB_ACCOUNT, NULL);
6238         if (!mmu_page_header_cache)
6239                 goto out;
6240
6241         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6242                 goto out;
6243
6244         ret = register_shrinker(&mmu_shrinker);
6245         if (ret)
6246                 goto out;
6247
6248         return 0;
6249
6250 out:
6251         mmu_destroy_caches();
6252         return ret;
6253 }
6254
6255 /*
6256  * Calculate mmu pages needed for kvm.
6257  */
6258 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6259 {
6260         unsigned long nr_mmu_pages;
6261         unsigned long nr_pages = 0;
6262         struct kvm_memslots *slots;
6263         struct kvm_memory_slot *memslot;
6264         int i;
6265
6266         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6267                 slots = __kvm_memslots(kvm, i);
6268
6269                 kvm_for_each_memslot(memslot, slots)
6270                         nr_pages += memslot->npages;
6271         }
6272
6273         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6274         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6275
6276         return nr_mmu_pages;
6277 }
6278
6279 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6280 {
6281         kvm_mmu_unload(vcpu);
6282         free_mmu_pages(&vcpu->arch.root_mmu);
6283         free_mmu_pages(&vcpu->arch.guest_mmu);
6284         mmu_free_memory_caches(vcpu);
6285 }
6286
6287 void kvm_mmu_module_exit(void)
6288 {
6289         mmu_destroy_caches();
6290         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6291         unregister_shrinker(&mmu_shrinker);
6292         mmu_audit_disable();
6293 }
6294
6295 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6296 {
6297         unsigned int old_val;
6298         int err;
6299
6300         old_val = nx_huge_pages_recovery_ratio;
6301         err = param_set_uint(val, kp);
6302         if (err)
6303                 return err;
6304
6305         if (READ_ONCE(nx_huge_pages) &&
6306             !old_val && nx_huge_pages_recovery_ratio) {
6307                 struct kvm *kvm;
6308
6309                 mutex_lock(&kvm_lock);
6310
6311                 list_for_each_entry(kvm, &vm_list, vm_list)
6312                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6313
6314                 mutex_unlock(&kvm_lock);
6315         }
6316
6317         return err;
6318 }
6319
6320 static void kvm_recover_nx_lpages(struct kvm *kvm)
6321 {
6322         int rcu_idx;
6323         struct kvm_mmu_page *sp;
6324         unsigned int ratio;
6325         LIST_HEAD(invalid_list);
6326         ulong to_zap;
6327
6328         rcu_idx = srcu_read_lock(&kvm->srcu);
6329         spin_lock(&kvm->mmu_lock);
6330
6331         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6332         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6333         while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6334                 /*
6335                  * We use a separate list instead of just using active_mmu_pages
6336                  * because the number of lpage_disallowed pages is expected to
6337                  * be relatively small compared to the total.
6338                  */
6339                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6340                                       struct kvm_mmu_page,
6341                                       lpage_disallowed_link);
6342                 WARN_ON_ONCE(!sp->lpage_disallowed);
6343                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6344                 WARN_ON_ONCE(sp->lpage_disallowed);
6345
6346                 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6347                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6348                         if (to_zap)
6349                                 cond_resched_lock(&kvm->mmu_lock);
6350                 }
6351         }
6352
6353         spin_unlock(&kvm->mmu_lock);
6354         srcu_read_unlock(&kvm->srcu, rcu_idx);
6355 }
6356
6357 static long get_nx_lpage_recovery_timeout(u64 start_time)
6358 {
6359         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6360                 ? start_time + 60 * HZ - get_jiffies_64()
6361                 : MAX_SCHEDULE_TIMEOUT;
6362 }
6363
6364 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6365 {
6366         u64 start_time;
6367         long remaining_time;
6368
6369         while (true) {
6370                 start_time = get_jiffies_64();
6371                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6372
6373                 set_current_state(TASK_INTERRUPTIBLE);
6374                 while (!kthread_should_stop() && remaining_time > 0) {
6375                         schedule_timeout(remaining_time);
6376                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6377                         set_current_state(TASK_INTERRUPTIBLE);
6378                 }
6379
6380                 set_current_state(TASK_RUNNING);
6381
6382                 if (kthread_should_stop())
6383                         return 0;
6384
6385                 kvm_recover_nx_lpages(kvm);
6386         }
6387 }
6388
6389 int kvm_mmu_post_init_vm(struct kvm *kvm)
6390 {
6391         int err;
6392
6393         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6394                                           "kvm-nx-lpage-recovery",
6395                                           &kvm->arch.nx_lpage_recovery_thread);
6396         if (!err)
6397                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6398
6399         return err;
6400 }
6401
6402 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6403 {
6404         if (kvm->arch.nx_lpage_recovery_thread)
6405                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6406 }