powerpc/perf/hv-24x7: Move cpumask file to top folder of hv-24x7 driver
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "x86.h"
23 #include "kvm_cache_regs.h"
24 #include "kvm_emulate.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43 #include <linux/kthread.h>
44
45 #include <asm/page.h>
46 #include <asm/memtype.h>
47 #include <asm/cmpxchg.h>
48 #include <asm/e820/api.h>
49 #include <asm/io.h>
50 #include <asm/vmx.h>
51 #include <asm/kvm_page_track.h>
52 #include "trace.h"
53
54 extern bool itlb_multihit_kvm_mitigation;
55
56 static int __read_mostly nx_huge_pages = -1;
57 #ifdef CONFIG_PREEMPT_RT
58 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
59 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
60 #else
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
62 #endif
63
64 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
65 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
66
67 static struct kernel_param_ops nx_huge_pages_ops = {
68         .set = set_nx_huge_pages,
69         .get = param_get_bool,
70 };
71
72 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
73         .set = set_nx_huge_pages_recovery_ratio,
74         .get = param_get_uint,
75 };
76
77 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
78 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
79 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
80                 &nx_huge_pages_recovery_ratio, 0644);
81 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
82
83 static bool __read_mostly force_flush_and_sync_on_reuse;
84 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
85
86 /*
87  * When setting this variable to true it enables Two-Dimensional-Paging
88  * where the hardware walks 2 page tables:
89  * 1. the guest-virtual to guest-physical
90  * 2. while doing 1. it walks guest-physical to host-physical
91  * If the hardware supports that we don't need to do shadow paging.
92  */
93 bool tdp_enabled = false;
94
95 static int max_huge_page_level __read_mostly;
96 static int max_tdp_level __read_mostly;
97
98 enum {
99         AUDIT_PRE_PAGE_FAULT,
100         AUDIT_POST_PAGE_FAULT,
101         AUDIT_PRE_PTE_WRITE,
102         AUDIT_POST_PTE_WRITE,
103         AUDIT_PRE_SYNC,
104         AUDIT_POST_SYNC
105 };
106
107 #undef MMU_DEBUG
108
109 #ifdef MMU_DEBUG
110 static bool dbg = 0;
111 module_param(dbg, bool, 0644);
112
113 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
114 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
115 #define MMU_WARN_ON(x) WARN_ON(x)
116 #else
117 #define pgprintk(x...) do { } while (0)
118 #define rmap_printk(x...) do { } while (0)
119 #define MMU_WARN_ON(x) do { } while (0)
120 #endif
121
122 #define PTE_PREFETCH_NUM                8
123
124 #define PT_FIRST_AVAIL_BITS_SHIFT 10
125 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
126
127 /*
128  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
129  * Access Tracking SPTEs.
130  */
131 #define SPTE_SPECIAL_MASK (3ULL << 52)
132 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
133 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
134 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
135 #define SPTE_MMIO_MASK (3ULL << 52)
136
137 #define PT64_LEVEL_BITS 9
138
139 #define PT64_LEVEL_SHIFT(level) \
140                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
141
142 #define PT64_INDEX(address, level)\
143         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
144
145
146 #define PT32_LEVEL_BITS 10
147
148 #define PT32_LEVEL_SHIFT(level) \
149                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
150
151 #define PT32_LVL_OFFSET_MASK(level) \
152         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
153                                                 * PT32_LEVEL_BITS))) - 1))
154
155 #define PT32_INDEX(address, level)\
156         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
157
158
159 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
160 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
161 #else
162 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
163 #endif
164 #define PT64_LVL_ADDR_MASK(level) \
165         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
166                                                 * PT64_LEVEL_BITS))) - 1))
167 #define PT64_LVL_OFFSET_MASK(level) \
168         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
169                                                 * PT64_LEVEL_BITS))) - 1))
170
171 #define PT32_BASE_ADDR_MASK PAGE_MASK
172 #define PT32_DIR_BASE_ADDR_MASK \
173         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
174 #define PT32_LVL_ADDR_MASK(level) \
175         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
176                                             * PT32_LEVEL_BITS))) - 1))
177
178 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
179                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
180
181 #define ACC_EXEC_MASK    1
182 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
183 #define ACC_USER_MASK    PT_USER_MASK
184 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
185
186 /* The mask for the R/X bits in EPT PTEs */
187 #define PT64_EPT_READABLE_MASK                  0x1ull
188 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
189
190 #include <trace/events/kvm.h>
191
192 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
193 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
194
195 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
196
197 /* make pte_list_desc fit well in cache line */
198 #define PTE_LIST_EXT 3
199
200 /*
201  * Return values of handle_mmio_page_fault and mmu.page_fault:
202  * RET_PF_RETRY: let CPU fault again on the address.
203  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
204  *
205  * For handle_mmio_page_fault only:
206  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
207  */
208 enum {
209         RET_PF_RETRY = 0,
210         RET_PF_EMULATE = 1,
211         RET_PF_INVALID = 2,
212 };
213
214 struct pte_list_desc {
215         u64 *sptes[PTE_LIST_EXT];
216         struct pte_list_desc *more;
217 };
218
219 struct kvm_shadow_walk_iterator {
220         u64 addr;
221         hpa_t shadow_addr;
222         u64 *sptep;
223         int level;
224         unsigned index;
225 };
226
227 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
228         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
229                                          (_root), (_addr));                \
230              shadow_walk_okay(&(_walker));                                 \
231              shadow_walk_next(&(_walker)))
232
233 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
234         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
235              shadow_walk_okay(&(_walker));                      \
236              shadow_walk_next(&(_walker)))
237
238 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
239         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
240              shadow_walk_okay(&(_walker)) &&                            \
241                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
242              __shadow_walk_next(&(_walker), spte))
243
244 static struct kmem_cache *pte_list_desc_cache;
245 static struct kmem_cache *mmu_page_header_cache;
246 static struct percpu_counter kvm_total_used_mmu_pages;
247
248 static u64 __read_mostly shadow_nx_mask;
249 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
250 static u64 __read_mostly shadow_user_mask;
251 static u64 __read_mostly shadow_accessed_mask;
252 static u64 __read_mostly shadow_dirty_mask;
253 static u64 __read_mostly shadow_mmio_value;
254 static u64 __read_mostly shadow_mmio_access_mask;
255 static u64 __read_mostly shadow_present_mask;
256 static u64 __read_mostly shadow_me_mask;
257
258 /*
259  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
260  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
261  * pages.
262  */
263 static u64 __read_mostly shadow_acc_track_mask;
264
265 /*
266  * The mask/shift to use for saving the original R/X bits when marking the PTE
267  * as not-present for access tracking purposes. We do not save the W bit as the
268  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
269  * restored only when a write is attempted to the page.
270  */
271 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
272                                                     PT64_EPT_EXECUTABLE_MASK;
273 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
274
275 /*
276  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
277  * to guard against L1TF attacks.
278  */
279 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
280
281 /*
282  * The number of high-order 1 bits to use in the mask above.
283  */
284 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
285
286 /*
287  * In some cases, we need to preserve the GFN of a non-present or reserved
288  * SPTE when we usurp the upper five bits of the physical address space to
289  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
290  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
291  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
292  * high and low parts.  This mask covers the lower bits of the GFN.
293  */
294 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
295
296 /*
297  * The number of non-reserved physical address bits irrespective of features
298  * that repurpose legal bits, e.g. MKTME.
299  */
300 static u8 __read_mostly shadow_phys_bits;
301
302 static void mmu_spte_set(u64 *sptep, u64 spte);
303 static bool is_executable_pte(u64 spte);
304 static union kvm_mmu_page_role
305 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
306
307 #define CREATE_TRACE_POINTS
308 #include "mmutrace.h"
309
310
311 static inline bool kvm_available_flush_tlb_with_range(void)
312 {
313         return kvm_x86_ops.tlb_remote_flush_with_range;
314 }
315
316 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
317                 struct kvm_tlb_range *range)
318 {
319         int ret = -ENOTSUPP;
320
321         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
322                 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
323
324         if (ret)
325                 kvm_flush_remote_tlbs(kvm);
326 }
327
328 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
329                 u64 start_gfn, u64 pages)
330 {
331         struct kvm_tlb_range range;
332
333         range.start_gfn = start_gfn;
334         range.pages = pages;
335
336         kvm_flush_remote_tlbs_with_range(kvm, &range);
337 }
338
339 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
340 {
341         BUG_ON((u64)(unsigned)access_mask != access_mask);
342         WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
343         WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
344         shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
345         shadow_mmio_access_mask = access_mask;
346 }
347 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
348
349 static bool is_mmio_spte(u64 spte)
350 {
351         return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
352 }
353
354 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
355 {
356         return sp->role.ad_disabled;
357 }
358
359 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
360 {
361         /*
362          * When using the EPT page-modification log, the GPAs in the log
363          * would come from L2 rather than L1.  Therefore, we need to rely
364          * on write protection to record dirty pages.  This also bypasses
365          * PML, since writes now result in a vmexit.
366          */
367         return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
368 }
369
370 static inline bool spte_ad_enabled(u64 spte)
371 {
372         MMU_WARN_ON(is_mmio_spte(spte));
373         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
374 }
375
376 static inline bool spte_ad_need_write_protect(u64 spte)
377 {
378         MMU_WARN_ON(is_mmio_spte(spte));
379         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
380 }
381
382 static bool is_nx_huge_page_enabled(void)
383 {
384         return READ_ONCE(nx_huge_pages);
385 }
386
387 static inline u64 spte_shadow_accessed_mask(u64 spte)
388 {
389         MMU_WARN_ON(is_mmio_spte(spte));
390         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
391 }
392
393 static inline u64 spte_shadow_dirty_mask(u64 spte)
394 {
395         MMU_WARN_ON(is_mmio_spte(spte));
396         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
397 }
398
399 static inline bool is_access_track_spte(u64 spte)
400 {
401         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
402 }
403
404 /*
405  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
406  * the memslots generation and is derived as follows:
407  *
408  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
409  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
410  *
411  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
412  * the MMIO generation number, as doing so would require stealing a bit from
413  * the "real" generation number and thus effectively halve the maximum number
414  * of MMIO generations that can be handled before encountering a wrap (which
415  * requires a full MMU zap).  The flag is instead explicitly queried when
416  * checking for MMIO spte cache hits.
417  */
418 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(17, 0)
419
420 #define MMIO_SPTE_GEN_LOW_START         3
421 #define MMIO_SPTE_GEN_LOW_END           11
422 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
423                                                     MMIO_SPTE_GEN_LOW_START)
424
425 #define MMIO_SPTE_GEN_HIGH_START        PT64_SECOND_AVAIL_BITS_SHIFT
426 #define MMIO_SPTE_GEN_HIGH_END          62
427 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
428                                                     MMIO_SPTE_GEN_HIGH_START)
429
430 static u64 generation_mmio_spte_mask(u64 gen)
431 {
432         u64 mask;
433
434         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
435         BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
436
437         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
438         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
439         return mask;
440 }
441
442 static u64 get_mmio_spte_generation(u64 spte)
443 {
444         u64 gen;
445
446         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
447         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
448         return gen;
449 }
450
451 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
452 {
453
454         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
455         u64 mask = generation_mmio_spte_mask(gen);
456         u64 gpa = gfn << PAGE_SHIFT;
457
458         access &= shadow_mmio_access_mask;
459         mask |= shadow_mmio_value | access;
460         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
461         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
462                 << shadow_nonpresent_or_rsvd_mask_len;
463
464         return mask;
465 }
466
467 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
468                            unsigned int access)
469 {
470         u64 mask = make_mmio_spte(vcpu, gfn, access);
471         unsigned int gen = get_mmio_spte_generation(mask);
472
473         access = mask & ACC_ALL;
474
475         trace_mark_mmio_spte(sptep, gfn, access, gen);
476         mmu_spte_set(sptep, mask);
477 }
478
479 static gfn_t get_mmio_spte_gfn(u64 spte)
480 {
481         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
482
483         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
484                & shadow_nonpresent_or_rsvd_mask;
485
486         return gpa >> PAGE_SHIFT;
487 }
488
489 static unsigned get_mmio_spte_access(u64 spte)
490 {
491         return spte & shadow_mmio_access_mask;
492 }
493
494 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
495                           kvm_pfn_t pfn, unsigned int access)
496 {
497         if (unlikely(is_noslot_pfn(pfn))) {
498                 mark_mmio_spte(vcpu, sptep, gfn, access);
499                 return true;
500         }
501
502         return false;
503 }
504
505 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
506 {
507         u64 kvm_gen, spte_gen, gen;
508
509         gen = kvm_vcpu_memslots(vcpu)->generation;
510         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
511                 return false;
512
513         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
514         spte_gen = get_mmio_spte_generation(spte);
515
516         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
517         return likely(kvm_gen == spte_gen);
518 }
519
520 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
521                                   struct x86_exception *exception)
522 {
523         /* Check if guest physical address doesn't exceed guest maximum */
524         if (kvm_mmu_is_illegal_gpa(vcpu, gpa)) {
525                 exception->error_code |= PFERR_RSVD_MASK;
526                 return UNMAPPED_GVA;
527         }
528
529         return gpa;
530 }
531
532 /*
533  * Sets the shadow PTE masks used by the MMU.
534  *
535  * Assumptions:
536  *  - Setting either @accessed_mask or @dirty_mask requires setting both
537  *  - At least one of @accessed_mask or @acc_track_mask must be set
538  */
539 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
540                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
541                 u64 acc_track_mask, u64 me_mask)
542 {
543         BUG_ON(!dirty_mask != !accessed_mask);
544         BUG_ON(!accessed_mask && !acc_track_mask);
545         BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
546
547         shadow_user_mask = user_mask;
548         shadow_accessed_mask = accessed_mask;
549         shadow_dirty_mask = dirty_mask;
550         shadow_nx_mask = nx_mask;
551         shadow_x_mask = x_mask;
552         shadow_present_mask = p_mask;
553         shadow_acc_track_mask = acc_track_mask;
554         shadow_me_mask = me_mask;
555 }
556 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
557
558 static u8 kvm_get_shadow_phys_bits(void)
559 {
560         /*
561          * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
562          * in CPU detection code, but the processor treats those reduced bits as
563          * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
564          * the physical address bits reported by CPUID.
565          */
566         if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
567                 return cpuid_eax(0x80000008) & 0xff;
568
569         /*
570          * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
571          * custom CPUID.  Proceed with whatever the kernel found since these features
572          * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
573          */
574         return boot_cpu_data.x86_phys_bits;
575 }
576
577 static void kvm_mmu_reset_all_pte_masks(void)
578 {
579         u8 low_phys_bits;
580
581         shadow_user_mask = 0;
582         shadow_accessed_mask = 0;
583         shadow_dirty_mask = 0;
584         shadow_nx_mask = 0;
585         shadow_x_mask = 0;
586         shadow_present_mask = 0;
587         shadow_acc_track_mask = 0;
588
589         shadow_phys_bits = kvm_get_shadow_phys_bits();
590
591         /*
592          * If the CPU has 46 or less physical address bits, then set an
593          * appropriate mask to guard against L1TF attacks. Otherwise, it is
594          * assumed that the CPU is not vulnerable to L1TF.
595          *
596          * Some Intel CPUs address the L1 cache using more PA bits than are
597          * reported by CPUID. Use the PA width of the L1 cache when possible
598          * to achieve more effective mitigation, e.g. if system RAM overlaps
599          * the most significant bits of legal physical address space.
600          */
601         shadow_nonpresent_or_rsvd_mask = 0;
602         low_phys_bits = boot_cpu_data.x86_phys_bits;
603         if (boot_cpu_has_bug(X86_BUG_L1TF) &&
604             !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
605                           52 - shadow_nonpresent_or_rsvd_mask_len)) {
606                 low_phys_bits = boot_cpu_data.x86_cache_bits
607                         - shadow_nonpresent_or_rsvd_mask_len;
608                 shadow_nonpresent_or_rsvd_mask =
609                         rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
610         }
611
612         shadow_nonpresent_or_rsvd_lower_gfn_mask =
613                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
614 }
615
616 static int is_cpuid_PSE36(void)
617 {
618         return 1;
619 }
620
621 static int is_nx(struct kvm_vcpu *vcpu)
622 {
623         return vcpu->arch.efer & EFER_NX;
624 }
625
626 static int is_shadow_present_pte(u64 pte)
627 {
628         return (pte != 0) && !is_mmio_spte(pte);
629 }
630
631 static int is_large_pte(u64 pte)
632 {
633         return pte & PT_PAGE_SIZE_MASK;
634 }
635
636 static int is_last_spte(u64 pte, int level)
637 {
638         if (level == PG_LEVEL_4K)
639                 return 1;
640         if (is_large_pte(pte))
641                 return 1;
642         return 0;
643 }
644
645 static bool is_executable_pte(u64 spte)
646 {
647         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
648 }
649
650 static kvm_pfn_t spte_to_pfn(u64 pte)
651 {
652         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
653 }
654
655 static gfn_t pse36_gfn_delta(u32 gpte)
656 {
657         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
658
659         return (gpte & PT32_DIR_PSE36_MASK) << shift;
660 }
661
662 #ifdef CONFIG_X86_64
663 static void __set_spte(u64 *sptep, u64 spte)
664 {
665         WRITE_ONCE(*sptep, spte);
666 }
667
668 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
669 {
670         WRITE_ONCE(*sptep, spte);
671 }
672
673 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
674 {
675         return xchg(sptep, spte);
676 }
677
678 static u64 __get_spte_lockless(u64 *sptep)
679 {
680         return READ_ONCE(*sptep);
681 }
682 #else
683 union split_spte {
684         struct {
685                 u32 spte_low;
686                 u32 spte_high;
687         };
688         u64 spte;
689 };
690
691 static void count_spte_clear(u64 *sptep, u64 spte)
692 {
693         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
694
695         if (is_shadow_present_pte(spte))
696                 return;
697
698         /* Ensure the spte is completely set before we increase the count */
699         smp_wmb();
700         sp->clear_spte_count++;
701 }
702
703 static void __set_spte(u64 *sptep, u64 spte)
704 {
705         union split_spte *ssptep, sspte;
706
707         ssptep = (union split_spte *)sptep;
708         sspte = (union split_spte)spte;
709
710         ssptep->spte_high = sspte.spte_high;
711
712         /*
713          * If we map the spte from nonpresent to present, We should store
714          * the high bits firstly, then set present bit, so cpu can not
715          * fetch this spte while we are setting the spte.
716          */
717         smp_wmb();
718
719         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
720 }
721
722 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
723 {
724         union split_spte *ssptep, sspte;
725
726         ssptep = (union split_spte *)sptep;
727         sspte = (union split_spte)spte;
728
729         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
730
731         /*
732          * If we map the spte from present to nonpresent, we should clear
733          * present bit firstly to avoid vcpu fetch the old high bits.
734          */
735         smp_wmb();
736
737         ssptep->spte_high = sspte.spte_high;
738         count_spte_clear(sptep, spte);
739 }
740
741 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
742 {
743         union split_spte *ssptep, sspte, orig;
744
745         ssptep = (union split_spte *)sptep;
746         sspte = (union split_spte)spte;
747
748         /* xchg acts as a barrier before the setting of the high bits */
749         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
750         orig.spte_high = ssptep->spte_high;
751         ssptep->spte_high = sspte.spte_high;
752         count_spte_clear(sptep, spte);
753
754         return orig.spte;
755 }
756
757 /*
758  * The idea using the light way get the spte on x86_32 guest is from
759  * gup_get_pte (mm/gup.c).
760  *
761  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
762  * coalesces them and we are running out of the MMU lock.  Therefore
763  * we need to protect against in-progress updates of the spte.
764  *
765  * Reading the spte while an update is in progress may get the old value
766  * for the high part of the spte.  The race is fine for a present->non-present
767  * change (because the high part of the spte is ignored for non-present spte),
768  * but for a present->present change we must reread the spte.
769  *
770  * All such changes are done in two steps (present->non-present and
771  * non-present->present), hence it is enough to count the number of
772  * present->non-present updates: if it changed while reading the spte,
773  * we might have hit the race.  This is done using clear_spte_count.
774  */
775 static u64 __get_spte_lockless(u64 *sptep)
776 {
777         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
778         union split_spte spte, *orig = (union split_spte *)sptep;
779         int count;
780
781 retry:
782         count = sp->clear_spte_count;
783         smp_rmb();
784
785         spte.spte_low = orig->spte_low;
786         smp_rmb();
787
788         spte.spte_high = orig->spte_high;
789         smp_rmb();
790
791         if (unlikely(spte.spte_low != orig->spte_low ||
792               count != sp->clear_spte_count))
793                 goto retry;
794
795         return spte.spte;
796 }
797 #endif
798
799 static bool spte_can_locklessly_be_made_writable(u64 spte)
800 {
801         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
802                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
803 }
804
805 static bool spte_has_volatile_bits(u64 spte)
806 {
807         if (!is_shadow_present_pte(spte))
808                 return false;
809
810         /*
811          * Always atomically update spte if it can be updated
812          * out of mmu-lock, it can ensure dirty bit is not lost,
813          * also, it can help us to get a stable is_writable_pte()
814          * to ensure tlb flush is not missed.
815          */
816         if (spte_can_locklessly_be_made_writable(spte) ||
817             is_access_track_spte(spte))
818                 return true;
819
820         if (spte_ad_enabled(spte)) {
821                 if ((spte & shadow_accessed_mask) == 0 ||
822                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
823                         return true;
824         }
825
826         return false;
827 }
828
829 static bool is_accessed_spte(u64 spte)
830 {
831         u64 accessed_mask = spte_shadow_accessed_mask(spte);
832
833         return accessed_mask ? spte & accessed_mask
834                              : !is_access_track_spte(spte);
835 }
836
837 static bool is_dirty_spte(u64 spte)
838 {
839         u64 dirty_mask = spte_shadow_dirty_mask(spte);
840
841         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
842 }
843
844 /* Rules for using mmu_spte_set:
845  * Set the sptep from nonpresent to present.
846  * Note: the sptep being assigned *must* be either not present
847  * or in a state where the hardware will not attempt to update
848  * the spte.
849  */
850 static void mmu_spte_set(u64 *sptep, u64 new_spte)
851 {
852         WARN_ON(is_shadow_present_pte(*sptep));
853         __set_spte(sptep, new_spte);
854 }
855
856 /*
857  * Update the SPTE (excluding the PFN), but do not track changes in its
858  * accessed/dirty status.
859  */
860 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
861 {
862         u64 old_spte = *sptep;
863
864         WARN_ON(!is_shadow_present_pte(new_spte));
865
866         if (!is_shadow_present_pte(old_spte)) {
867                 mmu_spte_set(sptep, new_spte);
868                 return old_spte;
869         }
870
871         if (!spte_has_volatile_bits(old_spte))
872                 __update_clear_spte_fast(sptep, new_spte);
873         else
874                 old_spte = __update_clear_spte_slow(sptep, new_spte);
875
876         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
877
878         return old_spte;
879 }
880
881 /* Rules for using mmu_spte_update:
882  * Update the state bits, it means the mapped pfn is not changed.
883  *
884  * Whenever we overwrite a writable spte with a read-only one we
885  * should flush remote TLBs. Otherwise rmap_write_protect
886  * will find a read-only spte, even though the writable spte
887  * might be cached on a CPU's TLB, the return value indicates this
888  * case.
889  *
890  * Returns true if the TLB needs to be flushed
891  */
892 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
893 {
894         bool flush = false;
895         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
896
897         if (!is_shadow_present_pte(old_spte))
898                 return false;
899
900         /*
901          * For the spte updated out of mmu-lock is safe, since
902          * we always atomically update it, see the comments in
903          * spte_has_volatile_bits().
904          */
905         if (spte_can_locklessly_be_made_writable(old_spte) &&
906               !is_writable_pte(new_spte))
907                 flush = true;
908
909         /*
910          * Flush TLB when accessed/dirty states are changed in the page tables,
911          * to guarantee consistency between TLB and page tables.
912          */
913
914         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
915                 flush = true;
916                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
917         }
918
919         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
920                 flush = true;
921                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
922         }
923
924         return flush;
925 }
926
927 /*
928  * Rules for using mmu_spte_clear_track_bits:
929  * It sets the sptep from present to nonpresent, and track the
930  * state bits, it is used to clear the last level sptep.
931  * Returns non-zero if the PTE was previously valid.
932  */
933 static int mmu_spte_clear_track_bits(u64 *sptep)
934 {
935         kvm_pfn_t pfn;
936         u64 old_spte = *sptep;
937
938         if (!spte_has_volatile_bits(old_spte))
939                 __update_clear_spte_fast(sptep, 0ull);
940         else
941                 old_spte = __update_clear_spte_slow(sptep, 0ull);
942
943         if (!is_shadow_present_pte(old_spte))
944                 return 0;
945
946         pfn = spte_to_pfn(old_spte);
947
948         /*
949          * KVM does not hold the refcount of the page used by
950          * kvm mmu, before reclaiming the page, we should
951          * unmap it from mmu first.
952          */
953         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
954
955         if (is_accessed_spte(old_spte))
956                 kvm_set_pfn_accessed(pfn);
957
958         if (is_dirty_spte(old_spte))
959                 kvm_set_pfn_dirty(pfn);
960
961         return 1;
962 }
963
964 /*
965  * Rules for using mmu_spte_clear_no_track:
966  * Directly clear spte without caring the state bits of sptep,
967  * it is used to set the upper level spte.
968  */
969 static void mmu_spte_clear_no_track(u64 *sptep)
970 {
971         __update_clear_spte_fast(sptep, 0ull);
972 }
973
974 static u64 mmu_spte_get_lockless(u64 *sptep)
975 {
976         return __get_spte_lockless(sptep);
977 }
978
979 static u64 mark_spte_for_access_track(u64 spte)
980 {
981         if (spte_ad_enabled(spte))
982                 return spte & ~shadow_accessed_mask;
983
984         if (is_access_track_spte(spte))
985                 return spte;
986
987         /*
988          * Making an Access Tracking PTE will result in removal of write access
989          * from the PTE. So, verify that we will be able to restore the write
990          * access in the fast page fault path later on.
991          */
992         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
993                   !spte_can_locklessly_be_made_writable(spte),
994                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
995
996         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
997                           shadow_acc_track_saved_bits_shift),
998                   "kvm: Access Tracking saved bit locations are not zero\n");
999
1000         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
1001                 shadow_acc_track_saved_bits_shift;
1002         spte &= ~shadow_acc_track_mask;
1003
1004         return spte;
1005 }
1006
1007 /* Restore an acc-track PTE back to a regular PTE */
1008 static u64 restore_acc_track_spte(u64 spte)
1009 {
1010         u64 new_spte = spte;
1011         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
1012                          & shadow_acc_track_saved_bits_mask;
1013
1014         WARN_ON_ONCE(spte_ad_enabled(spte));
1015         WARN_ON_ONCE(!is_access_track_spte(spte));
1016
1017         new_spte &= ~shadow_acc_track_mask;
1018         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1019                       shadow_acc_track_saved_bits_shift);
1020         new_spte |= saved_bits;
1021
1022         return new_spte;
1023 }
1024
1025 /* Returns the Accessed status of the PTE and resets it at the same time. */
1026 static bool mmu_spte_age(u64 *sptep)
1027 {
1028         u64 spte = mmu_spte_get_lockless(sptep);
1029
1030         if (!is_accessed_spte(spte))
1031                 return false;
1032
1033         if (spte_ad_enabled(spte)) {
1034                 clear_bit((ffs(shadow_accessed_mask) - 1),
1035                           (unsigned long *)sptep);
1036         } else {
1037                 /*
1038                  * Capture the dirty status of the page, so that it doesn't get
1039                  * lost when the SPTE is marked for access tracking.
1040                  */
1041                 if (is_writable_pte(spte))
1042                         kvm_set_pfn_dirty(spte_to_pfn(spte));
1043
1044                 spte = mark_spte_for_access_track(spte);
1045                 mmu_spte_update_no_track(sptep, spte);
1046         }
1047
1048         return true;
1049 }
1050
1051 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1052 {
1053         /*
1054          * Prevent page table teardown by making any free-er wait during
1055          * kvm_flush_remote_tlbs() IPI to all active vcpus.
1056          */
1057         local_irq_disable();
1058
1059         /*
1060          * Make sure a following spte read is not reordered ahead of the write
1061          * to vcpu->mode.
1062          */
1063         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1064 }
1065
1066 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1067 {
1068         /*
1069          * Make sure the write to vcpu->mode is not reordered in front of
1070          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1071          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1072          */
1073         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1074         local_irq_enable();
1075 }
1076
1077 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
1078 {
1079         int r;
1080
1081         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
1082         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1083                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
1084         if (r)
1085                 return r;
1086         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
1087                                        PT64_ROOT_MAX_LEVEL);
1088         if (r)
1089                 return r;
1090         if (maybe_indirect) {
1091                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
1092                                                PT64_ROOT_MAX_LEVEL);
1093                 if (r)
1094                         return r;
1095         }
1096         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1097                                           PT64_ROOT_MAX_LEVEL);
1098 }
1099
1100 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1101 {
1102         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
1103         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
1104         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
1105         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
1106 }
1107
1108 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1109 {
1110         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1111 }
1112
1113 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1114 {
1115         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1116 }
1117
1118 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1119 {
1120         if (!sp->role.direct)
1121                 return sp->gfns[index];
1122
1123         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1124 }
1125
1126 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1127 {
1128         if (!sp->role.direct) {
1129                 sp->gfns[index] = gfn;
1130                 return;
1131         }
1132
1133         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1134                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1135                                    "(expected %llx, got %llx)\n",
1136                                    sp->gfn,
1137                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1138 }
1139
1140 /*
1141  * Return the pointer to the large page information for a given gfn,
1142  * handling slots that are not large page aligned.
1143  */
1144 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1145                                               struct kvm_memory_slot *slot,
1146                                               int level)
1147 {
1148         unsigned long idx;
1149
1150         idx = gfn_to_index(gfn, slot->base_gfn, level);
1151         return &slot->arch.lpage_info[level - 2][idx];
1152 }
1153
1154 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1155                                             gfn_t gfn, int count)
1156 {
1157         struct kvm_lpage_info *linfo;
1158         int i;
1159
1160         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1161                 linfo = lpage_info_slot(gfn, slot, i);
1162                 linfo->disallow_lpage += count;
1163                 WARN_ON(linfo->disallow_lpage < 0);
1164         }
1165 }
1166
1167 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1168 {
1169         update_gfn_disallow_lpage_count(slot, gfn, 1);
1170 }
1171
1172 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1173 {
1174         update_gfn_disallow_lpage_count(slot, gfn, -1);
1175 }
1176
1177 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1178 {
1179         struct kvm_memslots *slots;
1180         struct kvm_memory_slot *slot;
1181         gfn_t gfn;
1182
1183         kvm->arch.indirect_shadow_pages++;
1184         gfn = sp->gfn;
1185         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1186         slot = __gfn_to_memslot(slots, gfn);
1187
1188         /* the non-leaf shadow pages are keeping readonly. */
1189         if (sp->role.level > PG_LEVEL_4K)
1190                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1191                                                     KVM_PAGE_TRACK_WRITE);
1192
1193         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1194 }
1195
1196 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1197 {
1198         if (sp->lpage_disallowed)
1199                 return;
1200
1201         ++kvm->stat.nx_lpage_splits;
1202         list_add_tail(&sp->lpage_disallowed_link,
1203                       &kvm->arch.lpage_disallowed_mmu_pages);
1204         sp->lpage_disallowed = true;
1205 }
1206
1207 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1208 {
1209         struct kvm_memslots *slots;
1210         struct kvm_memory_slot *slot;
1211         gfn_t gfn;
1212
1213         kvm->arch.indirect_shadow_pages--;
1214         gfn = sp->gfn;
1215         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1216         slot = __gfn_to_memslot(slots, gfn);
1217         if (sp->role.level > PG_LEVEL_4K)
1218                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1219                                                        KVM_PAGE_TRACK_WRITE);
1220
1221         kvm_mmu_gfn_allow_lpage(slot, gfn);
1222 }
1223
1224 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1225 {
1226         --kvm->stat.nx_lpage_splits;
1227         sp->lpage_disallowed = false;
1228         list_del(&sp->lpage_disallowed_link);
1229 }
1230
1231 static struct kvm_memory_slot *
1232 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1233                             bool no_dirty_log)
1234 {
1235         struct kvm_memory_slot *slot;
1236
1237         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1238         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1239                 return NULL;
1240         if (no_dirty_log && slot->dirty_bitmap)
1241                 return NULL;
1242
1243         return slot;
1244 }
1245
1246 /*
1247  * About rmap_head encoding:
1248  *
1249  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1250  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1251  * pte_list_desc containing more mappings.
1252  */
1253
1254 /*
1255  * Returns the number of pointers in the rmap chain, not counting the new one.
1256  */
1257 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1258                         struct kvm_rmap_head *rmap_head)
1259 {
1260         struct pte_list_desc *desc;
1261         int i, count = 0;
1262
1263         if (!rmap_head->val) {
1264                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1265                 rmap_head->val = (unsigned long)spte;
1266         } else if (!(rmap_head->val & 1)) {
1267                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1268                 desc = mmu_alloc_pte_list_desc(vcpu);
1269                 desc->sptes[0] = (u64 *)rmap_head->val;
1270                 desc->sptes[1] = spte;
1271                 rmap_head->val = (unsigned long)desc | 1;
1272                 ++count;
1273         } else {
1274                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1275                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1276                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1277                         desc = desc->more;
1278                         count += PTE_LIST_EXT;
1279                 }
1280                 if (desc->sptes[PTE_LIST_EXT-1]) {
1281                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1282                         desc = desc->more;
1283                 }
1284                 for (i = 0; desc->sptes[i]; ++i)
1285                         ++count;
1286                 desc->sptes[i] = spte;
1287         }
1288         return count;
1289 }
1290
1291 static void
1292 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1293                            struct pte_list_desc *desc, int i,
1294                            struct pte_list_desc *prev_desc)
1295 {
1296         int j;
1297
1298         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1299                 ;
1300         desc->sptes[i] = desc->sptes[j];
1301         desc->sptes[j] = NULL;
1302         if (j != 0)
1303                 return;
1304         if (!prev_desc && !desc->more)
1305                 rmap_head->val = 0;
1306         else
1307                 if (prev_desc)
1308                         prev_desc->more = desc->more;
1309                 else
1310                         rmap_head->val = (unsigned long)desc->more | 1;
1311         mmu_free_pte_list_desc(desc);
1312 }
1313
1314 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1315 {
1316         struct pte_list_desc *desc;
1317         struct pte_list_desc *prev_desc;
1318         int i;
1319
1320         if (!rmap_head->val) {
1321                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1322                 BUG();
1323         } else if (!(rmap_head->val & 1)) {
1324                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1325                 if ((u64 *)rmap_head->val != spte) {
1326                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1327                         BUG();
1328                 }
1329                 rmap_head->val = 0;
1330         } else {
1331                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1332                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1333                 prev_desc = NULL;
1334                 while (desc) {
1335                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1336                                 if (desc->sptes[i] == spte) {
1337                                         pte_list_desc_remove_entry(rmap_head,
1338                                                         desc, i, prev_desc);
1339                                         return;
1340                                 }
1341                         }
1342                         prev_desc = desc;
1343                         desc = desc->more;
1344                 }
1345                 pr_err("%s: %p many->many\n", __func__, spte);
1346                 BUG();
1347         }
1348 }
1349
1350 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1351 {
1352         mmu_spte_clear_track_bits(sptep);
1353         __pte_list_remove(sptep, rmap_head);
1354 }
1355
1356 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1357                                            struct kvm_memory_slot *slot)
1358 {
1359         unsigned long idx;
1360
1361         idx = gfn_to_index(gfn, slot->base_gfn, level);
1362         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1363 }
1364
1365 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1366                                          struct kvm_mmu_page *sp)
1367 {
1368         struct kvm_memslots *slots;
1369         struct kvm_memory_slot *slot;
1370
1371         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1372         slot = __gfn_to_memslot(slots, gfn);
1373         return __gfn_to_rmap(gfn, sp->role.level, slot);
1374 }
1375
1376 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1377 {
1378         struct kvm_mmu_memory_cache *mc;
1379
1380         mc = &vcpu->arch.mmu_pte_list_desc_cache;
1381         return kvm_mmu_memory_cache_nr_free_objects(mc);
1382 }
1383
1384 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1385 {
1386         struct kvm_mmu_page *sp;
1387         struct kvm_rmap_head *rmap_head;
1388
1389         sp = sptep_to_sp(spte);
1390         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1391         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1392         return pte_list_add(vcpu, spte, rmap_head);
1393 }
1394
1395 static void rmap_remove(struct kvm *kvm, u64 *spte)
1396 {
1397         struct kvm_mmu_page *sp;
1398         gfn_t gfn;
1399         struct kvm_rmap_head *rmap_head;
1400
1401         sp = sptep_to_sp(spte);
1402         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1403         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1404         __pte_list_remove(spte, rmap_head);
1405 }
1406
1407 /*
1408  * Used by the following functions to iterate through the sptes linked by a
1409  * rmap.  All fields are private and not assumed to be used outside.
1410  */
1411 struct rmap_iterator {
1412         /* private fields */
1413         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1414         int pos;                        /* index of the sptep */
1415 };
1416
1417 /*
1418  * Iteration must be started by this function.  This should also be used after
1419  * removing/dropping sptes from the rmap link because in such cases the
1420  * information in the iterator may not be valid.
1421  *
1422  * Returns sptep if found, NULL otherwise.
1423  */
1424 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1425                            struct rmap_iterator *iter)
1426 {
1427         u64 *sptep;
1428
1429         if (!rmap_head->val)
1430                 return NULL;
1431
1432         if (!(rmap_head->val & 1)) {
1433                 iter->desc = NULL;
1434                 sptep = (u64 *)rmap_head->val;
1435                 goto out;
1436         }
1437
1438         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1439         iter->pos = 0;
1440         sptep = iter->desc->sptes[iter->pos];
1441 out:
1442         BUG_ON(!is_shadow_present_pte(*sptep));
1443         return sptep;
1444 }
1445
1446 /*
1447  * Must be used with a valid iterator: e.g. after rmap_get_first().
1448  *
1449  * Returns sptep if found, NULL otherwise.
1450  */
1451 static u64 *rmap_get_next(struct rmap_iterator *iter)
1452 {
1453         u64 *sptep;
1454
1455         if (iter->desc) {
1456                 if (iter->pos < PTE_LIST_EXT - 1) {
1457                         ++iter->pos;
1458                         sptep = iter->desc->sptes[iter->pos];
1459                         if (sptep)
1460                                 goto out;
1461                 }
1462
1463                 iter->desc = iter->desc->more;
1464
1465                 if (iter->desc) {
1466                         iter->pos = 0;
1467                         /* desc->sptes[0] cannot be NULL */
1468                         sptep = iter->desc->sptes[iter->pos];
1469                         goto out;
1470                 }
1471         }
1472
1473         return NULL;
1474 out:
1475         BUG_ON(!is_shadow_present_pte(*sptep));
1476         return sptep;
1477 }
1478
1479 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1480         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1481              _spte_; _spte_ = rmap_get_next(_iter_))
1482
1483 static void drop_spte(struct kvm *kvm, u64 *sptep)
1484 {
1485         if (mmu_spte_clear_track_bits(sptep))
1486                 rmap_remove(kvm, sptep);
1487 }
1488
1489
1490 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1491 {
1492         if (is_large_pte(*sptep)) {
1493                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1494                 drop_spte(kvm, sptep);
1495                 --kvm->stat.lpages;
1496                 return true;
1497         }
1498
1499         return false;
1500 }
1501
1502 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1503 {
1504         if (__drop_large_spte(vcpu->kvm, sptep)) {
1505                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1506
1507                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1508                         KVM_PAGES_PER_HPAGE(sp->role.level));
1509         }
1510 }
1511
1512 /*
1513  * Write-protect on the specified @sptep, @pt_protect indicates whether
1514  * spte write-protection is caused by protecting shadow page table.
1515  *
1516  * Note: write protection is difference between dirty logging and spte
1517  * protection:
1518  * - for dirty logging, the spte can be set to writable at anytime if
1519  *   its dirty bitmap is properly set.
1520  * - for spte protection, the spte can be writable only after unsync-ing
1521  *   shadow page.
1522  *
1523  * Return true if tlb need be flushed.
1524  */
1525 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1526 {
1527         u64 spte = *sptep;
1528
1529         if (!is_writable_pte(spte) &&
1530               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1531                 return false;
1532
1533         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1534
1535         if (pt_protect)
1536                 spte &= ~SPTE_MMU_WRITEABLE;
1537         spte = spte & ~PT_WRITABLE_MASK;
1538
1539         return mmu_spte_update(sptep, spte);
1540 }
1541
1542 static bool __rmap_write_protect(struct kvm *kvm,
1543                                  struct kvm_rmap_head *rmap_head,
1544                                  bool pt_protect)
1545 {
1546         u64 *sptep;
1547         struct rmap_iterator iter;
1548         bool flush = false;
1549
1550         for_each_rmap_spte(rmap_head, &iter, sptep)
1551                 flush |= spte_write_protect(sptep, pt_protect);
1552
1553         return flush;
1554 }
1555
1556 static bool spte_clear_dirty(u64 *sptep)
1557 {
1558         u64 spte = *sptep;
1559
1560         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1561
1562         MMU_WARN_ON(!spte_ad_enabled(spte));
1563         spte &= ~shadow_dirty_mask;
1564         return mmu_spte_update(sptep, spte);
1565 }
1566
1567 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1568 {
1569         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1570                                                (unsigned long *)sptep);
1571         if (was_writable && !spte_ad_enabled(*sptep))
1572                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1573
1574         return was_writable;
1575 }
1576
1577 /*
1578  * Gets the GFN ready for another round of dirty logging by clearing the
1579  *      - D bit on ad-enabled SPTEs, and
1580  *      - W bit on ad-disabled SPTEs.
1581  * Returns true iff any D or W bits were cleared.
1582  */
1583 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1584 {
1585         u64 *sptep;
1586         struct rmap_iterator iter;
1587         bool flush = false;
1588
1589         for_each_rmap_spte(rmap_head, &iter, sptep)
1590                 if (spte_ad_need_write_protect(*sptep))
1591                         flush |= spte_wrprot_for_clear_dirty(sptep);
1592                 else
1593                         flush |= spte_clear_dirty(sptep);
1594
1595         return flush;
1596 }
1597
1598 static bool spte_set_dirty(u64 *sptep)
1599 {
1600         u64 spte = *sptep;
1601
1602         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1603
1604         /*
1605          * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1606          * do not bother adding back write access to pages marked
1607          * SPTE_AD_WRPROT_ONLY_MASK.
1608          */
1609         spte |= shadow_dirty_mask;
1610
1611         return mmu_spte_update(sptep, spte);
1612 }
1613
1614 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1615 {
1616         u64 *sptep;
1617         struct rmap_iterator iter;
1618         bool flush = false;
1619
1620         for_each_rmap_spte(rmap_head, &iter, sptep)
1621                 if (spte_ad_enabled(*sptep))
1622                         flush |= spte_set_dirty(sptep);
1623
1624         return flush;
1625 }
1626
1627 /**
1628  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1629  * @kvm: kvm instance
1630  * @slot: slot to protect
1631  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1632  * @mask: indicates which pages we should protect
1633  *
1634  * Used when we do not need to care about huge page mappings: e.g. during dirty
1635  * logging we do not have any such mappings.
1636  */
1637 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1638                                      struct kvm_memory_slot *slot,
1639                                      gfn_t gfn_offset, unsigned long mask)
1640 {
1641         struct kvm_rmap_head *rmap_head;
1642
1643         while (mask) {
1644                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1645                                           PG_LEVEL_4K, slot);
1646                 __rmap_write_protect(kvm, rmap_head, false);
1647
1648                 /* clear the first set bit */
1649                 mask &= mask - 1;
1650         }
1651 }
1652
1653 /**
1654  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1655  * protect the page if the D-bit isn't supported.
1656  * @kvm: kvm instance
1657  * @slot: slot to clear D-bit
1658  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1659  * @mask: indicates which pages we should clear D-bit
1660  *
1661  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1662  */
1663 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1664                                      struct kvm_memory_slot *slot,
1665                                      gfn_t gfn_offset, unsigned long mask)
1666 {
1667         struct kvm_rmap_head *rmap_head;
1668
1669         while (mask) {
1670                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1671                                           PG_LEVEL_4K, slot);
1672                 __rmap_clear_dirty(kvm, rmap_head);
1673
1674                 /* clear the first set bit */
1675                 mask &= mask - 1;
1676         }
1677 }
1678 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1679
1680 /**
1681  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1682  * PT level pages.
1683  *
1684  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1685  * enable dirty logging for them.
1686  *
1687  * Used when we do not need to care about huge page mappings: e.g. during dirty
1688  * logging we do not have any such mappings.
1689  */
1690 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1691                                 struct kvm_memory_slot *slot,
1692                                 gfn_t gfn_offset, unsigned long mask)
1693 {
1694         if (kvm_x86_ops.enable_log_dirty_pt_masked)
1695                 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1696                                 mask);
1697         else
1698                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1699 }
1700
1701 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1702                                     struct kvm_memory_slot *slot, u64 gfn)
1703 {
1704         struct kvm_rmap_head *rmap_head;
1705         int i;
1706         bool write_protected = false;
1707
1708         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1709                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1710                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1711         }
1712
1713         return write_protected;
1714 }
1715
1716 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1717 {
1718         struct kvm_memory_slot *slot;
1719
1720         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1721         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1722 }
1723
1724 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1725 {
1726         u64 *sptep;
1727         struct rmap_iterator iter;
1728         bool flush = false;
1729
1730         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1731                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1732
1733                 pte_list_remove(rmap_head, sptep);
1734                 flush = true;
1735         }
1736
1737         return flush;
1738 }
1739
1740 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1741                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1742                            unsigned long data)
1743 {
1744         return kvm_zap_rmapp(kvm, rmap_head);
1745 }
1746
1747 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1748                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1749                              unsigned long data)
1750 {
1751         u64 *sptep;
1752         struct rmap_iterator iter;
1753         int need_flush = 0;
1754         u64 new_spte;
1755         pte_t *ptep = (pte_t *)data;
1756         kvm_pfn_t new_pfn;
1757
1758         WARN_ON(pte_huge(*ptep));
1759         new_pfn = pte_pfn(*ptep);
1760
1761 restart:
1762         for_each_rmap_spte(rmap_head, &iter, sptep) {
1763                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1764                             sptep, *sptep, gfn, level);
1765
1766                 need_flush = 1;
1767
1768                 if (pte_write(*ptep)) {
1769                         pte_list_remove(rmap_head, sptep);
1770                         goto restart;
1771                 } else {
1772                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1773                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1774
1775                         new_spte &= ~PT_WRITABLE_MASK;
1776                         new_spte &= ~SPTE_HOST_WRITEABLE;
1777
1778                         new_spte = mark_spte_for_access_track(new_spte);
1779
1780                         mmu_spte_clear_track_bits(sptep);
1781                         mmu_spte_set(sptep, new_spte);
1782                 }
1783         }
1784
1785         if (need_flush && kvm_available_flush_tlb_with_range()) {
1786                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1787                 return 0;
1788         }
1789
1790         return need_flush;
1791 }
1792
1793 struct slot_rmap_walk_iterator {
1794         /* input fields. */
1795         struct kvm_memory_slot *slot;
1796         gfn_t start_gfn;
1797         gfn_t end_gfn;
1798         int start_level;
1799         int end_level;
1800
1801         /* output fields. */
1802         gfn_t gfn;
1803         struct kvm_rmap_head *rmap;
1804         int level;
1805
1806         /* private field. */
1807         struct kvm_rmap_head *end_rmap;
1808 };
1809
1810 static void
1811 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1812 {
1813         iterator->level = level;
1814         iterator->gfn = iterator->start_gfn;
1815         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1816         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1817                                            iterator->slot);
1818 }
1819
1820 static void
1821 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1822                     struct kvm_memory_slot *slot, int start_level,
1823                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1824 {
1825         iterator->slot = slot;
1826         iterator->start_level = start_level;
1827         iterator->end_level = end_level;
1828         iterator->start_gfn = start_gfn;
1829         iterator->end_gfn = end_gfn;
1830
1831         rmap_walk_init_level(iterator, iterator->start_level);
1832 }
1833
1834 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1835 {
1836         return !!iterator->rmap;
1837 }
1838
1839 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1840 {
1841         if (++iterator->rmap <= iterator->end_rmap) {
1842                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1843                 return;
1844         }
1845
1846         if (++iterator->level > iterator->end_level) {
1847                 iterator->rmap = NULL;
1848                 return;
1849         }
1850
1851         rmap_walk_init_level(iterator, iterator->level);
1852 }
1853
1854 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1855            _start_gfn, _end_gfn, _iter_)                                \
1856         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1857                                  _end_level_, _start_gfn, _end_gfn);    \
1858              slot_rmap_walk_okay(_iter_);                               \
1859              slot_rmap_walk_next(_iter_))
1860
1861 static int kvm_handle_hva_range(struct kvm *kvm,
1862                                 unsigned long start,
1863                                 unsigned long end,
1864                                 unsigned long data,
1865                                 int (*handler)(struct kvm *kvm,
1866                                                struct kvm_rmap_head *rmap_head,
1867                                                struct kvm_memory_slot *slot,
1868                                                gfn_t gfn,
1869                                                int level,
1870                                                unsigned long data))
1871 {
1872         struct kvm_memslots *slots;
1873         struct kvm_memory_slot *memslot;
1874         struct slot_rmap_walk_iterator iterator;
1875         int ret = 0;
1876         int i;
1877
1878         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1879                 slots = __kvm_memslots(kvm, i);
1880                 kvm_for_each_memslot(memslot, slots) {
1881                         unsigned long hva_start, hva_end;
1882                         gfn_t gfn_start, gfn_end;
1883
1884                         hva_start = max(start, memslot->userspace_addr);
1885                         hva_end = min(end, memslot->userspace_addr +
1886                                       (memslot->npages << PAGE_SHIFT));
1887                         if (hva_start >= hva_end)
1888                                 continue;
1889                         /*
1890                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1891                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1892                          */
1893                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1894                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1895
1896                         for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1897                                                  KVM_MAX_HUGEPAGE_LEVEL,
1898                                                  gfn_start, gfn_end - 1,
1899                                                  &iterator)
1900                                 ret |= handler(kvm, iterator.rmap, memslot,
1901                                                iterator.gfn, iterator.level, data);
1902                 }
1903         }
1904
1905         return ret;
1906 }
1907
1908 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1909                           unsigned long data,
1910                           int (*handler)(struct kvm *kvm,
1911                                          struct kvm_rmap_head *rmap_head,
1912                                          struct kvm_memory_slot *slot,
1913                                          gfn_t gfn, int level,
1914                                          unsigned long data))
1915 {
1916         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1917 }
1918
1919 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1920 {
1921         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1922 }
1923
1924 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1925 {
1926         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1927 }
1928
1929 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1930                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1931                          unsigned long data)
1932 {
1933         u64 *sptep;
1934         struct rmap_iterator iter;
1935         int young = 0;
1936
1937         for_each_rmap_spte(rmap_head, &iter, sptep)
1938                 young |= mmu_spte_age(sptep);
1939
1940         trace_kvm_age_page(gfn, level, slot, young);
1941         return young;
1942 }
1943
1944 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1945                               struct kvm_memory_slot *slot, gfn_t gfn,
1946                               int level, unsigned long data)
1947 {
1948         u64 *sptep;
1949         struct rmap_iterator iter;
1950
1951         for_each_rmap_spte(rmap_head, &iter, sptep)
1952                 if (is_accessed_spte(*sptep))
1953                         return 1;
1954         return 0;
1955 }
1956
1957 #define RMAP_RECYCLE_THRESHOLD 1000
1958
1959 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1960 {
1961         struct kvm_rmap_head *rmap_head;
1962         struct kvm_mmu_page *sp;
1963
1964         sp = sptep_to_sp(spte);
1965
1966         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1967
1968         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1969         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1970                         KVM_PAGES_PER_HPAGE(sp->role.level));
1971 }
1972
1973 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1974 {
1975         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1976 }
1977
1978 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1979 {
1980         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1981 }
1982
1983 #ifdef MMU_DEBUG
1984 static int is_empty_shadow_page(u64 *spt)
1985 {
1986         u64 *pos;
1987         u64 *end;
1988
1989         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1990                 if (is_shadow_present_pte(*pos)) {
1991                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1992                                pos, *pos);
1993                         return 0;
1994                 }
1995         return 1;
1996 }
1997 #endif
1998
1999 /*
2000  * This value is the sum of all of the kvm instances's
2001  * kvm->arch.n_used_mmu_pages values.  We need a global,
2002  * aggregate version in order to make the slab shrinker
2003  * faster
2004  */
2005 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2006 {
2007         kvm->arch.n_used_mmu_pages += nr;
2008         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2009 }
2010
2011 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2012 {
2013         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2014         hlist_del(&sp->hash_link);
2015         list_del(&sp->link);
2016         free_page((unsigned long)sp->spt);
2017         if (!sp->role.direct)
2018                 free_page((unsigned long)sp->gfns);
2019         kmem_cache_free(mmu_page_header_cache, sp);
2020 }
2021
2022 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2023 {
2024         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2025 }
2026
2027 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2028                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2029 {
2030         if (!parent_pte)
2031                 return;
2032
2033         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2034 }
2035
2036 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2037                                        u64 *parent_pte)
2038 {
2039         __pte_list_remove(parent_pte, &sp->parent_ptes);
2040 }
2041
2042 static void drop_parent_pte(struct kvm_mmu_page *sp,
2043                             u64 *parent_pte)
2044 {
2045         mmu_page_remove_parent_pte(sp, parent_pte);
2046         mmu_spte_clear_no_track(parent_pte);
2047 }
2048
2049 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2050 {
2051         struct kvm_mmu_page *sp;
2052
2053         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2054         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
2055         if (!direct)
2056                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
2057         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2058
2059         /*
2060          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2061          * depends on valid pages being added to the head of the list.  See
2062          * comments in kvm_zap_obsolete_pages().
2063          */
2064         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2065         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2066         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2067         return sp;
2068 }
2069
2070 static void mark_unsync(u64 *spte);
2071 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2072 {
2073         u64 *sptep;
2074         struct rmap_iterator iter;
2075
2076         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2077                 mark_unsync(sptep);
2078         }
2079 }
2080
2081 static void mark_unsync(u64 *spte)
2082 {
2083         struct kvm_mmu_page *sp;
2084         unsigned int index;
2085
2086         sp = sptep_to_sp(spte);
2087         index = spte - sp->spt;
2088         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2089                 return;
2090         if (sp->unsync_children++)
2091                 return;
2092         kvm_mmu_mark_parents_unsync(sp);
2093 }
2094
2095 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2096                                struct kvm_mmu_page *sp)
2097 {
2098         return 0;
2099 }
2100
2101 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2102                                  struct kvm_mmu_page *sp, u64 *spte,
2103                                  const void *pte)
2104 {
2105         WARN_ON(1);
2106 }
2107
2108 #define KVM_PAGE_ARRAY_NR 16
2109
2110 struct kvm_mmu_pages {
2111         struct mmu_page_and_offset {
2112                 struct kvm_mmu_page *sp;
2113                 unsigned int idx;
2114         } page[KVM_PAGE_ARRAY_NR];
2115         unsigned int nr;
2116 };
2117
2118 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2119                          int idx)
2120 {
2121         int i;
2122
2123         if (sp->unsync)
2124                 for (i=0; i < pvec->nr; i++)
2125                         if (pvec->page[i].sp == sp)
2126                                 return 0;
2127
2128         pvec->page[pvec->nr].sp = sp;
2129         pvec->page[pvec->nr].idx = idx;
2130         pvec->nr++;
2131         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2132 }
2133
2134 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2135 {
2136         --sp->unsync_children;
2137         WARN_ON((int)sp->unsync_children < 0);
2138         __clear_bit(idx, sp->unsync_child_bitmap);
2139 }
2140
2141 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2142                            struct kvm_mmu_pages *pvec)
2143 {
2144         int i, ret, nr_unsync_leaf = 0;
2145
2146         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2147                 struct kvm_mmu_page *child;
2148                 u64 ent = sp->spt[i];
2149
2150                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2151                         clear_unsync_child_bit(sp, i);
2152                         continue;
2153                 }
2154
2155                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
2156
2157                 if (child->unsync_children) {
2158                         if (mmu_pages_add(pvec, child, i))
2159                                 return -ENOSPC;
2160
2161                         ret = __mmu_unsync_walk(child, pvec);
2162                         if (!ret) {
2163                                 clear_unsync_child_bit(sp, i);
2164                                 continue;
2165                         } else if (ret > 0) {
2166                                 nr_unsync_leaf += ret;
2167                         } else
2168                                 return ret;
2169                 } else if (child->unsync) {
2170                         nr_unsync_leaf++;
2171                         if (mmu_pages_add(pvec, child, i))
2172                                 return -ENOSPC;
2173                 } else
2174                         clear_unsync_child_bit(sp, i);
2175         }
2176
2177         return nr_unsync_leaf;
2178 }
2179
2180 #define INVALID_INDEX (-1)
2181
2182 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2183                            struct kvm_mmu_pages *pvec)
2184 {
2185         pvec->nr = 0;
2186         if (!sp->unsync_children)
2187                 return 0;
2188
2189         mmu_pages_add(pvec, sp, INVALID_INDEX);
2190         return __mmu_unsync_walk(sp, pvec);
2191 }
2192
2193 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2194 {
2195         WARN_ON(!sp->unsync);
2196         trace_kvm_mmu_sync_page(sp);
2197         sp->unsync = 0;
2198         --kvm->stat.mmu_unsync;
2199 }
2200
2201 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2202                                      struct list_head *invalid_list);
2203 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2204                                     struct list_head *invalid_list);
2205
2206 #define for_each_valid_sp(_kvm, _sp, _list)                             \
2207         hlist_for_each_entry(_sp, _list, hash_link)                     \
2208                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
2209                 } else
2210
2211 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2212         for_each_valid_sp(_kvm, _sp,                                    \
2213           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
2214                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2215
2216 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2217 {
2218         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2219 }
2220
2221 /* @sp->gfn should be write-protected at the call site */
2222 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2223                             struct list_head *invalid_list)
2224 {
2225         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2226             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2227                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2228                 return false;
2229         }
2230
2231         return true;
2232 }
2233
2234 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2235                                         struct list_head *invalid_list,
2236                                         bool remote_flush)
2237 {
2238         if (!remote_flush && list_empty(invalid_list))
2239                 return false;
2240
2241         if (!list_empty(invalid_list))
2242                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2243         else
2244                 kvm_flush_remote_tlbs(kvm);
2245         return true;
2246 }
2247
2248 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2249                                  struct list_head *invalid_list,
2250                                  bool remote_flush, bool local_flush)
2251 {
2252         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2253                 return;
2254
2255         if (local_flush)
2256                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2257 }
2258
2259 #ifdef CONFIG_KVM_MMU_AUDIT
2260 #include "mmu_audit.c"
2261 #else
2262 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2263 static void mmu_audit_disable(void) { }
2264 #endif
2265
2266 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2267 {
2268         return sp->role.invalid ||
2269                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2270 }
2271
2272 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2273                          struct list_head *invalid_list)
2274 {
2275         kvm_unlink_unsync_page(vcpu->kvm, sp);
2276         return __kvm_sync_page(vcpu, sp, invalid_list);
2277 }
2278
2279 /* @gfn should be write-protected at the call site */
2280 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2281                            struct list_head *invalid_list)
2282 {
2283         struct kvm_mmu_page *s;
2284         bool ret = false;
2285
2286         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2287                 if (!s->unsync)
2288                         continue;
2289
2290                 WARN_ON(s->role.level != PG_LEVEL_4K);
2291                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2292         }
2293
2294         return ret;
2295 }
2296
2297 struct mmu_page_path {
2298         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2299         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2300 };
2301
2302 #define for_each_sp(pvec, sp, parents, i)                       \
2303                 for (i = mmu_pages_first(&pvec, &parents);      \
2304                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2305                         i = mmu_pages_next(&pvec, &parents, i))
2306
2307 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2308                           struct mmu_page_path *parents,
2309                           int i)
2310 {
2311         int n;
2312
2313         for (n = i+1; n < pvec->nr; n++) {
2314                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2315                 unsigned idx = pvec->page[n].idx;
2316                 int level = sp->role.level;
2317
2318                 parents->idx[level-1] = idx;
2319                 if (level == PG_LEVEL_4K)
2320                         break;
2321
2322                 parents->parent[level-2] = sp;
2323         }
2324
2325         return n;
2326 }
2327
2328 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2329                            struct mmu_page_path *parents)
2330 {
2331         struct kvm_mmu_page *sp;
2332         int level;
2333
2334         if (pvec->nr == 0)
2335                 return 0;
2336
2337         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2338
2339         sp = pvec->page[0].sp;
2340         level = sp->role.level;
2341         WARN_ON(level == PG_LEVEL_4K);
2342
2343         parents->parent[level-2] = sp;
2344
2345         /* Also set up a sentinel.  Further entries in pvec are all
2346          * children of sp, so this element is never overwritten.
2347          */
2348         parents->parent[level-1] = NULL;
2349         return mmu_pages_next(pvec, parents, 0);
2350 }
2351
2352 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2353 {
2354         struct kvm_mmu_page *sp;
2355         unsigned int level = 0;
2356
2357         do {
2358                 unsigned int idx = parents->idx[level];
2359                 sp = parents->parent[level];
2360                 if (!sp)
2361                         return;
2362
2363                 WARN_ON(idx == INVALID_INDEX);
2364                 clear_unsync_child_bit(sp, idx);
2365                 level++;
2366         } while (!sp->unsync_children);
2367 }
2368
2369 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2370                               struct kvm_mmu_page *parent)
2371 {
2372         int i;
2373         struct kvm_mmu_page *sp;
2374         struct mmu_page_path parents;
2375         struct kvm_mmu_pages pages;
2376         LIST_HEAD(invalid_list);
2377         bool flush = false;
2378
2379         while (mmu_unsync_walk(parent, &pages)) {
2380                 bool protected = false;
2381
2382                 for_each_sp(pages, sp, parents, i)
2383                         protected |= rmap_write_protect(vcpu, sp->gfn);
2384
2385                 if (protected) {
2386                         kvm_flush_remote_tlbs(vcpu->kvm);
2387                         flush = false;
2388                 }
2389
2390                 for_each_sp(pages, sp, parents, i) {
2391                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2392                         mmu_pages_clear_parents(&parents);
2393                 }
2394                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2395                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2396                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2397                         flush = false;
2398                 }
2399         }
2400
2401         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2402 }
2403
2404 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2405 {
2406         atomic_set(&sp->write_flooding_count,  0);
2407 }
2408
2409 static void clear_sp_write_flooding_count(u64 *spte)
2410 {
2411         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2412 }
2413
2414 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2415                                              gfn_t gfn,
2416                                              gva_t gaddr,
2417                                              unsigned level,
2418                                              int direct,
2419                                              unsigned int access)
2420 {
2421         bool direct_mmu = vcpu->arch.mmu->direct_map;
2422         union kvm_mmu_page_role role;
2423         struct hlist_head *sp_list;
2424         unsigned quadrant;
2425         struct kvm_mmu_page *sp;
2426         bool need_sync = false;
2427         bool flush = false;
2428         int collisions = 0;
2429         LIST_HEAD(invalid_list);
2430
2431         role = vcpu->arch.mmu->mmu_role.base;
2432         role.level = level;
2433         role.direct = direct;
2434         if (role.direct)
2435                 role.gpte_is_8_bytes = true;
2436         role.access = access;
2437         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2438                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2439                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2440                 role.quadrant = quadrant;
2441         }
2442
2443         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2444         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2445                 if (sp->gfn != gfn) {
2446                         collisions++;
2447                         continue;
2448                 }
2449
2450                 if (!need_sync && sp->unsync)
2451                         need_sync = true;
2452
2453                 if (sp->role.word != role.word)
2454                         continue;
2455
2456                 if (direct_mmu)
2457                         goto trace_get_page;
2458
2459                 if (sp->unsync) {
2460                         /* The page is good, but __kvm_sync_page might still end
2461                          * up zapping it.  If so, break in order to rebuild it.
2462                          */
2463                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2464                                 break;
2465
2466                         WARN_ON(!list_empty(&invalid_list));
2467                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2468                 }
2469
2470                 if (sp->unsync_children)
2471                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2472
2473                 __clear_sp_write_flooding_count(sp);
2474
2475 trace_get_page:
2476                 trace_kvm_mmu_get_page(sp, false);
2477                 goto out;
2478         }
2479
2480         ++vcpu->kvm->stat.mmu_cache_miss;
2481
2482         sp = kvm_mmu_alloc_page(vcpu, direct);
2483
2484         sp->gfn = gfn;
2485         sp->role = role;
2486         hlist_add_head(&sp->hash_link, sp_list);
2487         if (!direct) {
2488                 /*
2489                  * we should do write protection before syncing pages
2490                  * otherwise the content of the synced shadow page may
2491                  * be inconsistent with guest page table.
2492                  */
2493                 account_shadowed(vcpu->kvm, sp);
2494                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2495                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2496
2497                 if (level > PG_LEVEL_4K && need_sync)
2498                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2499         }
2500         trace_kvm_mmu_get_page(sp, true);
2501
2502         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2503 out:
2504         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2505                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2506         return sp;
2507 }
2508
2509 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2510                                         struct kvm_vcpu *vcpu, hpa_t root,
2511                                         u64 addr)
2512 {
2513         iterator->addr = addr;
2514         iterator->shadow_addr = root;
2515         iterator->level = vcpu->arch.mmu->shadow_root_level;
2516
2517         if (iterator->level == PT64_ROOT_4LEVEL &&
2518             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2519             !vcpu->arch.mmu->direct_map)
2520                 --iterator->level;
2521
2522         if (iterator->level == PT32E_ROOT_LEVEL) {
2523                 /*
2524                  * prev_root is currently only used for 64-bit hosts. So only
2525                  * the active root_hpa is valid here.
2526                  */
2527                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2528
2529                 iterator->shadow_addr
2530                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2531                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2532                 --iterator->level;
2533                 if (!iterator->shadow_addr)
2534                         iterator->level = 0;
2535         }
2536 }
2537
2538 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2539                              struct kvm_vcpu *vcpu, u64 addr)
2540 {
2541         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2542                                     addr);
2543 }
2544
2545 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2546 {
2547         if (iterator->level < PG_LEVEL_4K)
2548                 return false;
2549
2550         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2551         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2552         return true;
2553 }
2554
2555 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2556                                u64 spte)
2557 {
2558         if (is_last_spte(spte, iterator->level)) {
2559                 iterator->level = 0;
2560                 return;
2561         }
2562
2563         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2564         --iterator->level;
2565 }
2566
2567 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2568 {
2569         __shadow_walk_next(iterator, *iterator->sptep);
2570 }
2571
2572 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2573                              struct kvm_mmu_page *sp)
2574 {
2575         u64 spte;
2576
2577         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2578
2579         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2580                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2581
2582         if (sp_ad_disabled(sp))
2583                 spte |= SPTE_AD_DISABLED_MASK;
2584         else
2585                 spte |= shadow_accessed_mask;
2586
2587         mmu_spte_set(sptep, spte);
2588
2589         mmu_page_add_parent_pte(vcpu, sp, sptep);
2590
2591         if (sp->unsync_children || sp->unsync)
2592                 mark_unsync(sptep);
2593 }
2594
2595 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2596                                    unsigned direct_access)
2597 {
2598         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2599                 struct kvm_mmu_page *child;
2600
2601                 /*
2602                  * For the direct sp, if the guest pte's dirty bit
2603                  * changed form clean to dirty, it will corrupt the
2604                  * sp's access: allow writable in the read-only sp,
2605                  * so we should update the spte at this point to get
2606                  * a new sp with the correct access.
2607                  */
2608                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2609                 if (child->role.access == direct_access)
2610                         return;
2611
2612                 drop_parent_pte(child, sptep);
2613                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2614         }
2615 }
2616
2617 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2618                              u64 *spte)
2619 {
2620         u64 pte;
2621         struct kvm_mmu_page *child;
2622
2623         pte = *spte;
2624         if (is_shadow_present_pte(pte)) {
2625                 if (is_last_spte(pte, sp->role.level)) {
2626                         drop_spte(kvm, spte);
2627                         if (is_large_pte(pte))
2628                                 --kvm->stat.lpages;
2629                 } else {
2630                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2631                         drop_parent_pte(child, spte);
2632                 }
2633                 return true;
2634         }
2635
2636         if (is_mmio_spte(pte))
2637                 mmu_spte_clear_no_track(spte);
2638
2639         return false;
2640 }
2641
2642 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2643                                          struct kvm_mmu_page *sp)
2644 {
2645         unsigned i;
2646
2647         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2648                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2649 }
2650
2651 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2652 {
2653         u64 *sptep;
2654         struct rmap_iterator iter;
2655
2656         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2657                 drop_parent_pte(sp, sptep);
2658 }
2659
2660 static int mmu_zap_unsync_children(struct kvm *kvm,
2661                                    struct kvm_mmu_page *parent,
2662                                    struct list_head *invalid_list)
2663 {
2664         int i, zapped = 0;
2665         struct mmu_page_path parents;
2666         struct kvm_mmu_pages pages;
2667
2668         if (parent->role.level == PG_LEVEL_4K)
2669                 return 0;
2670
2671         while (mmu_unsync_walk(parent, &pages)) {
2672                 struct kvm_mmu_page *sp;
2673
2674                 for_each_sp(pages, sp, parents, i) {
2675                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2676                         mmu_pages_clear_parents(&parents);
2677                         zapped++;
2678                 }
2679         }
2680
2681         return zapped;
2682 }
2683
2684 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2685                                        struct kvm_mmu_page *sp,
2686                                        struct list_head *invalid_list,
2687                                        int *nr_zapped)
2688 {
2689         bool list_unstable;
2690
2691         trace_kvm_mmu_prepare_zap_page(sp);
2692         ++kvm->stat.mmu_shadow_zapped;
2693         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2694         kvm_mmu_page_unlink_children(kvm, sp);
2695         kvm_mmu_unlink_parents(kvm, sp);
2696
2697         /* Zapping children means active_mmu_pages has become unstable. */
2698         list_unstable = *nr_zapped;
2699
2700         if (!sp->role.invalid && !sp->role.direct)
2701                 unaccount_shadowed(kvm, sp);
2702
2703         if (sp->unsync)
2704                 kvm_unlink_unsync_page(kvm, sp);
2705         if (!sp->root_count) {
2706                 /* Count self */
2707                 (*nr_zapped)++;
2708
2709                 /*
2710                  * Already invalid pages (previously active roots) are not on
2711                  * the active page list.  See list_del() in the "else" case of
2712                  * !sp->root_count.
2713                  */
2714                 if (sp->role.invalid)
2715                         list_add(&sp->link, invalid_list);
2716                 else
2717                         list_move(&sp->link, invalid_list);
2718                 kvm_mod_used_mmu_pages(kvm, -1);
2719         } else {
2720                 /*
2721                  * Remove the active root from the active page list, the root
2722                  * will be explicitly freed when the root_count hits zero.
2723                  */
2724                 list_del(&sp->link);
2725
2726                 /*
2727                  * Obsolete pages cannot be used on any vCPUs, see the comment
2728                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2729                  * treats invalid shadow pages as being obsolete.
2730                  */
2731                 if (!is_obsolete_sp(kvm, sp))
2732                         kvm_reload_remote_mmus(kvm);
2733         }
2734
2735         if (sp->lpage_disallowed)
2736                 unaccount_huge_nx_page(kvm, sp);
2737
2738         sp->role.invalid = 1;
2739         return list_unstable;
2740 }
2741
2742 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2743                                      struct list_head *invalid_list)
2744 {
2745         int nr_zapped;
2746
2747         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2748         return nr_zapped;
2749 }
2750
2751 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2752                                     struct list_head *invalid_list)
2753 {
2754         struct kvm_mmu_page *sp, *nsp;
2755
2756         if (list_empty(invalid_list))
2757                 return;
2758
2759         /*
2760          * We need to make sure everyone sees our modifications to
2761          * the page tables and see changes to vcpu->mode here. The barrier
2762          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2763          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2764          *
2765          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2766          * guest mode and/or lockless shadow page table walks.
2767          */
2768         kvm_flush_remote_tlbs(kvm);
2769
2770         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2771                 WARN_ON(!sp->role.invalid || sp->root_count);
2772                 kvm_mmu_free_page(sp);
2773         }
2774 }
2775
2776 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2777                                                   unsigned long nr_to_zap)
2778 {
2779         unsigned long total_zapped = 0;
2780         struct kvm_mmu_page *sp, *tmp;
2781         LIST_HEAD(invalid_list);
2782         bool unstable;
2783         int nr_zapped;
2784
2785         if (list_empty(&kvm->arch.active_mmu_pages))
2786                 return 0;
2787
2788 restart:
2789         list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2790                 /*
2791                  * Don't zap active root pages, the page itself can't be freed
2792                  * and zapping it will just force vCPUs to realloc and reload.
2793                  */
2794                 if (sp->root_count)
2795                         continue;
2796
2797                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2798                                                       &nr_zapped);
2799                 total_zapped += nr_zapped;
2800                 if (total_zapped >= nr_to_zap)
2801                         break;
2802
2803                 if (unstable)
2804                         goto restart;
2805         }
2806
2807         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2808
2809         kvm->stat.mmu_recycled += total_zapped;
2810         return total_zapped;
2811 }
2812
2813 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2814 {
2815         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2816                 return kvm->arch.n_max_mmu_pages -
2817                         kvm->arch.n_used_mmu_pages;
2818
2819         return 0;
2820 }
2821
2822 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2823 {
2824         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2825
2826         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2827                 return 0;
2828
2829         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2830
2831         if (!kvm_mmu_available_pages(vcpu->kvm))
2832                 return -ENOSPC;
2833         return 0;
2834 }
2835
2836 /*
2837  * Changing the number of mmu pages allocated to the vm
2838  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2839  */
2840 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2841 {
2842         spin_lock(&kvm->mmu_lock);
2843
2844         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2845                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2846                                                   goal_nr_mmu_pages);
2847
2848                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2849         }
2850
2851         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2852
2853         spin_unlock(&kvm->mmu_lock);
2854 }
2855
2856 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2857 {
2858         struct kvm_mmu_page *sp;
2859         LIST_HEAD(invalid_list);
2860         int r;
2861
2862         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2863         r = 0;
2864         spin_lock(&kvm->mmu_lock);
2865         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2866                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2867                          sp->role.word);
2868                 r = 1;
2869                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2870         }
2871         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2872         spin_unlock(&kvm->mmu_lock);
2873
2874         return r;
2875 }
2876 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2877
2878 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2879 {
2880         trace_kvm_mmu_unsync_page(sp);
2881         ++vcpu->kvm->stat.mmu_unsync;
2882         sp->unsync = 1;
2883
2884         kvm_mmu_mark_parents_unsync(sp);
2885 }
2886
2887 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2888                                    bool can_unsync)
2889 {
2890         struct kvm_mmu_page *sp;
2891
2892         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2893                 return true;
2894
2895         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2896                 if (!can_unsync)
2897                         return true;
2898
2899                 if (sp->unsync)
2900                         continue;
2901
2902                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2903                 kvm_unsync_page(vcpu, sp);
2904         }
2905
2906         /*
2907          * We need to ensure that the marking of unsync pages is visible
2908          * before the SPTE is updated to allow writes because
2909          * kvm_mmu_sync_roots() checks the unsync flags without holding
2910          * the MMU lock and so can race with this. If the SPTE was updated
2911          * before the page had been marked as unsync-ed, something like the
2912          * following could happen:
2913          *
2914          * CPU 1                    CPU 2
2915          * ---------------------------------------------------------------------
2916          * 1.2 Host updates SPTE
2917          *     to be writable
2918          *                      2.1 Guest writes a GPTE for GVA X.
2919          *                          (GPTE being in the guest page table shadowed
2920          *                           by the SP from CPU 1.)
2921          *                          This reads SPTE during the page table walk.
2922          *                          Since SPTE.W is read as 1, there is no
2923          *                          fault.
2924          *
2925          *                      2.2 Guest issues TLB flush.
2926          *                          That causes a VM Exit.
2927          *
2928          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2929          *                          Since it is false, so it just returns.
2930          *
2931          *                      2.4 Guest accesses GVA X.
2932          *                          Since the mapping in the SP was not updated,
2933          *                          so the old mapping for GVA X incorrectly
2934          *                          gets used.
2935          * 1.1 Host marks SP
2936          *     as unsync
2937          *     (sp->unsync = true)
2938          *
2939          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2940          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2941          * pairs with this write barrier.
2942          */
2943         smp_wmb();
2944
2945         return false;
2946 }
2947
2948 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2949 {
2950         if (pfn_valid(pfn))
2951                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2952                         /*
2953                          * Some reserved pages, such as those from NVDIMM
2954                          * DAX devices, are not for MMIO, and can be mapped
2955                          * with cached memory type for better performance.
2956                          * However, the above check misconceives those pages
2957                          * as MMIO, and results in KVM mapping them with UC
2958                          * memory type, which would hurt the performance.
2959                          * Therefore, we check the host memory type in addition
2960                          * and only treat UC/UC-/WC pages as MMIO.
2961                          */
2962                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2963
2964         return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2965                                      pfn_to_hpa(pfn + 1) - 1,
2966                                      E820_TYPE_RAM);
2967 }
2968
2969 /* Bits which may be returned by set_spte() */
2970 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2971 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2972
2973 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2974                     unsigned int pte_access, int level,
2975                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2976                     bool can_unsync, bool host_writable)
2977 {
2978         u64 spte = 0;
2979         int ret = 0;
2980         struct kvm_mmu_page *sp;
2981
2982         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2983                 return 0;
2984
2985         sp = sptep_to_sp(sptep);
2986         if (sp_ad_disabled(sp))
2987                 spte |= SPTE_AD_DISABLED_MASK;
2988         else if (kvm_vcpu_ad_need_write_protect(vcpu))
2989                 spte |= SPTE_AD_WRPROT_ONLY_MASK;
2990
2991         /*
2992          * For the EPT case, shadow_present_mask is 0 if hardware
2993          * supports exec-only page table entries.  In that case,
2994          * ACC_USER_MASK and shadow_user_mask are used to represent
2995          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2996          */
2997         spte |= shadow_present_mask;
2998         if (!speculative)
2999                 spte |= spte_shadow_accessed_mask(spte);
3000
3001         if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
3002             is_nx_huge_page_enabled()) {
3003                 pte_access &= ~ACC_EXEC_MASK;
3004         }
3005
3006         if (pte_access & ACC_EXEC_MASK)
3007                 spte |= shadow_x_mask;
3008         else
3009                 spte |= shadow_nx_mask;
3010
3011         if (pte_access & ACC_USER_MASK)
3012                 spte |= shadow_user_mask;
3013
3014         if (level > PG_LEVEL_4K)
3015                 spte |= PT_PAGE_SIZE_MASK;
3016         if (tdp_enabled)
3017                 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3018                         kvm_is_mmio_pfn(pfn));
3019
3020         if (host_writable)
3021                 spte |= SPTE_HOST_WRITEABLE;
3022         else
3023                 pte_access &= ~ACC_WRITE_MASK;
3024
3025         if (!kvm_is_mmio_pfn(pfn))
3026                 spte |= shadow_me_mask;
3027
3028         spte |= (u64)pfn << PAGE_SHIFT;
3029
3030         if (pte_access & ACC_WRITE_MASK) {
3031                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3032
3033                 /*
3034                  * Optimization: for pte sync, if spte was writable the hash
3035                  * lookup is unnecessary (and expensive). Write protection
3036                  * is responsibility of mmu_get_page / kvm_sync_page.
3037                  * Same reasoning can be applied to dirty page accounting.
3038                  */
3039                 if (!can_unsync && is_writable_pte(*sptep))
3040                         goto set_pte;
3041
3042                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3043                         pgprintk("%s: found shadow page for %llx, marking ro\n",
3044                                  __func__, gfn);
3045                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
3046                         pte_access &= ~ACC_WRITE_MASK;
3047                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3048                 }
3049         }
3050
3051         if (pte_access & ACC_WRITE_MASK) {
3052                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3053                 spte |= spte_shadow_dirty_mask(spte);
3054         }
3055
3056         if (speculative)
3057                 spte = mark_spte_for_access_track(spte);
3058
3059 set_pte:
3060         if (mmu_spte_update(sptep, spte))
3061                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3062         return ret;
3063 }
3064
3065 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3066                         unsigned int pte_access, int write_fault, int level,
3067                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3068                         bool host_writable)
3069 {
3070         int was_rmapped = 0;
3071         int rmap_count;
3072         int set_spte_ret;
3073         int ret = RET_PF_RETRY;
3074         bool flush = false;
3075
3076         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3077                  *sptep, write_fault, gfn);
3078
3079         if (is_shadow_present_pte(*sptep)) {
3080                 /*
3081                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3082                  * the parent of the now unreachable PTE.
3083                  */
3084                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
3085                         struct kvm_mmu_page *child;
3086                         u64 pte = *sptep;
3087
3088                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
3089                         drop_parent_pte(child, sptep);
3090                         flush = true;
3091                 } else if (pfn != spte_to_pfn(*sptep)) {
3092                         pgprintk("hfn old %llx new %llx\n",
3093                                  spte_to_pfn(*sptep), pfn);
3094                         drop_spte(vcpu->kvm, sptep);
3095                         flush = true;
3096                 } else
3097                         was_rmapped = 1;
3098         }
3099
3100         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3101                                 speculative, true, host_writable);
3102         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3103                 if (write_fault)
3104                         ret = RET_PF_EMULATE;
3105                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3106         }
3107
3108         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3109                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3110                                 KVM_PAGES_PER_HPAGE(level));
3111
3112         if (unlikely(is_mmio_spte(*sptep)))
3113                 ret = RET_PF_EMULATE;
3114
3115         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3116         trace_kvm_mmu_set_spte(level, gfn, sptep);
3117         if (!was_rmapped && is_large_pte(*sptep))
3118                 ++vcpu->kvm->stat.lpages;
3119
3120         if (is_shadow_present_pte(*sptep)) {
3121                 if (!was_rmapped) {
3122                         rmap_count = rmap_add(vcpu, sptep, gfn);
3123                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3124                                 rmap_recycle(vcpu, sptep, gfn);
3125                 }
3126         }
3127
3128         return ret;
3129 }
3130
3131 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3132                                      bool no_dirty_log)
3133 {
3134         struct kvm_memory_slot *slot;
3135
3136         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3137         if (!slot)
3138                 return KVM_PFN_ERR_FAULT;
3139
3140         return gfn_to_pfn_memslot_atomic(slot, gfn);
3141 }
3142
3143 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3144                                     struct kvm_mmu_page *sp,
3145                                     u64 *start, u64 *end)
3146 {
3147         struct page *pages[PTE_PREFETCH_NUM];
3148         struct kvm_memory_slot *slot;
3149         unsigned int access = sp->role.access;
3150         int i, ret;
3151         gfn_t gfn;
3152
3153         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3154         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3155         if (!slot)
3156                 return -1;
3157
3158         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3159         if (ret <= 0)
3160                 return -1;
3161
3162         for (i = 0; i < ret; i++, gfn++, start++) {
3163                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3164                              page_to_pfn(pages[i]), true, true);
3165                 put_page(pages[i]);
3166         }
3167
3168         return 0;
3169 }
3170
3171 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3172                                   struct kvm_mmu_page *sp, u64 *sptep)
3173 {
3174         u64 *spte, *start = NULL;
3175         int i;
3176
3177         WARN_ON(!sp->role.direct);
3178
3179         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3180         spte = sp->spt + i;
3181
3182         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3183                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3184                         if (!start)
3185                                 continue;
3186                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3187                                 break;
3188                         start = NULL;
3189                 } else if (!start)
3190                         start = spte;
3191         }
3192 }
3193
3194 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3195 {
3196         struct kvm_mmu_page *sp;
3197
3198         sp = sptep_to_sp(sptep);
3199
3200         /*
3201          * Without accessed bits, there's no way to distinguish between
3202          * actually accessed translations and prefetched, so disable pte
3203          * prefetch if accessed bits aren't available.
3204          */
3205         if (sp_ad_disabled(sp))
3206                 return;
3207
3208         if (sp->role.level > PG_LEVEL_4K)
3209                 return;
3210
3211         __direct_pte_prefetch(vcpu, sp, sptep);
3212 }
3213
3214 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3215                                   kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3216 {
3217         unsigned long hva;
3218         pte_t *pte;
3219         int level;
3220
3221         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3222                 return PG_LEVEL_4K;
3223
3224         /*
3225          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3226          * is not solely for performance, it's also necessary to avoid the
3227          * "writable" check in __gfn_to_hva_many(), which will always fail on
3228          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3229          * page fault steps have already verified the guest isn't writing a
3230          * read-only memslot.
3231          */
3232         hva = __gfn_to_hva_memslot(slot, gfn);
3233
3234         pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3235         if (unlikely(!pte))
3236                 return PG_LEVEL_4K;
3237
3238         return level;
3239 }
3240
3241 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3242                                    int max_level, kvm_pfn_t *pfnp)
3243 {
3244         struct kvm_memory_slot *slot;
3245         struct kvm_lpage_info *linfo;
3246         kvm_pfn_t pfn = *pfnp;
3247         kvm_pfn_t mask;
3248         int level;
3249
3250         if (unlikely(max_level == PG_LEVEL_4K))
3251                 return PG_LEVEL_4K;
3252
3253         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3254                 return PG_LEVEL_4K;
3255
3256         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3257         if (!slot)
3258                 return PG_LEVEL_4K;
3259
3260         max_level = min(max_level, max_huge_page_level);
3261         for ( ; max_level > PG_LEVEL_4K; max_level--) {
3262                 linfo = lpage_info_slot(gfn, slot, max_level);
3263                 if (!linfo->disallow_lpage)
3264                         break;
3265         }
3266
3267         if (max_level == PG_LEVEL_4K)
3268                 return PG_LEVEL_4K;
3269
3270         level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3271         if (level == PG_LEVEL_4K)
3272                 return level;
3273
3274         level = min(level, max_level);
3275
3276         /*
3277          * mmu_notifier_retry() was successful and mmu_lock is held, so
3278          * the pmd can't be split from under us.
3279          */
3280         mask = KVM_PAGES_PER_HPAGE(level) - 1;
3281         VM_BUG_ON((gfn & mask) != (pfn & mask));
3282         *pfnp = pfn & ~mask;
3283
3284         return level;
3285 }
3286
3287 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3288                                        gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3289 {
3290         int level = *levelp;
3291         u64 spte = *it.sptep;
3292
3293         if (it.level == level && level > PG_LEVEL_4K &&
3294             is_nx_huge_page_enabled() &&
3295             is_shadow_present_pte(spte) &&
3296             !is_large_pte(spte)) {
3297                 /*
3298                  * A small SPTE exists for this pfn, but FNAME(fetch)
3299                  * and __direct_map would like to create a large PTE
3300                  * instead: just force them to go down another level,
3301                  * patching back for them into pfn the next 9 bits of
3302                  * the address.
3303                  */
3304                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3305                 *pfnp |= gfn & page_mask;
3306                 (*levelp)--;
3307         }
3308 }
3309
3310 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3311                         int map_writable, int max_level, kvm_pfn_t pfn,
3312                         bool prefault, bool account_disallowed_nx_lpage)
3313 {
3314         struct kvm_shadow_walk_iterator it;
3315         struct kvm_mmu_page *sp;
3316         int level, ret;
3317         gfn_t gfn = gpa >> PAGE_SHIFT;
3318         gfn_t base_gfn = gfn;
3319
3320         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3321                 return RET_PF_RETRY;
3322
3323         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3324
3325         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3326         for_each_shadow_entry(vcpu, gpa, it) {
3327                 /*
3328                  * We cannot overwrite existing page tables with an NX
3329                  * large page, as the leaf could be executable.
3330                  */
3331                 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3332
3333                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3334                 if (it.level == level)
3335                         break;
3336
3337                 drop_large_spte(vcpu, it.sptep);
3338                 if (!is_shadow_present_pte(*it.sptep)) {
3339                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3340                                               it.level - 1, true, ACC_ALL);
3341
3342                         link_shadow_page(vcpu, it.sptep, sp);
3343                         if (account_disallowed_nx_lpage)
3344                                 account_huge_nx_page(vcpu->kvm, sp);
3345                 }
3346         }
3347
3348         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3349                            write, level, base_gfn, pfn, prefault,
3350                            map_writable);
3351         direct_pte_prefetch(vcpu, it.sptep);
3352         ++vcpu->stat.pf_fixed;
3353         return ret;
3354 }
3355
3356 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3357 {
3358         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3359 }
3360
3361 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3362 {
3363         /*
3364          * Do not cache the mmio info caused by writing the readonly gfn
3365          * into the spte otherwise read access on readonly gfn also can
3366          * caused mmio page fault and treat it as mmio access.
3367          */
3368         if (pfn == KVM_PFN_ERR_RO_FAULT)
3369                 return RET_PF_EMULATE;
3370
3371         if (pfn == KVM_PFN_ERR_HWPOISON) {
3372                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3373                 return RET_PF_RETRY;
3374         }
3375
3376         return -EFAULT;
3377 }
3378
3379 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3380                                 kvm_pfn_t pfn, unsigned int access,
3381                                 int *ret_val)
3382 {
3383         /* The pfn is invalid, report the error! */
3384         if (unlikely(is_error_pfn(pfn))) {
3385                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3386                 return true;
3387         }
3388
3389         if (unlikely(is_noslot_pfn(pfn)))
3390                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3391                                      access & shadow_mmio_access_mask);
3392
3393         return false;
3394 }
3395
3396 static bool page_fault_can_be_fast(u32 error_code)
3397 {
3398         /*
3399          * Do not fix the mmio spte with invalid generation number which
3400          * need to be updated by slow page fault path.
3401          */
3402         if (unlikely(error_code & PFERR_RSVD_MASK))
3403                 return false;
3404
3405         /* See if the page fault is due to an NX violation */
3406         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3407                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3408                 return false;
3409
3410         /*
3411          * #PF can be fast if:
3412          * 1. The shadow page table entry is not present, which could mean that
3413          *    the fault is potentially caused by access tracking (if enabled).
3414          * 2. The shadow page table entry is present and the fault
3415          *    is caused by write-protect, that means we just need change the W
3416          *    bit of the spte which can be done out of mmu-lock.
3417          *
3418          * However, if access tracking is disabled we know that a non-present
3419          * page must be a genuine page fault where we have to create a new SPTE.
3420          * So, if access tracking is disabled, we return true only for write
3421          * accesses to a present page.
3422          */
3423
3424         return shadow_acc_track_mask != 0 ||
3425                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3426                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3427 }
3428
3429 /*
3430  * Returns true if the SPTE was fixed successfully. Otherwise,
3431  * someone else modified the SPTE from its original value.
3432  */
3433 static bool
3434 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3435                         u64 *sptep, u64 old_spte, u64 new_spte)
3436 {
3437         gfn_t gfn;
3438
3439         WARN_ON(!sp->role.direct);
3440
3441         /*
3442          * Theoretically we could also set dirty bit (and flush TLB) here in
3443          * order to eliminate unnecessary PML logging. See comments in
3444          * set_spte. But fast_page_fault is very unlikely to happen with PML
3445          * enabled, so we do not do this. This might result in the same GPA
3446          * to be logged in PML buffer again when the write really happens, and
3447          * eventually to be called by mark_page_dirty twice. But it's also no
3448          * harm. This also avoids the TLB flush needed after setting dirty bit
3449          * so non-PML cases won't be impacted.
3450          *
3451          * Compare with set_spte where instead shadow_dirty_mask is set.
3452          */
3453         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3454                 return false;
3455
3456         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3457                 /*
3458                  * The gfn of direct spte is stable since it is
3459                  * calculated by sp->gfn.
3460                  */
3461                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3462                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3463         }
3464
3465         return true;
3466 }
3467
3468 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3469 {
3470         if (fault_err_code & PFERR_FETCH_MASK)
3471                 return is_executable_pte(spte);
3472
3473         if (fault_err_code & PFERR_WRITE_MASK)
3474                 return is_writable_pte(spte);
3475
3476         /* Fault was on Read access */
3477         return spte & PT_PRESENT_MASK;
3478 }
3479
3480 /*
3481  * Return value:
3482  * - true: let the vcpu to access on the same address again.
3483  * - false: let the real page fault path to fix it.
3484  */
3485 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3486                             u32 error_code)
3487 {
3488         struct kvm_shadow_walk_iterator iterator;
3489         struct kvm_mmu_page *sp;
3490         bool fault_handled = false;
3491         u64 spte = 0ull;
3492         uint retry_count = 0;
3493
3494         if (!page_fault_can_be_fast(error_code))
3495                 return false;
3496
3497         walk_shadow_page_lockless_begin(vcpu);
3498
3499         do {
3500                 u64 new_spte;
3501
3502                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3503                         if (!is_shadow_present_pte(spte))
3504                                 break;
3505
3506                 sp = sptep_to_sp(iterator.sptep);
3507                 if (!is_last_spte(spte, sp->role.level))
3508                         break;
3509
3510                 /*
3511                  * Check whether the memory access that caused the fault would
3512                  * still cause it if it were to be performed right now. If not,
3513                  * then this is a spurious fault caused by TLB lazily flushed,
3514                  * or some other CPU has already fixed the PTE after the
3515                  * current CPU took the fault.
3516                  *
3517                  * Need not check the access of upper level table entries since
3518                  * they are always ACC_ALL.
3519                  */
3520                 if (is_access_allowed(error_code, spte)) {
3521                         fault_handled = true;
3522                         break;
3523                 }
3524
3525                 new_spte = spte;
3526
3527                 if (is_access_track_spte(spte))
3528                         new_spte = restore_acc_track_spte(new_spte);
3529
3530                 /*
3531                  * Currently, to simplify the code, write-protection can
3532                  * be removed in the fast path only if the SPTE was
3533                  * write-protected for dirty-logging or access tracking.
3534                  */
3535                 if ((error_code & PFERR_WRITE_MASK) &&
3536                     spte_can_locklessly_be_made_writable(spte)) {
3537                         new_spte |= PT_WRITABLE_MASK;
3538
3539                         /*
3540                          * Do not fix write-permission on the large spte.  Since
3541                          * we only dirty the first page into the dirty-bitmap in
3542                          * fast_pf_fix_direct_spte(), other pages are missed
3543                          * if its slot has dirty logging enabled.
3544                          *
3545                          * Instead, we let the slow page fault path create a
3546                          * normal spte to fix the access.
3547                          *
3548                          * See the comments in kvm_arch_commit_memory_region().
3549                          */
3550                         if (sp->role.level > PG_LEVEL_4K)
3551                                 break;
3552                 }
3553
3554                 /* Verify that the fault can be handled in the fast path */
3555                 if (new_spte == spte ||
3556                     !is_access_allowed(error_code, new_spte))
3557                         break;
3558
3559                 /*
3560                  * Currently, fast page fault only works for direct mapping
3561                  * since the gfn is not stable for indirect shadow page. See
3562                  * Documentation/virt/kvm/locking.rst to get more detail.
3563                  */
3564                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3565                                                         iterator.sptep, spte,
3566                                                         new_spte);
3567                 if (fault_handled)
3568                         break;
3569
3570                 if (++retry_count > 4) {
3571                         printk_once(KERN_WARNING
3572                                 "kvm: Fast #PF retrying more than 4 times.\n");
3573                         break;
3574                 }
3575
3576         } while (true);
3577
3578         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3579                               spte, fault_handled);
3580         walk_shadow_page_lockless_end(vcpu);
3581
3582         return fault_handled;
3583 }
3584
3585 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3586                                struct list_head *invalid_list)
3587 {
3588         struct kvm_mmu_page *sp;
3589
3590         if (!VALID_PAGE(*root_hpa))
3591                 return;
3592
3593         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3594         --sp->root_count;
3595         if (!sp->root_count && sp->role.invalid)
3596                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3597
3598         *root_hpa = INVALID_PAGE;
3599 }
3600
3601 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3602 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3603                         ulong roots_to_free)
3604 {
3605         int i;
3606         LIST_HEAD(invalid_list);
3607         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3608
3609         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3610
3611         /* Before acquiring the MMU lock, see if we need to do any real work. */
3612         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3613                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3614                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3615                             VALID_PAGE(mmu->prev_roots[i].hpa))
3616                                 break;
3617
3618                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3619                         return;
3620         }
3621
3622         spin_lock(&vcpu->kvm->mmu_lock);
3623
3624         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3625                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3626                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3627                                            &invalid_list);
3628
3629         if (free_active_root) {
3630                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3631                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3632                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3633                                            &invalid_list);
3634                 } else {
3635                         for (i = 0; i < 4; ++i)
3636                                 if (mmu->pae_root[i] != 0)
3637                                         mmu_free_root_page(vcpu->kvm,
3638                                                            &mmu->pae_root[i],
3639                                                            &invalid_list);
3640                         mmu->root_hpa = INVALID_PAGE;
3641                 }
3642                 mmu->root_pgd = 0;
3643         }
3644
3645         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3646         spin_unlock(&vcpu->kvm->mmu_lock);
3647 }
3648 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3649
3650 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3651 {
3652         int ret = 0;
3653
3654         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3655                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3656                 ret = 1;
3657         }
3658
3659         return ret;
3660 }
3661
3662 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3663                             u8 level, bool direct)
3664 {
3665         struct kvm_mmu_page *sp;
3666
3667         spin_lock(&vcpu->kvm->mmu_lock);
3668
3669         if (make_mmu_pages_available(vcpu)) {
3670                 spin_unlock(&vcpu->kvm->mmu_lock);
3671                 return INVALID_PAGE;
3672         }
3673         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3674         ++sp->root_count;
3675
3676         spin_unlock(&vcpu->kvm->mmu_lock);
3677         return __pa(sp->spt);
3678 }
3679
3680 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3681 {
3682         u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3683         hpa_t root;
3684         unsigned i;
3685
3686         if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3687                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3688                 if (!VALID_PAGE(root))
3689                         return -ENOSPC;
3690                 vcpu->arch.mmu->root_hpa = root;
3691         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3692                 for (i = 0; i < 4; ++i) {
3693                         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3694
3695                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3696                                               i << 30, PT32_ROOT_LEVEL, true);
3697                         if (!VALID_PAGE(root))
3698                                 return -ENOSPC;
3699                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3700                 }
3701                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3702         } else
3703                 BUG();
3704
3705         /* root_pgd is ignored for direct MMUs. */
3706         vcpu->arch.mmu->root_pgd = 0;
3707
3708         return 0;
3709 }
3710
3711 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3712 {
3713         u64 pdptr, pm_mask;
3714         gfn_t root_gfn, root_pgd;
3715         hpa_t root;
3716         int i;
3717
3718         root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3719         root_gfn = root_pgd >> PAGE_SHIFT;
3720
3721         if (mmu_check_root(vcpu, root_gfn))
3722                 return 1;
3723
3724         /*
3725          * Do we shadow a long mode page table? If so we need to
3726          * write-protect the guests page table root.
3727          */
3728         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3729                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3730
3731                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3732                                       vcpu->arch.mmu->shadow_root_level, false);
3733                 if (!VALID_PAGE(root))
3734                         return -ENOSPC;
3735                 vcpu->arch.mmu->root_hpa = root;
3736                 goto set_root_pgd;
3737         }
3738
3739         /*
3740          * We shadow a 32 bit page table. This may be a legacy 2-level
3741          * or a PAE 3-level page table. In either case we need to be aware that
3742          * the shadow page table may be a PAE or a long mode page table.
3743          */
3744         pm_mask = PT_PRESENT_MASK;
3745         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3746                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3747
3748         for (i = 0; i < 4; ++i) {
3749                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3750                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3751                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3752                         if (!(pdptr & PT_PRESENT_MASK)) {
3753                                 vcpu->arch.mmu->pae_root[i] = 0;
3754                                 continue;
3755                         }
3756                         root_gfn = pdptr >> PAGE_SHIFT;
3757                         if (mmu_check_root(vcpu, root_gfn))
3758                                 return 1;
3759                 }
3760
3761                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3762                                       PT32_ROOT_LEVEL, false);
3763                 if (!VALID_PAGE(root))
3764                         return -ENOSPC;
3765                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3766         }
3767         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3768
3769         /*
3770          * If we shadow a 32 bit page table with a long mode page
3771          * table we enter this path.
3772          */
3773         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3774                 if (vcpu->arch.mmu->lm_root == NULL) {
3775                         /*
3776                          * The additional page necessary for this is only
3777                          * allocated on demand.
3778                          */
3779
3780                         u64 *lm_root;
3781
3782                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3783                         if (lm_root == NULL)
3784                                 return 1;
3785
3786                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3787
3788                         vcpu->arch.mmu->lm_root = lm_root;
3789                 }
3790
3791                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3792         }
3793
3794 set_root_pgd:
3795         vcpu->arch.mmu->root_pgd = root_pgd;
3796
3797         return 0;
3798 }
3799
3800 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3801 {
3802         if (vcpu->arch.mmu->direct_map)
3803                 return mmu_alloc_direct_roots(vcpu);
3804         else
3805                 return mmu_alloc_shadow_roots(vcpu);
3806 }
3807
3808 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3809 {
3810         int i;
3811         struct kvm_mmu_page *sp;
3812
3813         if (vcpu->arch.mmu->direct_map)
3814                 return;
3815
3816         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3817                 return;
3818
3819         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3820
3821         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3822                 hpa_t root = vcpu->arch.mmu->root_hpa;
3823                 sp = to_shadow_page(root);
3824
3825                 /*
3826                  * Even if another CPU was marking the SP as unsync-ed
3827                  * simultaneously, any guest page table changes are not
3828                  * guaranteed to be visible anyway until this VCPU issues a TLB
3829                  * flush strictly after those changes are made. We only need to
3830                  * ensure that the other CPU sets these flags before any actual
3831                  * changes to the page tables are made. The comments in
3832                  * mmu_need_write_protect() describe what could go wrong if this
3833                  * requirement isn't satisfied.
3834                  */
3835                 if (!smp_load_acquire(&sp->unsync) &&
3836                     !smp_load_acquire(&sp->unsync_children))
3837                         return;
3838
3839                 spin_lock(&vcpu->kvm->mmu_lock);
3840                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3841
3842                 mmu_sync_children(vcpu, sp);
3843
3844                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3845                 spin_unlock(&vcpu->kvm->mmu_lock);
3846                 return;
3847         }
3848
3849         spin_lock(&vcpu->kvm->mmu_lock);
3850         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3851
3852         for (i = 0; i < 4; ++i) {
3853                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3854
3855                 if (root && VALID_PAGE(root)) {
3856                         root &= PT64_BASE_ADDR_MASK;
3857                         sp = to_shadow_page(root);
3858                         mmu_sync_children(vcpu, sp);
3859                 }
3860         }
3861
3862         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3863         spin_unlock(&vcpu->kvm->mmu_lock);
3864 }
3865 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3866
3867 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3868                                   u32 access, struct x86_exception *exception)
3869 {
3870         if (exception)
3871                 exception->error_code = 0;
3872         return vaddr;
3873 }
3874
3875 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3876                                          u32 access,
3877                                          struct x86_exception *exception)
3878 {
3879         if (exception)
3880                 exception->error_code = 0;
3881         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3882 }
3883
3884 static bool
3885 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3886 {
3887         int bit7 = (pte >> 7) & 1;
3888
3889         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3890 }
3891
3892 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3893 {
3894         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3895 }
3896
3897 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3898 {
3899         /*
3900          * A nested guest cannot use the MMIO cache if it is using nested
3901          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3902          */
3903         if (mmu_is_nested(vcpu))
3904                 return false;
3905
3906         if (direct)
3907                 return vcpu_match_mmio_gpa(vcpu, addr);
3908
3909         return vcpu_match_mmio_gva(vcpu, addr);
3910 }
3911
3912 /* return true if reserved bit is detected on spte. */
3913 static bool
3914 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3915 {
3916         struct kvm_shadow_walk_iterator iterator;
3917         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3918         struct rsvd_bits_validate *rsvd_check;
3919         int root, leaf;
3920         bool reserved = false;
3921
3922         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3923
3924         walk_shadow_page_lockless_begin(vcpu);
3925
3926         for (shadow_walk_init(&iterator, vcpu, addr),
3927                  leaf = root = iterator.level;
3928              shadow_walk_okay(&iterator);
3929              __shadow_walk_next(&iterator, spte)) {
3930                 spte = mmu_spte_get_lockless(iterator.sptep);
3931
3932                 sptes[leaf - 1] = spte;
3933                 leaf--;
3934
3935                 if (!is_shadow_present_pte(spte))
3936                         break;
3937
3938                 /*
3939                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3940                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3941                  * adding a Jcc in the loop.
3942                  */
3943                 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3944                             __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3945         }
3946
3947         walk_shadow_page_lockless_end(vcpu);
3948
3949         if (reserved) {
3950                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3951                        __func__, addr);
3952                 while (root > leaf) {
3953                         pr_err("------ spte 0x%llx level %d.\n",
3954                                sptes[root - 1], root);
3955                         root--;
3956                 }
3957         }
3958
3959         *sptep = spte;
3960         return reserved;
3961 }
3962
3963 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3964 {
3965         u64 spte;
3966         bool reserved;
3967
3968         if (mmio_info_in_cache(vcpu, addr, direct))
3969                 return RET_PF_EMULATE;
3970
3971         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3972         if (WARN_ON(reserved))
3973                 return -EINVAL;
3974
3975         if (is_mmio_spte(spte)) {
3976                 gfn_t gfn = get_mmio_spte_gfn(spte);
3977                 unsigned int access = get_mmio_spte_access(spte);
3978
3979                 if (!check_mmio_spte(vcpu, spte))
3980                         return RET_PF_INVALID;
3981
3982                 if (direct)
3983                         addr = 0;
3984
3985                 trace_handle_mmio_page_fault(addr, gfn, access);
3986                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3987                 return RET_PF_EMULATE;
3988         }
3989
3990         /*
3991          * If the page table is zapped by other cpus, let CPU fault again on
3992          * the address.
3993          */
3994         return RET_PF_RETRY;
3995 }
3996
3997 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3998                                          u32 error_code, gfn_t gfn)
3999 {
4000         if (unlikely(error_code & PFERR_RSVD_MASK))
4001                 return false;
4002
4003         if (!(error_code & PFERR_PRESENT_MASK) ||
4004               !(error_code & PFERR_WRITE_MASK))
4005                 return false;
4006
4007         /*
4008          * guest is writing the page which is write tracked which can
4009          * not be fixed by page fault handler.
4010          */
4011         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4012                 return true;
4013
4014         return false;
4015 }
4016
4017 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4018 {
4019         struct kvm_shadow_walk_iterator iterator;
4020         u64 spte;
4021
4022         walk_shadow_page_lockless_begin(vcpu);
4023         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4024                 clear_sp_write_flooding_count(iterator.sptep);
4025                 if (!is_shadow_present_pte(spte))
4026                         break;
4027         }
4028         walk_shadow_page_lockless_end(vcpu);
4029 }
4030
4031 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4032                                     gfn_t gfn)
4033 {
4034         struct kvm_arch_async_pf arch;
4035
4036         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4037         arch.gfn = gfn;
4038         arch.direct_map = vcpu->arch.mmu->direct_map;
4039         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4040
4041         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4042                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4043 }
4044
4045 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4046                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4047                          bool *writable)
4048 {
4049         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4050         bool async;
4051
4052         /* Don't expose private memslots to L2. */
4053         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
4054                 *pfn = KVM_PFN_NOSLOT;
4055                 *writable = false;
4056                 return false;
4057         }
4058
4059         async = false;
4060         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4061         if (!async)
4062                 return false; /* *pfn has correct page already */
4063
4064         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4065                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4066                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4067                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4068                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4069                         return true;
4070                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4071                         return true;
4072         }
4073
4074         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4075         return false;
4076 }
4077
4078 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4079                              bool prefault, int max_level, bool is_tdp)
4080 {
4081         bool write = error_code & PFERR_WRITE_MASK;
4082         bool exec = error_code & PFERR_FETCH_MASK;
4083         bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4084         bool map_writable;
4085
4086         gfn_t gfn = gpa >> PAGE_SHIFT;
4087         unsigned long mmu_seq;
4088         kvm_pfn_t pfn;
4089         int r;
4090
4091         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4092                 return RET_PF_EMULATE;
4093
4094         if (fast_page_fault(vcpu, gpa, error_code))
4095                 return RET_PF_RETRY;
4096
4097         r = mmu_topup_memory_caches(vcpu, false);
4098         if (r)
4099                 return r;
4100
4101         if (lpage_disallowed)
4102                 max_level = PG_LEVEL_4K;
4103
4104         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4105         smp_rmb();
4106
4107         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4108                 return RET_PF_RETRY;
4109
4110         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4111                 return r;
4112
4113         r = RET_PF_RETRY;
4114         spin_lock(&vcpu->kvm->mmu_lock);
4115         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4116                 goto out_unlock;
4117         r = make_mmu_pages_available(vcpu);
4118         if (r)
4119                 goto out_unlock;
4120         r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4121                          prefault, is_tdp && lpage_disallowed);
4122
4123 out_unlock:
4124         spin_unlock(&vcpu->kvm->mmu_lock);
4125         kvm_release_pfn_clean(pfn);
4126         return r;
4127 }
4128
4129 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4130                                 u32 error_code, bool prefault)
4131 {
4132         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4133
4134         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4135         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4136                                  PG_LEVEL_2M, false);
4137 }
4138
4139 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4140                                 u64 fault_address, char *insn, int insn_len)
4141 {
4142         int r = 1;
4143         u32 flags = vcpu->arch.apf.host_apf_flags;
4144
4145 #ifndef CONFIG_X86_64
4146         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4147         if (WARN_ON_ONCE(fault_address >> 32))
4148                 return -EFAULT;
4149 #endif
4150
4151         vcpu->arch.l1tf_flush_l1d = true;
4152         if (!flags) {
4153                 trace_kvm_page_fault(fault_address, error_code);
4154
4155                 if (kvm_event_needs_reinjection(vcpu))
4156                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4157                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4158                                 insn_len);
4159         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4160                 vcpu->arch.apf.host_apf_flags = 0;
4161                 local_irq_disable();
4162                 kvm_async_pf_task_wait_schedule(fault_address);
4163                 local_irq_enable();
4164         } else {
4165                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4166         }
4167
4168         return r;
4169 }
4170 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4171
4172 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4173                        bool prefault)
4174 {
4175         int max_level;
4176
4177         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4178              max_level > PG_LEVEL_4K;
4179              max_level--) {
4180                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4181                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4182
4183                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4184                         break;
4185         }
4186
4187         return direct_page_fault(vcpu, gpa, error_code, prefault,
4188                                  max_level, true);
4189 }
4190
4191 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4192                                    struct kvm_mmu *context)
4193 {
4194         context->page_fault = nonpaging_page_fault;
4195         context->gva_to_gpa = nonpaging_gva_to_gpa;
4196         context->sync_page = nonpaging_sync_page;
4197         context->invlpg = NULL;
4198         context->update_pte = nonpaging_update_pte;
4199         context->root_level = 0;
4200         context->shadow_root_level = PT32E_ROOT_LEVEL;
4201         context->direct_map = true;
4202         context->nx = false;
4203 }
4204
4205 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4206                                   union kvm_mmu_page_role role)
4207 {
4208         return (role.direct || pgd == root->pgd) &&
4209                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4210                role.word == to_shadow_page(root->hpa)->role.word;
4211 }
4212
4213 /*
4214  * Find out if a previously cached root matching the new pgd/role is available.
4215  * The current root is also inserted into the cache.
4216  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4217  * returned.
4218  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4219  * false is returned. This root should now be freed by the caller.
4220  */
4221 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4222                                   union kvm_mmu_page_role new_role)
4223 {
4224         uint i;
4225         struct kvm_mmu_root_info root;
4226         struct kvm_mmu *mmu = vcpu->arch.mmu;
4227
4228         root.pgd = mmu->root_pgd;
4229         root.hpa = mmu->root_hpa;
4230
4231         if (is_root_usable(&root, new_pgd, new_role))
4232                 return true;
4233
4234         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4235                 swap(root, mmu->prev_roots[i]);
4236
4237                 if (is_root_usable(&root, new_pgd, new_role))
4238                         break;
4239         }
4240
4241         mmu->root_hpa = root.hpa;
4242         mmu->root_pgd = root.pgd;
4243
4244         return i < KVM_MMU_NUM_PREV_ROOTS;
4245 }
4246
4247 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4248                             union kvm_mmu_page_role new_role)
4249 {
4250         struct kvm_mmu *mmu = vcpu->arch.mmu;
4251
4252         /*
4253          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4254          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4255          * later if necessary.
4256          */
4257         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4258             mmu->root_level >= PT64_ROOT_4LEVEL)
4259                 return cached_root_available(vcpu, new_pgd, new_role);
4260
4261         return false;
4262 }
4263
4264 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4265                               union kvm_mmu_page_role new_role,
4266                               bool skip_tlb_flush, bool skip_mmu_sync)
4267 {
4268         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4269                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4270                 return;
4271         }
4272
4273         /*
4274          * It's possible that the cached previous root page is obsolete because
4275          * of a change in the MMU generation number. However, changing the
4276          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4277          * free the root set here and allocate a new one.
4278          */
4279         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4280
4281         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
4282                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4283         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
4284                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4285
4286         /*
4287          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4288          * switching to a new CR3, that GVA->GPA mapping may no longer be
4289          * valid. So clear any cached MMIO info even when we don't need to sync
4290          * the shadow page tables.
4291          */
4292         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4293
4294         __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
4295 }
4296
4297 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4298                      bool skip_mmu_sync)
4299 {
4300         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4301                           skip_tlb_flush, skip_mmu_sync);
4302 }
4303 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4304
4305 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4306 {
4307         return kvm_read_cr3(vcpu);
4308 }
4309
4310 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4311                            unsigned int access, int *nr_present)
4312 {
4313         if (unlikely(is_mmio_spte(*sptep))) {
4314                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4315                         mmu_spte_clear_no_track(sptep);
4316                         return true;
4317                 }
4318
4319                 (*nr_present)++;
4320                 mark_mmio_spte(vcpu, sptep, gfn, access);
4321                 return true;
4322         }
4323
4324         return false;
4325 }
4326
4327 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4328                                 unsigned level, unsigned gpte)
4329 {
4330         /*
4331          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4332          * If it is clear, there are no large pages at this level, so clear
4333          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4334          */
4335         gpte &= level - mmu->last_nonleaf_level;
4336
4337         /*
4338          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
4339          * iff level <= PG_LEVEL_4K, which for our purpose means
4340          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4341          */
4342         gpte |= level - PG_LEVEL_4K - 1;
4343
4344         return gpte & PT_PAGE_SIZE_MASK;
4345 }
4346
4347 #define PTTYPE_EPT 18 /* arbitrary */
4348 #define PTTYPE PTTYPE_EPT
4349 #include "paging_tmpl.h"
4350 #undef PTTYPE
4351
4352 #define PTTYPE 64
4353 #include "paging_tmpl.h"
4354 #undef PTTYPE
4355
4356 #define PTTYPE 32
4357 #include "paging_tmpl.h"
4358 #undef PTTYPE
4359
4360 static void
4361 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4362                         struct rsvd_bits_validate *rsvd_check,
4363                         int maxphyaddr, int level, bool nx, bool gbpages,
4364                         bool pse, bool amd)
4365 {
4366         u64 exb_bit_rsvd = 0;
4367         u64 gbpages_bit_rsvd = 0;
4368         u64 nonleaf_bit8_rsvd = 0;
4369
4370         rsvd_check->bad_mt_xwr = 0;
4371
4372         if (!nx)
4373                 exb_bit_rsvd = rsvd_bits(63, 63);
4374         if (!gbpages)
4375                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4376
4377         /*
4378          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4379          * leaf entries) on AMD CPUs only.
4380          */
4381         if (amd)
4382                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4383
4384         switch (level) {
4385         case PT32_ROOT_LEVEL:
4386                 /* no rsvd bits for 2 level 4K page table entries */
4387                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4388                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4389                 rsvd_check->rsvd_bits_mask[1][0] =
4390                         rsvd_check->rsvd_bits_mask[0][0];
4391
4392                 if (!pse) {
4393                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4394                         break;
4395                 }
4396
4397                 if (is_cpuid_PSE36())
4398                         /* 36bits PSE 4MB page */
4399                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4400                 else
4401                         /* 32 bits PSE 4MB page */
4402                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4403                 break;
4404         case PT32E_ROOT_LEVEL:
4405                 rsvd_check->rsvd_bits_mask[0][2] =
4406                         rsvd_bits(maxphyaddr, 63) |
4407                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4408                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4409                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4410                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4411                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4412                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4413                         rsvd_bits(maxphyaddr, 62) |
4414                         rsvd_bits(13, 20);              /* large page */
4415                 rsvd_check->rsvd_bits_mask[1][0] =
4416                         rsvd_check->rsvd_bits_mask[0][0];
4417                 break;
4418         case PT64_ROOT_5LEVEL:
4419                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4420                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4421                         rsvd_bits(maxphyaddr, 51);
4422                 rsvd_check->rsvd_bits_mask[1][4] =
4423                         rsvd_check->rsvd_bits_mask[0][4];
4424                 /* fall through */
4425         case PT64_ROOT_4LEVEL:
4426                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4427                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4428                         rsvd_bits(maxphyaddr, 51);
4429                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4430                         gbpages_bit_rsvd |
4431                         rsvd_bits(maxphyaddr, 51);
4432                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4433                         rsvd_bits(maxphyaddr, 51);
4434                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4435                         rsvd_bits(maxphyaddr, 51);
4436                 rsvd_check->rsvd_bits_mask[1][3] =
4437                         rsvd_check->rsvd_bits_mask[0][3];
4438                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4439                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4440                         rsvd_bits(13, 29);
4441                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4442                         rsvd_bits(maxphyaddr, 51) |
4443                         rsvd_bits(13, 20);              /* large page */
4444                 rsvd_check->rsvd_bits_mask[1][0] =
4445                         rsvd_check->rsvd_bits_mask[0][0];
4446                 break;
4447         }
4448 }
4449
4450 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4451                                   struct kvm_mmu *context)
4452 {
4453         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4454                                 cpuid_maxphyaddr(vcpu), context->root_level,
4455                                 context->nx,
4456                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4457                                 is_pse(vcpu),
4458                                 guest_cpuid_is_amd_or_hygon(vcpu));
4459 }
4460
4461 static void
4462 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4463                             int maxphyaddr, bool execonly)
4464 {
4465         u64 bad_mt_xwr;
4466
4467         rsvd_check->rsvd_bits_mask[0][4] =
4468                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4469         rsvd_check->rsvd_bits_mask[0][3] =
4470                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4471         rsvd_check->rsvd_bits_mask[0][2] =
4472                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4473         rsvd_check->rsvd_bits_mask[0][1] =
4474                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4475         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4476
4477         /* large page */
4478         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4479         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4480         rsvd_check->rsvd_bits_mask[1][2] =
4481                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4482         rsvd_check->rsvd_bits_mask[1][1] =
4483                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4484         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4485
4486         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4487         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4488         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4489         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4490         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4491         if (!execonly) {
4492                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4493                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4494         }
4495         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4496 }
4497
4498 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4499                 struct kvm_mmu *context, bool execonly)
4500 {
4501         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4502                                     cpuid_maxphyaddr(vcpu), execonly);
4503 }
4504
4505 /*
4506  * the page table on host is the shadow page table for the page
4507  * table in guest or amd nested guest, its mmu features completely
4508  * follow the features in guest.
4509  */
4510 void
4511 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4512 {
4513         bool uses_nx = context->nx ||
4514                 context->mmu_role.base.smep_andnot_wp;
4515         struct rsvd_bits_validate *shadow_zero_check;
4516         int i;
4517
4518         /*
4519          * Passing "true" to the last argument is okay; it adds a check
4520          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4521          */
4522         shadow_zero_check = &context->shadow_zero_check;
4523         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4524                                 shadow_phys_bits,
4525                                 context->shadow_root_level, uses_nx,
4526                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4527                                 is_pse(vcpu), true);
4528
4529         if (!shadow_me_mask)
4530                 return;
4531
4532         for (i = context->shadow_root_level; --i >= 0;) {
4533                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4534                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4535         }
4536
4537 }
4538 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4539
4540 static inline bool boot_cpu_is_amd(void)
4541 {
4542         WARN_ON_ONCE(!tdp_enabled);
4543         return shadow_x_mask == 0;
4544 }
4545
4546 /*
4547  * the direct page table on host, use as much mmu features as
4548  * possible, however, kvm currently does not do execution-protection.
4549  */
4550 static void
4551 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4552                                 struct kvm_mmu *context)
4553 {
4554         struct rsvd_bits_validate *shadow_zero_check;
4555         int i;
4556
4557         shadow_zero_check = &context->shadow_zero_check;
4558
4559         if (boot_cpu_is_amd())
4560                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4561                                         shadow_phys_bits,
4562                                         context->shadow_root_level, false,
4563                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4564                                         true, true);
4565         else
4566                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4567                                             shadow_phys_bits,
4568                                             false);
4569
4570         if (!shadow_me_mask)
4571                 return;
4572
4573         for (i = context->shadow_root_level; --i >= 0;) {
4574                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4575                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4576         }
4577 }
4578
4579 /*
4580  * as the comments in reset_shadow_zero_bits_mask() except it
4581  * is the shadow page table for intel nested guest.
4582  */
4583 static void
4584 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4585                                 struct kvm_mmu *context, bool execonly)
4586 {
4587         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4588                                     shadow_phys_bits, execonly);
4589 }
4590
4591 #define BYTE_MASK(access) \
4592         ((1 & (access) ? 2 : 0) | \
4593          (2 & (access) ? 4 : 0) | \
4594          (3 & (access) ? 8 : 0) | \
4595          (4 & (access) ? 16 : 0) | \
4596          (5 & (access) ? 32 : 0) | \
4597          (6 & (access) ? 64 : 0) | \
4598          (7 & (access) ? 128 : 0))
4599
4600
4601 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4602                                       struct kvm_mmu *mmu, bool ept)
4603 {
4604         unsigned byte;
4605
4606         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4607         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4608         const u8 u = BYTE_MASK(ACC_USER_MASK);
4609
4610         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4611         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4612         bool cr0_wp = is_write_protection(vcpu);
4613
4614         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4615                 unsigned pfec = byte << 1;
4616
4617                 /*
4618                  * Each "*f" variable has a 1 bit for each UWX value
4619                  * that causes a fault with the given PFEC.
4620                  */
4621
4622                 /* Faults from writes to non-writable pages */
4623                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4624                 /* Faults from user mode accesses to supervisor pages */
4625                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4626                 /* Faults from fetches of non-executable pages*/
4627                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4628                 /* Faults from kernel mode fetches of user pages */
4629                 u8 smepf = 0;
4630                 /* Faults from kernel mode accesses of user pages */
4631                 u8 smapf = 0;
4632
4633                 if (!ept) {
4634                         /* Faults from kernel mode accesses to user pages */
4635                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4636
4637                         /* Not really needed: !nx will cause pte.nx to fault */
4638                         if (!mmu->nx)
4639                                 ff = 0;
4640
4641                         /* Allow supervisor writes if !cr0.wp */
4642                         if (!cr0_wp)
4643                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4644
4645                         /* Disallow supervisor fetches of user code if cr4.smep */
4646                         if (cr4_smep)
4647                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4648
4649                         /*
4650                          * SMAP:kernel-mode data accesses from user-mode
4651                          * mappings should fault. A fault is considered
4652                          * as a SMAP violation if all of the following
4653                          * conditions are true:
4654                          *   - X86_CR4_SMAP is set in CR4
4655                          *   - A user page is accessed
4656                          *   - The access is not a fetch
4657                          *   - Page fault in kernel mode
4658                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4659                          *
4660                          * Here, we cover the first three conditions.
4661                          * The fourth is computed dynamically in permission_fault();
4662                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4663                          * *not* subject to SMAP restrictions.
4664                          */
4665                         if (cr4_smap)
4666                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4667                 }
4668
4669                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4670         }
4671 }
4672
4673 /*
4674 * PKU is an additional mechanism by which the paging controls access to
4675 * user-mode addresses based on the value in the PKRU register.  Protection
4676 * key violations are reported through a bit in the page fault error code.
4677 * Unlike other bits of the error code, the PK bit is not known at the
4678 * call site of e.g. gva_to_gpa; it must be computed directly in
4679 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4680 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4681 *
4682 * In particular the following conditions come from the error code, the
4683 * page tables and the machine state:
4684 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4685 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4686 * - PK is always zero if U=0 in the page tables
4687 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4688 *
4689 * The PKRU bitmask caches the result of these four conditions.  The error
4690 * code (minus the P bit) and the page table's U bit form an index into the
4691 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4692 * with the two bits of the PKRU register corresponding to the protection key.
4693 * For the first three conditions above the bits will be 00, thus masking
4694 * away both AD and WD.  For all reads or if the last condition holds, WD
4695 * only will be masked away.
4696 */
4697 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4698                                 bool ept)
4699 {
4700         unsigned bit;
4701         bool wp;
4702
4703         if (ept) {
4704                 mmu->pkru_mask = 0;
4705                 return;
4706         }
4707
4708         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4709         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4710                 mmu->pkru_mask = 0;
4711                 return;
4712         }
4713
4714         wp = is_write_protection(vcpu);
4715
4716         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4717                 unsigned pfec, pkey_bits;
4718                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4719
4720                 pfec = bit << 1;
4721                 ff = pfec & PFERR_FETCH_MASK;
4722                 uf = pfec & PFERR_USER_MASK;
4723                 wf = pfec & PFERR_WRITE_MASK;
4724
4725                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4726                 pte_user = pfec & PFERR_RSVD_MASK;
4727
4728                 /*
4729                  * Only need to check the access which is not an
4730                  * instruction fetch and is to a user page.
4731                  */
4732                 check_pkey = (!ff && pte_user);
4733                 /*
4734                  * write access is controlled by PKRU if it is a
4735                  * user access or CR0.WP = 1.
4736                  */
4737                 check_write = check_pkey && wf && (uf || wp);
4738
4739                 /* PKRU.AD stops both read and write access. */
4740                 pkey_bits = !!check_pkey;
4741                 /* PKRU.WD stops write access. */
4742                 pkey_bits |= (!!check_write) << 1;
4743
4744                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4745         }
4746 }
4747
4748 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4749 {
4750         unsigned root_level = mmu->root_level;
4751
4752         mmu->last_nonleaf_level = root_level;
4753         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4754                 mmu->last_nonleaf_level++;
4755 }
4756
4757 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4758                                          struct kvm_mmu *context,
4759                                          int level)
4760 {
4761         context->nx = is_nx(vcpu);
4762         context->root_level = level;
4763
4764         reset_rsvds_bits_mask(vcpu, context);
4765         update_permission_bitmask(vcpu, context, false);
4766         update_pkru_bitmask(vcpu, context, false);
4767         update_last_nonleaf_level(vcpu, context);
4768
4769         MMU_WARN_ON(!is_pae(vcpu));
4770         context->page_fault = paging64_page_fault;
4771         context->gva_to_gpa = paging64_gva_to_gpa;
4772         context->sync_page = paging64_sync_page;
4773         context->invlpg = paging64_invlpg;
4774         context->update_pte = paging64_update_pte;
4775         context->shadow_root_level = level;
4776         context->direct_map = false;
4777 }
4778
4779 static void paging64_init_context(struct kvm_vcpu *vcpu,
4780                                   struct kvm_mmu *context)
4781 {
4782         int root_level = is_la57_mode(vcpu) ?
4783                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4784
4785         paging64_init_context_common(vcpu, context, root_level);
4786 }
4787
4788 static void paging32_init_context(struct kvm_vcpu *vcpu,
4789                                   struct kvm_mmu *context)
4790 {
4791         context->nx = false;
4792         context->root_level = PT32_ROOT_LEVEL;
4793
4794         reset_rsvds_bits_mask(vcpu, context);
4795         update_permission_bitmask(vcpu, context, false);
4796         update_pkru_bitmask(vcpu, context, false);
4797         update_last_nonleaf_level(vcpu, context);
4798
4799         context->page_fault = paging32_page_fault;
4800         context->gva_to_gpa = paging32_gva_to_gpa;
4801         context->sync_page = paging32_sync_page;
4802         context->invlpg = paging32_invlpg;
4803         context->update_pte = paging32_update_pte;
4804         context->shadow_root_level = PT32E_ROOT_LEVEL;
4805         context->direct_map = false;
4806 }
4807
4808 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4809                                    struct kvm_mmu *context)
4810 {
4811         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4812 }
4813
4814 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4815 {
4816         union kvm_mmu_extended_role ext = {0};
4817
4818         ext.cr0_pg = !!is_paging(vcpu);
4819         ext.cr4_pae = !!is_pae(vcpu);
4820         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4821         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4822         ext.cr4_pse = !!is_pse(vcpu);
4823         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4824         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4825
4826         ext.valid = 1;
4827
4828         return ext;
4829 }
4830
4831 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4832                                                    bool base_only)
4833 {
4834         union kvm_mmu_role role = {0};
4835
4836         role.base.access = ACC_ALL;
4837         role.base.nxe = !!is_nx(vcpu);
4838         role.base.cr0_wp = is_write_protection(vcpu);
4839         role.base.smm = is_smm(vcpu);
4840         role.base.guest_mode = is_guest_mode(vcpu);
4841
4842         if (base_only)
4843                 return role;
4844
4845         role.ext = kvm_calc_mmu_role_ext(vcpu);
4846
4847         return role;
4848 }
4849
4850 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4851 {
4852         /* Use 5-level TDP if and only if it's useful/necessary. */
4853         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4854                 return 4;
4855
4856         return max_tdp_level;
4857 }
4858
4859 static union kvm_mmu_role
4860 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4861 {
4862         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4863
4864         role.base.ad_disabled = (shadow_accessed_mask == 0);
4865         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4866         role.base.direct = true;
4867         role.base.gpte_is_8_bytes = true;
4868
4869         return role;
4870 }
4871
4872 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4873 {
4874         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4875         union kvm_mmu_role new_role =
4876                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4877
4878         if (new_role.as_u64 == context->mmu_role.as_u64)
4879                 return;
4880
4881         context->mmu_role.as_u64 = new_role.as_u64;
4882         context->page_fault = kvm_tdp_page_fault;
4883         context->sync_page = nonpaging_sync_page;
4884         context->invlpg = NULL;
4885         context->update_pte = nonpaging_update_pte;
4886         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4887         context->direct_map = true;
4888         context->get_guest_pgd = get_cr3;
4889         context->get_pdptr = kvm_pdptr_read;
4890         context->inject_page_fault = kvm_inject_page_fault;
4891
4892         if (!is_paging(vcpu)) {
4893                 context->nx = false;
4894                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4895                 context->root_level = 0;
4896         } else if (is_long_mode(vcpu)) {
4897                 context->nx = is_nx(vcpu);
4898                 context->root_level = is_la57_mode(vcpu) ?
4899                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4900                 reset_rsvds_bits_mask(vcpu, context);
4901                 context->gva_to_gpa = paging64_gva_to_gpa;
4902         } else if (is_pae(vcpu)) {
4903                 context->nx = is_nx(vcpu);
4904                 context->root_level = PT32E_ROOT_LEVEL;
4905                 reset_rsvds_bits_mask(vcpu, context);
4906                 context->gva_to_gpa = paging64_gva_to_gpa;
4907         } else {
4908                 context->nx = false;
4909                 context->root_level = PT32_ROOT_LEVEL;
4910                 reset_rsvds_bits_mask(vcpu, context);
4911                 context->gva_to_gpa = paging32_gva_to_gpa;
4912         }
4913
4914         update_permission_bitmask(vcpu, context, false);
4915         update_pkru_bitmask(vcpu, context, false);
4916         update_last_nonleaf_level(vcpu, context);
4917         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4918 }
4919
4920 static union kvm_mmu_role
4921 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4922 {
4923         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4924
4925         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4926                 !is_write_protection(vcpu);
4927         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4928                 !is_write_protection(vcpu);
4929         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4930
4931         return role;
4932 }
4933
4934 static union kvm_mmu_role
4935 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4936 {
4937         union kvm_mmu_role role =
4938                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4939
4940         role.base.direct = !is_paging(vcpu);
4941
4942         if (!is_long_mode(vcpu))
4943                 role.base.level = PT32E_ROOT_LEVEL;
4944         else if (is_la57_mode(vcpu))
4945                 role.base.level = PT64_ROOT_5LEVEL;
4946         else
4947                 role.base.level = PT64_ROOT_4LEVEL;
4948
4949         return role;
4950 }
4951
4952 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4953                                     u32 cr0, u32 cr4, u32 efer,
4954                                     union kvm_mmu_role new_role)
4955 {
4956         if (!(cr0 & X86_CR0_PG))
4957                 nonpaging_init_context(vcpu, context);
4958         else if (efer & EFER_LMA)
4959                 paging64_init_context(vcpu, context);
4960         else if (cr4 & X86_CR4_PAE)
4961                 paging32E_init_context(vcpu, context);
4962         else
4963                 paging32_init_context(vcpu, context);
4964
4965         context->mmu_role.as_u64 = new_role.as_u64;
4966         reset_shadow_zero_bits_mask(vcpu, context);
4967 }
4968
4969 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4970 {
4971         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4972         union kvm_mmu_role new_role =
4973                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4974
4975         if (new_role.as_u64 != context->mmu_role.as_u64)
4976                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4977 }
4978
4979 static union kvm_mmu_role
4980 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4981 {
4982         union kvm_mmu_role role =
4983                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4984
4985         role.base.direct = false;
4986         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4987
4988         return role;
4989 }
4990
4991 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4992                              gpa_t nested_cr3)
4993 {
4994         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4995         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4996
4997         context->shadow_root_level = new_role.base.level;
4998
4999         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
5000
5001         if (new_role.as_u64 != context->mmu_role.as_u64)
5002                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
5003 }
5004 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5005
5006 static union kvm_mmu_role
5007 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5008                                    bool execonly, u8 level)
5009 {
5010         union kvm_mmu_role role = {0};
5011
5012         /* SMM flag is inherited from root_mmu */
5013         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5014
5015         role.base.level = level;
5016         role.base.gpte_is_8_bytes = true;
5017         role.base.direct = false;
5018         role.base.ad_disabled = !accessed_dirty;
5019         role.base.guest_mode = true;
5020         role.base.access = ACC_ALL;
5021
5022         /*
5023          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5024          * SMAP variation to denote shadow EPT entries.
5025          */
5026         role.base.cr0_wp = true;
5027         role.base.smap_andnot_wp = true;
5028
5029         role.ext = kvm_calc_mmu_role_ext(vcpu);
5030         role.ext.execonly = execonly;
5031
5032         return role;
5033 }
5034
5035 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5036                              bool accessed_dirty, gpa_t new_eptp)
5037 {
5038         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5039         u8 level = vmx_eptp_page_walk_level(new_eptp);
5040         union kvm_mmu_role new_role =
5041                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5042                                                    execonly, level);
5043
5044         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
5045
5046         if (new_role.as_u64 == context->mmu_role.as_u64)
5047                 return;
5048
5049         context->shadow_root_level = level;
5050
5051         context->nx = true;
5052         context->ept_ad = accessed_dirty;
5053         context->page_fault = ept_page_fault;
5054         context->gva_to_gpa = ept_gva_to_gpa;
5055         context->sync_page = ept_sync_page;
5056         context->invlpg = ept_invlpg;
5057         context->update_pte = ept_update_pte;
5058         context->root_level = level;
5059         context->direct_map = false;
5060         context->mmu_role.as_u64 = new_role.as_u64;
5061
5062         update_permission_bitmask(vcpu, context, true);
5063         update_pkru_bitmask(vcpu, context, true);
5064         update_last_nonleaf_level(vcpu, context);
5065         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5066         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5067 }
5068 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5069
5070 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5071 {
5072         struct kvm_mmu *context = &vcpu->arch.root_mmu;
5073
5074         kvm_init_shadow_mmu(vcpu,
5075                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
5076                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
5077                             vcpu->arch.efer);
5078
5079         context->get_guest_pgd     = get_cr3;
5080         context->get_pdptr         = kvm_pdptr_read;
5081         context->inject_page_fault = kvm_inject_page_fault;
5082 }
5083
5084 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5085 {
5086         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5087         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5088
5089         if (new_role.as_u64 == g_context->mmu_role.as_u64)
5090                 return;
5091
5092         g_context->mmu_role.as_u64 = new_role.as_u64;
5093         g_context->get_guest_pgd     = get_cr3;
5094         g_context->get_pdptr         = kvm_pdptr_read;
5095         g_context->inject_page_fault = kvm_inject_page_fault;
5096
5097         /*
5098          * L2 page tables are never shadowed, so there is no need to sync
5099          * SPTEs.
5100          */
5101         g_context->invlpg            = NULL;
5102
5103         /*
5104          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5105          * L1's nested page tables (e.g. EPT12). The nested translation
5106          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5107          * L2's page tables as the first level of translation and L1's
5108          * nested page tables as the second level of translation. Basically
5109          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5110          */
5111         if (!is_paging(vcpu)) {
5112                 g_context->nx = false;
5113                 g_context->root_level = 0;
5114                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5115         } else if (is_long_mode(vcpu)) {
5116                 g_context->nx = is_nx(vcpu);
5117                 g_context->root_level = is_la57_mode(vcpu) ?
5118                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5119                 reset_rsvds_bits_mask(vcpu, g_context);
5120                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5121         } else if (is_pae(vcpu)) {
5122                 g_context->nx = is_nx(vcpu);
5123                 g_context->root_level = PT32E_ROOT_LEVEL;
5124                 reset_rsvds_bits_mask(vcpu, g_context);
5125                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5126         } else {
5127                 g_context->nx = false;
5128                 g_context->root_level = PT32_ROOT_LEVEL;
5129                 reset_rsvds_bits_mask(vcpu, g_context);
5130                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5131         }
5132
5133         update_permission_bitmask(vcpu, g_context, false);
5134         update_pkru_bitmask(vcpu, g_context, false);
5135         update_last_nonleaf_level(vcpu, g_context);
5136 }
5137
5138 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5139 {
5140         if (reset_roots) {
5141                 uint i;
5142
5143                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5144
5145                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5146                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5147         }
5148
5149         if (mmu_is_nested(vcpu))
5150                 init_kvm_nested_mmu(vcpu);
5151         else if (tdp_enabled)
5152                 init_kvm_tdp_mmu(vcpu);
5153         else
5154                 init_kvm_softmmu(vcpu);
5155 }
5156 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5157
5158 static union kvm_mmu_page_role
5159 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5160 {
5161         union kvm_mmu_role role;
5162
5163         if (tdp_enabled)
5164                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5165         else
5166                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5167
5168         return role.base;
5169 }
5170
5171 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5172 {
5173         kvm_mmu_unload(vcpu);
5174         kvm_init_mmu(vcpu, true);
5175 }
5176 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5177
5178 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5179 {
5180         int r;
5181
5182         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5183         if (r)
5184                 goto out;
5185         r = mmu_alloc_roots(vcpu);
5186         kvm_mmu_sync_roots(vcpu);
5187         if (r)
5188                 goto out;
5189         kvm_mmu_load_pgd(vcpu);
5190         kvm_x86_ops.tlb_flush_current(vcpu);
5191 out:
5192         return r;
5193 }
5194 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5195
5196 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5197 {
5198         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5199         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5200         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5201         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5202 }
5203 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5204
5205 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5206                                   struct kvm_mmu_page *sp, u64 *spte,
5207                                   const void *new)
5208 {
5209         if (sp->role.level != PG_LEVEL_4K) {
5210                 ++vcpu->kvm->stat.mmu_pde_zapped;
5211                 return;
5212         }
5213
5214         ++vcpu->kvm->stat.mmu_pte_updated;
5215         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5216 }
5217
5218 static bool need_remote_flush(u64 old, u64 new)
5219 {
5220         if (!is_shadow_present_pte(old))
5221                 return false;
5222         if (!is_shadow_present_pte(new))
5223                 return true;
5224         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5225                 return true;
5226         old ^= shadow_nx_mask;
5227         new ^= shadow_nx_mask;
5228         return (old & ~new & PT64_PERM_MASK) != 0;
5229 }
5230
5231 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5232                                     int *bytes)
5233 {
5234         u64 gentry = 0;
5235         int r;
5236
5237         /*
5238          * Assume that the pte write on a page table of the same type
5239          * as the current vcpu paging mode since we update the sptes only
5240          * when they have the same mode.
5241          */
5242         if (is_pae(vcpu) && *bytes == 4) {
5243                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5244                 *gpa &= ~(gpa_t)7;
5245                 *bytes = 8;
5246         }
5247
5248         if (*bytes == 4 || *bytes == 8) {
5249                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5250                 if (r)
5251                         gentry = 0;
5252         }
5253
5254         return gentry;
5255 }
5256
5257 /*
5258  * If we're seeing too many writes to a page, it may no longer be a page table,
5259  * or we may be forking, in which case it is better to unmap the page.
5260  */
5261 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5262 {
5263         /*
5264          * Skip write-flooding detected for the sp whose level is 1, because
5265          * it can become unsync, then the guest page is not write-protected.
5266          */
5267         if (sp->role.level == PG_LEVEL_4K)
5268                 return false;
5269
5270         atomic_inc(&sp->write_flooding_count);
5271         return atomic_read(&sp->write_flooding_count) >= 3;
5272 }
5273
5274 /*
5275  * Misaligned accesses are too much trouble to fix up; also, they usually
5276  * indicate a page is not used as a page table.
5277  */
5278 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5279                                     int bytes)
5280 {
5281         unsigned offset, pte_size, misaligned;
5282
5283         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5284                  gpa, bytes, sp->role.word);
5285
5286         offset = offset_in_page(gpa);
5287         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5288
5289         /*
5290          * Sometimes, the OS only writes the last one bytes to update status
5291          * bits, for example, in linux, andb instruction is used in clear_bit().
5292          */
5293         if (!(offset & (pte_size - 1)) && bytes == 1)
5294                 return false;
5295
5296         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5297         misaligned |= bytes < 4;
5298
5299         return misaligned;
5300 }
5301
5302 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5303 {
5304         unsigned page_offset, quadrant;
5305         u64 *spte;
5306         int level;
5307
5308         page_offset = offset_in_page(gpa);
5309         level = sp->role.level;
5310         *nspte = 1;
5311         if (!sp->role.gpte_is_8_bytes) {
5312                 page_offset <<= 1;      /* 32->64 */
5313                 /*
5314                  * A 32-bit pde maps 4MB while the shadow pdes map
5315                  * only 2MB.  So we need to double the offset again
5316                  * and zap two pdes instead of one.
5317                  */
5318                 if (level == PT32_ROOT_LEVEL) {
5319                         page_offset &= ~7; /* kill rounding error */
5320                         page_offset <<= 1;
5321                         *nspte = 2;
5322                 }
5323                 quadrant = page_offset >> PAGE_SHIFT;
5324                 page_offset &= ~PAGE_MASK;
5325                 if (quadrant != sp->role.quadrant)
5326                         return NULL;
5327         }
5328
5329         spte = &sp->spt[page_offset / sizeof(*spte)];
5330         return spte;
5331 }
5332
5333 /*
5334  * Ignore various flags when determining if a SPTE can be immediately
5335  * overwritten for the current MMU.
5336  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5337  *    match the current MMU role, as MMU's level tracks the root level.
5338  *  - access: updated based on the new guest PTE
5339  *  - quadrant: handled by get_written_sptes()
5340  *  - invalid: always false (loop only walks valid shadow pages)
5341  */
5342 static const union kvm_mmu_page_role role_ign = {
5343         .level = 0xf,
5344         .access = 0x7,
5345         .quadrant = 0x3,
5346         .invalid = 0x1,
5347 };
5348
5349 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5350                               const u8 *new, int bytes,
5351                               struct kvm_page_track_notifier_node *node)
5352 {
5353         gfn_t gfn = gpa >> PAGE_SHIFT;
5354         struct kvm_mmu_page *sp;
5355         LIST_HEAD(invalid_list);
5356         u64 entry, gentry, *spte;
5357         int npte;
5358         bool remote_flush, local_flush;
5359
5360         /*
5361          * If we don't have indirect shadow pages, it means no page is
5362          * write-protected, so we can exit simply.
5363          */
5364         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5365                 return;
5366
5367         remote_flush = local_flush = false;
5368
5369         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5370
5371         /*
5372          * No need to care whether allocation memory is successful
5373          * or not since pte prefetch is skiped if it does not have
5374          * enough objects in the cache.
5375          */
5376         mmu_topup_memory_caches(vcpu, true);
5377
5378         spin_lock(&vcpu->kvm->mmu_lock);
5379
5380         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5381
5382         ++vcpu->kvm->stat.mmu_pte_write;
5383         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5384
5385         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5386                 if (detect_write_misaligned(sp, gpa, bytes) ||
5387                       detect_write_flooding(sp)) {
5388                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5389                         ++vcpu->kvm->stat.mmu_flooded;
5390                         continue;
5391                 }
5392
5393                 spte = get_written_sptes(sp, gpa, &npte);
5394                 if (!spte)
5395                         continue;
5396
5397                 local_flush = true;
5398                 while (npte--) {
5399                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5400
5401                         entry = *spte;
5402                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5403                         if (gentry &&
5404                             !((sp->role.word ^ base_role) & ~role_ign.word) &&
5405                             rmap_can_add(vcpu))
5406                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5407                         if (need_remote_flush(entry, *spte))
5408                                 remote_flush = true;
5409                         ++spte;
5410                 }
5411         }
5412         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5413         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5414         spin_unlock(&vcpu->kvm->mmu_lock);
5415 }
5416
5417 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5418 {
5419         gpa_t gpa;
5420         int r;
5421
5422         if (vcpu->arch.mmu->direct_map)
5423                 return 0;
5424
5425         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5426
5427         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5428
5429         return r;
5430 }
5431 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5432
5433 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5434                        void *insn, int insn_len)
5435 {
5436         int r, emulation_type = EMULTYPE_PF;
5437         bool direct = vcpu->arch.mmu->direct_map;
5438
5439         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5440                 return RET_PF_RETRY;
5441
5442         r = RET_PF_INVALID;
5443         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5444                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5445                 if (r == RET_PF_EMULATE)
5446                         goto emulate;
5447         }
5448
5449         if (r == RET_PF_INVALID) {
5450                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5451                                           lower_32_bits(error_code), false);
5452                 WARN_ON(r == RET_PF_INVALID);
5453         }
5454
5455         if (r == RET_PF_RETRY)
5456                 return 1;
5457         if (r < 0)
5458                 return r;
5459
5460         /*
5461          * Before emulating the instruction, check if the error code
5462          * was due to a RO violation while translating the guest page.
5463          * This can occur when using nested virtualization with nested
5464          * paging in both guests. If true, we simply unprotect the page
5465          * and resume the guest.
5466          */
5467         if (vcpu->arch.mmu->direct_map &&
5468             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5469                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5470                 return 1;
5471         }
5472
5473         /*
5474          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5475          * optimistically try to just unprotect the page and let the processor
5476          * re-execute the instruction that caused the page fault.  Do not allow
5477          * retrying MMIO emulation, as it's not only pointless but could also
5478          * cause us to enter an infinite loop because the processor will keep
5479          * faulting on the non-existent MMIO address.  Retrying an instruction
5480          * from a nested guest is also pointless and dangerous as we are only
5481          * explicitly shadowing L1's page tables, i.e. unprotecting something
5482          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5483          */
5484         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5485                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5486 emulate:
5487         /*
5488          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5489          * This can happen if a guest gets a page-fault on data access but the HW
5490          * table walker is not able to read the instruction page (e.g instruction
5491          * page is not present in memory). In those cases we simply restart the
5492          * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5493          */
5494         if (unlikely(insn && !insn_len)) {
5495                 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5496                         return 1;
5497         }
5498
5499         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5500                                        insn_len);
5501 }
5502 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5503
5504 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5505                             gva_t gva, hpa_t root_hpa)
5506 {
5507         int i;
5508
5509         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5510         if (mmu != &vcpu->arch.guest_mmu) {
5511                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5512                 if (is_noncanonical_address(gva, vcpu))
5513                         return;
5514
5515                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5516         }
5517
5518         if (!mmu->invlpg)
5519                 return;
5520
5521         if (root_hpa == INVALID_PAGE) {
5522                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5523
5524                 /*
5525                  * INVLPG is required to invalidate any global mappings for the VA,
5526                  * irrespective of PCID. Since it would take us roughly similar amount
5527                  * of work to determine whether any of the prev_root mappings of the VA
5528                  * is marked global, or to just sync it blindly, so we might as well
5529                  * just always sync it.
5530                  *
5531                  * Mappings not reachable via the current cr3 or the prev_roots will be
5532                  * synced when switching to that cr3, so nothing needs to be done here
5533                  * for them.
5534                  */
5535                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5536                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5537                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5538         } else {
5539                 mmu->invlpg(vcpu, gva, root_hpa);
5540         }
5541 }
5542 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5543
5544 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5545 {
5546         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5547         ++vcpu->stat.invlpg;
5548 }
5549 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5550
5551
5552 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5553 {
5554         struct kvm_mmu *mmu = vcpu->arch.mmu;
5555         bool tlb_flush = false;
5556         uint i;
5557
5558         if (pcid == kvm_get_active_pcid(vcpu)) {
5559                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5560                 tlb_flush = true;
5561         }
5562
5563         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5564                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5565                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5566                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5567                         tlb_flush = true;
5568                 }
5569         }
5570
5571         if (tlb_flush)
5572                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5573
5574         ++vcpu->stat.invlpg;
5575
5576         /*
5577          * Mappings not reachable via the current cr3 or the prev_roots will be
5578          * synced when switching to that cr3, so nothing needs to be done here
5579          * for them.
5580          */
5581 }
5582 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5583
5584 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5585                        int tdp_huge_page_level)
5586 {
5587         tdp_enabled = enable_tdp;
5588         max_tdp_level = tdp_max_root_level;
5589
5590         /*
5591          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5592          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5593          * the kernel is not.  But, KVM never creates a page size greater than
5594          * what is used by the kernel for any given HVA, i.e. the kernel's
5595          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5596          */
5597         if (tdp_enabled)
5598                 max_huge_page_level = tdp_huge_page_level;
5599         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5600                 max_huge_page_level = PG_LEVEL_1G;
5601         else
5602                 max_huge_page_level = PG_LEVEL_2M;
5603 }
5604 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5605
5606 /* The return value indicates if tlb flush on all vcpus is needed. */
5607 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5608
5609 /* The caller should hold mmu-lock before calling this function. */
5610 static __always_inline bool
5611 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5612                         slot_level_handler fn, int start_level, int end_level,
5613                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5614 {
5615         struct slot_rmap_walk_iterator iterator;
5616         bool flush = false;
5617
5618         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5619                         end_gfn, &iterator) {
5620                 if (iterator.rmap)
5621                         flush |= fn(kvm, iterator.rmap);
5622
5623                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5624                         if (flush && lock_flush_tlb) {
5625                                 kvm_flush_remote_tlbs_with_address(kvm,
5626                                                 start_gfn,
5627                                                 iterator.gfn - start_gfn + 1);
5628                                 flush = false;
5629                         }
5630                         cond_resched_lock(&kvm->mmu_lock);
5631                 }
5632         }
5633
5634         if (flush && lock_flush_tlb) {
5635                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5636                                                    end_gfn - start_gfn + 1);
5637                 flush = false;
5638         }
5639
5640         return flush;
5641 }
5642
5643 static __always_inline bool
5644 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5645                   slot_level_handler fn, int start_level, int end_level,
5646                   bool lock_flush_tlb)
5647 {
5648         return slot_handle_level_range(kvm, memslot, fn, start_level,
5649                         end_level, memslot->base_gfn,
5650                         memslot->base_gfn + memslot->npages - 1,
5651                         lock_flush_tlb);
5652 }
5653
5654 static __always_inline bool
5655 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5656                       slot_level_handler fn, bool lock_flush_tlb)
5657 {
5658         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5659                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5660 }
5661
5662 static __always_inline bool
5663 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5664                         slot_level_handler fn, bool lock_flush_tlb)
5665 {
5666         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5667                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5668 }
5669
5670 static __always_inline bool
5671 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5672                  slot_level_handler fn, bool lock_flush_tlb)
5673 {
5674         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5675                                  PG_LEVEL_4K, lock_flush_tlb);
5676 }
5677
5678 static void free_mmu_pages(struct kvm_mmu *mmu)
5679 {
5680         free_page((unsigned long)mmu->pae_root);
5681         free_page((unsigned long)mmu->lm_root);
5682 }
5683
5684 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5685 {
5686         struct page *page;
5687         int i;
5688
5689         /*
5690          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5691          * while the PDP table is a per-vCPU construct that's allocated at MMU
5692          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5693          * x86_64.  Therefore we need to allocate the PDP table in the first
5694          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5695          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5696          * skip allocating the PDP table.
5697          */
5698         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5699                 return 0;
5700
5701         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5702         if (!page)
5703                 return -ENOMEM;
5704
5705         mmu->pae_root = page_address(page);
5706         for (i = 0; i < 4; ++i)
5707                 mmu->pae_root[i] = INVALID_PAGE;
5708
5709         return 0;
5710 }
5711
5712 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5713 {
5714         uint i;
5715         int ret;
5716
5717         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5718         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5719
5720         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5721         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5722
5723         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5724
5725         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5726         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5727
5728         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5729         vcpu->arch.root_mmu.root_pgd = 0;
5730         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5731         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5732                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5733
5734         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5735         vcpu->arch.guest_mmu.root_pgd = 0;
5736         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5737         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5738                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5739
5740         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5741
5742         ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5743         if (ret)
5744                 return ret;
5745
5746         ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5747         if (ret)
5748                 goto fail_allocate_root;
5749
5750         return ret;
5751  fail_allocate_root:
5752         free_mmu_pages(&vcpu->arch.guest_mmu);
5753         return ret;
5754 }
5755
5756 #define BATCH_ZAP_PAGES 10
5757 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5758 {
5759         struct kvm_mmu_page *sp, *node;
5760         int nr_zapped, batch = 0;
5761
5762 restart:
5763         list_for_each_entry_safe_reverse(sp, node,
5764               &kvm->arch.active_mmu_pages, link) {
5765                 /*
5766                  * No obsolete valid page exists before a newly created page
5767                  * since active_mmu_pages is a FIFO list.
5768                  */
5769                 if (!is_obsolete_sp(kvm, sp))
5770                         break;
5771
5772                 /*
5773                  * Invalid pages should never land back on the list of active
5774                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5775                  * infinite loop if the page gets put back on the list (again).
5776                  */
5777                 if (WARN_ON(sp->role.invalid))
5778                         continue;
5779
5780                 /*
5781                  * No need to flush the TLB since we're only zapping shadow
5782                  * pages with an obsolete generation number and all vCPUS have
5783                  * loaded a new root, i.e. the shadow pages being zapped cannot
5784                  * be in active use by the guest.
5785                  */
5786                 if (batch >= BATCH_ZAP_PAGES &&
5787                     cond_resched_lock(&kvm->mmu_lock)) {
5788                         batch = 0;
5789                         goto restart;
5790                 }
5791
5792                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5793                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5794                         batch += nr_zapped;
5795                         goto restart;
5796                 }
5797         }
5798
5799         /*
5800          * Trigger a remote TLB flush before freeing the page tables to ensure
5801          * KVM is not in the middle of a lockless shadow page table walk, which
5802          * may reference the pages.
5803          */
5804         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5805 }
5806
5807 /*
5808  * Fast invalidate all shadow pages and use lock-break technique
5809  * to zap obsolete pages.
5810  *
5811  * It's required when memslot is being deleted or VM is being
5812  * destroyed, in these cases, we should ensure that KVM MMU does
5813  * not use any resource of the being-deleted slot or all slots
5814  * after calling the function.
5815  */
5816 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5817 {
5818         lockdep_assert_held(&kvm->slots_lock);
5819
5820         spin_lock(&kvm->mmu_lock);
5821         trace_kvm_mmu_zap_all_fast(kvm);
5822
5823         /*
5824          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5825          * held for the entire duration of zapping obsolete pages, it's
5826          * impossible for there to be multiple invalid generations associated
5827          * with *valid* shadow pages at any given time, i.e. there is exactly
5828          * one valid generation and (at most) one invalid generation.
5829          */
5830         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5831
5832         /*
5833          * Notify all vcpus to reload its shadow page table and flush TLB.
5834          * Then all vcpus will switch to new shadow page table with the new
5835          * mmu_valid_gen.
5836          *
5837          * Note: we need to do this under the protection of mmu_lock,
5838          * otherwise, vcpu would purge shadow page but miss tlb flush.
5839          */
5840         kvm_reload_remote_mmus(kvm);
5841
5842         kvm_zap_obsolete_pages(kvm);
5843         spin_unlock(&kvm->mmu_lock);
5844 }
5845
5846 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5847 {
5848         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5849 }
5850
5851 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5852                         struct kvm_memory_slot *slot,
5853                         struct kvm_page_track_notifier_node *node)
5854 {
5855         kvm_mmu_zap_all_fast(kvm);
5856 }
5857
5858 void kvm_mmu_init_vm(struct kvm *kvm)
5859 {
5860         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5861
5862         node->track_write = kvm_mmu_pte_write;
5863         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5864         kvm_page_track_register_notifier(kvm, node);
5865 }
5866
5867 void kvm_mmu_uninit_vm(struct kvm *kvm)
5868 {
5869         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5870
5871         kvm_page_track_unregister_notifier(kvm, node);
5872 }
5873
5874 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5875 {
5876         struct kvm_memslots *slots;
5877         struct kvm_memory_slot *memslot;
5878         int i;
5879
5880         spin_lock(&kvm->mmu_lock);
5881         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5882                 slots = __kvm_memslots(kvm, i);
5883                 kvm_for_each_memslot(memslot, slots) {
5884                         gfn_t start, end;
5885
5886                         start = max(gfn_start, memslot->base_gfn);
5887                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5888                         if (start >= end)
5889                                 continue;
5890
5891                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5892                                                 PG_LEVEL_4K,
5893                                                 KVM_MAX_HUGEPAGE_LEVEL,
5894                                                 start, end - 1, true);
5895                 }
5896         }
5897
5898         spin_unlock(&kvm->mmu_lock);
5899 }
5900
5901 static bool slot_rmap_write_protect(struct kvm *kvm,
5902                                     struct kvm_rmap_head *rmap_head)
5903 {
5904         return __rmap_write_protect(kvm, rmap_head, false);
5905 }
5906
5907 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5908                                       struct kvm_memory_slot *memslot,
5909                                       int start_level)
5910 {
5911         bool flush;
5912
5913         spin_lock(&kvm->mmu_lock);
5914         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5915                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5916         spin_unlock(&kvm->mmu_lock);
5917
5918         /*
5919          * We can flush all the TLBs out of the mmu lock without TLB
5920          * corruption since we just change the spte from writable to
5921          * readonly so that we only need to care the case of changing
5922          * spte from present to present (changing the spte from present
5923          * to nonpresent will flush all the TLBs immediately), in other
5924          * words, the only case we care is mmu_spte_update() where we
5925          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5926          * instead of PT_WRITABLE_MASK, that means it does not depend
5927          * on PT_WRITABLE_MASK anymore.
5928          */
5929         if (flush)
5930                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5931 }
5932
5933 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5934                                          struct kvm_rmap_head *rmap_head)
5935 {
5936         u64 *sptep;
5937         struct rmap_iterator iter;
5938         int need_tlb_flush = 0;
5939         kvm_pfn_t pfn;
5940         struct kvm_mmu_page *sp;
5941
5942 restart:
5943         for_each_rmap_spte(rmap_head, &iter, sptep) {
5944                 sp = sptep_to_sp(sptep);
5945                 pfn = spte_to_pfn(*sptep);
5946
5947                 /*
5948                  * We cannot do huge page mapping for indirect shadow pages,
5949                  * which are found on the last rmap (level = 1) when not using
5950                  * tdp; such shadow pages are synced with the page table in
5951                  * the guest, and the guest page table is using 4K page size
5952                  * mapping if the indirect sp has level = 1.
5953                  */
5954                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5955                     (kvm_is_zone_device_pfn(pfn) ||
5956                      PageCompound(pfn_to_page(pfn)))) {
5957                         pte_list_remove(rmap_head, sptep);
5958
5959                         if (kvm_available_flush_tlb_with_range())
5960                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5961                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5962                         else
5963                                 need_tlb_flush = 1;
5964
5965                         goto restart;
5966                 }
5967         }
5968
5969         return need_tlb_flush;
5970 }
5971
5972 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5973                                    const struct kvm_memory_slot *memslot)
5974 {
5975         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5976         spin_lock(&kvm->mmu_lock);
5977         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5978                          kvm_mmu_zap_collapsible_spte, true);
5979         spin_unlock(&kvm->mmu_lock);
5980 }
5981
5982 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5983                                         struct kvm_memory_slot *memslot)
5984 {
5985         /*
5986          * All current use cases for flushing the TLBs for a specific memslot
5987          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5988          * The interaction between the various operations on memslot must be
5989          * serialized by slots_locks to ensure the TLB flush from one operation
5990          * is observed by any other operation on the same memslot.
5991          */
5992         lockdep_assert_held(&kvm->slots_lock);
5993         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5994                                            memslot->npages);
5995 }
5996
5997 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5998                                    struct kvm_memory_slot *memslot)
5999 {
6000         bool flush;
6001
6002         spin_lock(&kvm->mmu_lock);
6003         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6004         spin_unlock(&kvm->mmu_lock);
6005
6006         /*
6007          * It's also safe to flush TLBs out of mmu lock here as currently this
6008          * function is only used for dirty logging, in which case flushing TLB
6009          * out of mmu lock also guarantees no dirty pages will be lost in
6010          * dirty_bitmap.
6011          */
6012         if (flush)
6013                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6014 }
6015 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
6016
6017 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6018                                         struct kvm_memory_slot *memslot)
6019 {
6020         bool flush;
6021
6022         spin_lock(&kvm->mmu_lock);
6023         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6024                                         false);
6025         spin_unlock(&kvm->mmu_lock);
6026
6027         if (flush)
6028                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6029 }
6030 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6031
6032 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6033                             struct kvm_memory_slot *memslot)
6034 {
6035         bool flush;
6036
6037         spin_lock(&kvm->mmu_lock);
6038         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6039         spin_unlock(&kvm->mmu_lock);
6040
6041         if (flush)
6042                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6043 }
6044 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6045
6046 void kvm_mmu_zap_all(struct kvm *kvm)
6047 {
6048         struct kvm_mmu_page *sp, *node;
6049         LIST_HEAD(invalid_list);
6050         int ign;
6051
6052         spin_lock(&kvm->mmu_lock);
6053 restart:
6054         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6055                 if (WARN_ON(sp->role.invalid))
6056                         continue;
6057                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6058                         goto restart;
6059                 if (cond_resched_lock(&kvm->mmu_lock))
6060                         goto restart;
6061         }
6062
6063         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6064         spin_unlock(&kvm->mmu_lock);
6065 }
6066
6067 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6068 {
6069         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6070
6071         gen &= MMIO_SPTE_GEN_MASK;
6072
6073         /*
6074          * Generation numbers are incremented in multiples of the number of
6075          * address spaces in order to provide unique generations across all
6076          * address spaces.  Strip what is effectively the address space
6077          * modifier prior to checking for a wrap of the MMIO generation so
6078          * that a wrap in any address space is detected.
6079          */
6080         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6081
6082         /*
6083          * The very rare case: if the MMIO generation number has wrapped,
6084          * zap all shadow pages.
6085          */
6086         if (unlikely(gen == 0)) {
6087                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6088                 kvm_mmu_zap_all_fast(kvm);
6089         }
6090 }
6091
6092 static unsigned long
6093 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6094 {
6095         struct kvm *kvm;
6096         int nr_to_scan = sc->nr_to_scan;
6097         unsigned long freed = 0;
6098
6099         mutex_lock(&kvm_lock);
6100
6101         list_for_each_entry(kvm, &vm_list, vm_list) {
6102                 int idx;
6103                 LIST_HEAD(invalid_list);
6104
6105                 /*
6106                  * Never scan more than sc->nr_to_scan VM instances.
6107                  * Will not hit this condition practically since we do not try
6108                  * to shrink more than one VM and it is very unlikely to see
6109                  * !n_used_mmu_pages so many times.
6110                  */
6111                 if (!nr_to_scan--)
6112                         break;
6113                 /*
6114                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6115                  * here. We may skip a VM instance errorneosly, but we do not
6116                  * want to shrink a VM that only started to populate its MMU
6117                  * anyway.
6118                  */
6119                 if (!kvm->arch.n_used_mmu_pages &&
6120                     !kvm_has_zapped_obsolete_pages(kvm))
6121                         continue;
6122
6123                 idx = srcu_read_lock(&kvm->srcu);
6124                 spin_lock(&kvm->mmu_lock);
6125
6126                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6127                         kvm_mmu_commit_zap_page(kvm,
6128                               &kvm->arch.zapped_obsolete_pages);
6129                         goto unlock;
6130                 }
6131
6132                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6133
6134 unlock:
6135                 spin_unlock(&kvm->mmu_lock);
6136                 srcu_read_unlock(&kvm->srcu, idx);
6137
6138                 /*
6139                  * unfair on small ones
6140                  * per-vm shrinkers cry out
6141                  * sadness comes quickly
6142                  */
6143                 list_move_tail(&kvm->vm_list, &vm_list);
6144                 break;
6145         }
6146
6147         mutex_unlock(&kvm_lock);
6148         return freed;
6149 }
6150
6151 static unsigned long
6152 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6153 {
6154         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6155 }
6156
6157 static struct shrinker mmu_shrinker = {
6158         .count_objects = mmu_shrink_count,
6159         .scan_objects = mmu_shrink_scan,
6160         .seeks = DEFAULT_SEEKS * 10,
6161 };
6162
6163 static void mmu_destroy_caches(void)
6164 {
6165         kmem_cache_destroy(pte_list_desc_cache);
6166         kmem_cache_destroy(mmu_page_header_cache);
6167 }
6168
6169 static void kvm_set_mmio_spte_mask(void)
6170 {
6171         u64 mask;
6172
6173         /*
6174          * Set a reserved PA bit in MMIO SPTEs to generate page faults with
6175          * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
6176          * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
6177          * 52-bit physical addresses then there are no reserved PA bits in the
6178          * PTEs and so the reserved PA approach must be disabled.
6179          */
6180         if (shadow_phys_bits < 52)
6181                 mask = BIT_ULL(51) | PT_PRESENT_MASK;
6182         else
6183                 mask = 0;
6184
6185         kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
6186 }
6187
6188 static bool get_nx_auto_mode(void)
6189 {
6190         /* Return true when CPU has the bug, and mitigations are ON */
6191         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6192 }
6193
6194 static void __set_nx_huge_pages(bool val)
6195 {
6196         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6197 }
6198
6199 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6200 {
6201         bool old_val = nx_huge_pages;
6202         bool new_val;
6203
6204         /* In "auto" mode deploy workaround only if CPU has the bug. */
6205         if (sysfs_streq(val, "off"))
6206                 new_val = 0;
6207         else if (sysfs_streq(val, "force"))
6208                 new_val = 1;
6209         else if (sysfs_streq(val, "auto"))
6210                 new_val = get_nx_auto_mode();
6211         else if (strtobool(val, &new_val) < 0)
6212                 return -EINVAL;
6213
6214         __set_nx_huge_pages(new_val);
6215
6216         if (new_val != old_val) {
6217                 struct kvm *kvm;
6218
6219                 mutex_lock(&kvm_lock);
6220
6221                 list_for_each_entry(kvm, &vm_list, vm_list) {
6222                         mutex_lock(&kvm->slots_lock);
6223                         kvm_mmu_zap_all_fast(kvm);
6224                         mutex_unlock(&kvm->slots_lock);
6225
6226                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6227                 }
6228                 mutex_unlock(&kvm_lock);
6229         }
6230
6231         return 0;
6232 }
6233
6234 int kvm_mmu_module_init(void)
6235 {
6236         int ret = -ENOMEM;
6237
6238         if (nx_huge_pages == -1)
6239                 __set_nx_huge_pages(get_nx_auto_mode());
6240
6241         /*
6242          * MMU roles use union aliasing which is, generally speaking, an
6243          * undefined behavior. However, we supposedly know how compilers behave
6244          * and the current status quo is unlikely to change. Guardians below are
6245          * supposed to let us know if the assumption becomes false.
6246          */
6247         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6248         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6249         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6250
6251         kvm_mmu_reset_all_pte_masks();
6252
6253         kvm_set_mmio_spte_mask();
6254
6255         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6256                                             sizeof(struct pte_list_desc),
6257                                             0, SLAB_ACCOUNT, NULL);
6258         if (!pte_list_desc_cache)
6259                 goto out;
6260
6261         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6262                                                   sizeof(struct kvm_mmu_page),
6263                                                   0, SLAB_ACCOUNT, NULL);
6264         if (!mmu_page_header_cache)
6265                 goto out;
6266
6267         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6268                 goto out;
6269
6270         ret = register_shrinker(&mmu_shrinker);
6271         if (ret)
6272                 goto out;
6273
6274         return 0;
6275
6276 out:
6277         mmu_destroy_caches();
6278         return ret;
6279 }
6280
6281 /*
6282  * Calculate mmu pages needed for kvm.
6283  */
6284 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6285 {
6286         unsigned long nr_mmu_pages;
6287         unsigned long nr_pages = 0;
6288         struct kvm_memslots *slots;
6289         struct kvm_memory_slot *memslot;
6290         int i;
6291
6292         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6293                 slots = __kvm_memslots(kvm, i);
6294
6295                 kvm_for_each_memslot(memslot, slots)
6296                         nr_pages += memslot->npages;
6297         }
6298
6299         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6300         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6301
6302         return nr_mmu_pages;
6303 }
6304
6305 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6306 {
6307         kvm_mmu_unload(vcpu);
6308         free_mmu_pages(&vcpu->arch.root_mmu);
6309         free_mmu_pages(&vcpu->arch.guest_mmu);
6310         mmu_free_memory_caches(vcpu);
6311 }
6312
6313 void kvm_mmu_module_exit(void)
6314 {
6315         mmu_destroy_caches();
6316         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6317         unregister_shrinker(&mmu_shrinker);
6318         mmu_audit_disable();
6319 }
6320
6321 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6322 {
6323         unsigned int old_val;
6324         int err;
6325
6326         old_val = nx_huge_pages_recovery_ratio;
6327         err = param_set_uint(val, kp);
6328         if (err)
6329                 return err;
6330
6331         if (READ_ONCE(nx_huge_pages) &&
6332             !old_val && nx_huge_pages_recovery_ratio) {
6333                 struct kvm *kvm;
6334
6335                 mutex_lock(&kvm_lock);
6336
6337                 list_for_each_entry(kvm, &vm_list, vm_list)
6338                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6339
6340                 mutex_unlock(&kvm_lock);
6341         }
6342
6343         return err;
6344 }
6345
6346 static void kvm_recover_nx_lpages(struct kvm *kvm)
6347 {
6348         int rcu_idx;
6349         struct kvm_mmu_page *sp;
6350         unsigned int ratio;
6351         LIST_HEAD(invalid_list);
6352         ulong to_zap;
6353
6354         rcu_idx = srcu_read_lock(&kvm->srcu);
6355         spin_lock(&kvm->mmu_lock);
6356
6357         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6358         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6359         while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6360                 /*
6361                  * We use a separate list instead of just using active_mmu_pages
6362                  * because the number of lpage_disallowed pages is expected to
6363                  * be relatively small compared to the total.
6364                  */
6365                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6366                                       struct kvm_mmu_page,
6367                                       lpage_disallowed_link);
6368                 WARN_ON_ONCE(!sp->lpage_disallowed);
6369                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6370                 WARN_ON_ONCE(sp->lpage_disallowed);
6371
6372                 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6373                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6374                         if (to_zap)
6375                                 cond_resched_lock(&kvm->mmu_lock);
6376                 }
6377         }
6378
6379         spin_unlock(&kvm->mmu_lock);
6380         srcu_read_unlock(&kvm->srcu, rcu_idx);
6381 }
6382
6383 static long get_nx_lpage_recovery_timeout(u64 start_time)
6384 {
6385         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6386                 ? start_time + 60 * HZ - get_jiffies_64()
6387                 : MAX_SCHEDULE_TIMEOUT;
6388 }
6389
6390 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6391 {
6392         u64 start_time;
6393         long remaining_time;
6394
6395         while (true) {
6396                 start_time = get_jiffies_64();
6397                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6398
6399                 set_current_state(TASK_INTERRUPTIBLE);
6400                 while (!kthread_should_stop() && remaining_time > 0) {
6401                         schedule_timeout(remaining_time);
6402                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6403                         set_current_state(TASK_INTERRUPTIBLE);
6404                 }
6405
6406                 set_current_state(TASK_RUNNING);
6407
6408                 if (kthread_should_stop())
6409                         return 0;
6410
6411                 kvm_recover_nx_lpages(kvm);
6412         }
6413 }
6414
6415 int kvm_mmu_post_init_vm(struct kvm *kvm)
6416 {
6417         int err;
6418
6419         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6420                                           "kvm-nx-lpage-recovery",
6421                                           &kvm->arch.nx_lpage_recovery_thread);
6422         if (!err)
6423                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6424
6425         return err;
6426 }
6427
6428 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6429 {
6430         if (kvm->arch.nx_lpage_recovery_thread)
6431                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6432 }