KVM: x86/mmu: Treat NX as used (not reserved) for all !TDP shadow MMUs
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 extern bool itlb_multihit_kvm_mitigation;
57
58 int __read_mostly nx_huge_pages = -1;
59 #ifdef CONFIG_PREEMPT_RT
60 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62 #else
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64 #endif
65
66 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
68
69 static const struct kernel_param_ops nx_huge_pages_ops = {
70         .set = set_nx_huge_pages,
71         .get = param_get_bool,
72 };
73
74 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75         .set = set_nx_huge_pages_recovery_ratio,
76         .get = param_get_uint,
77 };
78
79 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82                 &nx_huge_pages_recovery_ratio, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
84
85 static bool __read_mostly force_flush_and_sync_on_reuse;
86 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87
88 /*
89  * When setting this variable to true it enables Two-Dimensional-Paging
90  * where the hardware walks 2 page tables:
91  * 1. the guest-virtual to guest-physical
92  * 2. while doing 1. it walks guest-physical to host-physical
93  * If the hardware supports that we don't need to do shadow paging.
94  */
95 bool tdp_enabled = false;
96
97 static int max_huge_page_level __read_mostly;
98 static int max_tdp_level __read_mostly;
99
100 enum {
101         AUDIT_PRE_PAGE_FAULT,
102         AUDIT_POST_PAGE_FAULT,
103         AUDIT_PRE_PTE_WRITE,
104         AUDIT_POST_PTE_WRITE,
105         AUDIT_PRE_SYNC,
106         AUDIT_POST_SYNC
107 };
108
109 #ifdef MMU_DEBUG
110 bool dbg = 0;
111 module_param(dbg, bool, 0644);
112 #endif
113
114 #define PTE_PREFETCH_NUM                8
115
116 #define PT32_LEVEL_BITS 10
117
118 #define PT32_LEVEL_SHIFT(level) \
119                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
120
121 #define PT32_LVL_OFFSET_MASK(level) \
122         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT32_LEVEL_BITS))) - 1))
124
125 #define PT32_INDEX(address, level)\
126         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134                                             * PT32_LEVEL_BITS))) - 1))
135
136 #include <trace/events/kvm.h>
137
138 /* make pte_list_desc fit well in cache line */
139 #define PTE_LIST_EXT 3
140
141 struct pte_list_desc {
142         u64 *sptes[PTE_LIST_EXT];
143         struct pte_list_desc *more;
144 };
145
146 struct kvm_shadow_walk_iterator {
147         u64 addr;
148         hpa_t shadow_addr;
149         u64 *sptep;
150         int level;
151         unsigned index;
152 };
153
154 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
155         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
156                                          (_root), (_addr));                \
157              shadow_walk_okay(&(_walker));                                 \
158              shadow_walk_next(&(_walker)))
159
160 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
161         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
162              shadow_walk_okay(&(_walker));                      \
163              shadow_walk_next(&(_walker)))
164
165 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
166         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
167              shadow_walk_okay(&(_walker)) &&                            \
168                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
169              __shadow_walk_next(&(_walker), spte))
170
171 static struct kmem_cache *pte_list_desc_cache;
172 struct kmem_cache *mmu_page_header_cache;
173 static struct percpu_counter kvm_total_used_mmu_pages;
174
175 static void mmu_spte_set(u64 *sptep, u64 spte);
176 static union kvm_mmu_page_role
177 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178
179 #define CREATE_TRACE_POINTS
180 #include "mmutrace.h"
181
182
183 static inline bool kvm_available_flush_tlb_with_range(void)
184 {
185         return kvm_x86_ops.tlb_remote_flush_with_range;
186 }
187
188 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
189                 struct kvm_tlb_range *range)
190 {
191         int ret = -ENOTSUPP;
192
193         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
194                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
195
196         if (ret)
197                 kvm_flush_remote_tlbs(kvm);
198 }
199
200 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
201                 u64 start_gfn, u64 pages)
202 {
203         struct kvm_tlb_range range;
204
205         range.start_gfn = start_gfn;
206         range.pages = pages;
207
208         kvm_flush_remote_tlbs_with_range(kvm, &range);
209 }
210
211 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
212                            unsigned int access)
213 {
214         u64 spte = make_mmio_spte(vcpu, gfn, access);
215
216         trace_mark_mmio_spte(sptep, gfn, spte);
217         mmu_spte_set(sptep, spte);
218 }
219
220 static gfn_t get_mmio_spte_gfn(u64 spte)
221 {
222         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
223
224         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
225                & shadow_nonpresent_or_rsvd_mask;
226
227         return gpa >> PAGE_SHIFT;
228 }
229
230 static unsigned get_mmio_spte_access(u64 spte)
231 {
232         return spte & shadow_mmio_access_mask;
233 }
234
235 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
236 {
237         u64 kvm_gen, spte_gen, gen;
238
239         gen = kvm_vcpu_memslots(vcpu)->generation;
240         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
241                 return false;
242
243         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
244         spte_gen = get_mmio_spte_generation(spte);
245
246         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
247         return likely(kvm_gen == spte_gen);
248 }
249
250 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
251                                   struct x86_exception *exception)
252 {
253         /* Check if guest physical address doesn't exceed guest maximum */
254         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
255                 exception->error_code |= PFERR_RSVD_MASK;
256                 return UNMAPPED_GVA;
257         }
258
259         return gpa;
260 }
261
262 static int is_cpuid_PSE36(void)
263 {
264         return 1;
265 }
266
267 static int is_nx(struct kvm_vcpu *vcpu)
268 {
269         return vcpu->arch.efer & EFER_NX;
270 }
271
272 static gfn_t pse36_gfn_delta(u32 gpte)
273 {
274         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
275
276         return (gpte & PT32_DIR_PSE36_MASK) << shift;
277 }
278
279 #ifdef CONFIG_X86_64
280 static void __set_spte(u64 *sptep, u64 spte)
281 {
282         WRITE_ONCE(*sptep, spte);
283 }
284
285 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
286 {
287         WRITE_ONCE(*sptep, spte);
288 }
289
290 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
291 {
292         return xchg(sptep, spte);
293 }
294
295 static u64 __get_spte_lockless(u64 *sptep)
296 {
297         return READ_ONCE(*sptep);
298 }
299 #else
300 union split_spte {
301         struct {
302                 u32 spte_low;
303                 u32 spte_high;
304         };
305         u64 spte;
306 };
307
308 static void count_spte_clear(u64 *sptep, u64 spte)
309 {
310         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
311
312         if (is_shadow_present_pte(spte))
313                 return;
314
315         /* Ensure the spte is completely set before we increase the count */
316         smp_wmb();
317         sp->clear_spte_count++;
318 }
319
320 static void __set_spte(u64 *sptep, u64 spte)
321 {
322         union split_spte *ssptep, sspte;
323
324         ssptep = (union split_spte *)sptep;
325         sspte = (union split_spte)spte;
326
327         ssptep->spte_high = sspte.spte_high;
328
329         /*
330          * If we map the spte from nonpresent to present, We should store
331          * the high bits firstly, then set present bit, so cpu can not
332          * fetch this spte while we are setting the spte.
333          */
334         smp_wmb();
335
336         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
337 }
338
339 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
340 {
341         union split_spte *ssptep, sspte;
342
343         ssptep = (union split_spte *)sptep;
344         sspte = (union split_spte)spte;
345
346         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
347
348         /*
349          * If we map the spte from present to nonpresent, we should clear
350          * present bit firstly to avoid vcpu fetch the old high bits.
351          */
352         smp_wmb();
353
354         ssptep->spte_high = sspte.spte_high;
355         count_spte_clear(sptep, spte);
356 }
357
358 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
359 {
360         union split_spte *ssptep, sspte, orig;
361
362         ssptep = (union split_spte *)sptep;
363         sspte = (union split_spte)spte;
364
365         /* xchg acts as a barrier before the setting of the high bits */
366         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
367         orig.spte_high = ssptep->spte_high;
368         ssptep->spte_high = sspte.spte_high;
369         count_spte_clear(sptep, spte);
370
371         return orig.spte;
372 }
373
374 /*
375  * The idea using the light way get the spte on x86_32 guest is from
376  * gup_get_pte (mm/gup.c).
377  *
378  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
379  * coalesces them and we are running out of the MMU lock.  Therefore
380  * we need to protect against in-progress updates of the spte.
381  *
382  * Reading the spte while an update is in progress may get the old value
383  * for the high part of the spte.  The race is fine for a present->non-present
384  * change (because the high part of the spte is ignored for non-present spte),
385  * but for a present->present change we must reread the spte.
386  *
387  * All such changes are done in two steps (present->non-present and
388  * non-present->present), hence it is enough to count the number of
389  * present->non-present updates: if it changed while reading the spte,
390  * we might have hit the race.  This is done using clear_spte_count.
391  */
392 static u64 __get_spte_lockless(u64 *sptep)
393 {
394         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
395         union split_spte spte, *orig = (union split_spte *)sptep;
396         int count;
397
398 retry:
399         count = sp->clear_spte_count;
400         smp_rmb();
401
402         spte.spte_low = orig->spte_low;
403         smp_rmb();
404
405         spte.spte_high = orig->spte_high;
406         smp_rmb();
407
408         if (unlikely(spte.spte_low != orig->spte_low ||
409               count != sp->clear_spte_count))
410                 goto retry;
411
412         return spte.spte;
413 }
414 #endif
415
416 static bool spte_has_volatile_bits(u64 spte)
417 {
418         if (!is_shadow_present_pte(spte))
419                 return false;
420
421         /*
422          * Always atomically update spte if it can be updated
423          * out of mmu-lock, it can ensure dirty bit is not lost,
424          * also, it can help us to get a stable is_writable_pte()
425          * to ensure tlb flush is not missed.
426          */
427         if (spte_can_locklessly_be_made_writable(spte) ||
428             is_access_track_spte(spte))
429                 return true;
430
431         if (spte_ad_enabled(spte)) {
432                 if ((spte & shadow_accessed_mask) == 0 ||
433                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
434                         return true;
435         }
436
437         return false;
438 }
439
440 /* Rules for using mmu_spte_set:
441  * Set the sptep from nonpresent to present.
442  * Note: the sptep being assigned *must* be either not present
443  * or in a state where the hardware will not attempt to update
444  * the spte.
445  */
446 static void mmu_spte_set(u64 *sptep, u64 new_spte)
447 {
448         WARN_ON(is_shadow_present_pte(*sptep));
449         __set_spte(sptep, new_spte);
450 }
451
452 /*
453  * Update the SPTE (excluding the PFN), but do not track changes in its
454  * accessed/dirty status.
455  */
456 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
457 {
458         u64 old_spte = *sptep;
459
460         WARN_ON(!is_shadow_present_pte(new_spte));
461
462         if (!is_shadow_present_pte(old_spte)) {
463                 mmu_spte_set(sptep, new_spte);
464                 return old_spte;
465         }
466
467         if (!spte_has_volatile_bits(old_spte))
468                 __update_clear_spte_fast(sptep, new_spte);
469         else
470                 old_spte = __update_clear_spte_slow(sptep, new_spte);
471
472         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
473
474         return old_spte;
475 }
476
477 /* Rules for using mmu_spte_update:
478  * Update the state bits, it means the mapped pfn is not changed.
479  *
480  * Whenever we overwrite a writable spte with a read-only one we
481  * should flush remote TLBs. Otherwise rmap_write_protect
482  * will find a read-only spte, even though the writable spte
483  * might be cached on a CPU's TLB, the return value indicates this
484  * case.
485  *
486  * Returns true if the TLB needs to be flushed
487  */
488 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
489 {
490         bool flush = false;
491         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
492
493         if (!is_shadow_present_pte(old_spte))
494                 return false;
495
496         /*
497          * For the spte updated out of mmu-lock is safe, since
498          * we always atomically update it, see the comments in
499          * spte_has_volatile_bits().
500          */
501         if (spte_can_locklessly_be_made_writable(old_spte) &&
502               !is_writable_pte(new_spte))
503                 flush = true;
504
505         /*
506          * Flush TLB when accessed/dirty states are changed in the page tables,
507          * to guarantee consistency between TLB and page tables.
508          */
509
510         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
511                 flush = true;
512                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
513         }
514
515         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
516                 flush = true;
517                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
518         }
519
520         return flush;
521 }
522
523 /*
524  * Rules for using mmu_spte_clear_track_bits:
525  * It sets the sptep from present to nonpresent, and track the
526  * state bits, it is used to clear the last level sptep.
527  * Returns non-zero if the PTE was previously valid.
528  */
529 static int mmu_spte_clear_track_bits(u64 *sptep)
530 {
531         kvm_pfn_t pfn;
532         u64 old_spte = *sptep;
533
534         if (!spte_has_volatile_bits(old_spte))
535                 __update_clear_spte_fast(sptep, 0ull);
536         else
537                 old_spte = __update_clear_spte_slow(sptep, 0ull);
538
539         if (!is_shadow_present_pte(old_spte))
540                 return 0;
541
542         pfn = spte_to_pfn(old_spte);
543
544         /*
545          * KVM does not hold the refcount of the page used by
546          * kvm mmu, before reclaiming the page, we should
547          * unmap it from mmu first.
548          */
549         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
550
551         if (is_accessed_spte(old_spte))
552                 kvm_set_pfn_accessed(pfn);
553
554         if (is_dirty_spte(old_spte))
555                 kvm_set_pfn_dirty(pfn);
556
557         return 1;
558 }
559
560 /*
561  * Rules for using mmu_spte_clear_no_track:
562  * Directly clear spte without caring the state bits of sptep,
563  * it is used to set the upper level spte.
564  */
565 static void mmu_spte_clear_no_track(u64 *sptep)
566 {
567         __update_clear_spte_fast(sptep, 0ull);
568 }
569
570 static u64 mmu_spte_get_lockless(u64 *sptep)
571 {
572         return __get_spte_lockless(sptep);
573 }
574
575 /* Restore an acc-track PTE back to a regular PTE */
576 static u64 restore_acc_track_spte(u64 spte)
577 {
578         u64 new_spte = spte;
579         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
580                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
581
582         WARN_ON_ONCE(spte_ad_enabled(spte));
583         WARN_ON_ONCE(!is_access_track_spte(spte));
584
585         new_spte &= ~shadow_acc_track_mask;
586         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
587                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
588         new_spte |= saved_bits;
589
590         return new_spte;
591 }
592
593 /* Returns the Accessed status of the PTE and resets it at the same time. */
594 static bool mmu_spte_age(u64 *sptep)
595 {
596         u64 spte = mmu_spte_get_lockless(sptep);
597
598         if (!is_accessed_spte(spte))
599                 return false;
600
601         if (spte_ad_enabled(spte)) {
602                 clear_bit((ffs(shadow_accessed_mask) - 1),
603                           (unsigned long *)sptep);
604         } else {
605                 /*
606                  * Capture the dirty status of the page, so that it doesn't get
607                  * lost when the SPTE is marked for access tracking.
608                  */
609                 if (is_writable_pte(spte))
610                         kvm_set_pfn_dirty(spte_to_pfn(spte));
611
612                 spte = mark_spte_for_access_track(spte);
613                 mmu_spte_update_no_track(sptep, spte);
614         }
615
616         return true;
617 }
618
619 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
620 {
621         /*
622          * Prevent page table teardown by making any free-er wait during
623          * kvm_flush_remote_tlbs() IPI to all active vcpus.
624          */
625         local_irq_disable();
626
627         /*
628          * Make sure a following spte read is not reordered ahead of the write
629          * to vcpu->mode.
630          */
631         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
632 }
633
634 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
635 {
636         /*
637          * Make sure the write to vcpu->mode is not reordered in front of
638          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
639          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
640          */
641         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
642         local_irq_enable();
643 }
644
645 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
646 {
647         int r;
648
649         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
650         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
651                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
652         if (r)
653                 return r;
654         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
655                                        PT64_ROOT_MAX_LEVEL);
656         if (r)
657                 return r;
658         if (maybe_indirect) {
659                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
660                                                PT64_ROOT_MAX_LEVEL);
661                 if (r)
662                         return r;
663         }
664         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
665                                           PT64_ROOT_MAX_LEVEL);
666 }
667
668 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
669 {
670         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
671         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
672         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
673         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
674 }
675
676 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
677 {
678         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
679 }
680
681 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
682 {
683         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
684 }
685
686 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
687 {
688         if (!sp->role.direct)
689                 return sp->gfns[index];
690
691         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
692 }
693
694 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
695 {
696         if (!sp->role.direct) {
697                 sp->gfns[index] = gfn;
698                 return;
699         }
700
701         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
702                 pr_err_ratelimited("gfn mismatch under direct page %llx "
703                                    "(expected %llx, got %llx)\n",
704                                    sp->gfn,
705                                    kvm_mmu_page_get_gfn(sp, index), gfn);
706 }
707
708 /*
709  * Return the pointer to the large page information for a given gfn,
710  * handling slots that are not large page aligned.
711  */
712 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
713                 const struct kvm_memory_slot *slot, int level)
714 {
715         unsigned long idx;
716
717         idx = gfn_to_index(gfn, slot->base_gfn, level);
718         return &slot->arch.lpage_info[level - 2][idx];
719 }
720
721 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
722                                             gfn_t gfn, int count)
723 {
724         struct kvm_lpage_info *linfo;
725         int i;
726
727         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
728                 linfo = lpage_info_slot(gfn, slot, i);
729                 linfo->disallow_lpage += count;
730                 WARN_ON(linfo->disallow_lpage < 0);
731         }
732 }
733
734 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
735 {
736         update_gfn_disallow_lpage_count(slot, gfn, 1);
737 }
738
739 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
740 {
741         update_gfn_disallow_lpage_count(slot, gfn, -1);
742 }
743
744 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
745 {
746         struct kvm_memslots *slots;
747         struct kvm_memory_slot *slot;
748         gfn_t gfn;
749
750         kvm->arch.indirect_shadow_pages++;
751         gfn = sp->gfn;
752         slots = kvm_memslots_for_spte_role(kvm, sp->role);
753         slot = __gfn_to_memslot(slots, gfn);
754
755         /* the non-leaf shadow pages are keeping readonly. */
756         if (sp->role.level > PG_LEVEL_4K)
757                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
758                                                     KVM_PAGE_TRACK_WRITE);
759
760         kvm_mmu_gfn_disallow_lpage(slot, gfn);
761 }
762
763 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
764 {
765         if (sp->lpage_disallowed)
766                 return;
767
768         ++kvm->stat.nx_lpage_splits;
769         list_add_tail(&sp->lpage_disallowed_link,
770                       &kvm->arch.lpage_disallowed_mmu_pages);
771         sp->lpage_disallowed = true;
772 }
773
774 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
775 {
776         struct kvm_memslots *slots;
777         struct kvm_memory_slot *slot;
778         gfn_t gfn;
779
780         kvm->arch.indirect_shadow_pages--;
781         gfn = sp->gfn;
782         slots = kvm_memslots_for_spte_role(kvm, sp->role);
783         slot = __gfn_to_memslot(slots, gfn);
784         if (sp->role.level > PG_LEVEL_4K)
785                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
786                                                        KVM_PAGE_TRACK_WRITE);
787
788         kvm_mmu_gfn_allow_lpage(slot, gfn);
789 }
790
791 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
792 {
793         --kvm->stat.nx_lpage_splits;
794         sp->lpage_disallowed = false;
795         list_del(&sp->lpage_disallowed_link);
796 }
797
798 static struct kvm_memory_slot *
799 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
800                             bool no_dirty_log)
801 {
802         struct kvm_memory_slot *slot;
803
804         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
805         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
806                 return NULL;
807         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
808                 return NULL;
809
810         return slot;
811 }
812
813 /*
814  * About rmap_head encoding:
815  *
816  * If the bit zero of rmap_head->val is clear, then it points to the only spte
817  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
818  * pte_list_desc containing more mappings.
819  */
820
821 /*
822  * Returns the number of pointers in the rmap chain, not counting the new one.
823  */
824 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
825                         struct kvm_rmap_head *rmap_head)
826 {
827         struct pte_list_desc *desc;
828         int i, count = 0;
829
830         if (!rmap_head->val) {
831                 rmap_printk("%p %llx 0->1\n", spte, *spte);
832                 rmap_head->val = (unsigned long)spte;
833         } else if (!(rmap_head->val & 1)) {
834                 rmap_printk("%p %llx 1->many\n", spte, *spte);
835                 desc = mmu_alloc_pte_list_desc(vcpu);
836                 desc->sptes[0] = (u64 *)rmap_head->val;
837                 desc->sptes[1] = spte;
838                 rmap_head->val = (unsigned long)desc | 1;
839                 ++count;
840         } else {
841                 rmap_printk("%p %llx many->many\n", spte, *spte);
842                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
843                 while (desc->sptes[PTE_LIST_EXT-1]) {
844                         count += PTE_LIST_EXT;
845
846                         if (!desc->more) {
847                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
848                                 desc = desc->more;
849                                 break;
850                         }
851                         desc = desc->more;
852                 }
853                 for (i = 0; desc->sptes[i]; ++i)
854                         ++count;
855                 desc->sptes[i] = spte;
856         }
857         return count;
858 }
859
860 static void
861 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
862                            struct pte_list_desc *desc, int i,
863                            struct pte_list_desc *prev_desc)
864 {
865         int j;
866
867         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
868                 ;
869         desc->sptes[i] = desc->sptes[j];
870         desc->sptes[j] = NULL;
871         if (j != 0)
872                 return;
873         if (!prev_desc && !desc->more)
874                 rmap_head->val = 0;
875         else
876                 if (prev_desc)
877                         prev_desc->more = desc->more;
878                 else
879                         rmap_head->val = (unsigned long)desc->more | 1;
880         mmu_free_pte_list_desc(desc);
881 }
882
883 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
884 {
885         struct pte_list_desc *desc;
886         struct pte_list_desc *prev_desc;
887         int i;
888
889         if (!rmap_head->val) {
890                 pr_err("%s: %p 0->BUG\n", __func__, spte);
891                 BUG();
892         } else if (!(rmap_head->val & 1)) {
893                 rmap_printk("%p 1->0\n", spte);
894                 if ((u64 *)rmap_head->val != spte) {
895                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
896                         BUG();
897                 }
898                 rmap_head->val = 0;
899         } else {
900                 rmap_printk("%p many->many\n", spte);
901                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
902                 prev_desc = NULL;
903                 while (desc) {
904                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
905                                 if (desc->sptes[i] == spte) {
906                                         pte_list_desc_remove_entry(rmap_head,
907                                                         desc, i, prev_desc);
908                                         return;
909                                 }
910                         }
911                         prev_desc = desc;
912                         desc = desc->more;
913                 }
914                 pr_err("%s: %p many->many\n", __func__, spte);
915                 BUG();
916         }
917 }
918
919 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
920 {
921         mmu_spte_clear_track_bits(sptep);
922         __pte_list_remove(sptep, rmap_head);
923 }
924
925 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
926                                            struct kvm_memory_slot *slot)
927 {
928         unsigned long idx;
929
930         idx = gfn_to_index(gfn, slot->base_gfn, level);
931         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
932 }
933
934 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
935                                          struct kvm_mmu_page *sp)
936 {
937         struct kvm_memslots *slots;
938         struct kvm_memory_slot *slot;
939
940         slots = kvm_memslots_for_spte_role(kvm, sp->role);
941         slot = __gfn_to_memslot(slots, gfn);
942         return __gfn_to_rmap(gfn, sp->role.level, slot);
943 }
944
945 static bool rmap_can_add(struct kvm_vcpu *vcpu)
946 {
947         struct kvm_mmu_memory_cache *mc;
948
949         mc = &vcpu->arch.mmu_pte_list_desc_cache;
950         return kvm_mmu_memory_cache_nr_free_objects(mc);
951 }
952
953 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
954 {
955         struct kvm_mmu_page *sp;
956         struct kvm_rmap_head *rmap_head;
957
958         sp = sptep_to_sp(spte);
959         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
960         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
961         return pte_list_add(vcpu, spte, rmap_head);
962 }
963
964 static void rmap_remove(struct kvm *kvm, u64 *spte)
965 {
966         struct kvm_mmu_page *sp;
967         gfn_t gfn;
968         struct kvm_rmap_head *rmap_head;
969
970         sp = sptep_to_sp(spte);
971         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
972         rmap_head = gfn_to_rmap(kvm, gfn, sp);
973         __pte_list_remove(spte, rmap_head);
974 }
975
976 /*
977  * Used by the following functions to iterate through the sptes linked by a
978  * rmap.  All fields are private and not assumed to be used outside.
979  */
980 struct rmap_iterator {
981         /* private fields */
982         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
983         int pos;                        /* index of the sptep */
984 };
985
986 /*
987  * Iteration must be started by this function.  This should also be used after
988  * removing/dropping sptes from the rmap link because in such cases the
989  * information in the iterator may not be valid.
990  *
991  * Returns sptep if found, NULL otherwise.
992  */
993 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
994                            struct rmap_iterator *iter)
995 {
996         u64 *sptep;
997
998         if (!rmap_head->val)
999                 return NULL;
1000
1001         if (!(rmap_head->val & 1)) {
1002                 iter->desc = NULL;
1003                 sptep = (u64 *)rmap_head->val;
1004                 goto out;
1005         }
1006
1007         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1008         iter->pos = 0;
1009         sptep = iter->desc->sptes[iter->pos];
1010 out:
1011         BUG_ON(!is_shadow_present_pte(*sptep));
1012         return sptep;
1013 }
1014
1015 /*
1016  * Must be used with a valid iterator: e.g. after rmap_get_first().
1017  *
1018  * Returns sptep if found, NULL otherwise.
1019  */
1020 static u64 *rmap_get_next(struct rmap_iterator *iter)
1021 {
1022         u64 *sptep;
1023
1024         if (iter->desc) {
1025                 if (iter->pos < PTE_LIST_EXT - 1) {
1026                         ++iter->pos;
1027                         sptep = iter->desc->sptes[iter->pos];
1028                         if (sptep)
1029                                 goto out;
1030                 }
1031
1032                 iter->desc = iter->desc->more;
1033
1034                 if (iter->desc) {
1035                         iter->pos = 0;
1036                         /* desc->sptes[0] cannot be NULL */
1037                         sptep = iter->desc->sptes[iter->pos];
1038                         goto out;
1039                 }
1040         }
1041
1042         return NULL;
1043 out:
1044         BUG_ON(!is_shadow_present_pte(*sptep));
1045         return sptep;
1046 }
1047
1048 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1049         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1050              _spte_; _spte_ = rmap_get_next(_iter_))
1051
1052 static void drop_spte(struct kvm *kvm, u64 *sptep)
1053 {
1054         if (mmu_spte_clear_track_bits(sptep))
1055                 rmap_remove(kvm, sptep);
1056 }
1057
1058
1059 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1060 {
1061         if (is_large_pte(*sptep)) {
1062                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1063                 drop_spte(kvm, sptep);
1064                 --kvm->stat.lpages;
1065                 return true;
1066         }
1067
1068         return false;
1069 }
1070
1071 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1072 {
1073         if (__drop_large_spte(vcpu->kvm, sptep)) {
1074                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1075
1076                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1077                         KVM_PAGES_PER_HPAGE(sp->role.level));
1078         }
1079 }
1080
1081 /*
1082  * Write-protect on the specified @sptep, @pt_protect indicates whether
1083  * spte write-protection is caused by protecting shadow page table.
1084  *
1085  * Note: write protection is difference between dirty logging and spte
1086  * protection:
1087  * - for dirty logging, the spte can be set to writable at anytime if
1088  *   its dirty bitmap is properly set.
1089  * - for spte protection, the spte can be writable only after unsync-ing
1090  *   shadow page.
1091  *
1092  * Return true if tlb need be flushed.
1093  */
1094 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1095 {
1096         u64 spte = *sptep;
1097
1098         if (!is_writable_pte(spte) &&
1099               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1100                 return false;
1101
1102         rmap_printk("spte %p %llx\n", sptep, *sptep);
1103
1104         if (pt_protect)
1105                 spte &= ~shadow_mmu_writable_mask;
1106         spte = spte & ~PT_WRITABLE_MASK;
1107
1108         return mmu_spte_update(sptep, spte);
1109 }
1110
1111 static bool __rmap_write_protect(struct kvm *kvm,
1112                                  struct kvm_rmap_head *rmap_head,
1113                                  bool pt_protect)
1114 {
1115         u64 *sptep;
1116         struct rmap_iterator iter;
1117         bool flush = false;
1118
1119         for_each_rmap_spte(rmap_head, &iter, sptep)
1120                 flush |= spte_write_protect(sptep, pt_protect);
1121
1122         return flush;
1123 }
1124
1125 static bool spte_clear_dirty(u64 *sptep)
1126 {
1127         u64 spte = *sptep;
1128
1129         rmap_printk("spte %p %llx\n", sptep, *sptep);
1130
1131         MMU_WARN_ON(!spte_ad_enabled(spte));
1132         spte &= ~shadow_dirty_mask;
1133         return mmu_spte_update(sptep, spte);
1134 }
1135
1136 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1137 {
1138         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1139                                                (unsigned long *)sptep);
1140         if (was_writable && !spte_ad_enabled(*sptep))
1141                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1142
1143         return was_writable;
1144 }
1145
1146 /*
1147  * Gets the GFN ready for another round of dirty logging by clearing the
1148  *      - D bit on ad-enabled SPTEs, and
1149  *      - W bit on ad-disabled SPTEs.
1150  * Returns true iff any D or W bits were cleared.
1151  */
1152 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1153                                struct kvm_memory_slot *slot)
1154 {
1155         u64 *sptep;
1156         struct rmap_iterator iter;
1157         bool flush = false;
1158
1159         for_each_rmap_spte(rmap_head, &iter, sptep)
1160                 if (spte_ad_need_write_protect(*sptep))
1161                         flush |= spte_wrprot_for_clear_dirty(sptep);
1162                 else
1163                         flush |= spte_clear_dirty(sptep);
1164
1165         return flush;
1166 }
1167
1168 /**
1169  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1170  * @kvm: kvm instance
1171  * @slot: slot to protect
1172  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1173  * @mask: indicates which pages we should protect
1174  *
1175  * Used when we do not need to care about huge page mappings.
1176  */
1177 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178                                      struct kvm_memory_slot *slot,
1179                                      gfn_t gfn_offset, unsigned long mask)
1180 {
1181         struct kvm_rmap_head *rmap_head;
1182
1183         if (is_tdp_mmu_enabled(kvm))
1184                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1185                                 slot->base_gfn + gfn_offset, mask, true);
1186
1187         if (!kvm_memslots_have_rmaps(kvm))
1188                 return;
1189
1190         while (mask) {
1191                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1192                                           PG_LEVEL_4K, slot);
1193                 __rmap_write_protect(kvm, rmap_head, false);
1194
1195                 /* clear the first set bit */
1196                 mask &= mask - 1;
1197         }
1198 }
1199
1200 /**
1201  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1202  * protect the page if the D-bit isn't supported.
1203  * @kvm: kvm instance
1204  * @slot: slot to clear D-bit
1205  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1206  * @mask: indicates which pages we should clear D-bit
1207  *
1208  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1209  */
1210 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1211                                          struct kvm_memory_slot *slot,
1212                                          gfn_t gfn_offset, unsigned long mask)
1213 {
1214         struct kvm_rmap_head *rmap_head;
1215
1216         if (is_tdp_mmu_enabled(kvm))
1217                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1218                                 slot->base_gfn + gfn_offset, mask, false);
1219
1220         if (!kvm_memslots_have_rmaps(kvm))
1221                 return;
1222
1223         while (mask) {
1224                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1225                                           PG_LEVEL_4K, slot);
1226                 __rmap_clear_dirty(kvm, rmap_head, slot);
1227
1228                 /* clear the first set bit */
1229                 mask &= mask - 1;
1230         }
1231 }
1232
1233 /**
1234  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1235  * PT level pages.
1236  *
1237  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1238  * enable dirty logging for them.
1239  *
1240  * We need to care about huge page mappings: e.g. during dirty logging we may
1241  * have such mappings.
1242  */
1243 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1244                                 struct kvm_memory_slot *slot,
1245                                 gfn_t gfn_offset, unsigned long mask)
1246 {
1247         /*
1248          * Huge pages are NOT write protected when we start dirty logging in
1249          * initially-all-set mode; must write protect them here so that they
1250          * are split to 4K on the first write.
1251          *
1252          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1253          * of memslot has no such restriction, so the range can cross two large
1254          * pages.
1255          */
1256         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1257                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1258                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1259
1260                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1261
1262                 /* Cross two large pages? */
1263                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1264                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1265                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1266                                                        PG_LEVEL_2M);
1267         }
1268
1269         /* Now handle 4K PTEs.  */
1270         if (kvm_x86_ops.cpu_dirty_log_size)
1271                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1272         else
1273                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1274 }
1275
1276 int kvm_cpu_dirty_log_size(void)
1277 {
1278         return kvm_x86_ops.cpu_dirty_log_size;
1279 }
1280
1281 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1282                                     struct kvm_memory_slot *slot, u64 gfn,
1283                                     int min_level)
1284 {
1285         struct kvm_rmap_head *rmap_head;
1286         int i;
1287         bool write_protected = false;
1288
1289         if (kvm_memslots_have_rmaps(kvm)) {
1290                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1291                         rmap_head = __gfn_to_rmap(gfn, i, slot);
1292                         write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1293                 }
1294         }
1295
1296         if (is_tdp_mmu_enabled(kvm))
1297                 write_protected |=
1298                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1299
1300         return write_protected;
1301 }
1302
1303 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1304 {
1305         struct kvm_memory_slot *slot;
1306
1307         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1308         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1309 }
1310
1311 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1312                           struct kvm_memory_slot *slot)
1313 {
1314         u64 *sptep;
1315         struct rmap_iterator iter;
1316         bool flush = false;
1317
1318         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1319                 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1320
1321                 pte_list_remove(rmap_head, sptep);
1322                 flush = true;
1323         }
1324
1325         return flush;
1326 }
1327
1328 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1329                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1330                             pte_t unused)
1331 {
1332         return kvm_zap_rmapp(kvm, rmap_head, slot);
1333 }
1334
1335 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1336                               struct kvm_memory_slot *slot, gfn_t gfn, int level,
1337                               pte_t pte)
1338 {
1339         u64 *sptep;
1340         struct rmap_iterator iter;
1341         int need_flush = 0;
1342         u64 new_spte;
1343         kvm_pfn_t new_pfn;
1344
1345         WARN_ON(pte_huge(pte));
1346         new_pfn = pte_pfn(pte);
1347
1348 restart:
1349         for_each_rmap_spte(rmap_head, &iter, sptep) {
1350                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1351                             sptep, *sptep, gfn, level);
1352
1353                 need_flush = 1;
1354
1355                 if (pte_write(pte)) {
1356                         pte_list_remove(rmap_head, sptep);
1357                         goto restart;
1358                 } else {
1359                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1360                                         *sptep, new_pfn);
1361
1362                         mmu_spte_clear_track_bits(sptep);
1363                         mmu_spte_set(sptep, new_spte);
1364                 }
1365         }
1366
1367         if (need_flush && kvm_available_flush_tlb_with_range()) {
1368                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1369                 return 0;
1370         }
1371
1372         return need_flush;
1373 }
1374
1375 struct slot_rmap_walk_iterator {
1376         /* input fields. */
1377         struct kvm_memory_slot *slot;
1378         gfn_t start_gfn;
1379         gfn_t end_gfn;
1380         int start_level;
1381         int end_level;
1382
1383         /* output fields. */
1384         gfn_t gfn;
1385         struct kvm_rmap_head *rmap;
1386         int level;
1387
1388         /* private field. */
1389         struct kvm_rmap_head *end_rmap;
1390 };
1391
1392 static void
1393 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1394 {
1395         iterator->level = level;
1396         iterator->gfn = iterator->start_gfn;
1397         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1398         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1399                                            iterator->slot);
1400 }
1401
1402 static void
1403 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1404                     struct kvm_memory_slot *slot, int start_level,
1405                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1406 {
1407         iterator->slot = slot;
1408         iterator->start_level = start_level;
1409         iterator->end_level = end_level;
1410         iterator->start_gfn = start_gfn;
1411         iterator->end_gfn = end_gfn;
1412
1413         rmap_walk_init_level(iterator, iterator->start_level);
1414 }
1415
1416 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1417 {
1418         return !!iterator->rmap;
1419 }
1420
1421 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1422 {
1423         if (++iterator->rmap <= iterator->end_rmap) {
1424                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1425                 return;
1426         }
1427
1428         if (++iterator->level > iterator->end_level) {
1429                 iterator->rmap = NULL;
1430                 return;
1431         }
1432
1433         rmap_walk_init_level(iterator, iterator->level);
1434 }
1435
1436 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1437            _start_gfn, _end_gfn, _iter_)                                \
1438         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1439                                  _end_level_, _start_gfn, _end_gfn);    \
1440              slot_rmap_walk_okay(_iter_);                               \
1441              slot_rmap_walk_next(_iter_))
1442
1443 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1444                                struct kvm_memory_slot *slot, gfn_t gfn,
1445                                int level, pte_t pte);
1446
1447 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1448                                                  struct kvm_gfn_range *range,
1449                                                  rmap_handler_t handler)
1450 {
1451         struct slot_rmap_walk_iterator iterator;
1452         bool ret = false;
1453
1454         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1455                                  range->start, range->end - 1, &iterator)
1456                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1457                                iterator.level, range->pte);
1458
1459         return ret;
1460 }
1461
1462 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1463 {
1464         bool flush = false;
1465
1466         if (kvm_memslots_have_rmaps(kvm))
1467                 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1468
1469         if (is_tdp_mmu_enabled(kvm))
1470                 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1471
1472         return flush;
1473 }
1474
1475 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1476 {
1477         bool flush = false;
1478
1479         if (kvm_memslots_have_rmaps(kvm))
1480                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1481
1482         if (is_tdp_mmu_enabled(kvm))
1483                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1484
1485         return flush;
1486 }
1487
1488 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1489                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1490                           pte_t unused)
1491 {
1492         u64 *sptep;
1493         struct rmap_iterator iter;
1494         int young = 0;
1495
1496         for_each_rmap_spte(rmap_head, &iter, sptep)
1497                 young |= mmu_spte_age(sptep);
1498
1499         return young;
1500 }
1501
1502 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1503                                struct kvm_memory_slot *slot, gfn_t gfn,
1504                                int level, pte_t unused)
1505 {
1506         u64 *sptep;
1507         struct rmap_iterator iter;
1508
1509         for_each_rmap_spte(rmap_head, &iter, sptep)
1510                 if (is_accessed_spte(*sptep))
1511                         return 1;
1512         return 0;
1513 }
1514
1515 #define RMAP_RECYCLE_THRESHOLD 1000
1516
1517 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1518 {
1519         struct kvm_rmap_head *rmap_head;
1520         struct kvm_mmu_page *sp;
1521
1522         sp = sptep_to_sp(spte);
1523
1524         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1525
1526         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1527         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1528                         KVM_PAGES_PER_HPAGE(sp->role.level));
1529 }
1530
1531 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1532 {
1533         bool young = false;
1534
1535         if (kvm_memslots_have_rmaps(kvm))
1536                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1537
1538         if (is_tdp_mmu_enabled(kvm))
1539                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1540
1541         return young;
1542 }
1543
1544 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1545 {
1546         bool young = false;
1547
1548         if (kvm_memslots_have_rmaps(kvm))
1549                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1550
1551         if (is_tdp_mmu_enabled(kvm))
1552                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1553
1554         return young;
1555 }
1556
1557 #ifdef MMU_DEBUG
1558 static int is_empty_shadow_page(u64 *spt)
1559 {
1560         u64 *pos;
1561         u64 *end;
1562
1563         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1564                 if (is_shadow_present_pte(*pos)) {
1565                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1566                                pos, *pos);
1567                         return 0;
1568                 }
1569         return 1;
1570 }
1571 #endif
1572
1573 /*
1574  * This value is the sum of all of the kvm instances's
1575  * kvm->arch.n_used_mmu_pages values.  We need a global,
1576  * aggregate version in order to make the slab shrinker
1577  * faster
1578  */
1579 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1580 {
1581         kvm->arch.n_used_mmu_pages += nr;
1582         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1583 }
1584
1585 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1586 {
1587         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1588         hlist_del(&sp->hash_link);
1589         list_del(&sp->link);
1590         free_page((unsigned long)sp->spt);
1591         if (!sp->role.direct)
1592                 free_page((unsigned long)sp->gfns);
1593         kmem_cache_free(mmu_page_header_cache, sp);
1594 }
1595
1596 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1597 {
1598         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1599 }
1600
1601 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1602                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1603 {
1604         if (!parent_pte)
1605                 return;
1606
1607         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1608 }
1609
1610 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1611                                        u64 *parent_pte)
1612 {
1613         __pte_list_remove(parent_pte, &sp->parent_ptes);
1614 }
1615
1616 static void drop_parent_pte(struct kvm_mmu_page *sp,
1617                             u64 *parent_pte)
1618 {
1619         mmu_page_remove_parent_pte(sp, parent_pte);
1620         mmu_spte_clear_no_track(parent_pte);
1621 }
1622
1623 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1624 {
1625         struct kvm_mmu_page *sp;
1626
1627         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1628         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1629         if (!direct)
1630                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1631         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1632
1633         /*
1634          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1635          * depends on valid pages being added to the head of the list.  See
1636          * comments in kvm_zap_obsolete_pages().
1637          */
1638         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1639         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1640         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1641         return sp;
1642 }
1643
1644 static void mark_unsync(u64 *spte);
1645 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1646 {
1647         u64 *sptep;
1648         struct rmap_iterator iter;
1649
1650         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1651                 mark_unsync(sptep);
1652         }
1653 }
1654
1655 static void mark_unsync(u64 *spte)
1656 {
1657         struct kvm_mmu_page *sp;
1658         unsigned int index;
1659
1660         sp = sptep_to_sp(spte);
1661         index = spte - sp->spt;
1662         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1663                 return;
1664         if (sp->unsync_children++)
1665                 return;
1666         kvm_mmu_mark_parents_unsync(sp);
1667 }
1668
1669 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1670                                struct kvm_mmu_page *sp)
1671 {
1672         return 0;
1673 }
1674
1675 #define KVM_PAGE_ARRAY_NR 16
1676
1677 struct kvm_mmu_pages {
1678         struct mmu_page_and_offset {
1679                 struct kvm_mmu_page *sp;
1680                 unsigned int idx;
1681         } page[KVM_PAGE_ARRAY_NR];
1682         unsigned int nr;
1683 };
1684
1685 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1686                          int idx)
1687 {
1688         int i;
1689
1690         if (sp->unsync)
1691                 for (i=0; i < pvec->nr; i++)
1692                         if (pvec->page[i].sp == sp)
1693                                 return 0;
1694
1695         pvec->page[pvec->nr].sp = sp;
1696         pvec->page[pvec->nr].idx = idx;
1697         pvec->nr++;
1698         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1699 }
1700
1701 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1702 {
1703         --sp->unsync_children;
1704         WARN_ON((int)sp->unsync_children < 0);
1705         __clear_bit(idx, sp->unsync_child_bitmap);
1706 }
1707
1708 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1709                            struct kvm_mmu_pages *pvec)
1710 {
1711         int i, ret, nr_unsync_leaf = 0;
1712
1713         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1714                 struct kvm_mmu_page *child;
1715                 u64 ent = sp->spt[i];
1716
1717                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1718                         clear_unsync_child_bit(sp, i);
1719                         continue;
1720                 }
1721
1722                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1723
1724                 if (child->unsync_children) {
1725                         if (mmu_pages_add(pvec, child, i))
1726                                 return -ENOSPC;
1727
1728                         ret = __mmu_unsync_walk(child, pvec);
1729                         if (!ret) {
1730                                 clear_unsync_child_bit(sp, i);
1731                                 continue;
1732                         } else if (ret > 0) {
1733                                 nr_unsync_leaf += ret;
1734                         } else
1735                                 return ret;
1736                 } else if (child->unsync) {
1737                         nr_unsync_leaf++;
1738                         if (mmu_pages_add(pvec, child, i))
1739                                 return -ENOSPC;
1740                 } else
1741                         clear_unsync_child_bit(sp, i);
1742         }
1743
1744         return nr_unsync_leaf;
1745 }
1746
1747 #define INVALID_INDEX (-1)
1748
1749 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1750                            struct kvm_mmu_pages *pvec)
1751 {
1752         pvec->nr = 0;
1753         if (!sp->unsync_children)
1754                 return 0;
1755
1756         mmu_pages_add(pvec, sp, INVALID_INDEX);
1757         return __mmu_unsync_walk(sp, pvec);
1758 }
1759
1760 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1761 {
1762         WARN_ON(!sp->unsync);
1763         trace_kvm_mmu_sync_page(sp);
1764         sp->unsync = 0;
1765         --kvm->stat.mmu_unsync;
1766 }
1767
1768 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1769                                      struct list_head *invalid_list);
1770 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1771                                     struct list_head *invalid_list);
1772
1773 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1774         hlist_for_each_entry(_sp, _list, hash_link)                     \
1775                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1776                 } else
1777
1778 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1779         for_each_valid_sp(_kvm, _sp,                                    \
1780           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1781                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1782
1783 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1784 {
1785         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1786 }
1787
1788 /* @sp->gfn should be write-protected at the call site */
1789 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1790                             struct list_head *invalid_list)
1791 {
1792         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1793             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1794                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1795                 return false;
1796         }
1797
1798         return true;
1799 }
1800
1801 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1802                                         struct list_head *invalid_list,
1803                                         bool remote_flush)
1804 {
1805         if (!remote_flush && list_empty(invalid_list))
1806                 return false;
1807
1808         if (!list_empty(invalid_list))
1809                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1810         else
1811                 kvm_flush_remote_tlbs(kvm);
1812         return true;
1813 }
1814
1815 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1816                                  struct list_head *invalid_list,
1817                                  bool remote_flush, bool local_flush)
1818 {
1819         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1820                 return;
1821
1822         if (local_flush)
1823                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1824 }
1825
1826 #ifdef CONFIG_KVM_MMU_AUDIT
1827 #include "mmu_audit.c"
1828 #else
1829 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1830 static void mmu_audit_disable(void) { }
1831 #endif
1832
1833 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1834 {
1835         return sp->role.invalid ||
1836                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1837 }
1838
1839 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1840                          struct list_head *invalid_list)
1841 {
1842         kvm_unlink_unsync_page(vcpu->kvm, sp);
1843         return __kvm_sync_page(vcpu, sp, invalid_list);
1844 }
1845
1846 /* @gfn should be write-protected at the call site */
1847 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1848                            struct list_head *invalid_list)
1849 {
1850         struct kvm_mmu_page *s;
1851         bool ret = false;
1852
1853         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1854                 if (!s->unsync)
1855                         continue;
1856
1857                 WARN_ON(s->role.level != PG_LEVEL_4K);
1858                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1859         }
1860
1861         return ret;
1862 }
1863
1864 struct mmu_page_path {
1865         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1866         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1867 };
1868
1869 #define for_each_sp(pvec, sp, parents, i)                       \
1870                 for (i = mmu_pages_first(&pvec, &parents);      \
1871                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1872                         i = mmu_pages_next(&pvec, &parents, i))
1873
1874 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1875                           struct mmu_page_path *parents,
1876                           int i)
1877 {
1878         int n;
1879
1880         for (n = i+1; n < pvec->nr; n++) {
1881                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1882                 unsigned idx = pvec->page[n].idx;
1883                 int level = sp->role.level;
1884
1885                 parents->idx[level-1] = idx;
1886                 if (level == PG_LEVEL_4K)
1887                         break;
1888
1889                 parents->parent[level-2] = sp;
1890         }
1891
1892         return n;
1893 }
1894
1895 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1896                            struct mmu_page_path *parents)
1897 {
1898         struct kvm_mmu_page *sp;
1899         int level;
1900
1901         if (pvec->nr == 0)
1902                 return 0;
1903
1904         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1905
1906         sp = pvec->page[0].sp;
1907         level = sp->role.level;
1908         WARN_ON(level == PG_LEVEL_4K);
1909
1910         parents->parent[level-2] = sp;
1911
1912         /* Also set up a sentinel.  Further entries in pvec are all
1913          * children of sp, so this element is never overwritten.
1914          */
1915         parents->parent[level-1] = NULL;
1916         return mmu_pages_next(pvec, parents, 0);
1917 }
1918
1919 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1920 {
1921         struct kvm_mmu_page *sp;
1922         unsigned int level = 0;
1923
1924         do {
1925                 unsigned int idx = parents->idx[level];
1926                 sp = parents->parent[level];
1927                 if (!sp)
1928                         return;
1929
1930                 WARN_ON(idx == INVALID_INDEX);
1931                 clear_unsync_child_bit(sp, idx);
1932                 level++;
1933         } while (!sp->unsync_children);
1934 }
1935
1936 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1937                               struct kvm_mmu_page *parent)
1938 {
1939         int i;
1940         struct kvm_mmu_page *sp;
1941         struct mmu_page_path parents;
1942         struct kvm_mmu_pages pages;
1943         LIST_HEAD(invalid_list);
1944         bool flush = false;
1945
1946         while (mmu_unsync_walk(parent, &pages)) {
1947                 bool protected = false;
1948
1949                 for_each_sp(pages, sp, parents, i)
1950                         protected |= rmap_write_protect(vcpu, sp->gfn);
1951
1952                 if (protected) {
1953                         kvm_flush_remote_tlbs(vcpu->kvm);
1954                         flush = false;
1955                 }
1956
1957                 for_each_sp(pages, sp, parents, i) {
1958                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1959                         mmu_pages_clear_parents(&parents);
1960                 }
1961                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1962                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1963                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1964                         flush = false;
1965                 }
1966         }
1967
1968         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1969 }
1970
1971 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1972 {
1973         atomic_set(&sp->write_flooding_count,  0);
1974 }
1975
1976 static void clear_sp_write_flooding_count(u64 *spte)
1977 {
1978         __clear_sp_write_flooding_count(sptep_to_sp(spte));
1979 }
1980
1981 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1982                                              gfn_t gfn,
1983                                              gva_t gaddr,
1984                                              unsigned level,
1985                                              int direct,
1986                                              unsigned int access)
1987 {
1988         bool direct_mmu = vcpu->arch.mmu->direct_map;
1989         union kvm_mmu_page_role role;
1990         struct hlist_head *sp_list;
1991         unsigned quadrant;
1992         struct kvm_mmu_page *sp;
1993         bool need_sync = false;
1994         bool flush = false;
1995         int collisions = 0;
1996         LIST_HEAD(invalid_list);
1997
1998         role = vcpu->arch.mmu->mmu_role.base;
1999         role.level = level;
2000         role.direct = direct;
2001         if (role.direct)
2002                 role.gpte_is_8_bytes = true;
2003         role.access = access;
2004         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2005                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2006                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2007                 role.quadrant = quadrant;
2008         }
2009
2010         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2011         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2012                 if (sp->gfn != gfn) {
2013                         collisions++;
2014                         continue;
2015                 }
2016
2017                 if (!need_sync && sp->unsync)
2018                         need_sync = true;
2019
2020                 if (sp->role.word != role.word)
2021                         continue;
2022
2023                 if (direct_mmu)
2024                         goto trace_get_page;
2025
2026                 if (sp->unsync) {
2027                         /* The page is good, but __kvm_sync_page might still end
2028                          * up zapping it.  If so, break in order to rebuild it.
2029                          */
2030                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2031                                 break;
2032
2033                         WARN_ON(!list_empty(&invalid_list));
2034                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2035                 }
2036
2037                 if (sp->unsync_children)
2038                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2039
2040                 __clear_sp_write_flooding_count(sp);
2041
2042 trace_get_page:
2043                 trace_kvm_mmu_get_page(sp, false);
2044                 goto out;
2045         }
2046
2047         ++vcpu->kvm->stat.mmu_cache_miss;
2048
2049         sp = kvm_mmu_alloc_page(vcpu, direct);
2050
2051         sp->gfn = gfn;
2052         sp->role = role;
2053         hlist_add_head(&sp->hash_link, sp_list);
2054         if (!direct) {
2055                 /*
2056                  * we should do write protection before syncing pages
2057                  * otherwise the content of the synced shadow page may
2058                  * be inconsistent with guest page table.
2059                  */
2060                 account_shadowed(vcpu->kvm, sp);
2061                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2062                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2063
2064                 if (level > PG_LEVEL_4K && need_sync)
2065                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2066         }
2067         trace_kvm_mmu_get_page(sp, true);
2068
2069         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2070 out:
2071         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2072                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2073         return sp;
2074 }
2075
2076 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2077                                         struct kvm_vcpu *vcpu, hpa_t root,
2078                                         u64 addr)
2079 {
2080         iterator->addr = addr;
2081         iterator->shadow_addr = root;
2082         iterator->level = vcpu->arch.mmu->shadow_root_level;
2083
2084         if (iterator->level == PT64_ROOT_4LEVEL &&
2085             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2086             !vcpu->arch.mmu->direct_map)
2087                 --iterator->level;
2088
2089         if (iterator->level == PT32E_ROOT_LEVEL) {
2090                 /*
2091                  * prev_root is currently only used for 64-bit hosts. So only
2092                  * the active root_hpa is valid here.
2093                  */
2094                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2095
2096                 iterator->shadow_addr
2097                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2098                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2099                 --iterator->level;
2100                 if (!iterator->shadow_addr)
2101                         iterator->level = 0;
2102         }
2103 }
2104
2105 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2106                              struct kvm_vcpu *vcpu, u64 addr)
2107 {
2108         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2109                                     addr);
2110 }
2111
2112 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2113 {
2114         if (iterator->level < PG_LEVEL_4K)
2115                 return false;
2116
2117         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2118         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2119         return true;
2120 }
2121
2122 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2123                                u64 spte)
2124 {
2125         if (is_last_spte(spte, iterator->level)) {
2126                 iterator->level = 0;
2127                 return;
2128         }
2129
2130         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2131         --iterator->level;
2132 }
2133
2134 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2135 {
2136         __shadow_walk_next(iterator, *iterator->sptep);
2137 }
2138
2139 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2140                              struct kvm_mmu_page *sp)
2141 {
2142         u64 spte;
2143
2144         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2145
2146         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2147
2148         mmu_spte_set(sptep, spte);
2149
2150         mmu_page_add_parent_pte(vcpu, sp, sptep);
2151
2152         if (sp->unsync_children || sp->unsync)
2153                 mark_unsync(sptep);
2154 }
2155
2156 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2157                                    unsigned direct_access)
2158 {
2159         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2160                 struct kvm_mmu_page *child;
2161
2162                 /*
2163                  * For the direct sp, if the guest pte's dirty bit
2164                  * changed form clean to dirty, it will corrupt the
2165                  * sp's access: allow writable in the read-only sp,
2166                  * so we should update the spte at this point to get
2167                  * a new sp with the correct access.
2168                  */
2169                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2170                 if (child->role.access == direct_access)
2171                         return;
2172
2173                 drop_parent_pte(child, sptep);
2174                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2175         }
2176 }
2177
2178 /* Returns the number of zapped non-leaf child shadow pages. */
2179 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2180                             u64 *spte, struct list_head *invalid_list)
2181 {
2182         u64 pte;
2183         struct kvm_mmu_page *child;
2184
2185         pte = *spte;
2186         if (is_shadow_present_pte(pte)) {
2187                 if (is_last_spte(pte, sp->role.level)) {
2188                         drop_spte(kvm, spte);
2189                         if (is_large_pte(pte))
2190                                 --kvm->stat.lpages;
2191                 } else {
2192                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2193                         drop_parent_pte(child, spte);
2194
2195                         /*
2196                          * Recursively zap nested TDP SPs, parentless SPs are
2197                          * unlikely to be used again in the near future.  This
2198                          * avoids retaining a large number of stale nested SPs.
2199                          */
2200                         if (tdp_enabled && invalid_list &&
2201                             child->role.guest_mode && !child->parent_ptes.val)
2202                                 return kvm_mmu_prepare_zap_page(kvm, child,
2203                                                                 invalid_list);
2204                 }
2205         } else if (is_mmio_spte(pte)) {
2206                 mmu_spte_clear_no_track(spte);
2207         }
2208         return 0;
2209 }
2210
2211 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2212                                         struct kvm_mmu_page *sp,
2213                                         struct list_head *invalid_list)
2214 {
2215         int zapped = 0;
2216         unsigned i;
2217
2218         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2219                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2220
2221         return zapped;
2222 }
2223
2224 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2225 {
2226         u64 *sptep;
2227         struct rmap_iterator iter;
2228
2229         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2230                 drop_parent_pte(sp, sptep);
2231 }
2232
2233 static int mmu_zap_unsync_children(struct kvm *kvm,
2234                                    struct kvm_mmu_page *parent,
2235                                    struct list_head *invalid_list)
2236 {
2237         int i, zapped = 0;
2238         struct mmu_page_path parents;
2239         struct kvm_mmu_pages pages;
2240
2241         if (parent->role.level == PG_LEVEL_4K)
2242                 return 0;
2243
2244         while (mmu_unsync_walk(parent, &pages)) {
2245                 struct kvm_mmu_page *sp;
2246
2247                 for_each_sp(pages, sp, parents, i) {
2248                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2249                         mmu_pages_clear_parents(&parents);
2250                         zapped++;
2251                 }
2252         }
2253
2254         return zapped;
2255 }
2256
2257 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2258                                        struct kvm_mmu_page *sp,
2259                                        struct list_head *invalid_list,
2260                                        int *nr_zapped)
2261 {
2262         bool list_unstable;
2263
2264         trace_kvm_mmu_prepare_zap_page(sp);
2265         ++kvm->stat.mmu_shadow_zapped;
2266         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2267         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2268         kvm_mmu_unlink_parents(kvm, sp);
2269
2270         /* Zapping children means active_mmu_pages has become unstable. */
2271         list_unstable = *nr_zapped;
2272
2273         if (!sp->role.invalid && !sp->role.direct)
2274                 unaccount_shadowed(kvm, sp);
2275
2276         if (sp->unsync)
2277                 kvm_unlink_unsync_page(kvm, sp);
2278         if (!sp->root_count) {
2279                 /* Count self */
2280                 (*nr_zapped)++;
2281
2282                 /*
2283                  * Already invalid pages (previously active roots) are not on
2284                  * the active page list.  See list_del() in the "else" case of
2285                  * !sp->root_count.
2286                  */
2287                 if (sp->role.invalid)
2288                         list_add(&sp->link, invalid_list);
2289                 else
2290                         list_move(&sp->link, invalid_list);
2291                 kvm_mod_used_mmu_pages(kvm, -1);
2292         } else {
2293                 /*
2294                  * Remove the active root from the active page list, the root
2295                  * will be explicitly freed when the root_count hits zero.
2296                  */
2297                 list_del(&sp->link);
2298
2299                 /*
2300                  * Obsolete pages cannot be used on any vCPUs, see the comment
2301                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2302                  * treats invalid shadow pages as being obsolete.
2303                  */
2304                 if (!is_obsolete_sp(kvm, sp))
2305                         kvm_reload_remote_mmus(kvm);
2306         }
2307
2308         if (sp->lpage_disallowed)
2309                 unaccount_huge_nx_page(kvm, sp);
2310
2311         sp->role.invalid = 1;
2312         return list_unstable;
2313 }
2314
2315 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2316                                      struct list_head *invalid_list)
2317 {
2318         int nr_zapped;
2319
2320         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2321         return nr_zapped;
2322 }
2323
2324 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2325                                     struct list_head *invalid_list)
2326 {
2327         struct kvm_mmu_page *sp, *nsp;
2328
2329         if (list_empty(invalid_list))
2330                 return;
2331
2332         /*
2333          * We need to make sure everyone sees our modifications to
2334          * the page tables and see changes to vcpu->mode here. The barrier
2335          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2336          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2337          *
2338          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2339          * guest mode and/or lockless shadow page table walks.
2340          */
2341         kvm_flush_remote_tlbs(kvm);
2342
2343         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2344                 WARN_ON(!sp->role.invalid || sp->root_count);
2345                 kvm_mmu_free_page(sp);
2346         }
2347 }
2348
2349 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2350                                                   unsigned long nr_to_zap)
2351 {
2352         unsigned long total_zapped = 0;
2353         struct kvm_mmu_page *sp, *tmp;
2354         LIST_HEAD(invalid_list);
2355         bool unstable;
2356         int nr_zapped;
2357
2358         if (list_empty(&kvm->arch.active_mmu_pages))
2359                 return 0;
2360
2361 restart:
2362         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2363                 /*
2364                  * Don't zap active root pages, the page itself can't be freed
2365                  * and zapping it will just force vCPUs to realloc and reload.
2366                  */
2367                 if (sp->root_count)
2368                         continue;
2369
2370                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2371                                                       &nr_zapped);
2372                 total_zapped += nr_zapped;
2373                 if (total_zapped >= nr_to_zap)
2374                         break;
2375
2376                 if (unstable)
2377                         goto restart;
2378         }
2379
2380         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2381
2382         kvm->stat.mmu_recycled += total_zapped;
2383         return total_zapped;
2384 }
2385
2386 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2387 {
2388         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2389                 return kvm->arch.n_max_mmu_pages -
2390                         kvm->arch.n_used_mmu_pages;
2391
2392         return 0;
2393 }
2394
2395 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2396 {
2397         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2398
2399         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2400                 return 0;
2401
2402         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2403
2404         /*
2405          * Note, this check is intentionally soft, it only guarantees that one
2406          * page is available, while the caller may end up allocating as many as
2407          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2408          * exceeding the (arbitrary by default) limit will not harm the host,
2409          * being too agressive may unnecessarily kill the guest, and getting an
2410          * exact count is far more trouble than it's worth, especially in the
2411          * page fault paths.
2412          */
2413         if (!kvm_mmu_available_pages(vcpu->kvm))
2414                 return -ENOSPC;
2415         return 0;
2416 }
2417
2418 /*
2419  * Changing the number of mmu pages allocated to the vm
2420  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2421  */
2422 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2423 {
2424         write_lock(&kvm->mmu_lock);
2425
2426         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2427                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2428                                                   goal_nr_mmu_pages);
2429
2430                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2431         }
2432
2433         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2434
2435         write_unlock(&kvm->mmu_lock);
2436 }
2437
2438 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2439 {
2440         struct kvm_mmu_page *sp;
2441         LIST_HEAD(invalid_list);
2442         int r;
2443
2444         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2445         r = 0;
2446         write_lock(&kvm->mmu_lock);
2447         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2448                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2449                          sp->role.word);
2450                 r = 1;
2451                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2452         }
2453         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2454         write_unlock(&kvm->mmu_lock);
2455
2456         return r;
2457 }
2458
2459 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2460 {
2461         gpa_t gpa;
2462         int r;
2463
2464         if (vcpu->arch.mmu->direct_map)
2465                 return 0;
2466
2467         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2468
2469         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2470
2471         return r;
2472 }
2473
2474 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2475 {
2476         trace_kvm_mmu_unsync_page(sp);
2477         ++vcpu->kvm->stat.mmu_unsync;
2478         sp->unsync = 1;
2479
2480         kvm_mmu_mark_parents_unsync(sp);
2481 }
2482
2483 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2484                             bool can_unsync)
2485 {
2486         struct kvm_mmu_page *sp;
2487
2488         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2489                 return true;
2490
2491         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2492                 if (!can_unsync)
2493                         return true;
2494
2495                 if (sp->unsync)
2496                         continue;
2497
2498                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2499                 kvm_unsync_page(vcpu, sp);
2500         }
2501
2502         /*
2503          * We need to ensure that the marking of unsync pages is visible
2504          * before the SPTE is updated to allow writes because
2505          * kvm_mmu_sync_roots() checks the unsync flags without holding
2506          * the MMU lock and so can race with this. If the SPTE was updated
2507          * before the page had been marked as unsync-ed, something like the
2508          * following could happen:
2509          *
2510          * CPU 1                    CPU 2
2511          * ---------------------------------------------------------------------
2512          * 1.2 Host updates SPTE
2513          *     to be writable
2514          *                      2.1 Guest writes a GPTE for GVA X.
2515          *                          (GPTE being in the guest page table shadowed
2516          *                           by the SP from CPU 1.)
2517          *                          This reads SPTE during the page table walk.
2518          *                          Since SPTE.W is read as 1, there is no
2519          *                          fault.
2520          *
2521          *                      2.2 Guest issues TLB flush.
2522          *                          That causes a VM Exit.
2523          *
2524          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2525          *                          Since it is false, so it just returns.
2526          *
2527          *                      2.4 Guest accesses GVA X.
2528          *                          Since the mapping in the SP was not updated,
2529          *                          so the old mapping for GVA X incorrectly
2530          *                          gets used.
2531          * 1.1 Host marks SP
2532          *     as unsync
2533          *     (sp->unsync = true)
2534          *
2535          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2536          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2537          * pairs with this write barrier.
2538          */
2539         smp_wmb();
2540
2541         return false;
2542 }
2543
2544 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2545                     unsigned int pte_access, int level,
2546                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2547                     bool can_unsync, bool host_writable)
2548 {
2549         u64 spte;
2550         struct kvm_mmu_page *sp;
2551         int ret;
2552
2553         sp = sptep_to_sp(sptep);
2554
2555         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2556                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2557
2558         if (spte & PT_WRITABLE_MASK)
2559                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2560
2561         if (*sptep == spte)
2562                 ret |= SET_SPTE_SPURIOUS;
2563         else if (mmu_spte_update(sptep, spte))
2564                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2565         return ret;
2566 }
2567
2568 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2569                         unsigned int pte_access, bool write_fault, int level,
2570                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2571                         bool host_writable)
2572 {
2573         int was_rmapped = 0;
2574         int rmap_count;
2575         int set_spte_ret;
2576         int ret = RET_PF_FIXED;
2577         bool flush = false;
2578
2579         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2580                  *sptep, write_fault, gfn);
2581
2582         if (unlikely(is_noslot_pfn(pfn))) {
2583                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2584                 return RET_PF_EMULATE;
2585         }
2586
2587         if (is_shadow_present_pte(*sptep)) {
2588                 /*
2589                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2590                  * the parent of the now unreachable PTE.
2591                  */
2592                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2593                         struct kvm_mmu_page *child;
2594                         u64 pte = *sptep;
2595
2596                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2597                         drop_parent_pte(child, sptep);
2598                         flush = true;
2599                 } else if (pfn != spte_to_pfn(*sptep)) {
2600                         pgprintk("hfn old %llx new %llx\n",
2601                                  spte_to_pfn(*sptep), pfn);
2602                         drop_spte(vcpu->kvm, sptep);
2603                         flush = true;
2604                 } else
2605                         was_rmapped = 1;
2606         }
2607
2608         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2609                                 speculative, true, host_writable);
2610         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2611                 if (write_fault)
2612                         ret = RET_PF_EMULATE;
2613                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2614         }
2615
2616         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2617                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2618                                 KVM_PAGES_PER_HPAGE(level));
2619
2620         /*
2621          * The fault is fully spurious if and only if the new SPTE and old SPTE
2622          * are identical, and emulation is not required.
2623          */
2624         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2625                 WARN_ON_ONCE(!was_rmapped);
2626                 return RET_PF_SPURIOUS;
2627         }
2628
2629         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2630         trace_kvm_mmu_set_spte(level, gfn, sptep);
2631         if (!was_rmapped && is_large_pte(*sptep))
2632                 ++vcpu->kvm->stat.lpages;
2633
2634         if (is_shadow_present_pte(*sptep)) {
2635                 if (!was_rmapped) {
2636                         rmap_count = rmap_add(vcpu, sptep, gfn);
2637                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2638                                 rmap_recycle(vcpu, sptep, gfn);
2639                 }
2640         }
2641
2642         return ret;
2643 }
2644
2645 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2646                                      bool no_dirty_log)
2647 {
2648         struct kvm_memory_slot *slot;
2649
2650         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2651         if (!slot)
2652                 return KVM_PFN_ERR_FAULT;
2653
2654         return gfn_to_pfn_memslot_atomic(slot, gfn);
2655 }
2656
2657 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2658                                     struct kvm_mmu_page *sp,
2659                                     u64 *start, u64 *end)
2660 {
2661         struct page *pages[PTE_PREFETCH_NUM];
2662         struct kvm_memory_slot *slot;
2663         unsigned int access = sp->role.access;
2664         int i, ret;
2665         gfn_t gfn;
2666
2667         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2668         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2669         if (!slot)
2670                 return -1;
2671
2672         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2673         if (ret <= 0)
2674                 return -1;
2675
2676         for (i = 0; i < ret; i++, gfn++, start++) {
2677                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2678                              page_to_pfn(pages[i]), true, true);
2679                 put_page(pages[i]);
2680         }
2681
2682         return 0;
2683 }
2684
2685 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2686                                   struct kvm_mmu_page *sp, u64 *sptep)
2687 {
2688         u64 *spte, *start = NULL;
2689         int i;
2690
2691         WARN_ON(!sp->role.direct);
2692
2693         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2694         spte = sp->spt + i;
2695
2696         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2697                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2698                         if (!start)
2699                                 continue;
2700                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2701                                 break;
2702                         start = NULL;
2703                 } else if (!start)
2704                         start = spte;
2705         }
2706 }
2707
2708 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2709 {
2710         struct kvm_mmu_page *sp;
2711
2712         sp = sptep_to_sp(sptep);
2713
2714         /*
2715          * Without accessed bits, there's no way to distinguish between
2716          * actually accessed translations and prefetched, so disable pte
2717          * prefetch if accessed bits aren't available.
2718          */
2719         if (sp_ad_disabled(sp))
2720                 return;
2721
2722         if (sp->role.level > PG_LEVEL_4K)
2723                 return;
2724
2725         /*
2726          * If addresses are being invalidated, skip prefetching to avoid
2727          * accidentally prefetching those addresses.
2728          */
2729         if (unlikely(vcpu->kvm->mmu_notifier_count))
2730                 return;
2731
2732         __direct_pte_prefetch(vcpu, sp, sptep);
2733 }
2734
2735 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2736                                   const struct kvm_memory_slot *slot)
2737 {
2738         unsigned long hva;
2739         pte_t *pte;
2740         int level;
2741
2742         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2743                 return PG_LEVEL_4K;
2744
2745         /*
2746          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2747          * is not solely for performance, it's also necessary to avoid the
2748          * "writable" check in __gfn_to_hva_many(), which will always fail on
2749          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2750          * page fault steps have already verified the guest isn't writing a
2751          * read-only memslot.
2752          */
2753         hva = __gfn_to_hva_memslot(slot, gfn);
2754
2755         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2756         if (unlikely(!pte))
2757                 return PG_LEVEL_4K;
2758
2759         return level;
2760 }
2761
2762 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2763                               const struct kvm_memory_slot *slot, gfn_t gfn,
2764                               kvm_pfn_t pfn, int max_level)
2765 {
2766         struct kvm_lpage_info *linfo;
2767
2768         max_level = min(max_level, max_huge_page_level);
2769         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2770                 linfo = lpage_info_slot(gfn, slot, max_level);
2771                 if (!linfo->disallow_lpage)
2772                         break;
2773         }
2774
2775         if (max_level == PG_LEVEL_4K)
2776                 return PG_LEVEL_4K;
2777
2778         return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2779 }
2780
2781 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2782                             int max_level, kvm_pfn_t *pfnp,
2783                             bool huge_page_disallowed, int *req_level)
2784 {
2785         struct kvm_memory_slot *slot;
2786         kvm_pfn_t pfn = *pfnp;
2787         kvm_pfn_t mask;
2788         int level;
2789
2790         *req_level = PG_LEVEL_4K;
2791
2792         if (unlikely(max_level == PG_LEVEL_4K))
2793                 return PG_LEVEL_4K;
2794
2795         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2796                 return PG_LEVEL_4K;
2797
2798         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2799         if (!slot)
2800                 return PG_LEVEL_4K;
2801
2802         level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2803         if (level == PG_LEVEL_4K)
2804                 return level;
2805
2806         *req_level = level = min(level, max_level);
2807
2808         /*
2809          * Enforce the iTLB multihit workaround after capturing the requested
2810          * level, which will be used to do precise, accurate accounting.
2811          */
2812         if (huge_page_disallowed)
2813                 return PG_LEVEL_4K;
2814
2815         /*
2816          * mmu_notifier_retry() was successful and mmu_lock is held, so
2817          * the pmd can't be split from under us.
2818          */
2819         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2820         VM_BUG_ON((gfn & mask) != (pfn & mask));
2821         *pfnp = pfn & ~mask;
2822
2823         return level;
2824 }
2825
2826 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2827                                 kvm_pfn_t *pfnp, int *goal_levelp)
2828 {
2829         int level = *goal_levelp;
2830
2831         if (cur_level == level && level > PG_LEVEL_4K &&
2832             is_shadow_present_pte(spte) &&
2833             !is_large_pte(spte)) {
2834                 /*
2835                  * A small SPTE exists for this pfn, but FNAME(fetch)
2836                  * and __direct_map would like to create a large PTE
2837                  * instead: just force them to go down another level,
2838                  * patching back for them into pfn the next 9 bits of
2839                  * the address.
2840                  */
2841                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2842                                 KVM_PAGES_PER_HPAGE(level - 1);
2843                 *pfnp |= gfn & page_mask;
2844                 (*goal_levelp)--;
2845         }
2846 }
2847
2848 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2849                         int map_writable, int max_level, kvm_pfn_t pfn,
2850                         bool prefault, bool is_tdp)
2851 {
2852         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2853         bool write = error_code & PFERR_WRITE_MASK;
2854         bool exec = error_code & PFERR_FETCH_MASK;
2855         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2856         struct kvm_shadow_walk_iterator it;
2857         struct kvm_mmu_page *sp;
2858         int level, req_level, ret;
2859         gfn_t gfn = gpa >> PAGE_SHIFT;
2860         gfn_t base_gfn = gfn;
2861
2862         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2863                                         huge_page_disallowed, &req_level);
2864
2865         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2866         for_each_shadow_entry(vcpu, gpa, it) {
2867                 /*
2868                  * We cannot overwrite existing page tables with an NX
2869                  * large page, as the leaf could be executable.
2870                  */
2871                 if (nx_huge_page_workaround_enabled)
2872                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2873                                                    &pfn, &level);
2874
2875                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2876                 if (it.level == level)
2877                         break;
2878
2879                 drop_large_spte(vcpu, it.sptep);
2880                 if (!is_shadow_present_pte(*it.sptep)) {
2881                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2882                                               it.level - 1, true, ACC_ALL);
2883
2884                         link_shadow_page(vcpu, it.sptep, sp);
2885                         if (is_tdp && huge_page_disallowed &&
2886                             req_level >= it.level)
2887                                 account_huge_nx_page(vcpu->kvm, sp);
2888                 }
2889         }
2890
2891         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2892                            write, level, base_gfn, pfn, prefault,
2893                            map_writable);
2894         if (ret == RET_PF_SPURIOUS)
2895                 return ret;
2896
2897         direct_pte_prefetch(vcpu, it.sptep);
2898         ++vcpu->stat.pf_fixed;
2899         return ret;
2900 }
2901
2902 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2903 {
2904         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2905 }
2906
2907 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2908 {
2909         /*
2910          * Do not cache the mmio info caused by writing the readonly gfn
2911          * into the spte otherwise read access on readonly gfn also can
2912          * caused mmio page fault and treat it as mmio access.
2913          */
2914         if (pfn == KVM_PFN_ERR_RO_FAULT)
2915                 return RET_PF_EMULATE;
2916
2917         if (pfn == KVM_PFN_ERR_HWPOISON) {
2918                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2919                 return RET_PF_RETRY;
2920         }
2921
2922         return -EFAULT;
2923 }
2924
2925 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2926                                 kvm_pfn_t pfn, unsigned int access,
2927                                 int *ret_val)
2928 {
2929         /* The pfn is invalid, report the error! */
2930         if (unlikely(is_error_pfn(pfn))) {
2931                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2932                 return true;
2933         }
2934
2935         if (unlikely(is_noslot_pfn(pfn))) {
2936                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2937                                      access & shadow_mmio_access_mask);
2938                 /*
2939                  * If MMIO caching is disabled, emulate immediately without
2940                  * touching the shadow page tables as attempting to install an
2941                  * MMIO SPTE will just be an expensive nop.
2942                  */
2943                 if (unlikely(!shadow_mmio_value)) {
2944                         *ret_val = RET_PF_EMULATE;
2945                         return true;
2946                 }
2947         }
2948
2949         return false;
2950 }
2951
2952 static bool page_fault_can_be_fast(u32 error_code)
2953 {
2954         /*
2955          * Do not fix the mmio spte with invalid generation number which
2956          * need to be updated by slow page fault path.
2957          */
2958         if (unlikely(error_code & PFERR_RSVD_MASK))
2959                 return false;
2960
2961         /* See if the page fault is due to an NX violation */
2962         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2963                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2964                 return false;
2965
2966         /*
2967          * #PF can be fast if:
2968          * 1. The shadow page table entry is not present, which could mean that
2969          *    the fault is potentially caused by access tracking (if enabled).
2970          * 2. The shadow page table entry is present and the fault
2971          *    is caused by write-protect, that means we just need change the W
2972          *    bit of the spte which can be done out of mmu-lock.
2973          *
2974          * However, if access tracking is disabled we know that a non-present
2975          * page must be a genuine page fault where we have to create a new SPTE.
2976          * So, if access tracking is disabled, we return true only for write
2977          * accesses to a present page.
2978          */
2979
2980         return shadow_acc_track_mask != 0 ||
2981                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2982                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2983 }
2984
2985 /*
2986  * Returns true if the SPTE was fixed successfully. Otherwise,
2987  * someone else modified the SPTE from its original value.
2988  */
2989 static bool
2990 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2991                         u64 *sptep, u64 old_spte, u64 new_spte)
2992 {
2993         gfn_t gfn;
2994
2995         WARN_ON(!sp->role.direct);
2996
2997         /*
2998          * Theoretically we could also set dirty bit (and flush TLB) here in
2999          * order to eliminate unnecessary PML logging. See comments in
3000          * set_spte. But fast_page_fault is very unlikely to happen with PML
3001          * enabled, so we do not do this. This might result in the same GPA
3002          * to be logged in PML buffer again when the write really happens, and
3003          * eventually to be called by mark_page_dirty twice. But it's also no
3004          * harm. This also avoids the TLB flush needed after setting dirty bit
3005          * so non-PML cases won't be impacted.
3006          *
3007          * Compare with set_spte where instead shadow_dirty_mask is set.
3008          */
3009         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3010                 return false;
3011
3012         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3013                 /*
3014                  * The gfn of direct spte is stable since it is
3015                  * calculated by sp->gfn.
3016                  */
3017                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3018                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3019         }
3020
3021         return true;
3022 }
3023
3024 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3025 {
3026         if (fault_err_code & PFERR_FETCH_MASK)
3027                 return is_executable_pte(spte);
3028
3029         if (fault_err_code & PFERR_WRITE_MASK)
3030                 return is_writable_pte(spte);
3031
3032         /* Fault was on Read access */
3033         return spte & PT_PRESENT_MASK;
3034 }
3035
3036 /*
3037  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3038  */
3039 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3040                            u32 error_code)
3041 {
3042         struct kvm_shadow_walk_iterator iterator;
3043         struct kvm_mmu_page *sp;
3044         int ret = RET_PF_INVALID;
3045         u64 spte = 0ull;
3046         uint retry_count = 0;
3047
3048         if (!page_fault_can_be_fast(error_code))
3049                 return ret;
3050
3051         walk_shadow_page_lockless_begin(vcpu);
3052
3053         do {
3054                 u64 new_spte;
3055
3056                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3057                         if (!is_shadow_present_pte(spte))
3058                                 break;
3059
3060                 if (!is_shadow_present_pte(spte))
3061                         break;
3062
3063                 sp = sptep_to_sp(iterator.sptep);
3064                 if (!is_last_spte(spte, sp->role.level))
3065                         break;
3066
3067                 /*
3068                  * Check whether the memory access that caused the fault would
3069                  * still cause it if it were to be performed right now. If not,
3070                  * then this is a spurious fault caused by TLB lazily flushed,
3071                  * or some other CPU has already fixed the PTE after the
3072                  * current CPU took the fault.
3073                  *
3074                  * Need not check the access of upper level table entries since
3075                  * they are always ACC_ALL.
3076                  */
3077                 if (is_access_allowed(error_code, spte)) {
3078                         ret = RET_PF_SPURIOUS;
3079                         break;
3080                 }
3081
3082                 new_spte = spte;
3083
3084                 if (is_access_track_spte(spte))
3085                         new_spte = restore_acc_track_spte(new_spte);
3086
3087                 /*
3088                  * Currently, to simplify the code, write-protection can
3089                  * be removed in the fast path only if the SPTE was
3090                  * write-protected for dirty-logging or access tracking.
3091                  */
3092                 if ((error_code & PFERR_WRITE_MASK) &&
3093                     spte_can_locklessly_be_made_writable(spte)) {
3094                         new_spte |= PT_WRITABLE_MASK;
3095
3096                         /*
3097                          * Do not fix write-permission on the large spte.  Since
3098                          * we only dirty the first page into the dirty-bitmap in
3099                          * fast_pf_fix_direct_spte(), other pages are missed
3100                          * if its slot has dirty logging enabled.
3101                          *
3102                          * Instead, we let the slow page fault path create a
3103                          * normal spte to fix the access.
3104                          *
3105                          * See the comments in kvm_arch_commit_memory_region().
3106                          */
3107                         if (sp->role.level > PG_LEVEL_4K)
3108                                 break;
3109                 }
3110
3111                 /* Verify that the fault can be handled in the fast path */
3112                 if (new_spte == spte ||
3113                     !is_access_allowed(error_code, new_spte))
3114                         break;
3115
3116                 /*
3117                  * Currently, fast page fault only works for direct mapping
3118                  * since the gfn is not stable for indirect shadow page. See
3119                  * Documentation/virt/kvm/locking.rst to get more detail.
3120                  */
3121                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3122                                             new_spte)) {
3123                         ret = RET_PF_FIXED;
3124                         break;
3125                 }
3126
3127                 if (++retry_count > 4) {
3128                         printk_once(KERN_WARNING
3129                                 "kvm: Fast #PF retrying more than 4 times.\n");
3130                         break;
3131                 }
3132
3133         } while (true);
3134
3135         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3136                               spte, ret);
3137         walk_shadow_page_lockless_end(vcpu);
3138
3139         return ret;
3140 }
3141
3142 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3143                                struct list_head *invalid_list)
3144 {
3145         struct kvm_mmu_page *sp;
3146
3147         if (!VALID_PAGE(*root_hpa))
3148                 return;
3149
3150         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3151
3152         if (is_tdp_mmu_page(sp))
3153                 kvm_tdp_mmu_put_root(kvm, sp, false);
3154         else if (!--sp->root_count && sp->role.invalid)
3155                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3156
3157         *root_hpa = INVALID_PAGE;
3158 }
3159
3160 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3161 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3162                         ulong roots_to_free)
3163 {
3164         struct kvm *kvm = vcpu->kvm;
3165         int i;
3166         LIST_HEAD(invalid_list);
3167         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3168
3169         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3170
3171         /* Before acquiring the MMU lock, see if we need to do any real work. */
3172         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3173                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3174                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3175                             VALID_PAGE(mmu->prev_roots[i].hpa))
3176                                 break;
3177
3178                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3179                         return;
3180         }
3181
3182         write_lock(&kvm->mmu_lock);
3183
3184         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3185                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3186                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3187                                            &invalid_list);
3188
3189         if (free_active_root) {
3190                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3191                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3192                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3193                 } else if (mmu->pae_root) {
3194                         for (i = 0; i < 4; ++i) {
3195                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3196                                         continue;
3197
3198                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3199                                                    &invalid_list);
3200                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3201                         }
3202                 }
3203                 mmu->root_hpa = INVALID_PAGE;
3204                 mmu->root_pgd = 0;
3205         }
3206
3207         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3208         write_unlock(&kvm->mmu_lock);
3209 }
3210 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3211
3212 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3213 {
3214         unsigned long roots_to_free = 0;
3215         hpa_t root_hpa;
3216         int i;
3217
3218         /*
3219          * This should not be called while L2 is active, L2 can't invalidate
3220          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3221          */
3222         WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3223
3224         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3225                 root_hpa = mmu->prev_roots[i].hpa;
3226                 if (!VALID_PAGE(root_hpa))
3227                         continue;
3228
3229                 if (!to_shadow_page(root_hpa) ||
3230                         to_shadow_page(root_hpa)->role.guest_mode)
3231                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3232         }
3233
3234         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3235 }
3236 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3237
3238
3239 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3240 {
3241         int ret = 0;
3242
3243         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3244                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3245                 ret = 1;
3246         }
3247
3248         return ret;
3249 }
3250
3251 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3252                             u8 level, bool direct)
3253 {
3254         struct kvm_mmu_page *sp;
3255
3256         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3257         ++sp->root_count;
3258
3259         return __pa(sp->spt);
3260 }
3261
3262 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3263 {
3264         struct kvm_mmu *mmu = vcpu->arch.mmu;
3265         u8 shadow_root_level = mmu->shadow_root_level;
3266         hpa_t root;
3267         unsigned i;
3268         int r;
3269
3270         write_lock(&vcpu->kvm->mmu_lock);
3271         r = make_mmu_pages_available(vcpu);
3272         if (r < 0)
3273                 goto out_unlock;
3274
3275         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3276                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3277                 mmu->root_hpa = root;
3278         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3279                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3280                 mmu->root_hpa = root;
3281         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3282                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3283                         r = -EIO;
3284                         goto out_unlock;
3285                 }
3286
3287                 for (i = 0; i < 4; ++i) {
3288                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3289
3290                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3291                                               i << 30, PT32_ROOT_LEVEL, true);
3292                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3293                                            shadow_me_mask;
3294                 }
3295                 mmu->root_hpa = __pa(mmu->pae_root);
3296         } else {
3297                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3298                 r = -EIO;
3299                 goto out_unlock;
3300         }
3301
3302         /* root_pgd is ignored for direct MMUs. */
3303         mmu->root_pgd = 0;
3304 out_unlock:
3305         write_unlock(&vcpu->kvm->mmu_lock);
3306         return r;
3307 }
3308
3309 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3310 {
3311         struct kvm_mmu *mmu = vcpu->arch.mmu;
3312         u64 pdptrs[4], pm_mask;
3313         gfn_t root_gfn, root_pgd;
3314         hpa_t root;
3315         unsigned i;
3316         int r;
3317
3318         root_pgd = mmu->get_guest_pgd(vcpu);
3319         root_gfn = root_pgd >> PAGE_SHIFT;
3320
3321         if (mmu_check_root(vcpu, root_gfn))
3322                 return 1;
3323
3324         /*
3325          * On SVM, reading PDPTRs might access guest memory, which might fault
3326          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3327          */
3328         if (mmu->root_level == PT32E_ROOT_LEVEL) {
3329                 for (i = 0; i < 4; ++i) {
3330                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3331                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3332                                 continue;
3333
3334                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3335                                 return 1;
3336                 }
3337         }
3338
3339         r = alloc_all_memslots_rmaps(vcpu->kvm);
3340         if (r)
3341                 return r;
3342
3343         write_lock(&vcpu->kvm->mmu_lock);
3344         r = make_mmu_pages_available(vcpu);
3345         if (r < 0)
3346                 goto out_unlock;
3347
3348         /*
3349          * Do we shadow a long mode page table? If so we need to
3350          * write-protect the guests page table root.
3351          */
3352         if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3353                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3354                                       mmu->shadow_root_level, false);
3355                 mmu->root_hpa = root;
3356                 goto set_root_pgd;
3357         }
3358
3359         if (WARN_ON_ONCE(!mmu->pae_root)) {
3360                 r = -EIO;
3361                 goto out_unlock;
3362         }
3363
3364         /*
3365          * We shadow a 32 bit page table. This may be a legacy 2-level
3366          * or a PAE 3-level page table. In either case we need to be aware that
3367          * the shadow page table may be a PAE or a long mode page table.
3368          */
3369         pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3370         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3371                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3372
3373                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3374                         r = -EIO;
3375                         goto out_unlock;
3376                 }
3377
3378                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3379         }
3380
3381         for (i = 0; i < 4; ++i) {
3382                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3383
3384                 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3385                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3386                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3387                                 continue;
3388                         }
3389                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3390                 }
3391
3392                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3393                                       PT32_ROOT_LEVEL, false);
3394                 mmu->pae_root[i] = root | pm_mask;
3395         }
3396
3397         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3398                 mmu->root_hpa = __pa(mmu->pml4_root);
3399         else
3400                 mmu->root_hpa = __pa(mmu->pae_root);
3401
3402 set_root_pgd:
3403         mmu->root_pgd = root_pgd;
3404 out_unlock:
3405         write_unlock(&vcpu->kvm->mmu_lock);
3406
3407         return 0;
3408 }
3409
3410 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3411 {
3412         struct kvm_mmu *mmu = vcpu->arch.mmu;
3413         u64 *pml4_root, *pae_root;
3414
3415         /*
3416          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3417          * tables are allocated and initialized at root creation as there is no
3418          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3419          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3420          */
3421         if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3422             mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3423                 return 0;
3424
3425         /*
3426          * This mess only works with 4-level paging and needs to be updated to
3427          * work with 5-level paging.
3428          */
3429         if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3430                 return -EIO;
3431
3432         if (mmu->pae_root && mmu->pml4_root)
3433                 return 0;
3434
3435         /*
3436          * The special roots should always be allocated in concert.  Yell and
3437          * bail if KVM ends up in a state where only one of the roots is valid.
3438          */
3439         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3440                 return -EIO;
3441
3442         /*
3443          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3444          * doesn't need to be decrypted.
3445          */
3446         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3447         if (!pae_root)
3448                 return -ENOMEM;
3449
3450         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3451         if (!pml4_root) {
3452                 free_page((unsigned long)pae_root);
3453                 return -ENOMEM;
3454         }
3455
3456         mmu->pae_root = pae_root;
3457         mmu->pml4_root = pml4_root;
3458
3459         return 0;
3460 }
3461
3462 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3463 {
3464         int i;
3465         struct kvm_mmu_page *sp;
3466
3467         if (vcpu->arch.mmu->direct_map)
3468                 return;
3469
3470         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3471                 return;
3472
3473         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3474
3475         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3476                 hpa_t root = vcpu->arch.mmu->root_hpa;
3477                 sp = to_shadow_page(root);
3478
3479                 /*
3480                  * Even if another CPU was marking the SP as unsync-ed
3481                  * simultaneously, any guest page table changes are not
3482                  * guaranteed to be visible anyway until this VCPU issues a TLB
3483                  * flush strictly after those changes are made. We only need to
3484                  * ensure that the other CPU sets these flags before any actual
3485                  * changes to the page tables are made. The comments in
3486                  * mmu_need_write_protect() describe what could go wrong if this
3487                  * requirement isn't satisfied.
3488                  */
3489                 if (!smp_load_acquire(&sp->unsync) &&
3490                     !smp_load_acquire(&sp->unsync_children))
3491                         return;
3492
3493                 write_lock(&vcpu->kvm->mmu_lock);
3494                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3495
3496                 mmu_sync_children(vcpu, sp);
3497
3498                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3499                 write_unlock(&vcpu->kvm->mmu_lock);
3500                 return;
3501         }
3502
3503         write_lock(&vcpu->kvm->mmu_lock);
3504         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3505
3506         for (i = 0; i < 4; ++i) {
3507                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3508
3509                 if (IS_VALID_PAE_ROOT(root)) {
3510                         root &= PT64_BASE_ADDR_MASK;
3511                         sp = to_shadow_page(root);
3512                         mmu_sync_children(vcpu, sp);
3513                 }
3514         }
3515
3516         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3517         write_unlock(&vcpu->kvm->mmu_lock);
3518 }
3519
3520 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3521                                   u32 access, struct x86_exception *exception)
3522 {
3523         if (exception)
3524                 exception->error_code = 0;
3525         return vaddr;
3526 }
3527
3528 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3529                                          u32 access,
3530                                          struct x86_exception *exception)
3531 {
3532         if (exception)
3533                 exception->error_code = 0;
3534         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3535 }
3536
3537 static bool
3538 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3539 {
3540         int bit7 = (pte >> 7) & 1;
3541
3542         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3543 }
3544
3545 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3546 {
3547         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3548 }
3549
3550 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3551 {
3552         /*
3553          * A nested guest cannot use the MMIO cache if it is using nested
3554          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3555          */
3556         if (mmu_is_nested(vcpu))
3557                 return false;
3558
3559         if (direct)
3560                 return vcpu_match_mmio_gpa(vcpu, addr);
3561
3562         return vcpu_match_mmio_gva(vcpu, addr);
3563 }
3564
3565 /*
3566  * Return the level of the lowest level SPTE added to sptes.
3567  * That SPTE may be non-present.
3568  */
3569 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3570 {
3571         struct kvm_shadow_walk_iterator iterator;
3572         int leaf = -1;
3573         u64 spte;
3574
3575         walk_shadow_page_lockless_begin(vcpu);
3576
3577         for (shadow_walk_init(&iterator, vcpu, addr),
3578              *root_level = iterator.level;
3579              shadow_walk_okay(&iterator);
3580              __shadow_walk_next(&iterator, spte)) {
3581                 leaf = iterator.level;
3582                 spte = mmu_spte_get_lockless(iterator.sptep);
3583
3584                 sptes[leaf] = spte;
3585
3586                 if (!is_shadow_present_pte(spte))
3587                         break;
3588         }
3589
3590         walk_shadow_page_lockless_end(vcpu);
3591
3592         return leaf;
3593 }
3594
3595 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3596 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3597 {
3598         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3599         struct rsvd_bits_validate *rsvd_check;
3600         int root, leaf, level;
3601         bool reserved = false;
3602
3603         if (is_tdp_mmu(vcpu->arch.mmu))
3604                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3605         else
3606                 leaf = get_walk(vcpu, addr, sptes, &root);
3607
3608         if (unlikely(leaf < 0)) {
3609                 *sptep = 0ull;
3610                 return reserved;
3611         }
3612
3613         *sptep = sptes[leaf];
3614
3615         /*
3616          * Skip reserved bits checks on the terminal leaf if it's not a valid
3617          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3618          * design, always have reserved bits set.  The purpose of the checks is
3619          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3620          */
3621         if (!is_shadow_present_pte(sptes[leaf]))
3622                 leaf++;
3623
3624         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3625
3626         for (level = root; level >= leaf; level--)
3627                 /*
3628                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3629                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3630                  * adding a Jcc in the loop.
3631                  */
3632                 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3633                             __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3634
3635         if (reserved) {
3636                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3637                        __func__, addr);
3638                 for (level = root; level >= leaf; level--)
3639                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3640                                sptes[level], level,
3641                                rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
3642         }
3643
3644         return reserved;
3645 }
3646
3647 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3648 {
3649         u64 spte;
3650         bool reserved;
3651
3652         if (mmio_info_in_cache(vcpu, addr, direct))
3653                 return RET_PF_EMULATE;
3654
3655         reserved = get_mmio_spte(vcpu, addr, &spte);
3656         if (WARN_ON(reserved))
3657                 return -EINVAL;
3658
3659         if (is_mmio_spte(spte)) {
3660                 gfn_t gfn = get_mmio_spte_gfn(spte);
3661                 unsigned int access = get_mmio_spte_access(spte);
3662
3663                 if (!check_mmio_spte(vcpu, spte))
3664                         return RET_PF_INVALID;
3665
3666                 if (direct)
3667                         addr = 0;
3668
3669                 trace_handle_mmio_page_fault(addr, gfn, access);
3670                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3671                 return RET_PF_EMULATE;
3672         }
3673
3674         /*
3675          * If the page table is zapped by other cpus, let CPU fault again on
3676          * the address.
3677          */
3678         return RET_PF_RETRY;
3679 }
3680
3681 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3682                                          u32 error_code, gfn_t gfn)
3683 {
3684         if (unlikely(error_code & PFERR_RSVD_MASK))
3685                 return false;
3686
3687         if (!(error_code & PFERR_PRESENT_MASK) ||
3688               !(error_code & PFERR_WRITE_MASK))
3689                 return false;
3690
3691         /*
3692          * guest is writing the page which is write tracked which can
3693          * not be fixed by page fault handler.
3694          */
3695         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3696                 return true;
3697
3698         return false;
3699 }
3700
3701 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3702 {
3703         struct kvm_shadow_walk_iterator iterator;
3704         u64 spte;
3705
3706         walk_shadow_page_lockless_begin(vcpu);
3707         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3708                 clear_sp_write_flooding_count(iterator.sptep);
3709                 if (!is_shadow_present_pte(spte))
3710                         break;
3711         }
3712         walk_shadow_page_lockless_end(vcpu);
3713 }
3714
3715 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3716                                     gfn_t gfn)
3717 {
3718         struct kvm_arch_async_pf arch;
3719
3720         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3721         arch.gfn = gfn;
3722         arch.direct_map = vcpu->arch.mmu->direct_map;
3723         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3724
3725         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3726                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3727 }
3728
3729 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3730                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3731                          bool write, bool *writable)
3732 {
3733         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3734         bool async;
3735
3736         /*
3737          * Retry the page fault if the gfn hit a memslot that is being deleted
3738          * or moved.  This ensures any existing SPTEs for the old memslot will
3739          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3740          */
3741         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3742                 return true;
3743
3744         /* Don't expose private memslots to L2. */
3745         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3746                 *pfn = KVM_PFN_NOSLOT;
3747                 *writable = false;
3748                 return false;
3749         }
3750
3751         async = false;
3752         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3753                                     write, writable, hva);
3754         if (!async)
3755                 return false; /* *pfn has correct page already */
3756
3757         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3758                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3759                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3760                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3761                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3762                         return true;
3763                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3764                         return true;
3765         }
3766
3767         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3768                                     write, writable, hva);
3769         return false;
3770 }
3771
3772 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3773                              bool prefault, int max_level, bool is_tdp)
3774 {
3775         bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3776         bool write = error_code & PFERR_WRITE_MASK;
3777         bool map_writable;
3778
3779         gfn_t gfn = gpa >> PAGE_SHIFT;
3780         unsigned long mmu_seq;
3781         kvm_pfn_t pfn;
3782         hva_t hva;
3783         int r;
3784
3785         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3786                 return RET_PF_EMULATE;
3787
3788         if (!is_tdp_mmu_fault) {
3789                 r = fast_page_fault(vcpu, gpa, error_code);
3790                 if (r != RET_PF_INVALID)
3791                         return r;
3792         }
3793
3794         r = mmu_topup_memory_caches(vcpu, false);
3795         if (r)
3796                 return r;
3797
3798         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3799         smp_rmb();
3800
3801         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3802                          write, &map_writable))
3803                 return RET_PF_RETRY;
3804
3805         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3806                 return r;
3807
3808         r = RET_PF_RETRY;
3809
3810         if (is_tdp_mmu_fault)
3811                 read_lock(&vcpu->kvm->mmu_lock);
3812         else
3813                 write_lock(&vcpu->kvm->mmu_lock);
3814
3815         if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3816                 goto out_unlock;
3817         r = make_mmu_pages_available(vcpu);
3818         if (r)
3819                 goto out_unlock;
3820
3821         if (is_tdp_mmu_fault)
3822                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3823                                     pfn, prefault);
3824         else
3825                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3826                                  prefault, is_tdp);
3827
3828 out_unlock:
3829         if (is_tdp_mmu_fault)
3830                 read_unlock(&vcpu->kvm->mmu_lock);
3831         else
3832                 write_unlock(&vcpu->kvm->mmu_lock);
3833         kvm_release_pfn_clean(pfn);
3834         return r;
3835 }
3836
3837 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3838                                 u32 error_code, bool prefault)
3839 {
3840         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3841
3842         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3843         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3844                                  PG_LEVEL_2M, false);
3845 }
3846
3847 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3848                                 u64 fault_address, char *insn, int insn_len)
3849 {
3850         int r = 1;
3851         u32 flags = vcpu->arch.apf.host_apf_flags;
3852
3853 #ifndef CONFIG_X86_64
3854         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3855         if (WARN_ON_ONCE(fault_address >> 32))
3856                 return -EFAULT;
3857 #endif
3858
3859         vcpu->arch.l1tf_flush_l1d = true;
3860         if (!flags) {
3861                 trace_kvm_page_fault(fault_address, error_code);
3862
3863                 if (kvm_event_needs_reinjection(vcpu))
3864                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3865                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3866                                 insn_len);
3867         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3868                 vcpu->arch.apf.host_apf_flags = 0;
3869                 local_irq_disable();
3870                 kvm_async_pf_task_wait_schedule(fault_address);
3871                 local_irq_enable();
3872         } else {
3873                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3874         }
3875
3876         return r;
3877 }
3878 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3879
3880 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3881                        bool prefault)
3882 {
3883         int max_level;
3884
3885         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3886              max_level > PG_LEVEL_4K;
3887              max_level--) {
3888                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3889                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3890
3891                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3892                         break;
3893         }
3894
3895         return direct_page_fault(vcpu, gpa, error_code, prefault,
3896                                  max_level, true);
3897 }
3898
3899 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3900                                    struct kvm_mmu *context)
3901 {
3902         context->page_fault = nonpaging_page_fault;
3903         context->gva_to_gpa = nonpaging_gva_to_gpa;
3904         context->sync_page = nonpaging_sync_page;
3905         context->invlpg = NULL;
3906         context->root_level = 0;
3907         context->shadow_root_level = PT32E_ROOT_LEVEL;
3908         context->direct_map = true;
3909         context->nx = false;
3910 }
3911
3912 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3913                                   union kvm_mmu_page_role role)
3914 {
3915         return (role.direct || pgd == root->pgd) &&
3916                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3917                role.word == to_shadow_page(root->hpa)->role.word;
3918 }
3919
3920 /*
3921  * Find out if a previously cached root matching the new pgd/role is available.
3922  * The current root is also inserted into the cache.
3923  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3924  * returned.
3925  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3926  * false is returned. This root should now be freed by the caller.
3927  */
3928 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3929                                   union kvm_mmu_page_role new_role)
3930 {
3931         uint i;
3932         struct kvm_mmu_root_info root;
3933         struct kvm_mmu *mmu = vcpu->arch.mmu;
3934
3935         root.pgd = mmu->root_pgd;
3936         root.hpa = mmu->root_hpa;
3937
3938         if (is_root_usable(&root, new_pgd, new_role))
3939                 return true;
3940
3941         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3942                 swap(root, mmu->prev_roots[i]);
3943
3944                 if (is_root_usable(&root, new_pgd, new_role))
3945                         break;
3946         }
3947
3948         mmu->root_hpa = root.hpa;
3949         mmu->root_pgd = root.pgd;
3950
3951         return i < KVM_MMU_NUM_PREV_ROOTS;
3952 }
3953
3954 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3955                             union kvm_mmu_page_role new_role)
3956 {
3957         struct kvm_mmu *mmu = vcpu->arch.mmu;
3958
3959         /*
3960          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3961          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3962          * later if necessary.
3963          */
3964         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3965             mmu->root_level >= PT64_ROOT_4LEVEL)
3966                 return cached_root_available(vcpu, new_pgd, new_role);
3967
3968         return false;
3969 }
3970
3971 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3972                               union kvm_mmu_page_role new_role)
3973 {
3974         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3975                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3976                 return;
3977         }
3978
3979         /*
3980          * It's possible that the cached previous root page is obsolete because
3981          * of a change in the MMU generation number. However, changing the
3982          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3983          * free the root set here and allocate a new one.
3984          */
3985         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3986
3987         if (force_flush_and_sync_on_reuse) {
3988                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3989                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3990         }
3991
3992         /*
3993          * The last MMIO access's GVA and GPA are cached in the VCPU. When
3994          * switching to a new CR3, that GVA->GPA mapping may no longer be
3995          * valid. So clear any cached MMIO info even when we don't need to sync
3996          * the shadow page tables.
3997          */
3998         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3999
4000         /*
4001          * If this is a direct root page, it doesn't have a write flooding
4002          * count. Otherwise, clear the write flooding count.
4003          */
4004         if (!new_role.direct)
4005                 __clear_sp_write_flooding_count(
4006                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
4007 }
4008
4009 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4010 {
4011         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4012 }
4013 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4014
4015 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4016 {
4017         return kvm_read_cr3(vcpu);
4018 }
4019
4020 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4021                            unsigned int access, int *nr_present)
4022 {
4023         if (unlikely(is_mmio_spte(*sptep))) {
4024                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4025                         mmu_spte_clear_no_track(sptep);
4026                         return true;
4027                 }
4028
4029                 (*nr_present)++;
4030                 mark_mmio_spte(vcpu, sptep, gfn, access);
4031                 return true;
4032         }
4033
4034         return false;
4035 }
4036
4037 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4038                                 unsigned level, unsigned gpte)
4039 {
4040         /*
4041          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4042          * If it is clear, there are no large pages at this level, so clear
4043          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4044          */
4045         gpte &= level - mmu->last_nonleaf_level;
4046
4047         /*
4048          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
4049          * iff level <= PG_LEVEL_4K, which for our purpose means
4050          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4051          */
4052         gpte |= level - PG_LEVEL_4K - 1;
4053
4054         return gpte & PT_PAGE_SIZE_MASK;
4055 }
4056
4057 #define PTTYPE_EPT 18 /* arbitrary */
4058 #define PTTYPE PTTYPE_EPT
4059 #include "paging_tmpl.h"
4060 #undef PTTYPE
4061
4062 #define PTTYPE 64
4063 #include "paging_tmpl.h"
4064 #undef PTTYPE
4065
4066 #define PTTYPE 32
4067 #include "paging_tmpl.h"
4068 #undef PTTYPE
4069
4070 static void
4071 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4072                         struct rsvd_bits_validate *rsvd_check,
4073                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4074                         bool pse, bool amd)
4075 {
4076         u64 gbpages_bit_rsvd = 0;
4077         u64 nonleaf_bit8_rsvd = 0;
4078         u64 high_bits_rsvd;
4079
4080         rsvd_check->bad_mt_xwr = 0;
4081
4082         if (!gbpages)
4083                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4084
4085         if (level == PT32E_ROOT_LEVEL)
4086                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4087         else
4088                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4089
4090         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4091         if (!nx)
4092                 high_bits_rsvd |= rsvd_bits(63, 63);
4093
4094         /*
4095          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4096          * leaf entries) on AMD CPUs only.
4097          */
4098         if (amd)
4099                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4100
4101         switch (level) {
4102         case PT32_ROOT_LEVEL:
4103                 /* no rsvd bits for 2 level 4K page table entries */
4104                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4105                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4106                 rsvd_check->rsvd_bits_mask[1][0] =
4107                         rsvd_check->rsvd_bits_mask[0][0];
4108
4109                 if (!pse) {
4110                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4111                         break;
4112                 }
4113
4114                 if (is_cpuid_PSE36())
4115                         /* 36bits PSE 4MB page */
4116                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4117                 else
4118                         /* 32 bits PSE 4MB page */
4119                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4120                 break;
4121         case PT32E_ROOT_LEVEL:
4122                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4123                                                    high_bits_rsvd |
4124                                                    rsvd_bits(5, 8) |
4125                                                    rsvd_bits(1, 2);     /* PDPTE */
4126                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4127                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4128                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4129                                                    rsvd_bits(13, 20);   /* large page */
4130                 rsvd_check->rsvd_bits_mask[1][0] =
4131                         rsvd_check->rsvd_bits_mask[0][0];
4132                 break;
4133         case PT64_ROOT_5LEVEL:
4134                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4135                                                    nonleaf_bit8_rsvd |
4136                                                    rsvd_bits(7, 7);
4137                 rsvd_check->rsvd_bits_mask[1][4] =
4138                         rsvd_check->rsvd_bits_mask[0][4];
4139                 fallthrough;
4140         case PT64_ROOT_4LEVEL:
4141                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4142                                                    nonleaf_bit8_rsvd |
4143                                                    rsvd_bits(7, 7);
4144                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4145                                                    gbpages_bit_rsvd;
4146                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4147                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4148                 rsvd_check->rsvd_bits_mask[1][3] =
4149                         rsvd_check->rsvd_bits_mask[0][3];
4150                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4151                                                    gbpages_bit_rsvd |
4152                                                    rsvd_bits(13, 29);
4153                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4154                                                    rsvd_bits(13, 20); /* large page */
4155                 rsvd_check->rsvd_bits_mask[1][0] =
4156                         rsvd_check->rsvd_bits_mask[0][0];
4157                 break;
4158         }
4159 }
4160
4161 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4162                                   struct kvm_mmu *context)
4163 {
4164         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4165                                 vcpu->arch.reserved_gpa_bits,
4166                                 context->root_level, context->nx,
4167                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4168                                 is_pse(vcpu),
4169                                 guest_cpuid_is_amd_or_hygon(vcpu));
4170 }
4171
4172 static void
4173 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4174                             u64 pa_bits_rsvd, bool execonly)
4175 {
4176         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4177         u64 bad_mt_xwr;
4178
4179         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4180         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4181         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4182         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4183         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4184
4185         /* large page */
4186         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4187         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4188         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4189         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4190         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4191
4192         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4193         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4194         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4195         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4196         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4197         if (!execonly) {
4198                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4199                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4200         }
4201         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4202 }
4203
4204 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4205                 struct kvm_mmu *context, bool execonly)
4206 {
4207         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4208                                     vcpu->arch.reserved_gpa_bits, execonly);
4209 }
4210
4211 static inline u64 reserved_hpa_bits(void)
4212 {
4213         return rsvd_bits(shadow_phys_bits, 63);
4214 }
4215
4216 /*
4217  * the page table on host is the shadow page table for the page
4218  * table in guest or amd nested guest, its mmu features completely
4219  * follow the features in guest.
4220  */
4221 void
4222 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4223 {
4224         /*
4225          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4226          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4227          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4228          * The iTLB multi-hit workaround can be toggled at any time, so assume
4229          * NX can be used by any non-nested shadow MMU to avoid having to reset
4230          * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4231          */
4232         bool uses_nx = context->nx || !tdp_enabled ||
4233                 context->mmu_role.base.smep_andnot_wp;
4234         struct rsvd_bits_validate *shadow_zero_check;
4235         int i;
4236
4237         /*
4238          * Passing "true" to the last argument is okay; it adds a check
4239          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4240          */
4241         shadow_zero_check = &context->shadow_zero_check;
4242         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4243                                 reserved_hpa_bits(),
4244                                 context->shadow_root_level, uses_nx,
4245                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4246                                 is_pse(vcpu), true);
4247
4248         if (!shadow_me_mask)
4249                 return;
4250
4251         for (i = context->shadow_root_level; --i >= 0;) {
4252                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4253                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4254         }
4255
4256 }
4257 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4258
4259 static inline bool boot_cpu_is_amd(void)
4260 {
4261         WARN_ON_ONCE(!tdp_enabled);
4262         return shadow_x_mask == 0;
4263 }
4264
4265 /*
4266  * the direct page table on host, use as much mmu features as
4267  * possible, however, kvm currently does not do execution-protection.
4268  */
4269 static void
4270 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4271                                 struct kvm_mmu *context)
4272 {
4273         struct rsvd_bits_validate *shadow_zero_check;
4274         int i;
4275
4276         shadow_zero_check = &context->shadow_zero_check;
4277
4278         if (boot_cpu_is_amd())
4279                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4280                                         reserved_hpa_bits(),
4281                                         context->shadow_root_level, false,
4282                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4283                                         true, true);
4284         else
4285                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4286                                             reserved_hpa_bits(), false);
4287
4288         if (!shadow_me_mask)
4289                 return;
4290
4291         for (i = context->shadow_root_level; --i >= 0;) {
4292                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4293                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4294         }
4295 }
4296
4297 /*
4298  * as the comments in reset_shadow_zero_bits_mask() except it
4299  * is the shadow page table for intel nested guest.
4300  */
4301 static void
4302 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4303                                 struct kvm_mmu *context, bool execonly)
4304 {
4305         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4306                                     reserved_hpa_bits(), execonly);
4307 }
4308
4309 #define BYTE_MASK(access) \
4310         ((1 & (access) ? 2 : 0) | \
4311          (2 & (access) ? 4 : 0) | \
4312          (3 & (access) ? 8 : 0) | \
4313          (4 & (access) ? 16 : 0) | \
4314          (5 & (access) ? 32 : 0) | \
4315          (6 & (access) ? 64 : 0) | \
4316          (7 & (access) ? 128 : 0))
4317
4318
4319 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4320                                       struct kvm_mmu *mmu, bool ept)
4321 {
4322         unsigned byte;
4323
4324         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4325         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4326         const u8 u = BYTE_MASK(ACC_USER_MASK);
4327
4328         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4329         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4330         bool cr0_wp = is_write_protection(vcpu);
4331
4332         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4333                 unsigned pfec = byte << 1;
4334
4335                 /*
4336                  * Each "*f" variable has a 1 bit for each UWX value
4337                  * that causes a fault with the given PFEC.
4338                  */
4339
4340                 /* Faults from writes to non-writable pages */
4341                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4342                 /* Faults from user mode accesses to supervisor pages */
4343                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4344                 /* Faults from fetches of non-executable pages*/
4345                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4346                 /* Faults from kernel mode fetches of user pages */
4347                 u8 smepf = 0;
4348                 /* Faults from kernel mode accesses of user pages */
4349                 u8 smapf = 0;
4350
4351                 if (!ept) {
4352                         /* Faults from kernel mode accesses to user pages */
4353                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4354
4355                         /* Not really needed: !nx will cause pte.nx to fault */
4356                         if (!mmu->nx)
4357                                 ff = 0;
4358
4359                         /* Allow supervisor writes if !cr0.wp */
4360                         if (!cr0_wp)
4361                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4362
4363                         /* Disallow supervisor fetches of user code if cr4.smep */
4364                         if (cr4_smep)
4365                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4366
4367                         /*
4368                          * SMAP:kernel-mode data accesses from user-mode
4369                          * mappings should fault. A fault is considered
4370                          * as a SMAP violation if all of the following
4371                          * conditions are true:
4372                          *   - X86_CR4_SMAP is set in CR4
4373                          *   - A user page is accessed
4374                          *   - The access is not a fetch
4375                          *   - Page fault in kernel mode
4376                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4377                          *
4378                          * Here, we cover the first three conditions.
4379                          * The fourth is computed dynamically in permission_fault();
4380                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4381                          * *not* subject to SMAP restrictions.
4382                          */
4383                         if (cr4_smap)
4384                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4385                 }
4386
4387                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4388         }
4389 }
4390
4391 /*
4392 * PKU is an additional mechanism by which the paging controls access to
4393 * user-mode addresses based on the value in the PKRU register.  Protection
4394 * key violations are reported through a bit in the page fault error code.
4395 * Unlike other bits of the error code, the PK bit is not known at the
4396 * call site of e.g. gva_to_gpa; it must be computed directly in
4397 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4398 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4399 *
4400 * In particular the following conditions come from the error code, the
4401 * page tables and the machine state:
4402 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4403 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4404 * - PK is always zero if U=0 in the page tables
4405 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4406 *
4407 * The PKRU bitmask caches the result of these four conditions.  The error
4408 * code (minus the P bit) and the page table's U bit form an index into the
4409 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4410 * with the two bits of the PKRU register corresponding to the protection key.
4411 * For the first three conditions above the bits will be 00, thus masking
4412 * away both AD and WD.  For all reads or if the last condition holds, WD
4413 * only will be masked away.
4414 */
4415 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4416                                 bool ept)
4417 {
4418         unsigned bit;
4419         bool wp;
4420
4421         if (ept) {
4422                 mmu->pkru_mask = 0;
4423                 return;
4424         }
4425
4426         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4427         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4428                 mmu->pkru_mask = 0;
4429                 return;
4430         }
4431
4432         wp = is_write_protection(vcpu);
4433
4434         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4435                 unsigned pfec, pkey_bits;
4436                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4437
4438                 pfec = bit << 1;
4439                 ff = pfec & PFERR_FETCH_MASK;
4440                 uf = pfec & PFERR_USER_MASK;
4441                 wf = pfec & PFERR_WRITE_MASK;
4442
4443                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4444                 pte_user = pfec & PFERR_RSVD_MASK;
4445
4446                 /*
4447                  * Only need to check the access which is not an
4448                  * instruction fetch and is to a user page.
4449                  */
4450                 check_pkey = (!ff && pte_user);
4451                 /*
4452                  * write access is controlled by PKRU if it is a
4453                  * user access or CR0.WP = 1.
4454                  */
4455                 check_write = check_pkey && wf && (uf || wp);
4456
4457                 /* PKRU.AD stops both read and write access. */
4458                 pkey_bits = !!check_pkey;
4459                 /* PKRU.WD stops write access. */
4460                 pkey_bits |= (!!check_write) << 1;
4461
4462                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4463         }
4464 }
4465
4466 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4467 {
4468         unsigned root_level = mmu->root_level;
4469
4470         mmu->last_nonleaf_level = root_level;
4471         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4472                 mmu->last_nonleaf_level++;
4473 }
4474
4475 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4476                                          struct kvm_mmu *context,
4477                                          int level)
4478 {
4479         context->nx = is_nx(vcpu);
4480         context->root_level = level;
4481
4482         reset_rsvds_bits_mask(vcpu, context);
4483         update_permission_bitmask(vcpu, context, false);
4484         update_pkru_bitmask(vcpu, context, false);
4485         update_last_nonleaf_level(vcpu, context);
4486
4487         MMU_WARN_ON(!is_pae(vcpu));
4488         context->page_fault = paging64_page_fault;
4489         context->gva_to_gpa = paging64_gva_to_gpa;
4490         context->sync_page = paging64_sync_page;
4491         context->invlpg = paging64_invlpg;
4492         context->shadow_root_level = level;
4493         context->direct_map = false;
4494 }
4495
4496 static void paging64_init_context(struct kvm_vcpu *vcpu,
4497                                   struct kvm_mmu *context)
4498 {
4499         int root_level = is_la57_mode(vcpu) ?
4500                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4501
4502         paging64_init_context_common(vcpu, context, root_level);
4503 }
4504
4505 static void paging32_init_context(struct kvm_vcpu *vcpu,
4506                                   struct kvm_mmu *context)
4507 {
4508         context->nx = false;
4509         context->root_level = PT32_ROOT_LEVEL;
4510
4511         reset_rsvds_bits_mask(vcpu, context);
4512         update_permission_bitmask(vcpu, context, false);
4513         update_pkru_bitmask(vcpu, context, false);
4514         update_last_nonleaf_level(vcpu, context);
4515
4516         context->page_fault = paging32_page_fault;
4517         context->gva_to_gpa = paging32_gva_to_gpa;
4518         context->sync_page = paging32_sync_page;
4519         context->invlpg = paging32_invlpg;
4520         context->shadow_root_level = PT32E_ROOT_LEVEL;
4521         context->direct_map = false;
4522 }
4523
4524 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4525                                    struct kvm_mmu *context)
4526 {
4527         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4528 }
4529
4530 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4531 {
4532         union kvm_mmu_extended_role ext = {0};
4533
4534         ext.cr0_pg = !!is_paging(vcpu);
4535         ext.cr4_pae = !!is_pae(vcpu);
4536         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4537         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4538         ext.cr4_pse = !!is_pse(vcpu);
4539         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4540         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4541
4542         ext.valid = 1;
4543
4544         return ext;
4545 }
4546
4547 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4548                                                    bool base_only)
4549 {
4550         union kvm_mmu_role role = {0};
4551
4552         role.base.access = ACC_ALL;
4553         role.base.nxe = !!is_nx(vcpu);
4554         role.base.cr0_wp = is_write_protection(vcpu);
4555         role.base.smm = is_smm(vcpu);
4556         role.base.guest_mode = is_guest_mode(vcpu);
4557
4558         if (base_only)
4559                 return role;
4560
4561         role.ext = kvm_calc_mmu_role_ext(vcpu);
4562
4563         return role;
4564 }
4565
4566 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4567 {
4568         /* Use 5-level TDP if and only if it's useful/necessary. */
4569         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4570                 return 4;
4571
4572         return max_tdp_level;
4573 }
4574
4575 static union kvm_mmu_role
4576 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4577 {
4578         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4579
4580         role.base.ad_disabled = (shadow_accessed_mask == 0);
4581         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4582         role.base.direct = true;
4583         role.base.gpte_is_8_bytes = true;
4584
4585         return role;
4586 }
4587
4588 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4589 {
4590         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4591         union kvm_mmu_role new_role =
4592                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4593
4594         if (new_role.as_u64 == context->mmu_role.as_u64)
4595                 return;
4596
4597         context->mmu_role.as_u64 = new_role.as_u64;
4598         context->page_fault = kvm_tdp_page_fault;
4599         context->sync_page = nonpaging_sync_page;
4600         context->invlpg = NULL;
4601         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4602         context->direct_map = true;
4603         context->get_guest_pgd = get_cr3;
4604         context->get_pdptr = kvm_pdptr_read;
4605         context->inject_page_fault = kvm_inject_page_fault;
4606
4607         if (!is_paging(vcpu)) {
4608                 context->nx = false;
4609                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4610                 context->root_level = 0;
4611         } else if (is_long_mode(vcpu)) {
4612                 context->nx = is_nx(vcpu);
4613                 context->root_level = is_la57_mode(vcpu) ?
4614                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4615                 reset_rsvds_bits_mask(vcpu, context);
4616                 context->gva_to_gpa = paging64_gva_to_gpa;
4617         } else if (is_pae(vcpu)) {
4618                 context->nx = is_nx(vcpu);
4619                 context->root_level = PT32E_ROOT_LEVEL;
4620                 reset_rsvds_bits_mask(vcpu, context);
4621                 context->gva_to_gpa = paging64_gva_to_gpa;
4622         } else {
4623                 context->nx = false;
4624                 context->root_level = PT32_ROOT_LEVEL;
4625                 reset_rsvds_bits_mask(vcpu, context);
4626                 context->gva_to_gpa = paging32_gva_to_gpa;
4627         }
4628
4629         update_permission_bitmask(vcpu, context, false);
4630         update_pkru_bitmask(vcpu, context, false);
4631         update_last_nonleaf_level(vcpu, context);
4632         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4633 }
4634
4635 static union kvm_mmu_role
4636 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4637 {
4638         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4639
4640         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4641                 !is_write_protection(vcpu);
4642         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4643                 !is_write_protection(vcpu);
4644         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4645
4646         return role;
4647 }
4648
4649 static union kvm_mmu_role
4650 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4651 {
4652         union kvm_mmu_role role =
4653                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4654
4655         role.base.direct = !is_paging(vcpu);
4656
4657         if (!is_long_mode(vcpu))
4658                 role.base.level = PT32E_ROOT_LEVEL;
4659         else if (is_la57_mode(vcpu))
4660                 role.base.level = PT64_ROOT_5LEVEL;
4661         else
4662                 role.base.level = PT64_ROOT_4LEVEL;
4663
4664         return role;
4665 }
4666
4667 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4668                                     u32 cr0, u32 cr4, u32 efer,
4669                                     union kvm_mmu_role new_role)
4670 {
4671         if (!(cr0 & X86_CR0_PG))
4672                 nonpaging_init_context(vcpu, context);
4673         else if (efer & EFER_LMA)
4674                 paging64_init_context(vcpu, context);
4675         else if (cr4 & X86_CR4_PAE)
4676                 paging32E_init_context(vcpu, context);
4677         else
4678                 paging32_init_context(vcpu, context);
4679
4680         context->mmu_role.as_u64 = new_role.as_u64;
4681         reset_shadow_zero_bits_mask(vcpu, context);
4682 }
4683
4684 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4685 {
4686         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4687         union kvm_mmu_role new_role =
4688                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4689
4690         if (new_role.as_u64 != context->mmu_role.as_u64)
4691                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4692 }
4693
4694 static union kvm_mmu_role
4695 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4696 {
4697         union kvm_mmu_role role =
4698                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4699
4700         role.base.direct = false;
4701         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4702
4703         return role;
4704 }
4705
4706 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4707                              gpa_t nested_cr3)
4708 {
4709         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4710         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4711
4712         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4713
4714         if (new_role.as_u64 != context->mmu_role.as_u64) {
4715                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4716
4717                 /*
4718                  * Override the level set by the common init helper, nested TDP
4719                  * always uses the host's TDP configuration.
4720                  */
4721                 context->shadow_root_level = new_role.base.level;
4722         }
4723 }
4724 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4725
4726 static union kvm_mmu_role
4727 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4728                                    bool execonly, u8 level)
4729 {
4730         union kvm_mmu_role role = {0};
4731
4732         /* SMM flag is inherited from root_mmu */
4733         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4734
4735         role.base.level = level;
4736         role.base.gpte_is_8_bytes = true;
4737         role.base.direct = false;
4738         role.base.ad_disabled = !accessed_dirty;
4739         role.base.guest_mode = true;
4740         role.base.access = ACC_ALL;
4741
4742         /*
4743          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4744          * SMAP variation to denote shadow EPT entries.
4745          */
4746         role.base.cr0_wp = true;
4747         role.base.smap_andnot_wp = true;
4748
4749         role.ext = kvm_calc_mmu_role_ext(vcpu);
4750         role.ext.execonly = execonly;
4751
4752         return role;
4753 }
4754
4755 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4756                              bool accessed_dirty, gpa_t new_eptp)
4757 {
4758         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4759         u8 level = vmx_eptp_page_walk_level(new_eptp);
4760         union kvm_mmu_role new_role =
4761                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4762                                                    execonly, level);
4763
4764         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4765
4766         if (new_role.as_u64 == context->mmu_role.as_u64)
4767                 return;
4768
4769         context->shadow_root_level = level;
4770
4771         context->nx = true;
4772         context->ept_ad = accessed_dirty;
4773         context->page_fault = ept_page_fault;
4774         context->gva_to_gpa = ept_gva_to_gpa;
4775         context->sync_page = ept_sync_page;
4776         context->invlpg = ept_invlpg;
4777         context->root_level = level;
4778         context->direct_map = false;
4779         context->mmu_role.as_u64 = new_role.as_u64;
4780
4781         update_permission_bitmask(vcpu, context, true);
4782         update_pkru_bitmask(vcpu, context, true);
4783         update_last_nonleaf_level(vcpu, context);
4784         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4785         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4786 }
4787 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4788
4789 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4790 {
4791         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4792
4793         kvm_init_shadow_mmu(vcpu,
4794                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4795                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4796                             vcpu->arch.efer);
4797
4798         context->get_guest_pgd     = get_cr3;
4799         context->get_pdptr         = kvm_pdptr_read;
4800         context->inject_page_fault = kvm_inject_page_fault;
4801 }
4802
4803 static union kvm_mmu_role kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu)
4804 {
4805         union kvm_mmu_role role = kvm_calc_shadow_root_page_role_common(vcpu, false);
4806
4807         /*
4808          * Nested MMUs are used only for walking L2's gva->gpa, they never have
4809          * shadow pages of their own and so "direct" has no meaning.   Set it
4810          * to "true" to try to detect bogus usage of the nested MMU.
4811          */
4812         role.base.direct = true;
4813
4814         if (!is_paging(vcpu))
4815                 role.base.level = 0;
4816         else if (is_long_mode(vcpu))
4817                 role.base.level = is_la57_mode(vcpu) ? PT64_ROOT_5LEVEL :
4818                                                        PT64_ROOT_4LEVEL;
4819         else if (is_pae(vcpu))
4820                 role.base.level = PT32E_ROOT_LEVEL;
4821         else
4822                 role.base.level = PT32_ROOT_LEVEL;
4823
4824         return role;
4825 }
4826
4827 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4828 {
4829         union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu);
4830         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4831
4832         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4833                 return;
4834
4835         g_context->mmu_role.as_u64 = new_role.as_u64;
4836         g_context->get_guest_pgd     = get_cr3;
4837         g_context->get_pdptr         = kvm_pdptr_read;
4838         g_context->inject_page_fault = kvm_inject_page_fault;
4839
4840         /*
4841          * L2 page tables are never shadowed, so there is no need to sync
4842          * SPTEs.
4843          */
4844         g_context->invlpg            = NULL;
4845
4846         /*
4847          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4848          * L1's nested page tables (e.g. EPT12). The nested translation
4849          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4850          * L2's page tables as the first level of translation and L1's
4851          * nested page tables as the second level of translation. Basically
4852          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4853          */
4854         if (!is_paging(vcpu)) {
4855                 g_context->nx = false;
4856                 g_context->root_level = 0;
4857                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4858         } else if (is_long_mode(vcpu)) {
4859                 g_context->nx = is_nx(vcpu);
4860                 g_context->root_level = is_la57_mode(vcpu) ?
4861                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4862                 reset_rsvds_bits_mask(vcpu, g_context);
4863                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4864         } else if (is_pae(vcpu)) {
4865                 g_context->nx = is_nx(vcpu);
4866                 g_context->root_level = PT32E_ROOT_LEVEL;
4867                 reset_rsvds_bits_mask(vcpu, g_context);
4868                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4869         } else {
4870                 g_context->nx = false;
4871                 g_context->root_level = PT32_ROOT_LEVEL;
4872                 reset_rsvds_bits_mask(vcpu, g_context);
4873                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4874         }
4875
4876         update_permission_bitmask(vcpu, g_context, false);
4877         update_pkru_bitmask(vcpu, g_context, false);
4878         update_last_nonleaf_level(vcpu, g_context);
4879 }
4880
4881 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4882 {
4883         if (mmu_is_nested(vcpu))
4884                 init_kvm_nested_mmu(vcpu);
4885         else if (tdp_enabled)
4886                 init_kvm_tdp_mmu(vcpu);
4887         else
4888                 init_kvm_softmmu(vcpu);
4889 }
4890 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4891
4892 static union kvm_mmu_page_role
4893 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4894 {
4895         union kvm_mmu_role role;
4896
4897         if (tdp_enabled)
4898                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4899         else
4900                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4901
4902         return role.base;
4903 }
4904
4905 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4906 {
4907         kvm_mmu_unload(vcpu);
4908         kvm_init_mmu(vcpu);
4909 }
4910 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4911
4912 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4913 {
4914         int r;
4915
4916         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4917         if (r)
4918                 goto out;
4919         r = mmu_alloc_special_roots(vcpu);
4920         if (r)
4921                 goto out;
4922         if (vcpu->arch.mmu->direct_map)
4923                 r = mmu_alloc_direct_roots(vcpu);
4924         else
4925                 r = mmu_alloc_shadow_roots(vcpu);
4926         if (r)
4927                 goto out;
4928
4929         kvm_mmu_sync_roots(vcpu);
4930
4931         kvm_mmu_load_pgd(vcpu);
4932         static_call(kvm_x86_tlb_flush_current)(vcpu);
4933 out:
4934         return r;
4935 }
4936
4937 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4938 {
4939         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4940         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4941         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4942         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4943 }
4944
4945 static bool need_remote_flush(u64 old, u64 new)
4946 {
4947         if (!is_shadow_present_pte(old))
4948                 return false;
4949         if (!is_shadow_present_pte(new))
4950                 return true;
4951         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4952                 return true;
4953         old ^= shadow_nx_mask;
4954         new ^= shadow_nx_mask;
4955         return (old & ~new & PT64_PERM_MASK) != 0;
4956 }
4957
4958 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4959                                     int *bytes)
4960 {
4961         u64 gentry = 0;
4962         int r;
4963
4964         /*
4965          * Assume that the pte write on a page table of the same type
4966          * as the current vcpu paging mode since we update the sptes only
4967          * when they have the same mode.
4968          */
4969         if (is_pae(vcpu) && *bytes == 4) {
4970                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4971                 *gpa &= ~(gpa_t)7;
4972                 *bytes = 8;
4973         }
4974
4975         if (*bytes == 4 || *bytes == 8) {
4976                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4977                 if (r)
4978                         gentry = 0;
4979         }
4980
4981         return gentry;
4982 }
4983
4984 /*
4985  * If we're seeing too many writes to a page, it may no longer be a page table,
4986  * or we may be forking, in which case it is better to unmap the page.
4987  */
4988 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4989 {
4990         /*
4991          * Skip write-flooding detected for the sp whose level is 1, because
4992          * it can become unsync, then the guest page is not write-protected.
4993          */
4994         if (sp->role.level == PG_LEVEL_4K)
4995                 return false;
4996
4997         atomic_inc(&sp->write_flooding_count);
4998         return atomic_read(&sp->write_flooding_count) >= 3;
4999 }
5000
5001 /*
5002  * Misaligned accesses are too much trouble to fix up; also, they usually
5003  * indicate a page is not used as a page table.
5004  */
5005 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5006                                     int bytes)
5007 {
5008         unsigned offset, pte_size, misaligned;
5009
5010         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5011                  gpa, bytes, sp->role.word);
5012
5013         offset = offset_in_page(gpa);
5014         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5015
5016         /*
5017          * Sometimes, the OS only writes the last one bytes to update status
5018          * bits, for example, in linux, andb instruction is used in clear_bit().
5019          */
5020         if (!(offset & (pte_size - 1)) && bytes == 1)
5021                 return false;
5022
5023         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5024         misaligned |= bytes < 4;
5025
5026         return misaligned;
5027 }
5028
5029 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5030 {
5031         unsigned page_offset, quadrant;
5032         u64 *spte;
5033         int level;
5034
5035         page_offset = offset_in_page(gpa);
5036         level = sp->role.level;
5037         *nspte = 1;
5038         if (!sp->role.gpte_is_8_bytes) {
5039                 page_offset <<= 1;      /* 32->64 */
5040                 /*
5041                  * A 32-bit pde maps 4MB while the shadow pdes map
5042                  * only 2MB.  So we need to double the offset again
5043                  * and zap two pdes instead of one.
5044                  */
5045                 if (level == PT32_ROOT_LEVEL) {
5046                         page_offset &= ~7; /* kill rounding error */
5047                         page_offset <<= 1;
5048                         *nspte = 2;
5049                 }
5050                 quadrant = page_offset >> PAGE_SHIFT;
5051                 page_offset &= ~PAGE_MASK;
5052                 if (quadrant != sp->role.quadrant)
5053                         return NULL;
5054         }
5055
5056         spte = &sp->spt[page_offset / sizeof(*spte)];
5057         return spte;
5058 }
5059
5060 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5061                               const u8 *new, int bytes,
5062                               struct kvm_page_track_notifier_node *node)
5063 {
5064         gfn_t gfn = gpa >> PAGE_SHIFT;
5065         struct kvm_mmu_page *sp;
5066         LIST_HEAD(invalid_list);
5067         u64 entry, gentry, *spte;
5068         int npte;
5069         bool remote_flush, local_flush;
5070
5071         /*
5072          * If we don't have indirect shadow pages, it means no page is
5073          * write-protected, so we can exit simply.
5074          */
5075         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5076                 return;
5077
5078         remote_flush = local_flush = false;
5079
5080         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5081
5082         /*
5083          * No need to care whether allocation memory is successful
5084          * or not since pte prefetch is skipped if it does not have
5085          * enough objects in the cache.
5086          */
5087         mmu_topup_memory_caches(vcpu, true);
5088
5089         write_lock(&vcpu->kvm->mmu_lock);
5090
5091         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5092
5093         ++vcpu->kvm->stat.mmu_pte_write;
5094         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5095
5096         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5097                 if (detect_write_misaligned(sp, gpa, bytes) ||
5098                       detect_write_flooding(sp)) {
5099                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5100                         ++vcpu->kvm->stat.mmu_flooded;
5101                         continue;
5102                 }
5103
5104                 spte = get_written_sptes(sp, gpa, &npte);
5105                 if (!spte)
5106                         continue;
5107
5108                 local_flush = true;
5109                 while (npte--) {
5110                         entry = *spte;
5111                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5112                         if (gentry && sp->role.level != PG_LEVEL_4K)
5113                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5114                         if (need_remote_flush(entry, *spte))
5115                                 remote_flush = true;
5116                         ++spte;
5117                 }
5118         }
5119         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5120         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5121         write_unlock(&vcpu->kvm->mmu_lock);
5122 }
5123
5124 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5125                        void *insn, int insn_len)
5126 {
5127         int r, emulation_type = EMULTYPE_PF;
5128         bool direct = vcpu->arch.mmu->direct_map;
5129
5130         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5131                 return RET_PF_RETRY;
5132
5133         r = RET_PF_INVALID;
5134         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5135                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5136                 if (r == RET_PF_EMULATE)
5137                         goto emulate;
5138         }
5139
5140         if (r == RET_PF_INVALID) {
5141                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5142                                           lower_32_bits(error_code), false);
5143                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5144                         return -EIO;
5145         }
5146
5147         if (r < 0)
5148                 return r;
5149         if (r != RET_PF_EMULATE)
5150                 return 1;
5151
5152         /*
5153          * Before emulating the instruction, check if the error code
5154          * was due to a RO violation while translating the guest page.
5155          * This can occur when using nested virtualization with nested
5156          * paging in both guests. If true, we simply unprotect the page
5157          * and resume the guest.
5158          */
5159         if (vcpu->arch.mmu->direct_map &&
5160             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5161                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5162                 return 1;
5163         }
5164
5165         /*
5166          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5167          * optimistically try to just unprotect the page and let the processor
5168          * re-execute the instruction that caused the page fault.  Do not allow
5169          * retrying MMIO emulation, as it's not only pointless but could also
5170          * cause us to enter an infinite loop because the processor will keep
5171          * faulting on the non-existent MMIO address.  Retrying an instruction
5172          * from a nested guest is also pointless and dangerous as we are only
5173          * explicitly shadowing L1's page tables, i.e. unprotecting something
5174          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5175          */
5176         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5177                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5178 emulate:
5179         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5180                                        insn_len);
5181 }
5182 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5183
5184 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5185                             gva_t gva, hpa_t root_hpa)
5186 {
5187         int i;
5188
5189         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5190         if (mmu != &vcpu->arch.guest_mmu) {
5191                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5192                 if (is_noncanonical_address(gva, vcpu))
5193                         return;
5194
5195                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5196         }
5197
5198         if (!mmu->invlpg)
5199                 return;
5200
5201         if (root_hpa == INVALID_PAGE) {
5202                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5203
5204                 /*
5205                  * INVLPG is required to invalidate any global mappings for the VA,
5206                  * irrespective of PCID. Since it would take us roughly similar amount
5207                  * of work to determine whether any of the prev_root mappings of the VA
5208                  * is marked global, or to just sync it blindly, so we might as well
5209                  * just always sync it.
5210                  *
5211                  * Mappings not reachable via the current cr3 or the prev_roots will be
5212                  * synced when switching to that cr3, so nothing needs to be done here
5213                  * for them.
5214                  */
5215                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5216                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5217                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5218         } else {
5219                 mmu->invlpg(vcpu, gva, root_hpa);
5220         }
5221 }
5222
5223 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5224 {
5225         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5226         ++vcpu->stat.invlpg;
5227 }
5228 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5229
5230
5231 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5232 {
5233         struct kvm_mmu *mmu = vcpu->arch.mmu;
5234         bool tlb_flush = false;
5235         uint i;
5236
5237         if (pcid == kvm_get_active_pcid(vcpu)) {
5238                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5239                 tlb_flush = true;
5240         }
5241
5242         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5243                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5244                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5245                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5246                         tlb_flush = true;
5247                 }
5248         }
5249
5250         if (tlb_flush)
5251                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5252
5253         ++vcpu->stat.invlpg;
5254
5255         /*
5256          * Mappings not reachable via the current cr3 or the prev_roots will be
5257          * synced when switching to that cr3, so nothing needs to be done here
5258          * for them.
5259          */
5260 }
5261
5262 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5263                        int tdp_huge_page_level)
5264 {
5265         tdp_enabled = enable_tdp;
5266         max_tdp_level = tdp_max_root_level;
5267
5268         /*
5269          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5270          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5271          * the kernel is not.  But, KVM never creates a page size greater than
5272          * what is used by the kernel for any given HVA, i.e. the kernel's
5273          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5274          */
5275         if (tdp_enabled)
5276                 max_huge_page_level = tdp_huge_page_level;
5277         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5278                 max_huge_page_level = PG_LEVEL_1G;
5279         else
5280                 max_huge_page_level = PG_LEVEL_2M;
5281 }
5282 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5283
5284 /* The return value indicates if tlb flush on all vcpus is needed. */
5285 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5286                                     struct kvm_memory_slot *slot);
5287
5288 /* The caller should hold mmu-lock before calling this function. */
5289 static __always_inline bool
5290 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5291                         slot_level_handler fn, int start_level, int end_level,
5292                         gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5293                         bool flush)
5294 {
5295         struct slot_rmap_walk_iterator iterator;
5296
5297         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5298                         end_gfn, &iterator) {
5299                 if (iterator.rmap)
5300                         flush |= fn(kvm, iterator.rmap, memslot);
5301
5302                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5303                         if (flush && flush_on_yield) {
5304                                 kvm_flush_remote_tlbs_with_address(kvm,
5305                                                 start_gfn,
5306                                                 iterator.gfn - start_gfn + 1);
5307                                 flush = false;
5308                         }
5309                         cond_resched_rwlock_write(&kvm->mmu_lock);
5310                 }
5311         }
5312
5313         return flush;
5314 }
5315
5316 static __always_inline bool
5317 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5318                   slot_level_handler fn, int start_level, int end_level,
5319                   bool flush_on_yield)
5320 {
5321         return slot_handle_level_range(kvm, memslot, fn, start_level,
5322                         end_level, memslot->base_gfn,
5323                         memslot->base_gfn + memslot->npages - 1,
5324                         flush_on_yield, false);
5325 }
5326
5327 static __always_inline bool
5328 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5329                  slot_level_handler fn, bool flush_on_yield)
5330 {
5331         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5332                                  PG_LEVEL_4K, flush_on_yield);
5333 }
5334
5335 static void free_mmu_pages(struct kvm_mmu *mmu)
5336 {
5337         if (!tdp_enabled && mmu->pae_root)
5338                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5339         free_page((unsigned long)mmu->pae_root);
5340         free_page((unsigned long)mmu->pml4_root);
5341 }
5342
5343 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5344 {
5345         struct page *page;
5346         int i;
5347
5348         mmu->root_hpa = INVALID_PAGE;
5349         mmu->root_pgd = 0;
5350         mmu->translate_gpa = translate_gpa;
5351         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5352                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5353
5354         /*
5355          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5356          * while the PDP table is a per-vCPU construct that's allocated at MMU
5357          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5358          * x86_64.  Therefore we need to allocate the PDP table in the first
5359          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5360          * generally doesn't use PAE paging and can skip allocating the PDP
5361          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5362          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5363          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5364          */
5365         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5366                 return 0;
5367
5368         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5369         if (!page)
5370                 return -ENOMEM;
5371
5372         mmu->pae_root = page_address(page);
5373
5374         /*
5375          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5376          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5377          * that KVM's writes and the CPU's reads get along.  Note, this is
5378          * only necessary when using shadow paging, as 64-bit NPT can get at
5379          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5380          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5381          */
5382         if (!tdp_enabled)
5383                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5384         else
5385                 WARN_ON_ONCE(shadow_me_mask);
5386
5387         for (i = 0; i < 4; ++i)
5388                 mmu->pae_root[i] = INVALID_PAE_ROOT;
5389
5390         return 0;
5391 }
5392
5393 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5394 {
5395         int ret;
5396
5397         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5398         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5399
5400         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5401         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5402
5403         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5404
5405         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5406         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5407
5408         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5409
5410         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5411         if (ret)
5412                 return ret;
5413
5414         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5415         if (ret)
5416                 goto fail_allocate_root;
5417
5418         return ret;
5419  fail_allocate_root:
5420         free_mmu_pages(&vcpu->arch.guest_mmu);
5421         return ret;
5422 }
5423
5424 #define BATCH_ZAP_PAGES 10
5425 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5426 {
5427         struct kvm_mmu_page *sp, *node;
5428         int nr_zapped, batch = 0;
5429
5430 restart:
5431         list_for_each_entry_safe_reverse(sp, node,
5432               &kvm->arch.active_mmu_pages, link) {
5433                 /*
5434                  * No obsolete valid page exists before a newly created page
5435                  * since active_mmu_pages is a FIFO list.
5436                  */
5437                 if (!is_obsolete_sp(kvm, sp))
5438                         break;
5439
5440                 /*
5441                  * Invalid pages should never land back on the list of active
5442                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5443                  * infinite loop if the page gets put back on the list (again).
5444                  */
5445                 if (WARN_ON(sp->role.invalid))
5446                         continue;
5447
5448                 /*
5449                  * No need to flush the TLB since we're only zapping shadow
5450                  * pages with an obsolete generation number and all vCPUS have
5451                  * loaded a new root, i.e. the shadow pages being zapped cannot
5452                  * be in active use by the guest.
5453                  */
5454                 if (batch >= BATCH_ZAP_PAGES &&
5455                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5456                         batch = 0;
5457                         goto restart;
5458                 }
5459
5460                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5461                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5462                         batch += nr_zapped;
5463                         goto restart;
5464                 }
5465         }
5466
5467         /*
5468          * Trigger a remote TLB flush before freeing the page tables to ensure
5469          * KVM is not in the middle of a lockless shadow page table walk, which
5470          * may reference the pages.
5471          */
5472         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5473 }
5474
5475 /*
5476  * Fast invalidate all shadow pages and use lock-break technique
5477  * to zap obsolete pages.
5478  *
5479  * It's required when memslot is being deleted or VM is being
5480  * destroyed, in these cases, we should ensure that KVM MMU does
5481  * not use any resource of the being-deleted slot or all slots
5482  * after calling the function.
5483  */
5484 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5485 {
5486         lockdep_assert_held(&kvm->slots_lock);
5487
5488         write_lock(&kvm->mmu_lock);
5489         trace_kvm_mmu_zap_all_fast(kvm);
5490
5491         /*
5492          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5493          * held for the entire duration of zapping obsolete pages, it's
5494          * impossible for there to be multiple invalid generations associated
5495          * with *valid* shadow pages at any given time, i.e. there is exactly
5496          * one valid generation and (at most) one invalid generation.
5497          */
5498         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5499
5500         /* In order to ensure all threads see this change when
5501          * handling the MMU reload signal, this must happen in the
5502          * same critical section as kvm_reload_remote_mmus, and
5503          * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5504          * could drop the MMU lock and yield.
5505          */
5506         if (is_tdp_mmu_enabled(kvm))
5507                 kvm_tdp_mmu_invalidate_all_roots(kvm);
5508
5509         /*
5510          * Notify all vcpus to reload its shadow page table and flush TLB.
5511          * Then all vcpus will switch to new shadow page table with the new
5512          * mmu_valid_gen.
5513          *
5514          * Note: we need to do this under the protection of mmu_lock,
5515          * otherwise, vcpu would purge shadow page but miss tlb flush.
5516          */
5517         kvm_reload_remote_mmus(kvm);
5518
5519         kvm_zap_obsolete_pages(kvm);
5520
5521         write_unlock(&kvm->mmu_lock);
5522
5523         if (is_tdp_mmu_enabled(kvm)) {
5524                 read_lock(&kvm->mmu_lock);
5525                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5526                 read_unlock(&kvm->mmu_lock);
5527         }
5528 }
5529
5530 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5531 {
5532         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5533 }
5534
5535 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5536                         struct kvm_memory_slot *slot,
5537                         struct kvm_page_track_notifier_node *node)
5538 {
5539         kvm_mmu_zap_all_fast(kvm);
5540 }
5541
5542 void kvm_mmu_init_vm(struct kvm *kvm)
5543 {
5544         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5545
5546         if (!kvm_mmu_init_tdp_mmu(kvm))
5547                 /*
5548                  * No smp_load/store wrappers needed here as we are in
5549                  * VM init and there cannot be any memslots / other threads
5550                  * accessing this struct kvm yet.
5551                  */
5552                 kvm->arch.memslots_have_rmaps = true;
5553
5554         node->track_write = kvm_mmu_pte_write;
5555         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5556         kvm_page_track_register_notifier(kvm, node);
5557 }
5558
5559 void kvm_mmu_uninit_vm(struct kvm *kvm)
5560 {
5561         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5562
5563         kvm_page_track_unregister_notifier(kvm, node);
5564
5565         kvm_mmu_uninit_tdp_mmu(kvm);
5566 }
5567
5568 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5569 {
5570         struct kvm_memslots *slots;
5571         struct kvm_memory_slot *memslot;
5572         int i;
5573         bool flush = false;
5574
5575         if (kvm_memslots_have_rmaps(kvm)) {
5576                 write_lock(&kvm->mmu_lock);
5577                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5578                         slots = __kvm_memslots(kvm, i);
5579                         kvm_for_each_memslot(memslot, slots) {
5580                                 gfn_t start, end;
5581
5582                                 start = max(gfn_start, memslot->base_gfn);
5583                                 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5584                                 if (start >= end)
5585                                         continue;
5586
5587                                 flush = slot_handle_level_range(kvm, memslot,
5588                                                 kvm_zap_rmapp, PG_LEVEL_4K,
5589                                                 KVM_MAX_HUGEPAGE_LEVEL, start,
5590                                                 end - 1, true, flush);
5591                         }
5592                 }
5593                 if (flush)
5594                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5595                 write_unlock(&kvm->mmu_lock);
5596         }
5597
5598         if (is_tdp_mmu_enabled(kvm)) {
5599                 flush = false;
5600
5601                 read_lock(&kvm->mmu_lock);
5602                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5603                         flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5604                                                           gfn_end, flush, true);
5605                 if (flush)
5606                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5607                                                            gfn_end);
5608
5609                 read_unlock(&kvm->mmu_lock);
5610         }
5611 }
5612
5613 static bool slot_rmap_write_protect(struct kvm *kvm,
5614                                     struct kvm_rmap_head *rmap_head,
5615                                     struct kvm_memory_slot *slot)
5616 {
5617         return __rmap_write_protect(kvm, rmap_head, false);
5618 }
5619
5620 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5621                                       struct kvm_memory_slot *memslot,
5622                                       int start_level)
5623 {
5624         bool flush = false;
5625
5626         if (kvm_memslots_have_rmaps(kvm)) {
5627                 write_lock(&kvm->mmu_lock);
5628                 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5629                                           start_level, KVM_MAX_HUGEPAGE_LEVEL,
5630                                           false);
5631                 write_unlock(&kvm->mmu_lock);
5632         }
5633
5634         if (is_tdp_mmu_enabled(kvm)) {
5635                 read_lock(&kvm->mmu_lock);
5636                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5637                 read_unlock(&kvm->mmu_lock);
5638         }
5639
5640         /*
5641          * We can flush all the TLBs out of the mmu lock without TLB
5642          * corruption since we just change the spte from writable to
5643          * readonly so that we only need to care the case of changing
5644          * spte from present to present (changing the spte from present
5645          * to nonpresent will flush all the TLBs immediately), in other
5646          * words, the only case we care is mmu_spte_update() where we
5647          * have checked Host-writable | MMU-writable instead of
5648          * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5649          * anymore.
5650          */
5651         if (flush)
5652                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5653 }
5654
5655 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5656                                          struct kvm_rmap_head *rmap_head,
5657                                          struct kvm_memory_slot *slot)
5658 {
5659         u64 *sptep;
5660         struct rmap_iterator iter;
5661         int need_tlb_flush = 0;
5662         kvm_pfn_t pfn;
5663         struct kvm_mmu_page *sp;
5664
5665 restart:
5666         for_each_rmap_spte(rmap_head, &iter, sptep) {
5667                 sp = sptep_to_sp(sptep);
5668                 pfn = spte_to_pfn(*sptep);
5669
5670                 /*
5671                  * We cannot do huge page mapping for indirect shadow pages,
5672                  * which are found on the last rmap (level = 1) when not using
5673                  * tdp; such shadow pages are synced with the page table in
5674                  * the guest, and the guest page table is using 4K page size
5675                  * mapping if the indirect sp has level = 1.
5676                  */
5677                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5678                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5679                                                                pfn, PG_LEVEL_NUM)) {
5680                         pte_list_remove(rmap_head, sptep);
5681
5682                         if (kvm_available_flush_tlb_with_range())
5683                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5684                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5685                         else
5686                                 need_tlb_flush = 1;
5687
5688                         goto restart;
5689                 }
5690         }
5691
5692         return need_tlb_flush;
5693 }
5694
5695 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5696                                    const struct kvm_memory_slot *memslot)
5697 {
5698         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5699         struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5700         bool flush = false;
5701
5702         if (kvm_memslots_have_rmaps(kvm)) {
5703                 write_lock(&kvm->mmu_lock);
5704                 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5705                 if (flush)
5706                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5707                 write_unlock(&kvm->mmu_lock);
5708         }
5709
5710         if (is_tdp_mmu_enabled(kvm)) {
5711                 read_lock(&kvm->mmu_lock);
5712                 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5713                 if (flush)
5714                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5715                 read_unlock(&kvm->mmu_lock);
5716         }
5717 }
5718
5719 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5720                                         const struct kvm_memory_slot *memslot)
5721 {
5722         /*
5723          * All current use cases for flushing the TLBs for a specific memslot
5724          * related to dirty logging, and many do the TLB flush out of mmu_lock.
5725          * The interaction between the various operations on memslot must be
5726          * serialized by slots_locks to ensure the TLB flush from one operation
5727          * is observed by any other operation on the same memslot.
5728          */
5729         lockdep_assert_held(&kvm->slots_lock);
5730         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5731                                            memslot->npages);
5732 }
5733
5734 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5735                                    struct kvm_memory_slot *memslot)
5736 {
5737         bool flush = false;
5738
5739         if (kvm_memslots_have_rmaps(kvm)) {
5740                 write_lock(&kvm->mmu_lock);
5741                 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5742                                          false);
5743                 write_unlock(&kvm->mmu_lock);
5744         }
5745
5746         if (is_tdp_mmu_enabled(kvm)) {
5747                 read_lock(&kvm->mmu_lock);
5748                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5749                 read_unlock(&kvm->mmu_lock);
5750         }
5751
5752         /*
5753          * It's also safe to flush TLBs out of mmu lock here as currently this
5754          * function is only used for dirty logging, in which case flushing TLB
5755          * out of mmu lock also guarantees no dirty pages will be lost in
5756          * dirty_bitmap.
5757          */
5758         if (flush)
5759                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5760 }
5761
5762 void kvm_mmu_zap_all(struct kvm *kvm)
5763 {
5764         struct kvm_mmu_page *sp, *node;
5765         LIST_HEAD(invalid_list);
5766         int ign;
5767
5768         write_lock(&kvm->mmu_lock);
5769 restart:
5770         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5771                 if (WARN_ON(sp->role.invalid))
5772                         continue;
5773                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5774                         goto restart;
5775                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5776                         goto restart;
5777         }
5778
5779         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5780
5781         if (is_tdp_mmu_enabled(kvm))
5782                 kvm_tdp_mmu_zap_all(kvm);
5783
5784         write_unlock(&kvm->mmu_lock);
5785 }
5786
5787 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5788 {
5789         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5790
5791         gen &= MMIO_SPTE_GEN_MASK;
5792
5793         /*
5794          * Generation numbers are incremented in multiples of the number of
5795          * address spaces in order to provide unique generations across all
5796          * address spaces.  Strip what is effectively the address space
5797          * modifier prior to checking for a wrap of the MMIO generation so
5798          * that a wrap in any address space is detected.
5799          */
5800         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5801
5802         /*
5803          * The very rare case: if the MMIO generation number has wrapped,
5804          * zap all shadow pages.
5805          */
5806         if (unlikely(gen == 0)) {
5807                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5808                 kvm_mmu_zap_all_fast(kvm);
5809         }
5810 }
5811
5812 static unsigned long
5813 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5814 {
5815         struct kvm *kvm;
5816         int nr_to_scan = sc->nr_to_scan;
5817         unsigned long freed = 0;
5818
5819         mutex_lock(&kvm_lock);
5820
5821         list_for_each_entry(kvm, &vm_list, vm_list) {
5822                 int idx;
5823                 LIST_HEAD(invalid_list);
5824
5825                 /*
5826                  * Never scan more than sc->nr_to_scan VM instances.
5827                  * Will not hit this condition practically since we do not try
5828                  * to shrink more than one VM and it is very unlikely to see
5829                  * !n_used_mmu_pages so many times.
5830                  */
5831                 if (!nr_to_scan--)
5832                         break;
5833                 /*
5834                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5835                  * here. We may skip a VM instance errorneosly, but we do not
5836                  * want to shrink a VM that only started to populate its MMU
5837                  * anyway.
5838                  */
5839                 if (!kvm->arch.n_used_mmu_pages &&
5840                     !kvm_has_zapped_obsolete_pages(kvm))
5841                         continue;
5842
5843                 idx = srcu_read_lock(&kvm->srcu);
5844                 write_lock(&kvm->mmu_lock);
5845
5846                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5847                         kvm_mmu_commit_zap_page(kvm,
5848                               &kvm->arch.zapped_obsolete_pages);
5849                         goto unlock;
5850                 }
5851
5852                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5853
5854 unlock:
5855                 write_unlock(&kvm->mmu_lock);
5856                 srcu_read_unlock(&kvm->srcu, idx);
5857
5858                 /*
5859                  * unfair on small ones
5860                  * per-vm shrinkers cry out
5861                  * sadness comes quickly
5862                  */
5863                 list_move_tail(&kvm->vm_list, &vm_list);
5864                 break;
5865         }
5866
5867         mutex_unlock(&kvm_lock);
5868         return freed;
5869 }
5870
5871 static unsigned long
5872 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5873 {
5874         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5875 }
5876
5877 static struct shrinker mmu_shrinker = {
5878         .count_objects = mmu_shrink_count,
5879         .scan_objects = mmu_shrink_scan,
5880         .seeks = DEFAULT_SEEKS * 10,
5881 };
5882
5883 static void mmu_destroy_caches(void)
5884 {
5885         kmem_cache_destroy(pte_list_desc_cache);
5886         kmem_cache_destroy(mmu_page_header_cache);
5887 }
5888
5889 static bool get_nx_auto_mode(void)
5890 {
5891         /* Return true when CPU has the bug, and mitigations are ON */
5892         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5893 }
5894
5895 static void __set_nx_huge_pages(bool val)
5896 {
5897         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5898 }
5899
5900 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5901 {
5902         bool old_val = nx_huge_pages;
5903         bool new_val;
5904
5905         /* In "auto" mode deploy workaround only if CPU has the bug. */
5906         if (sysfs_streq(val, "off"))
5907                 new_val = 0;
5908         else if (sysfs_streq(val, "force"))
5909                 new_val = 1;
5910         else if (sysfs_streq(val, "auto"))
5911                 new_val = get_nx_auto_mode();
5912         else if (strtobool(val, &new_val) < 0)
5913                 return -EINVAL;
5914
5915         __set_nx_huge_pages(new_val);
5916
5917         if (new_val != old_val) {
5918                 struct kvm *kvm;
5919
5920                 mutex_lock(&kvm_lock);
5921
5922                 list_for_each_entry(kvm, &vm_list, vm_list) {
5923                         mutex_lock(&kvm->slots_lock);
5924                         kvm_mmu_zap_all_fast(kvm);
5925                         mutex_unlock(&kvm->slots_lock);
5926
5927                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5928                 }
5929                 mutex_unlock(&kvm_lock);
5930         }
5931
5932         return 0;
5933 }
5934
5935 int kvm_mmu_module_init(void)
5936 {
5937         int ret = -ENOMEM;
5938
5939         if (nx_huge_pages == -1)
5940                 __set_nx_huge_pages(get_nx_auto_mode());
5941
5942         /*
5943          * MMU roles use union aliasing which is, generally speaking, an
5944          * undefined behavior. However, we supposedly know how compilers behave
5945          * and the current status quo is unlikely to change. Guardians below are
5946          * supposed to let us know if the assumption becomes false.
5947          */
5948         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5949         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5950         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5951
5952         kvm_mmu_reset_all_pte_masks();
5953
5954         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5955                                             sizeof(struct pte_list_desc),
5956                                             0, SLAB_ACCOUNT, NULL);
5957         if (!pte_list_desc_cache)
5958                 goto out;
5959
5960         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5961                                                   sizeof(struct kvm_mmu_page),
5962                                                   0, SLAB_ACCOUNT, NULL);
5963         if (!mmu_page_header_cache)
5964                 goto out;
5965
5966         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5967                 goto out;
5968
5969         ret = register_shrinker(&mmu_shrinker);
5970         if (ret)
5971                 goto out;
5972
5973         return 0;
5974
5975 out:
5976         mmu_destroy_caches();
5977         return ret;
5978 }
5979
5980 /*
5981  * Calculate mmu pages needed for kvm.
5982  */
5983 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5984 {
5985         unsigned long nr_mmu_pages;
5986         unsigned long nr_pages = 0;
5987         struct kvm_memslots *slots;
5988         struct kvm_memory_slot *memslot;
5989         int i;
5990
5991         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5992                 slots = __kvm_memslots(kvm, i);
5993
5994                 kvm_for_each_memslot(memslot, slots)
5995                         nr_pages += memslot->npages;
5996         }
5997
5998         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5999         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6000
6001         return nr_mmu_pages;
6002 }
6003
6004 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6005 {
6006         kvm_mmu_unload(vcpu);
6007         free_mmu_pages(&vcpu->arch.root_mmu);
6008         free_mmu_pages(&vcpu->arch.guest_mmu);
6009         mmu_free_memory_caches(vcpu);
6010 }
6011
6012 void kvm_mmu_module_exit(void)
6013 {
6014         mmu_destroy_caches();
6015         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6016         unregister_shrinker(&mmu_shrinker);
6017         mmu_audit_disable();
6018 }
6019
6020 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6021 {
6022         unsigned int old_val;
6023         int err;
6024
6025         old_val = nx_huge_pages_recovery_ratio;
6026         err = param_set_uint(val, kp);
6027         if (err)
6028                 return err;
6029
6030         if (READ_ONCE(nx_huge_pages) &&
6031             !old_val && nx_huge_pages_recovery_ratio) {
6032                 struct kvm *kvm;
6033
6034                 mutex_lock(&kvm_lock);
6035
6036                 list_for_each_entry(kvm, &vm_list, vm_list)
6037                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6038
6039                 mutex_unlock(&kvm_lock);
6040         }
6041
6042         return err;
6043 }
6044
6045 static void kvm_recover_nx_lpages(struct kvm *kvm)
6046 {
6047         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6048         int rcu_idx;
6049         struct kvm_mmu_page *sp;
6050         unsigned int ratio;
6051         LIST_HEAD(invalid_list);
6052         bool flush = false;
6053         ulong to_zap;
6054
6055         rcu_idx = srcu_read_lock(&kvm->srcu);
6056         write_lock(&kvm->mmu_lock);
6057
6058         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6059         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6060         for ( ; to_zap; --to_zap) {
6061                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6062                         break;
6063
6064                 /*
6065                  * We use a separate list instead of just using active_mmu_pages
6066                  * because the number of lpage_disallowed pages is expected to
6067                  * be relatively small compared to the total.
6068                  */
6069                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6070                                       struct kvm_mmu_page,
6071                                       lpage_disallowed_link);
6072                 WARN_ON_ONCE(!sp->lpage_disallowed);
6073                 if (is_tdp_mmu_page(sp)) {
6074                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6075                 } else {
6076                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6077                         WARN_ON_ONCE(sp->lpage_disallowed);
6078                 }
6079
6080                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6081                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6082                         cond_resched_rwlock_write(&kvm->mmu_lock);
6083                         flush = false;
6084                 }
6085         }
6086         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6087
6088         write_unlock(&kvm->mmu_lock);
6089         srcu_read_unlock(&kvm->srcu, rcu_idx);
6090 }
6091
6092 static long get_nx_lpage_recovery_timeout(u64 start_time)
6093 {
6094         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6095                 ? start_time + 60 * HZ - get_jiffies_64()
6096                 : MAX_SCHEDULE_TIMEOUT;
6097 }
6098
6099 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6100 {
6101         u64 start_time;
6102         long remaining_time;
6103
6104         while (true) {
6105                 start_time = get_jiffies_64();
6106                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6107
6108                 set_current_state(TASK_INTERRUPTIBLE);
6109                 while (!kthread_should_stop() && remaining_time > 0) {
6110                         schedule_timeout(remaining_time);
6111                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6112                         set_current_state(TASK_INTERRUPTIBLE);
6113                 }
6114
6115                 set_current_state(TASK_RUNNING);
6116
6117                 if (kthread_should_stop())
6118                         return 0;
6119
6120                 kvm_recover_nx_lpages(kvm);
6121         }
6122 }
6123
6124 int kvm_mmu_post_init_vm(struct kvm *kvm)
6125 {
6126         int err;
6127
6128         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6129                                           "kvm-nx-lpage-recovery",
6130                                           &kvm->arch.nx_lpage_recovery_thread);
6131         if (!err)
6132                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6133
6134         return err;
6135 }
6136
6137 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6138 {
6139         if (kvm->arch.nx_lpage_recovery_thread)
6140                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6141 }