kvm: x86/mmu: Add TDP MMU PF handler
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54
55 extern bool itlb_multihit_kvm_mitigation;
56
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69         .set = set_nx_huge_pages,
70         .get = param_get_bool,
71 };
72
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74         .set = set_nx_huge_pages_recovery_ratio,
75         .get = param_get_uint,
76 };
77
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81                 &nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
87 /*
88  * When setting this variable to true it enables Two-Dimensional-Paging
89  * where the hardware walks 2 page tables:
90  * 1. the guest-virtual to guest-physical
91  * 2. while doing 1. it walks guest-physical to host-physical
92  * If the hardware supports that we don't need to do shadow paging.
93  */
94 bool tdp_enabled = false;
95
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98
99 enum {
100         AUDIT_PRE_PAGE_FAULT,
101         AUDIT_POST_PAGE_FAULT,
102         AUDIT_PRE_PTE_WRITE,
103         AUDIT_POST_PTE_WRITE,
104         AUDIT_PRE_SYNC,
105         AUDIT_POST_SYNC
106 };
107
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112
113 #define PTE_PREFETCH_NUM                8
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119
120 #define PT32_LVL_OFFSET_MASK(level) \
121         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122                                                 * PT32_LEVEL_BITS))) - 1))
123
124 #define PT32_INDEX(address, level)\
125         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #include <trace/events/kvm.h>
136
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139
140 struct pte_list_desc {
141         u64 *sptes[PTE_LIST_EXT];
142         struct pte_list_desc *more;
143 };
144
145 struct kvm_shadow_walk_iterator {
146         u64 addr;
147         hpa_t shadow_addr;
148         u64 *sptep;
149         int level;
150         unsigned index;
151 };
152
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
154         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
155                                          (_root), (_addr));                \
156              shadow_walk_okay(&(_walker));                                 \
157              shadow_walk_next(&(_walker)))
158
159 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
161              shadow_walk_okay(&(_walker));                      \
162              shadow_walk_next(&(_walker)))
163
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
165         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
166              shadow_walk_okay(&(_walker)) &&                            \
167                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
168              __shadow_walk_next(&(_walker), spte))
169
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180
181
182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184         return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188                 struct kvm_tlb_range *range)
189 {
190         int ret = -ENOTSUPP;
191
192         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193                 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
194
195         if (ret)
196                 kvm_flush_remote_tlbs(kvm);
197 }
198
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200                 u64 start_gfn, u64 pages)
201 {
202         struct kvm_tlb_range range;
203
204         range.start_gfn = start_gfn;
205         range.pages = pages;
206
207         kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209
210 bool is_nx_huge_page_enabled(void)
211 {
212         return READ_ONCE(nx_huge_pages);
213 }
214
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216                            unsigned int access)
217 {
218         u64 mask = make_mmio_spte(vcpu, gfn, access);
219
220         trace_mark_mmio_spte(sptep, gfn, mask);
221         mmu_spte_set(sptep, mask);
222 }
223
224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227
228         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
229                & shadow_nonpresent_or_rsvd_mask;
230
231         return gpa >> PAGE_SHIFT;
232 }
233
234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236         return spte & shadow_mmio_access_mask;
237 }
238
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240                           kvm_pfn_t pfn, unsigned int access)
241 {
242         if (unlikely(is_noslot_pfn(pfn))) {
243                 mark_mmio_spte(vcpu, sptep, gfn, access);
244                 return true;
245         }
246
247         return false;
248 }
249
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252         u64 kvm_gen, spte_gen, gen;
253
254         gen = kvm_vcpu_memslots(vcpu)->generation;
255         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256                 return false;
257
258         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259         spte_gen = get_mmio_spte_generation(spte);
260
261         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262         return likely(kvm_gen == spte_gen);
263 }
264
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266                                   struct x86_exception *exception)
267 {
268         /* Check if guest physical address doesn't exceed guest maximum */
269         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270                 exception->error_code |= PFERR_RSVD_MASK;
271                 return UNMAPPED_GVA;
272         }
273
274         return gpa;
275 }
276
277 static int is_cpuid_PSE36(void)
278 {
279         return 1;
280 }
281
282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284         return vcpu->arch.efer & EFER_NX;
285 }
286
287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291         return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297         WRITE_ONCE(*sptep, spte);
298 }
299
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302         WRITE_ONCE(*sptep, spte);
303 }
304
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307         return xchg(sptep, spte);
308 }
309
310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312         return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316         struct {
317                 u32 spte_low;
318                 u32 spte_high;
319         };
320         u64 spte;
321 };
322
323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326
327         if (is_shadow_present_pte(spte))
328                 return;
329
330         /* Ensure the spte is completely set before we increase the count */
331         smp_wmb();
332         sp->clear_spte_count++;
333 }
334
335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337         union split_spte *ssptep, sspte;
338
339         ssptep = (union split_spte *)sptep;
340         sspte = (union split_spte)spte;
341
342         ssptep->spte_high = sspte.spte_high;
343
344         /*
345          * If we map the spte from nonpresent to present, We should store
346          * the high bits firstly, then set present bit, so cpu can not
347          * fetch this spte while we are setting the spte.
348          */
349         smp_wmb();
350
351         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356         union split_spte *ssptep, sspte;
357
358         ssptep = (union split_spte *)sptep;
359         sspte = (union split_spte)spte;
360
361         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362
363         /*
364          * If we map the spte from present to nonpresent, we should clear
365          * present bit firstly to avoid vcpu fetch the old high bits.
366          */
367         smp_wmb();
368
369         ssptep->spte_high = sspte.spte_high;
370         count_spte_clear(sptep, spte);
371 }
372
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375         union split_spte *ssptep, sspte, orig;
376
377         ssptep = (union split_spte *)sptep;
378         sspte = (union split_spte)spte;
379
380         /* xchg acts as a barrier before the setting of the high bits */
381         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382         orig.spte_high = ssptep->spte_high;
383         ssptep->spte_high = sspte.spte_high;
384         count_spte_clear(sptep, spte);
385
386         return orig.spte;
387 }
388
389 /*
390  * The idea using the light way get the spte on x86_32 guest is from
391  * gup_get_pte (mm/gup.c).
392  *
393  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394  * coalesces them and we are running out of the MMU lock.  Therefore
395  * we need to protect against in-progress updates of the spte.
396  *
397  * Reading the spte while an update is in progress may get the old value
398  * for the high part of the spte.  The race is fine for a present->non-present
399  * change (because the high part of the spte is ignored for non-present spte),
400  * but for a present->present change we must reread the spte.
401  *
402  * All such changes are done in two steps (present->non-present and
403  * non-present->present), hence it is enough to count the number of
404  * present->non-present updates: if it changed while reading the spte,
405  * we might have hit the race.  This is done using clear_spte_count.
406  */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410         union split_spte spte, *orig = (union split_spte *)sptep;
411         int count;
412
413 retry:
414         count = sp->clear_spte_count;
415         smp_rmb();
416
417         spte.spte_low = orig->spte_low;
418         smp_rmb();
419
420         spte.spte_high = orig->spte_high;
421         smp_rmb();
422
423         if (unlikely(spte.spte_low != orig->spte_low ||
424               count != sp->clear_spte_count))
425                 goto retry;
426
427         return spte.spte;
428 }
429 #endif
430
431 static bool spte_has_volatile_bits(u64 spte)
432 {
433         if (!is_shadow_present_pte(spte))
434                 return false;
435
436         /*
437          * Always atomically update spte if it can be updated
438          * out of mmu-lock, it can ensure dirty bit is not lost,
439          * also, it can help us to get a stable is_writable_pte()
440          * to ensure tlb flush is not missed.
441          */
442         if (spte_can_locklessly_be_made_writable(spte) ||
443             is_access_track_spte(spte))
444                 return true;
445
446         if (spte_ad_enabled(spte)) {
447                 if ((spte & shadow_accessed_mask) == 0 ||
448                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449                         return true;
450         }
451
452         return false;
453 }
454
455 /* Rules for using mmu_spte_set:
456  * Set the sptep from nonpresent to present.
457  * Note: the sptep being assigned *must* be either not present
458  * or in a state where the hardware will not attempt to update
459  * the spte.
460  */
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463         WARN_ON(is_shadow_present_pte(*sptep));
464         __set_spte(sptep, new_spte);
465 }
466
467 /*
468  * Update the SPTE (excluding the PFN), but do not track changes in its
469  * accessed/dirty status.
470  */
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473         u64 old_spte = *sptep;
474
475         WARN_ON(!is_shadow_present_pte(new_spte));
476
477         if (!is_shadow_present_pte(old_spte)) {
478                 mmu_spte_set(sptep, new_spte);
479                 return old_spte;
480         }
481
482         if (!spte_has_volatile_bits(old_spte))
483                 __update_clear_spte_fast(sptep, new_spte);
484         else
485                 old_spte = __update_clear_spte_slow(sptep, new_spte);
486
487         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
489         return old_spte;
490 }
491
492 /* Rules for using mmu_spte_update:
493  * Update the state bits, it means the mapped pfn is not changed.
494  *
495  * Whenever we overwrite a writable spte with a read-only one we
496  * should flush remote TLBs. Otherwise rmap_write_protect
497  * will find a read-only spte, even though the writable spte
498  * might be cached on a CPU's TLB, the return value indicates this
499  * case.
500  *
501  * Returns true if the TLB needs to be flushed
502  */
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505         bool flush = false;
506         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508         if (!is_shadow_present_pte(old_spte))
509                 return false;
510
511         /*
512          * For the spte updated out of mmu-lock is safe, since
513          * we always atomically update it, see the comments in
514          * spte_has_volatile_bits().
515          */
516         if (spte_can_locklessly_be_made_writable(old_spte) &&
517               !is_writable_pte(new_spte))
518                 flush = true;
519
520         /*
521          * Flush TLB when accessed/dirty states are changed in the page tables,
522          * to guarantee consistency between TLB and page tables.
523          */
524
525         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526                 flush = true;
527                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528         }
529
530         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531                 flush = true;
532                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533         }
534
535         return flush;
536 }
537
538 /*
539  * Rules for using mmu_spte_clear_track_bits:
540  * It sets the sptep from present to nonpresent, and track the
541  * state bits, it is used to clear the last level sptep.
542  * Returns non-zero if the PTE was previously valid.
543  */
544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546         kvm_pfn_t pfn;
547         u64 old_spte = *sptep;
548
549         if (!spte_has_volatile_bits(old_spte))
550                 __update_clear_spte_fast(sptep, 0ull);
551         else
552                 old_spte = __update_clear_spte_slow(sptep, 0ull);
553
554         if (!is_shadow_present_pte(old_spte))
555                 return 0;
556
557         pfn = spte_to_pfn(old_spte);
558
559         /*
560          * KVM does not hold the refcount of the page used by
561          * kvm mmu, before reclaiming the page, we should
562          * unmap it from mmu first.
563          */
564         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565
566         if (is_accessed_spte(old_spte))
567                 kvm_set_pfn_accessed(pfn);
568
569         if (is_dirty_spte(old_spte))
570                 kvm_set_pfn_dirty(pfn);
571
572         return 1;
573 }
574
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582         __update_clear_spte_fast(sptep, 0ull);
583 }
584
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587         return __get_spte_lockless(sptep);
588 }
589
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
592 {
593         u64 new_spte = spte;
594         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
595                          & shadow_acc_track_saved_bits_mask;
596
597         WARN_ON_ONCE(spte_ad_enabled(spte));
598         WARN_ON_ONCE(!is_access_track_spte(spte));
599
600         new_spte &= ~shadow_acc_track_mask;
601         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
602                       shadow_acc_track_saved_bits_shift);
603         new_spte |= saved_bits;
604
605         return new_spte;
606 }
607
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
610 {
611         u64 spte = mmu_spte_get_lockless(sptep);
612
613         if (!is_accessed_spte(spte))
614                 return false;
615
616         if (spte_ad_enabled(spte)) {
617                 clear_bit((ffs(shadow_accessed_mask) - 1),
618                           (unsigned long *)sptep);
619         } else {
620                 /*
621                  * Capture the dirty status of the page, so that it doesn't get
622                  * lost when the SPTE is marked for access tracking.
623                  */
624                 if (is_writable_pte(spte))
625                         kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627                 spte = mark_spte_for_access_track(spte);
628                 mmu_spte_update_no_track(sptep, spte);
629         }
630
631         return true;
632 }
633
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636         /*
637          * Prevent page table teardown by making any free-er wait during
638          * kvm_flush_remote_tlbs() IPI to all active vcpus.
639          */
640         local_irq_disable();
641
642         /*
643          * Make sure a following spte read is not reordered ahead of the write
644          * to vcpu->mode.
645          */
646         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651         /*
652          * Make sure the write to vcpu->mode is not reordered in front of
653          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655          */
656         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657         local_irq_enable();
658 }
659
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662         int r;
663
664         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667         if (r)
668                 return r;
669         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670                                        PT64_ROOT_MAX_LEVEL);
671         if (r)
672                 return r;
673         if (maybe_indirect) {
674                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675                                                PT64_ROOT_MAX_LEVEL);
676                 if (r)
677                         return r;
678         }
679         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680                                           PT64_ROOT_MAX_LEVEL);
681 }
682
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703         if (!sp->role.direct)
704                 return sp->gfns[index];
705
706         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711         if (!sp->role.direct) {
712                 sp->gfns[index] = gfn;
713                 return;
714         }
715
716         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717                 pr_err_ratelimited("gfn mismatch under direct page %llx "
718                                    "(expected %llx, got %llx)\n",
719                                    sp->gfn,
720                                    kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722
723 /*
724  * Return the pointer to the large page information for a given gfn,
725  * handling slots that are not large page aligned.
726  */
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728                                               struct kvm_memory_slot *slot,
729                                               int level)
730 {
731         unsigned long idx;
732
733         idx = gfn_to_index(gfn, slot->base_gfn, level);
734         return &slot->arch.lpage_info[level - 2][idx];
735 }
736
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738                                             gfn_t gfn, int count)
739 {
740         struct kvm_lpage_info *linfo;
741         int i;
742
743         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744                 linfo = lpage_info_slot(gfn, slot, i);
745                 linfo->disallow_lpage += count;
746                 WARN_ON(linfo->disallow_lpage < 0);
747         }
748 }
749
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752         update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757         update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762         struct kvm_memslots *slots;
763         struct kvm_memory_slot *slot;
764         gfn_t gfn;
765
766         kvm->arch.indirect_shadow_pages++;
767         gfn = sp->gfn;
768         slots = kvm_memslots_for_spte_role(kvm, sp->role);
769         slot = __gfn_to_memslot(slots, gfn);
770
771         /* the non-leaf shadow pages are keeping readonly. */
772         if (sp->role.level > PG_LEVEL_4K)
773                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774                                                     KVM_PAGE_TRACK_WRITE);
775
776         kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778
779 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781         if (sp->lpage_disallowed)
782                 return;
783
784         ++kvm->stat.nx_lpage_splits;
785         list_add_tail(&sp->lpage_disallowed_link,
786                       &kvm->arch.lpage_disallowed_mmu_pages);
787         sp->lpage_disallowed = true;
788 }
789
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792         struct kvm_memslots *slots;
793         struct kvm_memory_slot *slot;
794         gfn_t gfn;
795
796         kvm->arch.indirect_shadow_pages--;
797         gfn = sp->gfn;
798         slots = kvm_memslots_for_spte_role(kvm, sp->role);
799         slot = __gfn_to_memslot(slots, gfn);
800         if (sp->role.level > PG_LEVEL_4K)
801                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802                                                        KVM_PAGE_TRACK_WRITE);
803
804         kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806
807 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809         --kvm->stat.nx_lpage_splits;
810         sp->lpage_disallowed = false;
811         list_del(&sp->lpage_disallowed_link);
812 }
813
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816                             bool no_dirty_log)
817 {
818         struct kvm_memory_slot *slot;
819
820         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822                 return NULL;
823         if (no_dirty_log && slot->dirty_bitmap)
824                 return NULL;
825
826         return slot;
827 }
828
829 /*
830  * About rmap_head encoding:
831  *
832  * If the bit zero of rmap_head->val is clear, then it points to the only spte
833  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834  * pte_list_desc containing more mappings.
835  */
836
837 /*
838  * Returns the number of pointers in the rmap chain, not counting the new one.
839  */
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841                         struct kvm_rmap_head *rmap_head)
842 {
843         struct pte_list_desc *desc;
844         int i, count = 0;
845
846         if (!rmap_head->val) {
847                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
848                 rmap_head->val = (unsigned long)spte;
849         } else if (!(rmap_head->val & 1)) {
850                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851                 desc = mmu_alloc_pte_list_desc(vcpu);
852                 desc->sptes[0] = (u64 *)rmap_head->val;
853                 desc->sptes[1] = spte;
854                 rmap_head->val = (unsigned long)desc | 1;
855                 ++count;
856         } else {
857                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
858                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
860                         desc = desc->more;
861                         count += PTE_LIST_EXT;
862                 }
863                 if (desc->sptes[PTE_LIST_EXT-1]) {
864                         desc->more = mmu_alloc_pte_list_desc(vcpu);
865                         desc = desc->more;
866                 }
867                 for (i = 0; desc->sptes[i]; ++i)
868                         ++count;
869                 desc->sptes[i] = spte;
870         }
871         return count;
872 }
873
874 static void
875 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
876                            struct pte_list_desc *desc, int i,
877                            struct pte_list_desc *prev_desc)
878 {
879         int j;
880
881         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
882                 ;
883         desc->sptes[i] = desc->sptes[j];
884         desc->sptes[j] = NULL;
885         if (j != 0)
886                 return;
887         if (!prev_desc && !desc->more)
888                 rmap_head->val = 0;
889         else
890                 if (prev_desc)
891                         prev_desc->more = desc->more;
892                 else
893                         rmap_head->val = (unsigned long)desc->more | 1;
894         mmu_free_pte_list_desc(desc);
895 }
896
897 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
898 {
899         struct pte_list_desc *desc;
900         struct pte_list_desc *prev_desc;
901         int i;
902
903         if (!rmap_head->val) {
904                 pr_err("%s: %p 0->BUG\n", __func__, spte);
905                 BUG();
906         } else if (!(rmap_head->val & 1)) {
907                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
908                 if ((u64 *)rmap_head->val != spte) {
909                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
910                         BUG();
911                 }
912                 rmap_head->val = 0;
913         } else {
914                 rmap_printk("%s:  %p many->many\n", __func__, spte);
915                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
916                 prev_desc = NULL;
917                 while (desc) {
918                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
919                                 if (desc->sptes[i] == spte) {
920                                         pte_list_desc_remove_entry(rmap_head,
921                                                         desc, i, prev_desc);
922                                         return;
923                                 }
924                         }
925                         prev_desc = desc;
926                         desc = desc->more;
927                 }
928                 pr_err("%s: %p many->many\n", __func__, spte);
929                 BUG();
930         }
931 }
932
933 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
934 {
935         mmu_spte_clear_track_bits(sptep);
936         __pte_list_remove(sptep, rmap_head);
937 }
938
939 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
940                                            struct kvm_memory_slot *slot)
941 {
942         unsigned long idx;
943
944         idx = gfn_to_index(gfn, slot->base_gfn, level);
945         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
946 }
947
948 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
949                                          struct kvm_mmu_page *sp)
950 {
951         struct kvm_memslots *slots;
952         struct kvm_memory_slot *slot;
953
954         slots = kvm_memslots_for_spte_role(kvm, sp->role);
955         slot = __gfn_to_memslot(slots, gfn);
956         return __gfn_to_rmap(gfn, sp->role.level, slot);
957 }
958
959 static bool rmap_can_add(struct kvm_vcpu *vcpu)
960 {
961         struct kvm_mmu_memory_cache *mc;
962
963         mc = &vcpu->arch.mmu_pte_list_desc_cache;
964         return kvm_mmu_memory_cache_nr_free_objects(mc);
965 }
966
967 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
968 {
969         struct kvm_mmu_page *sp;
970         struct kvm_rmap_head *rmap_head;
971
972         sp = sptep_to_sp(spte);
973         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
974         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
975         return pte_list_add(vcpu, spte, rmap_head);
976 }
977
978 static void rmap_remove(struct kvm *kvm, u64 *spte)
979 {
980         struct kvm_mmu_page *sp;
981         gfn_t gfn;
982         struct kvm_rmap_head *rmap_head;
983
984         sp = sptep_to_sp(spte);
985         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
986         rmap_head = gfn_to_rmap(kvm, gfn, sp);
987         __pte_list_remove(spte, rmap_head);
988 }
989
990 /*
991  * Used by the following functions to iterate through the sptes linked by a
992  * rmap.  All fields are private and not assumed to be used outside.
993  */
994 struct rmap_iterator {
995         /* private fields */
996         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
997         int pos;                        /* index of the sptep */
998 };
999
1000 /*
1001  * Iteration must be started by this function.  This should also be used after
1002  * removing/dropping sptes from the rmap link because in such cases the
1003  * information in the iterator may not be valid.
1004  *
1005  * Returns sptep if found, NULL otherwise.
1006  */
1007 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1008                            struct rmap_iterator *iter)
1009 {
1010         u64 *sptep;
1011
1012         if (!rmap_head->val)
1013                 return NULL;
1014
1015         if (!(rmap_head->val & 1)) {
1016                 iter->desc = NULL;
1017                 sptep = (u64 *)rmap_head->val;
1018                 goto out;
1019         }
1020
1021         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1022         iter->pos = 0;
1023         sptep = iter->desc->sptes[iter->pos];
1024 out:
1025         BUG_ON(!is_shadow_present_pte(*sptep));
1026         return sptep;
1027 }
1028
1029 /*
1030  * Must be used with a valid iterator: e.g. after rmap_get_first().
1031  *
1032  * Returns sptep if found, NULL otherwise.
1033  */
1034 static u64 *rmap_get_next(struct rmap_iterator *iter)
1035 {
1036         u64 *sptep;
1037
1038         if (iter->desc) {
1039                 if (iter->pos < PTE_LIST_EXT - 1) {
1040                         ++iter->pos;
1041                         sptep = iter->desc->sptes[iter->pos];
1042                         if (sptep)
1043                                 goto out;
1044                 }
1045
1046                 iter->desc = iter->desc->more;
1047
1048                 if (iter->desc) {
1049                         iter->pos = 0;
1050                         /* desc->sptes[0] cannot be NULL */
1051                         sptep = iter->desc->sptes[iter->pos];
1052                         goto out;
1053                 }
1054         }
1055
1056         return NULL;
1057 out:
1058         BUG_ON(!is_shadow_present_pte(*sptep));
1059         return sptep;
1060 }
1061
1062 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1063         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1064              _spte_; _spte_ = rmap_get_next(_iter_))
1065
1066 static void drop_spte(struct kvm *kvm, u64 *sptep)
1067 {
1068         if (mmu_spte_clear_track_bits(sptep))
1069                 rmap_remove(kvm, sptep);
1070 }
1071
1072
1073 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1074 {
1075         if (is_large_pte(*sptep)) {
1076                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1077                 drop_spte(kvm, sptep);
1078                 --kvm->stat.lpages;
1079                 return true;
1080         }
1081
1082         return false;
1083 }
1084
1085 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1086 {
1087         if (__drop_large_spte(vcpu->kvm, sptep)) {
1088                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1089
1090                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1091                         KVM_PAGES_PER_HPAGE(sp->role.level));
1092         }
1093 }
1094
1095 /*
1096  * Write-protect on the specified @sptep, @pt_protect indicates whether
1097  * spte write-protection is caused by protecting shadow page table.
1098  *
1099  * Note: write protection is difference between dirty logging and spte
1100  * protection:
1101  * - for dirty logging, the spte can be set to writable at anytime if
1102  *   its dirty bitmap is properly set.
1103  * - for spte protection, the spte can be writable only after unsync-ing
1104  *   shadow page.
1105  *
1106  * Return true if tlb need be flushed.
1107  */
1108 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1109 {
1110         u64 spte = *sptep;
1111
1112         if (!is_writable_pte(spte) &&
1113               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1114                 return false;
1115
1116         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1117
1118         if (pt_protect)
1119                 spte &= ~SPTE_MMU_WRITEABLE;
1120         spte = spte & ~PT_WRITABLE_MASK;
1121
1122         return mmu_spte_update(sptep, spte);
1123 }
1124
1125 static bool __rmap_write_protect(struct kvm *kvm,
1126                                  struct kvm_rmap_head *rmap_head,
1127                                  bool pt_protect)
1128 {
1129         u64 *sptep;
1130         struct rmap_iterator iter;
1131         bool flush = false;
1132
1133         for_each_rmap_spte(rmap_head, &iter, sptep)
1134                 flush |= spte_write_protect(sptep, pt_protect);
1135
1136         return flush;
1137 }
1138
1139 static bool spte_clear_dirty(u64 *sptep)
1140 {
1141         u64 spte = *sptep;
1142
1143         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1144
1145         MMU_WARN_ON(!spte_ad_enabled(spte));
1146         spte &= ~shadow_dirty_mask;
1147         return mmu_spte_update(sptep, spte);
1148 }
1149
1150 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1151 {
1152         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1153                                                (unsigned long *)sptep);
1154         if (was_writable && !spte_ad_enabled(*sptep))
1155                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1156
1157         return was_writable;
1158 }
1159
1160 /*
1161  * Gets the GFN ready for another round of dirty logging by clearing the
1162  *      - D bit on ad-enabled SPTEs, and
1163  *      - W bit on ad-disabled SPTEs.
1164  * Returns true iff any D or W bits were cleared.
1165  */
1166 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1167 {
1168         u64 *sptep;
1169         struct rmap_iterator iter;
1170         bool flush = false;
1171
1172         for_each_rmap_spte(rmap_head, &iter, sptep)
1173                 if (spte_ad_need_write_protect(*sptep))
1174                         flush |= spte_wrprot_for_clear_dirty(sptep);
1175                 else
1176                         flush |= spte_clear_dirty(sptep);
1177
1178         return flush;
1179 }
1180
1181 static bool spte_set_dirty(u64 *sptep)
1182 {
1183         u64 spte = *sptep;
1184
1185         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1186
1187         /*
1188          * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1189          * do not bother adding back write access to pages marked
1190          * SPTE_AD_WRPROT_ONLY_MASK.
1191          */
1192         spte |= shadow_dirty_mask;
1193
1194         return mmu_spte_update(sptep, spte);
1195 }
1196
1197 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1198 {
1199         u64 *sptep;
1200         struct rmap_iterator iter;
1201         bool flush = false;
1202
1203         for_each_rmap_spte(rmap_head, &iter, sptep)
1204                 if (spte_ad_enabled(*sptep))
1205                         flush |= spte_set_dirty(sptep);
1206
1207         return flush;
1208 }
1209
1210 /**
1211  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1212  * @kvm: kvm instance
1213  * @slot: slot to protect
1214  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1215  * @mask: indicates which pages we should protect
1216  *
1217  * Used when we do not need to care about huge page mappings: e.g. during dirty
1218  * logging we do not have any such mappings.
1219  */
1220 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1221                                      struct kvm_memory_slot *slot,
1222                                      gfn_t gfn_offset, unsigned long mask)
1223 {
1224         struct kvm_rmap_head *rmap_head;
1225
1226         while (mask) {
1227                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1228                                           PG_LEVEL_4K, slot);
1229                 __rmap_write_protect(kvm, rmap_head, false);
1230
1231                 /* clear the first set bit */
1232                 mask &= mask - 1;
1233         }
1234 }
1235
1236 /**
1237  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1238  * protect the page if the D-bit isn't supported.
1239  * @kvm: kvm instance
1240  * @slot: slot to clear D-bit
1241  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1242  * @mask: indicates which pages we should clear D-bit
1243  *
1244  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1245  */
1246 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1247                                      struct kvm_memory_slot *slot,
1248                                      gfn_t gfn_offset, unsigned long mask)
1249 {
1250         struct kvm_rmap_head *rmap_head;
1251
1252         while (mask) {
1253                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1254                                           PG_LEVEL_4K, slot);
1255                 __rmap_clear_dirty(kvm, rmap_head);
1256
1257                 /* clear the first set bit */
1258                 mask &= mask - 1;
1259         }
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1262
1263 /**
1264  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1265  * PT level pages.
1266  *
1267  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1268  * enable dirty logging for them.
1269  *
1270  * Used when we do not need to care about huge page mappings: e.g. during dirty
1271  * logging we do not have any such mappings.
1272  */
1273 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1274                                 struct kvm_memory_slot *slot,
1275                                 gfn_t gfn_offset, unsigned long mask)
1276 {
1277         if (kvm_x86_ops.enable_log_dirty_pt_masked)
1278                 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1279                                 mask);
1280         else
1281                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1282 }
1283
1284 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1285                                     struct kvm_memory_slot *slot, u64 gfn)
1286 {
1287         struct kvm_rmap_head *rmap_head;
1288         int i;
1289         bool write_protected = false;
1290
1291         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1292                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1293                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1294         }
1295
1296         return write_protected;
1297 }
1298
1299 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1300 {
1301         struct kvm_memory_slot *slot;
1302
1303         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1304         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1305 }
1306
1307 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1308 {
1309         u64 *sptep;
1310         struct rmap_iterator iter;
1311         bool flush = false;
1312
1313         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1314                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1315
1316                 pte_list_remove(rmap_head, sptep);
1317                 flush = true;
1318         }
1319
1320         return flush;
1321 }
1322
1323 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1324                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1325                            unsigned long data)
1326 {
1327         return kvm_zap_rmapp(kvm, rmap_head);
1328 }
1329
1330 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1331                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1332                              unsigned long data)
1333 {
1334         u64 *sptep;
1335         struct rmap_iterator iter;
1336         int need_flush = 0;
1337         u64 new_spte;
1338         pte_t *ptep = (pte_t *)data;
1339         kvm_pfn_t new_pfn;
1340
1341         WARN_ON(pte_huge(*ptep));
1342         new_pfn = pte_pfn(*ptep);
1343
1344 restart:
1345         for_each_rmap_spte(rmap_head, &iter, sptep) {
1346                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1347                             sptep, *sptep, gfn, level);
1348
1349                 need_flush = 1;
1350
1351                 if (pte_write(*ptep)) {
1352                         pte_list_remove(rmap_head, sptep);
1353                         goto restart;
1354                 } else {
1355                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1356                                         *sptep, new_pfn);
1357
1358                         mmu_spte_clear_track_bits(sptep);
1359                         mmu_spte_set(sptep, new_spte);
1360                 }
1361         }
1362
1363         if (need_flush && kvm_available_flush_tlb_with_range()) {
1364                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1365                 return 0;
1366         }
1367
1368         return need_flush;
1369 }
1370
1371 struct slot_rmap_walk_iterator {
1372         /* input fields. */
1373         struct kvm_memory_slot *slot;
1374         gfn_t start_gfn;
1375         gfn_t end_gfn;
1376         int start_level;
1377         int end_level;
1378
1379         /* output fields. */
1380         gfn_t gfn;
1381         struct kvm_rmap_head *rmap;
1382         int level;
1383
1384         /* private field. */
1385         struct kvm_rmap_head *end_rmap;
1386 };
1387
1388 static void
1389 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1390 {
1391         iterator->level = level;
1392         iterator->gfn = iterator->start_gfn;
1393         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1394         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1395                                            iterator->slot);
1396 }
1397
1398 static void
1399 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1400                     struct kvm_memory_slot *slot, int start_level,
1401                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1402 {
1403         iterator->slot = slot;
1404         iterator->start_level = start_level;
1405         iterator->end_level = end_level;
1406         iterator->start_gfn = start_gfn;
1407         iterator->end_gfn = end_gfn;
1408
1409         rmap_walk_init_level(iterator, iterator->start_level);
1410 }
1411
1412 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1413 {
1414         return !!iterator->rmap;
1415 }
1416
1417 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1418 {
1419         if (++iterator->rmap <= iterator->end_rmap) {
1420                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1421                 return;
1422         }
1423
1424         if (++iterator->level > iterator->end_level) {
1425                 iterator->rmap = NULL;
1426                 return;
1427         }
1428
1429         rmap_walk_init_level(iterator, iterator->level);
1430 }
1431
1432 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1433            _start_gfn, _end_gfn, _iter_)                                \
1434         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1435                                  _end_level_, _start_gfn, _end_gfn);    \
1436              slot_rmap_walk_okay(_iter_);                               \
1437              slot_rmap_walk_next(_iter_))
1438
1439 static int kvm_handle_hva_range(struct kvm *kvm,
1440                                 unsigned long start,
1441                                 unsigned long end,
1442                                 unsigned long data,
1443                                 int (*handler)(struct kvm *kvm,
1444                                                struct kvm_rmap_head *rmap_head,
1445                                                struct kvm_memory_slot *slot,
1446                                                gfn_t gfn,
1447                                                int level,
1448                                                unsigned long data))
1449 {
1450         struct kvm_memslots *slots;
1451         struct kvm_memory_slot *memslot;
1452         struct slot_rmap_walk_iterator iterator;
1453         int ret = 0;
1454         int i;
1455
1456         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1457                 slots = __kvm_memslots(kvm, i);
1458                 kvm_for_each_memslot(memslot, slots) {
1459                         unsigned long hva_start, hva_end;
1460                         gfn_t gfn_start, gfn_end;
1461
1462                         hva_start = max(start, memslot->userspace_addr);
1463                         hva_end = min(end, memslot->userspace_addr +
1464                                       (memslot->npages << PAGE_SHIFT));
1465                         if (hva_start >= hva_end)
1466                                 continue;
1467                         /*
1468                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1469                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1470                          */
1471                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1472                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1473
1474                         for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1475                                                  KVM_MAX_HUGEPAGE_LEVEL,
1476                                                  gfn_start, gfn_end - 1,
1477                                                  &iterator)
1478                                 ret |= handler(kvm, iterator.rmap, memslot,
1479                                                iterator.gfn, iterator.level, data);
1480                 }
1481         }
1482
1483         return ret;
1484 }
1485
1486 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1487                           unsigned long data,
1488                           int (*handler)(struct kvm *kvm,
1489                                          struct kvm_rmap_head *rmap_head,
1490                                          struct kvm_memory_slot *slot,
1491                                          gfn_t gfn, int level,
1492                                          unsigned long data))
1493 {
1494         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1495 }
1496
1497 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1498                         unsigned flags)
1499 {
1500         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1501 }
1502
1503 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1504 {
1505         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1506 }
1507
1508 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1509                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1510                          unsigned long data)
1511 {
1512         u64 *sptep;
1513         struct rmap_iterator iter;
1514         int young = 0;
1515
1516         for_each_rmap_spte(rmap_head, &iter, sptep)
1517                 young |= mmu_spte_age(sptep);
1518
1519         trace_kvm_age_page(gfn, level, slot, young);
1520         return young;
1521 }
1522
1523 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1524                               struct kvm_memory_slot *slot, gfn_t gfn,
1525                               int level, unsigned long data)
1526 {
1527         u64 *sptep;
1528         struct rmap_iterator iter;
1529
1530         for_each_rmap_spte(rmap_head, &iter, sptep)
1531                 if (is_accessed_spte(*sptep))
1532                         return 1;
1533         return 0;
1534 }
1535
1536 #define RMAP_RECYCLE_THRESHOLD 1000
1537
1538 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1539 {
1540         struct kvm_rmap_head *rmap_head;
1541         struct kvm_mmu_page *sp;
1542
1543         sp = sptep_to_sp(spte);
1544
1545         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1546
1547         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1548         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1549                         KVM_PAGES_PER_HPAGE(sp->role.level));
1550 }
1551
1552 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1553 {
1554         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1555 }
1556
1557 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1558 {
1559         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1560 }
1561
1562 #ifdef MMU_DEBUG
1563 static int is_empty_shadow_page(u64 *spt)
1564 {
1565         u64 *pos;
1566         u64 *end;
1567
1568         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1569                 if (is_shadow_present_pte(*pos)) {
1570                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1571                                pos, *pos);
1572                         return 0;
1573                 }
1574         return 1;
1575 }
1576 #endif
1577
1578 /*
1579  * This value is the sum of all of the kvm instances's
1580  * kvm->arch.n_used_mmu_pages values.  We need a global,
1581  * aggregate version in order to make the slab shrinker
1582  * faster
1583  */
1584 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1585 {
1586         kvm->arch.n_used_mmu_pages += nr;
1587         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1588 }
1589
1590 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1591 {
1592         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1593         hlist_del(&sp->hash_link);
1594         list_del(&sp->link);
1595         free_page((unsigned long)sp->spt);
1596         if (!sp->role.direct)
1597                 free_page((unsigned long)sp->gfns);
1598         kmem_cache_free(mmu_page_header_cache, sp);
1599 }
1600
1601 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1602 {
1603         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1604 }
1605
1606 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1607                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1608 {
1609         if (!parent_pte)
1610                 return;
1611
1612         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1613 }
1614
1615 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1616                                        u64 *parent_pte)
1617 {
1618         __pte_list_remove(parent_pte, &sp->parent_ptes);
1619 }
1620
1621 static void drop_parent_pte(struct kvm_mmu_page *sp,
1622                             u64 *parent_pte)
1623 {
1624         mmu_page_remove_parent_pte(sp, parent_pte);
1625         mmu_spte_clear_no_track(parent_pte);
1626 }
1627
1628 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1629 {
1630         struct kvm_mmu_page *sp;
1631
1632         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1633         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1634         if (!direct)
1635                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1636         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1637
1638         /*
1639          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1640          * depends on valid pages being added to the head of the list.  See
1641          * comments in kvm_zap_obsolete_pages().
1642          */
1643         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1644         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1645         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1646         return sp;
1647 }
1648
1649 static void mark_unsync(u64 *spte);
1650 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1651 {
1652         u64 *sptep;
1653         struct rmap_iterator iter;
1654
1655         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1656                 mark_unsync(sptep);
1657         }
1658 }
1659
1660 static void mark_unsync(u64 *spte)
1661 {
1662         struct kvm_mmu_page *sp;
1663         unsigned int index;
1664
1665         sp = sptep_to_sp(spte);
1666         index = spte - sp->spt;
1667         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1668                 return;
1669         if (sp->unsync_children++)
1670                 return;
1671         kvm_mmu_mark_parents_unsync(sp);
1672 }
1673
1674 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1675                                struct kvm_mmu_page *sp)
1676 {
1677         return 0;
1678 }
1679
1680 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1681                                  struct kvm_mmu_page *sp, u64 *spte,
1682                                  const void *pte)
1683 {
1684         WARN_ON(1);
1685 }
1686
1687 #define KVM_PAGE_ARRAY_NR 16
1688
1689 struct kvm_mmu_pages {
1690         struct mmu_page_and_offset {
1691                 struct kvm_mmu_page *sp;
1692                 unsigned int idx;
1693         } page[KVM_PAGE_ARRAY_NR];
1694         unsigned int nr;
1695 };
1696
1697 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1698                          int idx)
1699 {
1700         int i;
1701
1702         if (sp->unsync)
1703                 for (i=0; i < pvec->nr; i++)
1704                         if (pvec->page[i].sp == sp)
1705                                 return 0;
1706
1707         pvec->page[pvec->nr].sp = sp;
1708         pvec->page[pvec->nr].idx = idx;
1709         pvec->nr++;
1710         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1711 }
1712
1713 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1714 {
1715         --sp->unsync_children;
1716         WARN_ON((int)sp->unsync_children < 0);
1717         __clear_bit(idx, sp->unsync_child_bitmap);
1718 }
1719
1720 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1721                            struct kvm_mmu_pages *pvec)
1722 {
1723         int i, ret, nr_unsync_leaf = 0;
1724
1725         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1726                 struct kvm_mmu_page *child;
1727                 u64 ent = sp->spt[i];
1728
1729                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1730                         clear_unsync_child_bit(sp, i);
1731                         continue;
1732                 }
1733
1734                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1735
1736                 if (child->unsync_children) {
1737                         if (mmu_pages_add(pvec, child, i))
1738                                 return -ENOSPC;
1739
1740                         ret = __mmu_unsync_walk(child, pvec);
1741                         if (!ret) {
1742                                 clear_unsync_child_bit(sp, i);
1743                                 continue;
1744                         } else if (ret > 0) {
1745                                 nr_unsync_leaf += ret;
1746                         } else
1747                                 return ret;
1748                 } else if (child->unsync) {
1749                         nr_unsync_leaf++;
1750                         if (mmu_pages_add(pvec, child, i))
1751                                 return -ENOSPC;
1752                 } else
1753                         clear_unsync_child_bit(sp, i);
1754         }
1755
1756         return nr_unsync_leaf;
1757 }
1758
1759 #define INVALID_INDEX (-1)
1760
1761 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1762                            struct kvm_mmu_pages *pvec)
1763 {
1764         pvec->nr = 0;
1765         if (!sp->unsync_children)
1766                 return 0;
1767
1768         mmu_pages_add(pvec, sp, INVALID_INDEX);
1769         return __mmu_unsync_walk(sp, pvec);
1770 }
1771
1772 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1773 {
1774         WARN_ON(!sp->unsync);
1775         trace_kvm_mmu_sync_page(sp);
1776         sp->unsync = 0;
1777         --kvm->stat.mmu_unsync;
1778 }
1779
1780 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1781                                      struct list_head *invalid_list);
1782 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1783                                     struct list_head *invalid_list);
1784
1785 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1786         hlist_for_each_entry(_sp, _list, hash_link)                     \
1787                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1788                 } else
1789
1790 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1791         for_each_valid_sp(_kvm, _sp,                                    \
1792           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1793                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1794
1795 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1796 {
1797         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1798 }
1799
1800 /* @sp->gfn should be write-protected at the call site */
1801 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1802                             struct list_head *invalid_list)
1803 {
1804         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1805             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1806                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1807                 return false;
1808         }
1809
1810         return true;
1811 }
1812
1813 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1814                                         struct list_head *invalid_list,
1815                                         bool remote_flush)
1816 {
1817         if (!remote_flush && list_empty(invalid_list))
1818                 return false;
1819
1820         if (!list_empty(invalid_list))
1821                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1822         else
1823                 kvm_flush_remote_tlbs(kvm);
1824         return true;
1825 }
1826
1827 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1828                                  struct list_head *invalid_list,
1829                                  bool remote_flush, bool local_flush)
1830 {
1831         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1832                 return;
1833
1834         if (local_flush)
1835                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1836 }
1837
1838 #ifdef CONFIG_KVM_MMU_AUDIT
1839 #include "mmu_audit.c"
1840 #else
1841 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1842 static void mmu_audit_disable(void) { }
1843 #endif
1844
1845 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1846 {
1847         return sp->role.invalid ||
1848                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1849 }
1850
1851 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1852                          struct list_head *invalid_list)
1853 {
1854         kvm_unlink_unsync_page(vcpu->kvm, sp);
1855         return __kvm_sync_page(vcpu, sp, invalid_list);
1856 }
1857
1858 /* @gfn should be write-protected at the call site */
1859 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1860                            struct list_head *invalid_list)
1861 {
1862         struct kvm_mmu_page *s;
1863         bool ret = false;
1864
1865         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1866                 if (!s->unsync)
1867                         continue;
1868
1869                 WARN_ON(s->role.level != PG_LEVEL_4K);
1870                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1871         }
1872
1873         return ret;
1874 }
1875
1876 struct mmu_page_path {
1877         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1878         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1879 };
1880
1881 #define for_each_sp(pvec, sp, parents, i)                       \
1882                 for (i = mmu_pages_first(&pvec, &parents);      \
1883                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1884                         i = mmu_pages_next(&pvec, &parents, i))
1885
1886 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1887                           struct mmu_page_path *parents,
1888                           int i)
1889 {
1890         int n;
1891
1892         for (n = i+1; n < pvec->nr; n++) {
1893                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1894                 unsigned idx = pvec->page[n].idx;
1895                 int level = sp->role.level;
1896
1897                 parents->idx[level-1] = idx;
1898                 if (level == PG_LEVEL_4K)
1899                         break;
1900
1901                 parents->parent[level-2] = sp;
1902         }
1903
1904         return n;
1905 }
1906
1907 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1908                            struct mmu_page_path *parents)
1909 {
1910         struct kvm_mmu_page *sp;
1911         int level;
1912
1913         if (pvec->nr == 0)
1914                 return 0;
1915
1916         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1917
1918         sp = pvec->page[0].sp;
1919         level = sp->role.level;
1920         WARN_ON(level == PG_LEVEL_4K);
1921
1922         parents->parent[level-2] = sp;
1923
1924         /* Also set up a sentinel.  Further entries in pvec are all
1925          * children of sp, so this element is never overwritten.
1926          */
1927         parents->parent[level-1] = NULL;
1928         return mmu_pages_next(pvec, parents, 0);
1929 }
1930
1931 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1932 {
1933         struct kvm_mmu_page *sp;
1934         unsigned int level = 0;
1935
1936         do {
1937                 unsigned int idx = parents->idx[level];
1938                 sp = parents->parent[level];
1939                 if (!sp)
1940                         return;
1941
1942                 WARN_ON(idx == INVALID_INDEX);
1943                 clear_unsync_child_bit(sp, idx);
1944                 level++;
1945         } while (!sp->unsync_children);
1946 }
1947
1948 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1949                               struct kvm_mmu_page *parent)
1950 {
1951         int i;
1952         struct kvm_mmu_page *sp;
1953         struct mmu_page_path parents;
1954         struct kvm_mmu_pages pages;
1955         LIST_HEAD(invalid_list);
1956         bool flush = false;
1957
1958         while (mmu_unsync_walk(parent, &pages)) {
1959                 bool protected = false;
1960
1961                 for_each_sp(pages, sp, parents, i)
1962                         protected |= rmap_write_protect(vcpu, sp->gfn);
1963
1964                 if (protected) {
1965                         kvm_flush_remote_tlbs(vcpu->kvm);
1966                         flush = false;
1967                 }
1968
1969                 for_each_sp(pages, sp, parents, i) {
1970                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1971                         mmu_pages_clear_parents(&parents);
1972                 }
1973                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
1974                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1975                         cond_resched_lock(&vcpu->kvm->mmu_lock);
1976                         flush = false;
1977                 }
1978         }
1979
1980         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1981 }
1982
1983 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1984 {
1985         atomic_set(&sp->write_flooding_count,  0);
1986 }
1987
1988 static void clear_sp_write_flooding_count(u64 *spte)
1989 {
1990         __clear_sp_write_flooding_count(sptep_to_sp(spte));
1991 }
1992
1993 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1994                                              gfn_t gfn,
1995                                              gva_t gaddr,
1996                                              unsigned level,
1997                                              int direct,
1998                                              unsigned int access)
1999 {
2000         bool direct_mmu = vcpu->arch.mmu->direct_map;
2001         union kvm_mmu_page_role role;
2002         struct hlist_head *sp_list;
2003         unsigned quadrant;
2004         struct kvm_mmu_page *sp;
2005         bool need_sync = false;
2006         bool flush = false;
2007         int collisions = 0;
2008         LIST_HEAD(invalid_list);
2009
2010         role = vcpu->arch.mmu->mmu_role.base;
2011         role.level = level;
2012         role.direct = direct;
2013         if (role.direct)
2014                 role.gpte_is_8_bytes = true;
2015         role.access = access;
2016         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2017                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2018                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2019                 role.quadrant = quadrant;
2020         }
2021
2022         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2023         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2024                 if (sp->gfn != gfn) {
2025                         collisions++;
2026                         continue;
2027                 }
2028
2029                 if (!need_sync && sp->unsync)
2030                         need_sync = true;
2031
2032                 if (sp->role.word != role.word)
2033                         continue;
2034
2035                 if (direct_mmu)
2036                         goto trace_get_page;
2037
2038                 if (sp->unsync) {
2039                         /* The page is good, but __kvm_sync_page might still end
2040                          * up zapping it.  If so, break in order to rebuild it.
2041                          */
2042                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2043                                 break;
2044
2045                         WARN_ON(!list_empty(&invalid_list));
2046                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2047                 }
2048
2049                 if (sp->unsync_children)
2050                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2051
2052                 __clear_sp_write_flooding_count(sp);
2053
2054 trace_get_page:
2055                 trace_kvm_mmu_get_page(sp, false);
2056                 goto out;
2057         }
2058
2059         ++vcpu->kvm->stat.mmu_cache_miss;
2060
2061         sp = kvm_mmu_alloc_page(vcpu, direct);
2062
2063         sp->gfn = gfn;
2064         sp->role = role;
2065         hlist_add_head(&sp->hash_link, sp_list);
2066         if (!direct) {
2067                 /*
2068                  * we should do write protection before syncing pages
2069                  * otherwise the content of the synced shadow page may
2070                  * be inconsistent with guest page table.
2071                  */
2072                 account_shadowed(vcpu->kvm, sp);
2073                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2074                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2075
2076                 if (level > PG_LEVEL_4K && need_sync)
2077                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2078         }
2079         trace_kvm_mmu_get_page(sp, true);
2080
2081         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2082 out:
2083         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2084                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2085         return sp;
2086 }
2087
2088 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2089                                         struct kvm_vcpu *vcpu, hpa_t root,
2090                                         u64 addr)
2091 {
2092         iterator->addr = addr;
2093         iterator->shadow_addr = root;
2094         iterator->level = vcpu->arch.mmu->shadow_root_level;
2095
2096         if (iterator->level == PT64_ROOT_4LEVEL &&
2097             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2098             !vcpu->arch.mmu->direct_map)
2099                 --iterator->level;
2100
2101         if (iterator->level == PT32E_ROOT_LEVEL) {
2102                 /*
2103                  * prev_root is currently only used for 64-bit hosts. So only
2104                  * the active root_hpa is valid here.
2105                  */
2106                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2107
2108                 iterator->shadow_addr
2109                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2110                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2111                 --iterator->level;
2112                 if (!iterator->shadow_addr)
2113                         iterator->level = 0;
2114         }
2115 }
2116
2117 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2118                              struct kvm_vcpu *vcpu, u64 addr)
2119 {
2120         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2121                                     addr);
2122 }
2123
2124 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2125 {
2126         if (iterator->level < PG_LEVEL_4K)
2127                 return false;
2128
2129         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2130         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2131         return true;
2132 }
2133
2134 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2135                                u64 spte)
2136 {
2137         if (is_last_spte(spte, iterator->level)) {
2138                 iterator->level = 0;
2139                 return;
2140         }
2141
2142         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2143         --iterator->level;
2144 }
2145
2146 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2147 {
2148         __shadow_walk_next(iterator, *iterator->sptep);
2149 }
2150
2151 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2152                              struct kvm_mmu_page *sp)
2153 {
2154         u64 spte;
2155
2156         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2157
2158         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2159
2160         mmu_spte_set(sptep, spte);
2161
2162         mmu_page_add_parent_pte(vcpu, sp, sptep);
2163
2164         if (sp->unsync_children || sp->unsync)
2165                 mark_unsync(sptep);
2166 }
2167
2168 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2169                                    unsigned direct_access)
2170 {
2171         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2172                 struct kvm_mmu_page *child;
2173
2174                 /*
2175                  * For the direct sp, if the guest pte's dirty bit
2176                  * changed form clean to dirty, it will corrupt the
2177                  * sp's access: allow writable in the read-only sp,
2178                  * so we should update the spte at this point to get
2179                  * a new sp with the correct access.
2180                  */
2181                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2182                 if (child->role.access == direct_access)
2183                         return;
2184
2185                 drop_parent_pte(child, sptep);
2186                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2187         }
2188 }
2189
2190 /* Returns the number of zapped non-leaf child shadow pages. */
2191 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2192                             u64 *spte, struct list_head *invalid_list)
2193 {
2194         u64 pte;
2195         struct kvm_mmu_page *child;
2196
2197         pte = *spte;
2198         if (is_shadow_present_pte(pte)) {
2199                 if (is_last_spte(pte, sp->role.level)) {
2200                         drop_spte(kvm, spte);
2201                         if (is_large_pte(pte))
2202                                 --kvm->stat.lpages;
2203                 } else {
2204                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2205                         drop_parent_pte(child, spte);
2206
2207                         /*
2208                          * Recursively zap nested TDP SPs, parentless SPs are
2209                          * unlikely to be used again in the near future.  This
2210                          * avoids retaining a large number of stale nested SPs.
2211                          */
2212                         if (tdp_enabled && invalid_list &&
2213                             child->role.guest_mode && !child->parent_ptes.val)
2214                                 return kvm_mmu_prepare_zap_page(kvm, child,
2215                                                                 invalid_list);
2216                 }
2217         } else if (is_mmio_spte(pte)) {
2218                 mmu_spte_clear_no_track(spte);
2219         }
2220         return 0;
2221 }
2222
2223 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2224                                         struct kvm_mmu_page *sp,
2225                                         struct list_head *invalid_list)
2226 {
2227         int zapped = 0;
2228         unsigned i;
2229
2230         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2231                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2232
2233         return zapped;
2234 }
2235
2236 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2237 {
2238         u64 *sptep;
2239         struct rmap_iterator iter;
2240
2241         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2242                 drop_parent_pte(sp, sptep);
2243 }
2244
2245 static int mmu_zap_unsync_children(struct kvm *kvm,
2246                                    struct kvm_mmu_page *parent,
2247                                    struct list_head *invalid_list)
2248 {
2249         int i, zapped = 0;
2250         struct mmu_page_path parents;
2251         struct kvm_mmu_pages pages;
2252
2253         if (parent->role.level == PG_LEVEL_4K)
2254                 return 0;
2255
2256         while (mmu_unsync_walk(parent, &pages)) {
2257                 struct kvm_mmu_page *sp;
2258
2259                 for_each_sp(pages, sp, parents, i) {
2260                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2261                         mmu_pages_clear_parents(&parents);
2262                         zapped++;
2263                 }
2264         }
2265
2266         return zapped;
2267 }
2268
2269 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2270                                        struct kvm_mmu_page *sp,
2271                                        struct list_head *invalid_list,
2272                                        int *nr_zapped)
2273 {
2274         bool list_unstable;
2275
2276         trace_kvm_mmu_prepare_zap_page(sp);
2277         ++kvm->stat.mmu_shadow_zapped;
2278         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2279         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2280         kvm_mmu_unlink_parents(kvm, sp);
2281
2282         /* Zapping children means active_mmu_pages has become unstable. */
2283         list_unstable = *nr_zapped;
2284
2285         if (!sp->role.invalid && !sp->role.direct)
2286                 unaccount_shadowed(kvm, sp);
2287
2288         if (sp->unsync)
2289                 kvm_unlink_unsync_page(kvm, sp);
2290         if (!sp->root_count) {
2291                 /* Count self */
2292                 (*nr_zapped)++;
2293
2294                 /*
2295                  * Already invalid pages (previously active roots) are not on
2296                  * the active page list.  See list_del() in the "else" case of
2297                  * !sp->root_count.
2298                  */
2299                 if (sp->role.invalid)
2300                         list_add(&sp->link, invalid_list);
2301                 else
2302                         list_move(&sp->link, invalid_list);
2303                 kvm_mod_used_mmu_pages(kvm, -1);
2304         } else {
2305                 /*
2306                  * Remove the active root from the active page list, the root
2307                  * will be explicitly freed when the root_count hits zero.
2308                  */
2309                 list_del(&sp->link);
2310
2311                 /*
2312                  * Obsolete pages cannot be used on any vCPUs, see the comment
2313                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2314                  * treats invalid shadow pages as being obsolete.
2315                  */
2316                 if (!is_obsolete_sp(kvm, sp))
2317                         kvm_reload_remote_mmus(kvm);
2318         }
2319
2320         if (sp->lpage_disallowed)
2321                 unaccount_huge_nx_page(kvm, sp);
2322
2323         sp->role.invalid = 1;
2324         return list_unstable;
2325 }
2326
2327 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2328                                      struct list_head *invalid_list)
2329 {
2330         int nr_zapped;
2331
2332         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2333         return nr_zapped;
2334 }
2335
2336 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2337                                     struct list_head *invalid_list)
2338 {
2339         struct kvm_mmu_page *sp, *nsp;
2340
2341         if (list_empty(invalid_list))
2342                 return;
2343
2344         /*
2345          * We need to make sure everyone sees our modifications to
2346          * the page tables and see changes to vcpu->mode here. The barrier
2347          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2348          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2349          *
2350          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2351          * guest mode and/or lockless shadow page table walks.
2352          */
2353         kvm_flush_remote_tlbs(kvm);
2354
2355         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2356                 WARN_ON(!sp->role.invalid || sp->root_count);
2357                 kvm_mmu_free_page(sp);
2358         }
2359 }
2360
2361 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2362                                                   unsigned long nr_to_zap)
2363 {
2364         unsigned long total_zapped = 0;
2365         struct kvm_mmu_page *sp, *tmp;
2366         LIST_HEAD(invalid_list);
2367         bool unstable;
2368         int nr_zapped;
2369
2370         if (list_empty(&kvm->arch.active_mmu_pages))
2371                 return 0;
2372
2373 restart:
2374         list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2375                 /*
2376                  * Don't zap active root pages, the page itself can't be freed
2377                  * and zapping it will just force vCPUs to realloc and reload.
2378                  */
2379                 if (sp->root_count)
2380                         continue;
2381
2382                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2383                                                       &nr_zapped);
2384                 total_zapped += nr_zapped;
2385                 if (total_zapped >= nr_to_zap)
2386                         break;
2387
2388                 if (unstable)
2389                         goto restart;
2390         }
2391
2392         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2393
2394         kvm->stat.mmu_recycled += total_zapped;
2395         return total_zapped;
2396 }
2397
2398 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2399 {
2400         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2401                 return kvm->arch.n_max_mmu_pages -
2402                         kvm->arch.n_used_mmu_pages;
2403
2404         return 0;
2405 }
2406
2407 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2408 {
2409         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2410
2411         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2412                 return 0;
2413
2414         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2415
2416         if (!kvm_mmu_available_pages(vcpu->kvm))
2417                 return -ENOSPC;
2418         return 0;
2419 }
2420
2421 /*
2422  * Changing the number of mmu pages allocated to the vm
2423  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2424  */
2425 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2426 {
2427         spin_lock(&kvm->mmu_lock);
2428
2429         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2430                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2431                                                   goal_nr_mmu_pages);
2432
2433                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2434         }
2435
2436         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2437
2438         spin_unlock(&kvm->mmu_lock);
2439 }
2440
2441 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2442 {
2443         struct kvm_mmu_page *sp;
2444         LIST_HEAD(invalid_list);
2445         int r;
2446
2447         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2448         r = 0;
2449         spin_lock(&kvm->mmu_lock);
2450         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2451                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2452                          sp->role.word);
2453                 r = 1;
2454                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2455         }
2456         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2457         spin_unlock(&kvm->mmu_lock);
2458
2459         return r;
2460 }
2461 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2462
2463 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2464 {
2465         trace_kvm_mmu_unsync_page(sp);
2466         ++vcpu->kvm->stat.mmu_unsync;
2467         sp->unsync = 1;
2468
2469         kvm_mmu_mark_parents_unsync(sp);
2470 }
2471
2472 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2473                             bool can_unsync)
2474 {
2475         struct kvm_mmu_page *sp;
2476
2477         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2478                 return true;
2479
2480         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2481                 if (!can_unsync)
2482                         return true;
2483
2484                 if (sp->unsync)
2485                         continue;
2486
2487                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2488                 kvm_unsync_page(vcpu, sp);
2489         }
2490
2491         /*
2492          * We need to ensure that the marking of unsync pages is visible
2493          * before the SPTE is updated to allow writes because
2494          * kvm_mmu_sync_roots() checks the unsync flags without holding
2495          * the MMU lock and so can race with this. If the SPTE was updated
2496          * before the page had been marked as unsync-ed, something like the
2497          * following could happen:
2498          *
2499          * CPU 1                    CPU 2
2500          * ---------------------------------------------------------------------
2501          * 1.2 Host updates SPTE
2502          *     to be writable
2503          *                      2.1 Guest writes a GPTE for GVA X.
2504          *                          (GPTE being in the guest page table shadowed
2505          *                           by the SP from CPU 1.)
2506          *                          This reads SPTE during the page table walk.
2507          *                          Since SPTE.W is read as 1, there is no
2508          *                          fault.
2509          *
2510          *                      2.2 Guest issues TLB flush.
2511          *                          That causes a VM Exit.
2512          *
2513          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2514          *                          Since it is false, so it just returns.
2515          *
2516          *                      2.4 Guest accesses GVA X.
2517          *                          Since the mapping in the SP was not updated,
2518          *                          so the old mapping for GVA X incorrectly
2519          *                          gets used.
2520          * 1.1 Host marks SP
2521          *     as unsync
2522          *     (sp->unsync = true)
2523          *
2524          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2525          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2526          * pairs with this write barrier.
2527          */
2528         smp_wmb();
2529
2530         return false;
2531 }
2532
2533 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2534                     unsigned int pte_access, int level,
2535                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2536                     bool can_unsync, bool host_writable)
2537 {
2538         u64 spte;
2539         struct kvm_mmu_page *sp;
2540         int ret;
2541
2542         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2543                 return 0;
2544
2545         sp = sptep_to_sp(sptep);
2546
2547         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2548                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2549
2550         if (spte & PT_WRITABLE_MASK)
2551                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2552
2553         if (*sptep == spte)
2554                 ret |= SET_SPTE_SPURIOUS;
2555         else if (mmu_spte_update(sptep, spte))
2556                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2557         return ret;
2558 }
2559
2560 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2561                         unsigned int pte_access, bool write_fault, int level,
2562                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2563                         bool host_writable)
2564 {
2565         int was_rmapped = 0;
2566         int rmap_count;
2567         int set_spte_ret;
2568         int ret = RET_PF_FIXED;
2569         bool flush = false;
2570
2571         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2572                  *sptep, write_fault, gfn);
2573
2574         if (is_shadow_present_pte(*sptep)) {
2575                 /*
2576                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2577                  * the parent of the now unreachable PTE.
2578                  */
2579                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2580                         struct kvm_mmu_page *child;
2581                         u64 pte = *sptep;
2582
2583                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2584                         drop_parent_pte(child, sptep);
2585                         flush = true;
2586                 } else if (pfn != spte_to_pfn(*sptep)) {
2587                         pgprintk("hfn old %llx new %llx\n",
2588                                  spte_to_pfn(*sptep), pfn);
2589                         drop_spte(vcpu->kvm, sptep);
2590                         flush = true;
2591                 } else
2592                         was_rmapped = 1;
2593         }
2594
2595         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2596                                 speculative, true, host_writable);
2597         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2598                 if (write_fault)
2599                         ret = RET_PF_EMULATE;
2600                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2601         }
2602
2603         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2604                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2605                                 KVM_PAGES_PER_HPAGE(level));
2606
2607         if (unlikely(is_mmio_spte(*sptep)))
2608                 ret = RET_PF_EMULATE;
2609
2610         /*
2611          * The fault is fully spurious if and only if the new SPTE and old SPTE
2612          * are identical, and emulation is not required.
2613          */
2614         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2615                 WARN_ON_ONCE(!was_rmapped);
2616                 return RET_PF_SPURIOUS;
2617         }
2618
2619         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2620         trace_kvm_mmu_set_spte(level, gfn, sptep);
2621         if (!was_rmapped && is_large_pte(*sptep))
2622                 ++vcpu->kvm->stat.lpages;
2623
2624         if (is_shadow_present_pte(*sptep)) {
2625                 if (!was_rmapped) {
2626                         rmap_count = rmap_add(vcpu, sptep, gfn);
2627                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2628                                 rmap_recycle(vcpu, sptep, gfn);
2629                 }
2630         }
2631
2632         return ret;
2633 }
2634
2635 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2636                                      bool no_dirty_log)
2637 {
2638         struct kvm_memory_slot *slot;
2639
2640         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2641         if (!slot)
2642                 return KVM_PFN_ERR_FAULT;
2643
2644         return gfn_to_pfn_memslot_atomic(slot, gfn);
2645 }
2646
2647 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2648                                     struct kvm_mmu_page *sp,
2649                                     u64 *start, u64 *end)
2650 {
2651         struct page *pages[PTE_PREFETCH_NUM];
2652         struct kvm_memory_slot *slot;
2653         unsigned int access = sp->role.access;
2654         int i, ret;
2655         gfn_t gfn;
2656
2657         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2658         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2659         if (!slot)
2660                 return -1;
2661
2662         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2663         if (ret <= 0)
2664                 return -1;
2665
2666         for (i = 0; i < ret; i++, gfn++, start++) {
2667                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2668                              page_to_pfn(pages[i]), true, true);
2669                 put_page(pages[i]);
2670         }
2671
2672         return 0;
2673 }
2674
2675 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2676                                   struct kvm_mmu_page *sp, u64 *sptep)
2677 {
2678         u64 *spte, *start = NULL;
2679         int i;
2680
2681         WARN_ON(!sp->role.direct);
2682
2683         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2684         spte = sp->spt + i;
2685
2686         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2687                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2688                         if (!start)
2689                                 continue;
2690                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2691                                 break;
2692                         start = NULL;
2693                 } else if (!start)
2694                         start = spte;
2695         }
2696 }
2697
2698 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2699 {
2700         struct kvm_mmu_page *sp;
2701
2702         sp = sptep_to_sp(sptep);
2703
2704         /*
2705          * Without accessed bits, there's no way to distinguish between
2706          * actually accessed translations and prefetched, so disable pte
2707          * prefetch if accessed bits aren't available.
2708          */
2709         if (sp_ad_disabled(sp))
2710                 return;
2711
2712         if (sp->role.level > PG_LEVEL_4K)
2713                 return;
2714
2715         __direct_pte_prefetch(vcpu, sp, sptep);
2716 }
2717
2718 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2719                                   kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2720 {
2721         unsigned long hva;
2722         pte_t *pte;
2723         int level;
2724
2725         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2726                 return PG_LEVEL_4K;
2727
2728         /*
2729          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2730          * is not solely for performance, it's also necessary to avoid the
2731          * "writable" check in __gfn_to_hva_many(), which will always fail on
2732          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2733          * page fault steps have already verified the guest isn't writing a
2734          * read-only memslot.
2735          */
2736         hva = __gfn_to_hva_memslot(slot, gfn);
2737
2738         pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2739         if (unlikely(!pte))
2740                 return PG_LEVEL_4K;
2741
2742         return level;
2743 }
2744
2745 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2746                             int max_level, kvm_pfn_t *pfnp,
2747                             bool huge_page_disallowed, int *req_level)
2748 {
2749         struct kvm_memory_slot *slot;
2750         struct kvm_lpage_info *linfo;
2751         kvm_pfn_t pfn = *pfnp;
2752         kvm_pfn_t mask;
2753         int level;
2754
2755         *req_level = PG_LEVEL_4K;
2756
2757         if (unlikely(max_level == PG_LEVEL_4K))
2758                 return PG_LEVEL_4K;
2759
2760         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2761                 return PG_LEVEL_4K;
2762
2763         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2764         if (!slot)
2765                 return PG_LEVEL_4K;
2766
2767         max_level = min(max_level, max_huge_page_level);
2768         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2769                 linfo = lpage_info_slot(gfn, slot, max_level);
2770                 if (!linfo->disallow_lpage)
2771                         break;
2772         }
2773
2774         if (max_level == PG_LEVEL_4K)
2775                 return PG_LEVEL_4K;
2776
2777         level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2778         if (level == PG_LEVEL_4K)
2779                 return level;
2780
2781         *req_level = level = min(level, max_level);
2782
2783         /*
2784          * Enforce the iTLB multihit workaround after capturing the requested
2785          * level, which will be used to do precise, accurate accounting.
2786          */
2787         if (huge_page_disallowed)
2788                 return PG_LEVEL_4K;
2789
2790         /*
2791          * mmu_notifier_retry() was successful and mmu_lock is held, so
2792          * the pmd can't be split from under us.
2793          */
2794         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2795         VM_BUG_ON((gfn & mask) != (pfn & mask));
2796         *pfnp = pfn & ~mask;
2797
2798         return level;
2799 }
2800
2801 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2802                                 kvm_pfn_t *pfnp, int *goal_levelp)
2803 {
2804         int level = *goal_levelp;
2805
2806         if (cur_level == level && level > PG_LEVEL_4K &&
2807             is_shadow_present_pte(spte) &&
2808             !is_large_pte(spte)) {
2809                 /*
2810                  * A small SPTE exists for this pfn, but FNAME(fetch)
2811                  * and __direct_map would like to create a large PTE
2812                  * instead: just force them to go down another level,
2813                  * patching back for them into pfn the next 9 bits of
2814                  * the address.
2815                  */
2816                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2817                                 KVM_PAGES_PER_HPAGE(level - 1);
2818                 *pfnp |= gfn & page_mask;
2819                 (*goal_levelp)--;
2820         }
2821 }
2822
2823 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2824                         int map_writable, int max_level, kvm_pfn_t pfn,
2825                         bool prefault, bool is_tdp)
2826 {
2827         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2828         bool write = error_code & PFERR_WRITE_MASK;
2829         bool exec = error_code & PFERR_FETCH_MASK;
2830         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2831         struct kvm_shadow_walk_iterator it;
2832         struct kvm_mmu_page *sp;
2833         int level, req_level, ret;
2834         gfn_t gfn = gpa >> PAGE_SHIFT;
2835         gfn_t base_gfn = gfn;
2836
2837         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2838                 return RET_PF_RETRY;
2839
2840         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2841                                         huge_page_disallowed, &req_level);
2842
2843         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2844         for_each_shadow_entry(vcpu, gpa, it) {
2845                 /*
2846                  * We cannot overwrite existing page tables with an NX
2847                  * large page, as the leaf could be executable.
2848                  */
2849                 if (nx_huge_page_workaround_enabled)
2850                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2851                                                    &pfn, &level);
2852
2853                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2854                 if (it.level == level)
2855                         break;
2856
2857                 drop_large_spte(vcpu, it.sptep);
2858                 if (!is_shadow_present_pte(*it.sptep)) {
2859                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2860                                               it.level - 1, true, ACC_ALL);
2861
2862                         link_shadow_page(vcpu, it.sptep, sp);
2863                         if (is_tdp && huge_page_disallowed &&
2864                             req_level >= it.level)
2865                                 account_huge_nx_page(vcpu->kvm, sp);
2866                 }
2867         }
2868
2869         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2870                            write, level, base_gfn, pfn, prefault,
2871                            map_writable);
2872         if (ret == RET_PF_SPURIOUS)
2873                 return ret;
2874
2875         direct_pte_prefetch(vcpu, it.sptep);
2876         ++vcpu->stat.pf_fixed;
2877         return ret;
2878 }
2879
2880 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2881 {
2882         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2883 }
2884
2885 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2886 {
2887         /*
2888          * Do not cache the mmio info caused by writing the readonly gfn
2889          * into the spte otherwise read access on readonly gfn also can
2890          * caused mmio page fault and treat it as mmio access.
2891          */
2892         if (pfn == KVM_PFN_ERR_RO_FAULT)
2893                 return RET_PF_EMULATE;
2894
2895         if (pfn == KVM_PFN_ERR_HWPOISON) {
2896                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2897                 return RET_PF_RETRY;
2898         }
2899
2900         return -EFAULT;
2901 }
2902
2903 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2904                                 kvm_pfn_t pfn, unsigned int access,
2905                                 int *ret_val)
2906 {
2907         /* The pfn is invalid, report the error! */
2908         if (unlikely(is_error_pfn(pfn))) {
2909                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2910                 return true;
2911         }
2912
2913         if (unlikely(is_noslot_pfn(pfn)))
2914                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2915                                      access & shadow_mmio_access_mask);
2916
2917         return false;
2918 }
2919
2920 static bool page_fault_can_be_fast(u32 error_code)
2921 {
2922         /*
2923          * Do not fix the mmio spte with invalid generation number which
2924          * need to be updated by slow page fault path.
2925          */
2926         if (unlikely(error_code & PFERR_RSVD_MASK))
2927                 return false;
2928
2929         /* See if the page fault is due to an NX violation */
2930         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2931                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2932                 return false;
2933
2934         /*
2935          * #PF can be fast if:
2936          * 1. The shadow page table entry is not present, which could mean that
2937          *    the fault is potentially caused by access tracking (if enabled).
2938          * 2. The shadow page table entry is present and the fault
2939          *    is caused by write-protect, that means we just need change the W
2940          *    bit of the spte which can be done out of mmu-lock.
2941          *
2942          * However, if access tracking is disabled we know that a non-present
2943          * page must be a genuine page fault where we have to create a new SPTE.
2944          * So, if access tracking is disabled, we return true only for write
2945          * accesses to a present page.
2946          */
2947
2948         return shadow_acc_track_mask != 0 ||
2949                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2950                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2951 }
2952
2953 /*
2954  * Returns true if the SPTE was fixed successfully. Otherwise,
2955  * someone else modified the SPTE from its original value.
2956  */
2957 static bool
2958 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2959                         u64 *sptep, u64 old_spte, u64 new_spte)
2960 {
2961         gfn_t gfn;
2962
2963         WARN_ON(!sp->role.direct);
2964
2965         /*
2966          * Theoretically we could also set dirty bit (and flush TLB) here in
2967          * order to eliminate unnecessary PML logging. See comments in
2968          * set_spte. But fast_page_fault is very unlikely to happen with PML
2969          * enabled, so we do not do this. This might result in the same GPA
2970          * to be logged in PML buffer again when the write really happens, and
2971          * eventually to be called by mark_page_dirty twice. But it's also no
2972          * harm. This also avoids the TLB flush needed after setting dirty bit
2973          * so non-PML cases won't be impacted.
2974          *
2975          * Compare with set_spte where instead shadow_dirty_mask is set.
2976          */
2977         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
2978                 return false;
2979
2980         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
2981                 /*
2982                  * The gfn of direct spte is stable since it is
2983                  * calculated by sp->gfn.
2984                  */
2985                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2986                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2987         }
2988
2989         return true;
2990 }
2991
2992 static bool is_access_allowed(u32 fault_err_code, u64 spte)
2993 {
2994         if (fault_err_code & PFERR_FETCH_MASK)
2995                 return is_executable_pte(spte);
2996
2997         if (fault_err_code & PFERR_WRITE_MASK)
2998                 return is_writable_pte(spte);
2999
3000         /* Fault was on Read access */
3001         return spte & PT_PRESENT_MASK;
3002 }
3003
3004 /*
3005  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3006  */
3007 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3008                            u32 error_code)
3009 {
3010         struct kvm_shadow_walk_iterator iterator;
3011         struct kvm_mmu_page *sp;
3012         int ret = RET_PF_INVALID;
3013         u64 spte = 0ull;
3014         uint retry_count = 0;
3015
3016         if (!page_fault_can_be_fast(error_code))
3017                 return ret;
3018
3019         walk_shadow_page_lockless_begin(vcpu);
3020
3021         do {
3022                 u64 new_spte;
3023
3024                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3025                         if (!is_shadow_present_pte(spte))
3026                                 break;
3027
3028                 sp = sptep_to_sp(iterator.sptep);
3029                 if (!is_last_spte(spte, sp->role.level))
3030                         break;
3031
3032                 /*
3033                  * Check whether the memory access that caused the fault would
3034                  * still cause it if it were to be performed right now. If not,
3035                  * then this is a spurious fault caused by TLB lazily flushed,
3036                  * or some other CPU has already fixed the PTE after the
3037                  * current CPU took the fault.
3038                  *
3039                  * Need not check the access of upper level table entries since
3040                  * they are always ACC_ALL.
3041                  */
3042                 if (is_access_allowed(error_code, spte)) {
3043                         ret = RET_PF_SPURIOUS;
3044                         break;
3045                 }
3046
3047                 new_spte = spte;
3048
3049                 if (is_access_track_spte(spte))
3050                         new_spte = restore_acc_track_spte(new_spte);
3051
3052                 /*
3053                  * Currently, to simplify the code, write-protection can
3054                  * be removed in the fast path only if the SPTE was
3055                  * write-protected for dirty-logging or access tracking.
3056                  */
3057                 if ((error_code & PFERR_WRITE_MASK) &&
3058                     spte_can_locklessly_be_made_writable(spte)) {
3059                         new_spte |= PT_WRITABLE_MASK;
3060
3061                         /*
3062                          * Do not fix write-permission on the large spte.  Since
3063                          * we only dirty the first page into the dirty-bitmap in
3064                          * fast_pf_fix_direct_spte(), other pages are missed
3065                          * if its slot has dirty logging enabled.
3066                          *
3067                          * Instead, we let the slow page fault path create a
3068                          * normal spte to fix the access.
3069                          *
3070                          * See the comments in kvm_arch_commit_memory_region().
3071                          */
3072                         if (sp->role.level > PG_LEVEL_4K)
3073                                 break;
3074                 }
3075
3076                 /* Verify that the fault can be handled in the fast path */
3077                 if (new_spte == spte ||
3078                     !is_access_allowed(error_code, new_spte))
3079                         break;
3080
3081                 /*
3082                  * Currently, fast page fault only works for direct mapping
3083                  * since the gfn is not stable for indirect shadow page. See
3084                  * Documentation/virt/kvm/locking.rst to get more detail.
3085                  */
3086                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3087                                             new_spte)) {
3088                         ret = RET_PF_FIXED;
3089                         break;
3090                 }
3091
3092                 if (++retry_count > 4) {
3093                         printk_once(KERN_WARNING
3094                                 "kvm: Fast #PF retrying more than 4 times.\n");
3095                         break;
3096                 }
3097
3098         } while (true);
3099
3100         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3101                               spte, ret);
3102         walk_shadow_page_lockless_end(vcpu);
3103
3104         return ret;
3105 }
3106
3107 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3108                                struct list_head *invalid_list)
3109 {
3110         struct kvm_mmu_page *sp;
3111
3112         if (!VALID_PAGE(*root_hpa))
3113                 return;
3114
3115         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3116
3117         if (kvm_mmu_put_root(kvm, sp)) {
3118                 if (sp->tdp_mmu_page)
3119                         kvm_tdp_mmu_free_root(kvm, sp);
3120                 else if (sp->role.invalid)
3121                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3122         }
3123
3124         *root_hpa = INVALID_PAGE;
3125 }
3126
3127 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3128 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3129                         ulong roots_to_free)
3130 {
3131         struct kvm *kvm = vcpu->kvm;
3132         int i;
3133         LIST_HEAD(invalid_list);
3134         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3135
3136         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3137
3138         /* Before acquiring the MMU lock, see if we need to do any real work. */
3139         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3140                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3141                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3142                             VALID_PAGE(mmu->prev_roots[i].hpa))
3143                                 break;
3144
3145                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3146                         return;
3147         }
3148
3149         spin_lock(&kvm->mmu_lock);
3150
3151         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3152                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3153                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3154                                            &invalid_list);
3155
3156         if (free_active_root) {
3157                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3158                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3159                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3160                 } else {
3161                         for (i = 0; i < 4; ++i)
3162                                 if (mmu->pae_root[i] != 0)
3163                                         mmu_free_root_page(kvm,
3164                                                            &mmu->pae_root[i],
3165                                                            &invalid_list);
3166                         mmu->root_hpa = INVALID_PAGE;
3167                 }
3168                 mmu->root_pgd = 0;
3169         }
3170
3171         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3172         spin_unlock(&kvm->mmu_lock);
3173 }
3174 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3175
3176 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3177 {
3178         int ret = 0;
3179
3180         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3181                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3182                 ret = 1;
3183         }
3184
3185         return ret;
3186 }
3187
3188 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3189                             u8 level, bool direct)
3190 {
3191         struct kvm_mmu_page *sp;
3192
3193         spin_lock(&vcpu->kvm->mmu_lock);
3194
3195         if (make_mmu_pages_available(vcpu)) {
3196                 spin_unlock(&vcpu->kvm->mmu_lock);
3197                 return INVALID_PAGE;
3198         }
3199         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3200         ++sp->root_count;
3201
3202         spin_unlock(&vcpu->kvm->mmu_lock);
3203         return __pa(sp->spt);
3204 }
3205
3206 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3207 {
3208         u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3209         hpa_t root;
3210         unsigned i;
3211
3212         if (vcpu->kvm->arch.tdp_mmu_enabled) {
3213                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3214
3215                 if (!VALID_PAGE(root))
3216                         return -ENOSPC;
3217                 vcpu->arch.mmu->root_hpa = root;
3218         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3219                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3220                                       true);
3221
3222                 if (!VALID_PAGE(root))
3223                         return -ENOSPC;
3224                 vcpu->arch.mmu->root_hpa = root;
3225         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3226                 for (i = 0; i < 4; ++i) {
3227                         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3228
3229                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3230                                               i << 30, PT32_ROOT_LEVEL, true);
3231                         if (!VALID_PAGE(root))
3232                                 return -ENOSPC;
3233                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3234                 }
3235                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3236         } else
3237                 BUG();
3238
3239         /* root_pgd is ignored for direct MMUs. */
3240         vcpu->arch.mmu->root_pgd = 0;
3241
3242         return 0;
3243 }
3244
3245 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3246 {
3247         u64 pdptr, pm_mask;
3248         gfn_t root_gfn, root_pgd;
3249         hpa_t root;
3250         int i;
3251
3252         root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3253         root_gfn = root_pgd >> PAGE_SHIFT;
3254
3255         if (mmu_check_root(vcpu, root_gfn))
3256                 return 1;
3257
3258         /*
3259          * Do we shadow a long mode page table? If so we need to
3260          * write-protect the guests page table root.
3261          */
3262         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3263                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3264
3265                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3266                                       vcpu->arch.mmu->shadow_root_level, false);
3267                 if (!VALID_PAGE(root))
3268                         return -ENOSPC;
3269                 vcpu->arch.mmu->root_hpa = root;
3270                 goto set_root_pgd;
3271         }
3272
3273         /*
3274          * We shadow a 32 bit page table. This may be a legacy 2-level
3275          * or a PAE 3-level page table. In either case we need to be aware that
3276          * the shadow page table may be a PAE or a long mode page table.
3277          */
3278         pm_mask = PT_PRESENT_MASK;
3279         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3280                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3281
3282         for (i = 0; i < 4; ++i) {
3283                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3284                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3285                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3286                         if (!(pdptr & PT_PRESENT_MASK)) {
3287                                 vcpu->arch.mmu->pae_root[i] = 0;
3288                                 continue;
3289                         }
3290                         root_gfn = pdptr >> PAGE_SHIFT;
3291                         if (mmu_check_root(vcpu, root_gfn))
3292                                 return 1;
3293                 }
3294
3295                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3296                                       PT32_ROOT_LEVEL, false);
3297                 if (!VALID_PAGE(root))
3298                         return -ENOSPC;
3299                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3300         }
3301         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3302
3303         /*
3304          * If we shadow a 32 bit page table with a long mode page
3305          * table we enter this path.
3306          */
3307         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3308                 if (vcpu->arch.mmu->lm_root == NULL) {
3309                         /*
3310                          * The additional page necessary for this is only
3311                          * allocated on demand.
3312                          */
3313
3314                         u64 *lm_root;
3315
3316                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3317                         if (lm_root == NULL)
3318                                 return 1;
3319
3320                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3321
3322                         vcpu->arch.mmu->lm_root = lm_root;
3323                 }
3324
3325                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3326         }
3327
3328 set_root_pgd:
3329         vcpu->arch.mmu->root_pgd = root_pgd;
3330
3331         return 0;
3332 }
3333
3334 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3335 {
3336         if (vcpu->arch.mmu->direct_map)
3337                 return mmu_alloc_direct_roots(vcpu);
3338         else
3339                 return mmu_alloc_shadow_roots(vcpu);
3340 }
3341
3342 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3343 {
3344         int i;
3345         struct kvm_mmu_page *sp;
3346
3347         if (vcpu->arch.mmu->direct_map)
3348                 return;
3349
3350         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3351                 return;
3352
3353         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3354
3355         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3356                 hpa_t root = vcpu->arch.mmu->root_hpa;
3357                 sp = to_shadow_page(root);
3358
3359                 /*
3360                  * Even if another CPU was marking the SP as unsync-ed
3361                  * simultaneously, any guest page table changes are not
3362                  * guaranteed to be visible anyway until this VCPU issues a TLB
3363                  * flush strictly after those changes are made. We only need to
3364                  * ensure that the other CPU sets these flags before any actual
3365                  * changes to the page tables are made. The comments in
3366                  * mmu_need_write_protect() describe what could go wrong if this
3367                  * requirement isn't satisfied.
3368                  */
3369                 if (!smp_load_acquire(&sp->unsync) &&
3370                     !smp_load_acquire(&sp->unsync_children))
3371                         return;
3372
3373                 spin_lock(&vcpu->kvm->mmu_lock);
3374                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3375
3376                 mmu_sync_children(vcpu, sp);
3377
3378                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3379                 spin_unlock(&vcpu->kvm->mmu_lock);
3380                 return;
3381         }
3382
3383         spin_lock(&vcpu->kvm->mmu_lock);
3384         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3385
3386         for (i = 0; i < 4; ++i) {
3387                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3388
3389                 if (root && VALID_PAGE(root)) {
3390                         root &= PT64_BASE_ADDR_MASK;
3391                         sp = to_shadow_page(root);
3392                         mmu_sync_children(vcpu, sp);
3393                 }
3394         }
3395
3396         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3397         spin_unlock(&vcpu->kvm->mmu_lock);
3398 }
3399 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3400
3401 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3402                                   u32 access, struct x86_exception *exception)
3403 {
3404         if (exception)
3405                 exception->error_code = 0;
3406         return vaddr;
3407 }
3408
3409 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3410                                          u32 access,
3411                                          struct x86_exception *exception)
3412 {
3413         if (exception)
3414                 exception->error_code = 0;
3415         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3416 }
3417
3418 static bool
3419 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3420 {
3421         int bit7 = (pte >> 7) & 1;
3422
3423         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3424 }
3425
3426 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3427 {
3428         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3429 }
3430
3431 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3432 {
3433         /*
3434          * A nested guest cannot use the MMIO cache if it is using nested
3435          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3436          */
3437         if (mmu_is_nested(vcpu))
3438                 return false;
3439
3440         if (direct)
3441                 return vcpu_match_mmio_gpa(vcpu, addr);
3442
3443         return vcpu_match_mmio_gva(vcpu, addr);
3444 }
3445
3446 /* return true if reserved bit is detected on spte. */
3447 static bool
3448 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3449 {
3450         struct kvm_shadow_walk_iterator iterator;
3451         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3452         struct rsvd_bits_validate *rsvd_check;
3453         int root, leaf;
3454         bool reserved = false;
3455
3456         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3457
3458         walk_shadow_page_lockless_begin(vcpu);
3459
3460         for (shadow_walk_init(&iterator, vcpu, addr),
3461                  leaf = root = iterator.level;
3462              shadow_walk_okay(&iterator);
3463              __shadow_walk_next(&iterator, spte)) {
3464                 spte = mmu_spte_get_lockless(iterator.sptep);
3465
3466                 sptes[leaf - 1] = spte;
3467                 leaf--;
3468
3469                 if (!is_shadow_present_pte(spte))
3470                         break;
3471
3472                 /*
3473                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3474                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3475                  * adding a Jcc in the loop.
3476                  */
3477                 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3478                             __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3479         }
3480
3481         walk_shadow_page_lockless_end(vcpu);
3482
3483         if (reserved) {
3484                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3485                        __func__, addr);
3486                 while (root > leaf) {
3487                         pr_err("------ spte 0x%llx level %d.\n",
3488                                sptes[root - 1], root);
3489                         root--;
3490                 }
3491         }
3492
3493         *sptep = spte;
3494         return reserved;
3495 }
3496
3497 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3498 {
3499         u64 spte;
3500         bool reserved;
3501
3502         if (mmio_info_in_cache(vcpu, addr, direct))
3503                 return RET_PF_EMULATE;
3504
3505         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3506         if (WARN_ON(reserved))
3507                 return -EINVAL;
3508
3509         if (is_mmio_spte(spte)) {
3510                 gfn_t gfn = get_mmio_spte_gfn(spte);
3511                 unsigned int access = get_mmio_spte_access(spte);
3512
3513                 if (!check_mmio_spte(vcpu, spte))
3514                         return RET_PF_INVALID;
3515
3516                 if (direct)
3517                         addr = 0;
3518
3519                 trace_handle_mmio_page_fault(addr, gfn, access);
3520                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3521                 return RET_PF_EMULATE;
3522         }
3523
3524         /*
3525          * If the page table is zapped by other cpus, let CPU fault again on
3526          * the address.
3527          */
3528         return RET_PF_RETRY;
3529 }
3530
3531 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3532                                          u32 error_code, gfn_t gfn)
3533 {
3534         if (unlikely(error_code & PFERR_RSVD_MASK))
3535                 return false;
3536
3537         if (!(error_code & PFERR_PRESENT_MASK) ||
3538               !(error_code & PFERR_WRITE_MASK))
3539                 return false;
3540
3541         /*
3542          * guest is writing the page which is write tracked which can
3543          * not be fixed by page fault handler.
3544          */
3545         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3546                 return true;
3547
3548         return false;
3549 }
3550
3551 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3552 {
3553         struct kvm_shadow_walk_iterator iterator;
3554         u64 spte;
3555
3556         walk_shadow_page_lockless_begin(vcpu);
3557         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3558                 clear_sp_write_flooding_count(iterator.sptep);
3559                 if (!is_shadow_present_pte(spte))
3560                         break;
3561         }
3562         walk_shadow_page_lockless_end(vcpu);
3563 }
3564
3565 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3566                                     gfn_t gfn)
3567 {
3568         struct kvm_arch_async_pf arch;
3569
3570         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3571         arch.gfn = gfn;
3572         arch.direct_map = vcpu->arch.mmu->direct_map;
3573         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3574
3575         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3576                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3577 }
3578
3579 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3580                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3581                          bool *writable)
3582 {
3583         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3584         bool async;
3585
3586         /* Don't expose private memslots to L2. */
3587         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3588                 *pfn = KVM_PFN_NOSLOT;
3589                 *writable = false;
3590                 return false;
3591         }
3592
3593         async = false;
3594         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3595         if (!async)
3596                 return false; /* *pfn has correct page already */
3597
3598         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3599                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3600                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3601                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3602                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3603                         return true;
3604                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3605                         return true;
3606         }
3607
3608         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3609         return false;
3610 }
3611
3612 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3613                              bool prefault, int max_level, bool is_tdp)
3614 {
3615         bool write = error_code & PFERR_WRITE_MASK;
3616         bool map_writable;
3617
3618         gfn_t gfn = gpa >> PAGE_SHIFT;
3619         unsigned long mmu_seq;
3620         kvm_pfn_t pfn;
3621         int r;
3622
3623         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3624                 return RET_PF_EMULATE;
3625
3626         if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3627                 r = fast_page_fault(vcpu, gpa, error_code);
3628                 if (r != RET_PF_INVALID)
3629                         return r;
3630         }
3631
3632         r = mmu_topup_memory_caches(vcpu, false);
3633         if (r)
3634                 return r;
3635
3636         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3637         smp_rmb();
3638
3639         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3640                 return RET_PF_RETRY;
3641
3642         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3643                 return r;
3644
3645         r = RET_PF_RETRY;
3646         spin_lock(&vcpu->kvm->mmu_lock);
3647         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3648                 goto out_unlock;
3649         r = make_mmu_pages_available(vcpu);
3650         if (r)
3651                 goto out_unlock;
3652
3653         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3654                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3655                                     pfn, prefault);
3656         else
3657                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3658                                  prefault, is_tdp);
3659
3660 out_unlock:
3661         spin_unlock(&vcpu->kvm->mmu_lock);
3662         kvm_release_pfn_clean(pfn);
3663         return r;
3664 }
3665
3666 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3667                                 u32 error_code, bool prefault)
3668 {
3669         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3670
3671         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3672         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3673                                  PG_LEVEL_2M, false);
3674 }
3675
3676 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3677                                 u64 fault_address, char *insn, int insn_len)
3678 {
3679         int r = 1;
3680         u32 flags = vcpu->arch.apf.host_apf_flags;
3681
3682 #ifndef CONFIG_X86_64
3683         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3684         if (WARN_ON_ONCE(fault_address >> 32))
3685                 return -EFAULT;
3686 #endif
3687
3688         vcpu->arch.l1tf_flush_l1d = true;
3689         if (!flags) {
3690                 trace_kvm_page_fault(fault_address, error_code);
3691
3692                 if (kvm_event_needs_reinjection(vcpu))
3693                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3694                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3695                                 insn_len);
3696         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3697                 vcpu->arch.apf.host_apf_flags = 0;
3698                 local_irq_disable();
3699                 kvm_async_pf_task_wait_schedule(fault_address);
3700                 local_irq_enable();
3701         } else {
3702                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3703         }
3704
3705         return r;
3706 }
3707 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3708
3709 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3710                        bool prefault)
3711 {
3712         int max_level;
3713
3714         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3715              max_level > PG_LEVEL_4K;
3716              max_level--) {
3717                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3718                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3719
3720                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3721                         break;
3722         }
3723
3724         return direct_page_fault(vcpu, gpa, error_code, prefault,
3725                                  max_level, true);
3726 }
3727
3728 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3729                                    struct kvm_mmu *context)
3730 {
3731         context->page_fault = nonpaging_page_fault;
3732         context->gva_to_gpa = nonpaging_gva_to_gpa;
3733         context->sync_page = nonpaging_sync_page;
3734         context->invlpg = NULL;
3735         context->update_pte = nonpaging_update_pte;
3736         context->root_level = 0;
3737         context->shadow_root_level = PT32E_ROOT_LEVEL;
3738         context->direct_map = true;
3739         context->nx = false;
3740 }
3741
3742 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3743                                   union kvm_mmu_page_role role)
3744 {
3745         return (role.direct || pgd == root->pgd) &&
3746                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3747                role.word == to_shadow_page(root->hpa)->role.word;
3748 }
3749
3750 /*
3751  * Find out if a previously cached root matching the new pgd/role is available.
3752  * The current root is also inserted into the cache.
3753  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3754  * returned.
3755  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3756  * false is returned. This root should now be freed by the caller.
3757  */
3758 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3759                                   union kvm_mmu_page_role new_role)
3760 {
3761         uint i;
3762         struct kvm_mmu_root_info root;
3763         struct kvm_mmu *mmu = vcpu->arch.mmu;
3764
3765         root.pgd = mmu->root_pgd;
3766         root.hpa = mmu->root_hpa;
3767
3768         if (is_root_usable(&root, new_pgd, new_role))
3769                 return true;
3770
3771         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3772                 swap(root, mmu->prev_roots[i]);
3773
3774                 if (is_root_usable(&root, new_pgd, new_role))
3775                         break;
3776         }
3777
3778         mmu->root_hpa = root.hpa;
3779         mmu->root_pgd = root.pgd;
3780
3781         return i < KVM_MMU_NUM_PREV_ROOTS;
3782 }
3783
3784 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3785                             union kvm_mmu_page_role new_role)
3786 {
3787         struct kvm_mmu *mmu = vcpu->arch.mmu;
3788
3789         /*
3790          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3791          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3792          * later if necessary.
3793          */
3794         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3795             mmu->root_level >= PT64_ROOT_4LEVEL)
3796                 return cached_root_available(vcpu, new_pgd, new_role);
3797
3798         return false;
3799 }
3800
3801 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3802                               union kvm_mmu_page_role new_role,
3803                               bool skip_tlb_flush, bool skip_mmu_sync)
3804 {
3805         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3806                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3807                 return;
3808         }
3809
3810         /*
3811          * It's possible that the cached previous root page is obsolete because
3812          * of a change in the MMU generation number. However, changing the
3813          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3814          * free the root set here and allocate a new one.
3815          */
3816         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3817
3818         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3819                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3820         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3821                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3822
3823         /*
3824          * The last MMIO access's GVA and GPA are cached in the VCPU. When
3825          * switching to a new CR3, that GVA->GPA mapping may no longer be
3826          * valid. So clear any cached MMIO info even when we don't need to sync
3827          * the shadow page tables.
3828          */
3829         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3830
3831         __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
3832 }
3833
3834 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3835                      bool skip_mmu_sync)
3836 {
3837         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3838                           skip_tlb_flush, skip_mmu_sync);
3839 }
3840 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3841
3842 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3843 {
3844         return kvm_read_cr3(vcpu);
3845 }
3846
3847 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3848                            unsigned int access, int *nr_present)
3849 {
3850         if (unlikely(is_mmio_spte(*sptep))) {
3851                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3852                         mmu_spte_clear_no_track(sptep);
3853                         return true;
3854                 }
3855
3856                 (*nr_present)++;
3857                 mark_mmio_spte(vcpu, sptep, gfn, access);
3858                 return true;
3859         }
3860
3861         return false;
3862 }
3863
3864 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3865                                 unsigned level, unsigned gpte)
3866 {
3867         /*
3868          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3869          * If it is clear, there are no large pages at this level, so clear
3870          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3871          */
3872         gpte &= level - mmu->last_nonleaf_level;
3873
3874         /*
3875          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3876          * iff level <= PG_LEVEL_4K, which for our purpose means
3877          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3878          */
3879         gpte |= level - PG_LEVEL_4K - 1;
3880
3881         return gpte & PT_PAGE_SIZE_MASK;
3882 }
3883
3884 #define PTTYPE_EPT 18 /* arbitrary */
3885 #define PTTYPE PTTYPE_EPT
3886 #include "paging_tmpl.h"
3887 #undef PTTYPE
3888
3889 #define PTTYPE 64
3890 #include "paging_tmpl.h"
3891 #undef PTTYPE
3892
3893 #define PTTYPE 32
3894 #include "paging_tmpl.h"
3895 #undef PTTYPE
3896
3897 static void
3898 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3899                         struct rsvd_bits_validate *rsvd_check,
3900                         int maxphyaddr, int level, bool nx, bool gbpages,
3901                         bool pse, bool amd)
3902 {
3903         u64 exb_bit_rsvd = 0;
3904         u64 gbpages_bit_rsvd = 0;
3905         u64 nonleaf_bit8_rsvd = 0;
3906
3907         rsvd_check->bad_mt_xwr = 0;
3908
3909         if (!nx)
3910                 exb_bit_rsvd = rsvd_bits(63, 63);
3911         if (!gbpages)
3912                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3913
3914         /*
3915          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3916          * leaf entries) on AMD CPUs only.
3917          */
3918         if (amd)
3919                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3920
3921         switch (level) {
3922         case PT32_ROOT_LEVEL:
3923                 /* no rsvd bits for 2 level 4K page table entries */
3924                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3925                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3926                 rsvd_check->rsvd_bits_mask[1][0] =
3927                         rsvd_check->rsvd_bits_mask[0][0];
3928
3929                 if (!pse) {
3930                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3931                         break;
3932                 }
3933
3934                 if (is_cpuid_PSE36())
3935                         /* 36bits PSE 4MB page */
3936                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3937                 else
3938                         /* 32 bits PSE 4MB page */
3939                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3940                 break;
3941         case PT32E_ROOT_LEVEL:
3942                 rsvd_check->rsvd_bits_mask[0][2] =
3943                         rsvd_bits(maxphyaddr, 63) |
3944                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3945                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3946                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3947                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3948                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3949                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3950                         rsvd_bits(maxphyaddr, 62) |
3951                         rsvd_bits(13, 20);              /* large page */
3952                 rsvd_check->rsvd_bits_mask[1][0] =
3953                         rsvd_check->rsvd_bits_mask[0][0];
3954                 break;
3955         case PT64_ROOT_5LEVEL:
3956                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
3957                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3958                         rsvd_bits(maxphyaddr, 51);
3959                 rsvd_check->rsvd_bits_mask[1][4] =
3960                         rsvd_check->rsvd_bits_mask[0][4];
3961                 fallthrough;
3962         case PT64_ROOT_4LEVEL:
3963                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3964                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3965                         rsvd_bits(maxphyaddr, 51);
3966                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3967                         gbpages_bit_rsvd |
3968                         rsvd_bits(maxphyaddr, 51);
3969                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3970                         rsvd_bits(maxphyaddr, 51);
3971                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3972                         rsvd_bits(maxphyaddr, 51);
3973                 rsvd_check->rsvd_bits_mask[1][3] =
3974                         rsvd_check->rsvd_bits_mask[0][3];
3975                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3976                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3977                         rsvd_bits(13, 29);
3978                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3979                         rsvd_bits(maxphyaddr, 51) |
3980                         rsvd_bits(13, 20);              /* large page */
3981                 rsvd_check->rsvd_bits_mask[1][0] =
3982                         rsvd_check->rsvd_bits_mask[0][0];
3983                 break;
3984         }
3985 }
3986
3987 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3988                                   struct kvm_mmu *context)
3989 {
3990         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3991                                 cpuid_maxphyaddr(vcpu), context->root_level,
3992                                 context->nx,
3993                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
3994                                 is_pse(vcpu),
3995                                 guest_cpuid_is_amd_or_hygon(vcpu));
3996 }
3997
3998 static void
3999 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4000                             int maxphyaddr, bool execonly)
4001 {
4002         u64 bad_mt_xwr;
4003
4004         rsvd_check->rsvd_bits_mask[0][4] =
4005                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4006         rsvd_check->rsvd_bits_mask[0][3] =
4007                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4008         rsvd_check->rsvd_bits_mask[0][2] =
4009                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4010         rsvd_check->rsvd_bits_mask[0][1] =
4011                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4012         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4013
4014         /* large page */
4015         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4016         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4017         rsvd_check->rsvd_bits_mask[1][2] =
4018                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4019         rsvd_check->rsvd_bits_mask[1][1] =
4020                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4021         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4022
4023         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4024         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4025         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4026         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4027         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4028         if (!execonly) {
4029                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4030                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4031         }
4032         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4033 }
4034
4035 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4036                 struct kvm_mmu *context, bool execonly)
4037 {
4038         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4039                                     cpuid_maxphyaddr(vcpu), execonly);
4040 }
4041
4042 /*
4043  * the page table on host is the shadow page table for the page
4044  * table in guest or amd nested guest, its mmu features completely
4045  * follow the features in guest.
4046  */
4047 void
4048 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4049 {
4050         bool uses_nx = context->nx ||
4051                 context->mmu_role.base.smep_andnot_wp;
4052         struct rsvd_bits_validate *shadow_zero_check;
4053         int i;
4054
4055         /*
4056          * Passing "true" to the last argument is okay; it adds a check
4057          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4058          */
4059         shadow_zero_check = &context->shadow_zero_check;
4060         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4061                                 shadow_phys_bits,
4062                                 context->shadow_root_level, uses_nx,
4063                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4064                                 is_pse(vcpu), true);
4065
4066         if (!shadow_me_mask)
4067                 return;
4068
4069         for (i = context->shadow_root_level; --i >= 0;) {
4070                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4071                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4072         }
4073
4074 }
4075 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4076
4077 static inline bool boot_cpu_is_amd(void)
4078 {
4079         WARN_ON_ONCE(!tdp_enabled);
4080         return shadow_x_mask == 0;
4081 }
4082
4083 /*
4084  * the direct page table on host, use as much mmu features as
4085  * possible, however, kvm currently does not do execution-protection.
4086  */
4087 static void
4088 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4089                                 struct kvm_mmu *context)
4090 {
4091         struct rsvd_bits_validate *shadow_zero_check;
4092         int i;
4093
4094         shadow_zero_check = &context->shadow_zero_check;
4095
4096         if (boot_cpu_is_amd())
4097                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4098                                         shadow_phys_bits,
4099                                         context->shadow_root_level, false,
4100                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4101                                         true, true);
4102         else
4103                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4104                                             shadow_phys_bits,
4105                                             false);
4106
4107         if (!shadow_me_mask)
4108                 return;
4109
4110         for (i = context->shadow_root_level; --i >= 0;) {
4111                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4112                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4113         }
4114 }
4115
4116 /*
4117  * as the comments in reset_shadow_zero_bits_mask() except it
4118  * is the shadow page table for intel nested guest.
4119  */
4120 static void
4121 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4122                                 struct kvm_mmu *context, bool execonly)
4123 {
4124         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4125                                     shadow_phys_bits, execonly);
4126 }
4127
4128 #define BYTE_MASK(access) \
4129         ((1 & (access) ? 2 : 0) | \
4130          (2 & (access) ? 4 : 0) | \
4131          (3 & (access) ? 8 : 0) | \
4132          (4 & (access) ? 16 : 0) | \
4133          (5 & (access) ? 32 : 0) | \
4134          (6 & (access) ? 64 : 0) | \
4135          (7 & (access) ? 128 : 0))
4136
4137
4138 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4139                                       struct kvm_mmu *mmu, bool ept)
4140 {
4141         unsigned byte;
4142
4143         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4144         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4145         const u8 u = BYTE_MASK(ACC_USER_MASK);
4146
4147         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4148         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4149         bool cr0_wp = is_write_protection(vcpu);
4150
4151         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4152                 unsigned pfec = byte << 1;
4153
4154                 /*
4155                  * Each "*f" variable has a 1 bit for each UWX value
4156                  * that causes a fault with the given PFEC.
4157                  */
4158
4159                 /* Faults from writes to non-writable pages */
4160                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4161                 /* Faults from user mode accesses to supervisor pages */
4162                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4163                 /* Faults from fetches of non-executable pages*/
4164                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4165                 /* Faults from kernel mode fetches of user pages */
4166                 u8 smepf = 0;
4167                 /* Faults from kernel mode accesses of user pages */
4168                 u8 smapf = 0;
4169
4170                 if (!ept) {
4171                         /* Faults from kernel mode accesses to user pages */
4172                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4173
4174                         /* Not really needed: !nx will cause pte.nx to fault */
4175                         if (!mmu->nx)
4176                                 ff = 0;
4177
4178                         /* Allow supervisor writes if !cr0.wp */
4179                         if (!cr0_wp)
4180                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4181
4182                         /* Disallow supervisor fetches of user code if cr4.smep */
4183                         if (cr4_smep)
4184                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4185
4186                         /*
4187                          * SMAP:kernel-mode data accesses from user-mode
4188                          * mappings should fault. A fault is considered
4189                          * as a SMAP violation if all of the following
4190                          * conditions are true:
4191                          *   - X86_CR4_SMAP is set in CR4
4192                          *   - A user page is accessed
4193                          *   - The access is not a fetch
4194                          *   - Page fault in kernel mode
4195                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4196                          *
4197                          * Here, we cover the first three conditions.
4198                          * The fourth is computed dynamically in permission_fault();
4199                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4200                          * *not* subject to SMAP restrictions.
4201                          */
4202                         if (cr4_smap)
4203                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4204                 }
4205
4206                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4207         }
4208 }
4209
4210 /*
4211 * PKU is an additional mechanism by which the paging controls access to
4212 * user-mode addresses based on the value in the PKRU register.  Protection
4213 * key violations are reported through a bit in the page fault error code.
4214 * Unlike other bits of the error code, the PK bit is not known at the
4215 * call site of e.g. gva_to_gpa; it must be computed directly in
4216 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4217 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4218 *
4219 * In particular the following conditions come from the error code, the
4220 * page tables and the machine state:
4221 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4222 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4223 * - PK is always zero if U=0 in the page tables
4224 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4225 *
4226 * The PKRU bitmask caches the result of these four conditions.  The error
4227 * code (minus the P bit) and the page table's U bit form an index into the
4228 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4229 * with the two bits of the PKRU register corresponding to the protection key.
4230 * For the first three conditions above the bits will be 00, thus masking
4231 * away both AD and WD.  For all reads or if the last condition holds, WD
4232 * only will be masked away.
4233 */
4234 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4235                                 bool ept)
4236 {
4237         unsigned bit;
4238         bool wp;
4239
4240         if (ept) {
4241                 mmu->pkru_mask = 0;
4242                 return;
4243         }
4244
4245         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4246         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4247                 mmu->pkru_mask = 0;
4248                 return;
4249         }
4250
4251         wp = is_write_protection(vcpu);
4252
4253         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4254                 unsigned pfec, pkey_bits;
4255                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4256
4257                 pfec = bit << 1;
4258                 ff = pfec & PFERR_FETCH_MASK;
4259                 uf = pfec & PFERR_USER_MASK;
4260                 wf = pfec & PFERR_WRITE_MASK;
4261
4262                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4263                 pte_user = pfec & PFERR_RSVD_MASK;
4264
4265                 /*
4266                  * Only need to check the access which is not an
4267                  * instruction fetch and is to a user page.
4268                  */
4269                 check_pkey = (!ff && pte_user);
4270                 /*
4271                  * write access is controlled by PKRU if it is a
4272                  * user access or CR0.WP = 1.
4273                  */
4274                 check_write = check_pkey && wf && (uf || wp);
4275
4276                 /* PKRU.AD stops both read and write access. */
4277                 pkey_bits = !!check_pkey;
4278                 /* PKRU.WD stops write access. */
4279                 pkey_bits |= (!!check_write) << 1;
4280
4281                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4282         }
4283 }
4284
4285 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4286 {
4287         unsigned root_level = mmu->root_level;
4288
4289         mmu->last_nonleaf_level = root_level;
4290         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4291                 mmu->last_nonleaf_level++;
4292 }
4293
4294 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4295                                          struct kvm_mmu *context,
4296                                          int level)
4297 {
4298         context->nx = is_nx(vcpu);
4299         context->root_level = level;
4300
4301         reset_rsvds_bits_mask(vcpu, context);
4302         update_permission_bitmask(vcpu, context, false);
4303         update_pkru_bitmask(vcpu, context, false);
4304         update_last_nonleaf_level(vcpu, context);
4305
4306         MMU_WARN_ON(!is_pae(vcpu));
4307         context->page_fault = paging64_page_fault;
4308         context->gva_to_gpa = paging64_gva_to_gpa;
4309         context->sync_page = paging64_sync_page;
4310         context->invlpg = paging64_invlpg;
4311         context->update_pte = paging64_update_pte;
4312         context->shadow_root_level = level;
4313         context->direct_map = false;
4314 }
4315
4316 static void paging64_init_context(struct kvm_vcpu *vcpu,
4317                                   struct kvm_mmu *context)
4318 {
4319         int root_level = is_la57_mode(vcpu) ?
4320                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4321
4322         paging64_init_context_common(vcpu, context, root_level);
4323 }
4324
4325 static void paging32_init_context(struct kvm_vcpu *vcpu,
4326                                   struct kvm_mmu *context)
4327 {
4328         context->nx = false;
4329         context->root_level = PT32_ROOT_LEVEL;
4330
4331         reset_rsvds_bits_mask(vcpu, context);
4332         update_permission_bitmask(vcpu, context, false);
4333         update_pkru_bitmask(vcpu, context, false);
4334         update_last_nonleaf_level(vcpu, context);
4335
4336         context->page_fault = paging32_page_fault;
4337         context->gva_to_gpa = paging32_gva_to_gpa;
4338         context->sync_page = paging32_sync_page;
4339         context->invlpg = paging32_invlpg;
4340         context->update_pte = paging32_update_pte;
4341         context->shadow_root_level = PT32E_ROOT_LEVEL;
4342         context->direct_map = false;
4343 }
4344
4345 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4346                                    struct kvm_mmu *context)
4347 {
4348         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4349 }
4350
4351 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4352 {
4353         union kvm_mmu_extended_role ext = {0};
4354
4355         ext.cr0_pg = !!is_paging(vcpu);
4356         ext.cr4_pae = !!is_pae(vcpu);
4357         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4358         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4359         ext.cr4_pse = !!is_pse(vcpu);
4360         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4361         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4362
4363         ext.valid = 1;
4364
4365         return ext;
4366 }
4367
4368 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4369                                                    bool base_only)
4370 {
4371         union kvm_mmu_role role = {0};
4372
4373         role.base.access = ACC_ALL;
4374         role.base.nxe = !!is_nx(vcpu);
4375         role.base.cr0_wp = is_write_protection(vcpu);
4376         role.base.smm = is_smm(vcpu);
4377         role.base.guest_mode = is_guest_mode(vcpu);
4378
4379         if (base_only)
4380                 return role;
4381
4382         role.ext = kvm_calc_mmu_role_ext(vcpu);
4383
4384         return role;
4385 }
4386
4387 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4388 {
4389         /* Use 5-level TDP if and only if it's useful/necessary. */
4390         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4391                 return 4;
4392
4393         return max_tdp_level;
4394 }
4395
4396 static union kvm_mmu_role
4397 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4398 {
4399         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4400
4401         role.base.ad_disabled = (shadow_accessed_mask == 0);
4402         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4403         role.base.direct = true;
4404         role.base.gpte_is_8_bytes = true;
4405
4406         return role;
4407 }
4408
4409 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4410 {
4411         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4412         union kvm_mmu_role new_role =
4413                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4414
4415         if (new_role.as_u64 == context->mmu_role.as_u64)
4416                 return;
4417
4418         context->mmu_role.as_u64 = new_role.as_u64;
4419         context->page_fault = kvm_tdp_page_fault;
4420         context->sync_page = nonpaging_sync_page;
4421         context->invlpg = NULL;
4422         context->update_pte = nonpaging_update_pte;
4423         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4424         context->direct_map = true;
4425         context->get_guest_pgd = get_cr3;
4426         context->get_pdptr = kvm_pdptr_read;
4427         context->inject_page_fault = kvm_inject_page_fault;
4428
4429         if (!is_paging(vcpu)) {
4430                 context->nx = false;
4431                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4432                 context->root_level = 0;
4433         } else if (is_long_mode(vcpu)) {
4434                 context->nx = is_nx(vcpu);
4435                 context->root_level = is_la57_mode(vcpu) ?
4436                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4437                 reset_rsvds_bits_mask(vcpu, context);
4438                 context->gva_to_gpa = paging64_gva_to_gpa;
4439         } else if (is_pae(vcpu)) {
4440                 context->nx = is_nx(vcpu);
4441                 context->root_level = PT32E_ROOT_LEVEL;
4442                 reset_rsvds_bits_mask(vcpu, context);
4443                 context->gva_to_gpa = paging64_gva_to_gpa;
4444         } else {
4445                 context->nx = false;
4446                 context->root_level = PT32_ROOT_LEVEL;
4447                 reset_rsvds_bits_mask(vcpu, context);
4448                 context->gva_to_gpa = paging32_gva_to_gpa;
4449         }
4450
4451         update_permission_bitmask(vcpu, context, false);
4452         update_pkru_bitmask(vcpu, context, false);
4453         update_last_nonleaf_level(vcpu, context);
4454         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4455 }
4456
4457 static union kvm_mmu_role
4458 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4459 {
4460         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4461
4462         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4463                 !is_write_protection(vcpu);
4464         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4465                 !is_write_protection(vcpu);
4466         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4467
4468         return role;
4469 }
4470
4471 static union kvm_mmu_role
4472 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4473 {
4474         union kvm_mmu_role role =
4475                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4476
4477         role.base.direct = !is_paging(vcpu);
4478
4479         if (!is_long_mode(vcpu))
4480                 role.base.level = PT32E_ROOT_LEVEL;
4481         else if (is_la57_mode(vcpu))
4482                 role.base.level = PT64_ROOT_5LEVEL;
4483         else
4484                 role.base.level = PT64_ROOT_4LEVEL;
4485
4486         return role;
4487 }
4488
4489 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4490                                     u32 cr0, u32 cr4, u32 efer,
4491                                     union kvm_mmu_role new_role)
4492 {
4493         if (!(cr0 & X86_CR0_PG))
4494                 nonpaging_init_context(vcpu, context);
4495         else if (efer & EFER_LMA)
4496                 paging64_init_context(vcpu, context);
4497         else if (cr4 & X86_CR4_PAE)
4498                 paging32E_init_context(vcpu, context);
4499         else
4500                 paging32_init_context(vcpu, context);
4501
4502         context->mmu_role.as_u64 = new_role.as_u64;
4503         reset_shadow_zero_bits_mask(vcpu, context);
4504 }
4505
4506 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4507 {
4508         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4509         union kvm_mmu_role new_role =
4510                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4511
4512         if (new_role.as_u64 != context->mmu_role.as_u64)
4513                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4514 }
4515
4516 static union kvm_mmu_role
4517 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4518 {
4519         union kvm_mmu_role role =
4520                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4521
4522         role.base.direct = false;
4523         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4524
4525         return role;
4526 }
4527
4528 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4529                              gpa_t nested_cr3)
4530 {
4531         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4532         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4533
4534         context->shadow_root_level = new_role.base.level;
4535
4536         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4537
4538         if (new_role.as_u64 != context->mmu_role.as_u64)
4539                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4540 }
4541 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4542
4543 static union kvm_mmu_role
4544 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4545                                    bool execonly, u8 level)
4546 {
4547         union kvm_mmu_role role = {0};
4548
4549         /* SMM flag is inherited from root_mmu */
4550         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4551
4552         role.base.level = level;
4553         role.base.gpte_is_8_bytes = true;
4554         role.base.direct = false;
4555         role.base.ad_disabled = !accessed_dirty;
4556         role.base.guest_mode = true;
4557         role.base.access = ACC_ALL;
4558
4559         /*
4560          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4561          * SMAP variation to denote shadow EPT entries.
4562          */
4563         role.base.cr0_wp = true;
4564         role.base.smap_andnot_wp = true;
4565
4566         role.ext = kvm_calc_mmu_role_ext(vcpu);
4567         role.ext.execonly = execonly;
4568
4569         return role;
4570 }
4571
4572 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4573                              bool accessed_dirty, gpa_t new_eptp)
4574 {
4575         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4576         u8 level = vmx_eptp_page_walk_level(new_eptp);
4577         union kvm_mmu_role new_role =
4578                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4579                                                    execonly, level);
4580
4581         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4582
4583         if (new_role.as_u64 == context->mmu_role.as_u64)
4584                 return;
4585
4586         context->shadow_root_level = level;
4587
4588         context->nx = true;
4589         context->ept_ad = accessed_dirty;
4590         context->page_fault = ept_page_fault;
4591         context->gva_to_gpa = ept_gva_to_gpa;
4592         context->sync_page = ept_sync_page;
4593         context->invlpg = ept_invlpg;
4594         context->update_pte = ept_update_pte;
4595         context->root_level = level;
4596         context->direct_map = false;
4597         context->mmu_role.as_u64 = new_role.as_u64;
4598
4599         update_permission_bitmask(vcpu, context, true);
4600         update_pkru_bitmask(vcpu, context, true);
4601         update_last_nonleaf_level(vcpu, context);
4602         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4603         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4604 }
4605 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4606
4607 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4608 {
4609         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4610
4611         kvm_init_shadow_mmu(vcpu,
4612                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4613                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4614                             vcpu->arch.efer);
4615
4616         context->get_guest_pgd     = get_cr3;
4617         context->get_pdptr         = kvm_pdptr_read;
4618         context->inject_page_fault = kvm_inject_page_fault;
4619 }
4620
4621 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4622 {
4623         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4624         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4625
4626         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4627                 return;
4628
4629         g_context->mmu_role.as_u64 = new_role.as_u64;
4630         g_context->get_guest_pgd     = get_cr3;
4631         g_context->get_pdptr         = kvm_pdptr_read;
4632         g_context->inject_page_fault = kvm_inject_page_fault;
4633
4634         /*
4635          * L2 page tables are never shadowed, so there is no need to sync
4636          * SPTEs.
4637          */
4638         g_context->invlpg            = NULL;
4639
4640         /*
4641          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4642          * L1's nested page tables (e.g. EPT12). The nested translation
4643          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4644          * L2's page tables as the first level of translation and L1's
4645          * nested page tables as the second level of translation. Basically
4646          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4647          */
4648         if (!is_paging(vcpu)) {
4649                 g_context->nx = false;
4650                 g_context->root_level = 0;
4651                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4652         } else if (is_long_mode(vcpu)) {
4653                 g_context->nx = is_nx(vcpu);
4654                 g_context->root_level = is_la57_mode(vcpu) ?
4655                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4656                 reset_rsvds_bits_mask(vcpu, g_context);
4657                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4658         } else if (is_pae(vcpu)) {
4659                 g_context->nx = is_nx(vcpu);
4660                 g_context->root_level = PT32E_ROOT_LEVEL;
4661                 reset_rsvds_bits_mask(vcpu, g_context);
4662                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4663         } else {
4664                 g_context->nx = false;
4665                 g_context->root_level = PT32_ROOT_LEVEL;
4666                 reset_rsvds_bits_mask(vcpu, g_context);
4667                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4668         }
4669
4670         update_permission_bitmask(vcpu, g_context, false);
4671         update_pkru_bitmask(vcpu, g_context, false);
4672         update_last_nonleaf_level(vcpu, g_context);
4673 }
4674
4675 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4676 {
4677         if (reset_roots) {
4678                 uint i;
4679
4680                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4681
4682                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4683                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4684         }
4685
4686         if (mmu_is_nested(vcpu))
4687                 init_kvm_nested_mmu(vcpu);
4688         else if (tdp_enabled)
4689                 init_kvm_tdp_mmu(vcpu);
4690         else
4691                 init_kvm_softmmu(vcpu);
4692 }
4693 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4694
4695 static union kvm_mmu_page_role
4696 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4697 {
4698         union kvm_mmu_role role;
4699
4700         if (tdp_enabled)
4701                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4702         else
4703                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4704
4705         return role.base;
4706 }
4707
4708 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4709 {
4710         kvm_mmu_unload(vcpu);
4711         kvm_init_mmu(vcpu, true);
4712 }
4713 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4714
4715 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4716 {
4717         int r;
4718
4719         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4720         if (r)
4721                 goto out;
4722         r = mmu_alloc_roots(vcpu);
4723         kvm_mmu_sync_roots(vcpu);
4724         if (r)
4725                 goto out;
4726         kvm_mmu_load_pgd(vcpu);
4727         kvm_x86_ops.tlb_flush_current(vcpu);
4728 out:
4729         return r;
4730 }
4731 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4732
4733 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4734 {
4735         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4736         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4737         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4738         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4739 }
4740 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4741
4742 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4743                                   struct kvm_mmu_page *sp, u64 *spte,
4744                                   const void *new)
4745 {
4746         if (sp->role.level != PG_LEVEL_4K) {
4747                 ++vcpu->kvm->stat.mmu_pde_zapped;
4748                 return;
4749         }
4750
4751         ++vcpu->kvm->stat.mmu_pte_updated;
4752         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4753 }
4754
4755 static bool need_remote_flush(u64 old, u64 new)
4756 {
4757         if (!is_shadow_present_pte(old))
4758                 return false;
4759         if (!is_shadow_present_pte(new))
4760                 return true;
4761         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4762                 return true;
4763         old ^= shadow_nx_mask;
4764         new ^= shadow_nx_mask;
4765         return (old & ~new & PT64_PERM_MASK) != 0;
4766 }
4767
4768 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4769                                     int *bytes)
4770 {
4771         u64 gentry = 0;
4772         int r;
4773
4774         /*
4775          * Assume that the pte write on a page table of the same type
4776          * as the current vcpu paging mode since we update the sptes only
4777          * when they have the same mode.
4778          */
4779         if (is_pae(vcpu) && *bytes == 4) {
4780                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4781                 *gpa &= ~(gpa_t)7;
4782                 *bytes = 8;
4783         }
4784
4785         if (*bytes == 4 || *bytes == 8) {
4786                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4787                 if (r)
4788                         gentry = 0;
4789         }
4790
4791         return gentry;
4792 }
4793
4794 /*
4795  * If we're seeing too many writes to a page, it may no longer be a page table,
4796  * or we may be forking, in which case it is better to unmap the page.
4797  */
4798 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4799 {
4800         /*
4801          * Skip write-flooding detected for the sp whose level is 1, because
4802          * it can become unsync, then the guest page is not write-protected.
4803          */
4804         if (sp->role.level == PG_LEVEL_4K)
4805                 return false;
4806
4807         atomic_inc(&sp->write_flooding_count);
4808         return atomic_read(&sp->write_flooding_count) >= 3;
4809 }
4810
4811 /*
4812  * Misaligned accesses are too much trouble to fix up; also, they usually
4813  * indicate a page is not used as a page table.
4814  */
4815 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4816                                     int bytes)
4817 {
4818         unsigned offset, pte_size, misaligned;
4819
4820         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4821                  gpa, bytes, sp->role.word);
4822
4823         offset = offset_in_page(gpa);
4824         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4825
4826         /*
4827          * Sometimes, the OS only writes the last one bytes to update status
4828          * bits, for example, in linux, andb instruction is used in clear_bit().
4829          */
4830         if (!(offset & (pte_size - 1)) && bytes == 1)
4831                 return false;
4832
4833         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4834         misaligned |= bytes < 4;
4835
4836         return misaligned;
4837 }
4838
4839 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4840 {
4841         unsigned page_offset, quadrant;
4842         u64 *spte;
4843         int level;
4844
4845         page_offset = offset_in_page(gpa);
4846         level = sp->role.level;
4847         *nspte = 1;
4848         if (!sp->role.gpte_is_8_bytes) {
4849                 page_offset <<= 1;      /* 32->64 */
4850                 /*
4851                  * A 32-bit pde maps 4MB while the shadow pdes map
4852                  * only 2MB.  So we need to double the offset again
4853                  * and zap two pdes instead of one.
4854                  */
4855                 if (level == PT32_ROOT_LEVEL) {
4856                         page_offset &= ~7; /* kill rounding error */
4857                         page_offset <<= 1;
4858                         *nspte = 2;
4859                 }
4860                 quadrant = page_offset >> PAGE_SHIFT;
4861                 page_offset &= ~PAGE_MASK;
4862                 if (quadrant != sp->role.quadrant)
4863                         return NULL;
4864         }
4865
4866         spte = &sp->spt[page_offset / sizeof(*spte)];
4867         return spte;
4868 }
4869
4870 /*
4871  * Ignore various flags when determining if a SPTE can be immediately
4872  * overwritten for the current MMU.
4873  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4874  *    match the current MMU role, as MMU's level tracks the root level.
4875  *  - access: updated based on the new guest PTE
4876  *  - quadrant: handled by get_written_sptes()
4877  *  - invalid: always false (loop only walks valid shadow pages)
4878  */
4879 static const union kvm_mmu_page_role role_ign = {
4880         .level = 0xf,
4881         .access = 0x7,
4882         .quadrant = 0x3,
4883         .invalid = 0x1,
4884 };
4885
4886 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4887                               const u8 *new, int bytes,
4888                               struct kvm_page_track_notifier_node *node)
4889 {
4890         gfn_t gfn = gpa >> PAGE_SHIFT;
4891         struct kvm_mmu_page *sp;
4892         LIST_HEAD(invalid_list);
4893         u64 entry, gentry, *spte;
4894         int npte;
4895         bool remote_flush, local_flush;
4896
4897         /*
4898          * If we don't have indirect shadow pages, it means no page is
4899          * write-protected, so we can exit simply.
4900          */
4901         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4902                 return;
4903
4904         remote_flush = local_flush = false;
4905
4906         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4907
4908         /*
4909          * No need to care whether allocation memory is successful
4910          * or not since pte prefetch is skiped if it does not have
4911          * enough objects in the cache.
4912          */
4913         mmu_topup_memory_caches(vcpu, true);
4914
4915         spin_lock(&vcpu->kvm->mmu_lock);
4916
4917         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4918
4919         ++vcpu->kvm->stat.mmu_pte_write;
4920         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4921
4922         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4923                 if (detect_write_misaligned(sp, gpa, bytes) ||
4924                       detect_write_flooding(sp)) {
4925                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4926                         ++vcpu->kvm->stat.mmu_flooded;
4927                         continue;
4928                 }
4929
4930                 spte = get_written_sptes(sp, gpa, &npte);
4931                 if (!spte)
4932                         continue;
4933
4934                 local_flush = true;
4935                 while (npte--) {
4936                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
4937
4938                         entry = *spte;
4939                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
4940                         if (gentry &&
4941                             !((sp->role.word ^ base_role) & ~role_ign.word) &&
4942                             rmap_can_add(vcpu))
4943                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4944                         if (need_remote_flush(entry, *spte))
4945                                 remote_flush = true;
4946                         ++spte;
4947                 }
4948         }
4949         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4950         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4951         spin_unlock(&vcpu->kvm->mmu_lock);
4952 }
4953
4954 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4955 {
4956         gpa_t gpa;
4957         int r;
4958
4959         if (vcpu->arch.mmu->direct_map)
4960                 return 0;
4961
4962         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4963
4964         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4965
4966         return r;
4967 }
4968 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4969
4970 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
4971                        void *insn, int insn_len)
4972 {
4973         int r, emulation_type = EMULTYPE_PF;
4974         bool direct = vcpu->arch.mmu->direct_map;
4975
4976         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
4977                 return RET_PF_RETRY;
4978
4979         r = RET_PF_INVALID;
4980         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4981                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
4982                 if (r == RET_PF_EMULATE)
4983                         goto emulate;
4984         }
4985
4986         if (r == RET_PF_INVALID) {
4987                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
4988                                           lower_32_bits(error_code), false);
4989                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
4990                         return -EIO;
4991         }
4992
4993         if (r < 0)
4994                 return r;
4995         if (r != RET_PF_EMULATE)
4996                 return 1;
4997
4998         /*
4999          * Before emulating the instruction, check if the error code
5000          * was due to a RO violation while translating the guest page.
5001          * This can occur when using nested virtualization with nested
5002          * paging in both guests. If true, we simply unprotect the page
5003          * and resume the guest.
5004          */
5005         if (vcpu->arch.mmu->direct_map &&
5006             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5007                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5008                 return 1;
5009         }
5010
5011         /*
5012          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5013          * optimistically try to just unprotect the page and let the processor
5014          * re-execute the instruction that caused the page fault.  Do not allow
5015          * retrying MMIO emulation, as it's not only pointless but could also
5016          * cause us to enter an infinite loop because the processor will keep
5017          * faulting on the non-existent MMIO address.  Retrying an instruction
5018          * from a nested guest is also pointless and dangerous as we are only
5019          * explicitly shadowing L1's page tables, i.e. unprotecting something
5020          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5021          */
5022         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5023                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5024 emulate:
5025         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5026                                        insn_len);
5027 }
5028 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5029
5030 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5031                             gva_t gva, hpa_t root_hpa)
5032 {
5033         int i;
5034
5035         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5036         if (mmu != &vcpu->arch.guest_mmu) {
5037                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5038                 if (is_noncanonical_address(gva, vcpu))
5039                         return;
5040
5041                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5042         }
5043
5044         if (!mmu->invlpg)
5045                 return;
5046
5047         if (root_hpa == INVALID_PAGE) {
5048                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5049
5050                 /*
5051                  * INVLPG is required to invalidate any global mappings for the VA,
5052                  * irrespective of PCID. Since it would take us roughly similar amount
5053                  * of work to determine whether any of the prev_root mappings of the VA
5054                  * is marked global, or to just sync it blindly, so we might as well
5055                  * just always sync it.
5056                  *
5057                  * Mappings not reachable via the current cr3 or the prev_roots will be
5058                  * synced when switching to that cr3, so nothing needs to be done here
5059                  * for them.
5060                  */
5061                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5062                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5063                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5064         } else {
5065                 mmu->invlpg(vcpu, gva, root_hpa);
5066         }
5067 }
5068 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5069
5070 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5071 {
5072         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5073         ++vcpu->stat.invlpg;
5074 }
5075 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5076
5077
5078 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5079 {
5080         struct kvm_mmu *mmu = vcpu->arch.mmu;
5081         bool tlb_flush = false;
5082         uint i;
5083
5084         if (pcid == kvm_get_active_pcid(vcpu)) {
5085                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5086                 tlb_flush = true;
5087         }
5088
5089         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5090                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5091                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5092                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5093                         tlb_flush = true;
5094                 }
5095         }
5096
5097         if (tlb_flush)
5098                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5099
5100         ++vcpu->stat.invlpg;
5101
5102         /*
5103          * Mappings not reachable via the current cr3 or the prev_roots will be
5104          * synced when switching to that cr3, so nothing needs to be done here
5105          * for them.
5106          */
5107 }
5108 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5109
5110 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5111                        int tdp_huge_page_level)
5112 {
5113         tdp_enabled = enable_tdp;
5114         max_tdp_level = tdp_max_root_level;
5115
5116         /*
5117          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5118          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5119          * the kernel is not.  But, KVM never creates a page size greater than
5120          * what is used by the kernel for any given HVA, i.e. the kernel's
5121          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5122          */
5123         if (tdp_enabled)
5124                 max_huge_page_level = tdp_huge_page_level;
5125         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5126                 max_huge_page_level = PG_LEVEL_1G;
5127         else
5128                 max_huge_page_level = PG_LEVEL_2M;
5129 }
5130 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5131
5132 /* The return value indicates if tlb flush on all vcpus is needed. */
5133 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5134
5135 /* The caller should hold mmu-lock before calling this function. */
5136 static __always_inline bool
5137 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5138                         slot_level_handler fn, int start_level, int end_level,
5139                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5140 {
5141         struct slot_rmap_walk_iterator iterator;
5142         bool flush = false;
5143
5144         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5145                         end_gfn, &iterator) {
5146                 if (iterator.rmap)
5147                         flush |= fn(kvm, iterator.rmap);
5148
5149                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5150                         if (flush && lock_flush_tlb) {
5151                                 kvm_flush_remote_tlbs_with_address(kvm,
5152                                                 start_gfn,
5153                                                 iterator.gfn - start_gfn + 1);
5154                                 flush = false;
5155                         }
5156                         cond_resched_lock(&kvm->mmu_lock);
5157                 }
5158         }
5159
5160         if (flush && lock_flush_tlb) {
5161                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5162                                                    end_gfn - start_gfn + 1);
5163                 flush = false;
5164         }
5165
5166         return flush;
5167 }
5168
5169 static __always_inline bool
5170 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5171                   slot_level_handler fn, int start_level, int end_level,
5172                   bool lock_flush_tlb)
5173 {
5174         return slot_handle_level_range(kvm, memslot, fn, start_level,
5175                         end_level, memslot->base_gfn,
5176                         memslot->base_gfn + memslot->npages - 1,
5177                         lock_flush_tlb);
5178 }
5179
5180 static __always_inline bool
5181 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5182                       slot_level_handler fn, bool lock_flush_tlb)
5183 {
5184         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5185                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5186 }
5187
5188 static __always_inline bool
5189 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5190                         slot_level_handler fn, bool lock_flush_tlb)
5191 {
5192         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5193                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5194 }
5195
5196 static __always_inline bool
5197 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5198                  slot_level_handler fn, bool lock_flush_tlb)
5199 {
5200         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5201                                  PG_LEVEL_4K, lock_flush_tlb);
5202 }
5203
5204 static void free_mmu_pages(struct kvm_mmu *mmu)
5205 {
5206         free_page((unsigned long)mmu->pae_root);
5207         free_page((unsigned long)mmu->lm_root);
5208 }
5209
5210 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5211 {
5212         struct page *page;
5213         int i;
5214
5215         mmu->root_hpa = INVALID_PAGE;
5216         mmu->root_pgd = 0;
5217         mmu->translate_gpa = translate_gpa;
5218         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5219                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5220
5221         /*
5222          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5223          * while the PDP table is a per-vCPU construct that's allocated at MMU
5224          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5225          * x86_64.  Therefore we need to allocate the PDP table in the first
5226          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5227          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5228          * skip allocating the PDP table.
5229          */
5230         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5231                 return 0;
5232
5233         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5234         if (!page)
5235                 return -ENOMEM;
5236
5237         mmu->pae_root = page_address(page);
5238         for (i = 0; i < 4; ++i)
5239                 mmu->pae_root[i] = INVALID_PAGE;
5240
5241         return 0;
5242 }
5243
5244 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5245 {
5246         int ret;
5247
5248         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5249         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5250
5251         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5252         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5253
5254         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5255
5256         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5257         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5258
5259         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5260
5261         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5262         if (ret)
5263                 return ret;
5264
5265         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5266         if (ret)
5267                 goto fail_allocate_root;
5268
5269         return ret;
5270  fail_allocate_root:
5271         free_mmu_pages(&vcpu->arch.guest_mmu);
5272         return ret;
5273 }
5274
5275 #define BATCH_ZAP_PAGES 10
5276 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5277 {
5278         struct kvm_mmu_page *sp, *node;
5279         int nr_zapped, batch = 0;
5280
5281 restart:
5282         list_for_each_entry_safe_reverse(sp, node,
5283               &kvm->arch.active_mmu_pages, link) {
5284                 /*
5285                  * No obsolete valid page exists before a newly created page
5286                  * since active_mmu_pages is a FIFO list.
5287                  */
5288                 if (!is_obsolete_sp(kvm, sp))
5289                         break;
5290
5291                 /*
5292                  * Invalid pages should never land back on the list of active
5293                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5294                  * infinite loop if the page gets put back on the list (again).
5295                  */
5296                 if (WARN_ON(sp->role.invalid))
5297                         continue;
5298
5299                 /*
5300                  * No need to flush the TLB since we're only zapping shadow
5301                  * pages with an obsolete generation number and all vCPUS have
5302                  * loaded a new root, i.e. the shadow pages being zapped cannot
5303                  * be in active use by the guest.
5304                  */
5305                 if (batch >= BATCH_ZAP_PAGES &&
5306                     cond_resched_lock(&kvm->mmu_lock)) {
5307                         batch = 0;
5308                         goto restart;
5309                 }
5310
5311                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5312                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5313                         batch += nr_zapped;
5314                         goto restart;
5315                 }
5316         }
5317
5318         /*
5319          * Trigger a remote TLB flush before freeing the page tables to ensure
5320          * KVM is not in the middle of a lockless shadow page table walk, which
5321          * may reference the pages.
5322          */
5323         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5324 }
5325
5326 /*
5327  * Fast invalidate all shadow pages and use lock-break technique
5328  * to zap obsolete pages.
5329  *
5330  * It's required when memslot is being deleted or VM is being
5331  * destroyed, in these cases, we should ensure that KVM MMU does
5332  * not use any resource of the being-deleted slot or all slots
5333  * after calling the function.
5334  */
5335 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5336 {
5337         lockdep_assert_held(&kvm->slots_lock);
5338
5339         spin_lock(&kvm->mmu_lock);
5340         trace_kvm_mmu_zap_all_fast(kvm);
5341
5342         /*
5343          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5344          * held for the entire duration of zapping obsolete pages, it's
5345          * impossible for there to be multiple invalid generations associated
5346          * with *valid* shadow pages at any given time, i.e. there is exactly
5347          * one valid generation and (at most) one invalid generation.
5348          */
5349         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5350
5351         /*
5352          * Notify all vcpus to reload its shadow page table and flush TLB.
5353          * Then all vcpus will switch to new shadow page table with the new
5354          * mmu_valid_gen.
5355          *
5356          * Note: we need to do this under the protection of mmu_lock,
5357          * otherwise, vcpu would purge shadow page but miss tlb flush.
5358          */
5359         kvm_reload_remote_mmus(kvm);
5360
5361         kvm_zap_obsolete_pages(kvm);
5362
5363         if (kvm->arch.tdp_mmu_enabled)
5364                 kvm_tdp_mmu_zap_all(kvm);
5365
5366         spin_unlock(&kvm->mmu_lock);
5367 }
5368
5369 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5370 {
5371         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5372 }
5373
5374 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5375                         struct kvm_memory_slot *slot,
5376                         struct kvm_page_track_notifier_node *node)
5377 {
5378         kvm_mmu_zap_all_fast(kvm);
5379 }
5380
5381 void kvm_mmu_init_vm(struct kvm *kvm)
5382 {
5383         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5384
5385         kvm_mmu_init_tdp_mmu(kvm);
5386
5387         node->track_write = kvm_mmu_pte_write;
5388         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5389         kvm_page_track_register_notifier(kvm, node);
5390 }
5391
5392 void kvm_mmu_uninit_vm(struct kvm *kvm)
5393 {
5394         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5395
5396         kvm_page_track_unregister_notifier(kvm, node);
5397
5398         kvm_mmu_uninit_tdp_mmu(kvm);
5399 }
5400
5401 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5402 {
5403         struct kvm_memslots *slots;
5404         struct kvm_memory_slot *memslot;
5405         int i;
5406         bool flush;
5407
5408         spin_lock(&kvm->mmu_lock);
5409         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5410                 slots = __kvm_memslots(kvm, i);
5411                 kvm_for_each_memslot(memslot, slots) {
5412                         gfn_t start, end;
5413
5414                         start = max(gfn_start, memslot->base_gfn);
5415                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5416                         if (start >= end)
5417                                 continue;
5418
5419                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5420                                                 PG_LEVEL_4K,
5421                                                 KVM_MAX_HUGEPAGE_LEVEL,
5422                                                 start, end - 1, true);
5423                 }
5424         }
5425
5426         if (kvm->arch.tdp_mmu_enabled) {
5427                 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5428                 if (flush)
5429                         kvm_flush_remote_tlbs(kvm);
5430         }
5431
5432         spin_unlock(&kvm->mmu_lock);
5433 }
5434
5435 static bool slot_rmap_write_protect(struct kvm *kvm,
5436                                     struct kvm_rmap_head *rmap_head)
5437 {
5438         return __rmap_write_protect(kvm, rmap_head, false);
5439 }
5440
5441 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5442                                       struct kvm_memory_slot *memslot,
5443                                       int start_level)
5444 {
5445         bool flush;
5446
5447         spin_lock(&kvm->mmu_lock);
5448         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5449                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5450         spin_unlock(&kvm->mmu_lock);
5451
5452         /*
5453          * We can flush all the TLBs out of the mmu lock without TLB
5454          * corruption since we just change the spte from writable to
5455          * readonly so that we only need to care the case of changing
5456          * spte from present to present (changing the spte from present
5457          * to nonpresent will flush all the TLBs immediately), in other
5458          * words, the only case we care is mmu_spte_update() where we
5459          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5460          * instead of PT_WRITABLE_MASK, that means it does not depend
5461          * on PT_WRITABLE_MASK anymore.
5462          */
5463         if (flush)
5464                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5465 }
5466
5467 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5468                                          struct kvm_rmap_head *rmap_head)
5469 {
5470         u64 *sptep;
5471         struct rmap_iterator iter;
5472         int need_tlb_flush = 0;
5473         kvm_pfn_t pfn;
5474         struct kvm_mmu_page *sp;
5475
5476 restart:
5477         for_each_rmap_spte(rmap_head, &iter, sptep) {
5478                 sp = sptep_to_sp(sptep);
5479                 pfn = spte_to_pfn(*sptep);
5480
5481                 /*
5482                  * We cannot do huge page mapping for indirect shadow pages,
5483                  * which are found on the last rmap (level = 1) when not using
5484                  * tdp; such shadow pages are synced with the page table in
5485                  * the guest, and the guest page table is using 4K page size
5486                  * mapping if the indirect sp has level = 1.
5487                  */
5488                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5489                     (kvm_is_zone_device_pfn(pfn) ||
5490                      PageCompound(pfn_to_page(pfn)))) {
5491                         pte_list_remove(rmap_head, sptep);
5492
5493                         if (kvm_available_flush_tlb_with_range())
5494                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5495                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5496                         else
5497                                 need_tlb_flush = 1;
5498
5499                         goto restart;
5500                 }
5501         }
5502
5503         return need_tlb_flush;
5504 }
5505
5506 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5507                                    const struct kvm_memory_slot *memslot)
5508 {
5509         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5510         spin_lock(&kvm->mmu_lock);
5511         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5512                          kvm_mmu_zap_collapsible_spte, true);
5513         spin_unlock(&kvm->mmu_lock);
5514 }
5515
5516 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5517                                         struct kvm_memory_slot *memslot)
5518 {
5519         /*
5520          * All current use cases for flushing the TLBs for a specific memslot
5521          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5522          * The interaction between the various operations on memslot must be
5523          * serialized by slots_locks to ensure the TLB flush from one operation
5524          * is observed by any other operation on the same memslot.
5525          */
5526         lockdep_assert_held(&kvm->slots_lock);
5527         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5528                                            memslot->npages);
5529 }
5530
5531 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5532                                    struct kvm_memory_slot *memslot)
5533 {
5534         bool flush;
5535
5536         spin_lock(&kvm->mmu_lock);
5537         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5538         spin_unlock(&kvm->mmu_lock);
5539
5540         /*
5541          * It's also safe to flush TLBs out of mmu lock here as currently this
5542          * function is only used for dirty logging, in which case flushing TLB
5543          * out of mmu lock also guarantees no dirty pages will be lost in
5544          * dirty_bitmap.
5545          */
5546         if (flush)
5547                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5548 }
5549 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5550
5551 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5552                                         struct kvm_memory_slot *memslot)
5553 {
5554         bool flush;
5555
5556         spin_lock(&kvm->mmu_lock);
5557         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5558                                         false);
5559         spin_unlock(&kvm->mmu_lock);
5560
5561         if (flush)
5562                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5563 }
5564 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5565
5566 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5567                             struct kvm_memory_slot *memslot)
5568 {
5569         bool flush;
5570
5571         spin_lock(&kvm->mmu_lock);
5572         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5573         spin_unlock(&kvm->mmu_lock);
5574
5575         if (flush)
5576                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5577 }
5578 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5579
5580 void kvm_mmu_zap_all(struct kvm *kvm)
5581 {
5582         struct kvm_mmu_page *sp, *node;
5583         LIST_HEAD(invalid_list);
5584         int ign;
5585
5586         spin_lock(&kvm->mmu_lock);
5587 restart:
5588         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5589                 if (WARN_ON(sp->role.invalid))
5590                         continue;
5591                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5592                         goto restart;
5593                 if (cond_resched_lock(&kvm->mmu_lock))
5594                         goto restart;
5595         }
5596
5597         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5598
5599         if (kvm->arch.tdp_mmu_enabled)
5600                 kvm_tdp_mmu_zap_all(kvm);
5601
5602         spin_unlock(&kvm->mmu_lock);
5603 }
5604
5605 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5606 {
5607         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5608
5609         gen &= MMIO_SPTE_GEN_MASK;
5610
5611         /*
5612          * Generation numbers are incremented in multiples of the number of
5613          * address spaces in order to provide unique generations across all
5614          * address spaces.  Strip what is effectively the address space
5615          * modifier prior to checking for a wrap of the MMIO generation so
5616          * that a wrap in any address space is detected.
5617          */
5618         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5619
5620         /*
5621          * The very rare case: if the MMIO generation number has wrapped,
5622          * zap all shadow pages.
5623          */
5624         if (unlikely(gen == 0)) {
5625                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5626                 kvm_mmu_zap_all_fast(kvm);
5627         }
5628 }
5629
5630 static unsigned long
5631 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5632 {
5633         struct kvm *kvm;
5634         int nr_to_scan = sc->nr_to_scan;
5635         unsigned long freed = 0;
5636
5637         mutex_lock(&kvm_lock);
5638
5639         list_for_each_entry(kvm, &vm_list, vm_list) {
5640                 int idx;
5641                 LIST_HEAD(invalid_list);
5642
5643                 /*
5644                  * Never scan more than sc->nr_to_scan VM instances.
5645                  * Will not hit this condition practically since we do not try
5646                  * to shrink more than one VM and it is very unlikely to see
5647                  * !n_used_mmu_pages so many times.
5648                  */
5649                 if (!nr_to_scan--)
5650                         break;
5651                 /*
5652                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5653                  * here. We may skip a VM instance errorneosly, but we do not
5654                  * want to shrink a VM that only started to populate its MMU
5655                  * anyway.
5656                  */
5657                 if (!kvm->arch.n_used_mmu_pages &&
5658                     !kvm_has_zapped_obsolete_pages(kvm))
5659                         continue;
5660
5661                 idx = srcu_read_lock(&kvm->srcu);
5662                 spin_lock(&kvm->mmu_lock);
5663
5664                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5665                         kvm_mmu_commit_zap_page(kvm,
5666                               &kvm->arch.zapped_obsolete_pages);
5667                         goto unlock;
5668                 }
5669
5670                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5671
5672 unlock:
5673                 spin_unlock(&kvm->mmu_lock);
5674                 srcu_read_unlock(&kvm->srcu, idx);
5675
5676                 /*
5677                  * unfair on small ones
5678                  * per-vm shrinkers cry out
5679                  * sadness comes quickly
5680                  */
5681                 list_move_tail(&kvm->vm_list, &vm_list);
5682                 break;
5683         }
5684
5685         mutex_unlock(&kvm_lock);
5686         return freed;
5687 }
5688
5689 static unsigned long
5690 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5691 {
5692         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5693 }
5694
5695 static struct shrinker mmu_shrinker = {
5696         .count_objects = mmu_shrink_count,
5697         .scan_objects = mmu_shrink_scan,
5698         .seeks = DEFAULT_SEEKS * 10,
5699 };
5700
5701 static void mmu_destroy_caches(void)
5702 {
5703         kmem_cache_destroy(pte_list_desc_cache);
5704         kmem_cache_destroy(mmu_page_header_cache);
5705 }
5706
5707 static void kvm_set_mmio_spte_mask(void)
5708 {
5709         u64 mask;
5710
5711         /*
5712          * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5713          * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5714          * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5715          * 52-bit physical addresses then there are no reserved PA bits in the
5716          * PTEs and so the reserved PA approach must be disabled.
5717          */
5718         if (shadow_phys_bits < 52)
5719                 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5720         else
5721                 mask = 0;
5722
5723         kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5724 }
5725
5726 static bool get_nx_auto_mode(void)
5727 {
5728         /* Return true when CPU has the bug, and mitigations are ON */
5729         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5730 }
5731
5732 static void __set_nx_huge_pages(bool val)
5733 {
5734         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5735 }
5736
5737 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5738 {
5739         bool old_val = nx_huge_pages;
5740         bool new_val;
5741
5742         /* In "auto" mode deploy workaround only if CPU has the bug. */
5743         if (sysfs_streq(val, "off"))
5744                 new_val = 0;
5745         else if (sysfs_streq(val, "force"))
5746                 new_val = 1;
5747         else if (sysfs_streq(val, "auto"))
5748                 new_val = get_nx_auto_mode();
5749         else if (strtobool(val, &new_val) < 0)
5750                 return -EINVAL;
5751
5752         __set_nx_huge_pages(new_val);
5753
5754         if (new_val != old_val) {
5755                 struct kvm *kvm;
5756
5757                 mutex_lock(&kvm_lock);
5758
5759                 list_for_each_entry(kvm, &vm_list, vm_list) {
5760                         mutex_lock(&kvm->slots_lock);
5761                         kvm_mmu_zap_all_fast(kvm);
5762                         mutex_unlock(&kvm->slots_lock);
5763
5764                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5765                 }
5766                 mutex_unlock(&kvm_lock);
5767         }
5768
5769         return 0;
5770 }
5771
5772 int kvm_mmu_module_init(void)
5773 {
5774         int ret = -ENOMEM;
5775
5776         if (nx_huge_pages == -1)
5777                 __set_nx_huge_pages(get_nx_auto_mode());
5778
5779         /*
5780          * MMU roles use union aliasing which is, generally speaking, an
5781          * undefined behavior. However, we supposedly know how compilers behave
5782          * and the current status quo is unlikely to change. Guardians below are
5783          * supposed to let us know if the assumption becomes false.
5784          */
5785         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5786         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5787         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5788
5789         kvm_mmu_reset_all_pte_masks();
5790
5791         kvm_set_mmio_spte_mask();
5792
5793         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5794                                             sizeof(struct pte_list_desc),
5795                                             0, SLAB_ACCOUNT, NULL);
5796         if (!pte_list_desc_cache)
5797                 goto out;
5798
5799         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5800                                                   sizeof(struct kvm_mmu_page),
5801                                                   0, SLAB_ACCOUNT, NULL);
5802         if (!mmu_page_header_cache)
5803                 goto out;
5804
5805         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5806                 goto out;
5807
5808         ret = register_shrinker(&mmu_shrinker);
5809         if (ret)
5810                 goto out;
5811
5812         return 0;
5813
5814 out:
5815         mmu_destroy_caches();
5816         return ret;
5817 }
5818
5819 /*
5820  * Calculate mmu pages needed for kvm.
5821  */
5822 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5823 {
5824         unsigned long nr_mmu_pages;
5825         unsigned long nr_pages = 0;
5826         struct kvm_memslots *slots;
5827         struct kvm_memory_slot *memslot;
5828         int i;
5829
5830         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5831                 slots = __kvm_memslots(kvm, i);
5832
5833                 kvm_for_each_memslot(memslot, slots)
5834                         nr_pages += memslot->npages;
5835         }
5836
5837         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5838         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5839
5840         return nr_mmu_pages;
5841 }
5842
5843 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5844 {
5845         kvm_mmu_unload(vcpu);
5846         free_mmu_pages(&vcpu->arch.root_mmu);
5847         free_mmu_pages(&vcpu->arch.guest_mmu);
5848         mmu_free_memory_caches(vcpu);
5849 }
5850
5851 void kvm_mmu_module_exit(void)
5852 {
5853         mmu_destroy_caches();
5854         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5855         unregister_shrinker(&mmu_shrinker);
5856         mmu_audit_disable();
5857 }
5858
5859 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5860 {
5861         unsigned int old_val;
5862         int err;
5863
5864         old_val = nx_huge_pages_recovery_ratio;
5865         err = param_set_uint(val, kp);
5866         if (err)
5867                 return err;
5868
5869         if (READ_ONCE(nx_huge_pages) &&
5870             !old_val && nx_huge_pages_recovery_ratio) {
5871                 struct kvm *kvm;
5872
5873                 mutex_lock(&kvm_lock);
5874
5875                 list_for_each_entry(kvm, &vm_list, vm_list)
5876                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5877
5878                 mutex_unlock(&kvm_lock);
5879         }
5880
5881         return err;
5882 }
5883
5884 static void kvm_recover_nx_lpages(struct kvm *kvm)
5885 {
5886         int rcu_idx;
5887         struct kvm_mmu_page *sp;
5888         unsigned int ratio;
5889         LIST_HEAD(invalid_list);
5890         ulong to_zap;
5891
5892         rcu_idx = srcu_read_lock(&kvm->srcu);
5893         spin_lock(&kvm->mmu_lock);
5894
5895         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5896         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5897         for ( ; to_zap; --to_zap) {
5898                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5899                         break;
5900
5901                 /*
5902                  * We use a separate list instead of just using active_mmu_pages
5903                  * because the number of lpage_disallowed pages is expected to
5904                  * be relatively small compared to the total.
5905                  */
5906                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5907                                       struct kvm_mmu_page,
5908                                       lpage_disallowed_link);
5909                 WARN_ON_ONCE(!sp->lpage_disallowed);
5910                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5911                 WARN_ON_ONCE(sp->lpage_disallowed);
5912
5913                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5914                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5915                         cond_resched_lock(&kvm->mmu_lock);
5916                 }
5917         }
5918         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5919
5920         spin_unlock(&kvm->mmu_lock);
5921         srcu_read_unlock(&kvm->srcu, rcu_idx);
5922 }
5923
5924 static long get_nx_lpage_recovery_timeout(u64 start_time)
5925 {
5926         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5927                 ? start_time + 60 * HZ - get_jiffies_64()
5928                 : MAX_SCHEDULE_TIMEOUT;
5929 }
5930
5931 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5932 {
5933         u64 start_time;
5934         long remaining_time;
5935
5936         while (true) {
5937                 start_time = get_jiffies_64();
5938                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5939
5940                 set_current_state(TASK_INTERRUPTIBLE);
5941                 while (!kthread_should_stop() && remaining_time > 0) {
5942                         schedule_timeout(remaining_time);
5943                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
5944                         set_current_state(TASK_INTERRUPTIBLE);
5945                 }
5946
5947                 set_current_state(TASK_RUNNING);
5948
5949                 if (kthread_should_stop())
5950                         return 0;
5951
5952                 kvm_recover_nx_lpages(kvm);
5953         }
5954 }
5955
5956 int kvm_mmu_post_init_vm(struct kvm *kvm)
5957 {
5958         int err;
5959
5960         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
5961                                           "kvm-nx-lpage-recovery",
5962                                           &kvm->arch.nx_lpage_recovery_thread);
5963         if (!err)
5964                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
5965
5966         return err;
5967 }
5968
5969 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
5970 {
5971         if (kvm->arch.nx_lpage_recovery_thread)
5972                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
5973 }