KVM: x86/mmu: Add accessors to query mmu_role bits
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 extern bool itlb_multihit_kvm_mitigation;
57
58 int __read_mostly nx_huge_pages = -1;
59 #ifdef CONFIG_PREEMPT_RT
60 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62 #else
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64 #endif
65
66 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
68
69 static const struct kernel_param_ops nx_huge_pages_ops = {
70         .set = set_nx_huge_pages,
71         .get = param_get_bool,
72 };
73
74 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75         .set = set_nx_huge_pages_recovery_ratio,
76         .get = param_get_uint,
77 };
78
79 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82                 &nx_huge_pages_recovery_ratio, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
84
85 static bool __read_mostly force_flush_and_sync_on_reuse;
86 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87
88 /*
89  * When setting this variable to true it enables Two-Dimensional-Paging
90  * where the hardware walks 2 page tables:
91  * 1. the guest-virtual to guest-physical
92  * 2. while doing 1. it walks guest-physical to host-physical
93  * If the hardware supports that we don't need to do shadow paging.
94  */
95 bool tdp_enabled = false;
96
97 static int max_huge_page_level __read_mostly;
98 static int max_tdp_level __read_mostly;
99
100 enum {
101         AUDIT_PRE_PAGE_FAULT,
102         AUDIT_POST_PAGE_FAULT,
103         AUDIT_PRE_PTE_WRITE,
104         AUDIT_POST_PTE_WRITE,
105         AUDIT_PRE_SYNC,
106         AUDIT_POST_SYNC
107 };
108
109 #ifdef MMU_DEBUG
110 bool dbg = 0;
111 module_param(dbg, bool, 0644);
112 #endif
113
114 #define PTE_PREFETCH_NUM                8
115
116 #define PT32_LEVEL_BITS 10
117
118 #define PT32_LEVEL_SHIFT(level) \
119                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
120
121 #define PT32_LVL_OFFSET_MASK(level) \
122         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT32_LEVEL_BITS))) - 1))
124
125 #define PT32_INDEX(address, level)\
126         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134                                             * PT32_LEVEL_BITS))) - 1))
135
136 #include <trace/events/kvm.h>
137
138 /* make pte_list_desc fit well in cache line */
139 #define PTE_LIST_EXT 3
140
141 struct pte_list_desc {
142         u64 *sptes[PTE_LIST_EXT];
143         struct pte_list_desc *more;
144 };
145
146 struct kvm_shadow_walk_iterator {
147         u64 addr;
148         hpa_t shadow_addr;
149         u64 *sptep;
150         int level;
151         unsigned index;
152 };
153
154 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
155         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
156                                          (_root), (_addr));                \
157              shadow_walk_okay(&(_walker));                                 \
158              shadow_walk_next(&(_walker)))
159
160 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
161         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
162              shadow_walk_okay(&(_walker));                      \
163              shadow_walk_next(&(_walker)))
164
165 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
166         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
167              shadow_walk_okay(&(_walker)) &&                            \
168                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
169              __shadow_walk_next(&(_walker), spte))
170
171 static struct kmem_cache *pte_list_desc_cache;
172 struct kmem_cache *mmu_page_header_cache;
173 static struct percpu_counter kvm_total_used_mmu_pages;
174
175 static void mmu_spte_set(u64 *sptep, u64 spte);
176 static union kvm_mmu_page_role
177 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178
179 struct kvm_mmu_role_regs {
180         const unsigned long cr0;
181         const unsigned long cr4;
182         const u64 efer;
183 };
184
185 #define CREATE_TRACE_POINTS
186 #include "mmutrace.h"
187
188 /*
189  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
190  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
191  * the single source of truth for the MMU's state.
192  */
193 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)                   \
194 static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
195 {                                                                       \
196         return !!(regs->reg & flag);                                    \
197 }
198 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
199 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
200 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
201 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
202 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
203 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
208
209 /*
210  * The MMU itself (with a valid role) is the single source of truth for the
211  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
212  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
213  * and the vCPU may be incorrect/irrelevant.
214  */
215 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)         \
216 static inline bool is_##reg##_##name(struct kvm_mmu *mmu)       \
217 {                                                               \
218         return !!(mmu->mmu_role. base_or_ext . reg##_##name);   \
219 }
220 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
221 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
222 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
223 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
224 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
225 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
226 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
227 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
228 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
229
230 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
231 {
232         struct kvm_mmu_role_regs regs = {
233                 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
234                 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
235                 .efer = vcpu->arch.efer,
236         };
237
238         return regs;
239 }
240
241 static inline bool kvm_available_flush_tlb_with_range(void)
242 {
243         return kvm_x86_ops.tlb_remote_flush_with_range;
244 }
245
246 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
247                 struct kvm_tlb_range *range)
248 {
249         int ret = -ENOTSUPP;
250
251         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
252                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
253
254         if (ret)
255                 kvm_flush_remote_tlbs(kvm);
256 }
257
258 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
259                 u64 start_gfn, u64 pages)
260 {
261         struct kvm_tlb_range range;
262
263         range.start_gfn = start_gfn;
264         range.pages = pages;
265
266         kvm_flush_remote_tlbs_with_range(kvm, &range);
267 }
268
269 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
270                            unsigned int access)
271 {
272         u64 spte = make_mmio_spte(vcpu, gfn, access);
273
274         trace_mark_mmio_spte(sptep, gfn, spte);
275         mmu_spte_set(sptep, spte);
276 }
277
278 static gfn_t get_mmio_spte_gfn(u64 spte)
279 {
280         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
281
282         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
283                & shadow_nonpresent_or_rsvd_mask;
284
285         return gpa >> PAGE_SHIFT;
286 }
287
288 static unsigned get_mmio_spte_access(u64 spte)
289 {
290         return spte & shadow_mmio_access_mask;
291 }
292
293 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
294 {
295         u64 kvm_gen, spte_gen, gen;
296
297         gen = kvm_vcpu_memslots(vcpu)->generation;
298         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
299                 return false;
300
301         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
302         spte_gen = get_mmio_spte_generation(spte);
303
304         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
305         return likely(kvm_gen == spte_gen);
306 }
307
308 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
309                                   struct x86_exception *exception)
310 {
311         /* Check if guest physical address doesn't exceed guest maximum */
312         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
313                 exception->error_code |= PFERR_RSVD_MASK;
314                 return UNMAPPED_GVA;
315         }
316
317         return gpa;
318 }
319
320 static int is_cpuid_PSE36(void)
321 {
322         return 1;
323 }
324
325 static int is_nx(struct kvm_vcpu *vcpu)
326 {
327         return vcpu->arch.efer & EFER_NX;
328 }
329
330 static gfn_t pse36_gfn_delta(u32 gpte)
331 {
332         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
333
334         return (gpte & PT32_DIR_PSE36_MASK) << shift;
335 }
336
337 #ifdef CONFIG_X86_64
338 static void __set_spte(u64 *sptep, u64 spte)
339 {
340         WRITE_ONCE(*sptep, spte);
341 }
342
343 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
344 {
345         WRITE_ONCE(*sptep, spte);
346 }
347
348 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
349 {
350         return xchg(sptep, spte);
351 }
352
353 static u64 __get_spte_lockless(u64 *sptep)
354 {
355         return READ_ONCE(*sptep);
356 }
357 #else
358 union split_spte {
359         struct {
360                 u32 spte_low;
361                 u32 spte_high;
362         };
363         u64 spte;
364 };
365
366 static void count_spte_clear(u64 *sptep, u64 spte)
367 {
368         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
369
370         if (is_shadow_present_pte(spte))
371                 return;
372
373         /* Ensure the spte is completely set before we increase the count */
374         smp_wmb();
375         sp->clear_spte_count++;
376 }
377
378 static void __set_spte(u64 *sptep, u64 spte)
379 {
380         union split_spte *ssptep, sspte;
381
382         ssptep = (union split_spte *)sptep;
383         sspte = (union split_spte)spte;
384
385         ssptep->spte_high = sspte.spte_high;
386
387         /*
388          * If we map the spte from nonpresent to present, We should store
389          * the high bits firstly, then set present bit, so cpu can not
390          * fetch this spte while we are setting the spte.
391          */
392         smp_wmb();
393
394         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
395 }
396
397 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
398 {
399         union split_spte *ssptep, sspte;
400
401         ssptep = (union split_spte *)sptep;
402         sspte = (union split_spte)spte;
403
404         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
405
406         /*
407          * If we map the spte from present to nonpresent, we should clear
408          * present bit firstly to avoid vcpu fetch the old high bits.
409          */
410         smp_wmb();
411
412         ssptep->spte_high = sspte.spte_high;
413         count_spte_clear(sptep, spte);
414 }
415
416 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
417 {
418         union split_spte *ssptep, sspte, orig;
419
420         ssptep = (union split_spte *)sptep;
421         sspte = (union split_spte)spte;
422
423         /* xchg acts as a barrier before the setting of the high bits */
424         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
425         orig.spte_high = ssptep->spte_high;
426         ssptep->spte_high = sspte.spte_high;
427         count_spte_clear(sptep, spte);
428
429         return orig.spte;
430 }
431
432 /*
433  * The idea using the light way get the spte on x86_32 guest is from
434  * gup_get_pte (mm/gup.c).
435  *
436  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
437  * coalesces them and we are running out of the MMU lock.  Therefore
438  * we need to protect against in-progress updates of the spte.
439  *
440  * Reading the spte while an update is in progress may get the old value
441  * for the high part of the spte.  The race is fine for a present->non-present
442  * change (because the high part of the spte is ignored for non-present spte),
443  * but for a present->present change we must reread the spte.
444  *
445  * All such changes are done in two steps (present->non-present and
446  * non-present->present), hence it is enough to count the number of
447  * present->non-present updates: if it changed while reading the spte,
448  * we might have hit the race.  This is done using clear_spte_count.
449  */
450 static u64 __get_spte_lockless(u64 *sptep)
451 {
452         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
453         union split_spte spte, *orig = (union split_spte *)sptep;
454         int count;
455
456 retry:
457         count = sp->clear_spte_count;
458         smp_rmb();
459
460         spte.spte_low = orig->spte_low;
461         smp_rmb();
462
463         spte.spte_high = orig->spte_high;
464         smp_rmb();
465
466         if (unlikely(spte.spte_low != orig->spte_low ||
467               count != sp->clear_spte_count))
468                 goto retry;
469
470         return spte.spte;
471 }
472 #endif
473
474 static bool spte_has_volatile_bits(u64 spte)
475 {
476         if (!is_shadow_present_pte(spte))
477                 return false;
478
479         /*
480          * Always atomically update spte if it can be updated
481          * out of mmu-lock, it can ensure dirty bit is not lost,
482          * also, it can help us to get a stable is_writable_pte()
483          * to ensure tlb flush is not missed.
484          */
485         if (spte_can_locklessly_be_made_writable(spte) ||
486             is_access_track_spte(spte))
487                 return true;
488
489         if (spte_ad_enabled(spte)) {
490                 if ((spte & shadow_accessed_mask) == 0 ||
491                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
492                         return true;
493         }
494
495         return false;
496 }
497
498 /* Rules for using mmu_spte_set:
499  * Set the sptep from nonpresent to present.
500  * Note: the sptep being assigned *must* be either not present
501  * or in a state where the hardware will not attempt to update
502  * the spte.
503  */
504 static void mmu_spte_set(u64 *sptep, u64 new_spte)
505 {
506         WARN_ON(is_shadow_present_pte(*sptep));
507         __set_spte(sptep, new_spte);
508 }
509
510 /*
511  * Update the SPTE (excluding the PFN), but do not track changes in its
512  * accessed/dirty status.
513  */
514 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
515 {
516         u64 old_spte = *sptep;
517
518         WARN_ON(!is_shadow_present_pte(new_spte));
519
520         if (!is_shadow_present_pte(old_spte)) {
521                 mmu_spte_set(sptep, new_spte);
522                 return old_spte;
523         }
524
525         if (!spte_has_volatile_bits(old_spte))
526                 __update_clear_spte_fast(sptep, new_spte);
527         else
528                 old_spte = __update_clear_spte_slow(sptep, new_spte);
529
530         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
531
532         return old_spte;
533 }
534
535 /* Rules for using mmu_spte_update:
536  * Update the state bits, it means the mapped pfn is not changed.
537  *
538  * Whenever we overwrite a writable spte with a read-only one we
539  * should flush remote TLBs. Otherwise rmap_write_protect
540  * will find a read-only spte, even though the writable spte
541  * might be cached on a CPU's TLB, the return value indicates this
542  * case.
543  *
544  * Returns true if the TLB needs to be flushed
545  */
546 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
547 {
548         bool flush = false;
549         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
550
551         if (!is_shadow_present_pte(old_spte))
552                 return false;
553
554         /*
555          * For the spte updated out of mmu-lock is safe, since
556          * we always atomically update it, see the comments in
557          * spte_has_volatile_bits().
558          */
559         if (spte_can_locklessly_be_made_writable(old_spte) &&
560               !is_writable_pte(new_spte))
561                 flush = true;
562
563         /*
564          * Flush TLB when accessed/dirty states are changed in the page tables,
565          * to guarantee consistency between TLB and page tables.
566          */
567
568         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
569                 flush = true;
570                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
571         }
572
573         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
574                 flush = true;
575                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
576         }
577
578         return flush;
579 }
580
581 /*
582  * Rules for using mmu_spte_clear_track_bits:
583  * It sets the sptep from present to nonpresent, and track the
584  * state bits, it is used to clear the last level sptep.
585  * Returns non-zero if the PTE was previously valid.
586  */
587 static int mmu_spte_clear_track_bits(u64 *sptep)
588 {
589         kvm_pfn_t pfn;
590         u64 old_spte = *sptep;
591
592         if (!spte_has_volatile_bits(old_spte))
593                 __update_clear_spte_fast(sptep, 0ull);
594         else
595                 old_spte = __update_clear_spte_slow(sptep, 0ull);
596
597         if (!is_shadow_present_pte(old_spte))
598                 return 0;
599
600         pfn = spte_to_pfn(old_spte);
601
602         /*
603          * KVM does not hold the refcount of the page used by
604          * kvm mmu, before reclaiming the page, we should
605          * unmap it from mmu first.
606          */
607         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
608
609         if (is_accessed_spte(old_spte))
610                 kvm_set_pfn_accessed(pfn);
611
612         if (is_dirty_spte(old_spte))
613                 kvm_set_pfn_dirty(pfn);
614
615         return 1;
616 }
617
618 /*
619  * Rules for using mmu_spte_clear_no_track:
620  * Directly clear spte without caring the state bits of sptep,
621  * it is used to set the upper level spte.
622  */
623 static void mmu_spte_clear_no_track(u64 *sptep)
624 {
625         __update_clear_spte_fast(sptep, 0ull);
626 }
627
628 static u64 mmu_spte_get_lockless(u64 *sptep)
629 {
630         return __get_spte_lockless(sptep);
631 }
632
633 /* Restore an acc-track PTE back to a regular PTE */
634 static u64 restore_acc_track_spte(u64 spte)
635 {
636         u64 new_spte = spte;
637         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
638                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
639
640         WARN_ON_ONCE(spte_ad_enabled(spte));
641         WARN_ON_ONCE(!is_access_track_spte(spte));
642
643         new_spte &= ~shadow_acc_track_mask;
644         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
645                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
646         new_spte |= saved_bits;
647
648         return new_spte;
649 }
650
651 /* Returns the Accessed status of the PTE and resets it at the same time. */
652 static bool mmu_spte_age(u64 *sptep)
653 {
654         u64 spte = mmu_spte_get_lockless(sptep);
655
656         if (!is_accessed_spte(spte))
657                 return false;
658
659         if (spte_ad_enabled(spte)) {
660                 clear_bit((ffs(shadow_accessed_mask) - 1),
661                           (unsigned long *)sptep);
662         } else {
663                 /*
664                  * Capture the dirty status of the page, so that it doesn't get
665                  * lost when the SPTE is marked for access tracking.
666                  */
667                 if (is_writable_pte(spte))
668                         kvm_set_pfn_dirty(spte_to_pfn(spte));
669
670                 spte = mark_spte_for_access_track(spte);
671                 mmu_spte_update_no_track(sptep, spte);
672         }
673
674         return true;
675 }
676
677 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
678 {
679         /*
680          * Prevent page table teardown by making any free-er wait during
681          * kvm_flush_remote_tlbs() IPI to all active vcpus.
682          */
683         local_irq_disable();
684
685         /*
686          * Make sure a following spte read is not reordered ahead of the write
687          * to vcpu->mode.
688          */
689         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
690 }
691
692 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
693 {
694         /*
695          * Make sure the write to vcpu->mode is not reordered in front of
696          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
697          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
698          */
699         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
700         local_irq_enable();
701 }
702
703 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
704 {
705         int r;
706
707         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
708         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
709                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
710         if (r)
711                 return r;
712         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
713                                        PT64_ROOT_MAX_LEVEL);
714         if (r)
715                 return r;
716         if (maybe_indirect) {
717                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
718                                                PT64_ROOT_MAX_LEVEL);
719                 if (r)
720                         return r;
721         }
722         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
723                                           PT64_ROOT_MAX_LEVEL);
724 }
725
726 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727 {
728         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
729         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
730         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
731         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
732 }
733
734 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
735 {
736         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
737 }
738
739 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
740 {
741         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
742 }
743
744 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
745 {
746         if (!sp->role.direct)
747                 return sp->gfns[index];
748
749         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
750 }
751
752 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
753 {
754         if (!sp->role.direct) {
755                 sp->gfns[index] = gfn;
756                 return;
757         }
758
759         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
760                 pr_err_ratelimited("gfn mismatch under direct page %llx "
761                                    "(expected %llx, got %llx)\n",
762                                    sp->gfn,
763                                    kvm_mmu_page_get_gfn(sp, index), gfn);
764 }
765
766 /*
767  * Return the pointer to the large page information for a given gfn,
768  * handling slots that are not large page aligned.
769  */
770 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
771                 const struct kvm_memory_slot *slot, int level)
772 {
773         unsigned long idx;
774
775         idx = gfn_to_index(gfn, slot->base_gfn, level);
776         return &slot->arch.lpage_info[level - 2][idx];
777 }
778
779 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
780                                             gfn_t gfn, int count)
781 {
782         struct kvm_lpage_info *linfo;
783         int i;
784
785         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
786                 linfo = lpage_info_slot(gfn, slot, i);
787                 linfo->disallow_lpage += count;
788                 WARN_ON(linfo->disallow_lpage < 0);
789         }
790 }
791
792 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
793 {
794         update_gfn_disallow_lpage_count(slot, gfn, 1);
795 }
796
797 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
798 {
799         update_gfn_disallow_lpage_count(slot, gfn, -1);
800 }
801
802 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
803 {
804         struct kvm_memslots *slots;
805         struct kvm_memory_slot *slot;
806         gfn_t gfn;
807
808         kvm->arch.indirect_shadow_pages++;
809         gfn = sp->gfn;
810         slots = kvm_memslots_for_spte_role(kvm, sp->role);
811         slot = __gfn_to_memslot(slots, gfn);
812
813         /* the non-leaf shadow pages are keeping readonly. */
814         if (sp->role.level > PG_LEVEL_4K)
815                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
816                                                     KVM_PAGE_TRACK_WRITE);
817
818         kvm_mmu_gfn_disallow_lpage(slot, gfn);
819 }
820
821 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
822 {
823         if (sp->lpage_disallowed)
824                 return;
825
826         ++kvm->stat.nx_lpage_splits;
827         list_add_tail(&sp->lpage_disallowed_link,
828                       &kvm->arch.lpage_disallowed_mmu_pages);
829         sp->lpage_disallowed = true;
830 }
831
832 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
833 {
834         struct kvm_memslots *slots;
835         struct kvm_memory_slot *slot;
836         gfn_t gfn;
837
838         kvm->arch.indirect_shadow_pages--;
839         gfn = sp->gfn;
840         slots = kvm_memslots_for_spte_role(kvm, sp->role);
841         slot = __gfn_to_memslot(slots, gfn);
842         if (sp->role.level > PG_LEVEL_4K)
843                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
844                                                        KVM_PAGE_TRACK_WRITE);
845
846         kvm_mmu_gfn_allow_lpage(slot, gfn);
847 }
848
849 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
850 {
851         --kvm->stat.nx_lpage_splits;
852         sp->lpage_disallowed = false;
853         list_del(&sp->lpage_disallowed_link);
854 }
855
856 static struct kvm_memory_slot *
857 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
858                             bool no_dirty_log)
859 {
860         struct kvm_memory_slot *slot;
861
862         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
863         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
864                 return NULL;
865         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
866                 return NULL;
867
868         return slot;
869 }
870
871 /*
872  * About rmap_head encoding:
873  *
874  * If the bit zero of rmap_head->val is clear, then it points to the only spte
875  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
876  * pte_list_desc containing more mappings.
877  */
878
879 /*
880  * Returns the number of pointers in the rmap chain, not counting the new one.
881  */
882 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
883                         struct kvm_rmap_head *rmap_head)
884 {
885         struct pte_list_desc *desc;
886         int i, count = 0;
887
888         if (!rmap_head->val) {
889                 rmap_printk("%p %llx 0->1\n", spte, *spte);
890                 rmap_head->val = (unsigned long)spte;
891         } else if (!(rmap_head->val & 1)) {
892                 rmap_printk("%p %llx 1->many\n", spte, *spte);
893                 desc = mmu_alloc_pte_list_desc(vcpu);
894                 desc->sptes[0] = (u64 *)rmap_head->val;
895                 desc->sptes[1] = spte;
896                 rmap_head->val = (unsigned long)desc | 1;
897                 ++count;
898         } else {
899                 rmap_printk("%p %llx many->many\n", spte, *spte);
900                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
901                 while (desc->sptes[PTE_LIST_EXT-1]) {
902                         count += PTE_LIST_EXT;
903
904                         if (!desc->more) {
905                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
906                                 desc = desc->more;
907                                 break;
908                         }
909                         desc = desc->more;
910                 }
911                 for (i = 0; desc->sptes[i]; ++i)
912                         ++count;
913                 desc->sptes[i] = spte;
914         }
915         return count;
916 }
917
918 static void
919 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
920                            struct pte_list_desc *desc, int i,
921                            struct pte_list_desc *prev_desc)
922 {
923         int j;
924
925         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
926                 ;
927         desc->sptes[i] = desc->sptes[j];
928         desc->sptes[j] = NULL;
929         if (j != 0)
930                 return;
931         if (!prev_desc && !desc->more)
932                 rmap_head->val = 0;
933         else
934                 if (prev_desc)
935                         prev_desc->more = desc->more;
936                 else
937                         rmap_head->val = (unsigned long)desc->more | 1;
938         mmu_free_pte_list_desc(desc);
939 }
940
941 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
942 {
943         struct pte_list_desc *desc;
944         struct pte_list_desc *prev_desc;
945         int i;
946
947         if (!rmap_head->val) {
948                 pr_err("%s: %p 0->BUG\n", __func__, spte);
949                 BUG();
950         } else if (!(rmap_head->val & 1)) {
951                 rmap_printk("%p 1->0\n", spte);
952                 if ((u64 *)rmap_head->val != spte) {
953                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
954                         BUG();
955                 }
956                 rmap_head->val = 0;
957         } else {
958                 rmap_printk("%p many->many\n", spte);
959                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
960                 prev_desc = NULL;
961                 while (desc) {
962                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
963                                 if (desc->sptes[i] == spte) {
964                                         pte_list_desc_remove_entry(rmap_head,
965                                                         desc, i, prev_desc);
966                                         return;
967                                 }
968                         }
969                         prev_desc = desc;
970                         desc = desc->more;
971                 }
972                 pr_err("%s: %p many->many\n", __func__, spte);
973                 BUG();
974         }
975 }
976
977 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
978 {
979         mmu_spte_clear_track_bits(sptep);
980         __pte_list_remove(sptep, rmap_head);
981 }
982
983 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
984                                            struct kvm_memory_slot *slot)
985 {
986         unsigned long idx;
987
988         idx = gfn_to_index(gfn, slot->base_gfn, level);
989         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
990 }
991
992 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
993                                          struct kvm_mmu_page *sp)
994 {
995         struct kvm_memslots *slots;
996         struct kvm_memory_slot *slot;
997
998         slots = kvm_memslots_for_spte_role(kvm, sp->role);
999         slot = __gfn_to_memslot(slots, gfn);
1000         return __gfn_to_rmap(gfn, sp->role.level, slot);
1001 }
1002
1003 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1004 {
1005         struct kvm_mmu_memory_cache *mc;
1006
1007         mc = &vcpu->arch.mmu_pte_list_desc_cache;
1008         return kvm_mmu_memory_cache_nr_free_objects(mc);
1009 }
1010
1011 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1012 {
1013         struct kvm_mmu_page *sp;
1014         struct kvm_rmap_head *rmap_head;
1015
1016         sp = sptep_to_sp(spte);
1017         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1018         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1019         return pte_list_add(vcpu, spte, rmap_head);
1020 }
1021
1022 static void rmap_remove(struct kvm *kvm, u64 *spte)
1023 {
1024         struct kvm_mmu_page *sp;
1025         gfn_t gfn;
1026         struct kvm_rmap_head *rmap_head;
1027
1028         sp = sptep_to_sp(spte);
1029         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1030         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1031         __pte_list_remove(spte, rmap_head);
1032 }
1033
1034 /*
1035  * Used by the following functions to iterate through the sptes linked by a
1036  * rmap.  All fields are private and not assumed to be used outside.
1037  */
1038 struct rmap_iterator {
1039         /* private fields */
1040         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1041         int pos;                        /* index of the sptep */
1042 };
1043
1044 /*
1045  * Iteration must be started by this function.  This should also be used after
1046  * removing/dropping sptes from the rmap link because in such cases the
1047  * information in the iterator may not be valid.
1048  *
1049  * Returns sptep if found, NULL otherwise.
1050  */
1051 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1052                            struct rmap_iterator *iter)
1053 {
1054         u64 *sptep;
1055
1056         if (!rmap_head->val)
1057                 return NULL;
1058
1059         if (!(rmap_head->val & 1)) {
1060                 iter->desc = NULL;
1061                 sptep = (u64 *)rmap_head->val;
1062                 goto out;
1063         }
1064
1065         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1066         iter->pos = 0;
1067         sptep = iter->desc->sptes[iter->pos];
1068 out:
1069         BUG_ON(!is_shadow_present_pte(*sptep));
1070         return sptep;
1071 }
1072
1073 /*
1074  * Must be used with a valid iterator: e.g. after rmap_get_first().
1075  *
1076  * Returns sptep if found, NULL otherwise.
1077  */
1078 static u64 *rmap_get_next(struct rmap_iterator *iter)
1079 {
1080         u64 *sptep;
1081
1082         if (iter->desc) {
1083                 if (iter->pos < PTE_LIST_EXT - 1) {
1084                         ++iter->pos;
1085                         sptep = iter->desc->sptes[iter->pos];
1086                         if (sptep)
1087                                 goto out;
1088                 }
1089
1090                 iter->desc = iter->desc->more;
1091
1092                 if (iter->desc) {
1093                         iter->pos = 0;
1094                         /* desc->sptes[0] cannot be NULL */
1095                         sptep = iter->desc->sptes[iter->pos];
1096                         goto out;
1097                 }
1098         }
1099
1100         return NULL;
1101 out:
1102         BUG_ON(!is_shadow_present_pte(*sptep));
1103         return sptep;
1104 }
1105
1106 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1107         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1108              _spte_; _spte_ = rmap_get_next(_iter_))
1109
1110 static void drop_spte(struct kvm *kvm, u64 *sptep)
1111 {
1112         if (mmu_spte_clear_track_bits(sptep))
1113                 rmap_remove(kvm, sptep);
1114 }
1115
1116
1117 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1118 {
1119         if (is_large_pte(*sptep)) {
1120                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1121                 drop_spte(kvm, sptep);
1122                 --kvm->stat.lpages;
1123                 return true;
1124         }
1125
1126         return false;
1127 }
1128
1129 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1130 {
1131         if (__drop_large_spte(vcpu->kvm, sptep)) {
1132                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1133
1134                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1135                         KVM_PAGES_PER_HPAGE(sp->role.level));
1136         }
1137 }
1138
1139 /*
1140  * Write-protect on the specified @sptep, @pt_protect indicates whether
1141  * spte write-protection is caused by protecting shadow page table.
1142  *
1143  * Note: write protection is difference between dirty logging and spte
1144  * protection:
1145  * - for dirty logging, the spte can be set to writable at anytime if
1146  *   its dirty bitmap is properly set.
1147  * - for spte protection, the spte can be writable only after unsync-ing
1148  *   shadow page.
1149  *
1150  * Return true if tlb need be flushed.
1151  */
1152 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1153 {
1154         u64 spte = *sptep;
1155
1156         if (!is_writable_pte(spte) &&
1157               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1158                 return false;
1159
1160         rmap_printk("spte %p %llx\n", sptep, *sptep);
1161
1162         if (pt_protect)
1163                 spte &= ~shadow_mmu_writable_mask;
1164         spte = spte & ~PT_WRITABLE_MASK;
1165
1166         return mmu_spte_update(sptep, spte);
1167 }
1168
1169 static bool __rmap_write_protect(struct kvm *kvm,
1170                                  struct kvm_rmap_head *rmap_head,
1171                                  bool pt_protect)
1172 {
1173         u64 *sptep;
1174         struct rmap_iterator iter;
1175         bool flush = false;
1176
1177         for_each_rmap_spte(rmap_head, &iter, sptep)
1178                 flush |= spte_write_protect(sptep, pt_protect);
1179
1180         return flush;
1181 }
1182
1183 static bool spte_clear_dirty(u64 *sptep)
1184 {
1185         u64 spte = *sptep;
1186
1187         rmap_printk("spte %p %llx\n", sptep, *sptep);
1188
1189         MMU_WARN_ON(!spte_ad_enabled(spte));
1190         spte &= ~shadow_dirty_mask;
1191         return mmu_spte_update(sptep, spte);
1192 }
1193
1194 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1195 {
1196         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1197                                                (unsigned long *)sptep);
1198         if (was_writable && !spte_ad_enabled(*sptep))
1199                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1200
1201         return was_writable;
1202 }
1203
1204 /*
1205  * Gets the GFN ready for another round of dirty logging by clearing the
1206  *      - D bit on ad-enabled SPTEs, and
1207  *      - W bit on ad-disabled SPTEs.
1208  * Returns true iff any D or W bits were cleared.
1209  */
1210 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1211                                struct kvm_memory_slot *slot)
1212 {
1213         u64 *sptep;
1214         struct rmap_iterator iter;
1215         bool flush = false;
1216
1217         for_each_rmap_spte(rmap_head, &iter, sptep)
1218                 if (spte_ad_need_write_protect(*sptep))
1219                         flush |= spte_wrprot_for_clear_dirty(sptep);
1220                 else
1221                         flush |= spte_clear_dirty(sptep);
1222
1223         return flush;
1224 }
1225
1226 /**
1227  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1228  * @kvm: kvm instance
1229  * @slot: slot to protect
1230  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1231  * @mask: indicates which pages we should protect
1232  *
1233  * Used when we do not need to care about huge page mappings.
1234  */
1235 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1236                                      struct kvm_memory_slot *slot,
1237                                      gfn_t gfn_offset, unsigned long mask)
1238 {
1239         struct kvm_rmap_head *rmap_head;
1240
1241         if (is_tdp_mmu_enabled(kvm))
1242                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1243                                 slot->base_gfn + gfn_offset, mask, true);
1244
1245         if (!kvm_memslots_have_rmaps(kvm))
1246                 return;
1247
1248         while (mask) {
1249                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1250                                           PG_LEVEL_4K, slot);
1251                 __rmap_write_protect(kvm, rmap_head, false);
1252
1253                 /* clear the first set bit */
1254                 mask &= mask - 1;
1255         }
1256 }
1257
1258 /**
1259  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1260  * protect the page if the D-bit isn't supported.
1261  * @kvm: kvm instance
1262  * @slot: slot to clear D-bit
1263  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1264  * @mask: indicates which pages we should clear D-bit
1265  *
1266  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1267  */
1268 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1269                                          struct kvm_memory_slot *slot,
1270                                          gfn_t gfn_offset, unsigned long mask)
1271 {
1272         struct kvm_rmap_head *rmap_head;
1273
1274         if (is_tdp_mmu_enabled(kvm))
1275                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1276                                 slot->base_gfn + gfn_offset, mask, false);
1277
1278         if (!kvm_memslots_have_rmaps(kvm))
1279                 return;
1280
1281         while (mask) {
1282                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1283                                           PG_LEVEL_4K, slot);
1284                 __rmap_clear_dirty(kvm, rmap_head, slot);
1285
1286                 /* clear the first set bit */
1287                 mask &= mask - 1;
1288         }
1289 }
1290
1291 /**
1292  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1293  * PT level pages.
1294  *
1295  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1296  * enable dirty logging for them.
1297  *
1298  * We need to care about huge page mappings: e.g. during dirty logging we may
1299  * have such mappings.
1300  */
1301 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1302                                 struct kvm_memory_slot *slot,
1303                                 gfn_t gfn_offset, unsigned long mask)
1304 {
1305         /*
1306          * Huge pages are NOT write protected when we start dirty logging in
1307          * initially-all-set mode; must write protect them here so that they
1308          * are split to 4K on the first write.
1309          *
1310          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1311          * of memslot has no such restriction, so the range can cross two large
1312          * pages.
1313          */
1314         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1315                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1316                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1317
1318                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1319
1320                 /* Cross two large pages? */
1321                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1322                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1323                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1324                                                        PG_LEVEL_2M);
1325         }
1326
1327         /* Now handle 4K PTEs.  */
1328         if (kvm_x86_ops.cpu_dirty_log_size)
1329                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1330         else
1331                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1332 }
1333
1334 int kvm_cpu_dirty_log_size(void)
1335 {
1336         return kvm_x86_ops.cpu_dirty_log_size;
1337 }
1338
1339 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1340                                     struct kvm_memory_slot *slot, u64 gfn,
1341                                     int min_level)
1342 {
1343         struct kvm_rmap_head *rmap_head;
1344         int i;
1345         bool write_protected = false;
1346
1347         if (kvm_memslots_have_rmaps(kvm)) {
1348                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1349                         rmap_head = __gfn_to_rmap(gfn, i, slot);
1350                         write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1351                 }
1352         }
1353
1354         if (is_tdp_mmu_enabled(kvm))
1355                 write_protected |=
1356                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1357
1358         return write_protected;
1359 }
1360
1361 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1362 {
1363         struct kvm_memory_slot *slot;
1364
1365         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1366         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1367 }
1368
1369 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1370                           struct kvm_memory_slot *slot)
1371 {
1372         u64 *sptep;
1373         struct rmap_iterator iter;
1374         bool flush = false;
1375
1376         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1377                 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1378
1379                 pte_list_remove(rmap_head, sptep);
1380                 flush = true;
1381         }
1382
1383         return flush;
1384 }
1385
1386 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1387                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1388                             pte_t unused)
1389 {
1390         return kvm_zap_rmapp(kvm, rmap_head, slot);
1391 }
1392
1393 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1394                               struct kvm_memory_slot *slot, gfn_t gfn, int level,
1395                               pte_t pte)
1396 {
1397         u64 *sptep;
1398         struct rmap_iterator iter;
1399         int need_flush = 0;
1400         u64 new_spte;
1401         kvm_pfn_t new_pfn;
1402
1403         WARN_ON(pte_huge(pte));
1404         new_pfn = pte_pfn(pte);
1405
1406 restart:
1407         for_each_rmap_spte(rmap_head, &iter, sptep) {
1408                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1409                             sptep, *sptep, gfn, level);
1410
1411                 need_flush = 1;
1412
1413                 if (pte_write(pte)) {
1414                         pte_list_remove(rmap_head, sptep);
1415                         goto restart;
1416                 } else {
1417                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1418                                         *sptep, new_pfn);
1419
1420                         mmu_spte_clear_track_bits(sptep);
1421                         mmu_spte_set(sptep, new_spte);
1422                 }
1423         }
1424
1425         if (need_flush && kvm_available_flush_tlb_with_range()) {
1426                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1427                 return 0;
1428         }
1429
1430         return need_flush;
1431 }
1432
1433 struct slot_rmap_walk_iterator {
1434         /* input fields. */
1435         struct kvm_memory_slot *slot;
1436         gfn_t start_gfn;
1437         gfn_t end_gfn;
1438         int start_level;
1439         int end_level;
1440
1441         /* output fields. */
1442         gfn_t gfn;
1443         struct kvm_rmap_head *rmap;
1444         int level;
1445
1446         /* private field. */
1447         struct kvm_rmap_head *end_rmap;
1448 };
1449
1450 static void
1451 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1452 {
1453         iterator->level = level;
1454         iterator->gfn = iterator->start_gfn;
1455         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1456         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1457                                            iterator->slot);
1458 }
1459
1460 static void
1461 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1462                     struct kvm_memory_slot *slot, int start_level,
1463                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1464 {
1465         iterator->slot = slot;
1466         iterator->start_level = start_level;
1467         iterator->end_level = end_level;
1468         iterator->start_gfn = start_gfn;
1469         iterator->end_gfn = end_gfn;
1470
1471         rmap_walk_init_level(iterator, iterator->start_level);
1472 }
1473
1474 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1475 {
1476         return !!iterator->rmap;
1477 }
1478
1479 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1480 {
1481         if (++iterator->rmap <= iterator->end_rmap) {
1482                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1483                 return;
1484         }
1485
1486         if (++iterator->level > iterator->end_level) {
1487                 iterator->rmap = NULL;
1488                 return;
1489         }
1490
1491         rmap_walk_init_level(iterator, iterator->level);
1492 }
1493
1494 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1495            _start_gfn, _end_gfn, _iter_)                                \
1496         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1497                                  _end_level_, _start_gfn, _end_gfn);    \
1498              slot_rmap_walk_okay(_iter_);                               \
1499              slot_rmap_walk_next(_iter_))
1500
1501 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1502                                struct kvm_memory_slot *slot, gfn_t gfn,
1503                                int level, pte_t pte);
1504
1505 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1506                                                  struct kvm_gfn_range *range,
1507                                                  rmap_handler_t handler)
1508 {
1509         struct slot_rmap_walk_iterator iterator;
1510         bool ret = false;
1511
1512         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1513                                  range->start, range->end - 1, &iterator)
1514                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1515                                iterator.level, range->pte);
1516
1517         return ret;
1518 }
1519
1520 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1521 {
1522         bool flush = false;
1523
1524         if (kvm_memslots_have_rmaps(kvm))
1525                 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1526
1527         if (is_tdp_mmu_enabled(kvm))
1528                 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1529
1530         return flush;
1531 }
1532
1533 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1534 {
1535         bool flush = false;
1536
1537         if (kvm_memslots_have_rmaps(kvm))
1538                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1539
1540         if (is_tdp_mmu_enabled(kvm))
1541                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1542
1543         return flush;
1544 }
1545
1546 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1547                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1548                           pte_t unused)
1549 {
1550         u64 *sptep;
1551         struct rmap_iterator iter;
1552         int young = 0;
1553
1554         for_each_rmap_spte(rmap_head, &iter, sptep)
1555                 young |= mmu_spte_age(sptep);
1556
1557         return young;
1558 }
1559
1560 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1561                                struct kvm_memory_slot *slot, gfn_t gfn,
1562                                int level, pte_t unused)
1563 {
1564         u64 *sptep;
1565         struct rmap_iterator iter;
1566
1567         for_each_rmap_spte(rmap_head, &iter, sptep)
1568                 if (is_accessed_spte(*sptep))
1569                         return 1;
1570         return 0;
1571 }
1572
1573 #define RMAP_RECYCLE_THRESHOLD 1000
1574
1575 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1576 {
1577         struct kvm_rmap_head *rmap_head;
1578         struct kvm_mmu_page *sp;
1579
1580         sp = sptep_to_sp(spte);
1581
1582         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1583
1584         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1585         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1586                         KVM_PAGES_PER_HPAGE(sp->role.level));
1587 }
1588
1589 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1590 {
1591         bool young = false;
1592
1593         if (kvm_memslots_have_rmaps(kvm))
1594                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1595
1596         if (is_tdp_mmu_enabled(kvm))
1597                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1598
1599         return young;
1600 }
1601
1602 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1603 {
1604         bool young = false;
1605
1606         if (kvm_memslots_have_rmaps(kvm))
1607                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1608
1609         if (is_tdp_mmu_enabled(kvm))
1610                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1611
1612         return young;
1613 }
1614
1615 #ifdef MMU_DEBUG
1616 static int is_empty_shadow_page(u64 *spt)
1617 {
1618         u64 *pos;
1619         u64 *end;
1620
1621         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1622                 if (is_shadow_present_pte(*pos)) {
1623                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1624                                pos, *pos);
1625                         return 0;
1626                 }
1627         return 1;
1628 }
1629 #endif
1630
1631 /*
1632  * This value is the sum of all of the kvm instances's
1633  * kvm->arch.n_used_mmu_pages values.  We need a global,
1634  * aggregate version in order to make the slab shrinker
1635  * faster
1636  */
1637 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1638 {
1639         kvm->arch.n_used_mmu_pages += nr;
1640         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1641 }
1642
1643 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1644 {
1645         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1646         hlist_del(&sp->hash_link);
1647         list_del(&sp->link);
1648         free_page((unsigned long)sp->spt);
1649         if (!sp->role.direct)
1650                 free_page((unsigned long)sp->gfns);
1651         kmem_cache_free(mmu_page_header_cache, sp);
1652 }
1653
1654 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1655 {
1656         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1657 }
1658
1659 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1660                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1661 {
1662         if (!parent_pte)
1663                 return;
1664
1665         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1666 }
1667
1668 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1669                                        u64 *parent_pte)
1670 {
1671         __pte_list_remove(parent_pte, &sp->parent_ptes);
1672 }
1673
1674 static void drop_parent_pte(struct kvm_mmu_page *sp,
1675                             u64 *parent_pte)
1676 {
1677         mmu_page_remove_parent_pte(sp, parent_pte);
1678         mmu_spte_clear_no_track(parent_pte);
1679 }
1680
1681 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1682 {
1683         struct kvm_mmu_page *sp;
1684
1685         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1686         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1687         if (!direct)
1688                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1689         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1690
1691         /*
1692          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1693          * depends on valid pages being added to the head of the list.  See
1694          * comments in kvm_zap_obsolete_pages().
1695          */
1696         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1697         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1698         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1699         return sp;
1700 }
1701
1702 static void mark_unsync(u64 *spte);
1703 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1704 {
1705         u64 *sptep;
1706         struct rmap_iterator iter;
1707
1708         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1709                 mark_unsync(sptep);
1710         }
1711 }
1712
1713 static void mark_unsync(u64 *spte)
1714 {
1715         struct kvm_mmu_page *sp;
1716         unsigned int index;
1717
1718         sp = sptep_to_sp(spte);
1719         index = spte - sp->spt;
1720         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1721                 return;
1722         if (sp->unsync_children++)
1723                 return;
1724         kvm_mmu_mark_parents_unsync(sp);
1725 }
1726
1727 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1728                                struct kvm_mmu_page *sp)
1729 {
1730         return 0;
1731 }
1732
1733 #define KVM_PAGE_ARRAY_NR 16
1734
1735 struct kvm_mmu_pages {
1736         struct mmu_page_and_offset {
1737                 struct kvm_mmu_page *sp;
1738                 unsigned int idx;
1739         } page[KVM_PAGE_ARRAY_NR];
1740         unsigned int nr;
1741 };
1742
1743 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1744                          int idx)
1745 {
1746         int i;
1747
1748         if (sp->unsync)
1749                 for (i=0; i < pvec->nr; i++)
1750                         if (pvec->page[i].sp == sp)
1751                                 return 0;
1752
1753         pvec->page[pvec->nr].sp = sp;
1754         pvec->page[pvec->nr].idx = idx;
1755         pvec->nr++;
1756         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1757 }
1758
1759 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1760 {
1761         --sp->unsync_children;
1762         WARN_ON((int)sp->unsync_children < 0);
1763         __clear_bit(idx, sp->unsync_child_bitmap);
1764 }
1765
1766 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1767                            struct kvm_mmu_pages *pvec)
1768 {
1769         int i, ret, nr_unsync_leaf = 0;
1770
1771         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1772                 struct kvm_mmu_page *child;
1773                 u64 ent = sp->spt[i];
1774
1775                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1776                         clear_unsync_child_bit(sp, i);
1777                         continue;
1778                 }
1779
1780                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1781
1782                 if (child->unsync_children) {
1783                         if (mmu_pages_add(pvec, child, i))
1784                                 return -ENOSPC;
1785
1786                         ret = __mmu_unsync_walk(child, pvec);
1787                         if (!ret) {
1788                                 clear_unsync_child_bit(sp, i);
1789                                 continue;
1790                         } else if (ret > 0) {
1791                                 nr_unsync_leaf += ret;
1792                         } else
1793                                 return ret;
1794                 } else if (child->unsync) {
1795                         nr_unsync_leaf++;
1796                         if (mmu_pages_add(pvec, child, i))
1797                                 return -ENOSPC;
1798                 } else
1799                         clear_unsync_child_bit(sp, i);
1800         }
1801
1802         return nr_unsync_leaf;
1803 }
1804
1805 #define INVALID_INDEX (-1)
1806
1807 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1808                            struct kvm_mmu_pages *pvec)
1809 {
1810         pvec->nr = 0;
1811         if (!sp->unsync_children)
1812                 return 0;
1813
1814         mmu_pages_add(pvec, sp, INVALID_INDEX);
1815         return __mmu_unsync_walk(sp, pvec);
1816 }
1817
1818 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1819 {
1820         WARN_ON(!sp->unsync);
1821         trace_kvm_mmu_sync_page(sp);
1822         sp->unsync = 0;
1823         --kvm->stat.mmu_unsync;
1824 }
1825
1826 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1827                                      struct list_head *invalid_list);
1828 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1829                                     struct list_head *invalid_list);
1830
1831 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1832         hlist_for_each_entry(_sp, _list, hash_link)                     \
1833                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1834                 } else
1835
1836 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1837         for_each_valid_sp(_kvm, _sp,                                    \
1838           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1839                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1840
1841 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1842                          struct list_head *invalid_list)
1843 {
1844         if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1845                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1846                 return false;
1847         }
1848
1849         return true;
1850 }
1851
1852 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1853                                         struct list_head *invalid_list,
1854                                         bool remote_flush)
1855 {
1856         if (!remote_flush && list_empty(invalid_list))
1857                 return false;
1858
1859         if (!list_empty(invalid_list))
1860                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1861         else
1862                 kvm_flush_remote_tlbs(kvm);
1863         return true;
1864 }
1865
1866 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1867                                  struct list_head *invalid_list,
1868                                  bool remote_flush, bool local_flush)
1869 {
1870         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1871                 return;
1872
1873         if (local_flush)
1874                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1875 }
1876
1877 #ifdef CONFIG_KVM_MMU_AUDIT
1878 #include "mmu_audit.c"
1879 #else
1880 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1881 static void mmu_audit_disable(void) { }
1882 #endif
1883
1884 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1885 {
1886         return sp->role.invalid ||
1887                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1888 }
1889
1890 struct mmu_page_path {
1891         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1892         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1893 };
1894
1895 #define for_each_sp(pvec, sp, parents, i)                       \
1896                 for (i = mmu_pages_first(&pvec, &parents);      \
1897                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1898                         i = mmu_pages_next(&pvec, &parents, i))
1899
1900 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1901                           struct mmu_page_path *parents,
1902                           int i)
1903 {
1904         int n;
1905
1906         for (n = i+1; n < pvec->nr; n++) {
1907                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1908                 unsigned idx = pvec->page[n].idx;
1909                 int level = sp->role.level;
1910
1911                 parents->idx[level-1] = idx;
1912                 if (level == PG_LEVEL_4K)
1913                         break;
1914
1915                 parents->parent[level-2] = sp;
1916         }
1917
1918         return n;
1919 }
1920
1921 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1922                            struct mmu_page_path *parents)
1923 {
1924         struct kvm_mmu_page *sp;
1925         int level;
1926
1927         if (pvec->nr == 0)
1928                 return 0;
1929
1930         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1931
1932         sp = pvec->page[0].sp;
1933         level = sp->role.level;
1934         WARN_ON(level == PG_LEVEL_4K);
1935
1936         parents->parent[level-2] = sp;
1937
1938         /* Also set up a sentinel.  Further entries in pvec are all
1939          * children of sp, so this element is never overwritten.
1940          */
1941         parents->parent[level-1] = NULL;
1942         return mmu_pages_next(pvec, parents, 0);
1943 }
1944
1945 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1946 {
1947         struct kvm_mmu_page *sp;
1948         unsigned int level = 0;
1949
1950         do {
1951                 unsigned int idx = parents->idx[level];
1952                 sp = parents->parent[level];
1953                 if (!sp)
1954                         return;
1955
1956                 WARN_ON(idx == INVALID_INDEX);
1957                 clear_unsync_child_bit(sp, idx);
1958                 level++;
1959         } while (!sp->unsync_children);
1960 }
1961
1962 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1963                               struct kvm_mmu_page *parent)
1964 {
1965         int i;
1966         struct kvm_mmu_page *sp;
1967         struct mmu_page_path parents;
1968         struct kvm_mmu_pages pages;
1969         LIST_HEAD(invalid_list);
1970         bool flush = false;
1971
1972         while (mmu_unsync_walk(parent, &pages)) {
1973                 bool protected = false;
1974
1975                 for_each_sp(pages, sp, parents, i)
1976                         protected |= rmap_write_protect(vcpu, sp->gfn);
1977
1978                 if (protected) {
1979                         kvm_flush_remote_tlbs(vcpu->kvm);
1980                         flush = false;
1981                 }
1982
1983                 for_each_sp(pages, sp, parents, i) {
1984                         kvm_unlink_unsync_page(vcpu->kvm, sp);
1985                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1986                         mmu_pages_clear_parents(&parents);
1987                 }
1988                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1989                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1990                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1991                         flush = false;
1992                 }
1993         }
1994
1995         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1996 }
1997
1998 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1999 {
2000         atomic_set(&sp->write_flooding_count,  0);
2001 }
2002
2003 static void clear_sp_write_flooding_count(u64 *spte)
2004 {
2005         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2006 }
2007
2008 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2009                                              gfn_t gfn,
2010                                              gva_t gaddr,
2011                                              unsigned level,
2012                                              int direct,
2013                                              unsigned int access)
2014 {
2015         bool direct_mmu = vcpu->arch.mmu->direct_map;
2016         union kvm_mmu_page_role role;
2017         struct hlist_head *sp_list;
2018         unsigned quadrant;
2019         struct kvm_mmu_page *sp;
2020         int collisions = 0;
2021         LIST_HEAD(invalid_list);
2022
2023         role = vcpu->arch.mmu->mmu_role.base;
2024         role.level = level;
2025         role.direct = direct;
2026         if (role.direct)
2027                 role.gpte_is_8_bytes = true;
2028         role.access = access;
2029         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2030                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2031                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2032                 role.quadrant = quadrant;
2033         }
2034
2035         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2036         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2037                 if (sp->gfn != gfn) {
2038                         collisions++;
2039                         continue;
2040                 }
2041
2042                 if (sp->role.word != role.word) {
2043                         /*
2044                          * If the guest is creating an upper-level page, zap
2045                          * unsync pages for the same gfn.  While it's possible
2046                          * the guest is using recursive page tables, in all
2047                          * likelihood the guest has stopped using the unsync
2048                          * page and is installing a completely unrelated page.
2049                          * Unsync pages must not be left as is, because the new
2050                          * upper-level page will be write-protected.
2051                          */
2052                         if (level > PG_LEVEL_4K && sp->unsync)
2053                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2054                                                          &invalid_list);
2055                         continue;
2056                 }
2057
2058                 if (direct_mmu)
2059                         goto trace_get_page;
2060
2061                 if (sp->unsync) {
2062                         /*
2063                          * The page is good, but is stale.  kvm_sync_page does
2064                          * get the latest guest state, but (unlike mmu_unsync_children)
2065                          * it doesn't write-protect the page or mark it synchronized!
2066                          * This way the validity of the mapping is ensured, but the
2067                          * overhead of write protection is not incurred until the
2068                          * guest invalidates the TLB mapping.  This allows multiple
2069                          * SPs for a single gfn to be unsync.
2070                          *
2071                          * If the sync fails, the page is zapped.  If so, break
2072                          * in order to rebuild it.
2073                          */
2074                         if (!kvm_sync_page(vcpu, sp, &invalid_list))
2075                                 break;
2076
2077                         WARN_ON(!list_empty(&invalid_list));
2078                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2079                 }
2080
2081                 if (sp->unsync_children)
2082                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2083
2084                 __clear_sp_write_flooding_count(sp);
2085
2086 trace_get_page:
2087                 trace_kvm_mmu_get_page(sp, false);
2088                 goto out;
2089         }
2090
2091         ++vcpu->kvm->stat.mmu_cache_miss;
2092
2093         sp = kvm_mmu_alloc_page(vcpu, direct);
2094
2095         sp->gfn = gfn;
2096         sp->role = role;
2097         hlist_add_head(&sp->hash_link, sp_list);
2098         if (!direct) {
2099                 account_shadowed(vcpu->kvm, sp);
2100                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2101                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2102         }
2103         trace_kvm_mmu_get_page(sp, true);
2104 out:
2105         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2106
2107         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2108                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2109         return sp;
2110 }
2111
2112 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2113                                         struct kvm_vcpu *vcpu, hpa_t root,
2114                                         u64 addr)
2115 {
2116         iterator->addr = addr;
2117         iterator->shadow_addr = root;
2118         iterator->level = vcpu->arch.mmu->shadow_root_level;
2119
2120         if (iterator->level == PT64_ROOT_4LEVEL &&
2121             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2122             !vcpu->arch.mmu->direct_map)
2123                 --iterator->level;
2124
2125         if (iterator->level == PT32E_ROOT_LEVEL) {
2126                 /*
2127                  * prev_root is currently only used for 64-bit hosts. So only
2128                  * the active root_hpa is valid here.
2129                  */
2130                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2131
2132                 iterator->shadow_addr
2133                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2134                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2135                 --iterator->level;
2136                 if (!iterator->shadow_addr)
2137                         iterator->level = 0;
2138         }
2139 }
2140
2141 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2142                              struct kvm_vcpu *vcpu, u64 addr)
2143 {
2144         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2145                                     addr);
2146 }
2147
2148 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2149 {
2150         if (iterator->level < PG_LEVEL_4K)
2151                 return false;
2152
2153         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2154         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2155         return true;
2156 }
2157
2158 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2159                                u64 spte)
2160 {
2161         if (is_last_spte(spte, iterator->level)) {
2162                 iterator->level = 0;
2163                 return;
2164         }
2165
2166         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2167         --iterator->level;
2168 }
2169
2170 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2171 {
2172         __shadow_walk_next(iterator, *iterator->sptep);
2173 }
2174
2175 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2176                              struct kvm_mmu_page *sp)
2177 {
2178         u64 spte;
2179
2180         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2181
2182         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2183
2184         mmu_spte_set(sptep, spte);
2185
2186         mmu_page_add_parent_pte(vcpu, sp, sptep);
2187
2188         if (sp->unsync_children || sp->unsync)
2189                 mark_unsync(sptep);
2190 }
2191
2192 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2193                                    unsigned direct_access)
2194 {
2195         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2196                 struct kvm_mmu_page *child;
2197
2198                 /*
2199                  * For the direct sp, if the guest pte's dirty bit
2200                  * changed form clean to dirty, it will corrupt the
2201                  * sp's access: allow writable in the read-only sp,
2202                  * so we should update the spte at this point to get
2203                  * a new sp with the correct access.
2204                  */
2205                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2206                 if (child->role.access == direct_access)
2207                         return;
2208
2209                 drop_parent_pte(child, sptep);
2210                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2211         }
2212 }
2213
2214 /* Returns the number of zapped non-leaf child shadow pages. */
2215 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2216                             u64 *spte, struct list_head *invalid_list)
2217 {
2218         u64 pte;
2219         struct kvm_mmu_page *child;
2220
2221         pte = *spte;
2222         if (is_shadow_present_pte(pte)) {
2223                 if (is_last_spte(pte, sp->role.level)) {
2224                         drop_spte(kvm, spte);
2225                         if (is_large_pte(pte))
2226                                 --kvm->stat.lpages;
2227                 } else {
2228                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2229                         drop_parent_pte(child, spte);
2230
2231                         /*
2232                          * Recursively zap nested TDP SPs, parentless SPs are
2233                          * unlikely to be used again in the near future.  This
2234                          * avoids retaining a large number of stale nested SPs.
2235                          */
2236                         if (tdp_enabled && invalid_list &&
2237                             child->role.guest_mode && !child->parent_ptes.val)
2238                                 return kvm_mmu_prepare_zap_page(kvm, child,
2239                                                                 invalid_list);
2240                 }
2241         } else if (is_mmio_spte(pte)) {
2242                 mmu_spte_clear_no_track(spte);
2243         }
2244         return 0;
2245 }
2246
2247 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2248                                         struct kvm_mmu_page *sp,
2249                                         struct list_head *invalid_list)
2250 {
2251         int zapped = 0;
2252         unsigned i;
2253
2254         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2255                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2256
2257         return zapped;
2258 }
2259
2260 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2261 {
2262         u64 *sptep;
2263         struct rmap_iterator iter;
2264
2265         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2266                 drop_parent_pte(sp, sptep);
2267 }
2268
2269 static int mmu_zap_unsync_children(struct kvm *kvm,
2270                                    struct kvm_mmu_page *parent,
2271                                    struct list_head *invalid_list)
2272 {
2273         int i, zapped = 0;
2274         struct mmu_page_path parents;
2275         struct kvm_mmu_pages pages;
2276
2277         if (parent->role.level == PG_LEVEL_4K)
2278                 return 0;
2279
2280         while (mmu_unsync_walk(parent, &pages)) {
2281                 struct kvm_mmu_page *sp;
2282
2283                 for_each_sp(pages, sp, parents, i) {
2284                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2285                         mmu_pages_clear_parents(&parents);
2286                         zapped++;
2287                 }
2288         }
2289
2290         return zapped;
2291 }
2292
2293 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2294                                        struct kvm_mmu_page *sp,
2295                                        struct list_head *invalid_list,
2296                                        int *nr_zapped)
2297 {
2298         bool list_unstable;
2299
2300         trace_kvm_mmu_prepare_zap_page(sp);
2301         ++kvm->stat.mmu_shadow_zapped;
2302         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2303         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2304         kvm_mmu_unlink_parents(kvm, sp);
2305
2306         /* Zapping children means active_mmu_pages has become unstable. */
2307         list_unstable = *nr_zapped;
2308
2309         if (!sp->role.invalid && !sp->role.direct)
2310                 unaccount_shadowed(kvm, sp);
2311
2312         if (sp->unsync)
2313                 kvm_unlink_unsync_page(kvm, sp);
2314         if (!sp->root_count) {
2315                 /* Count self */
2316                 (*nr_zapped)++;
2317
2318                 /*
2319                  * Already invalid pages (previously active roots) are not on
2320                  * the active page list.  See list_del() in the "else" case of
2321                  * !sp->root_count.
2322                  */
2323                 if (sp->role.invalid)
2324                         list_add(&sp->link, invalid_list);
2325                 else
2326                         list_move(&sp->link, invalid_list);
2327                 kvm_mod_used_mmu_pages(kvm, -1);
2328         } else {
2329                 /*
2330                  * Remove the active root from the active page list, the root
2331                  * will be explicitly freed when the root_count hits zero.
2332                  */
2333                 list_del(&sp->link);
2334
2335                 /*
2336                  * Obsolete pages cannot be used on any vCPUs, see the comment
2337                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2338                  * treats invalid shadow pages as being obsolete.
2339                  */
2340                 if (!is_obsolete_sp(kvm, sp))
2341                         kvm_reload_remote_mmus(kvm);
2342         }
2343
2344         if (sp->lpage_disallowed)
2345                 unaccount_huge_nx_page(kvm, sp);
2346
2347         sp->role.invalid = 1;
2348         return list_unstable;
2349 }
2350
2351 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2352                                      struct list_head *invalid_list)
2353 {
2354         int nr_zapped;
2355
2356         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2357         return nr_zapped;
2358 }
2359
2360 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2361                                     struct list_head *invalid_list)
2362 {
2363         struct kvm_mmu_page *sp, *nsp;
2364
2365         if (list_empty(invalid_list))
2366                 return;
2367
2368         /*
2369          * We need to make sure everyone sees our modifications to
2370          * the page tables and see changes to vcpu->mode here. The barrier
2371          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2372          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2373          *
2374          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2375          * guest mode and/or lockless shadow page table walks.
2376          */
2377         kvm_flush_remote_tlbs(kvm);
2378
2379         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2380                 WARN_ON(!sp->role.invalid || sp->root_count);
2381                 kvm_mmu_free_page(sp);
2382         }
2383 }
2384
2385 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2386                                                   unsigned long nr_to_zap)
2387 {
2388         unsigned long total_zapped = 0;
2389         struct kvm_mmu_page *sp, *tmp;
2390         LIST_HEAD(invalid_list);
2391         bool unstable;
2392         int nr_zapped;
2393
2394         if (list_empty(&kvm->arch.active_mmu_pages))
2395                 return 0;
2396
2397 restart:
2398         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2399                 /*
2400                  * Don't zap active root pages, the page itself can't be freed
2401                  * and zapping it will just force vCPUs to realloc and reload.
2402                  */
2403                 if (sp->root_count)
2404                         continue;
2405
2406                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2407                                                       &nr_zapped);
2408                 total_zapped += nr_zapped;
2409                 if (total_zapped >= nr_to_zap)
2410                         break;
2411
2412                 if (unstable)
2413                         goto restart;
2414         }
2415
2416         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2417
2418         kvm->stat.mmu_recycled += total_zapped;
2419         return total_zapped;
2420 }
2421
2422 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2423 {
2424         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2425                 return kvm->arch.n_max_mmu_pages -
2426                         kvm->arch.n_used_mmu_pages;
2427
2428         return 0;
2429 }
2430
2431 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2432 {
2433         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2434
2435         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2436                 return 0;
2437
2438         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2439
2440         /*
2441          * Note, this check is intentionally soft, it only guarantees that one
2442          * page is available, while the caller may end up allocating as many as
2443          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2444          * exceeding the (arbitrary by default) limit will not harm the host,
2445          * being too agressive may unnecessarily kill the guest, and getting an
2446          * exact count is far more trouble than it's worth, especially in the
2447          * page fault paths.
2448          */
2449         if (!kvm_mmu_available_pages(vcpu->kvm))
2450                 return -ENOSPC;
2451         return 0;
2452 }
2453
2454 /*
2455  * Changing the number of mmu pages allocated to the vm
2456  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2457  */
2458 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2459 {
2460         write_lock(&kvm->mmu_lock);
2461
2462         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2463                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2464                                                   goal_nr_mmu_pages);
2465
2466                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2467         }
2468
2469         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2470
2471         write_unlock(&kvm->mmu_lock);
2472 }
2473
2474 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2475 {
2476         struct kvm_mmu_page *sp;
2477         LIST_HEAD(invalid_list);
2478         int r;
2479
2480         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2481         r = 0;
2482         write_lock(&kvm->mmu_lock);
2483         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2484                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2485                          sp->role.word);
2486                 r = 1;
2487                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2488         }
2489         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2490         write_unlock(&kvm->mmu_lock);
2491
2492         return r;
2493 }
2494
2495 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2496 {
2497         gpa_t gpa;
2498         int r;
2499
2500         if (vcpu->arch.mmu->direct_map)
2501                 return 0;
2502
2503         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2504
2505         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2506
2507         return r;
2508 }
2509
2510 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2511 {
2512         trace_kvm_mmu_unsync_page(sp);
2513         ++vcpu->kvm->stat.mmu_unsync;
2514         sp->unsync = 1;
2515
2516         kvm_mmu_mark_parents_unsync(sp);
2517 }
2518
2519 /*
2520  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2521  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2522  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2523  * be write-protected.
2524  */
2525 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2526 {
2527         struct kvm_mmu_page *sp;
2528
2529         /*
2530          * Force write-protection if the page is being tracked.  Note, the page
2531          * track machinery is used to write-protect upper-level shadow pages,
2532          * i.e. this guards the role.level == 4K assertion below!
2533          */
2534         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2535                 return -EPERM;
2536
2537         /*
2538          * The page is not write-tracked, mark existing shadow pages unsync
2539          * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2540          * that case, KVM must complete emulation of the guest TLB flush before
2541          * allowing shadow pages to become unsync (writable by the guest).
2542          */
2543         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2544                 if (!can_unsync)
2545                         return -EPERM;
2546
2547                 if (sp->unsync)
2548                         continue;
2549
2550                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2551                 kvm_unsync_page(vcpu, sp);
2552         }
2553
2554         /*
2555          * We need to ensure that the marking of unsync pages is visible
2556          * before the SPTE is updated to allow writes because
2557          * kvm_mmu_sync_roots() checks the unsync flags without holding
2558          * the MMU lock and so can race with this. If the SPTE was updated
2559          * before the page had been marked as unsync-ed, something like the
2560          * following could happen:
2561          *
2562          * CPU 1                    CPU 2
2563          * ---------------------------------------------------------------------
2564          * 1.2 Host updates SPTE
2565          *     to be writable
2566          *                      2.1 Guest writes a GPTE for GVA X.
2567          *                          (GPTE being in the guest page table shadowed
2568          *                           by the SP from CPU 1.)
2569          *                          This reads SPTE during the page table walk.
2570          *                          Since SPTE.W is read as 1, there is no
2571          *                          fault.
2572          *
2573          *                      2.2 Guest issues TLB flush.
2574          *                          That causes a VM Exit.
2575          *
2576          *                      2.3 Walking of unsync pages sees sp->unsync is
2577          *                          false and skips the page.
2578          *
2579          *                      2.4 Guest accesses GVA X.
2580          *                          Since the mapping in the SP was not updated,
2581          *                          so the old mapping for GVA X incorrectly
2582          *                          gets used.
2583          * 1.1 Host marks SP
2584          *     as unsync
2585          *     (sp->unsync = true)
2586          *
2587          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2588          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2589          * pairs with this write barrier.
2590          */
2591         smp_wmb();
2592
2593         return 0;
2594 }
2595
2596 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2597                     unsigned int pte_access, int level,
2598                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2599                     bool can_unsync, bool host_writable)
2600 {
2601         u64 spte;
2602         struct kvm_mmu_page *sp;
2603         int ret;
2604
2605         sp = sptep_to_sp(sptep);
2606
2607         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2608                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2609
2610         if (spte & PT_WRITABLE_MASK)
2611                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2612
2613         if (*sptep == spte)
2614                 ret |= SET_SPTE_SPURIOUS;
2615         else if (mmu_spte_update(sptep, spte))
2616                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2617         return ret;
2618 }
2619
2620 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2621                         unsigned int pte_access, bool write_fault, int level,
2622                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2623                         bool host_writable)
2624 {
2625         int was_rmapped = 0;
2626         int rmap_count;
2627         int set_spte_ret;
2628         int ret = RET_PF_FIXED;
2629         bool flush = false;
2630
2631         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2632                  *sptep, write_fault, gfn);
2633
2634         if (unlikely(is_noslot_pfn(pfn))) {
2635                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2636                 return RET_PF_EMULATE;
2637         }
2638
2639         if (is_shadow_present_pte(*sptep)) {
2640                 /*
2641                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2642                  * the parent of the now unreachable PTE.
2643                  */
2644                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2645                         struct kvm_mmu_page *child;
2646                         u64 pte = *sptep;
2647
2648                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2649                         drop_parent_pte(child, sptep);
2650                         flush = true;
2651                 } else if (pfn != spte_to_pfn(*sptep)) {
2652                         pgprintk("hfn old %llx new %llx\n",
2653                                  spte_to_pfn(*sptep), pfn);
2654                         drop_spte(vcpu->kvm, sptep);
2655                         flush = true;
2656                 } else
2657                         was_rmapped = 1;
2658         }
2659
2660         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2661                                 speculative, true, host_writable);
2662         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2663                 if (write_fault)
2664                         ret = RET_PF_EMULATE;
2665                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2666         }
2667
2668         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2669                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2670                                 KVM_PAGES_PER_HPAGE(level));
2671
2672         /*
2673          * The fault is fully spurious if and only if the new SPTE and old SPTE
2674          * are identical, and emulation is not required.
2675          */
2676         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2677                 WARN_ON_ONCE(!was_rmapped);
2678                 return RET_PF_SPURIOUS;
2679         }
2680
2681         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2682         trace_kvm_mmu_set_spte(level, gfn, sptep);
2683         if (!was_rmapped && is_large_pte(*sptep))
2684                 ++vcpu->kvm->stat.lpages;
2685
2686         if (is_shadow_present_pte(*sptep)) {
2687                 if (!was_rmapped) {
2688                         rmap_count = rmap_add(vcpu, sptep, gfn);
2689                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2690                                 rmap_recycle(vcpu, sptep, gfn);
2691                 }
2692         }
2693
2694         return ret;
2695 }
2696
2697 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2698                                      bool no_dirty_log)
2699 {
2700         struct kvm_memory_slot *slot;
2701
2702         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2703         if (!slot)
2704                 return KVM_PFN_ERR_FAULT;
2705
2706         return gfn_to_pfn_memslot_atomic(slot, gfn);
2707 }
2708
2709 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2710                                     struct kvm_mmu_page *sp,
2711                                     u64 *start, u64 *end)
2712 {
2713         struct page *pages[PTE_PREFETCH_NUM];
2714         struct kvm_memory_slot *slot;
2715         unsigned int access = sp->role.access;
2716         int i, ret;
2717         gfn_t gfn;
2718
2719         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2720         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2721         if (!slot)
2722                 return -1;
2723
2724         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2725         if (ret <= 0)
2726                 return -1;
2727
2728         for (i = 0; i < ret; i++, gfn++, start++) {
2729                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2730                              page_to_pfn(pages[i]), true, true);
2731                 put_page(pages[i]);
2732         }
2733
2734         return 0;
2735 }
2736
2737 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2738                                   struct kvm_mmu_page *sp, u64 *sptep)
2739 {
2740         u64 *spte, *start = NULL;
2741         int i;
2742
2743         WARN_ON(!sp->role.direct);
2744
2745         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2746         spte = sp->spt + i;
2747
2748         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2749                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2750                         if (!start)
2751                                 continue;
2752                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2753                                 break;
2754                         start = NULL;
2755                 } else if (!start)
2756                         start = spte;
2757         }
2758 }
2759
2760 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2761 {
2762         struct kvm_mmu_page *sp;
2763
2764         sp = sptep_to_sp(sptep);
2765
2766         /*
2767          * Without accessed bits, there's no way to distinguish between
2768          * actually accessed translations and prefetched, so disable pte
2769          * prefetch if accessed bits aren't available.
2770          */
2771         if (sp_ad_disabled(sp))
2772                 return;
2773
2774         if (sp->role.level > PG_LEVEL_4K)
2775                 return;
2776
2777         /*
2778          * If addresses are being invalidated, skip prefetching to avoid
2779          * accidentally prefetching those addresses.
2780          */
2781         if (unlikely(vcpu->kvm->mmu_notifier_count))
2782                 return;
2783
2784         __direct_pte_prefetch(vcpu, sp, sptep);
2785 }
2786
2787 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2788                                   const struct kvm_memory_slot *slot)
2789 {
2790         unsigned long hva;
2791         pte_t *pte;
2792         int level;
2793
2794         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2795                 return PG_LEVEL_4K;
2796
2797         /*
2798          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2799          * is not solely for performance, it's also necessary to avoid the
2800          * "writable" check in __gfn_to_hva_many(), which will always fail on
2801          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2802          * page fault steps have already verified the guest isn't writing a
2803          * read-only memslot.
2804          */
2805         hva = __gfn_to_hva_memslot(slot, gfn);
2806
2807         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2808         if (unlikely(!pte))
2809                 return PG_LEVEL_4K;
2810
2811         return level;
2812 }
2813
2814 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2815                               const struct kvm_memory_slot *slot, gfn_t gfn,
2816                               kvm_pfn_t pfn, int max_level)
2817 {
2818         struct kvm_lpage_info *linfo;
2819
2820         max_level = min(max_level, max_huge_page_level);
2821         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2822                 linfo = lpage_info_slot(gfn, slot, max_level);
2823                 if (!linfo->disallow_lpage)
2824                         break;
2825         }
2826
2827         if (max_level == PG_LEVEL_4K)
2828                 return PG_LEVEL_4K;
2829
2830         return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2831 }
2832
2833 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2834                             int max_level, kvm_pfn_t *pfnp,
2835                             bool huge_page_disallowed, int *req_level)
2836 {
2837         struct kvm_memory_slot *slot;
2838         kvm_pfn_t pfn = *pfnp;
2839         kvm_pfn_t mask;
2840         int level;
2841
2842         *req_level = PG_LEVEL_4K;
2843
2844         if (unlikely(max_level == PG_LEVEL_4K))
2845                 return PG_LEVEL_4K;
2846
2847         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2848                 return PG_LEVEL_4K;
2849
2850         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2851         if (!slot)
2852                 return PG_LEVEL_4K;
2853
2854         level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2855         if (level == PG_LEVEL_4K)
2856                 return level;
2857
2858         *req_level = level = min(level, max_level);
2859
2860         /*
2861          * Enforce the iTLB multihit workaround after capturing the requested
2862          * level, which will be used to do precise, accurate accounting.
2863          */
2864         if (huge_page_disallowed)
2865                 return PG_LEVEL_4K;
2866
2867         /*
2868          * mmu_notifier_retry() was successful and mmu_lock is held, so
2869          * the pmd can't be split from under us.
2870          */
2871         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2872         VM_BUG_ON((gfn & mask) != (pfn & mask));
2873         *pfnp = pfn & ~mask;
2874
2875         return level;
2876 }
2877
2878 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2879                                 kvm_pfn_t *pfnp, int *goal_levelp)
2880 {
2881         int level = *goal_levelp;
2882
2883         if (cur_level == level && level > PG_LEVEL_4K &&
2884             is_shadow_present_pte(spte) &&
2885             !is_large_pte(spte)) {
2886                 /*
2887                  * A small SPTE exists for this pfn, but FNAME(fetch)
2888                  * and __direct_map would like to create a large PTE
2889                  * instead: just force them to go down another level,
2890                  * patching back for them into pfn the next 9 bits of
2891                  * the address.
2892                  */
2893                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2894                                 KVM_PAGES_PER_HPAGE(level - 1);
2895                 *pfnp |= gfn & page_mask;
2896                 (*goal_levelp)--;
2897         }
2898 }
2899
2900 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2901                         int map_writable, int max_level, kvm_pfn_t pfn,
2902                         bool prefault, bool is_tdp)
2903 {
2904         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2905         bool write = error_code & PFERR_WRITE_MASK;
2906         bool exec = error_code & PFERR_FETCH_MASK;
2907         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2908         struct kvm_shadow_walk_iterator it;
2909         struct kvm_mmu_page *sp;
2910         int level, req_level, ret;
2911         gfn_t gfn = gpa >> PAGE_SHIFT;
2912         gfn_t base_gfn = gfn;
2913
2914         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2915                                         huge_page_disallowed, &req_level);
2916
2917         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2918         for_each_shadow_entry(vcpu, gpa, it) {
2919                 /*
2920                  * We cannot overwrite existing page tables with an NX
2921                  * large page, as the leaf could be executable.
2922                  */
2923                 if (nx_huge_page_workaround_enabled)
2924                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2925                                                    &pfn, &level);
2926
2927                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2928                 if (it.level == level)
2929                         break;
2930
2931                 drop_large_spte(vcpu, it.sptep);
2932                 if (!is_shadow_present_pte(*it.sptep)) {
2933                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2934                                               it.level - 1, true, ACC_ALL);
2935
2936                         link_shadow_page(vcpu, it.sptep, sp);
2937                         if (is_tdp && huge_page_disallowed &&
2938                             req_level >= it.level)
2939                                 account_huge_nx_page(vcpu->kvm, sp);
2940                 }
2941         }
2942
2943         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2944                            write, level, base_gfn, pfn, prefault,
2945                            map_writable);
2946         if (ret == RET_PF_SPURIOUS)
2947                 return ret;
2948
2949         direct_pte_prefetch(vcpu, it.sptep);
2950         ++vcpu->stat.pf_fixed;
2951         return ret;
2952 }
2953
2954 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2955 {
2956         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2957 }
2958
2959 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2960 {
2961         /*
2962          * Do not cache the mmio info caused by writing the readonly gfn
2963          * into the spte otherwise read access on readonly gfn also can
2964          * caused mmio page fault and treat it as mmio access.
2965          */
2966         if (pfn == KVM_PFN_ERR_RO_FAULT)
2967                 return RET_PF_EMULATE;
2968
2969         if (pfn == KVM_PFN_ERR_HWPOISON) {
2970                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2971                 return RET_PF_RETRY;
2972         }
2973
2974         return -EFAULT;
2975 }
2976
2977 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2978                                 kvm_pfn_t pfn, unsigned int access,
2979                                 int *ret_val)
2980 {
2981         /* The pfn is invalid, report the error! */
2982         if (unlikely(is_error_pfn(pfn))) {
2983                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2984                 return true;
2985         }
2986
2987         if (unlikely(is_noslot_pfn(pfn))) {
2988                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2989                                      access & shadow_mmio_access_mask);
2990                 /*
2991                  * If MMIO caching is disabled, emulate immediately without
2992                  * touching the shadow page tables as attempting to install an
2993                  * MMIO SPTE will just be an expensive nop.
2994                  */
2995                 if (unlikely(!shadow_mmio_value)) {
2996                         *ret_val = RET_PF_EMULATE;
2997                         return true;
2998                 }
2999         }
3000
3001         return false;
3002 }
3003
3004 static bool page_fault_can_be_fast(u32 error_code)
3005 {
3006         /*
3007          * Do not fix the mmio spte with invalid generation number which
3008          * need to be updated by slow page fault path.
3009          */
3010         if (unlikely(error_code & PFERR_RSVD_MASK))
3011                 return false;
3012
3013         /* See if the page fault is due to an NX violation */
3014         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3015                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3016                 return false;
3017
3018         /*
3019          * #PF can be fast if:
3020          * 1. The shadow page table entry is not present, which could mean that
3021          *    the fault is potentially caused by access tracking (if enabled).
3022          * 2. The shadow page table entry is present and the fault
3023          *    is caused by write-protect, that means we just need change the W
3024          *    bit of the spte which can be done out of mmu-lock.
3025          *
3026          * However, if access tracking is disabled we know that a non-present
3027          * page must be a genuine page fault where we have to create a new SPTE.
3028          * So, if access tracking is disabled, we return true only for write
3029          * accesses to a present page.
3030          */
3031
3032         return shadow_acc_track_mask != 0 ||
3033                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3034                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3035 }
3036
3037 /*
3038  * Returns true if the SPTE was fixed successfully. Otherwise,
3039  * someone else modified the SPTE from its original value.
3040  */
3041 static bool
3042 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3043                         u64 *sptep, u64 old_spte, u64 new_spte)
3044 {
3045         gfn_t gfn;
3046
3047         WARN_ON(!sp->role.direct);
3048
3049         /*
3050          * Theoretically we could also set dirty bit (and flush TLB) here in
3051          * order to eliminate unnecessary PML logging. See comments in
3052          * set_spte. But fast_page_fault is very unlikely to happen with PML
3053          * enabled, so we do not do this. This might result in the same GPA
3054          * to be logged in PML buffer again when the write really happens, and
3055          * eventually to be called by mark_page_dirty twice. But it's also no
3056          * harm. This also avoids the TLB flush needed after setting dirty bit
3057          * so non-PML cases won't be impacted.
3058          *
3059          * Compare with set_spte where instead shadow_dirty_mask is set.
3060          */
3061         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3062                 return false;
3063
3064         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3065                 /*
3066                  * The gfn of direct spte is stable since it is
3067                  * calculated by sp->gfn.
3068                  */
3069                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3070                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3071         }
3072
3073         return true;
3074 }
3075
3076 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3077 {
3078         if (fault_err_code & PFERR_FETCH_MASK)
3079                 return is_executable_pte(spte);
3080
3081         if (fault_err_code & PFERR_WRITE_MASK)
3082                 return is_writable_pte(spte);
3083
3084         /* Fault was on Read access */
3085         return spte & PT_PRESENT_MASK;
3086 }
3087
3088 /*
3089  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3090  */
3091 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3092                            u32 error_code)
3093 {
3094         struct kvm_shadow_walk_iterator iterator;
3095         struct kvm_mmu_page *sp;
3096         int ret = RET_PF_INVALID;
3097         u64 spte = 0ull;
3098         uint retry_count = 0;
3099
3100         if (!page_fault_can_be_fast(error_code))
3101                 return ret;
3102
3103         walk_shadow_page_lockless_begin(vcpu);
3104
3105         do {
3106                 u64 new_spte;
3107
3108                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3109                         if (!is_shadow_present_pte(spte))
3110                                 break;
3111
3112                 if (!is_shadow_present_pte(spte))
3113                         break;
3114
3115                 sp = sptep_to_sp(iterator.sptep);
3116                 if (!is_last_spte(spte, sp->role.level))
3117                         break;
3118
3119                 /*
3120                  * Check whether the memory access that caused the fault would
3121                  * still cause it if it were to be performed right now. If not,
3122                  * then this is a spurious fault caused by TLB lazily flushed,
3123                  * or some other CPU has already fixed the PTE after the
3124                  * current CPU took the fault.
3125                  *
3126                  * Need not check the access of upper level table entries since
3127                  * they are always ACC_ALL.
3128                  */
3129                 if (is_access_allowed(error_code, spte)) {
3130                         ret = RET_PF_SPURIOUS;
3131                         break;
3132                 }
3133
3134                 new_spte = spte;
3135
3136                 if (is_access_track_spte(spte))
3137                         new_spte = restore_acc_track_spte(new_spte);
3138
3139                 /*
3140                  * Currently, to simplify the code, write-protection can
3141                  * be removed in the fast path only if the SPTE was
3142                  * write-protected for dirty-logging or access tracking.
3143                  */
3144                 if ((error_code & PFERR_WRITE_MASK) &&
3145                     spte_can_locklessly_be_made_writable(spte)) {
3146                         new_spte |= PT_WRITABLE_MASK;
3147
3148                         /*
3149                          * Do not fix write-permission on the large spte.  Since
3150                          * we only dirty the first page into the dirty-bitmap in
3151                          * fast_pf_fix_direct_spte(), other pages are missed
3152                          * if its slot has dirty logging enabled.
3153                          *
3154                          * Instead, we let the slow page fault path create a
3155                          * normal spte to fix the access.
3156                          *
3157                          * See the comments in kvm_arch_commit_memory_region().
3158                          */
3159                         if (sp->role.level > PG_LEVEL_4K)
3160                                 break;
3161                 }
3162
3163                 /* Verify that the fault can be handled in the fast path */
3164                 if (new_spte == spte ||
3165                     !is_access_allowed(error_code, new_spte))
3166                         break;
3167
3168                 /*
3169                  * Currently, fast page fault only works for direct mapping
3170                  * since the gfn is not stable for indirect shadow page. See
3171                  * Documentation/virt/kvm/locking.rst to get more detail.
3172                  */
3173                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3174                                             new_spte)) {
3175                         ret = RET_PF_FIXED;
3176                         break;
3177                 }
3178
3179                 if (++retry_count > 4) {
3180                         printk_once(KERN_WARNING
3181                                 "kvm: Fast #PF retrying more than 4 times.\n");
3182                         break;
3183                 }
3184
3185         } while (true);
3186
3187         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3188                               spte, ret);
3189         walk_shadow_page_lockless_end(vcpu);
3190
3191         return ret;
3192 }
3193
3194 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3195                                struct list_head *invalid_list)
3196 {
3197         struct kvm_mmu_page *sp;
3198
3199         if (!VALID_PAGE(*root_hpa))
3200                 return;
3201
3202         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3203
3204         if (is_tdp_mmu_page(sp))
3205                 kvm_tdp_mmu_put_root(kvm, sp, false);
3206         else if (!--sp->root_count && sp->role.invalid)
3207                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3208
3209         *root_hpa = INVALID_PAGE;
3210 }
3211
3212 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3213 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3214                         ulong roots_to_free)
3215 {
3216         struct kvm *kvm = vcpu->kvm;
3217         int i;
3218         LIST_HEAD(invalid_list);
3219         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3220
3221         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3222
3223         /* Before acquiring the MMU lock, see if we need to do any real work. */
3224         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3225                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3226                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3227                             VALID_PAGE(mmu->prev_roots[i].hpa))
3228                                 break;
3229
3230                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3231                         return;
3232         }
3233
3234         write_lock(&kvm->mmu_lock);
3235
3236         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3237                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3238                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3239                                            &invalid_list);
3240
3241         if (free_active_root) {
3242                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3243                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3244                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3245                 } else if (mmu->pae_root) {
3246                         for (i = 0; i < 4; ++i) {
3247                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3248                                         continue;
3249
3250                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3251                                                    &invalid_list);
3252                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3253                         }
3254                 }
3255                 mmu->root_hpa = INVALID_PAGE;
3256                 mmu->root_pgd = 0;
3257         }
3258
3259         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3260         write_unlock(&kvm->mmu_lock);
3261 }
3262 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3263
3264 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3265 {
3266         unsigned long roots_to_free = 0;
3267         hpa_t root_hpa;
3268         int i;
3269
3270         /*
3271          * This should not be called while L2 is active, L2 can't invalidate
3272          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3273          */
3274         WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3275
3276         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3277                 root_hpa = mmu->prev_roots[i].hpa;
3278                 if (!VALID_PAGE(root_hpa))
3279                         continue;
3280
3281                 if (!to_shadow_page(root_hpa) ||
3282                         to_shadow_page(root_hpa)->role.guest_mode)
3283                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3284         }
3285
3286         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3287 }
3288 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3289
3290
3291 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3292 {
3293         int ret = 0;
3294
3295         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3296                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3297                 ret = 1;
3298         }
3299
3300         return ret;
3301 }
3302
3303 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3304                             u8 level, bool direct)
3305 {
3306         struct kvm_mmu_page *sp;
3307
3308         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3309         ++sp->root_count;
3310
3311         return __pa(sp->spt);
3312 }
3313
3314 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3315 {
3316         struct kvm_mmu *mmu = vcpu->arch.mmu;
3317         u8 shadow_root_level = mmu->shadow_root_level;
3318         hpa_t root;
3319         unsigned i;
3320         int r;
3321
3322         write_lock(&vcpu->kvm->mmu_lock);
3323         r = make_mmu_pages_available(vcpu);
3324         if (r < 0)
3325                 goto out_unlock;
3326
3327         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3328                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3329                 mmu->root_hpa = root;
3330         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3331                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3332                 mmu->root_hpa = root;
3333         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3334                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3335                         r = -EIO;
3336                         goto out_unlock;
3337                 }
3338
3339                 for (i = 0; i < 4; ++i) {
3340                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3341
3342                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3343                                               i << 30, PT32_ROOT_LEVEL, true);
3344                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3345                                            shadow_me_mask;
3346                 }
3347                 mmu->root_hpa = __pa(mmu->pae_root);
3348         } else {
3349                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3350                 r = -EIO;
3351                 goto out_unlock;
3352         }
3353
3354         /* root_pgd is ignored for direct MMUs. */
3355         mmu->root_pgd = 0;
3356 out_unlock:
3357         write_unlock(&vcpu->kvm->mmu_lock);
3358         return r;
3359 }
3360
3361 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3362 {
3363         struct kvm_mmu *mmu = vcpu->arch.mmu;
3364         u64 pdptrs[4], pm_mask;
3365         gfn_t root_gfn, root_pgd;
3366         hpa_t root;
3367         unsigned i;
3368         int r;
3369
3370         root_pgd = mmu->get_guest_pgd(vcpu);
3371         root_gfn = root_pgd >> PAGE_SHIFT;
3372
3373         if (mmu_check_root(vcpu, root_gfn))
3374                 return 1;
3375
3376         /*
3377          * On SVM, reading PDPTRs might access guest memory, which might fault
3378          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3379          */
3380         if (mmu->root_level == PT32E_ROOT_LEVEL) {
3381                 for (i = 0; i < 4; ++i) {
3382                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3383                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3384                                 continue;
3385
3386                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3387                                 return 1;
3388                 }
3389         }
3390
3391         r = alloc_all_memslots_rmaps(vcpu->kvm);
3392         if (r)
3393                 return r;
3394
3395         write_lock(&vcpu->kvm->mmu_lock);
3396         r = make_mmu_pages_available(vcpu);
3397         if (r < 0)
3398                 goto out_unlock;
3399
3400         /*
3401          * Do we shadow a long mode page table? If so we need to
3402          * write-protect the guests page table root.
3403          */
3404         if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3405                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3406                                       mmu->shadow_root_level, false);
3407                 mmu->root_hpa = root;
3408                 goto set_root_pgd;
3409         }
3410
3411         if (WARN_ON_ONCE(!mmu->pae_root)) {
3412                 r = -EIO;
3413                 goto out_unlock;
3414         }
3415
3416         /*
3417          * We shadow a 32 bit page table. This may be a legacy 2-level
3418          * or a PAE 3-level page table. In either case we need to be aware that
3419          * the shadow page table may be a PAE or a long mode page table.
3420          */
3421         pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3422         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3423                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3424
3425                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3426                         r = -EIO;
3427                         goto out_unlock;
3428                 }
3429
3430                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3431         }
3432
3433         for (i = 0; i < 4; ++i) {
3434                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3435
3436                 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3437                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3438                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3439                                 continue;
3440                         }
3441                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3442                 }
3443
3444                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3445                                       PT32_ROOT_LEVEL, false);
3446                 mmu->pae_root[i] = root | pm_mask;
3447         }
3448
3449         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3450                 mmu->root_hpa = __pa(mmu->pml4_root);
3451         else
3452                 mmu->root_hpa = __pa(mmu->pae_root);
3453
3454 set_root_pgd:
3455         mmu->root_pgd = root_pgd;
3456 out_unlock:
3457         write_unlock(&vcpu->kvm->mmu_lock);
3458
3459         return 0;
3460 }
3461
3462 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3463 {
3464         struct kvm_mmu *mmu = vcpu->arch.mmu;
3465         u64 *pml4_root, *pae_root;
3466
3467         /*
3468          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3469          * tables are allocated and initialized at root creation as there is no
3470          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3471          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3472          */
3473         if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3474             mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3475                 return 0;
3476
3477         /*
3478          * This mess only works with 4-level paging and needs to be updated to
3479          * work with 5-level paging.
3480          */
3481         if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3482                 return -EIO;
3483
3484         if (mmu->pae_root && mmu->pml4_root)
3485                 return 0;
3486
3487         /*
3488          * The special roots should always be allocated in concert.  Yell and
3489          * bail if KVM ends up in a state where only one of the roots is valid.
3490          */
3491         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3492                 return -EIO;
3493
3494         /*
3495          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3496          * doesn't need to be decrypted.
3497          */
3498         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3499         if (!pae_root)
3500                 return -ENOMEM;
3501
3502         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3503         if (!pml4_root) {
3504                 free_page((unsigned long)pae_root);
3505                 return -ENOMEM;
3506         }
3507
3508         mmu->pae_root = pae_root;
3509         mmu->pml4_root = pml4_root;
3510
3511         return 0;
3512 }
3513
3514 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3515 {
3516         int i;
3517         struct kvm_mmu_page *sp;
3518
3519         if (vcpu->arch.mmu->direct_map)
3520                 return;
3521
3522         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3523                 return;
3524
3525         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3526
3527         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3528                 hpa_t root = vcpu->arch.mmu->root_hpa;
3529                 sp = to_shadow_page(root);
3530
3531                 /*
3532                  * Even if another CPU was marking the SP as unsync-ed
3533                  * simultaneously, any guest page table changes are not
3534                  * guaranteed to be visible anyway until this VCPU issues a TLB
3535                  * flush strictly after those changes are made. We only need to
3536                  * ensure that the other CPU sets these flags before any actual
3537                  * changes to the page tables are made. The comments in
3538                  * mmu_try_to_unsync_pages() describe what could go wrong if
3539                  * this requirement isn't satisfied.
3540                  */
3541                 if (!smp_load_acquire(&sp->unsync) &&
3542                     !smp_load_acquire(&sp->unsync_children))
3543                         return;
3544
3545                 write_lock(&vcpu->kvm->mmu_lock);
3546                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3547
3548                 mmu_sync_children(vcpu, sp);
3549
3550                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3551                 write_unlock(&vcpu->kvm->mmu_lock);
3552                 return;
3553         }
3554
3555         write_lock(&vcpu->kvm->mmu_lock);
3556         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3557
3558         for (i = 0; i < 4; ++i) {
3559                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3560
3561                 if (IS_VALID_PAE_ROOT(root)) {
3562                         root &= PT64_BASE_ADDR_MASK;
3563                         sp = to_shadow_page(root);
3564                         mmu_sync_children(vcpu, sp);
3565                 }
3566         }
3567
3568         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3569         write_unlock(&vcpu->kvm->mmu_lock);
3570 }
3571
3572 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3573                                   u32 access, struct x86_exception *exception)
3574 {
3575         if (exception)
3576                 exception->error_code = 0;
3577         return vaddr;
3578 }
3579
3580 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3581                                          u32 access,
3582                                          struct x86_exception *exception)
3583 {
3584         if (exception)
3585                 exception->error_code = 0;
3586         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3587 }
3588
3589 static bool
3590 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3591 {
3592         int bit7 = (pte >> 7) & 1;
3593
3594         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3595 }
3596
3597 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3598 {
3599         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3600 }
3601
3602 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3603 {
3604         /*
3605          * A nested guest cannot use the MMIO cache if it is using nested
3606          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3607          */
3608         if (mmu_is_nested(vcpu))
3609                 return false;
3610
3611         if (direct)
3612                 return vcpu_match_mmio_gpa(vcpu, addr);
3613
3614         return vcpu_match_mmio_gva(vcpu, addr);
3615 }
3616
3617 /*
3618  * Return the level of the lowest level SPTE added to sptes.
3619  * That SPTE may be non-present.
3620  */
3621 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3622 {
3623         struct kvm_shadow_walk_iterator iterator;
3624         int leaf = -1;
3625         u64 spte;
3626
3627         walk_shadow_page_lockless_begin(vcpu);
3628
3629         for (shadow_walk_init(&iterator, vcpu, addr),
3630              *root_level = iterator.level;
3631              shadow_walk_okay(&iterator);
3632              __shadow_walk_next(&iterator, spte)) {
3633                 leaf = iterator.level;
3634                 spte = mmu_spte_get_lockless(iterator.sptep);
3635
3636                 sptes[leaf] = spte;
3637
3638                 if (!is_shadow_present_pte(spte))
3639                         break;
3640         }
3641
3642         walk_shadow_page_lockless_end(vcpu);
3643
3644         return leaf;
3645 }
3646
3647 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3648 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3649 {
3650         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3651         struct rsvd_bits_validate *rsvd_check;
3652         int root, leaf, level;
3653         bool reserved = false;
3654
3655         if (is_tdp_mmu(vcpu->arch.mmu))
3656                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3657         else
3658                 leaf = get_walk(vcpu, addr, sptes, &root);
3659
3660         if (unlikely(leaf < 0)) {
3661                 *sptep = 0ull;
3662                 return reserved;
3663         }
3664
3665         *sptep = sptes[leaf];
3666
3667         /*
3668          * Skip reserved bits checks on the terminal leaf if it's not a valid
3669          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3670          * design, always have reserved bits set.  The purpose of the checks is
3671          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3672          */
3673         if (!is_shadow_present_pte(sptes[leaf]))
3674                 leaf++;
3675
3676         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3677
3678         for (level = root; level >= leaf; level--)
3679                 /*
3680                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3681                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3682                  * adding a Jcc in the loop.
3683                  */
3684                 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3685                             __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3686
3687         if (reserved) {
3688                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3689                        __func__, addr);
3690                 for (level = root; level >= leaf; level--)
3691                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3692                                sptes[level], level,
3693                                rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
3694         }
3695
3696         return reserved;
3697 }
3698
3699 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3700 {
3701         u64 spte;
3702         bool reserved;
3703
3704         if (mmio_info_in_cache(vcpu, addr, direct))
3705                 return RET_PF_EMULATE;
3706
3707         reserved = get_mmio_spte(vcpu, addr, &spte);
3708         if (WARN_ON(reserved))
3709                 return -EINVAL;
3710
3711         if (is_mmio_spte(spte)) {
3712                 gfn_t gfn = get_mmio_spte_gfn(spte);
3713                 unsigned int access = get_mmio_spte_access(spte);
3714
3715                 if (!check_mmio_spte(vcpu, spte))
3716                         return RET_PF_INVALID;
3717
3718                 if (direct)
3719                         addr = 0;
3720
3721                 trace_handle_mmio_page_fault(addr, gfn, access);
3722                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3723                 return RET_PF_EMULATE;
3724         }
3725
3726         /*
3727          * If the page table is zapped by other cpus, let CPU fault again on
3728          * the address.
3729          */
3730         return RET_PF_RETRY;
3731 }
3732
3733 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3734                                          u32 error_code, gfn_t gfn)
3735 {
3736         if (unlikely(error_code & PFERR_RSVD_MASK))
3737                 return false;
3738
3739         if (!(error_code & PFERR_PRESENT_MASK) ||
3740               !(error_code & PFERR_WRITE_MASK))
3741                 return false;
3742
3743         /*
3744          * guest is writing the page which is write tracked which can
3745          * not be fixed by page fault handler.
3746          */
3747         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3748                 return true;
3749
3750         return false;
3751 }
3752
3753 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3754 {
3755         struct kvm_shadow_walk_iterator iterator;
3756         u64 spte;
3757
3758         walk_shadow_page_lockless_begin(vcpu);
3759         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3760                 clear_sp_write_flooding_count(iterator.sptep);
3761                 if (!is_shadow_present_pte(spte))
3762                         break;
3763         }
3764         walk_shadow_page_lockless_end(vcpu);
3765 }
3766
3767 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3768                                     gfn_t gfn)
3769 {
3770         struct kvm_arch_async_pf arch;
3771
3772         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3773         arch.gfn = gfn;
3774         arch.direct_map = vcpu->arch.mmu->direct_map;
3775         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3776
3777         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3778                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3779 }
3780
3781 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3782                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3783                          bool write, bool *writable)
3784 {
3785         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3786         bool async;
3787
3788         /*
3789          * Retry the page fault if the gfn hit a memslot that is being deleted
3790          * or moved.  This ensures any existing SPTEs for the old memslot will
3791          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3792          */
3793         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3794                 return true;
3795
3796         /* Don't expose private memslots to L2. */
3797         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3798                 *pfn = KVM_PFN_NOSLOT;
3799                 *writable = false;
3800                 return false;
3801         }
3802
3803         async = false;
3804         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3805                                     write, writable, hva);
3806         if (!async)
3807                 return false; /* *pfn has correct page already */
3808
3809         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3810                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3811                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3812                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3813                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3814                         return true;
3815                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3816                         return true;
3817         }
3818
3819         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3820                                     write, writable, hva);
3821         return false;
3822 }
3823
3824 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3825                              bool prefault, int max_level, bool is_tdp)
3826 {
3827         bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3828         bool write = error_code & PFERR_WRITE_MASK;
3829         bool map_writable;
3830
3831         gfn_t gfn = gpa >> PAGE_SHIFT;
3832         unsigned long mmu_seq;
3833         kvm_pfn_t pfn;
3834         hva_t hva;
3835         int r;
3836
3837         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3838                 return RET_PF_EMULATE;
3839
3840         if (!is_tdp_mmu_fault) {
3841                 r = fast_page_fault(vcpu, gpa, error_code);
3842                 if (r != RET_PF_INVALID)
3843                         return r;
3844         }
3845
3846         r = mmu_topup_memory_caches(vcpu, false);
3847         if (r)
3848                 return r;
3849
3850         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3851         smp_rmb();
3852
3853         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3854                          write, &map_writable))
3855                 return RET_PF_RETRY;
3856
3857         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3858                 return r;
3859
3860         r = RET_PF_RETRY;
3861
3862         if (is_tdp_mmu_fault)
3863                 read_lock(&vcpu->kvm->mmu_lock);
3864         else
3865                 write_lock(&vcpu->kvm->mmu_lock);
3866
3867         if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3868                 goto out_unlock;
3869         r = make_mmu_pages_available(vcpu);
3870         if (r)
3871                 goto out_unlock;
3872
3873         if (is_tdp_mmu_fault)
3874                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3875                                     pfn, prefault);
3876         else
3877                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3878                                  prefault, is_tdp);
3879
3880 out_unlock:
3881         if (is_tdp_mmu_fault)
3882                 read_unlock(&vcpu->kvm->mmu_lock);
3883         else
3884                 write_unlock(&vcpu->kvm->mmu_lock);
3885         kvm_release_pfn_clean(pfn);
3886         return r;
3887 }
3888
3889 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3890                                 u32 error_code, bool prefault)
3891 {
3892         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3893
3894         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3895         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3896                                  PG_LEVEL_2M, false);
3897 }
3898
3899 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3900                                 u64 fault_address, char *insn, int insn_len)
3901 {
3902         int r = 1;
3903         u32 flags = vcpu->arch.apf.host_apf_flags;
3904
3905 #ifndef CONFIG_X86_64
3906         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3907         if (WARN_ON_ONCE(fault_address >> 32))
3908                 return -EFAULT;
3909 #endif
3910
3911         vcpu->arch.l1tf_flush_l1d = true;
3912         if (!flags) {
3913                 trace_kvm_page_fault(fault_address, error_code);
3914
3915                 if (kvm_event_needs_reinjection(vcpu))
3916                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3917                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3918                                 insn_len);
3919         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3920                 vcpu->arch.apf.host_apf_flags = 0;
3921                 local_irq_disable();
3922                 kvm_async_pf_task_wait_schedule(fault_address);
3923                 local_irq_enable();
3924         } else {
3925                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3926         }
3927
3928         return r;
3929 }
3930 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3931
3932 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3933                        bool prefault)
3934 {
3935         int max_level;
3936
3937         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3938              max_level > PG_LEVEL_4K;
3939              max_level--) {
3940                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3941                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3942
3943                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3944                         break;
3945         }
3946
3947         return direct_page_fault(vcpu, gpa, error_code, prefault,
3948                                  max_level, true);
3949 }
3950
3951 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3952                                    struct kvm_mmu *context)
3953 {
3954         context->page_fault = nonpaging_page_fault;
3955         context->gva_to_gpa = nonpaging_gva_to_gpa;
3956         context->sync_page = nonpaging_sync_page;
3957         context->invlpg = NULL;
3958         context->root_level = 0;
3959         context->direct_map = true;
3960         context->nx = false;
3961 }
3962
3963 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3964                                   union kvm_mmu_page_role role)
3965 {
3966         return (role.direct || pgd == root->pgd) &&
3967                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3968                role.word == to_shadow_page(root->hpa)->role.word;
3969 }
3970
3971 /*
3972  * Find out if a previously cached root matching the new pgd/role is available.
3973  * The current root is also inserted into the cache.
3974  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3975  * returned.
3976  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3977  * false is returned. This root should now be freed by the caller.
3978  */
3979 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3980                                   union kvm_mmu_page_role new_role)
3981 {
3982         uint i;
3983         struct kvm_mmu_root_info root;
3984         struct kvm_mmu *mmu = vcpu->arch.mmu;
3985
3986         root.pgd = mmu->root_pgd;
3987         root.hpa = mmu->root_hpa;
3988
3989         if (is_root_usable(&root, new_pgd, new_role))
3990                 return true;
3991
3992         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3993                 swap(root, mmu->prev_roots[i]);
3994
3995                 if (is_root_usable(&root, new_pgd, new_role))
3996                         break;
3997         }
3998
3999         mmu->root_hpa = root.hpa;
4000         mmu->root_pgd = root.pgd;
4001
4002         return i < KVM_MMU_NUM_PREV_ROOTS;
4003 }
4004
4005 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4006                             union kvm_mmu_page_role new_role)
4007 {
4008         struct kvm_mmu *mmu = vcpu->arch.mmu;
4009
4010         /*
4011          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4012          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4013          * later if necessary.
4014          */
4015         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4016             mmu->root_level >= PT64_ROOT_4LEVEL)
4017                 return cached_root_available(vcpu, new_pgd, new_role);
4018
4019         return false;
4020 }
4021
4022 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4023                               union kvm_mmu_page_role new_role)
4024 {
4025         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4026                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4027                 return;
4028         }
4029
4030         /*
4031          * It's possible that the cached previous root page is obsolete because
4032          * of a change in the MMU generation number. However, changing the
4033          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4034          * free the root set here and allocate a new one.
4035          */
4036         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4037
4038         if (force_flush_and_sync_on_reuse) {
4039                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4040                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4041         }
4042
4043         /*
4044          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4045          * switching to a new CR3, that GVA->GPA mapping may no longer be
4046          * valid. So clear any cached MMIO info even when we don't need to sync
4047          * the shadow page tables.
4048          */
4049         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4050
4051         /*
4052          * If this is a direct root page, it doesn't have a write flooding
4053          * count. Otherwise, clear the write flooding count.
4054          */
4055         if (!new_role.direct)
4056                 __clear_sp_write_flooding_count(
4057                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
4058 }
4059
4060 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4061 {
4062         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4063 }
4064 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4065
4066 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4067 {
4068         return kvm_read_cr3(vcpu);
4069 }
4070
4071 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4072                            unsigned int access, int *nr_present)
4073 {
4074         if (unlikely(is_mmio_spte(*sptep))) {
4075                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4076                         mmu_spte_clear_no_track(sptep);
4077                         return true;
4078                 }
4079
4080                 (*nr_present)++;
4081                 mark_mmio_spte(vcpu, sptep, gfn, access);
4082                 return true;
4083         }
4084
4085         return false;
4086 }
4087
4088 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4089                                 unsigned level, unsigned gpte)
4090 {
4091         /*
4092          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4093          * If it is clear, there are no large pages at this level, so clear
4094          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4095          */
4096         gpte &= level - mmu->last_nonleaf_level;
4097
4098         /*
4099          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
4100          * iff level <= PG_LEVEL_4K, which for our purpose means
4101          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4102          */
4103         gpte |= level - PG_LEVEL_4K - 1;
4104
4105         return gpte & PT_PAGE_SIZE_MASK;
4106 }
4107
4108 #define PTTYPE_EPT 18 /* arbitrary */
4109 #define PTTYPE PTTYPE_EPT
4110 #include "paging_tmpl.h"
4111 #undef PTTYPE
4112
4113 #define PTTYPE 64
4114 #include "paging_tmpl.h"
4115 #undef PTTYPE
4116
4117 #define PTTYPE 32
4118 #include "paging_tmpl.h"
4119 #undef PTTYPE
4120
4121 static void
4122 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4123                         struct rsvd_bits_validate *rsvd_check,
4124                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4125                         bool pse, bool amd)
4126 {
4127         u64 gbpages_bit_rsvd = 0;
4128         u64 nonleaf_bit8_rsvd = 0;
4129         u64 high_bits_rsvd;
4130
4131         rsvd_check->bad_mt_xwr = 0;
4132
4133         if (!gbpages)
4134                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4135
4136         if (level == PT32E_ROOT_LEVEL)
4137                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4138         else
4139                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4140
4141         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4142         if (!nx)
4143                 high_bits_rsvd |= rsvd_bits(63, 63);
4144
4145         /*
4146          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4147          * leaf entries) on AMD CPUs only.
4148          */
4149         if (amd)
4150                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4151
4152         switch (level) {
4153         case PT32_ROOT_LEVEL:
4154                 /* no rsvd bits for 2 level 4K page table entries */
4155                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4156                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4157                 rsvd_check->rsvd_bits_mask[1][0] =
4158                         rsvd_check->rsvd_bits_mask[0][0];
4159
4160                 if (!pse) {
4161                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4162                         break;
4163                 }
4164
4165                 if (is_cpuid_PSE36())
4166                         /* 36bits PSE 4MB page */
4167                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4168                 else
4169                         /* 32 bits PSE 4MB page */
4170                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4171                 break;
4172         case PT32E_ROOT_LEVEL:
4173                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4174                                                    high_bits_rsvd |
4175                                                    rsvd_bits(5, 8) |
4176                                                    rsvd_bits(1, 2);     /* PDPTE */
4177                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4178                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4179                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4180                                                    rsvd_bits(13, 20);   /* large page */
4181                 rsvd_check->rsvd_bits_mask[1][0] =
4182                         rsvd_check->rsvd_bits_mask[0][0];
4183                 break;
4184         case PT64_ROOT_5LEVEL:
4185                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4186                                                    nonleaf_bit8_rsvd |
4187                                                    rsvd_bits(7, 7);
4188                 rsvd_check->rsvd_bits_mask[1][4] =
4189                         rsvd_check->rsvd_bits_mask[0][4];
4190                 fallthrough;
4191         case PT64_ROOT_4LEVEL:
4192                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4193                                                    nonleaf_bit8_rsvd |
4194                                                    rsvd_bits(7, 7);
4195                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4196                                                    gbpages_bit_rsvd;
4197                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4198                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4199                 rsvd_check->rsvd_bits_mask[1][3] =
4200                         rsvd_check->rsvd_bits_mask[0][3];
4201                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4202                                                    gbpages_bit_rsvd |
4203                                                    rsvd_bits(13, 29);
4204                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4205                                                    rsvd_bits(13, 20); /* large page */
4206                 rsvd_check->rsvd_bits_mask[1][0] =
4207                         rsvd_check->rsvd_bits_mask[0][0];
4208                 break;
4209         }
4210 }
4211
4212 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4213                                   struct kvm_mmu *context)
4214 {
4215         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4216                                 vcpu->arch.reserved_gpa_bits,
4217                                 context->root_level, context->nx,
4218                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4219                                 is_pse(vcpu),
4220                                 guest_cpuid_is_amd_or_hygon(vcpu));
4221 }
4222
4223 static void
4224 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4225                             u64 pa_bits_rsvd, bool execonly)
4226 {
4227         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4228         u64 bad_mt_xwr;
4229
4230         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4231         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4232         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4233         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4234         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4235
4236         /* large page */
4237         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4238         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4239         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4240         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4241         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4242
4243         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4244         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4245         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4246         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4247         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4248         if (!execonly) {
4249                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4250                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4251         }
4252         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4253 }
4254
4255 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4256                 struct kvm_mmu *context, bool execonly)
4257 {
4258         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4259                                     vcpu->arch.reserved_gpa_bits, execonly);
4260 }
4261
4262 static inline u64 reserved_hpa_bits(void)
4263 {
4264         return rsvd_bits(shadow_phys_bits, 63);
4265 }
4266
4267 /*
4268  * the page table on host is the shadow page table for the page
4269  * table in guest or amd nested guest, its mmu features completely
4270  * follow the features in guest.
4271  */
4272 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4273                                         struct kvm_mmu *context)
4274 {
4275         /*
4276          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4277          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4278          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4279          * The iTLB multi-hit workaround can be toggled at any time, so assume
4280          * NX can be used by any non-nested shadow MMU to avoid having to reset
4281          * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4282          */
4283         bool uses_nx = context->nx || !tdp_enabled;
4284         struct rsvd_bits_validate *shadow_zero_check;
4285         int i;
4286
4287         /*
4288          * Passing "true" to the last argument is okay; it adds a check
4289          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4290          */
4291         shadow_zero_check = &context->shadow_zero_check;
4292         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4293                                 reserved_hpa_bits(),
4294                                 context->shadow_root_level, uses_nx,
4295                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4296                                 is_pse(vcpu), true);
4297
4298         if (!shadow_me_mask)
4299                 return;
4300
4301         for (i = context->shadow_root_level; --i >= 0;) {
4302                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4303                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4304         }
4305
4306 }
4307
4308 static inline bool boot_cpu_is_amd(void)
4309 {
4310         WARN_ON_ONCE(!tdp_enabled);
4311         return shadow_x_mask == 0;
4312 }
4313
4314 /*
4315  * the direct page table on host, use as much mmu features as
4316  * possible, however, kvm currently does not do execution-protection.
4317  */
4318 static void
4319 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4320                                 struct kvm_mmu *context)
4321 {
4322         struct rsvd_bits_validate *shadow_zero_check;
4323         int i;
4324
4325         shadow_zero_check = &context->shadow_zero_check;
4326
4327         if (boot_cpu_is_amd())
4328                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4329                                         reserved_hpa_bits(),
4330                                         context->shadow_root_level, false,
4331                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4332                                         true, true);
4333         else
4334                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4335                                             reserved_hpa_bits(), false);
4336
4337         if (!shadow_me_mask)
4338                 return;
4339
4340         for (i = context->shadow_root_level; --i >= 0;) {
4341                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4342                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4343         }
4344 }
4345
4346 /*
4347  * as the comments in reset_shadow_zero_bits_mask() except it
4348  * is the shadow page table for intel nested guest.
4349  */
4350 static void
4351 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4352                                 struct kvm_mmu *context, bool execonly)
4353 {
4354         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4355                                     reserved_hpa_bits(), execonly);
4356 }
4357
4358 #define BYTE_MASK(access) \
4359         ((1 & (access) ? 2 : 0) | \
4360          (2 & (access) ? 4 : 0) | \
4361          (3 & (access) ? 8 : 0) | \
4362          (4 & (access) ? 16 : 0) | \
4363          (5 & (access) ? 32 : 0) | \
4364          (6 & (access) ? 64 : 0) | \
4365          (7 & (access) ? 128 : 0))
4366
4367
4368 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4369                                       struct kvm_mmu *mmu, bool ept)
4370 {
4371         unsigned byte;
4372
4373         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4374         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4375         const u8 u = BYTE_MASK(ACC_USER_MASK);
4376
4377         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4378         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4379         bool cr0_wp = is_write_protection(vcpu);
4380
4381         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4382                 unsigned pfec = byte << 1;
4383
4384                 /*
4385                  * Each "*f" variable has a 1 bit for each UWX value
4386                  * that causes a fault with the given PFEC.
4387                  */
4388
4389                 /* Faults from writes to non-writable pages */
4390                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4391                 /* Faults from user mode accesses to supervisor pages */
4392                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4393                 /* Faults from fetches of non-executable pages*/
4394                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4395                 /* Faults from kernel mode fetches of user pages */
4396                 u8 smepf = 0;
4397                 /* Faults from kernel mode accesses of user pages */
4398                 u8 smapf = 0;
4399
4400                 if (!ept) {
4401                         /* Faults from kernel mode accesses to user pages */
4402                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4403
4404                         /* Not really needed: !nx will cause pte.nx to fault */
4405                         if (!mmu->nx)
4406                                 ff = 0;
4407
4408                         /* Allow supervisor writes if !cr0.wp */
4409                         if (!cr0_wp)
4410                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4411
4412                         /* Disallow supervisor fetches of user code if cr4.smep */
4413                         if (cr4_smep)
4414                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4415
4416                         /*
4417                          * SMAP:kernel-mode data accesses from user-mode
4418                          * mappings should fault. A fault is considered
4419                          * as a SMAP violation if all of the following
4420                          * conditions are true:
4421                          *   - X86_CR4_SMAP is set in CR4
4422                          *   - A user page is accessed
4423                          *   - The access is not a fetch
4424                          *   - Page fault in kernel mode
4425                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4426                          *
4427                          * Here, we cover the first three conditions.
4428                          * The fourth is computed dynamically in permission_fault();
4429                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4430                          * *not* subject to SMAP restrictions.
4431                          */
4432                         if (cr4_smap)
4433                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4434                 }
4435
4436                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4437         }
4438 }
4439
4440 /*
4441 * PKU is an additional mechanism by which the paging controls access to
4442 * user-mode addresses based on the value in the PKRU register.  Protection
4443 * key violations are reported through a bit in the page fault error code.
4444 * Unlike other bits of the error code, the PK bit is not known at the
4445 * call site of e.g. gva_to_gpa; it must be computed directly in
4446 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4447 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4448 *
4449 * In particular the following conditions come from the error code, the
4450 * page tables and the machine state:
4451 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4452 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4453 * - PK is always zero if U=0 in the page tables
4454 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4455 *
4456 * The PKRU bitmask caches the result of these four conditions.  The error
4457 * code (minus the P bit) and the page table's U bit form an index into the
4458 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4459 * with the two bits of the PKRU register corresponding to the protection key.
4460 * For the first three conditions above the bits will be 00, thus masking
4461 * away both AD and WD.  For all reads or if the last condition holds, WD
4462 * only will be masked away.
4463 */
4464 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4465                                 bool ept)
4466 {
4467         unsigned bit;
4468         bool wp;
4469
4470         if (ept) {
4471                 mmu->pkru_mask = 0;
4472                 return;
4473         }
4474
4475         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4476         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4477                 mmu->pkru_mask = 0;
4478                 return;
4479         }
4480
4481         wp = is_write_protection(vcpu);
4482
4483         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4484                 unsigned pfec, pkey_bits;
4485                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4486
4487                 pfec = bit << 1;
4488                 ff = pfec & PFERR_FETCH_MASK;
4489                 uf = pfec & PFERR_USER_MASK;
4490                 wf = pfec & PFERR_WRITE_MASK;
4491
4492                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4493                 pte_user = pfec & PFERR_RSVD_MASK;
4494
4495                 /*
4496                  * Only need to check the access which is not an
4497                  * instruction fetch and is to a user page.
4498                  */
4499                 check_pkey = (!ff && pte_user);
4500                 /*
4501                  * write access is controlled by PKRU if it is a
4502                  * user access or CR0.WP = 1.
4503                  */
4504                 check_write = check_pkey && wf && (uf || wp);
4505
4506                 /* PKRU.AD stops both read and write access. */
4507                 pkey_bits = !!check_pkey;
4508                 /* PKRU.WD stops write access. */
4509                 pkey_bits |= (!!check_write) << 1;
4510
4511                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4512         }
4513 }
4514
4515 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4516 {
4517         unsigned root_level = mmu->root_level;
4518
4519         mmu->last_nonleaf_level = root_level;
4520         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4521                 mmu->last_nonleaf_level++;
4522 }
4523
4524 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4525                                          struct kvm_mmu *context,
4526                                          int root_level)
4527 {
4528         context->nx = is_nx(vcpu);
4529         context->root_level = root_level;
4530
4531         MMU_WARN_ON(!is_pae(vcpu));
4532         context->page_fault = paging64_page_fault;
4533         context->gva_to_gpa = paging64_gva_to_gpa;
4534         context->sync_page = paging64_sync_page;
4535         context->invlpg = paging64_invlpg;
4536         context->direct_map = false;
4537 }
4538
4539 static void paging64_init_context(struct kvm_vcpu *vcpu,
4540                                   struct kvm_mmu *context)
4541 {
4542         int root_level = is_la57_mode(vcpu) ?
4543                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4544
4545         paging64_init_context_common(vcpu, context, root_level);
4546 }
4547
4548 static void paging32_init_context(struct kvm_vcpu *vcpu,
4549                                   struct kvm_mmu *context)
4550 {
4551         context->nx = false;
4552         context->root_level = PT32_ROOT_LEVEL;
4553         context->page_fault = paging32_page_fault;
4554         context->gva_to_gpa = paging32_gva_to_gpa;
4555         context->sync_page = paging32_sync_page;
4556         context->invlpg = paging32_invlpg;
4557         context->direct_map = false;
4558 }
4559
4560 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4561                                    struct kvm_mmu *context)
4562 {
4563         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4564 }
4565
4566 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4567                                                          struct kvm_mmu_role_regs *regs)
4568 {
4569         union kvm_mmu_extended_role ext = {0};
4570
4571         ext.cr0_pg = ____is_cr0_pg(regs);
4572         ext.cr4_pae = ____is_cr4_pae(regs);
4573         ext.cr4_smep = ____is_cr4_smep(regs);
4574         ext.cr4_smap = ____is_cr4_smap(regs);
4575         ext.cr4_pse = ____is_cr4_pse(regs);
4576         ext.cr4_pke = ____is_cr4_pke(regs);
4577         ext.cr4_la57 = ____is_cr4_la57(regs);
4578
4579         ext.valid = 1;
4580
4581         return ext;
4582 }
4583
4584 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4585                                                    struct kvm_mmu_role_regs *regs,
4586                                                    bool base_only)
4587 {
4588         union kvm_mmu_role role = {0};
4589
4590         role.base.access = ACC_ALL;
4591         role.base.efer_nx = ____is_efer_nx(regs);
4592         role.base.cr0_wp = ____is_cr0_wp(regs);
4593         role.base.smm = is_smm(vcpu);
4594         role.base.guest_mode = is_guest_mode(vcpu);
4595
4596         if (base_only)
4597                 return role;
4598
4599         role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4600
4601         return role;
4602 }
4603
4604 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4605 {
4606         /* Use 5-level TDP if and only if it's useful/necessary. */
4607         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4608                 return 4;
4609
4610         return max_tdp_level;
4611 }
4612
4613 static union kvm_mmu_role
4614 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4615                                 struct kvm_mmu_role_regs *regs, bool base_only)
4616 {
4617         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4618
4619         role.base.ad_disabled = (shadow_accessed_mask == 0);
4620         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4621         role.base.direct = true;
4622         role.base.gpte_is_8_bytes = true;
4623
4624         return role;
4625 }
4626
4627 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4628 {
4629         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4630         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4631         union kvm_mmu_role new_role =
4632                 kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4633
4634         if (new_role.as_u64 == context->mmu_role.as_u64)
4635                 return;
4636
4637         context->mmu_role.as_u64 = new_role.as_u64;
4638         context->page_fault = kvm_tdp_page_fault;
4639         context->sync_page = nonpaging_sync_page;
4640         context->invlpg = NULL;
4641         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4642         context->direct_map = true;
4643         context->get_guest_pgd = get_cr3;
4644         context->get_pdptr = kvm_pdptr_read;
4645         context->inject_page_fault = kvm_inject_page_fault;
4646
4647         if (!is_paging(vcpu)) {
4648                 context->nx = false;
4649                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4650                 context->root_level = 0;
4651         } else if (is_long_mode(vcpu)) {
4652                 context->nx = is_nx(vcpu);
4653                 context->root_level = is_la57_mode(vcpu) ?
4654                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4655                 reset_rsvds_bits_mask(vcpu, context);
4656                 context->gva_to_gpa = paging64_gva_to_gpa;
4657         } else if (is_pae(vcpu)) {
4658                 context->nx = is_nx(vcpu);
4659                 context->root_level = PT32E_ROOT_LEVEL;
4660                 reset_rsvds_bits_mask(vcpu, context);
4661                 context->gva_to_gpa = paging64_gva_to_gpa;
4662         } else {
4663                 context->nx = false;
4664                 context->root_level = PT32_ROOT_LEVEL;
4665                 reset_rsvds_bits_mask(vcpu, context);
4666                 context->gva_to_gpa = paging32_gva_to_gpa;
4667         }
4668
4669         update_permission_bitmask(vcpu, context, false);
4670         update_pkru_bitmask(vcpu, context, false);
4671         update_last_nonleaf_level(vcpu, context);
4672         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4673 }
4674
4675 static union kvm_mmu_role
4676 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4677                                       struct kvm_mmu_role_regs *regs, bool base_only)
4678 {
4679         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4680
4681         role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4682         role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4683         role.base.gpte_is_8_bytes = ____is_cr4_pae(regs);
4684
4685         return role;
4686 }
4687
4688 static union kvm_mmu_role
4689 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4690                                    struct kvm_mmu_role_regs *regs, bool base_only)
4691 {
4692         union kvm_mmu_role role =
4693                 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4694
4695         role.base.direct = !____is_cr0_pg(regs);
4696
4697         if (!____is_efer_lma(regs))
4698                 role.base.level = PT32E_ROOT_LEVEL;
4699         else if (____is_cr4_la57(regs))
4700                 role.base.level = PT64_ROOT_5LEVEL;
4701         else
4702                 role.base.level = PT64_ROOT_4LEVEL;
4703
4704         return role;
4705 }
4706
4707 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4708                                     struct kvm_mmu_role_regs *regs,
4709                                     union kvm_mmu_role new_role)
4710 {
4711         if (!____is_cr0_pg(regs))
4712                 nonpaging_init_context(vcpu, context);
4713         else if (____is_efer_lma(regs))
4714                 paging64_init_context(vcpu, context);
4715         else if (____is_cr4_pae(regs))
4716                 paging32E_init_context(vcpu, context);
4717         else
4718                 paging32_init_context(vcpu, context);
4719
4720         if (____is_cr0_pg(regs)) {
4721                 reset_rsvds_bits_mask(vcpu, context);
4722                 update_permission_bitmask(vcpu, context, false);
4723                 update_pkru_bitmask(vcpu, context, false);
4724                 update_last_nonleaf_level(vcpu, context);
4725         }
4726         context->shadow_root_level = new_role.base.level;
4727
4728         context->mmu_role.as_u64 = new_role.as_u64;
4729         reset_shadow_zero_bits_mask(vcpu, context);
4730 }
4731
4732 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4733                                 struct kvm_mmu_role_regs *regs)
4734 {
4735         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4736         union kvm_mmu_role new_role =
4737                 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4738
4739         if (new_role.as_u64 != context->mmu_role.as_u64)
4740                 shadow_mmu_init_context(vcpu, context, regs, new_role);
4741 }
4742
4743 static union kvm_mmu_role
4744 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4745                                    struct kvm_mmu_role_regs *regs)
4746 {
4747         union kvm_mmu_role role =
4748                 kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4749
4750         role.base.direct = false;
4751         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4752
4753         return role;
4754 }
4755
4756 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4757                              unsigned long cr4, u64 efer, gpa_t nested_cr3)
4758 {
4759         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4760         struct kvm_mmu_role_regs regs = {
4761                 .cr0 = cr0,
4762                 .cr4 = cr4,
4763                 .efer = efer,
4764         };
4765         union kvm_mmu_role new_role;
4766
4767         new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4768
4769         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4770
4771         if (new_role.as_u64 != context->mmu_role.as_u64)
4772                 shadow_mmu_init_context(vcpu, context, &regs, new_role);
4773
4774         /*
4775          * Redo the shadow bits, the reset done by shadow_mmu_init_context()
4776          * (above) may use the wrong shadow_root_level.
4777          */
4778         reset_shadow_zero_bits_mask(vcpu, context);
4779 }
4780 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4781
4782 static union kvm_mmu_role
4783 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4784                                    bool execonly, u8 level)
4785 {
4786         union kvm_mmu_role role = {0};
4787
4788         /* SMM flag is inherited from root_mmu */
4789         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4790
4791         role.base.level = level;
4792         role.base.gpte_is_8_bytes = true;
4793         role.base.direct = false;
4794         role.base.ad_disabled = !accessed_dirty;
4795         role.base.guest_mode = true;
4796         role.base.access = ACC_ALL;
4797
4798         /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4799         role.ext.word = 0;
4800         role.ext.execonly = execonly;
4801         role.ext.valid = 1;
4802
4803         return role;
4804 }
4805
4806 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4807                              bool accessed_dirty, gpa_t new_eptp)
4808 {
4809         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4810         u8 level = vmx_eptp_page_walk_level(new_eptp);
4811         union kvm_mmu_role new_role =
4812                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4813                                                    execonly, level);
4814
4815         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4816
4817         if (new_role.as_u64 == context->mmu_role.as_u64)
4818                 return;
4819
4820         context->shadow_root_level = level;
4821
4822         context->nx = true;
4823         context->ept_ad = accessed_dirty;
4824         context->page_fault = ept_page_fault;
4825         context->gva_to_gpa = ept_gva_to_gpa;
4826         context->sync_page = ept_sync_page;
4827         context->invlpg = ept_invlpg;
4828         context->root_level = level;
4829         context->direct_map = false;
4830         context->mmu_role.as_u64 = new_role.as_u64;
4831
4832         update_permission_bitmask(vcpu, context, true);
4833         update_pkru_bitmask(vcpu, context, true);
4834         update_last_nonleaf_level(vcpu, context);
4835         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4836         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4837 }
4838 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4839
4840 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4841 {
4842         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4843         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4844
4845         kvm_init_shadow_mmu(vcpu, &regs);
4846
4847         context->get_guest_pgd     = get_cr3;
4848         context->get_pdptr         = kvm_pdptr_read;
4849         context->inject_page_fault = kvm_inject_page_fault;
4850 }
4851
4852 static union kvm_mmu_role
4853 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4854 {
4855         union kvm_mmu_role role;
4856
4857         role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4858
4859         /*
4860          * Nested MMUs are used only for walking L2's gva->gpa, they never have
4861          * shadow pages of their own and so "direct" has no meaning.   Set it
4862          * to "true" to try to detect bogus usage of the nested MMU.
4863          */
4864         role.base.direct = true;
4865
4866         if (!____is_cr0_pg(regs))
4867                 role.base.level = 0;
4868         else if (____is_efer_lma(regs))
4869                 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
4870                                                           PT64_ROOT_4LEVEL;
4871         else if (____is_cr4_pae(regs))
4872                 role.base.level = PT32E_ROOT_LEVEL;
4873         else
4874                 role.base.level = PT32_ROOT_LEVEL;
4875
4876         return role;
4877 }
4878
4879 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4880 {
4881         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4882         union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4883         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4884
4885         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4886                 return;
4887
4888         g_context->mmu_role.as_u64 = new_role.as_u64;
4889         g_context->get_guest_pgd     = get_cr3;
4890         g_context->get_pdptr         = kvm_pdptr_read;
4891         g_context->inject_page_fault = kvm_inject_page_fault;
4892
4893         /*
4894          * L2 page tables are never shadowed, so there is no need to sync
4895          * SPTEs.
4896          */
4897         g_context->invlpg            = NULL;
4898
4899         /*
4900          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4901          * L1's nested page tables (e.g. EPT12). The nested translation
4902          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4903          * L2's page tables as the first level of translation and L1's
4904          * nested page tables as the second level of translation. Basically
4905          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4906          */
4907         if (!is_paging(vcpu)) {
4908                 g_context->nx = false;
4909                 g_context->root_level = 0;
4910                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4911         } else if (is_long_mode(vcpu)) {
4912                 g_context->nx = is_nx(vcpu);
4913                 g_context->root_level = is_la57_mode(vcpu) ?
4914                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4915                 reset_rsvds_bits_mask(vcpu, g_context);
4916                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4917         } else if (is_pae(vcpu)) {
4918                 g_context->nx = is_nx(vcpu);
4919                 g_context->root_level = PT32E_ROOT_LEVEL;
4920                 reset_rsvds_bits_mask(vcpu, g_context);
4921                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4922         } else {
4923                 g_context->nx = false;
4924                 g_context->root_level = PT32_ROOT_LEVEL;
4925                 reset_rsvds_bits_mask(vcpu, g_context);
4926                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4927         }
4928
4929         update_permission_bitmask(vcpu, g_context, false);
4930         update_pkru_bitmask(vcpu, g_context, false);
4931         update_last_nonleaf_level(vcpu, g_context);
4932 }
4933
4934 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4935 {
4936         if (mmu_is_nested(vcpu))
4937                 init_kvm_nested_mmu(vcpu);
4938         else if (tdp_enabled)
4939                 init_kvm_tdp_mmu(vcpu);
4940         else
4941                 init_kvm_softmmu(vcpu);
4942 }
4943 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4944
4945 static union kvm_mmu_page_role
4946 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4947 {
4948         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4949         union kvm_mmu_role role;
4950
4951         if (tdp_enabled)
4952                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4953         else
4954                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4955
4956         return role.base;
4957 }
4958
4959 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
4960 {
4961         /*
4962          * Invalidate all MMU roles to force them to reinitialize as CPUID
4963          * information is factored into reserved bit calculations.
4964          */
4965         vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
4966         vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
4967         vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
4968         kvm_mmu_reset_context(vcpu);
4969
4970         /*
4971          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
4972          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
4973          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
4974          * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
4975          * sweep the problem under the rug.
4976          *
4977          * KVM's horrific CPUID ABI makes the problem all but impossible to
4978          * solve, as correctly handling multiple vCPU models (with respect to
4979          * paging and physical address properties) in a single VM would require
4980          * tracking all relevant CPUID information in kvm_mmu_page_role.  That
4981          * is very undesirable as it would double the memory requirements for
4982          * gfn_track (see struct kvm_mmu_page_role comments), and in practice
4983          * no sane VMM mucks with the core vCPU model on the fly.
4984          */
4985         if (vcpu->arch.last_vmentry_cpu != -1) {
4986                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
4987                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
4988         }
4989 }
4990
4991 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4992 {
4993         kvm_mmu_unload(vcpu);
4994         kvm_init_mmu(vcpu);
4995 }
4996 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4997
4998 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4999 {
5000         int r;
5001
5002         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5003         if (r)
5004                 goto out;
5005         r = mmu_alloc_special_roots(vcpu);
5006         if (r)
5007                 goto out;
5008         if (vcpu->arch.mmu->direct_map)
5009                 r = mmu_alloc_direct_roots(vcpu);
5010         else
5011                 r = mmu_alloc_shadow_roots(vcpu);
5012         if (r)
5013                 goto out;
5014
5015         kvm_mmu_sync_roots(vcpu);
5016
5017         kvm_mmu_load_pgd(vcpu);
5018         static_call(kvm_x86_tlb_flush_current)(vcpu);
5019 out:
5020         return r;
5021 }
5022
5023 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5024 {
5025         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5026         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5027         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5028         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5029 }
5030
5031 static bool need_remote_flush(u64 old, u64 new)
5032 {
5033         if (!is_shadow_present_pte(old))
5034                 return false;
5035         if (!is_shadow_present_pte(new))
5036                 return true;
5037         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5038                 return true;
5039         old ^= shadow_nx_mask;
5040         new ^= shadow_nx_mask;
5041         return (old & ~new & PT64_PERM_MASK) != 0;
5042 }
5043
5044 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5045                                     int *bytes)
5046 {
5047         u64 gentry = 0;
5048         int r;
5049
5050         /*
5051          * Assume that the pte write on a page table of the same type
5052          * as the current vcpu paging mode since we update the sptes only
5053          * when they have the same mode.
5054          */
5055         if (is_pae(vcpu) && *bytes == 4) {
5056                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5057                 *gpa &= ~(gpa_t)7;
5058                 *bytes = 8;
5059         }
5060
5061         if (*bytes == 4 || *bytes == 8) {
5062                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5063                 if (r)
5064                         gentry = 0;
5065         }
5066
5067         return gentry;
5068 }
5069
5070 /*
5071  * If we're seeing too many writes to a page, it may no longer be a page table,
5072  * or we may be forking, in which case it is better to unmap the page.
5073  */
5074 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5075 {
5076         /*
5077          * Skip write-flooding detected for the sp whose level is 1, because
5078          * it can become unsync, then the guest page is not write-protected.
5079          */
5080         if (sp->role.level == PG_LEVEL_4K)
5081                 return false;
5082
5083         atomic_inc(&sp->write_flooding_count);
5084         return atomic_read(&sp->write_flooding_count) >= 3;
5085 }
5086
5087 /*
5088  * Misaligned accesses are too much trouble to fix up; also, they usually
5089  * indicate a page is not used as a page table.
5090  */
5091 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5092                                     int bytes)
5093 {
5094         unsigned offset, pte_size, misaligned;
5095
5096         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5097                  gpa, bytes, sp->role.word);
5098
5099         offset = offset_in_page(gpa);
5100         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5101
5102         /*
5103          * Sometimes, the OS only writes the last one bytes to update status
5104          * bits, for example, in linux, andb instruction is used in clear_bit().
5105          */
5106         if (!(offset & (pte_size - 1)) && bytes == 1)
5107                 return false;
5108
5109         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5110         misaligned |= bytes < 4;
5111
5112         return misaligned;
5113 }
5114
5115 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5116 {
5117         unsigned page_offset, quadrant;
5118         u64 *spte;
5119         int level;
5120
5121         page_offset = offset_in_page(gpa);
5122         level = sp->role.level;
5123         *nspte = 1;
5124         if (!sp->role.gpte_is_8_bytes) {
5125                 page_offset <<= 1;      /* 32->64 */
5126                 /*
5127                  * A 32-bit pde maps 4MB while the shadow pdes map
5128                  * only 2MB.  So we need to double the offset again
5129                  * and zap two pdes instead of one.
5130                  */
5131                 if (level == PT32_ROOT_LEVEL) {
5132                         page_offset &= ~7; /* kill rounding error */
5133                         page_offset <<= 1;
5134                         *nspte = 2;
5135                 }
5136                 quadrant = page_offset >> PAGE_SHIFT;
5137                 page_offset &= ~PAGE_MASK;
5138                 if (quadrant != sp->role.quadrant)
5139                         return NULL;
5140         }
5141
5142         spte = &sp->spt[page_offset / sizeof(*spte)];
5143         return spte;
5144 }
5145
5146 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5147                               const u8 *new, int bytes,
5148                               struct kvm_page_track_notifier_node *node)
5149 {
5150         gfn_t gfn = gpa >> PAGE_SHIFT;
5151         struct kvm_mmu_page *sp;
5152         LIST_HEAD(invalid_list);
5153         u64 entry, gentry, *spte;
5154         int npte;
5155         bool remote_flush, local_flush;
5156
5157         /*
5158          * If we don't have indirect shadow pages, it means no page is
5159          * write-protected, so we can exit simply.
5160          */
5161         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5162                 return;
5163
5164         remote_flush = local_flush = false;
5165
5166         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5167
5168         /*
5169          * No need to care whether allocation memory is successful
5170          * or not since pte prefetch is skipped if it does not have
5171          * enough objects in the cache.
5172          */
5173         mmu_topup_memory_caches(vcpu, true);
5174
5175         write_lock(&vcpu->kvm->mmu_lock);
5176
5177         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5178
5179         ++vcpu->kvm->stat.mmu_pte_write;
5180         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5181
5182         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5183                 if (detect_write_misaligned(sp, gpa, bytes) ||
5184                       detect_write_flooding(sp)) {
5185                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5186                         ++vcpu->kvm->stat.mmu_flooded;
5187                         continue;
5188                 }
5189
5190                 spte = get_written_sptes(sp, gpa, &npte);
5191                 if (!spte)
5192                         continue;
5193
5194                 local_flush = true;
5195                 while (npte--) {
5196                         entry = *spte;
5197                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5198                         if (gentry && sp->role.level != PG_LEVEL_4K)
5199                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5200                         if (need_remote_flush(entry, *spte))
5201                                 remote_flush = true;
5202                         ++spte;
5203                 }
5204         }
5205         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5206         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5207         write_unlock(&vcpu->kvm->mmu_lock);
5208 }
5209
5210 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5211                        void *insn, int insn_len)
5212 {
5213         int r, emulation_type = EMULTYPE_PF;
5214         bool direct = vcpu->arch.mmu->direct_map;
5215
5216         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5217                 return RET_PF_RETRY;
5218
5219         r = RET_PF_INVALID;
5220         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5221                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5222                 if (r == RET_PF_EMULATE)
5223                         goto emulate;
5224         }
5225
5226         if (r == RET_PF_INVALID) {
5227                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5228                                           lower_32_bits(error_code), false);
5229                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5230                         return -EIO;
5231         }
5232
5233         if (r < 0)
5234                 return r;
5235         if (r != RET_PF_EMULATE)
5236                 return 1;
5237
5238         /*
5239          * Before emulating the instruction, check if the error code
5240          * was due to a RO violation while translating the guest page.
5241          * This can occur when using nested virtualization with nested
5242          * paging in both guests. If true, we simply unprotect the page
5243          * and resume the guest.
5244          */
5245         if (vcpu->arch.mmu->direct_map &&
5246             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5247                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5248                 return 1;
5249         }
5250
5251         /*
5252          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5253          * optimistically try to just unprotect the page and let the processor
5254          * re-execute the instruction that caused the page fault.  Do not allow
5255          * retrying MMIO emulation, as it's not only pointless but could also
5256          * cause us to enter an infinite loop because the processor will keep
5257          * faulting on the non-existent MMIO address.  Retrying an instruction
5258          * from a nested guest is also pointless and dangerous as we are only
5259          * explicitly shadowing L1's page tables, i.e. unprotecting something
5260          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5261          */
5262         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5263                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5264 emulate:
5265         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5266                                        insn_len);
5267 }
5268 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5269
5270 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5271                             gva_t gva, hpa_t root_hpa)
5272 {
5273         int i;
5274
5275         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5276         if (mmu != &vcpu->arch.guest_mmu) {
5277                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5278                 if (is_noncanonical_address(gva, vcpu))
5279                         return;
5280
5281                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5282         }
5283
5284         if (!mmu->invlpg)
5285                 return;
5286
5287         if (root_hpa == INVALID_PAGE) {
5288                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5289
5290                 /*
5291                  * INVLPG is required to invalidate any global mappings for the VA,
5292                  * irrespective of PCID. Since it would take us roughly similar amount
5293                  * of work to determine whether any of the prev_root mappings of the VA
5294                  * is marked global, or to just sync it blindly, so we might as well
5295                  * just always sync it.
5296                  *
5297                  * Mappings not reachable via the current cr3 or the prev_roots will be
5298                  * synced when switching to that cr3, so nothing needs to be done here
5299                  * for them.
5300                  */
5301                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5302                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5303                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5304         } else {
5305                 mmu->invlpg(vcpu, gva, root_hpa);
5306         }
5307 }
5308
5309 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5310 {
5311         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5312         ++vcpu->stat.invlpg;
5313 }
5314 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5315
5316
5317 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5318 {
5319         struct kvm_mmu *mmu = vcpu->arch.mmu;
5320         bool tlb_flush = false;
5321         uint i;
5322
5323         if (pcid == kvm_get_active_pcid(vcpu)) {
5324                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5325                 tlb_flush = true;
5326         }
5327
5328         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5329                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5330                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5331                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5332                         tlb_flush = true;
5333                 }
5334         }
5335
5336         if (tlb_flush)
5337                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5338
5339         ++vcpu->stat.invlpg;
5340
5341         /*
5342          * Mappings not reachable via the current cr3 or the prev_roots will be
5343          * synced when switching to that cr3, so nothing needs to be done here
5344          * for them.
5345          */
5346 }
5347
5348 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5349                        int tdp_huge_page_level)
5350 {
5351         tdp_enabled = enable_tdp;
5352         max_tdp_level = tdp_max_root_level;
5353
5354         /*
5355          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5356          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5357          * the kernel is not.  But, KVM never creates a page size greater than
5358          * what is used by the kernel for any given HVA, i.e. the kernel's
5359          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5360          */
5361         if (tdp_enabled)
5362                 max_huge_page_level = tdp_huge_page_level;
5363         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5364                 max_huge_page_level = PG_LEVEL_1G;
5365         else
5366                 max_huge_page_level = PG_LEVEL_2M;
5367 }
5368 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5369
5370 /* The return value indicates if tlb flush on all vcpus is needed. */
5371 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5372                                     struct kvm_memory_slot *slot);
5373
5374 /* The caller should hold mmu-lock before calling this function. */
5375 static __always_inline bool
5376 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5377                         slot_level_handler fn, int start_level, int end_level,
5378                         gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5379                         bool flush)
5380 {
5381         struct slot_rmap_walk_iterator iterator;
5382
5383         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5384                         end_gfn, &iterator) {
5385                 if (iterator.rmap)
5386                         flush |= fn(kvm, iterator.rmap, memslot);
5387
5388                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5389                         if (flush && flush_on_yield) {
5390                                 kvm_flush_remote_tlbs_with_address(kvm,
5391                                                 start_gfn,
5392                                                 iterator.gfn - start_gfn + 1);
5393                                 flush = false;
5394                         }
5395                         cond_resched_rwlock_write(&kvm->mmu_lock);
5396                 }
5397         }
5398
5399         return flush;
5400 }
5401
5402 static __always_inline bool
5403 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5404                   slot_level_handler fn, int start_level, int end_level,
5405                   bool flush_on_yield)
5406 {
5407         return slot_handle_level_range(kvm, memslot, fn, start_level,
5408                         end_level, memslot->base_gfn,
5409                         memslot->base_gfn + memslot->npages - 1,
5410                         flush_on_yield, false);
5411 }
5412
5413 static __always_inline bool
5414 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5415                  slot_level_handler fn, bool flush_on_yield)
5416 {
5417         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5418                                  PG_LEVEL_4K, flush_on_yield);
5419 }
5420
5421 static void free_mmu_pages(struct kvm_mmu *mmu)
5422 {
5423         if (!tdp_enabled && mmu->pae_root)
5424                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5425         free_page((unsigned long)mmu->pae_root);
5426         free_page((unsigned long)mmu->pml4_root);
5427 }
5428
5429 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5430 {
5431         struct page *page;
5432         int i;
5433
5434         mmu->root_hpa = INVALID_PAGE;
5435         mmu->root_pgd = 0;
5436         mmu->translate_gpa = translate_gpa;
5437         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5438                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5439
5440         /*
5441          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5442          * while the PDP table is a per-vCPU construct that's allocated at MMU
5443          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5444          * x86_64.  Therefore we need to allocate the PDP table in the first
5445          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5446          * generally doesn't use PAE paging and can skip allocating the PDP
5447          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5448          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5449          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5450          */
5451         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5452                 return 0;
5453
5454         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5455         if (!page)
5456                 return -ENOMEM;
5457
5458         mmu->pae_root = page_address(page);
5459
5460         /*
5461          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5462          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5463          * that KVM's writes and the CPU's reads get along.  Note, this is
5464          * only necessary when using shadow paging, as 64-bit NPT can get at
5465          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5466          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5467          */
5468         if (!tdp_enabled)
5469                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5470         else
5471                 WARN_ON_ONCE(shadow_me_mask);
5472
5473         for (i = 0; i < 4; ++i)
5474                 mmu->pae_root[i] = INVALID_PAE_ROOT;
5475
5476         return 0;
5477 }
5478
5479 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5480 {
5481         int ret;
5482
5483         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5484         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5485
5486         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5487         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5488
5489         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5490
5491         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5492         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5493
5494         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5495
5496         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5497         if (ret)
5498                 return ret;
5499
5500         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5501         if (ret)
5502                 goto fail_allocate_root;
5503
5504         return ret;
5505  fail_allocate_root:
5506         free_mmu_pages(&vcpu->arch.guest_mmu);
5507         return ret;
5508 }
5509
5510 #define BATCH_ZAP_PAGES 10
5511 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5512 {
5513         struct kvm_mmu_page *sp, *node;
5514         int nr_zapped, batch = 0;
5515
5516 restart:
5517         list_for_each_entry_safe_reverse(sp, node,
5518               &kvm->arch.active_mmu_pages, link) {
5519                 /*
5520                  * No obsolete valid page exists before a newly created page
5521                  * since active_mmu_pages is a FIFO list.
5522                  */
5523                 if (!is_obsolete_sp(kvm, sp))
5524                         break;
5525
5526                 /*
5527                  * Invalid pages should never land back on the list of active
5528                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5529                  * infinite loop if the page gets put back on the list (again).
5530                  */
5531                 if (WARN_ON(sp->role.invalid))
5532                         continue;
5533
5534                 /*
5535                  * No need to flush the TLB since we're only zapping shadow
5536                  * pages with an obsolete generation number and all vCPUS have
5537                  * loaded a new root, i.e. the shadow pages being zapped cannot
5538                  * be in active use by the guest.
5539                  */
5540                 if (batch >= BATCH_ZAP_PAGES &&
5541                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5542                         batch = 0;
5543                         goto restart;
5544                 }
5545
5546                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5547                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5548                         batch += nr_zapped;
5549                         goto restart;
5550                 }
5551         }
5552
5553         /*
5554          * Trigger a remote TLB flush before freeing the page tables to ensure
5555          * KVM is not in the middle of a lockless shadow page table walk, which
5556          * may reference the pages.
5557          */
5558         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5559 }
5560
5561 /*
5562  * Fast invalidate all shadow pages and use lock-break technique
5563  * to zap obsolete pages.
5564  *
5565  * It's required when memslot is being deleted or VM is being
5566  * destroyed, in these cases, we should ensure that KVM MMU does
5567  * not use any resource of the being-deleted slot or all slots
5568  * after calling the function.
5569  */
5570 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5571 {
5572         lockdep_assert_held(&kvm->slots_lock);
5573
5574         write_lock(&kvm->mmu_lock);
5575         trace_kvm_mmu_zap_all_fast(kvm);
5576
5577         /*
5578          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5579          * held for the entire duration of zapping obsolete pages, it's
5580          * impossible for there to be multiple invalid generations associated
5581          * with *valid* shadow pages at any given time, i.e. there is exactly
5582          * one valid generation and (at most) one invalid generation.
5583          */
5584         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5585
5586         /* In order to ensure all threads see this change when
5587          * handling the MMU reload signal, this must happen in the
5588          * same critical section as kvm_reload_remote_mmus, and
5589          * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5590          * could drop the MMU lock and yield.
5591          */
5592         if (is_tdp_mmu_enabled(kvm))
5593                 kvm_tdp_mmu_invalidate_all_roots(kvm);
5594
5595         /*
5596          * Notify all vcpus to reload its shadow page table and flush TLB.
5597          * Then all vcpus will switch to new shadow page table with the new
5598          * mmu_valid_gen.
5599          *
5600          * Note: we need to do this under the protection of mmu_lock,
5601          * otherwise, vcpu would purge shadow page but miss tlb flush.
5602          */
5603         kvm_reload_remote_mmus(kvm);
5604
5605         kvm_zap_obsolete_pages(kvm);
5606
5607         write_unlock(&kvm->mmu_lock);
5608
5609         if (is_tdp_mmu_enabled(kvm)) {
5610                 read_lock(&kvm->mmu_lock);
5611                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5612                 read_unlock(&kvm->mmu_lock);
5613         }
5614 }
5615
5616 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5617 {
5618         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5619 }
5620
5621 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5622                         struct kvm_memory_slot *slot,
5623                         struct kvm_page_track_notifier_node *node)
5624 {
5625         kvm_mmu_zap_all_fast(kvm);
5626 }
5627
5628 void kvm_mmu_init_vm(struct kvm *kvm)
5629 {
5630         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5631
5632         if (!kvm_mmu_init_tdp_mmu(kvm))
5633                 /*
5634                  * No smp_load/store wrappers needed here as we are in
5635                  * VM init and there cannot be any memslots / other threads
5636                  * accessing this struct kvm yet.
5637                  */
5638                 kvm->arch.memslots_have_rmaps = true;
5639
5640         node->track_write = kvm_mmu_pte_write;
5641         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5642         kvm_page_track_register_notifier(kvm, node);
5643 }
5644
5645 void kvm_mmu_uninit_vm(struct kvm *kvm)
5646 {
5647         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5648
5649         kvm_page_track_unregister_notifier(kvm, node);
5650
5651         kvm_mmu_uninit_tdp_mmu(kvm);
5652 }
5653
5654 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5655 {
5656         struct kvm_memslots *slots;
5657         struct kvm_memory_slot *memslot;
5658         int i;
5659         bool flush = false;
5660
5661         if (kvm_memslots_have_rmaps(kvm)) {
5662                 write_lock(&kvm->mmu_lock);
5663                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5664                         slots = __kvm_memslots(kvm, i);
5665                         kvm_for_each_memslot(memslot, slots) {
5666                                 gfn_t start, end;
5667
5668                                 start = max(gfn_start, memslot->base_gfn);
5669                                 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5670                                 if (start >= end)
5671                                         continue;
5672
5673                                 flush = slot_handle_level_range(kvm, memslot,
5674                                                 kvm_zap_rmapp, PG_LEVEL_4K,
5675                                                 KVM_MAX_HUGEPAGE_LEVEL, start,
5676                                                 end - 1, true, flush);
5677                         }
5678                 }
5679                 if (flush)
5680                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5681                 write_unlock(&kvm->mmu_lock);
5682         }
5683
5684         if (is_tdp_mmu_enabled(kvm)) {
5685                 flush = false;
5686
5687                 read_lock(&kvm->mmu_lock);
5688                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5689                         flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5690                                                           gfn_end, flush, true);
5691                 if (flush)
5692                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5693                                                            gfn_end);
5694
5695                 read_unlock(&kvm->mmu_lock);
5696         }
5697 }
5698
5699 static bool slot_rmap_write_protect(struct kvm *kvm,
5700                                     struct kvm_rmap_head *rmap_head,
5701                                     struct kvm_memory_slot *slot)
5702 {
5703         return __rmap_write_protect(kvm, rmap_head, false);
5704 }
5705
5706 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5707                                       struct kvm_memory_slot *memslot,
5708                                       int start_level)
5709 {
5710         bool flush = false;
5711
5712         if (kvm_memslots_have_rmaps(kvm)) {
5713                 write_lock(&kvm->mmu_lock);
5714                 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5715                                           start_level, KVM_MAX_HUGEPAGE_LEVEL,
5716                                           false);
5717                 write_unlock(&kvm->mmu_lock);
5718         }
5719
5720         if (is_tdp_mmu_enabled(kvm)) {
5721                 read_lock(&kvm->mmu_lock);
5722                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5723                 read_unlock(&kvm->mmu_lock);
5724         }
5725
5726         /*
5727          * We can flush all the TLBs out of the mmu lock without TLB
5728          * corruption since we just change the spte from writable to
5729          * readonly so that we only need to care the case of changing
5730          * spte from present to present (changing the spte from present
5731          * to nonpresent will flush all the TLBs immediately), in other
5732          * words, the only case we care is mmu_spte_update() where we
5733          * have checked Host-writable | MMU-writable instead of
5734          * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5735          * anymore.
5736          */
5737         if (flush)
5738                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5739 }
5740
5741 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5742                                          struct kvm_rmap_head *rmap_head,
5743                                          struct kvm_memory_slot *slot)
5744 {
5745         u64 *sptep;
5746         struct rmap_iterator iter;
5747         int need_tlb_flush = 0;
5748         kvm_pfn_t pfn;
5749         struct kvm_mmu_page *sp;
5750
5751 restart:
5752         for_each_rmap_spte(rmap_head, &iter, sptep) {
5753                 sp = sptep_to_sp(sptep);
5754                 pfn = spte_to_pfn(*sptep);
5755
5756                 /*
5757                  * We cannot do huge page mapping for indirect shadow pages,
5758                  * which are found on the last rmap (level = 1) when not using
5759                  * tdp; such shadow pages are synced with the page table in
5760                  * the guest, and the guest page table is using 4K page size
5761                  * mapping if the indirect sp has level = 1.
5762                  */
5763                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5764                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5765                                                                pfn, PG_LEVEL_NUM)) {
5766                         pte_list_remove(rmap_head, sptep);
5767
5768                         if (kvm_available_flush_tlb_with_range())
5769                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5770                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5771                         else
5772                                 need_tlb_flush = 1;
5773
5774                         goto restart;
5775                 }
5776         }
5777
5778         return need_tlb_flush;
5779 }
5780
5781 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5782                                    const struct kvm_memory_slot *memslot)
5783 {
5784         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5785         struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5786         bool flush = false;
5787
5788         if (kvm_memslots_have_rmaps(kvm)) {
5789                 write_lock(&kvm->mmu_lock);
5790                 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5791                 if (flush)
5792                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5793                 write_unlock(&kvm->mmu_lock);
5794         }
5795
5796         if (is_tdp_mmu_enabled(kvm)) {
5797                 read_lock(&kvm->mmu_lock);
5798                 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5799                 if (flush)
5800                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5801                 read_unlock(&kvm->mmu_lock);
5802         }
5803 }
5804
5805 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5806                                         const struct kvm_memory_slot *memslot)
5807 {
5808         /*
5809          * All current use cases for flushing the TLBs for a specific memslot
5810          * related to dirty logging, and many do the TLB flush out of mmu_lock.
5811          * The interaction between the various operations on memslot must be
5812          * serialized by slots_locks to ensure the TLB flush from one operation
5813          * is observed by any other operation on the same memslot.
5814          */
5815         lockdep_assert_held(&kvm->slots_lock);
5816         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5817                                            memslot->npages);
5818 }
5819
5820 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5821                                    struct kvm_memory_slot *memslot)
5822 {
5823         bool flush = false;
5824
5825         if (kvm_memslots_have_rmaps(kvm)) {
5826                 write_lock(&kvm->mmu_lock);
5827                 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5828                                          false);
5829                 write_unlock(&kvm->mmu_lock);
5830         }
5831
5832         if (is_tdp_mmu_enabled(kvm)) {
5833                 read_lock(&kvm->mmu_lock);
5834                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5835                 read_unlock(&kvm->mmu_lock);
5836         }
5837
5838         /*
5839          * It's also safe to flush TLBs out of mmu lock here as currently this
5840          * function is only used for dirty logging, in which case flushing TLB
5841          * out of mmu lock also guarantees no dirty pages will be lost in
5842          * dirty_bitmap.
5843          */
5844         if (flush)
5845                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5846 }
5847
5848 void kvm_mmu_zap_all(struct kvm *kvm)
5849 {
5850         struct kvm_mmu_page *sp, *node;
5851         LIST_HEAD(invalid_list);
5852         int ign;
5853
5854         write_lock(&kvm->mmu_lock);
5855 restart:
5856         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5857                 if (WARN_ON(sp->role.invalid))
5858                         continue;
5859                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5860                         goto restart;
5861                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5862                         goto restart;
5863         }
5864
5865         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5866
5867         if (is_tdp_mmu_enabled(kvm))
5868                 kvm_tdp_mmu_zap_all(kvm);
5869
5870         write_unlock(&kvm->mmu_lock);
5871 }
5872
5873 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5874 {
5875         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5876
5877         gen &= MMIO_SPTE_GEN_MASK;
5878
5879         /*
5880          * Generation numbers are incremented in multiples of the number of
5881          * address spaces in order to provide unique generations across all
5882          * address spaces.  Strip what is effectively the address space
5883          * modifier prior to checking for a wrap of the MMIO generation so
5884          * that a wrap in any address space is detected.
5885          */
5886         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5887
5888         /*
5889          * The very rare case: if the MMIO generation number has wrapped,
5890          * zap all shadow pages.
5891          */
5892         if (unlikely(gen == 0)) {
5893                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5894                 kvm_mmu_zap_all_fast(kvm);
5895         }
5896 }
5897
5898 static unsigned long
5899 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5900 {
5901         struct kvm *kvm;
5902         int nr_to_scan = sc->nr_to_scan;
5903         unsigned long freed = 0;
5904
5905         mutex_lock(&kvm_lock);
5906
5907         list_for_each_entry(kvm, &vm_list, vm_list) {
5908                 int idx;
5909                 LIST_HEAD(invalid_list);
5910
5911                 /*
5912                  * Never scan more than sc->nr_to_scan VM instances.
5913                  * Will not hit this condition practically since we do not try
5914                  * to shrink more than one VM and it is very unlikely to see
5915                  * !n_used_mmu_pages so many times.
5916                  */
5917                 if (!nr_to_scan--)
5918                         break;
5919                 /*
5920                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5921                  * here. We may skip a VM instance errorneosly, but we do not
5922                  * want to shrink a VM that only started to populate its MMU
5923                  * anyway.
5924                  */
5925                 if (!kvm->arch.n_used_mmu_pages &&
5926                     !kvm_has_zapped_obsolete_pages(kvm))
5927                         continue;
5928
5929                 idx = srcu_read_lock(&kvm->srcu);
5930                 write_lock(&kvm->mmu_lock);
5931
5932                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5933                         kvm_mmu_commit_zap_page(kvm,
5934                               &kvm->arch.zapped_obsolete_pages);
5935                         goto unlock;
5936                 }
5937
5938                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5939
5940 unlock:
5941                 write_unlock(&kvm->mmu_lock);
5942                 srcu_read_unlock(&kvm->srcu, idx);
5943
5944                 /*
5945                  * unfair on small ones
5946                  * per-vm shrinkers cry out
5947                  * sadness comes quickly
5948                  */
5949                 list_move_tail(&kvm->vm_list, &vm_list);
5950                 break;
5951         }
5952
5953         mutex_unlock(&kvm_lock);
5954         return freed;
5955 }
5956
5957 static unsigned long
5958 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5959 {
5960         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5961 }
5962
5963 static struct shrinker mmu_shrinker = {
5964         .count_objects = mmu_shrink_count,
5965         .scan_objects = mmu_shrink_scan,
5966         .seeks = DEFAULT_SEEKS * 10,
5967 };
5968
5969 static void mmu_destroy_caches(void)
5970 {
5971         kmem_cache_destroy(pte_list_desc_cache);
5972         kmem_cache_destroy(mmu_page_header_cache);
5973 }
5974
5975 static bool get_nx_auto_mode(void)
5976 {
5977         /* Return true when CPU has the bug, and mitigations are ON */
5978         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5979 }
5980
5981 static void __set_nx_huge_pages(bool val)
5982 {
5983         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5984 }
5985
5986 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5987 {
5988         bool old_val = nx_huge_pages;
5989         bool new_val;
5990
5991         /* In "auto" mode deploy workaround only if CPU has the bug. */
5992         if (sysfs_streq(val, "off"))
5993                 new_val = 0;
5994         else if (sysfs_streq(val, "force"))
5995                 new_val = 1;
5996         else if (sysfs_streq(val, "auto"))
5997                 new_val = get_nx_auto_mode();
5998         else if (strtobool(val, &new_val) < 0)
5999                 return -EINVAL;
6000
6001         __set_nx_huge_pages(new_val);
6002
6003         if (new_val != old_val) {
6004                 struct kvm *kvm;
6005
6006                 mutex_lock(&kvm_lock);
6007
6008                 list_for_each_entry(kvm, &vm_list, vm_list) {
6009                         mutex_lock(&kvm->slots_lock);
6010                         kvm_mmu_zap_all_fast(kvm);
6011                         mutex_unlock(&kvm->slots_lock);
6012
6013                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6014                 }
6015                 mutex_unlock(&kvm_lock);
6016         }
6017
6018         return 0;
6019 }
6020
6021 int kvm_mmu_module_init(void)
6022 {
6023         int ret = -ENOMEM;
6024
6025         if (nx_huge_pages == -1)
6026                 __set_nx_huge_pages(get_nx_auto_mode());
6027
6028         /*
6029          * MMU roles use union aliasing which is, generally speaking, an
6030          * undefined behavior. However, we supposedly know how compilers behave
6031          * and the current status quo is unlikely to change. Guardians below are
6032          * supposed to let us know if the assumption becomes false.
6033          */
6034         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6035         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6036         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6037
6038         kvm_mmu_reset_all_pte_masks();
6039
6040         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6041                                             sizeof(struct pte_list_desc),
6042                                             0, SLAB_ACCOUNT, NULL);
6043         if (!pte_list_desc_cache)
6044                 goto out;
6045
6046         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6047                                                   sizeof(struct kvm_mmu_page),
6048                                                   0, SLAB_ACCOUNT, NULL);
6049         if (!mmu_page_header_cache)
6050                 goto out;
6051
6052         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6053                 goto out;
6054
6055         ret = register_shrinker(&mmu_shrinker);
6056         if (ret)
6057                 goto out;
6058
6059         return 0;
6060
6061 out:
6062         mmu_destroy_caches();
6063         return ret;
6064 }
6065
6066 /*
6067  * Calculate mmu pages needed for kvm.
6068  */
6069 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6070 {
6071         unsigned long nr_mmu_pages;
6072         unsigned long nr_pages = 0;
6073         struct kvm_memslots *slots;
6074         struct kvm_memory_slot *memslot;
6075         int i;
6076
6077         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6078                 slots = __kvm_memslots(kvm, i);
6079
6080                 kvm_for_each_memslot(memslot, slots)
6081                         nr_pages += memslot->npages;
6082         }
6083
6084         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6085         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6086
6087         return nr_mmu_pages;
6088 }
6089
6090 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6091 {
6092         kvm_mmu_unload(vcpu);
6093         free_mmu_pages(&vcpu->arch.root_mmu);
6094         free_mmu_pages(&vcpu->arch.guest_mmu);
6095         mmu_free_memory_caches(vcpu);
6096 }
6097
6098 void kvm_mmu_module_exit(void)
6099 {
6100         mmu_destroy_caches();
6101         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6102         unregister_shrinker(&mmu_shrinker);
6103         mmu_audit_disable();
6104 }
6105
6106 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6107 {
6108         unsigned int old_val;
6109         int err;
6110
6111         old_val = nx_huge_pages_recovery_ratio;
6112         err = param_set_uint(val, kp);
6113         if (err)
6114                 return err;
6115
6116         if (READ_ONCE(nx_huge_pages) &&
6117             !old_val && nx_huge_pages_recovery_ratio) {
6118                 struct kvm *kvm;
6119
6120                 mutex_lock(&kvm_lock);
6121
6122                 list_for_each_entry(kvm, &vm_list, vm_list)
6123                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6124
6125                 mutex_unlock(&kvm_lock);
6126         }
6127
6128         return err;
6129 }
6130
6131 static void kvm_recover_nx_lpages(struct kvm *kvm)
6132 {
6133         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6134         int rcu_idx;
6135         struct kvm_mmu_page *sp;
6136         unsigned int ratio;
6137         LIST_HEAD(invalid_list);
6138         bool flush = false;
6139         ulong to_zap;
6140
6141         rcu_idx = srcu_read_lock(&kvm->srcu);
6142         write_lock(&kvm->mmu_lock);
6143
6144         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6145         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6146         for ( ; to_zap; --to_zap) {
6147                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6148                         break;
6149
6150                 /*
6151                  * We use a separate list instead of just using active_mmu_pages
6152                  * because the number of lpage_disallowed pages is expected to
6153                  * be relatively small compared to the total.
6154                  */
6155                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6156                                       struct kvm_mmu_page,
6157                                       lpage_disallowed_link);
6158                 WARN_ON_ONCE(!sp->lpage_disallowed);
6159                 if (is_tdp_mmu_page(sp)) {
6160                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6161                 } else {
6162                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6163                         WARN_ON_ONCE(sp->lpage_disallowed);
6164                 }
6165
6166                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6167                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6168                         cond_resched_rwlock_write(&kvm->mmu_lock);
6169                         flush = false;
6170                 }
6171         }
6172         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6173
6174         write_unlock(&kvm->mmu_lock);
6175         srcu_read_unlock(&kvm->srcu, rcu_idx);
6176 }
6177
6178 static long get_nx_lpage_recovery_timeout(u64 start_time)
6179 {
6180         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6181                 ? start_time + 60 * HZ - get_jiffies_64()
6182                 : MAX_SCHEDULE_TIMEOUT;
6183 }
6184
6185 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6186 {
6187         u64 start_time;
6188         long remaining_time;
6189
6190         while (true) {
6191                 start_time = get_jiffies_64();
6192                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6193
6194                 set_current_state(TASK_INTERRUPTIBLE);
6195                 while (!kthread_should_stop() && remaining_time > 0) {
6196                         schedule_timeout(remaining_time);
6197                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6198                         set_current_state(TASK_INTERRUPTIBLE);
6199                 }
6200
6201                 set_current_state(TASK_RUNNING);
6202
6203                 if (kthread_should_stop())
6204                         return 0;
6205
6206                 kvm_recover_nx_lpages(kvm);
6207         }
6208 }
6209
6210 int kvm_mmu_post_init_vm(struct kvm *kvm)
6211 {
6212         int err;
6213
6214         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6215                                           "kvm-nx-lpage-recovery",
6216                                           &kvm->arch.nx_lpage_recovery_thread);
6217         if (!err)
6218                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6219
6220         return err;
6221 }
6222
6223 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6224 {
6225         if (kvm->arch.nx_lpage_recovery_thread)
6226                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6227 }