Merge tag 'sched_urgent_for_v5.17_rc2_p2' of git://git.kernel.org/pub/scm/linux/kerne...
[linux-2.6-microblaze.git] / arch / x86 / kvm / hyperv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * KVM Microsoft Hyper-V emulation
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12  *
13  * Authors:
14  *   Avi Kivity   <avi@qumranet.com>
15  *   Yaniv Kamay  <yaniv@qumranet.com>
16  *   Amit Shah    <amit.shah@qumranet.com>
17  *   Ben-Ami Yassour <benami@il.ibm.com>
18  *   Andrey Smetanin <asmetanin@virtuozzo.com>
19  */
20
21 #include "x86.h"
22 #include "lapic.h"
23 #include "ioapic.h"
24 #include "cpuid.h"
25 #include "hyperv.h"
26 #include "xen.h"
27
28 #include <linux/cpu.h>
29 #include <linux/kvm_host.h>
30 #include <linux/highmem.h>
31 #include <linux/sched/cputime.h>
32 #include <linux/eventfd.h>
33
34 #include <asm/apicdef.h>
35 #include <trace/events/kvm.h>
36
37 #include "trace.h"
38 #include "irq.h"
39 #include "fpu.h"
40
41 /* "Hv#1" signature */
42 #define HYPERV_CPUID_SIGNATURE_EAX 0x31237648
43
44 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
45
46 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
47                                 bool vcpu_kick);
48
49 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
50 {
51         return atomic64_read(&synic->sint[sint]);
52 }
53
54 static inline int synic_get_sint_vector(u64 sint_value)
55 {
56         if (sint_value & HV_SYNIC_SINT_MASKED)
57                 return -1;
58         return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
59 }
60
61 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
62                                       int vector)
63 {
64         int i;
65
66         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
67                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
68                         return true;
69         }
70         return false;
71 }
72
73 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
74                                      int vector)
75 {
76         int i;
77         u64 sint_value;
78
79         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
80                 sint_value = synic_read_sint(synic, i);
81                 if (synic_get_sint_vector(sint_value) == vector &&
82                     sint_value & HV_SYNIC_SINT_AUTO_EOI)
83                         return true;
84         }
85         return false;
86 }
87
88 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
89                                 int vector)
90 {
91         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
92         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
93         int auto_eoi_old, auto_eoi_new;
94
95         if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
96                 return;
97
98         if (synic_has_vector_connected(synic, vector))
99                 __set_bit(vector, synic->vec_bitmap);
100         else
101                 __clear_bit(vector, synic->vec_bitmap);
102
103         auto_eoi_old = bitmap_weight(synic->auto_eoi_bitmap, 256);
104
105         if (synic_has_vector_auto_eoi(synic, vector))
106                 __set_bit(vector, synic->auto_eoi_bitmap);
107         else
108                 __clear_bit(vector, synic->auto_eoi_bitmap);
109
110         auto_eoi_new = bitmap_weight(synic->auto_eoi_bitmap, 256);
111
112         if (!!auto_eoi_old == !!auto_eoi_new)
113                 return;
114
115         down_write(&vcpu->kvm->arch.apicv_update_lock);
116
117         if (auto_eoi_new)
118                 hv->synic_auto_eoi_used++;
119         else
120                 hv->synic_auto_eoi_used--;
121
122         __kvm_request_apicv_update(vcpu->kvm,
123                                    !hv->synic_auto_eoi_used,
124                                    APICV_INHIBIT_REASON_HYPERV);
125
126         up_write(&vcpu->kvm->arch.apicv_update_lock);
127 }
128
129 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
130                           u64 data, bool host)
131 {
132         int vector, old_vector;
133         bool masked;
134
135         vector = data & HV_SYNIC_SINT_VECTOR_MASK;
136         masked = data & HV_SYNIC_SINT_MASKED;
137
138         /*
139          * Valid vectors are 16-255, however, nested Hyper-V attempts to write
140          * default '0x10000' value on boot and this should not #GP. We need to
141          * allow zero-initing the register from host as well.
142          */
143         if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
144                 return 1;
145         /*
146          * Guest may configure multiple SINTs to use the same vector, so
147          * we maintain a bitmap of vectors handled by synic, and a
148          * bitmap of vectors with auto-eoi behavior.  The bitmaps are
149          * updated here, and atomically queried on fast paths.
150          */
151         old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
152
153         atomic64_set(&synic->sint[sint], data);
154
155         synic_update_vector(synic, old_vector);
156
157         synic_update_vector(synic, vector);
158
159         /* Load SynIC vectors into EOI exit bitmap */
160         kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
161         return 0;
162 }
163
164 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
165 {
166         struct kvm_vcpu *vcpu = NULL;
167         unsigned long i;
168
169         if (vpidx >= KVM_MAX_VCPUS)
170                 return NULL;
171
172         vcpu = kvm_get_vcpu(kvm, vpidx);
173         if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
174                 return vcpu;
175         kvm_for_each_vcpu(i, vcpu, kvm)
176                 if (kvm_hv_get_vpindex(vcpu) == vpidx)
177                         return vcpu;
178         return NULL;
179 }
180
181 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
182 {
183         struct kvm_vcpu *vcpu;
184         struct kvm_vcpu_hv_synic *synic;
185
186         vcpu = get_vcpu_by_vpidx(kvm, vpidx);
187         if (!vcpu || !to_hv_vcpu(vcpu))
188                 return NULL;
189         synic = to_hv_synic(vcpu);
190         return (synic->active) ? synic : NULL;
191 }
192
193 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
194 {
195         struct kvm *kvm = vcpu->kvm;
196         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
197         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
198         struct kvm_vcpu_hv_stimer *stimer;
199         int gsi, idx;
200
201         trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
202
203         /* Try to deliver pending Hyper-V SynIC timers messages */
204         for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
205                 stimer = &hv_vcpu->stimer[idx];
206                 if (stimer->msg_pending && stimer->config.enable &&
207                     !stimer->config.direct_mode &&
208                     stimer->config.sintx == sint)
209                         stimer_mark_pending(stimer, false);
210         }
211
212         idx = srcu_read_lock(&kvm->irq_srcu);
213         gsi = atomic_read(&synic->sint_to_gsi[sint]);
214         if (gsi != -1)
215                 kvm_notify_acked_gsi(kvm, gsi);
216         srcu_read_unlock(&kvm->irq_srcu, idx);
217 }
218
219 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
220 {
221         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
222         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
223
224         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
225         hv_vcpu->exit.u.synic.msr = msr;
226         hv_vcpu->exit.u.synic.control = synic->control;
227         hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
228         hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
229
230         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
231 }
232
233 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
234                          u32 msr, u64 data, bool host)
235 {
236         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
237         int ret;
238
239         if (!synic->active && !host)
240                 return 1;
241
242         trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
243
244         ret = 0;
245         switch (msr) {
246         case HV_X64_MSR_SCONTROL:
247                 synic->control = data;
248                 if (!host)
249                         synic_exit(synic, msr);
250                 break;
251         case HV_X64_MSR_SVERSION:
252                 if (!host) {
253                         ret = 1;
254                         break;
255                 }
256                 synic->version = data;
257                 break;
258         case HV_X64_MSR_SIEFP:
259                 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
260                     !synic->dont_zero_synic_pages)
261                         if (kvm_clear_guest(vcpu->kvm,
262                                             data & PAGE_MASK, PAGE_SIZE)) {
263                                 ret = 1;
264                                 break;
265                         }
266                 synic->evt_page = data;
267                 if (!host)
268                         synic_exit(synic, msr);
269                 break;
270         case HV_X64_MSR_SIMP:
271                 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
272                     !synic->dont_zero_synic_pages)
273                         if (kvm_clear_guest(vcpu->kvm,
274                                             data & PAGE_MASK, PAGE_SIZE)) {
275                                 ret = 1;
276                                 break;
277                         }
278                 synic->msg_page = data;
279                 if (!host)
280                         synic_exit(synic, msr);
281                 break;
282         case HV_X64_MSR_EOM: {
283                 int i;
284
285                 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
286                         kvm_hv_notify_acked_sint(vcpu, i);
287                 break;
288         }
289         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
290                 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
291                 break;
292         default:
293                 ret = 1;
294                 break;
295         }
296         return ret;
297 }
298
299 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
300 {
301         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
302
303         return hv_vcpu->cpuid_cache.syndbg_cap_eax &
304                 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
305 }
306
307 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
308 {
309         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
310
311         if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
312                 hv->hv_syndbg.control.status =
313                         vcpu->run->hyperv.u.syndbg.status;
314         return 1;
315 }
316
317 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
318 {
319         struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
320         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
321
322         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
323         hv_vcpu->exit.u.syndbg.msr = msr;
324         hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
325         hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
326         hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
327         hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
328         vcpu->arch.complete_userspace_io =
329                         kvm_hv_syndbg_complete_userspace;
330
331         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
332 }
333
334 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
335 {
336         struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
337
338         if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
339                 return 1;
340
341         trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
342                                     to_hv_vcpu(vcpu)->vp_index, msr, data);
343         switch (msr) {
344         case HV_X64_MSR_SYNDBG_CONTROL:
345                 syndbg->control.control = data;
346                 if (!host)
347                         syndbg_exit(vcpu, msr);
348                 break;
349         case HV_X64_MSR_SYNDBG_STATUS:
350                 syndbg->control.status = data;
351                 break;
352         case HV_X64_MSR_SYNDBG_SEND_BUFFER:
353                 syndbg->control.send_page = data;
354                 break;
355         case HV_X64_MSR_SYNDBG_RECV_BUFFER:
356                 syndbg->control.recv_page = data;
357                 break;
358         case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
359                 syndbg->control.pending_page = data;
360                 if (!host)
361                         syndbg_exit(vcpu, msr);
362                 break;
363         case HV_X64_MSR_SYNDBG_OPTIONS:
364                 syndbg->options = data;
365                 break;
366         default:
367                 break;
368         }
369
370         return 0;
371 }
372
373 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
374 {
375         struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
376
377         if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
378                 return 1;
379
380         switch (msr) {
381         case HV_X64_MSR_SYNDBG_CONTROL:
382                 *pdata = syndbg->control.control;
383                 break;
384         case HV_X64_MSR_SYNDBG_STATUS:
385                 *pdata = syndbg->control.status;
386                 break;
387         case HV_X64_MSR_SYNDBG_SEND_BUFFER:
388                 *pdata = syndbg->control.send_page;
389                 break;
390         case HV_X64_MSR_SYNDBG_RECV_BUFFER:
391                 *pdata = syndbg->control.recv_page;
392                 break;
393         case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
394                 *pdata = syndbg->control.pending_page;
395                 break;
396         case HV_X64_MSR_SYNDBG_OPTIONS:
397                 *pdata = syndbg->options;
398                 break;
399         default:
400                 break;
401         }
402
403         trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
404
405         return 0;
406 }
407
408 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
409                          bool host)
410 {
411         int ret;
412
413         if (!synic->active && !host)
414                 return 1;
415
416         ret = 0;
417         switch (msr) {
418         case HV_X64_MSR_SCONTROL:
419                 *pdata = synic->control;
420                 break;
421         case HV_X64_MSR_SVERSION:
422                 *pdata = synic->version;
423                 break;
424         case HV_X64_MSR_SIEFP:
425                 *pdata = synic->evt_page;
426                 break;
427         case HV_X64_MSR_SIMP:
428                 *pdata = synic->msg_page;
429                 break;
430         case HV_X64_MSR_EOM:
431                 *pdata = 0;
432                 break;
433         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
434                 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
435                 break;
436         default:
437                 ret = 1;
438                 break;
439         }
440         return ret;
441 }
442
443 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
444 {
445         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
446         struct kvm_lapic_irq irq;
447         int ret, vector;
448
449         if (sint >= ARRAY_SIZE(synic->sint))
450                 return -EINVAL;
451
452         vector = synic_get_sint_vector(synic_read_sint(synic, sint));
453         if (vector < 0)
454                 return -ENOENT;
455
456         memset(&irq, 0, sizeof(irq));
457         irq.shorthand = APIC_DEST_SELF;
458         irq.dest_mode = APIC_DEST_PHYSICAL;
459         irq.delivery_mode = APIC_DM_FIXED;
460         irq.vector = vector;
461         irq.level = 1;
462
463         ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
464         trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
465         return ret;
466 }
467
468 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
469 {
470         struct kvm_vcpu_hv_synic *synic;
471
472         synic = synic_get(kvm, vpidx);
473         if (!synic)
474                 return -EINVAL;
475
476         return synic_set_irq(synic, sint);
477 }
478
479 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
480 {
481         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
482         int i;
483
484         trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
485
486         for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
487                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
488                         kvm_hv_notify_acked_sint(vcpu, i);
489 }
490
491 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
492 {
493         struct kvm_vcpu_hv_synic *synic;
494
495         synic = synic_get(kvm, vpidx);
496         if (!synic)
497                 return -EINVAL;
498
499         if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
500                 return -EINVAL;
501
502         atomic_set(&synic->sint_to_gsi[sint], gsi);
503         return 0;
504 }
505
506 void kvm_hv_irq_routing_update(struct kvm *kvm)
507 {
508         struct kvm_irq_routing_table *irq_rt;
509         struct kvm_kernel_irq_routing_entry *e;
510         u32 gsi;
511
512         irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
513                                         lockdep_is_held(&kvm->irq_lock));
514
515         for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
516                 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
517                         if (e->type == KVM_IRQ_ROUTING_HV_SINT)
518                                 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
519                                                     e->hv_sint.sint, gsi);
520                 }
521         }
522 }
523
524 static void synic_init(struct kvm_vcpu_hv_synic *synic)
525 {
526         int i;
527
528         memset(synic, 0, sizeof(*synic));
529         synic->version = HV_SYNIC_VERSION_1;
530         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
531                 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
532                 atomic_set(&synic->sint_to_gsi[i], -1);
533         }
534 }
535
536 static u64 get_time_ref_counter(struct kvm *kvm)
537 {
538         struct kvm_hv *hv = to_kvm_hv(kvm);
539         struct kvm_vcpu *vcpu;
540         u64 tsc;
541
542         /*
543          * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
544          * is broken, disabled or being updated.
545          */
546         if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
547                 return div_u64(get_kvmclock_ns(kvm), 100);
548
549         vcpu = kvm_get_vcpu(kvm, 0);
550         tsc = kvm_read_l1_tsc(vcpu, rdtsc());
551         return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
552                 + hv->tsc_ref.tsc_offset;
553 }
554
555 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
556                                 bool vcpu_kick)
557 {
558         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
559
560         set_bit(stimer->index,
561                 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
562         kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
563         if (vcpu_kick)
564                 kvm_vcpu_kick(vcpu);
565 }
566
567 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
568 {
569         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
570
571         trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
572                                     stimer->index);
573
574         hrtimer_cancel(&stimer->timer);
575         clear_bit(stimer->index,
576                   to_hv_vcpu(vcpu)->stimer_pending_bitmap);
577         stimer->msg_pending = false;
578         stimer->exp_time = 0;
579 }
580
581 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
582 {
583         struct kvm_vcpu_hv_stimer *stimer;
584
585         stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
586         trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
587                                      stimer->index);
588         stimer_mark_pending(stimer, true);
589
590         return HRTIMER_NORESTART;
591 }
592
593 /*
594  * stimer_start() assumptions:
595  * a) stimer->count is not equal to 0
596  * b) stimer->config has HV_STIMER_ENABLE flag
597  */
598 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
599 {
600         u64 time_now;
601         ktime_t ktime_now;
602
603         time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
604         ktime_now = ktime_get();
605
606         if (stimer->config.periodic) {
607                 if (stimer->exp_time) {
608                         if (time_now >= stimer->exp_time) {
609                                 u64 remainder;
610
611                                 div64_u64_rem(time_now - stimer->exp_time,
612                                               stimer->count, &remainder);
613                                 stimer->exp_time =
614                                         time_now + (stimer->count - remainder);
615                         }
616                 } else
617                         stimer->exp_time = time_now + stimer->count;
618
619                 trace_kvm_hv_stimer_start_periodic(
620                                         hv_stimer_to_vcpu(stimer)->vcpu_id,
621                                         stimer->index,
622                                         time_now, stimer->exp_time);
623
624                 hrtimer_start(&stimer->timer,
625                               ktime_add_ns(ktime_now,
626                                            100 * (stimer->exp_time - time_now)),
627                               HRTIMER_MODE_ABS);
628                 return 0;
629         }
630         stimer->exp_time = stimer->count;
631         if (time_now >= stimer->count) {
632                 /*
633                  * Expire timer according to Hypervisor Top-Level Functional
634                  * specification v4(15.3.1):
635                  * "If a one shot is enabled and the specified count is in
636                  * the past, it will expire immediately."
637                  */
638                 stimer_mark_pending(stimer, false);
639                 return 0;
640         }
641
642         trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
643                                            stimer->index,
644                                            time_now, stimer->count);
645
646         hrtimer_start(&stimer->timer,
647                       ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
648                       HRTIMER_MODE_ABS);
649         return 0;
650 }
651
652 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
653                              bool host)
654 {
655         union hv_stimer_config new_config = {.as_uint64 = config},
656                 old_config = {.as_uint64 = stimer->config.as_uint64};
657         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
658         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
659         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
660
661         if (!synic->active && !host)
662                 return 1;
663
664         if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
665                      !(hv_vcpu->cpuid_cache.features_edx &
666                        HV_STIMER_DIRECT_MODE_AVAILABLE)))
667                 return 1;
668
669         trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
670                                        stimer->index, config, host);
671
672         stimer_cleanup(stimer);
673         if (old_config.enable &&
674             !new_config.direct_mode && new_config.sintx == 0)
675                 new_config.enable = 0;
676         stimer->config.as_uint64 = new_config.as_uint64;
677
678         if (stimer->config.enable)
679                 stimer_mark_pending(stimer, false);
680
681         return 0;
682 }
683
684 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
685                             bool host)
686 {
687         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
688         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
689
690         if (!synic->active && !host)
691                 return 1;
692
693         trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
694                                       stimer->index, count, host);
695
696         stimer_cleanup(stimer);
697         stimer->count = count;
698         if (stimer->count == 0)
699                 stimer->config.enable = 0;
700         else if (stimer->config.auto_enable)
701                 stimer->config.enable = 1;
702
703         if (stimer->config.enable)
704                 stimer_mark_pending(stimer, false);
705
706         return 0;
707 }
708
709 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
710 {
711         *pconfig = stimer->config.as_uint64;
712         return 0;
713 }
714
715 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
716 {
717         *pcount = stimer->count;
718         return 0;
719 }
720
721 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
722                              struct hv_message *src_msg, bool no_retry)
723 {
724         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
725         int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
726         gfn_t msg_page_gfn;
727         struct hv_message_header hv_hdr;
728         int r;
729
730         if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
731                 return -ENOENT;
732
733         msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
734
735         /*
736          * Strictly following the spec-mandated ordering would assume setting
737          * .msg_pending before checking .message_type.  However, this function
738          * is only called in vcpu context so the entire update is atomic from
739          * guest POV and thus the exact order here doesn't matter.
740          */
741         r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
742                                      msg_off + offsetof(struct hv_message,
743                                                         header.message_type),
744                                      sizeof(hv_hdr.message_type));
745         if (r < 0)
746                 return r;
747
748         if (hv_hdr.message_type != HVMSG_NONE) {
749                 if (no_retry)
750                         return 0;
751
752                 hv_hdr.message_flags.msg_pending = 1;
753                 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
754                                               &hv_hdr.message_flags,
755                                               msg_off +
756                                               offsetof(struct hv_message,
757                                                        header.message_flags),
758                                               sizeof(hv_hdr.message_flags));
759                 if (r < 0)
760                         return r;
761                 return -EAGAIN;
762         }
763
764         r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
765                                       sizeof(src_msg->header) +
766                                       src_msg->header.payload_size);
767         if (r < 0)
768                 return r;
769
770         r = synic_set_irq(synic, sint);
771         if (r < 0)
772                 return r;
773         if (r == 0)
774                 return -EFAULT;
775         return 0;
776 }
777
778 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
779 {
780         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
781         struct hv_message *msg = &stimer->msg;
782         struct hv_timer_message_payload *payload =
783                         (struct hv_timer_message_payload *)&msg->u.payload;
784
785         /*
786          * To avoid piling up periodic ticks, don't retry message
787          * delivery for them (within "lazy" lost ticks policy).
788          */
789         bool no_retry = stimer->config.periodic;
790
791         payload->expiration_time = stimer->exp_time;
792         payload->delivery_time = get_time_ref_counter(vcpu->kvm);
793         return synic_deliver_msg(to_hv_synic(vcpu),
794                                  stimer->config.sintx, msg,
795                                  no_retry);
796 }
797
798 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
799 {
800         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
801         struct kvm_lapic_irq irq = {
802                 .delivery_mode = APIC_DM_FIXED,
803                 .vector = stimer->config.apic_vector
804         };
805
806         if (lapic_in_kernel(vcpu))
807                 return !kvm_apic_set_irq(vcpu, &irq, NULL);
808         return 0;
809 }
810
811 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
812 {
813         int r, direct = stimer->config.direct_mode;
814
815         stimer->msg_pending = true;
816         if (!direct)
817                 r = stimer_send_msg(stimer);
818         else
819                 r = stimer_notify_direct(stimer);
820         trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
821                                        stimer->index, direct, r);
822         if (!r) {
823                 stimer->msg_pending = false;
824                 if (!(stimer->config.periodic))
825                         stimer->config.enable = 0;
826         }
827 }
828
829 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
830 {
831         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
832         struct kvm_vcpu_hv_stimer *stimer;
833         u64 time_now, exp_time;
834         int i;
835
836         if (!hv_vcpu)
837                 return;
838
839         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
840                 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
841                         stimer = &hv_vcpu->stimer[i];
842                         if (stimer->config.enable) {
843                                 exp_time = stimer->exp_time;
844
845                                 if (exp_time) {
846                                         time_now =
847                                                 get_time_ref_counter(vcpu->kvm);
848                                         if (time_now >= exp_time)
849                                                 stimer_expiration(stimer);
850                                 }
851
852                                 if ((stimer->config.enable) &&
853                                     stimer->count) {
854                                         if (!stimer->msg_pending)
855                                                 stimer_start(stimer);
856                                 } else
857                                         stimer_cleanup(stimer);
858                         }
859                 }
860 }
861
862 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
863 {
864         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
865         int i;
866
867         if (!hv_vcpu)
868                 return;
869
870         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
871                 stimer_cleanup(&hv_vcpu->stimer[i]);
872
873         kfree(hv_vcpu);
874         vcpu->arch.hyperv = NULL;
875 }
876
877 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
878 {
879         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
880
881         if (!hv_vcpu)
882                 return false;
883
884         if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
885                 return false;
886         return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
887 }
888 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
889
890 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
891                             struct hv_vp_assist_page *assist_page)
892 {
893         if (!kvm_hv_assist_page_enabled(vcpu))
894                 return false;
895         return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
896                                       assist_page, sizeof(*assist_page));
897 }
898 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
899
900 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
901 {
902         struct hv_message *msg = &stimer->msg;
903         struct hv_timer_message_payload *payload =
904                         (struct hv_timer_message_payload *)&msg->u.payload;
905
906         memset(&msg->header, 0, sizeof(msg->header));
907         msg->header.message_type = HVMSG_TIMER_EXPIRED;
908         msg->header.payload_size = sizeof(*payload);
909
910         payload->timer_index = stimer->index;
911         payload->expiration_time = 0;
912         payload->delivery_time = 0;
913 }
914
915 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
916 {
917         memset(stimer, 0, sizeof(*stimer));
918         stimer->index = timer_index;
919         hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
920         stimer->timer.function = stimer_timer_callback;
921         stimer_prepare_msg(stimer);
922 }
923
924 static int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
925 {
926         struct kvm_vcpu_hv *hv_vcpu;
927         int i;
928
929         hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
930         if (!hv_vcpu)
931                 return -ENOMEM;
932
933         vcpu->arch.hyperv = hv_vcpu;
934         hv_vcpu->vcpu = vcpu;
935
936         synic_init(&hv_vcpu->synic);
937
938         bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
939         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
940                 stimer_init(&hv_vcpu->stimer[i], i);
941
942         hv_vcpu->vp_index = vcpu->vcpu_idx;
943
944         return 0;
945 }
946
947 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
948 {
949         struct kvm_vcpu_hv_synic *synic;
950         int r;
951
952         if (!to_hv_vcpu(vcpu)) {
953                 r = kvm_hv_vcpu_init(vcpu);
954                 if (r)
955                         return r;
956         }
957
958         synic = to_hv_synic(vcpu);
959
960         synic->active = true;
961         synic->dont_zero_synic_pages = dont_zero_synic_pages;
962         synic->control = HV_SYNIC_CONTROL_ENABLE;
963         return 0;
964 }
965
966 static bool kvm_hv_msr_partition_wide(u32 msr)
967 {
968         bool r = false;
969
970         switch (msr) {
971         case HV_X64_MSR_GUEST_OS_ID:
972         case HV_X64_MSR_HYPERCALL:
973         case HV_X64_MSR_REFERENCE_TSC:
974         case HV_X64_MSR_TIME_REF_COUNT:
975         case HV_X64_MSR_CRASH_CTL:
976         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
977         case HV_X64_MSR_RESET:
978         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
979         case HV_X64_MSR_TSC_EMULATION_CONTROL:
980         case HV_X64_MSR_TSC_EMULATION_STATUS:
981         case HV_X64_MSR_SYNDBG_OPTIONS:
982         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
983                 r = true;
984                 break;
985         }
986
987         return r;
988 }
989
990 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
991 {
992         struct kvm_hv *hv = to_kvm_hv(kvm);
993         size_t size = ARRAY_SIZE(hv->hv_crash_param);
994
995         if (WARN_ON_ONCE(index >= size))
996                 return -EINVAL;
997
998         *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
999         return 0;
1000 }
1001
1002 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
1003 {
1004         struct kvm_hv *hv = to_kvm_hv(kvm);
1005
1006         *pdata = hv->hv_crash_ctl;
1007         return 0;
1008 }
1009
1010 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
1011 {
1012         struct kvm_hv *hv = to_kvm_hv(kvm);
1013
1014         hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
1015
1016         return 0;
1017 }
1018
1019 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1020 {
1021         struct kvm_hv *hv = to_kvm_hv(kvm);
1022         size_t size = ARRAY_SIZE(hv->hv_crash_param);
1023
1024         if (WARN_ON_ONCE(index >= size))
1025                 return -EINVAL;
1026
1027         hv->hv_crash_param[array_index_nospec(index, size)] = data;
1028         return 0;
1029 }
1030
1031 /*
1032  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1033  * between them is possible:
1034  *
1035  * kvmclock formula:
1036  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1037  *           + system_time
1038  *
1039  * Hyper-V formula:
1040  *    nsec/100 = ticks * scale / 2^64 + offset
1041  *
1042  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1043  * By dividing the kvmclock formula by 100 and equating what's left we get:
1044  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1045  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
1046  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
1047  *
1048  * Now expand the kvmclock formula and divide by 100:
1049  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1050  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1051  *           + system_time
1052  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1053  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1054  *               + system_time / 100
1055  *
1056  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1057  *    nsec/100 = ticks * scale / 2^64
1058  *               - tsc_timestamp * scale / 2^64
1059  *               + system_time / 100
1060  *
1061  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1062  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
1063  *
1064  * These two equivalencies are implemented in this function.
1065  */
1066 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1067                                         struct ms_hyperv_tsc_page *tsc_ref)
1068 {
1069         u64 max_mul;
1070
1071         if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1072                 return false;
1073
1074         /*
1075          * check if scale would overflow, if so we use the time ref counter
1076          *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1077          *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1078          *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1079          */
1080         max_mul = 100ull << (32 - hv_clock->tsc_shift);
1081         if (hv_clock->tsc_to_system_mul >= max_mul)
1082                 return false;
1083
1084         /*
1085          * Otherwise compute the scale and offset according to the formulas
1086          * derived above.
1087          */
1088         tsc_ref->tsc_scale =
1089                 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1090                                 hv_clock->tsc_to_system_mul,
1091                                 100);
1092
1093         tsc_ref->tsc_offset = hv_clock->system_time;
1094         do_div(tsc_ref->tsc_offset, 100);
1095         tsc_ref->tsc_offset -=
1096                 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1097         return true;
1098 }
1099
1100 /*
1101  * Don't touch TSC page values if the guest has opted for TSC emulation after
1102  * migration. KVM doesn't fully support reenlightenment notifications and TSC
1103  * access emulation and Hyper-V is known to expect the values in TSC page to
1104  * stay constant before TSC access emulation is disabled from guest side
1105  * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1106  * frequency and guest visible TSC value across migration (and prevent it when
1107  * TSC scaling is unsupported).
1108  */
1109 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1110 {
1111         return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1112                 hv->hv_tsc_emulation_control;
1113 }
1114
1115 void kvm_hv_setup_tsc_page(struct kvm *kvm,
1116                            struct pvclock_vcpu_time_info *hv_clock)
1117 {
1118         struct kvm_hv *hv = to_kvm_hv(kvm);
1119         u32 tsc_seq;
1120         u64 gfn;
1121
1122         BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1123         BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1124
1125         if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1126             hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
1127                 return;
1128
1129         mutex_lock(&hv->hv_lock);
1130         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1131                 goto out_unlock;
1132
1133         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1134         /*
1135          * Because the TSC parameters only vary when there is a
1136          * change in the master clock, do not bother with caching.
1137          */
1138         if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1139                                     &tsc_seq, sizeof(tsc_seq))))
1140                 goto out_err;
1141
1142         if (tsc_seq && tsc_page_update_unsafe(hv)) {
1143                 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1144                         goto out_err;
1145
1146                 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1147                 goto out_unlock;
1148         }
1149
1150         /*
1151          * While we're computing and writing the parameters, force the
1152          * guest to use the time reference count MSR.
1153          */
1154         hv->tsc_ref.tsc_sequence = 0;
1155         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1156                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1157                 goto out_err;
1158
1159         if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1160                 goto out_err;
1161
1162         /* Ensure sequence is zero before writing the rest of the struct.  */
1163         smp_wmb();
1164         if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1165                 goto out_err;
1166
1167         /*
1168          * Now switch to the TSC page mechanism by writing the sequence.
1169          */
1170         tsc_seq++;
1171         if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1172                 tsc_seq = 1;
1173
1174         /* Write the struct entirely before the non-zero sequence.  */
1175         smp_wmb();
1176
1177         hv->tsc_ref.tsc_sequence = tsc_seq;
1178         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1179                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1180                 goto out_err;
1181
1182         hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1183         goto out_unlock;
1184
1185 out_err:
1186         hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1187 out_unlock:
1188         mutex_unlock(&hv->hv_lock);
1189 }
1190
1191 void kvm_hv_invalidate_tsc_page(struct kvm *kvm)
1192 {
1193         struct kvm_hv *hv = to_kvm_hv(kvm);
1194         u64 gfn;
1195         int idx;
1196
1197         if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1198             hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET ||
1199             tsc_page_update_unsafe(hv))
1200                 return;
1201
1202         mutex_lock(&hv->hv_lock);
1203
1204         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1205                 goto out_unlock;
1206
1207         /* Preserve HV_TSC_PAGE_GUEST_CHANGED/HV_TSC_PAGE_HOST_CHANGED states */
1208         if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET)
1209                 hv->hv_tsc_page_status = HV_TSC_PAGE_UPDATING;
1210
1211         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1212
1213         hv->tsc_ref.tsc_sequence = 0;
1214
1215         /*
1216          * Take the srcu lock as memslots will be accessed to check the gfn
1217          * cache generation against the memslots generation.
1218          */
1219         idx = srcu_read_lock(&kvm->srcu);
1220         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1221                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1222                 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1223         srcu_read_unlock(&kvm->srcu, idx);
1224
1225 out_unlock:
1226         mutex_unlock(&hv->hv_lock);
1227 }
1228
1229
1230 static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
1231 {
1232         if (!hv_vcpu->enforce_cpuid)
1233                 return true;
1234
1235         switch (msr) {
1236         case HV_X64_MSR_GUEST_OS_ID:
1237         case HV_X64_MSR_HYPERCALL:
1238                 return hv_vcpu->cpuid_cache.features_eax &
1239                         HV_MSR_HYPERCALL_AVAILABLE;
1240         case HV_X64_MSR_VP_RUNTIME:
1241                 return hv_vcpu->cpuid_cache.features_eax &
1242                         HV_MSR_VP_RUNTIME_AVAILABLE;
1243         case HV_X64_MSR_TIME_REF_COUNT:
1244                 return hv_vcpu->cpuid_cache.features_eax &
1245                         HV_MSR_TIME_REF_COUNT_AVAILABLE;
1246         case HV_X64_MSR_VP_INDEX:
1247                 return hv_vcpu->cpuid_cache.features_eax &
1248                         HV_MSR_VP_INDEX_AVAILABLE;
1249         case HV_X64_MSR_RESET:
1250                 return hv_vcpu->cpuid_cache.features_eax &
1251                         HV_MSR_RESET_AVAILABLE;
1252         case HV_X64_MSR_REFERENCE_TSC:
1253                 return hv_vcpu->cpuid_cache.features_eax &
1254                         HV_MSR_REFERENCE_TSC_AVAILABLE;
1255         case HV_X64_MSR_SCONTROL:
1256         case HV_X64_MSR_SVERSION:
1257         case HV_X64_MSR_SIEFP:
1258         case HV_X64_MSR_SIMP:
1259         case HV_X64_MSR_EOM:
1260         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1261                 return hv_vcpu->cpuid_cache.features_eax &
1262                         HV_MSR_SYNIC_AVAILABLE;
1263         case HV_X64_MSR_STIMER0_CONFIG:
1264         case HV_X64_MSR_STIMER1_CONFIG:
1265         case HV_X64_MSR_STIMER2_CONFIG:
1266         case HV_X64_MSR_STIMER3_CONFIG:
1267         case HV_X64_MSR_STIMER0_COUNT:
1268         case HV_X64_MSR_STIMER1_COUNT:
1269         case HV_X64_MSR_STIMER2_COUNT:
1270         case HV_X64_MSR_STIMER3_COUNT:
1271                 return hv_vcpu->cpuid_cache.features_eax &
1272                         HV_MSR_SYNTIMER_AVAILABLE;
1273         case HV_X64_MSR_EOI:
1274         case HV_X64_MSR_ICR:
1275         case HV_X64_MSR_TPR:
1276         case HV_X64_MSR_VP_ASSIST_PAGE:
1277                 return hv_vcpu->cpuid_cache.features_eax &
1278                         HV_MSR_APIC_ACCESS_AVAILABLE;
1279                 break;
1280         case HV_X64_MSR_TSC_FREQUENCY:
1281         case HV_X64_MSR_APIC_FREQUENCY:
1282                 return hv_vcpu->cpuid_cache.features_eax &
1283                         HV_ACCESS_FREQUENCY_MSRS;
1284         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1285         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1286         case HV_X64_MSR_TSC_EMULATION_STATUS:
1287                 return hv_vcpu->cpuid_cache.features_eax &
1288                         HV_ACCESS_REENLIGHTENMENT;
1289         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1290         case HV_X64_MSR_CRASH_CTL:
1291                 return hv_vcpu->cpuid_cache.features_edx &
1292                         HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1293         case HV_X64_MSR_SYNDBG_OPTIONS:
1294         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1295                 return hv_vcpu->cpuid_cache.features_edx &
1296                         HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1297         default:
1298                 break;
1299         }
1300
1301         return false;
1302 }
1303
1304 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1305                              bool host)
1306 {
1307         struct kvm *kvm = vcpu->kvm;
1308         struct kvm_hv *hv = to_kvm_hv(kvm);
1309
1310         if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1311                 return 1;
1312
1313         switch (msr) {
1314         case HV_X64_MSR_GUEST_OS_ID:
1315                 hv->hv_guest_os_id = data;
1316                 /* setting guest os id to zero disables hypercall page */
1317                 if (!hv->hv_guest_os_id)
1318                         hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1319                 break;
1320         case HV_X64_MSR_HYPERCALL: {
1321                 u8 instructions[9];
1322                 int i = 0;
1323                 u64 addr;
1324
1325                 /* if guest os id is not set hypercall should remain disabled */
1326                 if (!hv->hv_guest_os_id)
1327                         break;
1328                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1329                         hv->hv_hypercall = data;
1330                         break;
1331                 }
1332
1333                 /*
1334                  * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1335                  * the same way Xen itself does, by setting the bit 31 of EAX
1336                  * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1337                  * going to be clobbered on 64-bit.
1338                  */
1339                 if (kvm_xen_hypercall_enabled(kvm)) {
1340                         /* orl $0x80000000, %eax */
1341                         instructions[i++] = 0x0d;
1342                         instructions[i++] = 0x00;
1343                         instructions[i++] = 0x00;
1344                         instructions[i++] = 0x00;
1345                         instructions[i++] = 0x80;
1346                 }
1347
1348                 /* vmcall/vmmcall */
1349                 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
1350                 i += 3;
1351
1352                 /* ret */
1353                 ((unsigned char *)instructions)[i++] = 0xc3;
1354
1355                 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1356                 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1357                         return 1;
1358                 hv->hv_hypercall = data;
1359                 break;
1360         }
1361         case HV_X64_MSR_REFERENCE_TSC:
1362                 hv->hv_tsc_page = data;
1363                 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1364                         if (!host)
1365                                 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1366                         else
1367                                 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1368                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1369                 } else {
1370                         hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1371                 }
1372                 break;
1373         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1374                 return kvm_hv_msr_set_crash_data(kvm,
1375                                                  msr - HV_X64_MSR_CRASH_P0,
1376                                                  data);
1377         case HV_X64_MSR_CRASH_CTL:
1378                 if (host)
1379                         return kvm_hv_msr_set_crash_ctl(kvm, data);
1380
1381                 if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1382                         vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1383                                    hv->hv_crash_param[0],
1384                                    hv->hv_crash_param[1],
1385                                    hv->hv_crash_param[2],
1386                                    hv->hv_crash_param[3],
1387                                    hv->hv_crash_param[4]);
1388
1389                         /* Send notification about crash to user space */
1390                         kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1391                 }
1392                 break;
1393         case HV_X64_MSR_RESET:
1394                 if (data == 1) {
1395                         vcpu_debug(vcpu, "hyper-v reset requested\n");
1396                         kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1397                 }
1398                 break;
1399         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1400                 hv->hv_reenlightenment_control = data;
1401                 break;
1402         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1403                 hv->hv_tsc_emulation_control = data;
1404                 break;
1405         case HV_X64_MSR_TSC_EMULATION_STATUS:
1406                 if (data && !host)
1407                         return 1;
1408
1409                 hv->hv_tsc_emulation_status = data;
1410                 break;
1411         case HV_X64_MSR_TIME_REF_COUNT:
1412                 /* read-only, but still ignore it if host-initiated */
1413                 if (!host)
1414                         return 1;
1415                 break;
1416         case HV_X64_MSR_SYNDBG_OPTIONS:
1417         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1418                 return syndbg_set_msr(vcpu, msr, data, host);
1419         default:
1420                 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1421                             msr, data);
1422                 return 1;
1423         }
1424         return 0;
1425 }
1426
1427 /* Calculate cpu time spent by current task in 100ns units */
1428 static u64 current_task_runtime_100ns(void)
1429 {
1430         u64 utime, stime;
1431
1432         task_cputime_adjusted(current, &utime, &stime);
1433
1434         return div_u64(utime + stime, 100);
1435 }
1436
1437 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1438 {
1439         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1440
1441         if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1442                 return 1;
1443
1444         switch (msr) {
1445         case HV_X64_MSR_VP_INDEX: {
1446                 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1447                 u32 new_vp_index = (u32)data;
1448
1449                 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1450                         return 1;
1451
1452                 if (new_vp_index == hv_vcpu->vp_index)
1453                         return 0;
1454
1455                 /*
1456                  * The VP index is initialized to vcpu_index by
1457                  * kvm_hv_vcpu_postcreate so they initially match.  Now the
1458                  * VP index is changing, adjust num_mismatched_vp_indexes if
1459                  * it now matches or no longer matches vcpu_idx.
1460                  */
1461                 if (hv_vcpu->vp_index == vcpu->vcpu_idx)
1462                         atomic_inc(&hv->num_mismatched_vp_indexes);
1463                 else if (new_vp_index == vcpu->vcpu_idx)
1464                         atomic_dec(&hv->num_mismatched_vp_indexes);
1465
1466                 hv_vcpu->vp_index = new_vp_index;
1467                 break;
1468         }
1469         case HV_X64_MSR_VP_ASSIST_PAGE: {
1470                 u64 gfn;
1471                 unsigned long addr;
1472
1473                 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1474                         hv_vcpu->hv_vapic = data;
1475                         if (kvm_lapic_set_pv_eoi(vcpu, 0, 0))
1476                                 return 1;
1477                         break;
1478                 }
1479                 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1480                 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1481                 if (kvm_is_error_hva(addr))
1482                         return 1;
1483
1484                 /*
1485                  * Clear apic_assist portion of struct hv_vp_assist_page
1486                  * only, there can be valuable data in the rest which needs
1487                  * to be preserved e.g. on migration.
1488                  */
1489                 if (__put_user(0, (u32 __user *)addr))
1490                         return 1;
1491                 hv_vcpu->hv_vapic = data;
1492                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1493                 if (kvm_lapic_set_pv_eoi(vcpu,
1494                                             gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1495                                             sizeof(struct hv_vp_assist_page)))
1496                         return 1;
1497                 break;
1498         }
1499         case HV_X64_MSR_EOI:
1500                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1501         case HV_X64_MSR_ICR:
1502                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1503         case HV_X64_MSR_TPR:
1504                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1505         case HV_X64_MSR_VP_RUNTIME:
1506                 if (!host)
1507                         return 1;
1508                 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1509                 break;
1510         case HV_X64_MSR_SCONTROL:
1511         case HV_X64_MSR_SVERSION:
1512         case HV_X64_MSR_SIEFP:
1513         case HV_X64_MSR_SIMP:
1514         case HV_X64_MSR_EOM:
1515         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1516                 return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
1517         case HV_X64_MSR_STIMER0_CONFIG:
1518         case HV_X64_MSR_STIMER1_CONFIG:
1519         case HV_X64_MSR_STIMER2_CONFIG:
1520         case HV_X64_MSR_STIMER3_CONFIG: {
1521                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1522
1523                 return stimer_set_config(to_hv_stimer(vcpu, timer_index),
1524                                          data, host);
1525         }
1526         case HV_X64_MSR_STIMER0_COUNT:
1527         case HV_X64_MSR_STIMER1_COUNT:
1528         case HV_X64_MSR_STIMER2_COUNT:
1529         case HV_X64_MSR_STIMER3_COUNT: {
1530                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1531
1532                 return stimer_set_count(to_hv_stimer(vcpu, timer_index),
1533                                         data, host);
1534         }
1535         case HV_X64_MSR_TSC_FREQUENCY:
1536         case HV_X64_MSR_APIC_FREQUENCY:
1537                 /* read-only, but still ignore it if host-initiated */
1538                 if (!host)
1539                         return 1;
1540                 break;
1541         default:
1542                 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1543                             msr, data);
1544                 return 1;
1545         }
1546
1547         return 0;
1548 }
1549
1550 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1551                              bool host)
1552 {
1553         u64 data = 0;
1554         struct kvm *kvm = vcpu->kvm;
1555         struct kvm_hv *hv = to_kvm_hv(kvm);
1556
1557         if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1558                 return 1;
1559
1560         switch (msr) {
1561         case HV_X64_MSR_GUEST_OS_ID:
1562                 data = hv->hv_guest_os_id;
1563                 break;
1564         case HV_X64_MSR_HYPERCALL:
1565                 data = hv->hv_hypercall;
1566                 break;
1567         case HV_X64_MSR_TIME_REF_COUNT:
1568                 data = get_time_ref_counter(kvm);
1569                 break;
1570         case HV_X64_MSR_REFERENCE_TSC:
1571                 data = hv->hv_tsc_page;
1572                 break;
1573         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1574                 return kvm_hv_msr_get_crash_data(kvm,
1575                                                  msr - HV_X64_MSR_CRASH_P0,
1576                                                  pdata);
1577         case HV_X64_MSR_CRASH_CTL:
1578                 return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1579         case HV_X64_MSR_RESET:
1580                 data = 0;
1581                 break;
1582         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1583                 data = hv->hv_reenlightenment_control;
1584                 break;
1585         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1586                 data = hv->hv_tsc_emulation_control;
1587                 break;
1588         case HV_X64_MSR_TSC_EMULATION_STATUS:
1589                 data = hv->hv_tsc_emulation_status;
1590                 break;
1591         case HV_X64_MSR_SYNDBG_OPTIONS:
1592         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1593                 return syndbg_get_msr(vcpu, msr, pdata, host);
1594         default:
1595                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1596                 return 1;
1597         }
1598
1599         *pdata = data;
1600         return 0;
1601 }
1602
1603 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1604                           bool host)
1605 {
1606         u64 data = 0;
1607         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1608
1609         if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1610                 return 1;
1611
1612         switch (msr) {
1613         case HV_X64_MSR_VP_INDEX:
1614                 data = hv_vcpu->vp_index;
1615                 break;
1616         case HV_X64_MSR_EOI:
1617                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1618         case HV_X64_MSR_ICR:
1619                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1620         case HV_X64_MSR_TPR:
1621                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1622         case HV_X64_MSR_VP_ASSIST_PAGE:
1623                 data = hv_vcpu->hv_vapic;
1624                 break;
1625         case HV_X64_MSR_VP_RUNTIME:
1626                 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1627                 break;
1628         case HV_X64_MSR_SCONTROL:
1629         case HV_X64_MSR_SVERSION:
1630         case HV_X64_MSR_SIEFP:
1631         case HV_X64_MSR_SIMP:
1632         case HV_X64_MSR_EOM:
1633         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1634                 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
1635         case HV_X64_MSR_STIMER0_CONFIG:
1636         case HV_X64_MSR_STIMER1_CONFIG:
1637         case HV_X64_MSR_STIMER2_CONFIG:
1638         case HV_X64_MSR_STIMER3_CONFIG: {
1639                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1640
1641                 return stimer_get_config(to_hv_stimer(vcpu, timer_index),
1642                                          pdata);
1643         }
1644         case HV_X64_MSR_STIMER0_COUNT:
1645         case HV_X64_MSR_STIMER1_COUNT:
1646         case HV_X64_MSR_STIMER2_COUNT:
1647         case HV_X64_MSR_STIMER3_COUNT: {
1648                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1649
1650                 return stimer_get_count(to_hv_stimer(vcpu, timer_index),
1651                                         pdata);
1652         }
1653         case HV_X64_MSR_TSC_FREQUENCY:
1654                 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1655                 break;
1656         case HV_X64_MSR_APIC_FREQUENCY:
1657                 data = APIC_BUS_FREQUENCY;
1658                 break;
1659         default:
1660                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1661                 return 1;
1662         }
1663         *pdata = data;
1664         return 0;
1665 }
1666
1667 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1668 {
1669         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1670
1671         if (!host && !vcpu->arch.hyperv_enabled)
1672                 return 1;
1673
1674         if (!to_hv_vcpu(vcpu)) {
1675                 if (kvm_hv_vcpu_init(vcpu))
1676                         return 1;
1677         }
1678
1679         if (kvm_hv_msr_partition_wide(msr)) {
1680                 int r;
1681
1682                 mutex_lock(&hv->hv_lock);
1683                 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1684                 mutex_unlock(&hv->hv_lock);
1685                 return r;
1686         } else
1687                 return kvm_hv_set_msr(vcpu, msr, data, host);
1688 }
1689
1690 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1691 {
1692         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1693
1694         if (!host && !vcpu->arch.hyperv_enabled)
1695                 return 1;
1696
1697         if (!to_hv_vcpu(vcpu)) {
1698                 if (kvm_hv_vcpu_init(vcpu))
1699                         return 1;
1700         }
1701
1702         if (kvm_hv_msr_partition_wide(msr)) {
1703                 int r;
1704
1705                 mutex_lock(&hv->hv_lock);
1706                 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1707                 mutex_unlock(&hv->hv_lock);
1708                 return r;
1709         } else
1710                 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1711 }
1712
1713 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1714         struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1715         u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1716 {
1717         struct kvm_hv *hv = to_kvm_hv(kvm);
1718         struct kvm_vcpu *vcpu;
1719         int bank, sbank = 0;
1720         unsigned long i;
1721
1722         memset(vp_bitmap, 0,
1723                KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1724         for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1725                          KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1726                 vp_bitmap[bank] = sparse_banks[sbank++];
1727
1728         if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1729                 /* for all vcpus vp_index == vcpu_idx */
1730                 return (unsigned long *)vp_bitmap;
1731         }
1732
1733         bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1734         kvm_for_each_vcpu(i, vcpu, kvm) {
1735                 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1736                         __set_bit(i, vcpu_bitmap);
1737         }
1738         return vcpu_bitmap;
1739 }
1740
1741 struct kvm_hv_hcall {
1742         u64 param;
1743         u64 ingpa;
1744         u64 outgpa;
1745         u16 code;
1746         u16 rep_cnt;
1747         u16 rep_idx;
1748         bool fast;
1749         bool rep;
1750         sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
1751 };
1752
1753 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex)
1754 {
1755         int i;
1756         gpa_t gpa;
1757         struct kvm *kvm = vcpu->kvm;
1758         struct hv_tlb_flush_ex flush_ex;
1759         struct hv_tlb_flush flush;
1760         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1761         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1762         unsigned long *vcpu_mask;
1763         u64 valid_bank_mask;
1764         u64 sparse_banks[64];
1765         int sparse_banks_len;
1766         bool all_cpus;
1767
1768         if (!ex) {
1769                 if (hc->fast) {
1770                         flush.address_space = hc->ingpa;
1771                         flush.flags = hc->outgpa;
1772                         flush.processor_mask = sse128_lo(hc->xmm[0]);
1773                 } else {
1774                         if (unlikely(kvm_read_guest(kvm, hc->ingpa,
1775                                                     &flush, sizeof(flush))))
1776                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1777                 }
1778
1779                 trace_kvm_hv_flush_tlb(flush.processor_mask,
1780                                        flush.address_space, flush.flags);
1781
1782                 valid_bank_mask = BIT_ULL(0);
1783                 sparse_banks[0] = flush.processor_mask;
1784
1785                 /*
1786                  * Work around possible WS2012 bug: it sends hypercalls
1787                  * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1788                  * while also expecting us to flush something and crashing if
1789                  * we don't. Let's treat processor_mask == 0 same as
1790                  * HV_FLUSH_ALL_PROCESSORS.
1791                  */
1792                 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
1793                         flush.processor_mask == 0;
1794         } else {
1795                 if (hc->fast) {
1796                         flush_ex.address_space = hc->ingpa;
1797                         flush_ex.flags = hc->outgpa;
1798                         memcpy(&flush_ex.hv_vp_set,
1799                                &hc->xmm[0], sizeof(hc->xmm[0]));
1800                 } else {
1801                         if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
1802                                                     sizeof(flush_ex))))
1803                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1804                 }
1805
1806                 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1807                                           flush_ex.hv_vp_set.format,
1808                                           flush_ex.address_space,
1809                                           flush_ex.flags);
1810
1811                 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1812                 all_cpus = flush_ex.hv_vp_set.format !=
1813                         HV_GENERIC_SET_SPARSE_4K;
1814
1815                 sparse_banks_len = bitmap_weight((unsigned long *)&valid_bank_mask, 64);
1816
1817                 if (!sparse_banks_len && !all_cpus)
1818                         goto ret_success;
1819
1820                 if (!all_cpus) {
1821                         if (hc->fast) {
1822                                 if (sparse_banks_len > HV_HYPERCALL_MAX_XMM_REGISTERS - 1)
1823                                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1824                                 for (i = 0; i < sparse_banks_len; i += 2) {
1825                                         sparse_banks[i] = sse128_lo(hc->xmm[i / 2 + 1]);
1826                                         sparse_banks[i + 1] = sse128_hi(hc->xmm[i / 2 + 1]);
1827                                 }
1828                         } else {
1829                                 gpa = hc->ingpa + offsetof(struct hv_tlb_flush_ex,
1830                                                            hv_vp_set.bank_contents);
1831                                 if (unlikely(kvm_read_guest(kvm, gpa, sparse_banks,
1832                                                             sparse_banks_len *
1833                                                             sizeof(sparse_banks[0]))))
1834                                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1835                         }
1836                 }
1837         }
1838
1839         /*
1840          * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1841          * analyze it here, flush TLB regardless of the specified address space.
1842          */
1843         if (all_cpus) {
1844                 kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH_GUEST);
1845         } else {
1846                 vcpu_mask = sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1847                                                     vp_bitmap, vcpu_bitmap);
1848
1849                 kvm_make_vcpus_request_mask(kvm, KVM_REQ_TLB_FLUSH_GUEST,
1850                                             vcpu_mask);
1851         }
1852
1853 ret_success:
1854         /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
1855         return (u64)HV_STATUS_SUCCESS |
1856                 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1857 }
1858
1859 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1860                                  unsigned long *vcpu_bitmap)
1861 {
1862         struct kvm_lapic_irq irq = {
1863                 .delivery_mode = APIC_DM_FIXED,
1864                 .vector = vector
1865         };
1866         struct kvm_vcpu *vcpu;
1867         unsigned long i;
1868
1869         kvm_for_each_vcpu(i, vcpu, kvm) {
1870                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1871                         continue;
1872
1873                 /* We fail only when APIC is disabled */
1874                 kvm_apic_set_irq(vcpu, &irq, NULL);
1875         }
1876 }
1877
1878 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex)
1879 {
1880         struct kvm *kvm = vcpu->kvm;
1881         struct hv_send_ipi_ex send_ipi_ex;
1882         struct hv_send_ipi send_ipi;
1883         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1884         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1885         unsigned long *vcpu_mask;
1886         unsigned long valid_bank_mask;
1887         u64 sparse_banks[64];
1888         int sparse_banks_len;
1889         u32 vector;
1890         bool all_cpus;
1891
1892         if (!ex) {
1893                 if (!hc->fast) {
1894                         if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
1895                                                     sizeof(send_ipi))))
1896                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1897                         sparse_banks[0] = send_ipi.cpu_mask;
1898                         vector = send_ipi.vector;
1899                 } else {
1900                         /* 'reserved' part of hv_send_ipi should be 0 */
1901                         if (unlikely(hc->ingpa >> 32 != 0))
1902                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1903                         sparse_banks[0] = hc->outgpa;
1904                         vector = (u32)hc->ingpa;
1905                 }
1906                 all_cpus = false;
1907                 valid_bank_mask = BIT_ULL(0);
1908
1909                 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1910         } else {
1911                 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
1912                                             sizeof(send_ipi_ex))))
1913                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1914
1915                 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1916                                          send_ipi_ex.vp_set.format,
1917                                          send_ipi_ex.vp_set.valid_bank_mask);
1918
1919                 vector = send_ipi_ex.vector;
1920                 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1921                 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1922                         sizeof(sparse_banks[0]);
1923
1924                 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1925
1926                 if (all_cpus)
1927                         goto check_and_send_ipi;
1928
1929                 if (!sparse_banks_len)
1930                         goto ret_success;
1931
1932                 if (kvm_read_guest(kvm,
1933                                    hc->ingpa + offsetof(struct hv_send_ipi_ex,
1934                                                         vp_set.bank_contents),
1935                                    sparse_banks,
1936                                    sparse_banks_len))
1937                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1938         }
1939
1940 check_and_send_ipi:
1941         if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1942                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1943
1944         vcpu_mask = all_cpus ? NULL :
1945                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1946                                         vp_bitmap, vcpu_bitmap);
1947
1948         kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1949
1950 ret_success:
1951         return HV_STATUS_SUCCESS;
1952 }
1953
1954 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu)
1955 {
1956         struct kvm_cpuid_entry2 *entry;
1957         struct kvm_vcpu_hv *hv_vcpu;
1958
1959         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE, 0);
1960         if (entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX) {
1961                 vcpu->arch.hyperv_enabled = true;
1962         } else {
1963                 vcpu->arch.hyperv_enabled = false;
1964                 return;
1965         }
1966
1967         if (!to_hv_vcpu(vcpu) && kvm_hv_vcpu_init(vcpu))
1968                 return;
1969
1970         hv_vcpu = to_hv_vcpu(vcpu);
1971
1972         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES, 0);
1973         if (entry) {
1974                 hv_vcpu->cpuid_cache.features_eax = entry->eax;
1975                 hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
1976                 hv_vcpu->cpuid_cache.features_edx = entry->edx;
1977         } else {
1978                 hv_vcpu->cpuid_cache.features_eax = 0;
1979                 hv_vcpu->cpuid_cache.features_ebx = 0;
1980                 hv_vcpu->cpuid_cache.features_edx = 0;
1981         }
1982
1983         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO, 0);
1984         if (entry) {
1985                 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
1986                 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
1987         } else {
1988                 hv_vcpu->cpuid_cache.enlightenments_eax = 0;
1989                 hv_vcpu->cpuid_cache.enlightenments_ebx = 0;
1990         }
1991
1992         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES, 0);
1993         if (entry)
1994                 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
1995         else
1996                 hv_vcpu->cpuid_cache.syndbg_cap_eax = 0;
1997 }
1998
1999 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
2000 {
2001         struct kvm_vcpu_hv *hv_vcpu;
2002         int ret = 0;
2003
2004         if (!to_hv_vcpu(vcpu)) {
2005                 if (enforce) {
2006                         ret = kvm_hv_vcpu_init(vcpu);
2007                         if (ret)
2008                                 return ret;
2009                 } else {
2010                         return 0;
2011                 }
2012         }
2013
2014         hv_vcpu = to_hv_vcpu(vcpu);
2015         hv_vcpu->enforce_cpuid = enforce;
2016
2017         return ret;
2018 }
2019
2020 bool kvm_hv_hypercall_enabled(struct kvm_vcpu *vcpu)
2021 {
2022         return vcpu->arch.hyperv_enabled && to_kvm_hv(vcpu->kvm)->hv_guest_os_id;
2023 }
2024
2025 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
2026 {
2027         bool longmode;
2028
2029         longmode = is_64_bit_hypercall(vcpu);
2030         if (longmode)
2031                 kvm_rax_write(vcpu, result);
2032         else {
2033                 kvm_rdx_write(vcpu, result >> 32);
2034                 kvm_rax_write(vcpu, result & 0xffffffff);
2035         }
2036 }
2037
2038 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
2039 {
2040         trace_kvm_hv_hypercall_done(result);
2041         kvm_hv_hypercall_set_result(vcpu, result);
2042         ++vcpu->stat.hypercalls;
2043         return kvm_skip_emulated_instruction(vcpu);
2044 }
2045
2046 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
2047 {
2048         return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
2049 }
2050
2051 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2052 {
2053         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
2054         struct eventfd_ctx *eventfd;
2055
2056         if (unlikely(!hc->fast)) {
2057                 int ret;
2058                 gpa_t gpa = hc->ingpa;
2059
2060                 if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
2061                     offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
2062                         return HV_STATUS_INVALID_ALIGNMENT;
2063
2064                 ret = kvm_vcpu_read_guest(vcpu, gpa,
2065                                           &hc->ingpa, sizeof(hc->ingpa));
2066                 if (ret < 0)
2067                         return HV_STATUS_INVALID_ALIGNMENT;
2068         }
2069
2070         /*
2071          * Per spec, bits 32-47 contain the extra "flag number".  However, we
2072          * have no use for it, and in all known usecases it is zero, so just
2073          * report lookup failure if it isn't.
2074          */
2075         if (hc->ingpa & 0xffff00000000ULL)
2076                 return HV_STATUS_INVALID_PORT_ID;
2077         /* remaining bits are reserved-zero */
2078         if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
2079                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2080
2081         /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2082         rcu_read_lock();
2083         eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
2084         rcu_read_unlock();
2085         if (!eventfd)
2086                 return HV_STATUS_INVALID_PORT_ID;
2087
2088         eventfd_signal(eventfd, 1);
2089         return HV_STATUS_SUCCESS;
2090 }
2091
2092 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
2093 {
2094         switch (hc->code) {
2095         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2096         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2097         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2098         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2099                 return true;
2100         }
2101
2102         return false;
2103 }
2104
2105 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
2106 {
2107         int reg;
2108
2109         kvm_fpu_get();
2110         for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
2111                 _kvm_read_sse_reg(reg, &hc->xmm[reg]);
2112         kvm_fpu_put();
2113 }
2114
2115 static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
2116 {
2117         if (!hv_vcpu->enforce_cpuid)
2118                 return true;
2119
2120         switch (code) {
2121         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2122                 return hv_vcpu->cpuid_cache.enlightenments_ebx &&
2123                         hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
2124         case HVCALL_POST_MESSAGE:
2125                 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
2126         case HVCALL_SIGNAL_EVENT:
2127                 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
2128         case HVCALL_POST_DEBUG_DATA:
2129         case HVCALL_RETRIEVE_DEBUG_DATA:
2130         case HVCALL_RESET_DEBUG_SESSION:
2131                 /*
2132                  * Return 'true' when SynDBG is disabled so the resulting code
2133                  * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2134                  */
2135                 return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
2136                         hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
2137         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2138         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2139                 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2140                       HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2141                         return false;
2142                 fallthrough;
2143         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2144         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2145                 return hv_vcpu->cpuid_cache.enlightenments_eax &
2146                         HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2147         case HVCALL_SEND_IPI_EX:
2148                 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2149                       HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2150                         return false;
2151                 fallthrough;
2152         case HVCALL_SEND_IPI:
2153                 return hv_vcpu->cpuid_cache.enlightenments_eax &
2154                         HV_X64_CLUSTER_IPI_RECOMMENDED;
2155         default:
2156                 break;
2157         }
2158
2159         return true;
2160 }
2161
2162 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
2163 {
2164         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2165         struct kvm_hv_hcall hc;
2166         u64 ret = HV_STATUS_SUCCESS;
2167
2168         /*
2169          * hypercall generates UD from non zero cpl and real mode
2170          * per HYPER-V spec
2171          */
2172         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
2173                 kvm_queue_exception(vcpu, UD_VECTOR);
2174                 return 1;
2175         }
2176
2177 #ifdef CONFIG_X86_64
2178         if (is_64_bit_hypercall(vcpu)) {
2179                 hc.param = kvm_rcx_read(vcpu);
2180                 hc.ingpa = kvm_rdx_read(vcpu);
2181                 hc.outgpa = kvm_r8_read(vcpu);
2182         } else
2183 #endif
2184         {
2185                 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
2186                             (kvm_rax_read(vcpu) & 0xffffffff);
2187                 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
2188                             (kvm_rcx_read(vcpu) & 0xffffffff);
2189                 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
2190                              (kvm_rsi_read(vcpu) & 0xffffffff);
2191         }
2192
2193         hc.code = hc.param & 0xffff;
2194         hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
2195         hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
2196         hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
2197         hc.rep = !!(hc.rep_cnt || hc.rep_idx);
2198
2199         trace_kvm_hv_hypercall(hc.code, hc.fast, hc.rep_cnt, hc.rep_idx,
2200                                hc.ingpa, hc.outgpa);
2201
2202         if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
2203                 ret = HV_STATUS_ACCESS_DENIED;
2204                 goto hypercall_complete;
2205         }
2206
2207         if (hc.fast && is_xmm_fast_hypercall(&hc)) {
2208                 if (unlikely(hv_vcpu->enforce_cpuid &&
2209                              !(hv_vcpu->cpuid_cache.features_edx &
2210                                HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
2211                         kvm_queue_exception(vcpu, UD_VECTOR);
2212                         return 1;
2213                 }
2214
2215                 kvm_hv_hypercall_read_xmm(&hc);
2216         }
2217
2218         switch (hc.code) {
2219         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2220                 if (unlikely(hc.rep)) {
2221                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2222                         break;
2223                 }
2224                 kvm_vcpu_on_spin(vcpu, true);
2225                 break;
2226         case HVCALL_SIGNAL_EVENT:
2227                 if (unlikely(hc.rep)) {
2228                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2229                         break;
2230                 }
2231                 ret = kvm_hvcall_signal_event(vcpu, &hc);
2232                 if (ret != HV_STATUS_INVALID_PORT_ID)
2233                         break;
2234                 fallthrough;    /* maybe userspace knows this conn_id */
2235         case HVCALL_POST_MESSAGE:
2236                 /* don't bother userspace if it has no way to handle it */
2237                 if (unlikely(hc.rep || !to_hv_synic(vcpu)->active)) {
2238                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2239                         break;
2240                 }
2241                 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2242                 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2243                 vcpu->run->hyperv.u.hcall.input = hc.param;
2244                 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2245                 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2246                 vcpu->arch.complete_userspace_io =
2247                                 kvm_hv_hypercall_complete_userspace;
2248                 return 0;
2249         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2250                 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2251                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2252                         break;
2253                 }
2254                 ret = kvm_hv_flush_tlb(vcpu, &hc, false);
2255                 break;
2256         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2257                 if (unlikely(hc.rep)) {
2258                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2259                         break;
2260                 }
2261                 ret = kvm_hv_flush_tlb(vcpu, &hc, false);
2262                 break;
2263         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2264                 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2265                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2266                         break;
2267                 }
2268                 ret = kvm_hv_flush_tlb(vcpu, &hc, true);
2269                 break;
2270         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2271                 if (unlikely(hc.rep)) {
2272                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2273                         break;
2274                 }
2275                 ret = kvm_hv_flush_tlb(vcpu, &hc, true);
2276                 break;
2277         case HVCALL_SEND_IPI:
2278                 if (unlikely(hc.rep)) {
2279                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2280                         break;
2281                 }
2282                 ret = kvm_hv_send_ipi(vcpu, &hc, false);
2283                 break;
2284         case HVCALL_SEND_IPI_EX:
2285                 if (unlikely(hc.fast || hc.rep)) {
2286                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2287                         break;
2288                 }
2289                 ret = kvm_hv_send_ipi(vcpu, &hc, true);
2290                 break;
2291         case HVCALL_POST_DEBUG_DATA:
2292         case HVCALL_RETRIEVE_DEBUG_DATA:
2293                 if (unlikely(hc.fast)) {
2294                         ret = HV_STATUS_INVALID_PARAMETER;
2295                         break;
2296                 }
2297                 fallthrough;
2298         case HVCALL_RESET_DEBUG_SESSION: {
2299                 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2300
2301                 if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2302                         ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2303                         break;
2304                 }
2305
2306                 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2307                         ret = HV_STATUS_OPERATION_DENIED;
2308                         break;
2309                 }
2310                 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2311                 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2312                 vcpu->run->hyperv.u.hcall.input = hc.param;
2313                 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2314                 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2315                 vcpu->arch.complete_userspace_io =
2316                                 kvm_hv_hypercall_complete_userspace;
2317                 return 0;
2318         }
2319         default:
2320                 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2321                 break;
2322         }
2323
2324 hypercall_complete:
2325         return kvm_hv_hypercall_complete(vcpu, ret);
2326 }
2327
2328 void kvm_hv_init_vm(struct kvm *kvm)
2329 {
2330         struct kvm_hv *hv = to_kvm_hv(kvm);
2331
2332         mutex_init(&hv->hv_lock);
2333         idr_init(&hv->conn_to_evt);
2334 }
2335
2336 void kvm_hv_destroy_vm(struct kvm *kvm)
2337 {
2338         struct kvm_hv *hv = to_kvm_hv(kvm);
2339         struct eventfd_ctx *eventfd;
2340         int i;
2341
2342         idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2343                 eventfd_ctx_put(eventfd);
2344         idr_destroy(&hv->conn_to_evt);
2345 }
2346
2347 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2348 {
2349         struct kvm_hv *hv = to_kvm_hv(kvm);
2350         struct eventfd_ctx *eventfd;
2351         int ret;
2352
2353         eventfd = eventfd_ctx_fdget(fd);
2354         if (IS_ERR(eventfd))
2355                 return PTR_ERR(eventfd);
2356
2357         mutex_lock(&hv->hv_lock);
2358         ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
2359                         GFP_KERNEL_ACCOUNT);
2360         mutex_unlock(&hv->hv_lock);
2361
2362         if (ret >= 0)
2363                 return 0;
2364
2365         if (ret == -ENOSPC)
2366                 ret = -EEXIST;
2367         eventfd_ctx_put(eventfd);
2368         return ret;
2369 }
2370
2371 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2372 {
2373         struct kvm_hv *hv = to_kvm_hv(kvm);
2374         struct eventfd_ctx *eventfd;
2375
2376         mutex_lock(&hv->hv_lock);
2377         eventfd = idr_remove(&hv->conn_to_evt, conn_id);
2378         mutex_unlock(&hv->hv_lock);
2379
2380         if (!eventfd)
2381                 return -ENOENT;
2382
2383         synchronize_srcu(&kvm->srcu);
2384         eventfd_ctx_put(eventfd);
2385         return 0;
2386 }
2387
2388 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2389 {
2390         if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2391             (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2392                 return -EINVAL;
2393
2394         if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2395                 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
2396         return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
2397 }
2398
2399 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2400                      struct kvm_cpuid_entry2 __user *entries)
2401 {
2402         uint16_t evmcs_ver = 0;
2403         struct kvm_cpuid_entry2 cpuid_entries[] = {
2404                 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2405                 { .function = HYPERV_CPUID_INTERFACE },
2406                 { .function = HYPERV_CPUID_VERSION },
2407                 { .function = HYPERV_CPUID_FEATURES },
2408                 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2409                 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2410                 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2411                 { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2412                 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
2413                 { .function = HYPERV_CPUID_NESTED_FEATURES },
2414         };
2415         int i, nent = ARRAY_SIZE(cpuid_entries);
2416
2417         if (kvm_x86_ops.nested_ops->get_evmcs_version)
2418                 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2419
2420         /* Skip NESTED_FEATURES if eVMCS is not supported */
2421         if (!evmcs_ver)
2422                 --nent;
2423
2424         if (cpuid->nent < nent)
2425                 return -E2BIG;
2426
2427         if (cpuid->nent > nent)
2428                 cpuid->nent = nent;
2429
2430         for (i = 0; i < nent; i++) {
2431                 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2432                 u32 signature[3];
2433
2434                 switch (ent->function) {
2435                 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2436                         memcpy(signature, "Linux KVM Hv", 12);
2437
2438                         ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2439                         ent->ebx = signature[0];
2440                         ent->ecx = signature[1];
2441                         ent->edx = signature[2];
2442                         break;
2443
2444                 case HYPERV_CPUID_INTERFACE:
2445                         ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2446                         break;
2447
2448                 case HYPERV_CPUID_VERSION:
2449                         /*
2450                          * We implement some Hyper-V 2016 functions so let's use
2451                          * this version.
2452                          */
2453                         ent->eax = 0x00003839;
2454                         ent->ebx = 0x000A0000;
2455                         break;
2456
2457                 case HYPERV_CPUID_FEATURES:
2458                         ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2459                         ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2460                         ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2461                         ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2462                         ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2463                         ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2464                         ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2465                         ent->eax |= HV_MSR_RESET_AVAILABLE;
2466                         ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2467                         ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2468                         ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2469
2470                         ent->ebx |= HV_POST_MESSAGES;
2471                         ent->ebx |= HV_SIGNAL_EVENTS;
2472
2473                         ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2474                         ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2475                         ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2476
2477                         ent->ebx |= HV_DEBUGGING;
2478                         ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2479                         ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2480
2481                         /*
2482                          * Direct Synthetic timers only make sense with in-kernel
2483                          * LAPIC
2484                          */
2485                         if (!vcpu || lapic_in_kernel(vcpu))
2486                                 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2487
2488                         break;
2489
2490                 case HYPERV_CPUID_ENLIGHTMENT_INFO:
2491                         ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2492                         ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2493                         ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2494                         ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2495                         ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2496                         if (evmcs_ver)
2497                                 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2498                         if (!cpu_smt_possible())
2499                                 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2500
2501                         ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
2502                         /*
2503                          * Default number of spinlock retry attempts, matches
2504                          * HyperV 2016.
2505                          */
2506                         ent->ebx = 0x00000FFF;
2507
2508                         break;
2509
2510                 case HYPERV_CPUID_IMPLEMENT_LIMITS:
2511                         /* Maximum number of virtual processors */
2512                         ent->eax = KVM_MAX_VCPUS;
2513                         /*
2514                          * Maximum number of logical processors, matches
2515                          * HyperV 2016.
2516                          */
2517                         ent->ebx = 64;
2518
2519                         break;
2520
2521                 case HYPERV_CPUID_NESTED_FEATURES:
2522                         ent->eax = evmcs_ver;
2523                         if (evmcs_ver)
2524                                 ent->eax |= HV_X64_NESTED_MSR_BITMAP;
2525
2526                         break;
2527
2528                 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2529                         memcpy(signature, "Linux KVM Hv", 12);
2530
2531                         ent->eax = 0;
2532                         ent->ebx = signature[0];
2533                         ent->ecx = signature[1];
2534                         ent->edx = signature[2];
2535                         break;
2536
2537                 case HYPERV_CPUID_SYNDBG_INTERFACE:
2538                         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2539                         ent->eax = signature[0];
2540                         break;
2541
2542                 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2543                         ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2544                         break;
2545
2546                 default:
2547                         break;
2548                 }
2549         }
2550
2551         if (copy_to_user(entries, cpuid_entries,
2552                          nent * sizeof(struct kvm_cpuid_entry2)))
2553                 return -EFAULT;
2554
2555         return 0;
2556 }