Merge tag 'for-5.14/libata-2021-06-27' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / arch / x86 / kvm / hyperv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * KVM Microsoft Hyper-V emulation
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12  *
13  * Authors:
14  *   Avi Kivity   <avi@qumranet.com>
15  *   Yaniv Kamay  <yaniv@qumranet.com>
16  *   Amit Shah    <amit.shah@qumranet.com>
17  *   Ben-Ami Yassour <benami@il.ibm.com>
18  *   Andrey Smetanin <asmetanin@virtuozzo.com>
19  */
20
21 #include "x86.h"
22 #include "lapic.h"
23 #include "ioapic.h"
24 #include "cpuid.h"
25 #include "hyperv.h"
26 #include "xen.h"
27
28 #include <linux/cpu.h>
29 #include <linux/kvm_host.h>
30 #include <linux/highmem.h>
31 #include <linux/sched/cputime.h>
32 #include <linux/eventfd.h>
33
34 #include <asm/apicdef.h>
35 #include <trace/events/kvm.h>
36
37 #include "trace.h"
38 #include "irq.h"
39
40 /* "Hv#1" signature */
41 #define HYPERV_CPUID_SIGNATURE_EAX 0x31237648
42
43 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
44
45 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
46                                 bool vcpu_kick);
47
48 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
49 {
50         return atomic64_read(&synic->sint[sint]);
51 }
52
53 static inline int synic_get_sint_vector(u64 sint_value)
54 {
55         if (sint_value & HV_SYNIC_SINT_MASKED)
56                 return -1;
57         return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
58 }
59
60 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
61                                       int vector)
62 {
63         int i;
64
65         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
66                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
67                         return true;
68         }
69         return false;
70 }
71
72 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
73                                      int vector)
74 {
75         int i;
76         u64 sint_value;
77
78         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
79                 sint_value = synic_read_sint(synic, i);
80                 if (synic_get_sint_vector(sint_value) == vector &&
81                     sint_value & HV_SYNIC_SINT_AUTO_EOI)
82                         return true;
83         }
84         return false;
85 }
86
87 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
88                                 int vector)
89 {
90         if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
91                 return;
92
93         if (synic_has_vector_connected(synic, vector))
94                 __set_bit(vector, synic->vec_bitmap);
95         else
96                 __clear_bit(vector, synic->vec_bitmap);
97
98         if (synic_has_vector_auto_eoi(synic, vector))
99                 __set_bit(vector, synic->auto_eoi_bitmap);
100         else
101                 __clear_bit(vector, synic->auto_eoi_bitmap);
102 }
103
104 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
105                           u64 data, bool host)
106 {
107         int vector, old_vector;
108         bool masked;
109
110         vector = data & HV_SYNIC_SINT_VECTOR_MASK;
111         masked = data & HV_SYNIC_SINT_MASKED;
112
113         /*
114          * Valid vectors are 16-255, however, nested Hyper-V attempts to write
115          * default '0x10000' value on boot and this should not #GP. We need to
116          * allow zero-initing the register from host as well.
117          */
118         if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
119                 return 1;
120         /*
121          * Guest may configure multiple SINTs to use the same vector, so
122          * we maintain a bitmap of vectors handled by synic, and a
123          * bitmap of vectors with auto-eoi behavior.  The bitmaps are
124          * updated here, and atomically queried on fast paths.
125          */
126         old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
127
128         atomic64_set(&synic->sint[sint], data);
129
130         synic_update_vector(synic, old_vector);
131
132         synic_update_vector(synic, vector);
133
134         /* Load SynIC vectors into EOI exit bitmap */
135         kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
136         return 0;
137 }
138
139 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
140 {
141         struct kvm_vcpu *vcpu = NULL;
142         int i;
143
144         if (vpidx >= KVM_MAX_VCPUS)
145                 return NULL;
146
147         vcpu = kvm_get_vcpu(kvm, vpidx);
148         if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
149                 return vcpu;
150         kvm_for_each_vcpu(i, vcpu, kvm)
151                 if (kvm_hv_get_vpindex(vcpu) == vpidx)
152                         return vcpu;
153         return NULL;
154 }
155
156 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
157 {
158         struct kvm_vcpu *vcpu;
159         struct kvm_vcpu_hv_synic *synic;
160
161         vcpu = get_vcpu_by_vpidx(kvm, vpidx);
162         if (!vcpu || !to_hv_vcpu(vcpu))
163                 return NULL;
164         synic = to_hv_synic(vcpu);
165         return (synic->active) ? synic : NULL;
166 }
167
168 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
169 {
170         struct kvm *kvm = vcpu->kvm;
171         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
172         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
173         struct kvm_vcpu_hv_stimer *stimer;
174         int gsi, idx;
175
176         trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
177
178         /* Try to deliver pending Hyper-V SynIC timers messages */
179         for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
180                 stimer = &hv_vcpu->stimer[idx];
181                 if (stimer->msg_pending && stimer->config.enable &&
182                     !stimer->config.direct_mode &&
183                     stimer->config.sintx == sint)
184                         stimer_mark_pending(stimer, false);
185         }
186
187         idx = srcu_read_lock(&kvm->irq_srcu);
188         gsi = atomic_read(&synic->sint_to_gsi[sint]);
189         if (gsi != -1)
190                 kvm_notify_acked_gsi(kvm, gsi);
191         srcu_read_unlock(&kvm->irq_srcu, idx);
192 }
193
194 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
195 {
196         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
197         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
198
199         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
200         hv_vcpu->exit.u.synic.msr = msr;
201         hv_vcpu->exit.u.synic.control = synic->control;
202         hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
203         hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
204
205         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
206 }
207
208 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
209                          u32 msr, u64 data, bool host)
210 {
211         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
212         int ret;
213
214         if (!synic->active && !host)
215                 return 1;
216
217         trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
218
219         ret = 0;
220         switch (msr) {
221         case HV_X64_MSR_SCONTROL:
222                 synic->control = data;
223                 if (!host)
224                         synic_exit(synic, msr);
225                 break;
226         case HV_X64_MSR_SVERSION:
227                 if (!host) {
228                         ret = 1;
229                         break;
230                 }
231                 synic->version = data;
232                 break;
233         case HV_X64_MSR_SIEFP:
234                 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
235                     !synic->dont_zero_synic_pages)
236                         if (kvm_clear_guest(vcpu->kvm,
237                                             data & PAGE_MASK, PAGE_SIZE)) {
238                                 ret = 1;
239                                 break;
240                         }
241                 synic->evt_page = data;
242                 if (!host)
243                         synic_exit(synic, msr);
244                 break;
245         case HV_X64_MSR_SIMP:
246                 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
247                     !synic->dont_zero_synic_pages)
248                         if (kvm_clear_guest(vcpu->kvm,
249                                             data & PAGE_MASK, PAGE_SIZE)) {
250                                 ret = 1;
251                                 break;
252                         }
253                 synic->msg_page = data;
254                 if (!host)
255                         synic_exit(synic, msr);
256                 break;
257         case HV_X64_MSR_EOM: {
258                 int i;
259
260                 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
261                         kvm_hv_notify_acked_sint(vcpu, i);
262                 break;
263         }
264         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
265                 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
266                 break;
267         default:
268                 ret = 1;
269                 break;
270         }
271         return ret;
272 }
273
274 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
275 {
276         struct kvm_cpuid_entry2 *entry;
277
278         entry = kvm_find_cpuid_entry(vcpu,
279                                      HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES,
280                                      0);
281         if (!entry)
282                 return false;
283
284         return entry->eax & HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
285 }
286
287 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
288 {
289         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
290
291         if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
292                 hv->hv_syndbg.control.status =
293                         vcpu->run->hyperv.u.syndbg.status;
294         return 1;
295 }
296
297 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
298 {
299         struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
300         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
301
302         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
303         hv_vcpu->exit.u.syndbg.msr = msr;
304         hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
305         hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
306         hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
307         hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
308         vcpu->arch.complete_userspace_io =
309                         kvm_hv_syndbg_complete_userspace;
310
311         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
312 }
313
314 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
315 {
316         struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
317
318         if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
319                 return 1;
320
321         trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
322                                     to_hv_vcpu(vcpu)->vp_index, msr, data);
323         switch (msr) {
324         case HV_X64_MSR_SYNDBG_CONTROL:
325                 syndbg->control.control = data;
326                 if (!host)
327                         syndbg_exit(vcpu, msr);
328                 break;
329         case HV_X64_MSR_SYNDBG_STATUS:
330                 syndbg->control.status = data;
331                 break;
332         case HV_X64_MSR_SYNDBG_SEND_BUFFER:
333                 syndbg->control.send_page = data;
334                 break;
335         case HV_X64_MSR_SYNDBG_RECV_BUFFER:
336                 syndbg->control.recv_page = data;
337                 break;
338         case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
339                 syndbg->control.pending_page = data;
340                 if (!host)
341                         syndbg_exit(vcpu, msr);
342                 break;
343         case HV_X64_MSR_SYNDBG_OPTIONS:
344                 syndbg->options = data;
345                 break;
346         default:
347                 break;
348         }
349
350         return 0;
351 }
352
353 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
354 {
355         struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
356
357         if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
358                 return 1;
359
360         switch (msr) {
361         case HV_X64_MSR_SYNDBG_CONTROL:
362                 *pdata = syndbg->control.control;
363                 break;
364         case HV_X64_MSR_SYNDBG_STATUS:
365                 *pdata = syndbg->control.status;
366                 break;
367         case HV_X64_MSR_SYNDBG_SEND_BUFFER:
368                 *pdata = syndbg->control.send_page;
369                 break;
370         case HV_X64_MSR_SYNDBG_RECV_BUFFER:
371                 *pdata = syndbg->control.recv_page;
372                 break;
373         case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
374                 *pdata = syndbg->control.pending_page;
375                 break;
376         case HV_X64_MSR_SYNDBG_OPTIONS:
377                 *pdata = syndbg->options;
378                 break;
379         default:
380                 break;
381         }
382
383         trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
384
385         return 0;
386 }
387
388 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
389                          bool host)
390 {
391         int ret;
392
393         if (!synic->active && !host)
394                 return 1;
395
396         ret = 0;
397         switch (msr) {
398         case HV_X64_MSR_SCONTROL:
399                 *pdata = synic->control;
400                 break;
401         case HV_X64_MSR_SVERSION:
402                 *pdata = synic->version;
403                 break;
404         case HV_X64_MSR_SIEFP:
405                 *pdata = synic->evt_page;
406                 break;
407         case HV_X64_MSR_SIMP:
408                 *pdata = synic->msg_page;
409                 break;
410         case HV_X64_MSR_EOM:
411                 *pdata = 0;
412                 break;
413         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
414                 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
415                 break;
416         default:
417                 ret = 1;
418                 break;
419         }
420         return ret;
421 }
422
423 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
424 {
425         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
426         struct kvm_lapic_irq irq;
427         int ret, vector;
428
429         if (sint >= ARRAY_SIZE(synic->sint))
430                 return -EINVAL;
431
432         vector = synic_get_sint_vector(synic_read_sint(synic, sint));
433         if (vector < 0)
434                 return -ENOENT;
435
436         memset(&irq, 0, sizeof(irq));
437         irq.shorthand = APIC_DEST_SELF;
438         irq.dest_mode = APIC_DEST_PHYSICAL;
439         irq.delivery_mode = APIC_DM_FIXED;
440         irq.vector = vector;
441         irq.level = 1;
442
443         ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
444         trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
445         return ret;
446 }
447
448 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
449 {
450         struct kvm_vcpu_hv_synic *synic;
451
452         synic = synic_get(kvm, vpidx);
453         if (!synic)
454                 return -EINVAL;
455
456         return synic_set_irq(synic, sint);
457 }
458
459 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
460 {
461         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
462         int i;
463
464         trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
465
466         for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
467                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
468                         kvm_hv_notify_acked_sint(vcpu, i);
469 }
470
471 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
472 {
473         struct kvm_vcpu_hv_synic *synic;
474
475         synic = synic_get(kvm, vpidx);
476         if (!synic)
477                 return -EINVAL;
478
479         if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
480                 return -EINVAL;
481
482         atomic_set(&synic->sint_to_gsi[sint], gsi);
483         return 0;
484 }
485
486 void kvm_hv_irq_routing_update(struct kvm *kvm)
487 {
488         struct kvm_irq_routing_table *irq_rt;
489         struct kvm_kernel_irq_routing_entry *e;
490         u32 gsi;
491
492         irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
493                                         lockdep_is_held(&kvm->irq_lock));
494
495         for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
496                 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
497                         if (e->type == KVM_IRQ_ROUTING_HV_SINT)
498                                 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
499                                                     e->hv_sint.sint, gsi);
500                 }
501         }
502 }
503
504 static void synic_init(struct kvm_vcpu_hv_synic *synic)
505 {
506         int i;
507
508         memset(synic, 0, sizeof(*synic));
509         synic->version = HV_SYNIC_VERSION_1;
510         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
511                 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
512                 atomic_set(&synic->sint_to_gsi[i], -1);
513         }
514 }
515
516 static u64 get_time_ref_counter(struct kvm *kvm)
517 {
518         struct kvm_hv *hv = to_kvm_hv(kvm);
519         struct kvm_vcpu *vcpu;
520         u64 tsc;
521
522         /*
523          * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
524          * is broken, disabled or being updated.
525          */
526         if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
527                 return div_u64(get_kvmclock_ns(kvm), 100);
528
529         vcpu = kvm_get_vcpu(kvm, 0);
530         tsc = kvm_read_l1_tsc(vcpu, rdtsc());
531         return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
532                 + hv->tsc_ref.tsc_offset;
533 }
534
535 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
536                                 bool vcpu_kick)
537 {
538         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
539
540         set_bit(stimer->index,
541                 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
542         kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
543         if (vcpu_kick)
544                 kvm_vcpu_kick(vcpu);
545 }
546
547 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
548 {
549         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
550
551         trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
552                                     stimer->index);
553
554         hrtimer_cancel(&stimer->timer);
555         clear_bit(stimer->index,
556                   to_hv_vcpu(vcpu)->stimer_pending_bitmap);
557         stimer->msg_pending = false;
558         stimer->exp_time = 0;
559 }
560
561 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
562 {
563         struct kvm_vcpu_hv_stimer *stimer;
564
565         stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
566         trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
567                                      stimer->index);
568         stimer_mark_pending(stimer, true);
569
570         return HRTIMER_NORESTART;
571 }
572
573 /*
574  * stimer_start() assumptions:
575  * a) stimer->count is not equal to 0
576  * b) stimer->config has HV_STIMER_ENABLE flag
577  */
578 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
579 {
580         u64 time_now;
581         ktime_t ktime_now;
582
583         time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
584         ktime_now = ktime_get();
585
586         if (stimer->config.periodic) {
587                 if (stimer->exp_time) {
588                         if (time_now >= stimer->exp_time) {
589                                 u64 remainder;
590
591                                 div64_u64_rem(time_now - stimer->exp_time,
592                                               stimer->count, &remainder);
593                                 stimer->exp_time =
594                                         time_now + (stimer->count - remainder);
595                         }
596                 } else
597                         stimer->exp_time = time_now + stimer->count;
598
599                 trace_kvm_hv_stimer_start_periodic(
600                                         hv_stimer_to_vcpu(stimer)->vcpu_id,
601                                         stimer->index,
602                                         time_now, stimer->exp_time);
603
604                 hrtimer_start(&stimer->timer,
605                               ktime_add_ns(ktime_now,
606                                            100 * (stimer->exp_time - time_now)),
607                               HRTIMER_MODE_ABS);
608                 return 0;
609         }
610         stimer->exp_time = stimer->count;
611         if (time_now >= stimer->count) {
612                 /*
613                  * Expire timer according to Hypervisor Top-Level Functional
614                  * specification v4(15.3.1):
615                  * "If a one shot is enabled and the specified count is in
616                  * the past, it will expire immediately."
617                  */
618                 stimer_mark_pending(stimer, false);
619                 return 0;
620         }
621
622         trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
623                                            stimer->index,
624                                            time_now, stimer->count);
625
626         hrtimer_start(&stimer->timer,
627                       ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
628                       HRTIMER_MODE_ABS);
629         return 0;
630 }
631
632 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
633                              bool host)
634 {
635         union hv_stimer_config new_config = {.as_uint64 = config},
636                 old_config = {.as_uint64 = stimer->config.as_uint64};
637         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
638         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
639
640         if (!synic->active && !host)
641                 return 1;
642
643         trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
644                                        stimer->index, config, host);
645
646         stimer_cleanup(stimer);
647         if (old_config.enable &&
648             !new_config.direct_mode && new_config.sintx == 0)
649                 new_config.enable = 0;
650         stimer->config.as_uint64 = new_config.as_uint64;
651
652         if (stimer->config.enable)
653                 stimer_mark_pending(stimer, false);
654
655         return 0;
656 }
657
658 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
659                             bool host)
660 {
661         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
662         struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
663
664         if (!synic->active && !host)
665                 return 1;
666
667         trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
668                                       stimer->index, count, host);
669
670         stimer_cleanup(stimer);
671         stimer->count = count;
672         if (stimer->count == 0)
673                 stimer->config.enable = 0;
674         else if (stimer->config.auto_enable)
675                 stimer->config.enable = 1;
676
677         if (stimer->config.enable)
678                 stimer_mark_pending(stimer, false);
679
680         return 0;
681 }
682
683 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
684 {
685         *pconfig = stimer->config.as_uint64;
686         return 0;
687 }
688
689 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
690 {
691         *pcount = stimer->count;
692         return 0;
693 }
694
695 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
696                              struct hv_message *src_msg, bool no_retry)
697 {
698         struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
699         int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
700         gfn_t msg_page_gfn;
701         struct hv_message_header hv_hdr;
702         int r;
703
704         if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
705                 return -ENOENT;
706
707         msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
708
709         /*
710          * Strictly following the spec-mandated ordering would assume setting
711          * .msg_pending before checking .message_type.  However, this function
712          * is only called in vcpu context so the entire update is atomic from
713          * guest POV and thus the exact order here doesn't matter.
714          */
715         r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
716                                      msg_off + offsetof(struct hv_message,
717                                                         header.message_type),
718                                      sizeof(hv_hdr.message_type));
719         if (r < 0)
720                 return r;
721
722         if (hv_hdr.message_type != HVMSG_NONE) {
723                 if (no_retry)
724                         return 0;
725
726                 hv_hdr.message_flags.msg_pending = 1;
727                 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
728                                               &hv_hdr.message_flags,
729                                               msg_off +
730                                               offsetof(struct hv_message,
731                                                        header.message_flags),
732                                               sizeof(hv_hdr.message_flags));
733                 if (r < 0)
734                         return r;
735                 return -EAGAIN;
736         }
737
738         r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
739                                       sizeof(src_msg->header) +
740                                       src_msg->header.payload_size);
741         if (r < 0)
742                 return r;
743
744         r = synic_set_irq(synic, sint);
745         if (r < 0)
746                 return r;
747         if (r == 0)
748                 return -EFAULT;
749         return 0;
750 }
751
752 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
753 {
754         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
755         struct hv_message *msg = &stimer->msg;
756         struct hv_timer_message_payload *payload =
757                         (struct hv_timer_message_payload *)&msg->u.payload;
758
759         /*
760          * To avoid piling up periodic ticks, don't retry message
761          * delivery for them (within "lazy" lost ticks policy).
762          */
763         bool no_retry = stimer->config.periodic;
764
765         payload->expiration_time = stimer->exp_time;
766         payload->delivery_time = get_time_ref_counter(vcpu->kvm);
767         return synic_deliver_msg(to_hv_synic(vcpu),
768                                  stimer->config.sintx, msg,
769                                  no_retry);
770 }
771
772 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
773 {
774         struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
775         struct kvm_lapic_irq irq = {
776                 .delivery_mode = APIC_DM_FIXED,
777                 .vector = stimer->config.apic_vector
778         };
779
780         if (lapic_in_kernel(vcpu))
781                 return !kvm_apic_set_irq(vcpu, &irq, NULL);
782         return 0;
783 }
784
785 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
786 {
787         int r, direct = stimer->config.direct_mode;
788
789         stimer->msg_pending = true;
790         if (!direct)
791                 r = stimer_send_msg(stimer);
792         else
793                 r = stimer_notify_direct(stimer);
794         trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
795                                        stimer->index, direct, r);
796         if (!r) {
797                 stimer->msg_pending = false;
798                 if (!(stimer->config.periodic))
799                         stimer->config.enable = 0;
800         }
801 }
802
803 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
804 {
805         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
806         struct kvm_vcpu_hv_stimer *stimer;
807         u64 time_now, exp_time;
808         int i;
809
810         if (!hv_vcpu)
811                 return;
812
813         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
814                 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
815                         stimer = &hv_vcpu->stimer[i];
816                         if (stimer->config.enable) {
817                                 exp_time = stimer->exp_time;
818
819                                 if (exp_time) {
820                                         time_now =
821                                                 get_time_ref_counter(vcpu->kvm);
822                                         if (time_now >= exp_time)
823                                                 stimer_expiration(stimer);
824                                 }
825
826                                 if ((stimer->config.enable) &&
827                                     stimer->count) {
828                                         if (!stimer->msg_pending)
829                                                 stimer_start(stimer);
830                                 } else
831                                         stimer_cleanup(stimer);
832                         }
833                 }
834 }
835
836 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
837 {
838         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
839         int i;
840
841         if (!hv_vcpu)
842                 return;
843
844         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
845                 stimer_cleanup(&hv_vcpu->stimer[i]);
846
847         kfree(hv_vcpu);
848         vcpu->arch.hyperv = NULL;
849 }
850
851 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
852 {
853         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
854
855         if (!hv_vcpu)
856                 return false;
857
858         if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
859                 return false;
860         return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
861 }
862 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
863
864 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
865                             struct hv_vp_assist_page *assist_page)
866 {
867         if (!kvm_hv_assist_page_enabled(vcpu))
868                 return false;
869         return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
870                                       assist_page, sizeof(*assist_page));
871 }
872 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
873
874 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
875 {
876         struct hv_message *msg = &stimer->msg;
877         struct hv_timer_message_payload *payload =
878                         (struct hv_timer_message_payload *)&msg->u.payload;
879
880         memset(&msg->header, 0, sizeof(msg->header));
881         msg->header.message_type = HVMSG_TIMER_EXPIRED;
882         msg->header.payload_size = sizeof(*payload);
883
884         payload->timer_index = stimer->index;
885         payload->expiration_time = 0;
886         payload->delivery_time = 0;
887 }
888
889 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
890 {
891         memset(stimer, 0, sizeof(*stimer));
892         stimer->index = timer_index;
893         hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
894         stimer->timer.function = stimer_timer_callback;
895         stimer_prepare_msg(stimer);
896 }
897
898 static int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
899 {
900         struct kvm_vcpu_hv *hv_vcpu;
901         int i;
902
903         hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
904         if (!hv_vcpu)
905                 return -ENOMEM;
906
907         vcpu->arch.hyperv = hv_vcpu;
908         hv_vcpu->vcpu = vcpu;
909
910         synic_init(&hv_vcpu->synic);
911
912         bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
913         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
914                 stimer_init(&hv_vcpu->stimer[i], i);
915
916         hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
917
918         return 0;
919 }
920
921 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
922 {
923         struct kvm_vcpu_hv_synic *synic;
924         int r;
925
926         if (!to_hv_vcpu(vcpu)) {
927                 r = kvm_hv_vcpu_init(vcpu);
928                 if (r)
929                         return r;
930         }
931
932         synic = to_hv_synic(vcpu);
933
934         /*
935          * Hyper-V SynIC auto EOI SINT's are
936          * not compatible with APICV, so request
937          * to deactivate APICV permanently.
938          */
939         kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_HYPERV);
940         synic->active = true;
941         synic->dont_zero_synic_pages = dont_zero_synic_pages;
942         synic->control = HV_SYNIC_CONTROL_ENABLE;
943         return 0;
944 }
945
946 static bool kvm_hv_msr_partition_wide(u32 msr)
947 {
948         bool r = false;
949
950         switch (msr) {
951         case HV_X64_MSR_GUEST_OS_ID:
952         case HV_X64_MSR_HYPERCALL:
953         case HV_X64_MSR_REFERENCE_TSC:
954         case HV_X64_MSR_TIME_REF_COUNT:
955         case HV_X64_MSR_CRASH_CTL:
956         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
957         case HV_X64_MSR_RESET:
958         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
959         case HV_X64_MSR_TSC_EMULATION_CONTROL:
960         case HV_X64_MSR_TSC_EMULATION_STATUS:
961         case HV_X64_MSR_SYNDBG_OPTIONS:
962         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
963                 r = true;
964                 break;
965         }
966
967         return r;
968 }
969
970 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
971 {
972         struct kvm_hv *hv = to_kvm_hv(kvm);
973         size_t size = ARRAY_SIZE(hv->hv_crash_param);
974
975         if (WARN_ON_ONCE(index >= size))
976                 return -EINVAL;
977
978         *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
979         return 0;
980 }
981
982 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
983 {
984         struct kvm_hv *hv = to_kvm_hv(kvm);
985
986         *pdata = hv->hv_crash_ctl;
987         return 0;
988 }
989
990 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
991 {
992         struct kvm_hv *hv = to_kvm_hv(kvm);
993
994         hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
995
996         return 0;
997 }
998
999 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1000 {
1001         struct kvm_hv *hv = to_kvm_hv(kvm);
1002         size_t size = ARRAY_SIZE(hv->hv_crash_param);
1003
1004         if (WARN_ON_ONCE(index >= size))
1005                 return -EINVAL;
1006
1007         hv->hv_crash_param[array_index_nospec(index, size)] = data;
1008         return 0;
1009 }
1010
1011 /*
1012  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1013  * between them is possible:
1014  *
1015  * kvmclock formula:
1016  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1017  *           + system_time
1018  *
1019  * Hyper-V formula:
1020  *    nsec/100 = ticks * scale / 2^64 + offset
1021  *
1022  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1023  * By dividing the kvmclock formula by 100 and equating what's left we get:
1024  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1025  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
1026  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
1027  *
1028  * Now expand the kvmclock formula and divide by 100:
1029  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1030  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1031  *           + system_time
1032  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1033  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1034  *               + system_time / 100
1035  *
1036  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1037  *    nsec/100 = ticks * scale / 2^64
1038  *               - tsc_timestamp * scale / 2^64
1039  *               + system_time / 100
1040  *
1041  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1042  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
1043  *
1044  * These two equivalencies are implemented in this function.
1045  */
1046 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1047                                         struct ms_hyperv_tsc_page *tsc_ref)
1048 {
1049         u64 max_mul;
1050
1051         if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1052                 return false;
1053
1054         /*
1055          * check if scale would overflow, if so we use the time ref counter
1056          *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1057          *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1058          *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1059          */
1060         max_mul = 100ull << (32 - hv_clock->tsc_shift);
1061         if (hv_clock->tsc_to_system_mul >= max_mul)
1062                 return false;
1063
1064         /*
1065          * Otherwise compute the scale and offset according to the formulas
1066          * derived above.
1067          */
1068         tsc_ref->tsc_scale =
1069                 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1070                                 hv_clock->tsc_to_system_mul,
1071                                 100);
1072
1073         tsc_ref->tsc_offset = hv_clock->system_time;
1074         do_div(tsc_ref->tsc_offset, 100);
1075         tsc_ref->tsc_offset -=
1076                 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1077         return true;
1078 }
1079
1080 /*
1081  * Don't touch TSC page values if the guest has opted for TSC emulation after
1082  * migration. KVM doesn't fully support reenlightenment notifications and TSC
1083  * access emulation and Hyper-V is known to expect the values in TSC page to
1084  * stay constant before TSC access emulation is disabled from guest side
1085  * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1086  * frequency and guest visible TSC value across migration (and prevent it when
1087  * TSC scaling is unsupported).
1088  */
1089 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1090 {
1091         return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1092                 hv->hv_tsc_emulation_control;
1093 }
1094
1095 void kvm_hv_setup_tsc_page(struct kvm *kvm,
1096                            struct pvclock_vcpu_time_info *hv_clock)
1097 {
1098         struct kvm_hv *hv = to_kvm_hv(kvm);
1099         u32 tsc_seq;
1100         u64 gfn;
1101
1102         BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1103         BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1104
1105         if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1106             hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
1107                 return;
1108
1109         mutex_lock(&hv->hv_lock);
1110         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1111                 goto out_unlock;
1112
1113         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1114         /*
1115          * Because the TSC parameters only vary when there is a
1116          * change in the master clock, do not bother with caching.
1117          */
1118         if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1119                                     &tsc_seq, sizeof(tsc_seq))))
1120                 goto out_err;
1121
1122         if (tsc_seq && tsc_page_update_unsafe(hv)) {
1123                 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1124                         goto out_err;
1125
1126                 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1127                 goto out_unlock;
1128         }
1129
1130         /*
1131          * While we're computing and writing the parameters, force the
1132          * guest to use the time reference count MSR.
1133          */
1134         hv->tsc_ref.tsc_sequence = 0;
1135         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1136                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1137                 goto out_err;
1138
1139         if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1140                 goto out_err;
1141
1142         /* Ensure sequence is zero before writing the rest of the struct.  */
1143         smp_wmb();
1144         if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1145                 goto out_err;
1146
1147         /*
1148          * Now switch to the TSC page mechanism by writing the sequence.
1149          */
1150         tsc_seq++;
1151         if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1152                 tsc_seq = 1;
1153
1154         /* Write the struct entirely before the non-zero sequence.  */
1155         smp_wmb();
1156
1157         hv->tsc_ref.tsc_sequence = tsc_seq;
1158         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1159                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1160                 goto out_err;
1161
1162         hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1163         goto out_unlock;
1164
1165 out_err:
1166         hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1167 out_unlock:
1168         mutex_unlock(&hv->hv_lock);
1169 }
1170
1171 void kvm_hv_invalidate_tsc_page(struct kvm *kvm)
1172 {
1173         struct kvm_hv *hv = to_kvm_hv(kvm);
1174         u64 gfn;
1175         int idx;
1176
1177         if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1178             hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET ||
1179             tsc_page_update_unsafe(hv))
1180                 return;
1181
1182         mutex_lock(&hv->hv_lock);
1183
1184         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1185                 goto out_unlock;
1186
1187         /* Preserve HV_TSC_PAGE_GUEST_CHANGED/HV_TSC_PAGE_HOST_CHANGED states */
1188         if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET)
1189                 hv->hv_tsc_page_status = HV_TSC_PAGE_UPDATING;
1190
1191         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1192
1193         hv->tsc_ref.tsc_sequence = 0;
1194
1195         /*
1196          * Take the srcu lock as memslots will be accessed to check the gfn
1197          * cache generation against the memslots generation.
1198          */
1199         idx = srcu_read_lock(&kvm->srcu);
1200         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1201                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1202                 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1203         srcu_read_unlock(&kvm->srcu, idx);
1204
1205 out_unlock:
1206         mutex_unlock(&hv->hv_lock);
1207 }
1208
1209 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1210                              bool host)
1211 {
1212         struct kvm *kvm = vcpu->kvm;
1213         struct kvm_hv *hv = to_kvm_hv(kvm);
1214
1215         switch (msr) {
1216         case HV_X64_MSR_GUEST_OS_ID:
1217                 hv->hv_guest_os_id = data;
1218                 /* setting guest os id to zero disables hypercall page */
1219                 if (!hv->hv_guest_os_id)
1220                         hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1221                 break;
1222         case HV_X64_MSR_HYPERCALL: {
1223                 u8 instructions[9];
1224                 int i = 0;
1225                 u64 addr;
1226
1227                 /* if guest os id is not set hypercall should remain disabled */
1228                 if (!hv->hv_guest_os_id)
1229                         break;
1230                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1231                         hv->hv_hypercall = data;
1232                         break;
1233                 }
1234
1235                 /*
1236                  * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1237                  * the same way Xen itself does, by setting the bit 31 of EAX
1238                  * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1239                  * going to be clobbered on 64-bit.
1240                  */
1241                 if (kvm_xen_hypercall_enabled(kvm)) {
1242                         /* orl $0x80000000, %eax */
1243                         instructions[i++] = 0x0d;
1244                         instructions[i++] = 0x00;
1245                         instructions[i++] = 0x00;
1246                         instructions[i++] = 0x00;
1247                         instructions[i++] = 0x80;
1248                 }
1249
1250                 /* vmcall/vmmcall */
1251                 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
1252                 i += 3;
1253
1254                 /* ret */
1255                 ((unsigned char *)instructions)[i++] = 0xc3;
1256
1257                 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1258                 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1259                         return 1;
1260                 hv->hv_hypercall = data;
1261                 break;
1262         }
1263         case HV_X64_MSR_REFERENCE_TSC:
1264                 hv->hv_tsc_page = data;
1265                 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1266                         if (!host)
1267                                 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1268                         else
1269                                 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1270                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1271                 } else {
1272                         hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1273                 }
1274                 break;
1275         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1276                 return kvm_hv_msr_set_crash_data(kvm,
1277                                                  msr - HV_X64_MSR_CRASH_P0,
1278                                                  data);
1279         case HV_X64_MSR_CRASH_CTL:
1280                 if (host)
1281                         return kvm_hv_msr_set_crash_ctl(kvm, data);
1282
1283                 if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1284                         vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1285                                    hv->hv_crash_param[0],
1286                                    hv->hv_crash_param[1],
1287                                    hv->hv_crash_param[2],
1288                                    hv->hv_crash_param[3],
1289                                    hv->hv_crash_param[4]);
1290
1291                         /* Send notification about crash to user space */
1292                         kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1293                 }
1294                 break;
1295         case HV_X64_MSR_RESET:
1296                 if (data == 1) {
1297                         vcpu_debug(vcpu, "hyper-v reset requested\n");
1298                         kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1299                 }
1300                 break;
1301         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1302                 hv->hv_reenlightenment_control = data;
1303                 break;
1304         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1305                 hv->hv_tsc_emulation_control = data;
1306                 break;
1307         case HV_X64_MSR_TSC_EMULATION_STATUS:
1308                 if (data && !host)
1309                         return 1;
1310
1311                 hv->hv_tsc_emulation_status = data;
1312                 break;
1313         case HV_X64_MSR_TIME_REF_COUNT:
1314                 /* read-only, but still ignore it if host-initiated */
1315                 if (!host)
1316                         return 1;
1317                 break;
1318         case HV_X64_MSR_SYNDBG_OPTIONS:
1319         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1320                 return syndbg_set_msr(vcpu, msr, data, host);
1321         default:
1322                 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1323                             msr, data);
1324                 return 1;
1325         }
1326         return 0;
1327 }
1328
1329 /* Calculate cpu time spent by current task in 100ns units */
1330 static u64 current_task_runtime_100ns(void)
1331 {
1332         u64 utime, stime;
1333
1334         task_cputime_adjusted(current, &utime, &stime);
1335
1336         return div_u64(utime + stime, 100);
1337 }
1338
1339 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1340 {
1341         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1342
1343         switch (msr) {
1344         case HV_X64_MSR_VP_INDEX: {
1345                 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1346                 int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1347                 u32 new_vp_index = (u32)data;
1348
1349                 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1350                         return 1;
1351
1352                 if (new_vp_index == hv_vcpu->vp_index)
1353                         return 0;
1354
1355                 /*
1356                  * The VP index is initialized to vcpu_index by
1357                  * kvm_hv_vcpu_postcreate so they initially match.  Now the
1358                  * VP index is changing, adjust num_mismatched_vp_indexes if
1359                  * it now matches or no longer matches vcpu_idx.
1360                  */
1361                 if (hv_vcpu->vp_index == vcpu_idx)
1362                         atomic_inc(&hv->num_mismatched_vp_indexes);
1363                 else if (new_vp_index == vcpu_idx)
1364                         atomic_dec(&hv->num_mismatched_vp_indexes);
1365
1366                 hv_vcpu->vp_index = new_vp_index;
1367                 break;
1368         }
1369         case HV_X64_MSR_VP_ASSIST_PAGE: {
1370                 u64 gfn;
1371                 unsigned long addr;
1372
1373                 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1374                         hv_vcpu->hv_vapic = data;
1375                         if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1376                                 return 1;
1377                         break;
1378                 }
1379                 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1380                 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1381                 if (kvm_is_error_hva(addr))
1382                         return 1;
1383
1384                 /*
1385                  * Clear apic_assist portion of struct hv_vp_assist_page
1386                  * only, there can be valuable data in the rest which needs
1387                  * to be preserved e.g. on migration.
1388                  */
1389                 if (__put_user(0, (u32 __user *)addr))
1390                         return 1;
1391                 hv_vcpu->hv_vapic = data;
1392                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1393                 if (kvm_lapic_enable_pv_eoi(vcpu,
1394                                             gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1395                                             sizeof(struct hv_vp_assist_page)))
1396                         return 1;
1397                 break;
1398         }
1399         case HV_X64_MSR_EOI:
1400                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1401         case HV_X64_MSR_ICR:
1402                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1403         case HV_X64_MSR_TPR:
1404                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1405         case HV_X64_MSR_VP_RUNTIME:
1406                 if (!host)
1407                         return 1;
1408                 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1409                 break;
1410         case HV_X64_MSR_SCONTROL:
1411         case HV_X64_MSR_SVERSION:
1412         case HV_X64_MSR_SIEFP:
1413         case HV_X64_MSR_SIMP:
1414         case HV_X64_MSR_EOM:
1415         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1416                 return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
1417         case HV_X64_MSR_STIMER0_CONFIG:
1418         case HV_X64_MSR_STIMER1_CONFIG:
1419         case HV_X64_MSR_STIMER2_CONFIG:
1420         case HV_X64_MSR_STIMER3_CONFIG: {
1421                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1422
1423                 return stimer_set_config(to_hv_stimer(vcpu, timer_index),
1424                                          data, host);
1425         }
1426         case HV_X64_MSR_STIMER0_COUNT:
1427         case HV_X64_MSR_STIMER1_COUNT:
1428         case HV_X64_MSR_STIMER2_COUNT:
1429         case HV_X64_MSR_STIMER3_COUNT: {
1430                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1431
1432                 return stimer_set_count(to_hv_stimer(vcpu, timer_index),
1433                                         data, host);
1434         }
1435         case HV_X64_MSR_TSC_FREQUENCY:
1436         case HV_X64_MSR_APIC_FREQUENCY:
1437                 /* read-only, but still ignore it if host-initiated */
1438                 if (!host)
1439                         return 1;
1440                 break;
1441         default:
1442                 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1443                             msr, data);
1444                 return 1;
1445         }
1446
1447         return 0;
1448 }
1449
1450 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1451                              bool host)
1452 {
1453         u64 data = 0;
1454         struct kvm *kvm = vcpu->kvm;
1455         struct kvm_hv *hv = to_kvm_hv(kvm);
1456
1457         switch (msr) {
1458         case HV_X64_MSR_GUEST_OS_ID:
1459                 data = hv->hv_guest_os_id;
1460                 break;
1461         case HV_X64_MSR_HYPERCALL:
1462                 data = hv->hv_hypercall;
1463                 break;
1464         case HV_X64_MSR_TIME_REF_COUNT:
1465                 data = get_time_ref_counter(kvm);
1466                 break;
1467         case HV_X64_MSR_REFERENCE_TSC:
1468                 data = hv->hv_tsc_page;
1469                 break;
1470         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1471                 return kvm_hv_msr_get_crash_data(kvm,
1472                                                  msr - HV_X64_MSR_CRASH_P0,
1473                                                  pdata);
1474         case HV_X64_MSR_CRASH_CTL:
1475                 return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1476         case HV_X64_MSR_RESET:
1477                 data = 0;
1478                 break;
1479         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1480                 data = hv->hv_reenlightenment_control;
1481                 break;
1482         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1483                 data = hv->hv_tsc_emulation_control;
1484                 break;
1485         case HV_X64_MSR_TSC_EMULATION_STATUS:
1486                 data = hv->hv_tsc_emulation_status;
1487                 break;
1488         case HV_X64_MSR_SYNDBG_OPTIONS:
1489         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1490                 return syndbg_get_msr(vcpu, msr, pdata, host);
1491         default:
1492                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1493                 return 1;
1494         }
1495
1496         *pdata = data;
1497         return 0;
1498 }
1499
1500 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1501                           bool host)
1502 {
1503         u64 data = 0;
1504         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1505
1506         switch (msr) {
1507         case HV_X64_MSR_VP_INDEX:
1508                 data = hv_vcpu->vp_index;
1509                 break;
1510         case HV_X64_MSR_EOI:
1511                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1512         case HV_X64_MSR_ICR:
1513                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1514         case HV_X64_MSR_TPR:
1515                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1516         case HV_X64_MSR_VP_ASSIST_PAGE:
1517                 data = hv_vcpu->hv_vapic;
1518                 break;
1519         case HV_X64_MSR_VP_RUNTIME:
1520                 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1521                 break;
1522         case HV_X64_MSR_SCONTROL:
1523         case HV_X64_MSR_SVERSION:
1524         case HV_X64_MSR_SIEFP:
1525         case HV_X64_MSR_SIMP:
1526         case HV_X64_MSR_EOM:
1527         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1528                 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
1529         case HV_X64_MSR_STIMER0_CONFIG:
1530         case HV_X64_MSR_STIMER1_CONFIG:
1531         case HV_X64_MSR_STIMER2_CONFIG:
1532         case HV_X64_MSR_STIMER3_CONFIG: {
1533                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1534
1535                 return stimer_get_config(to_hv_stimer(vcpu, timer_index),
1536                                          pdata);
1537         }
1538         case HV_X64_MSR_STIMER0_COUNT:
1539         case HV_X64_MSR_STIMER1_COUNT:
1540         case HV_X64_MSR_STIMER2_COUNT:
1541         case HV_X64_MSR_STIMER3_COUNT: {
1542                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1543
1544                 return stimer_get_count(to_hv_stimer(vcpu, timer_index),
1545                                         pdata);
1546         }
1547         case HV_X64_MSR_TSC_FREQUENCY:
1548                 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1549                 break;
1550         case HV_X64_MSR_APIC_FREQUENCY:
1551                 data = APIC_BUS_FREQUENCY;
1552                 break;
1553         default:
1554                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1555                 return 1;
1556         }
1557         *pdata = data;
1558         return 0;
1559 }
1560
1561 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1562 {
1563         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1564
1565         if (!host && !vcpu->arch.hyperv_enabled)
1566                 return 1;
1567
1568         if (!to_hv_vcpu(vcpu)) {
1569                 if (kvm_hv_vcpu_init(vcpu))
1570                         return 1;
1571         }
1572
1573         if (kvm_hv_msr_partition_wide(msr)) {
1574                 int r;
1575
1576                 mutex_lock(&hv->hv_lock);
1577                 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1578                 mutex_unlock(&hv->hv_lock);
1579                 return r;
1580         } else
1581                 return kvm_hv_set_msr(vcpu, msr, data, host);
1582 }
1583
1584 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1585 {
1586         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1587
1588         if (!host && !vcpu->arch.hyperv_enabled)
1589                 return 1;
1590
1591         if (!to_hv_vcpu(vcpu)) {
1592                 if (kvm_hv_vcpu_init(vcpu))
1593                         return 1;
1594         }
1595
1596         if (kvm_hv_msr_partition_wide(msr)) {
1597                 int r;
1598
1599                 mutex_lock(&hv->hv_lock);
1600                 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1601                 mutex_unlock(&hv->hv_lock);
1602                 return r;
1603         } else
1604                 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1605 }
1606
1607 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1608         struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1609         u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1610 {
1611         struct kvm_hv *hv = to_kvm_hv(kvm);
1612         struct kvm_vcpu *vcpu;
1613         int i, bank, sbank = 0;
1614
1615         memset(vp_bitmap, 0,
1616                KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1617         for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1618                          KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1619                 vp_bitmap[bank] = sparse_banks[sbank++];
1620
1621         if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1622                 /* for all vcpus vp_index == vcpu_idx */
1623                 return (unsigned long *)vp_bitmap;
1624         }
1625
1626         bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1627         kvm_for_each_vcpu(i, vcpu, kvm) {
1628                 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1629                         __set_bit(i, vcpu_bitmap);
1630         }
1631         return vcpu_bitmap;
1632 }
1633
1634 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, u64 ingpa, u16 rep_cnt, bool ex)
1635 {
1636         struct kvm *kvm = vcpu->kvm;
1637         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1638         struct hv_tlb_flush_ex flush_ex;
1639         struct hv_tlb_flush flush;
1640         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1641         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1642         unsigned long *vcpu_mask;
1643         u64 valid_bank_mask;
1644         u64 sparse_banks[64];
1645         int sparse_banks_len;
1646         bool all_cpus;
1647
1648         if (!ex) {
1649                 if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1650                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1651
1652                 trace_kvm_hv_flush_tlb(flush.processor_mask,
1653                                        flush.address_space, flush.flags);
1654
1655                 valid_bank_mask = BIT_ULL(0);
1656                 sparse_banks[0] = flush.processor_mask;
1657
1658                 /*
1659                  * Work around possible WS2012 bug: it sends hypercalls
1660                  * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1661                  * while also expecting us to flush something and crashing if
1662                  * we don't. Let's treat processor_mask == 0 same as
1663                  * HV_FLUSH_ALL_PROCESSORS.
1664                  */
1665                 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
1666                         flush.processor_mask == 0;
1667         } else {
1668                 if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1669                                             sizeof(flush_ex))))
1670                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1671
1672                 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1673                                           flush_ex.hv_vp_set.format,
1674                                           flush_ex.address_space,
1675                                           flush_ex.flags);
1676
1677                 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1678                 all_cpus = flush_ex.hv_vp_set.format !=
1679                         HV_GENERIC_SET_SPARSE_4K;
1680
1681                 sparse_banks_len =
1682                         bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1683                         sizeof(sparse_banks[0]);
1684
1685                 if (!sparse_banks_len && !all_cpus)
1686                         goto ret_success;
1687
1688                 if (!all_cpus &&
1689                     kvm_read_guest(kvm,
1690                                    ingpa + offsetof(struct hv_tlb_flush_ex,
1691                                                     hv_vp_set.bank_contents),
1692                                    sparse_banks,
1693                                    sparse_banks_len))
1694                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1695         }
1696
1697         cpumask_clear(&hv_vcpu->tlb_flush);
1698
1699         vcpu_mask = all_cpus ? NULL :
1700                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1701                                         vp_bitmap, vcpu_bitmap);
1702
1703         /*
1704          * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1705          * analyze it here, flush TLB regardless of the specified address space.
1706          */
1707         kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH,
1708                                     NULL, vcpu_mask, &hv_vcpu->tlb_flush);
1709
1710 ret_success:
1711         /* We always do full TLB flush, set rep_done = rep_cnt. */
1712         return (u64)HV_STATUS_SUCCESS |
1713                 ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1714 }
1715
1716 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1717                                  unsigned long *vcpu_bitmap)
1718 {
1719         struct kvm_lapic_irq irq = {
1720                 .delivery_mode = APIC_DM_FIXED,
1721                 .vector = vector
1722         };
1723         struct kvm_vcpu *vcpu;
1724         int i;
1725
1726         kvm_for_each_vcpu(i, vcpu, kvm) {
1727                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1728                         continue;
1729
1730                 /* We fail only when APIC is disabled */
1731                 kvm_apic_set_irq(vcpu, &irq, NULL);
1732         }
1733 }
1734
1735 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, u64 ingpa, u64 outgpa,
1736                            bool ex, bool fast)
1737 {
1738         struct kvm *kvm = vcpu->kvm;
1739         struct hv_send_ipi_ex send_ipi_ex;
1740         struct hv_send_ipi send_ipi;
1741         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1742         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1743         unsigned long *vcpu_mask;
1744         unsigned long valid_bank_mask;
1745         u64 sparse_banks[64];
1746         int sparse_banks_len;
1747         u32 vector;
1748         bool all_cpus;
1749
1750         if (!ex) {
1751                 if (!fast) {
1752                         if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
1753                                                     sizeof(send_ipi))))
1754                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1755                         sparse_banks[0] = send_ipi.cpu_mask;
1756                         vector = send_ipi.vector;
1757                 } else {
1758                         /* 'reserved' part of hv_send_ipi should be 0 */
1759                         if (unlikely(ingpa >> 32 != 0))
1760                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1761                         sparse_banks[0] = outgpa;
1762                         vector = (u32)ingpa;
1763                 }
1764                 all_cpus = false;
1765                 valid_bank_mask = BIT_ULL(0);
1766
1767                 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1768         } else {
1769                 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
1770                                             sizeof(send_ipi_ex))))
1771                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1772
1773                 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1774                                          send_ipi_ex.vp_set.format,
1775                                          send_ipi_ex.vp_set.valid_bank_mask);
1776
1777                 vector = send_ipi_ex.vector;
1778                 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1779                 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1780                         sizeof(sparse_banks[0]);
1781
1782                 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1783
1784                 if (!sparse_banks_len)
1785                         goto ret_success;
1786
1787                 if (!all_cpus &&
1788                     kvm_read_guest(kvm,
1789                                    ingpa + offsetof(struct hv_send_ipi_ex,
1790                                                     vp_set.bank_contents),
1791                                    sparse_banks,
1792                                    sparse_banks_len))
1793                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1794         }
1795
1796         if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1797                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1798
1799         vcpu_mask = all_cpus ? NULL :
1800                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1801                                         vp_bitmap, vcpu_bitmap);
1802
1803         kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1804
1805 ret_success:
1806         return HV_STATUS_SUCCESS;
1807 }
1808
1809 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu)
1810 {
1811         struct kvm_cpuid_entry2 *entry;
1812
1813         entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE, 0);
1814         if (entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX)
1815                 vcpu->arch.hyperv_enabled = true;
1816         else
1817                 vcpu->arch.hyperv_enabled = false;
1818 }
1819
1820 bool kvm_hv_hypercall_enabled(struct kvm_vcpu *vcpu)
1821 {
1822         return vcpu->arch.hyperv_enabled && to_kvm_hv(vcpu->kvm)->hv_guest_os_id;
1823 }
1824
1825 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1826 {
1827         bool longmode;
1828
1829         longmode = is_64_bit_mode(vcpu);
1830         if (longmode)
1831                 kvm_rax_write(vcpu, result);
1832         else {
1833                 kvm_rdx_write(vcpu, result >> 32);
1834                 kvm_rax_write(vcpu, result & 0xffffffff);
1835         }
1836 }
1837
1838 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1839 {
1840         kvm_hv_hypercall_set_result(vcpu, result);
1841         ++vcpu->stat.hypercalls;
1842         return kvm_skip_emulated_instruction(vcpu);
1843 }
1844
1845 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1846 {
1847         return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1848 }
1849
1850 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1851 {
1852         struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1853         struct eventfd_ctx *eventfd;
1854
1855         if (unlikely(!fast)) {
1856                 int ret;
1857                 gpa_t gpa = param;
1858
1859                 if ((gpa & (__alignof__(param) - 1)) ||
1860                     offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1861                         return HV_STATUS_INVALID_ALIGNMENT;
1862
1863                 ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1864                 if (ret < 0)
1865                         return HV_STATUS_INVALID_ALIGNMENT;
1866         }
1867
1868         /*
1869          * Per spec, bits 32-47 contain the extra "flag number".  However, we
1870          * have no use for it, and in all known usecases it is zero, so just
1871          * report lookup failure if it isn't.
1872          */
1873         if (param & 0xffff00000000ULL)
1874                 return HV_STATUS_INVALID_PORT_ID;
1875         /* remaining bits are reserved-zero */
1876         if (param & ~KVM_HYPERV_CONN_ID_MASK)
1877                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1878
1879         /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1880         rcu_read_lock();
1881         eventfd = idr_find(&hv->conn_to_evt, param);
1882         rcu_read_unlock();
1883         if (!eventfd)
1884                 return HV_STATUS_INVALID_PORT_ID;
1885
1886         eventfd_signal(eventfd, 1);
1887         return HV_STATUS_SUCCESS;
1888 }
1889
1890 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1891 {
1892         u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1893         uint16_t code, rep_idx, rep_cnt;
1894         bool fast, rep;
1895
1896         /*
1897          * hypercall generates UD from non zero cpl and real mode
1898          * per HYPER-V spec
1899          */
1900         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
1901                 kvm_queue_exception(vcpu, UD_VECTOR);
1902                 return 1;
1903         }
1904
1905 #ifdef CONFIG_X86_64
1906         if (is_64_bit_mode(vcpu)) {
1907                 param = kvm_rcx_read(vcpu);
1908                 ingpa = kvm_rdx_read(vcpu);
1909                 outgpa = kvm_r8_read(vcpu);
1910         } else
1911 #endif
1912         {
1913                 param = ((u64)kvm_rdx_read(vcpu) << 32) |
1914                         (kvm_rax_read(vcpu) & 0xffffffff);
1915                 ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
1916                         (kvm_rcx_read(vcpu) & 0xffffffff);
1917                 outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
1918                         (kvm_rsi_read(vcpu) & 0xffffffff);
1919         }
1920
1921         code = param & 0xffff;
1922         fast = !!(param & HV_HYPERCALL_FAST_BIT);
1923         rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1924         rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1925         rep = !!(rep_cnt || rep_idx);
1926
1927         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1928
1929         switch (code) {
1930         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1931                 if (unlikely(rep)) {
1932                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1933                         break;
1934                 }
1935                 kvm_vcpu_on_spin(vcpu, true);
1936                 break;
1937         case HVCALL_SIGNAL_EVENT:
1938                 if (unlikely(rep)) {
1939                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1940                         break;
1941                 }
1942                 ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1943                 if (ret != HV_STATUS_INVALID_PORT_ID)
1944                         break;
1945                 fallthrough;    /* maybe userspace knows this conn_id */
1946         case HVCALL_POST_MESSAGE:
1947                 /* don't bother userspace if it has no way to handle it */
1948                 if (unlikely(rep || !to_hv_synic(vcpu)->active)) {
1949                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1950                         break;
1951                 }
1952                 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1953                 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1954                 vcpu->run->hyperv.u.hcall.input = param;
1955                 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1956                 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1957                 vcpu->arch.complete_userspace_io =
1958                                 kvm_hv_hypercall_complete_userspace;
1959                 return 0;
1960         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1961                 if (unlikely(fast || !rep_cnt || rep_idx)) {
1962                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1963                         break;
1964                 }
1965                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1966                 break;
1967         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1968                 if (unlikely(fast || rep)) {
1969                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1970                         break;
1971                 }
1972                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1973                 break;
1974         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1975                 if (unlikely(fast || !rep_cnt || rep_idx)) {
1976                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1977                         break;
1978                 }
1979                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1980                 break;
1981         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1982                 if (unlikely(fast || rep)) {
1983                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1984                         break;
1985                 }
1986                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1987                 break;
1988         case HVCALL_SEND_IPI:
1989                 if (unlikely(rep)) {
1990                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1991                         break;
1992                 }
1993                 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
1994                 break;
1995         case HVCALL_SEND_IPI_EX:
1996                 if (unlikely(fast || rep)) {
1997                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1998                         break;
1999                 }
2000                 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
2001                 break;
2002         case HVCALL_POST_DEBUG_DATA:
2003         case HVCALL_RETRIEVE_DEBUG_DATA:
2004                 if (unlikely(fast)) {
2005                         ret = HV_STATUS_INVALID_PARAMETER;
2006                         break;
2007                 }
2008                 fallthrough;
2009         case HVCALL_RESET_DEBUG_SESSION: {
2010                 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2011
2012                 if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2013                         ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2014                         break;
2015                 }
2016
2017                 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2018                         ret = HV_STATUS_OPERATION_DENIED;
2019                         break;
2020                 }
2021                 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2022                 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2023                 vcpu->run->hyperv.u.hcall.input = param;
2024                 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
2025                 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
2026                 vcpu->arch.complete_userspace_io =
2027                                 kvm_hv_hypercall_complete_userspace;
2028                 return 0;
2029         }
2030         default:
2031                 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2032                 break;
2033         }
2034
2035         return kvm_hv_hypercall_complete(vcpu, ret);
2036 }
2037
2038 void kvm_hv_init_vm(struct kvm *kvm)
2039 {
2040         struct kvm_hv *hv = to_kvm_hv(kvm);
2041
2042         mutex_init(&hv->hv_lock);
2043         idr_init(&hv->conn_to_evt);
2044 }
2045
2046 void kvm_hv_destroy_vm(struct kvm *kvm)
2047 {
2048         struct kvm_hv *hv = to_kvm_hv(kvm);
2049         struct eventfd_ctx *eventfd;
2050         int i;
2051
2052         idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2053                 eventfd_ctx_put(eventfd);
2054         idr_destroy(&hv->conn_to_evt);
2055 }
2056
2057 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2058 {
2059         struct kvm_hv *hv = to_kvm_hv(kvm);
2060         struct eventfd_ctx *eventfd;
2061         int ret;
2062
2063         eventfd = eventfd_ctx_fdget(fd);
2064         if (IS_ERR(eventfd))
2065                 return PTR_ERR(eventfd);
2066
2067         mutex_lock(&hv->hv_lock);
2068         ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
2069                         GFP_KERNEL_ACCOUNT);
2070         mutex_unlock(&hv->hv_lock);
2071
2072         if (ret >= 0)
2073                 return 0;
2074
2075         if (ret == -ENOSPC)
2076                 ret = -EEXIST;
2077         eventfd_ctx_put(eventfd);
2078         return ret;
2079 }
2080
2081 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2082 {
2083         struct kvm_hv *hv = to_kvm_hv(kvm);
2084         struct eventfd_ctx *eventfd;
2085
2086         mutex_lock(&hv->hv_lock);
2087         eventfd = idr_remove(&hv->conn_to_evt, conn_id);
2088         mutex_unlock(&hv->hv_lock);
2089
2090         if (!eventfd)
2091                 return -ENOENT;
2092
2093         synchronize_srcu(&kvm->srcu);
2094         eventfd_ctx_put(eventfd);
2095         return 0;
2096 }
2097
2098 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2099 {
2100         if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2101             (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2102                 return -EINVAL;
2103
2104         if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2105                 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
2106         return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
2107 }
2108
2109 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2110                      struct kvm_cpuid_entry2 __user *entries)
2111 {
2112         uint16_t evmcs_ver = 0;
2113         struct kvm_cpuid_entry2 cpuid_entries[] = {
2114                 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2115                 { .function = HYPERV_CPUID_INTERFACE },
2116                 { .function = HYPERV_CPUID_VERSION },
2117                 { .function = HYPERV_CPUID_FEATURES },
2118                 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2119                 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2120                 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2121                 { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2122                 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
2123                 { .function = HYPERV_CPUID_NESTED_FEATURES },
2124         };
2125         int i, nent = ARRAY_SIZE(cpuid_entries);
2126
2127         if (kvm_x86_ops.nested_ops->get_evmcs_version)
2128                 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2129
2130         /* Skip NESTED_FEATURES if eVMCS is not supported */
2131         if (!evmcs_ver)
2132                 --nent;
2133
2134         if (cpuid->nent < nent)
2135                 return -E2BIG;
2136
2137         if (cpuid->nent > nent)
2138                 cpuid->nent = nent;
2139
2140         for (i = 0; i < nent; i++) {
2141                 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2142                 u32 signature[3];
2143
2144                 switch (ent->function) {
2145                 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2146                         memcpy(signature, "Linux KVM Hv", 12);
2147
2148                         ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2149                         ent->ebx = signature[0];
2150                         ent->ecx = signature[1];
2151                         ent->edx = signature[2];
2152                         break;
2153
2154                 case HYPERV_CPUID_INTERFACE:
2155                         ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2156                         break;
2157
2158                 case HYPERV_CPUID_VERSION:
2159                         /*
2160                          * We implement some Hyper-V 2016 functions so let's use
2161                          * this version.
2162                          */
2163                         ent->eax = 0x00003839;
2164                         ent->ebx = 0x000A0000;
2165                         break;
2166
2167                 case HYPERV_CPUID_FEATURES:
2168                         ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2169                         ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2170                         ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2171                         ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2172                         ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2173                         ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2174                         ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2175                         ent->eax |= HV_MSR_RESET_AVAILABLE;
2176                         ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2177                         ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2178                         ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2179
2180                         ent->ebx |= HV_POST_MESSAGES;
2181                         ent->ebx |= HV_SIGNAL_EVENTS;
2182
2183                         ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2184                         ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2185
2186                         ent->ebx |= HV_DEBUGGING;
2187                         ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2188                         ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2189
2190                         /*
2191                          * Direct Synthetic timers only make sense with in-kernel
2192                          * LAPIC
2193                          */
2194                         if (!vcpu || lapic_in_kernel(vcpu))
2195                                 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2196
2197                         break;
2198
2199                 case HYPERV_CPUID_ENLIGHTMENT_INFO:
2200                         ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2201                         ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2202                         ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2203                         ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2204                         ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2205                         if (evmcs_ver)
2206                                 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2207                         if (!cpu_smt_possible())
2208                                 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2209                         /*
2210                          * Default number of spinlock retry attempts, matches
2211                          * HyperV 2016.
2212                          */
2213                         ent->ebx = 0x00000FFF;
2214
2215                         break;
2216
2217                 case HYPERV_CPUID_IMPLEMENT_LIMITS:
2218                         /* Maximum number of virtual processors */
2219                         ent->eax = KVM_MAX_VCPUS;
2220                         /*
2221                          * Maximum number of logical processors, matches
2222                          * HyperV 2016.
2223                          */
2224                         ent->ebx = 64;
2225
2226                         break;
2227
2228                 case HYPERV_CPUID_NESTED_FEATURES:
2229                         ent->eax = evmcs_ver;
2230
2231                         break;
2232
2233                 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2234                         memcpy(signature, "Linux KVM Hv", 12);
2235
2236                         ent->eax = 0;
2237                         ent->ebx = signature[0];
2238                         ent->ecx = signature[1];
2239                         ent->edx = signature[2];
2240                         break;
2241
2242                 case HYPERV_CPUID_SYNDBG_INTERFACE:
2243                         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2244                         ent->eax = signature[0];
2245                         break;
2246
2247                 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2248                         ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2249                         break;
2250
2251                 default:
2252                         break;
2253                 }
2254         }
2255
2256         if (copy_to_user(entries, cpuid_entries,
2257                          nent * sizeof(struct kvm_cpuid_entry2)))
2258                 return -EFAULT;
2259
2260         return 0;
2261 }