KVM: x86: move nested-related kvm_x86_ops to a separate struct
[linux-2.6-microblaze.git] / arch / x86 / kvm / hyperv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * KVM Microsoft Hyper-V emulation
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12  *
13  * Authors:
14  *   Avi Kivity   <avi@qumranet.com>
15  *   Yaniv Kamay  <yaniv@qumranet.com>
16  *   Amit Shah    <amit.shah@qumranet.com>
17  *   Ben-Ami Yassour <benami@il.ibm.com>
18  *   Andrey Smetanin <asmetanin@virtuozzo.com>
19  */
20
21 #include "x86.h"
22 #include "lapic.h"
23 #include "ioapic.h"
24 #include "hyperv.h"
25
26 #include <linux/cpu.h>
27 #include <linux/kvm_host.h>
28 #include <linux/highmem.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/eventfd.h>
31
32 #include <asm/apicdef.h>
33 #include <trace/events/kvm.h>
34
35 #include "trace.h"
36 #include "irq.h"
37
38 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
39
40 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
41                                 bool vcpu_kick);
42
43 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
44 {
45         return atomic64_read(&synic->sint[sint]);
46 }
47
48 static inline int synic_get_sint_vector(u64 sint_value)
49 {
50         if (sint_value & HV_SYNIC_SINT_MASKED)
51                 return -1;
52         return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
53 }
54
55 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
56                                       int vector)
57 {
58         int i;
59
60         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
61                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
62                         return true;
63         }
64         return false;
65 }
66
67 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
68                                      int vector)
69 {
70         int i;
71         u64 sint_value;
72
73         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
74                 sint_value = synic_read_sint(synic, i);
75                 if (synic_get_sint_vector(sint_value) == vector &&
76                     sint_value & HV_SYNIC_SINT_AUTO_EOI)
77                         return true;
78         }
79         return false;
80 }
81
82 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
83                                 int vector)
84 {
85         if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
86                 return;
87
88         if (synic_has_vector_connected(synic, vector))
89                 __set_bit(vector, synic->vec_bitmap);
90         else
91                 __clear_bit(vector, synic->vec_bitmap);
92
93         if (synic_has_vector_auto_eoi(synic, vector))
94                 __set_bit(vector, synic->auto_eoi_bitmap);
95         else
96                 __clear_bit(vector, synic->auto_eoi_bitmap);
97 }
98
99 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
100                           u64 data, bool host)
101 {
102         int vector, old_vector;
103         bool masked;
104
105         vector = data & HV_SYNIC_SINT_VECTOR_MASK;
106         masked = data & HV_SYNIC_SINT_MASKED;
107
108         /*
109          * Valid vectors are 16-255, however, nested Hyper-V attempts to write
110          * default '0x10000' value on boot and this should not #GP. We need to
111          * allow zero-initing the register from host as well.
112          */
113         if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
114                 return 1;
115         /*
116          * Guest may configure multiple SINTs to use the same vector, so
117          * we maintain a bitmap of vectors handled by synic, and a
118          * bitmap of vectors with auto-eoi behavior.  The bitmaps are
119          * updated here, and atomically queried on fast paths.
120          */
121         old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
122
123         atomic64_set(&synic->sint[sint], data);
124
125         synic_update_vector(synic, old_vector);
126
127         synic_update_vector(synic, vector);
128
129         /* Load SynIC vectors into EOI exit bitmap */
130         kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
131         return 0;
132 }
133
134 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
135 {
136         struct kvm_vcpu *vcpu = NULL;
137         int i;
138
139         if (vpidx >= KVM_MAX_VCPUS)
140                 return NULL;
141
142         vcpu = kvm_get_vcpu(kvm, vpidx);
143         if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
144                 return vcpu;
145         kvm_for_each_vcpu(i, vcpu, kvm)
146                 if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
147                         return vcpu;
148         return NULL;
149 }
150
151 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
152 {
153         struct kvm_vcpu *vcpu;
154         struct kvm_vcpu_hv_synic *synic;
155
156         vcpu = get_vcpu_by_vpidx(kvm, vpidx);
157         if (!vcpu)
158                 return NULL;
159         synic = vcpu_to_synic(vcpu);
160         return (synic->active) ? synic : NULL;
161 }
162
163 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
164 {
165         struct kvm *kvm = vcpu->kvm;
166         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
167         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
168         struct kvm_vcpu_hv_stimer *stimer;
169         int gsi, idx;
170
171         trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
172
173         /* Try to deliver pending Hyper-V SynIC timers messages */
174         for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
175                 stimer = &hv_vcpu->stimer[idx];
176                 if (stimer->msg_pending && stimer->config.enable &&
177                     !stimer->config.direct_mode &&
178                     stimer->config.sintx == sint)
179                         stimer_mark_pending(stimer, false);
180         }
181
182         idx = srcu_read_lock(&kvm->irq_srcu);
183         gsi = atomic_read(&synic->sint_to_gsi[sint]);
184         if (gsi != -1)
185                 kvm_notify_acked_gsi(kvm, gsi);
186         srcu_read_unlock(&kvm->irq_srcu, idx);
187 }
188
189 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
190 {
191         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
192         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
193
194         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
195         hv_vcpu->exit.u.synic.msr = msr;
196         hv_vcpu->exit.u.synic.control = synic->control;
197         hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
198         hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
199
200         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
201 }
202
203 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
204                          u32 msr, u64 data, bool host)
205 {
206         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
207         int ret;
208
209         if (!synic->active && !host)
210                 return 1;
211
212         trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
213
214         ret = 0;
215         switch (msr) {
216         case HV_X64_MSR_SCONTROL:
217                 synic->control = data;
218                 if (!host)
219                         synic_exit(synic, msr);
220                 break;
221         case HV_X64_MSR_SVERSION:
222                 if (!host) {
223                         ret = 1;
224                         break;
225                 }
226                 synic->version = data;
227                 break;
228         case HV_X64_MSR_SIEFP:
229                 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
230                     !synic->dont_zero_synic_pages)
231                         if (kvm_clear_guest(vcpu->kvm,
232                                             data & PAGE_MASK, PAGE_SIZE)) {
233                                 ret = 1;
234                                 break;
235                         }
236                 synic->evt_page = data;
237                 if (!host)
238                         synic_exit(synic, msr);
239                 break;
240         case HV_X64_MSR_SIMP:
241                 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
242                     !synic->dont_zero_synic_pages)
243                         if (kvm_clear_guest(vcpu->kvm,
244                                             data & PAGE_MASK, PAGE_SIZE)) {
245                                 ret = 1;
246                                 break;
247                         }
248                 synic->msg_page = data;
249                 if (!host)
250                         synic_exit(synic, msr);
251                 break;
252         case HV_X64_MSR_EOM: {
253                 int i;
254
255                 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
256                         kvm_hv_notify_acked_sint(vcpu, i);
257                 break;
258         }
259         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
260                 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
261                 break;
262         default:
263                 ret = 1;
264                 break;
265         }
266         return ret;
267 }
268
269 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
270                          bool host)
271 {
272         int ret;
273
274         if (!synic->active && !host)
275                 return 1;
276
277         ret = 0;
278         switch (msr) {
279         case HV_X64_MSR_SCONTROL:
280                 *pdata = synic->control;
281                 break;
282         case HV_X64_MSR_SVERSION:
283                 *pdata = synic->version;
284                 break;
285         case HV_X64_MSR_SIEFP:
286                 *pdata = synic->evt_page;
287                 break;
288         case HV_X64_MSR_SIMP:
289                 *pdata = synic->msg_page;
290                 break;
291         case HV_X64_MSR_EOM:
292                 *pdata = 0;
293                 break;
294         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
295                 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
296                 break;
297         default:
298                 ret = 1;
299                 break;
300         }
301         return ret;
302 }
303
304 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
305 {
306         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
307         struct kvm_lapic_irq irq;
308         int ret, vector;
309
310         if (sint >= ARRAY_SIZE(synic->sint))
311                 return -EINVAL;
312
313         vector = synic_get_sint_vector(synic_read_sint(synic, sint));
314         if (vector < 0)
315                 return -ENOENT;
316
317         memset(&irq, 0, sizeof(irq));
318         irq.shorthand = APIC_DEST_SELF;
319         irq.dest_mode = APIC_DEST_PHYSICAL;
320         irq.delivery_mode = APIC_DM_FIXED;
321         irq.vector = vector;
322         irq.level = 1;
323
324         ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
325         trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
326         return ret;
327 }
328
329 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
330 {
331         struct kvm_vcpu_hv_synic *synic;
332
333         synic = synic_get(kvm, vpidx);
334         if (!synic)
335                 return -EINVAL;
336
337         return synic_set_irq(synic, sint);
338 }
339
340 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
341 {
342         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
343         int i;
344
345         trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
346
347         for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
348                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
349                         kvm_hv_notify_acked_sint(vcpu, i);
350 }
351
352 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
353 {
354         struct kvm_vcpu_hv_synic *synic;
355
356         synic = synic_get(kvm, vpidx);
357         if (!synic)
358                 return -EINVAL;
359
360         if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
361                 return -EINVAL;
362
363         atomic_set(&synic->sint_to_gsi[sint], gsi);
364         return 0;
365 }
366
367 void kvm_hv_irq_routing_update(struct kvm *kvm)
368 {
369         struct kvm_irq_routing_table *irq_rt;
370         struct kvm_kernel_irq_routing_entry *e;
371         u32 gsi;
372
373         irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
374                                         lockdep_is_held(&kvm->irq_lock));
375
376         for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
377                 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
378                         if (e->type == KVM_IRQ_ROUTING_HV_SINT)
379                                 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
380                                                     e->hv_sint.sint, gsi);
381                 }
382         }
383 }
384
385 static void synic_init(struct kvm_vcpu_hv_synic *synic)
386 {
387         int i;
388
389         memset(synic, 0, sizeof(*synic));
390         synic->version = HV_SYNIC_VERSION_1;
391         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
392                 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
393                 atomic_set(&synic->sint_to_gsi[i], -1);
394         }
395 }
396
397 static u64 get_time_ref_counter(struct kvm *kvm)
398 {
399         struct kvm_hv *hv = &kvm->arch.hyperv;
400         struct kvm_vcpu *vcpu;
401         u64 tsc;
402
403         /*
404          * The guest has not set up the TSC page or the clock isn't
405          * stable, fall back to get_kvmclock_ns.
406          */
407         if (!hv->tsc_ref.tsc_sequence)
408                 return div_u64(get_kvmclock_ns(kvm), 100);
409
410         vcpu = kvm_get_vcpu(kvm, 0);
411         tsc = kvm_read_l1_tsc(vcpu, rdtsc());
412         return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
413                 + hv->tsc_ref.tsc_offset;
414 }
415
416 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
417                                 bool vcpu_kick)
418 {
419         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
420
421         set_bit(stimer->index,
422                 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
423         kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
424         if (vcpu_kick)
425                 kvm_vcpu_kick(vcpu);
426 }
427
428 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
429 {
430         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
431
432         trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
433                                     stimer->index);
434
435         hrtimer_cancel(&stimer->timer);
436         clear_bit(stimer->index,
437                   vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
438         stimer->msg_pending = false;
439         stimer->exp_time = 0;
440 }
441
442 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
443 {
444         struct kvm_vcpu_hv_stimer *stimer;
445
446         stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
447         trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
448                                      stimer->index);
449         stimer_mark_pending(stimer, true);
450
451         return HRTIMER_NORESTART;
452 }
453
454 /*
455  * stimer_start() assumptions:
456  * a) stimer->count is not equal to 0
457  * b) stimer->config has HV_STIMER_ENABLE flag
458  */
459 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
460 {
461         u64 time_now;
462         ktime_t ktime_now;
463
464         time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
465         ktime_now = ktime_get();
466
467         if (stimer->config.periodic) {
468                 if (stimer->exp_time) {
469                         if (time_now >= stimer->exp_time) {
470                                 u64 remainder;
471
472                                 div64_u64_rem(time_now - stimer->exp_time,
473                                               stimer->count, &remainder);
474                                 stimer->exp_time =
475                                         time_now + (stimer->count - remainder);
476                         }
477                 } else
478                         stimer->exp_time = time_now + stimer->count;
479
480                 trace_kvm_hv_stimer_start_periodic(
481                                         stimer_to_vcpu(stimer)->vcpu_id,
482                                         stimer->index,
483                                         time_now, stimer->exp_time);
484
485                 hrtimer_start(&stimer->timer,
486                               ktime_add_ns(ktime_now,
487                                            100 * (stimer->exp_time - time_now)),
488                               HRTIMER_MODE_ABS);
489                 return 0;
490         }
491         stimer->exp_time = stimer->count;
492         if (time_now >= stimer->count) {
493                 /*
494                  * Expire timer according to Hypervisor Top-Level Functional
495                  * specification v4(15.3.1):
496                  * "If a one shot is enabled and the specified count is in
497                  * the past, it will expire immediately."
498                  */
499                 stimer_mark_pending(stimer, false);
500                 return 0;
501         }
502
503         trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
504                                            stimer->index,
505                                            time_now, stimer->count);
506
507         hrtimer_start(&stimer->timer,
508                       ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
509                       HRTIMER_MODE_ABS);
510         return 0;
511 }
512
513 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
514                              bool host)
515 {
516         union hv_stimer_config new_config = {.as_uint64 = config},
517                 old_config = {.as_uint64 = stimer->config.as_uint64};
518
519         trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
520                                        stimer->index, config, host);
521
522         stimer_cleanup(stimer);
523         if (old_config.enable &&
524             !new_config.direct_mode && new_config.sintx == 0)
525                 new_config.enable = 0;
526         stimer->config.as_uint64 = new_config.as_uint64;
527
528         if (stimer->config.enable)
529                 stimer_mark_pending(stimer, false);
530
531         return 0;
532 }
533
534 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
535                             bool host)
536 {
537         trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
538                                       stimer->index, count, host);
539
540         stimer_cleanup(stimer);
541         stimer->count = count;
542         if (stimer->count == 0)
543                 stimer->config.enable = 0;
544         else if (stimer->config.auto_enable)
545                 stimer->config.enable = 1;
546
547         if (stimer->config.enable)
548                 stimer_mark_pending(stimer, false);
549
550         return 0;
551 }
552
553 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
554 {
555         *pconfig = stimer->config.as_uint64;
556         return 0;
557 }
558
559 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
560 {
561         *pcount = stimer->count;
562         return 0;
563 }
564
565 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
566                              struct hv_message *src_msg, bool no_retry)
567 {
568         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
569         int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
570         gfn_t msg_page_gfn;
571         struct hv_message_header hv_hdr;
572         int r;
573
574         if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
575                 return -ENOENT;
576
577         msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
578
579         /*
580          * Strictly following the spec-mandated ordering would assume setting
581          * .msg_pending before checking .message_type.  However, this function
582          * is only called in vcpu context so the entire update is atomic from
583          * guest POV and thus the exact order here doesn't matter.
584          */
585         r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
586                                      msg_off + offsetof(struct hv_message,
587                                                         header.message_type),
588                                      sizeof(hv_hdr.message_type));
589         if (r < 0)
590                 return r;
591
592         if (hv_hdr.message_type != HVMSG_NONE) {
593                 if (no_retry)
594                         return 0;
595
596                 hv_hdr.message_flags.msg_pending = 1;
597                 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
598                                               &hv_hdr.message_flags,
599                                               msg_off +
600                                               offsetof(struct hv_message,
601                                                        header.message_flags),
602                                               sizeof(hv_hdr.message_flags));
603                 if (r < 0)
604                         return r;
605                 return -EAGAIN;
606         }
607
608         r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
609                                       sizeof(src_msg->header) +
610                                       src_msg->header.payload_size);
611         if (r < 0)
612                 return r;
613
614         r = synic_set_irq(synic, sint);
615         if (r < 0)
616                 return r;
617         if (r == 0)
618                 return -EFAULT;
619         return 0;
620 }
621
622 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
623 {
624         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
625         struct hv_message *msg = &stimer->msg;
626         struct hv_timer_message_payload *payload =
627                         (struct hv_timer_message_payload *)&msg->u.payload;
628
629         /*
630          * To avoid piling up periodic ticks, don't retry message
631          * delivery for them (within "lazy" lost ticks policy).
632          */
633         bool no_retry = stimer->config.periodic;
634
635         payload->expiration_time = stimer->exp_time;
636         payload->delivery_time = get_time_ref_counter(vcpu->kvm);
637         return synic_deliver_msg(vcpu_to_synic(vcpu),
638                                  stimer->config.sintx, msg,
639                                  no_retry);
640 }
641
642 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
643 {
644         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
645         struct kvm_lapic_irq irq = {
646                 .delivery_mode = APIC_DM_FIXED,
647                 .vector = stimer->config.apic_vector
648         };
649
650         if (lapic_in_kernel(vcpu))
651                 return !kvm_apic_set_irq(vcpu, &irq, NULL);
652         return 0;
653 }
654
655 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
656 {
657         int r, direct = stimer->config.direct_mode;
658
659         stimer->msg_pending = true;
660         if (!direct)
661                 r = stimer_send_msg(stimer);
662         else
663                 r = stimer_notify_direct(stimer);
664         trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
665                                        stimer->index, direct, r);
666         if (!r) {
667                 stimer->msg_pending = false;
668                 if (!(stimer->config.periodic))
669                         stimer->config.enable = 0;
670         }
671 }
672
673 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
674 {
675         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
676         struct kvm_vcpu_hv_stimer *stimer;
677         u64 time_now, exp_time;
678         int i;
679
680         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
681                 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
682                         stimer = &hv_vcpu->stimer[i];
683                         if (stimer->config.enable) {
684                                 exp_time = stimer->exp_time;
685
686                                 if (exp_time) {
687                                         time_now =
688                                                 get_time_ref_counter(vcpu->kvm);
689                                         if (time_now >= exp_time)
690                                                 stimer_expiration(stimer);
691                                 }
692
693                                 if ((stimer->config.enable) &&
694                                     stimer->count) {
695                                         if (!stimer->msg_pending)
696                                                 stimer_start(stimer);
697                                 } else
698                                         stimer_cleanup(stimer);
699                         }
700                 }
701 }
702
703 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
704 {
705         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
706         int i;
707
708         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
709                 stimer_cleanup(&hv_vcpu->stimer[i]);
710 }
711
712 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
713 {
714         if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
715                 return false;
716         return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
717 }
718 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
719
720 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
721                             struct hv_vp_assist_page *assist_page)
722 {
723         if (!kvm_hv_assist_page_enabled(vcpu))
724                 return false;
725         return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
726                                       assist_page, sizeof(*assist_page));
727 }
728 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
729
730 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
731 {
732         struct hv_message *msg = &stimer->msg;
733         struct hv_timer_message_payload *payload =
734                         (struct hv_timer_message_payload *)&msg->u.payload;
735
736         memset(&msg->header, 0, sizeof(msg->header));
737         msg->header.message_type = HVMSG_TIMER_EXPIRED;
738         msg->header.payload_size = sizeof(*payload);
739
740         payload->timer_index = stimer->index;
741         payload->expiration_time = 0;
742         payload->delivery_time = 0;
743 }
744
745 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
746 {
747         memset(stimer, 0, sizeof(*stimer));
748         stimer->index = timer_index;
749         hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
750         stimer->timer.function = stimer_timer_callback;
751         stimer_prepare_msg(stimer);
752 }
753
754 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
755 {
756         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
757         int i;
758
759         synic_init(&hv_vcpu->synic);
760
761         bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
762         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
763                 stimer_init(&hv_vcpu->stimer[i], i);
764 }
765
766 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
767 {
768         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
769
770         hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
771 }
772
773 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
774 {
775         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
776
777         /*
778          * Hyper-V SynIC auto EOI SINT's are
779          * not compatible with APICV, so request
780          * to deactivate APICV permanently.
781          */
782         kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_HYPERV);
783         synic->active = true;
784         synic->dont_zero_synic_pages = dont_zero_synic_pages;
785         return 0;
786 }
787
788 static bool kvm_hv_msr_partition_wide(u32 msr)
789 {
790         bool r = false;
791
792         switch (msr) {
793         case HV_X64_MSR_GUEST_OS_ID:
794         case HV_X64_MSR_HYPERCALL:
795         case HV_X64_MSR_REFERENCE_TSC:
796         case HV_X64_MSR_TIME_REF_COUNT:
797         case HV_X64_MSR_CRASH_CTL:
798         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
799         case HV_X64_MSR_RESET:
800         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
801         case HV_X64_MSR_TSC_EMULATION_CONTROL:
802         case HV_X64_MSR_TSC_EMULATION_STATUS:
803                 r = true;
804                 break;
805         }
806
807         return r;
808 }
809
810 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
811                                      u32 index, u64 *pdata)
812 {
813         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
814         size_t size = ARRAY_SIZE(hv->hv_crash_param);
815
816         if (WARN_ON_ONCE(index >= size))
817                 return -EINVAL;
818
819         *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
820         return 0;
821 }
822
823 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
824 {
825         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
826
827         *pdata = hv->hv_crash_ctl;
828         return 0;
829 }
830
831 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
832 {
833         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
834
835         if (host)
836                 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
837
838         if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
839
840                 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
841                           hv->hv_crash_param[0],
842                           hv->hv_crash_param[1],
843                           hv->hv_crash_param[2],
844                           hv->hv_crash_param[3],
845                           hv->hv_crash_param[4]);
846
847                 /* Send notification about crash to user space */
848                 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
849         }
850
851         return 0;
852 }
853
854 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
855                                      u32 index, u64 data)
856 {
857         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
858         size_t size = ARRAY_SIZE(hv->hv_crash_param);
859
860         if (WARN_ON_ONCE(index >= size))
861                 return -EINVAL;
862
863         hv->hv_crash_param[array_index_nospec(index, size)] = data;
864         return 0;
865 }
866
867 /*
868  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
869  * between them is possible:
870  *
871  * kvmclock formula:
872  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
873  *           + system_time
874  *
875  * Hyper-V formula:
876  *    nsec/100 = ticks * scale / 2^64 + offset
877  *
878  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
879  * By dividing the kvmclock formula by 100 and equating what's left we get:
880  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
881  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
882  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
883  *
884  * Now expand the kvmclock formula and divide by 100:
885  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
886  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
887  *           + system_time
888  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
889  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
890  *               + system_time / 100
891  *
892  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
893  *    nsec/100 = ticks * scale / 2^64
894  *               - tsc_timestamp * scale / 2^64
895  *               + system_time / 100
896  *
897  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
898  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
899  *
900  * These two equivalencies are implemented in this function.
901  */
902 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
903                                         HV_REFERENCE_TSC_PAGE *tsc_ref)
904 {
905         u64 max_mul;
906
907         if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
908                 return false;
909
910         /*
911          * check if scale would overflow, if so we use the time ref counter
912          *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
913          *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
914          *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
915          */
916         max_mul = 100ull << (32 - hv_clock->tsc_shift);
917         if (hv_clock->tsc_to_system_mul >= max_mul)
918                 return false;
919
920         /*
921          * Otherwise compute the scale and offset according to the formulas
922          * derived above.
923          */
924         tsc_ref->tsc_scale =
925                 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
926                                 hv_clock->tsc_to_system_mul,
927                                 100);
928
929         tsc_ref->tsc_offset = hv_clock->system_time;
930         do_div(tsc_ref->tsc_offset, 100);
931         tsc_ref->tsc_offset -=
932                 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
933         return true;
934 }
935
936 void kvm_hv_setup_tsc_page(struct kvm *kvm,
937                            struct pvclock_vcpu_time_info *hv_clock)
938 {
939         struct kvm_hv *hv = &kvm->arch.hyperv;
940         u32 tsc_seq;
941         u64 gfn;
942
943         BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
944         BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);
945
946         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
947                 return;
948
949         mutex_lock(&kvm->arch.hyperv.hv_lock);
950         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
951                 goto out_unlock;
952
953         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
954         /*
955          * Because the TSC parameters only vary when there is a
956          * change in the master clock, do not bother with caching.
957          */
958         if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
959                                     &tsc_seq, sizeof(tsc_seq))))
960                 goto out_unlock;
961
962         /*
963          * While we're computing and writing the parameters, force the
964          * guest to use the time reference count MSR.
965          */
966         hv->tsc_ref.tsc_sequence = 0;
967         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
968                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
969                 goto out_unlock;
970
971         if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
972                 goto out_unlock;
973
974         /* Ensure sequence is zero before writing the rest of the struct.  */
975         smp_wmb();
976         if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
977                 goto out_unlock;
978
979         /*
980          * Now switch to the TSC page mechanism by writing the sequence.
981          */
982         tsc_seq++;
983         if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
984                 tsc_seq = 1;
985
986         /* Write the struct entirely before the non-zero sequence.  */
987         smp_wmb();
988
989         hv->tsc_ref.tsc_sequence = tsc_seq;
990         kvm_write_guest(kvm, gfn_to_gpa(gfn),
991                         &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
992 out_unlock:
993         mutex_unlock(&kvm->arch.hyperv.hv_lock);
994 }
995
996 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
997                              bool host)
998 {
999         struct kvm *kvm = vcpu->kvm;
1000         struct kvm_hv *hv = &kvm->arch.hyperv;
1001
1002         switch (msr) {
1003         case HV_X64_MSR_GUEST_OS_ID:
1004                 hv->hv_guest_os_id = data;
1005                 /* setting guest os id to zero disables hypercall page */
1006                 if (!hv->hv_guest_os_id)
1007                         hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1008                 break;
1009         case HV_X64_MSR_HYPERCALL: {
1010                 u64 gfn;
1011                 unsigned long addr;
1012                 u8 instructions[4];
1013
1014                 /* if guest os id is not set hypercall should remain disabled */
1015                 if (!hv->hv_guest_os_id)
1016                         break;
1017                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1018                         hv->hv_hypercall = data;
1019                         break;
1020                 }
1021                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1022                 addr = gfn_to_hva(kvm, gfn);
1023                 if (kvm_is_error_hva(addr))
1024                         return 1;
1025                 kvm_x86_ops.patch_hypercall(vcpu, instructions);
1026                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1027                 if (__copy_to_user((void __user *)addr, instructions, 4))
1028                         return 1;
1029                 hv->hv_hypercall = data;
1030                 mark_page_dirty(kvm, gfn);
1031                 break;
1032         }
1033         case HV_X64_MSR_REFERENCE_TSC:
1034                 hv->hv_tsc_page = data;
1035                 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
1036                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1037                 break;
1038         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1039                 return kvm_hv_msr_set_crash_data(vcpu,
1040                                                  msr - HV_X64_MSR_CRASH_P0,
1041                                                  data);
1042         case HV_X64_MSR_CRASH_CTL:
1043                 return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1044         case HV_X64_MSR_RESET:
1045                 if (data == 1) {
1046                         vcpu_debug(vcpu, "hyper-v reset requested\n");
1047                         kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1048                 }
1049                 break;
1050         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1051                 hv->hv_reenlightenment_control = data;
1052                 break;
1053         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1054                 hv->hv_tsc_emulation_control = data;
1055                 break;
1056         case HV_X64_MSR_TSC_EMULATION_STATUS:
1057                 hv->hv_tsc_emulation_status = data;
1058                 break;
1059         case HV_X64_MSR_TIME_REF_COUNT:
1060                 /* read-only, but still ignore it if host-initiated */
1061                 if (!host)
1062                         return 1;
1063                 break;
1064         default:
1065                 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1066                             msr, data);
1067                 return 1;
1068         }
1069         return 0;
1070 }
1071
1072 /* Calculate cpu time spent by current task in 100ns units */
1073 static u64 current_task_runtime_100ns(void)
1074 {
1075         u64 utime, stime;
1076
1077         task_cputime_adjusted(current, &utime, &stime);
1078
1079         return div_u64(utime + stime, 100);
1080 }
1081
1082 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1083 {
1084         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1085
1086         switch (msr) {
1087         case HV_X64_MSR_VP_INDEX: {
1088                 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
1089                 int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1090                 u32 new_vp_index = (u32)data;
1091
1092                 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1093                         return 1;
1094
1095                 if (new_vp_index == hv_vcpu->vp_index)
1096                         return 0;
1097
1098                 /*
1099                  * The VP index is initialized to vcpu_index by
1100                  * kvm_hv_vcpu_postcreate so they initially match.  Now the
1101                  * VP index is changing, adjust num_mismatched_vp_indexes if
1102                  * it now matches or no longer matches vcpu_idx.
1103                  */
1104                 if (hv_vcpu->vp_index == vcpu_idx)
1105                         atomic_inc(&hv->num_mismatched_vp_indexes);
1106                 else if (new_vp_index == vcpu_idx)
1107                         atomic_dec(&hv->num_mismatched_vp_indexes);
1108
1109                 hv_vcpu->vp_index = new_vp_index;
1110                 break;
1111         }
1112         case HV_X64_MSR_VP_ASSIST_PAGE: {
1113                 u64 gfn;
1114                 unsigned long addr;
1115
1116                 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1117                         hv_vcpu->hv_vapic = data;
1118                         if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1119                                 return 1;
1120                         break;
1121                 }
1122                 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1123                 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1124                 if (kvm_is_error_hva(addr))
1125                         return 1;
1126
1127                 /*
1128                  * Clear apic_assist portion of struct hv_vp_assist_page
1129                  * only, there can be valuable data in the rest which needs
1130                  * to be preserved e.g. on migration.
1131                  */
1132                 if (__clear_user((void __user *)addr, sizeof(u32)))
1133                         return 1;
1134                 hv_vcpu->hv_vapic = data;
1135                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1136                 if (kvm_lapic_enable_pv_eoi(vcpu,
1137                                             gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1138                                             sizeof(struct hv_vp_assist_page)))
1139                         return 1;
1140                 break;
1141         }
1142         case HV_X64_MSR_EOI:
1143                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1144         case HV_X64_MSR_ICR:
1145                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1146         case HV_X64_MSR_TPR:
1147                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1148         case HV_X64_MSR_VP_RUNTIME:
1149                 if (!host)
1150                         return 1;
1151                 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1152                 break;
1153         case HV_X64_MSR_SCONTROL:
1154         case HV_X64_MSR_SVERSION:
1155         case HV_X64_MSR_SIEFP:
1156         case HV_X64_MSR_SIMP:
1157         case HV_X64_MSR_EOM:
1158         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1159                 return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1160         case HV_X64_MSR_STIMER0_CONFIG:
1161         case HV_X64_MSR_STIMER1_CONFIG:
1162         case HV_X64_MSR_STIMER2_CONFIG:
1163         case HV_X64_MSR_STIMER3_CONFIG: {
1164                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1165
1166                 return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1167                                          data, host);
1168         }
1169         case HV_X64_MSR_STIMER0_COUNT:
1170         case HV_X64_MSR_STIMER1_COUNT:
1171         case HV_X64_MSR_STIMER2_COUNT:
1172         case HV_X64_MSR_STIMER3_COUNT: {
1173                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1174
1175                 return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1176                                         data, host);
1177         }
1178         case HV_X64_MSR_TSC_FREQUENCY:
1179         case HV_X64_MSR_APIC_FREQUENCY:
1180                 /* read-only, but still ignore it if host-initiated */
1181                 if (!host)
1182                         return 1;
1183                 break;
1184         default:
1185                 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1186                             msr, data);
1187                 return 1;
1188         }
1189
1190         return 0;
1191 }
1192
1193 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1194 {
1195         u64 data = 0;
1196         struct kvm *kvm = vcpu->kvm;
1197         struct kvm_hv *hv = &kvm->arch.hyperv;
1198
1199         switch (msr) {
1200         case HV_X64_MSR_GUEST_OS_ID:
1201                 data = hv->hv_guest_os_id;
1202                 break;
1203         case HV_X64_MSR_HYPERCALL:
1204                 data = hv->hv_hypercall;
1205                 break;
1206         case HV_X64_MSR_TIME_REF_COUNT:
1207                 data = get_time_ref_counter(kvm);
1208                 break;
1209         case HV_X64_MSR_REFERENCE_TSC:
1210                 data = hv->hv_tsc_page;
1211                 break;
1212         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1213                 return kvm_hv_msr_get_crash_data(vcpu,
1214                                                  msr - HV_X64_MSR_CRASH_P0,
1215                                                  pdata);
1216         case HV_X64_MSR_CRASH_CTL:
1217                 return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1218         case HV_X64_MSR_RESET:
1219                 data = 0;
1220                 break;
1221         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1222                 data = hv->hv_reenlightenment_control;
1223                 break;
1224         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1225                 data = hv->hv_tsc_emulation_control;
1226                 break;
1227         case HV_X64_MSR_TSC_EMULATION_STATUS:
1228                 data = hv->hv_tsc_emulation_status;
1229                 break;
1230         default:
1231                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1232                 return 1;
1233         }
1234
1235         *pdata = data;
1236         return 0;
1237 }
1238
1239 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1240                           bool host)
1241 {
1242         u64 data = 0;
1243         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1244
1245         switch (msr) {
1246         case HV_X64_MSR_VP_INDEX:
1247                 data = hv_vcpu->vp_index;
1248                 break;
1249         case HV_X64_MSR_EOI:
1250                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1251         case HV_X64_MSR_ICR:
1252                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1253         case HV_X64_MSR_TPR:
1254                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1255         case HV_X64_MSR_VP_ASSIST_PAGE:
1256                 data = hv_vcpu->hv_vapic;
1257                 break;
1258         case HV_X64_MSR_VP_RUNTIME:
1259                 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1260                 break;
1261         case HV_X64_MSR_SCONTROL:
1262         case HV_X64_MSR_SVERSION:
1263         case HV_X64_MSR_SIEFP:
1264         case HV_X64_MSR_SIMP:
1265         case HV_X64_MSR_EOM:
1266         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1267                 return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
1268         case HV_X64_MSR_STIMER0_CONFIG:
1269         case HV_X64_MSR_STIMER1_CONFIG:
1270         case HV_X64_MSR_STIMER2_CONFIG:
1271         case HV_X64_MSR_STIMER3_CONFIG: {
1272                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1273
1274                 return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1275                                          pdata);
1276         }
1277         case HV_X64_MSR_STIMER0_COUNT:
1278         case HV_X64_MSR_STIMER1_COUNT:
1279         case HV_X64_MSR_STIMER2_COUNT:
1280         case HV_X64_MSR_STIMER3_COUNT: {
1281                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1282
1283                 return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1284                                         pdata);
1285         }
1286         case HV_X64_MSR_TSC_FREQUENCY:
1287                 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1288                 break;
1289         case HV_X64_MSR_APIC_FREQUENCY:
1290                 data = APIC_BUS_FREQUENCY;
1291                 break;
1292         default:
1293                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1294                 return 1;
1295         }
1296         *pdata = data;
1297         return 0;
1298 }
1299
1300 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1301 {
1302         if (kvm_hv_msr_partition_wide(msr)) {
1303                 int r;
1304
1305                 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1306                 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1307                 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1308                 return r;
1309         } else
1310                 return kvm_hv_set_msr(vcpu, msr, data, host);
1311 }
1312
1313 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1314 {
1315         if (kvm_hv_msr_partition_wide(msr)) {
1316                 int r;
1317
1318                 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1319                 r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
1320                 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1321                 return r;
1322         } else
1323                 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1324 }
1325
1326 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1327         struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1328         u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1329 {
1330         struct kvm_hv *hv = &kvm->arch.hyperv;
1331         struct kvm_vcpu *vcpu;
1332         int i, bank, sbank = 0;
1333
1334         memset(vp_bitmap, 0,
1335                KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1336         for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1337                          KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1338                 vp_bitmap[bank] = sparse_banks[sbank++];
1339
1340         if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1341                 /* for all vcpus vp_index == vcpu_idx */
1342                 return (unsigned long *)vp_bitmap;
1343         }
1344
1345         bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1346         kvm_for_each_vcpu(i, vcpu, kvm) {
1347                 if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
1348                              (unsigned long *)vp_bitmap))
1349                         __set_bit(i, vcpu_bitmap);
1350         }
1351         return vcpu_bitmap;
1352 }
1353
1354 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1355                             u16 rep_cnt, bool ex)
1356 {
1357         struct kvm *kvm = current_vcpu->kvm;
1358         struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
1359         struct hv_tlb_flush_ex flush_ex;
1360         struct hv_tlb_flush flush;
1361         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1362         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1363         unsigned long *vcpu_mask;
1364         u64 valid_bank_mask;
1365         u64 sparse_banks[64];
1366         int sparse_banks_len;
1367         bool all_cpus;
1368
1369         if (!ex) {
1370                 if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1371                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1372
1373                 trace_kvm_hv_flush_tlb(flush.processor_mask,
1374                                        flush.address_space, flush.flags);
1375
1376                 valid_bank_mask = BIT_ULL(0);
1377                 sparse_banks[0] = flush.processor_mask;
1378
1379                 /*
1380                  * Work around possible WS2012 bug: it sends hypercalls
1381                  * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1382                  * while also expecting us to flush something and crashing if
1383                  * we don't. Let's treat processor_mask == 0 same as
1384                  * HV_FLUSH_ALL_PROCESSORS.
1385                  */
1386                 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
1387                         flush.processor_mask == 0;
1388         } else {
1389                 if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1390                                             sizeof(flush_ex))))
1391                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1392
1393                 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1394                                           flush_ex.hv_vp_set.format,
1395                                           flush_ex.address_space,
1396                                           flush_ex.flags);
1397
1398                 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1399                 all_cpus = flush_ex.hv_vp_set.format !=
1400                         HV_GENERIC_SET_SPARSE_4K;
1401
1402                 sparse_banks_len =
1403                         bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1404                         sizeof(sparse_banks[0]);
1405
1406                 if (!sparse_banks_len && !all_cpus)
1407                         goto ret_success;
1408
1409                 if (!all_cpus &&
1410                     kvm_read_guest(kvm,
1411                                    ingpa + offsetof(struct hv_tlb_flush_ex,
1412                                                     hv_vp_set.bank_contents),
1413                                    sparse_banks,
1414                                    sparse_banks_len))
1415                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1416         }
1417
1418         cpumask_clear(&hv_vcpu->tlb_flush);
1419
1420         vcpu_mask = all_cpus ? NULL :
1421                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1422                                         vp_bitmap, vcpu_bitmap);
1423
1424         /*
1425          * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1426          * analyze it here, flush TLB regardless of the specified address space.
1427          */
1428         kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH,
1429                                     vcpu_mask, &hv_vcpu->tlb_flush);
1430
1431 ret_success:
1432         /* We always do full TLB flush, set rep_done = rep_cnt. */
1433         return (u64)HV_STATUS_SUCCESS |
1434                 ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1435 }
1436
1437 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1438                                  unsigned long *vcpu_bitmap)
1439 {
1440         struct kvm_lapic_irq irq = {
1441                 .delivery_mode = APIC_DM_FIXED,
1442                 .vector = vector
1443         };
1444         struct kvm_vcpu *vcpu;
1445         int i;
1446
1447         kvm_for_each_vcpu(i, vcpu, kvm) {
1448                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1449                         continue;
1450
1451                 /* We fail only when APIC is disabled */
1452                 kvm_apic_set_irq(vcpu, &irq, NULL);
1453         }
1454 }
1455
1456 static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
1457                            bool ex, bool fast)
1458 {
1459         struct kvm *kvm = current_vcpu->kvm;
1460         struct hv_send_ipi_ex send_ipi_ex;
1461         struct hv_send_ipi send_ipi;
1462         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1463         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1464         unsigned long *vcpu_mask;
1465         unsigned long valid_bank_mask;
1466         u64 sparse_banks[64];
1467         int sparse_banks_len;
1468         u32 vector;
1469         bool all_cpus;
1470
1471         if (!ex) {
1472                 if (!fast) {
1473                         if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
1474                                                     sizeof(send_ipi))))
1475                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1476                         sparse_banks[0] = send_ipi.cpu_mask;
1477                         vector = send_ipi.vector;
1478                 } else {
1479                         /* 'reserved' part of hv_send_ipi should be 0 */
1480                         if (unlikely(ingpa >> 32 != 0))
1481                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1482                         sparse_banks[0] = outgpa;
1483                         vector = (u32)ingpa;
1484                 }
1485                 all_cpus = false;
1486                 valid_bank_mask = BIT_ULL(0);
1487
1488                 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1489         } else {
1490                 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
1491                                             sizeof(send_ipi_ex))))
1492                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1493
1494                 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1495                                          send_ipi_ex.vp_set.format,
1496                                          send_ipi_ex.vp_set.valid_bank_mask);
1497
1498                 vector = send_ipi_ex.vector;
1499                 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1500                 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1501                         sizeof(sparse_banks[0]);
1502
1503                 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1504
1505                 if (!sparse_banks_len)
1506                         goto ret_success;
1507
1508                 if (!all_cpus &&
1509                     kvm_read_guest(kvm,
1510                                    ingpa + offsetof(struct hv_send_ipi_ex,
1511                                                     vp_set.bank_contents),
1512                                    sparse_banks,
1513                                    sparse_banks_len))
1514                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1515         }
1516
1517         if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1518                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1519
1520         vcpu_mask = all_cpus ? NULL :
1521                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1522                                         vp_bitmap, vcpu_bitmap);
1523
1524         kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1525
1526 ret_success:
1527         return HV_STATUS_SUCCESS;
1528 }
1529
1530 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1531 {
1532         return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
1533 }
1534
1535 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1536 {
1537         bool longmode;
1538
1539         longmode = is_64_bit_mode(vcpu);
1540         if (longmode)
1541                 kvm_rax_write(vcpu, result);
1542         else {
1543                 kvm_rdx_write(vcpu, result >> 32);
1544                 kvm_rax_write(vcpu, result & 0xffffffff);
1545         }
1546 }
1547
1548 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1549 {
1550         kvm_hv_hypercall_set_result(vcpu, result);
1551         ++vcpu->stat.hypercalls;
1552         return kvm_skip_emulated_instruction(vcpu);
1553 }
1554
1555 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1556 {
1557         return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1558 }
1559
1560 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1561 {
1562         struct eventfd_ctx *eventfd;
1563
1564         if (unlikely(!fast)) {
1565                 int ret;
1566                 gpa_t gpa = param;
1567
1568                 if ((gpa & (__alignof__(param) - 1)) ||
1569                     offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1570                         return HV_STATUS_INVALID_ALIGNMENT;
1571
1572                 ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1573                 if (ret < 0)
1574                         return HV_STATUS_INVALID_ALIGNMENT;
1575         }
1576
1577         /*
1578          * Per spec, bits 32-47 contain the extra "flag number".  However, we
1579          * have no use for it, and in all known usecases it is zero, so just
1580          * report lookup failure if it isn't.
1581          */
1582         if (param & 0xffff00000000ULL)
1583                 return HV_STATUS_INVALID_PORT_ID;
1584         /* remaining bits are reserved-zero */
1585         if (param & ~KVM_HYPERV_CONN_ID_MASK)
1586                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1587
1588         /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1589         rcu_read_lock();
1590         eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1591         rcu_read_unlock();
1592         if (!eventfd)
1593                 return HV_STATUS_INVALID_PORT_ID;
1594
1595         eventfd_signal(eventfd, 1);
1596         return HV_STATUS_SUCCESS;
1597 }
1598
1599 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1600 {
1601         u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1602         uint16_t code, rep_idx, rep_cnt;
1603         bool fast, rep;
1604
1605         /*
1606          * hypercall generates UD from non zero cpl and real mode
1607          * per HYPER-V spec
1608          */
1609         if (kvm_x86_ops.get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1610                 kvm_queue_exception(vcpu, UD_VECTOR);
1611                 return 1;
1612         }
1613
1614 #ifdef CONFIG_X86_64
1615         if (is_64_bit_mode(vcpu)) {
1616                 param = kvm_rcx_read(vcpu);
1617                 ingpa = kvm_rdx_read(vcpu);
1618                 outgpa = kvm_r8_read(vcpu);
1619         } else
1620 #endif
1621         {
1622                 param = ((u64)kvm_rdx_read(vcpu) << 32) |
1623                         (kvm_rax_read(vcpu) & 0xffffffff);
1624                 ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
1625                         (kvm_rcx_read(vcpu) & 0xffffffff);
1626                 outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
1627                         (kvm_rsi_read(vcpu) & 0xffffffff);
1628         }
1629
1630         code = param & 0xffff;
1631         fast = !!(param & HV_HYPERCALL_FAST_BIT);
1632         rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1633         rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1634         rep = !!(rep_cnt || rep_idx);
1635
1636         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1637
1638         switch (code) {
1639         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1640                 if (unlikely(rep)) {
1641                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1642                         break;
1643                 }
1644                 kvm_vcpu_on_spin(vcpu, true);
1645                 break;
1646         case HVCALL_SIGNAL_EVENT:
1647                 if (unlikely(rep)) {
1648                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1649                         break;
1650                 }
1651                 ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1652                 if (ret != HV_STATUS_INVALID_PORT_ID)
1653                         break;
1654                 /* fall through - maybe userspace knows this conn_id. */
1655         case HVCALL_POST_MESSAGE:
1656                 /* don't bother userspace if it has no way to handle it */
1657                 if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1658                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1659                         break;
1660                 }
1661                 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1662                 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1663                 vcpu->run->hyperv.u.hcall.input = param;
1664                 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1665                 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1666                 vcpu->arch.complete_userspace_io =
1667                                 kvm_hv_hypercall_complete_userspace;
1668                 return 0;
1669         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1670                 if (unlikely(fast || !rep_cnt || rep_idx)) {
1671                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1672                         break;
1673                 }
1674                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1675                 break;
1676         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1677                 if (unlikely(fast || rep)) {
1678                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1679                         break;
1680                 }
1681                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1682                 break;
1683         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1684                 if (unlikely(fast || !rep_cnt || rep_idx)) {
1685                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1686                         break;
1687                 }
1688                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1689                 break;
1690         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1691                 if (unlikely(fast || rep)) {
1692                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1693                         break;
1694                 }
1695                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1696                 break;
1697         case HVCALL_SEND_IPI:
1698                 if (unlikely(rep)) {
1699                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1700                         break;
1701                 }
1702                 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
1703                 break;
1704         case HVCALL_SEND_IPI_EX:
1705                 if (unlikely(fast || rep)) {
1706                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1707                         break;
1708                 }
1709                 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
1710                 break;
1711         default:
1712                 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1713                 break;
1714         }
1715
1716         return kvm_hv_hypercall_complete(vcpu, ret);
1717 }
1718
1719 void kvm_hv_init_vm(struct kvm *kvm)
1720 {
1721         mutex_init(&kvm->arch.hyperv.hv_lock);
1722         idr_init(&kvm->arch.hyperv.conn_to_evt);
1723 }
1724
1725 void kvm_hv_destroy_vm(struct kvm *kvm)
1726 {
1727         struct eventfd_ctx *eventfd;
1728         int i;
1729
1730         idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1731                 eventfd_ctx_put(eventfd);
1732         idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1733 }
1734
1735 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1736 {
1737         struct kvm_hv *hv = &kvm->arch.hyperv;
1738         struct eventfd_ctx *eventfd;
1739         int ret;
1740
1741         eventfd = eventfd_ctx_fdget(fd);
1742         if (IS_ERR(eventfd))
1743                 return PTR_ERR(eventfd);
1744
1745         mutex_lock(&hv->hv_lock);
1746         ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1747                         GFP_KERNEL_ACCOUNT);
1748         mutex_unlock(&hv->hv_lock);
1749
1750         if (ret >= 0)
1751                 return 0;
1752
1753         if (ret == -ENOSPC)
1754                 ret = -EEXIST;
1755         eventfd_ctx_put(eventfd);
1756         return ret;
1757 }
1758
1759 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1760 {
1761         struct kvm_hv *hv = &kvm->arch.hyperv;
1762         struct eventfd_ctx *eventfd;
1763
1764         mutex_lock(&hv->hv_lock);
1765         eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1766         mutex_unlock(&hv->hv_lock);
1767
1768         if (!eventfd)
1769                 return -ENOENT;
1770
1771         synchronize_srcu(&kvm->srcu);
1772         eventfd_ctx_put(eventfd);
1773         return 0;
1774 }
1775
1776 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1777 {
1778         if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1779             (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1780                 return -EINVAL;
1781
1782         if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1783                 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1784         return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1785 }
1786
1787 int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
1788                                 struct kvm_cpuid_entry2 __user *entries)
1789 {
1790         uint16_t evmcs_ver = 0;
1791         struct kvm_cpuid_entry2 cpuid_entries[] = {
1792                 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
1793                 { .function = HYPERV_CPUID_INTERFACE },
1794                 { .function = HYPERV_CPUID_VERSION },
1795                 { .function = HYPERV_CPUID_FEATURES },
1796                 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
1797                 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
1798                 { .function = HYPERV_CPUID_NESTED_FEATURES },
1799         };
1800         int i, nent = ARRAY_SIZE(cpuid_entries);
1801
1802         if (kvm_x86_ops.nested_ops->get_evmcs_version)
1803                 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
1804
1805         /* Skip NESTED_FEATURES if eVMCS is not supported */
1806         if (!evmcs_ver)
1807                 --nent;
1808
1809         if (cpuid->nent < nent)
1810                 return -E2BIG;
1811
1812         if (cpuid->nent > nent)
1813                 cpuid->nent = nent;
1814
1815         for (i = 0; i < nent; i++) {
1816                 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
1817                 u32 signature[3];
1818
1819                 switch (ent->function) {
1820                 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
1821                         memcpy(signature, "Linux KVM Hv", 12);
1822
1823                         ent->eax = HYPERV_CPUID_NESTED_FEATURES;
1824                         ent->ebx = signature[0];
1825                         ent->ecx = signature[1];
1826                         ent->edx = signature[2];
1827                         break;
1828
1829                 case HYPERV_CPUID_INTERFACE:
1830                         memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1831                         ent->eax = signature[0];
1832                         break;
1833
1834                 case HYPERV_CPUID_VERSION:
1835                         /*
1836                          * We implement some Hyper-V 2016 functions so let's use
1837                          * this version.
1838                          */
1839                         ent->eax = 0x00003839;
1840                         ent->ebx = 0x000A0000;
1841                         break;
1842
1843                 case HYPERV_CPUID_FEATURES:
1844                         ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
1845                         ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
1846                         ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
1847                         ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
1848                         ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
1849                         ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
1850                         ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
1851                         ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
1852                         ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
1853                         ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
1854                         ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;
1855
1856                         ent->ebx |= HV_X64_POST_MESSAGES;
1857                         ent->ebx |= HV_X64_SIGNAL_EVENTS;
1858
1859                         ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
1860                         ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1861
1862                         /*
1863                          * Direct Synthetic timers only make sense with in-kernel
1864                          * LAPIC
1865                          */
1866                         if (lapic_in_kernel(vcpu))
1867                                 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
1868
1869                         break;
1870
1871                 case HYPERV_CPUID_ENLIGHTMENT_INFO:
1872                         ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
1873                         ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
1874                         ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
1875                         ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
1876                         ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
1877                         if (evmcs_ver)
1878                                 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
1879                         if (!cpu_smt_possible())
1880                                 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
1881                         /*
1882                          * Default number of spinlock retry attempts, matches
1883                          * HyperV 2016.
1884                          */
1885                         ent->ebx = 0x00000FFF;
1886
1887                         break;
1888
1889                 case HYPERV_CPUID_IMPLEMENT_LIMITS:
1890                         /* Maximum number of virtual processors */
1891                         ent->eax = KVM_MAX_VCPUS;
1892                         /*
1893                          * Maximum number of logical processors, matches
1894                          * HyperV 2016.
1895                          */
1896                         ent->ebx = 64;
1897
1898                         break;
1899
1900                 case HYPERV_CPUID_NESTED_FEATURES:
1901                         ent->eax = evmcs_ver;
1902
1903                         break;
1904
1905                 default:
1906                         break;
1907                 }
1908         }
1909
1910         if (copy_to_user(entries, cpuid_entries,
1911                          nent * sizeof(struct kvm_cpuid_entry2)))
1912                 return -EFAULT;
1913
1914         return 0;
1915 }