KVM: x86: hyperv: enforce vp_index < KVM_MAX_VCPUS
[linux-2.6-microblaze.git] / arch / x86 / kvm / hyperv.c
1 /*
2  * KVM Microsoft Hyper-V emulation
3  *
4  * derived from arch/x86/kvm/x86.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  *   Andrey Smetanin <asmetanin@virtuozzo.com>
18  *
19  * This work is licensed under the terms of the GNU GPL, version 2.  See
20  * the COPYING file in the top-level directory.
21  *
22  */
23
24 #include "x86.h"
25 #include "lapic.h"
26 #include "ioapic.h"
27 #include "hyperv.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/highmem.h>
31 #include <linux/sched/cputime.h>
32 #include <linux/eventfd.h>
33
34 #include <asm/apicdef.h>
35 #include <trace/events/kvm.h>
36
37 #include "trace.h"
38
39 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
40 {
41         return atomic64_read(&synic->sint[sint]);
42 }
43
44 static inline int synic_get_sint_vector(u64 sint_value)
45 {
46         if (sint_value & HV_SYNIC_SINT_MASKED)
47                 return -1;
48         return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
49 }
50
51 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
52                                       int vector)
53 {
54         int i;
55
56         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
57                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
58                         return true;
59         }
60         return false;
61 }
62
63 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
64                                      int vector)
65 {
66         int i;
67         u64 sint_value;
68
69         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
70                 sint_value = synic_read_sint(synic, i);
71                 if (synic_get_sint_vector(sint_value) == vector &&
72                     sint_value & HV_SYNIC_SINT_AUTO_EOI)
73                         return true;
74         }
75         return false;
76 }
77
78 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
79                                 int vector)
80 {
81         if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
82                 return;
83
84         if (synic_has_vector_connected(synic, vector))
85                 __set_bit(vector, synic->vec_bitmap);
86         else
87                 __clear_bit(vector, synic->vec_bitmap);
88
89         if (synic_has_vector_auto_eoi(synic, vector))
90                 __set_bit(vector, synic->auto_eoi_bitmap);
91         else
92                 __clear_bit(vector, synic->auto_eoi_bitmap);
93 }
94
95 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
96                           u64 data, bool host)
97 {
98         int vector, old_vector;
99         bool masked;
100
101         vector = data & HV_SYNIC_SINT_VECTOR_MASK;
102         masked = data & HV_SYNIC_SINT_MASKED;
103
104         /*
105          * Valid vectors are 16-255, however, nested Hyper-V attempts to write
106          * default '0x10000' value on boot and this should not #GP. We need to
107          * allow zero-initing the register from host as well.
108          */
109         if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
110                 return 1;
111         /*
112          * Guest may configure multiple SINTs to use the same vector, so
113          * we maintain a bitmap of vectors handled by synic, and a
114          * bitmap of vectors with auto-eoi behavior.  The bitmaps are
115          * updated here, and atomically queried on fast paths.
116          */
117         old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
118
119         atomic64_set(&synic->sint[sint], data);
120
121         synic_update_vector(synic, old_vector);
122
123         synic_update_vector(synic, vector);
124
125         /* Load SynIC vectors into EOI exit bitmap */
126         kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
127         return 0;
128 }
129
130 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
131 {
132         struct kvm_vcpu *vcpu = NULL;
133         int i;
134
135         if (vpidx >= KVM_MAX_VCPUS)
136                 return NULL;
137
138         vcpu = kvm_get_vcpu(kvm, vpidx);
139         if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
140                 return vcpu;
141         kvm_for_each_vcpu(i, vcpu, kvm)
142                 if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
143                         return vcpu;
144         return NULL;
145 }
146
147 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
148 {
149         struct kvm_vcpu *vcpu;
150         struct kvm_vcpu_hv_synic *synic;
151
152         vcpu = get_vcpu_by_vpidx(kvm, vpidx);
153         if (!vcpu)
154                 return NULL;
155         synic = vcpu_to_synic(vcpu);
156         return (synic->active) ? synic : NULL;
157 }
158
159 static void synic_clear_sint_msg_pending(struct kvm_vcpu_hv_synic *synic,
160                                         u32 sint)
161 {
162         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
163         struct page *page;
164         gpa_t gpa;
165         struct hv_message *msg;
166         struct hv_message_page *msg_page;
167
168         gpa = synic->msg_page & PAGE_MASK;
169         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
170         if (is_error_page(page)) {
171                 vcpu_err(vcpu, "Hyper-V SynIC can't get msg page, gpa 0x%llx\n",
172                          gpa);
173                 return;
174         }
175         msg_page = kmap_atomic(page);
176
177         msg = &msg_page->sint_message[sint];
178         msg->header.message_flags.msg_pending = 0;
179
180         kunmap_atomic(msg_page);
181         kvm_release_page_dirty(page);
182         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
183 }
184
185 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
186 {
187         struct kvm *kvm = vcpu->kvm;
188         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
189         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
190         struct kvm_vcpu_hv_stimer *stimer;
191         int gsi, idx, stimers_pending;
192
193         trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
194
195         if (synic->msg_page & HV_SYNIC_SIMP_ENABLE)
196                 synic_clear_sint_msg_pending(synic, sint);
197
198         /* Try to deliver pending Hyper-V SynIC timers messages */
199         stimers_pending = 0;
200         for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
201                 stimer = &hv_vcpu->stimer[idx];
202                 if (stimer->msg_pending &&
203                     (stimer->config & HV_STIMER_ENABLE) &&
204                     HV_STIMER_SINT(stimer->config) == sint) {
205                         set_bit(stimer->index,
206                                 hv_vcpu->stimer_pending_bitmap);
207                         stimers_pending++;
208                 }
209         }
210         if (stimers_pending)
211                 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
212
213         idx = srcu_read_lock(&kvm->irq_srcu);
214         gsi = atomic_read(&synic->sint_to_gsi[sint]);
215         if (gsi != -1)
216                 kvm_notify_acked_gsi(kvm, gsi);
217         srcu_read_unlock(&kvm->irq_srcu, idx);
218 }
219
220 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
221 {
222         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
223         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
224
225         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
226         hv_vcpu->exit.u.synic.msr = msr;
227         hv_vcpu->exit.u.synic.control = synic->control;
228         hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
229         hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
230
231         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
232 }
233
234 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
235                          u32 msr, u64 data, bool host)
236 {
237         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
238         int ret;
239
240         if (!synic->active && !host)
241                 return 1;
242
243         trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
244
245         ret = 0;
246         switch (msr) {
247         case HV_X64_MSR_SCONTROL:
248                 synic->control = data;
249                 if (!host)
250                         synic_exit(synic, msr);
251                 break;
252         case HV_X64_MSR_SVERSION:
253                 if (!host) {
254                         ret = 1;
255                         break;
256                 }
257                 synic->version = data;
258                 break;
259         case HV_X64_MSR_SIEFP:
260                 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
261                     !synic->dont_zero_synic_pages)
262                         if (kvm_clear_guest(vcpu->kvm,
263                                             data & PAGE_MASK, PAGE_SIZE)) {
264                                 ret = 1;
265                                 break;
266                         }
267                 synic->evt_page = data;
268                 if (!host)
269                         synic_exit(synic, msr);
270                 break;
271         case HV_X64_MSR_SIMP:
272                 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
273                     !synic->dont_zero_synic_pages)
274                         if (kvm_clear_guest(vcpu->kvm,
275                                             data & PAGE_MASK, PAGE_SIZE)) {
276                                 ret = 1;
277                                 break;
278                         }
279                 synic->msg_page = data;
280                 if (!host)
281                         synic_exit(synic, msr);
282                 break;
283         case HV_X64_MSR_EOM: {
284                 int i;
285
286                 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
287                         kvm_hv_notify_acked_sint(vcpu, i);
288                 break;
289         }
290         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
291                 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
292                 break;
293         default:
294                 ret = 1;
295                 break;
296         }
297         return ret;
298 }
299
300 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
301                          bool host)
302 {
303         int ret;
304
305         if (!synic->active && !host)
306                 return 1;
307
308         ret = 0;
309         switch (msr) {
310         case HV_X64_MSR_SCONTROL:
311                 *pdata = synic->control;
312                 break;
313         case HV_X64_MSR_SVERSION:
314                 *pdata = synic->version;
315                 break;
316         case HV_X64_MSR_SIEFP:
317                 *pdata = synic->evt_page;
318                 break;
319         case HV_X64_MSR_SIMP:
320                 *pdata = synic->msg_page;
321                 break;
322         case HV_X64_MSR_EOM:
323                 *pdata = 0;
324                 break;
325         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
326                 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
327                 break;
328         default:
329                 ret = 1;
330                 break;
331         }
332         return ret;
333 }
334
335 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
336 {
337         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
338         struct kvm_lapic_irq irq;
339         int ret, vector;
340
341         if (sint >= ARRAY_SIZE(synic->sint))
342                 return -EINVAL;
343
344         vector = synic_get_sint_vector(synic_read_sint(synic, sint));
345         if (vector < 0)
346                 return -ENOENT;
347
348         memset(&irq, 0, sizeof(irq));
349         irq.shorthand = APIC_DEST_SELF;
350         irq.dest_mode = APIC_DEST_PHYSICAL;
351         irq.delivery_mode = APIC_DM_FIXED;
352         irq.vector = vector;
353         irq.level = 1;
354
355         ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
356         trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
357         return ret;
358 }
359
360 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
361 {
362         struct kvm_vcpu_hv_synic *synic;
363
364         synic = synic_get(kvm, vpidx);
365         if (!synic)
366                 return -EINVAL;
367
368         return synic_set_irq(synic, sint);
369 }
370
371 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
372 {
373         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
374         int i;
375
376         trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
377
378         for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
379                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
380                         kvm_hv_notify_acked_sint(vcpu, i);
381 }
382
383 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
384 {
385         struct kvm_vcpu_hv_synic *synic;
386
387         synic = synic_get(kvm, vpidx);
388         if (!synic)
389                 return -EINVAL;
390
391         if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
392                 return -EINVAL;
393
394         atomic_set(&synic->sint_to_gsi[sint], gsi);
395         return 0;
396 }
397
398 void kvm_hv_irq_routing_update(struct kvm *kvm)
399 {
400         struct kvm_irq_routing_table *irq_rt;
401         struct kvm_kernel_irq_routing_entry *e;
402         u32 gsi;
403
404         irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
405                                         lockdep_is_held(&kvm->irq_lock));
406
407         for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
408                 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
409                         if (e->type == KVM_IRQ_ROUTING_HV_SINT)
410                                 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
411                                                     e->hv_sint.sint, gsi);
412                 }
413         }
414 }
415
416 static void synic_init(struct kvm_vcpu_hv_synic *synic)
417 {
418         int i;
419
420         memset(synic, 0, sizeof(*synic));
421         synic->version = HV_SYNIC_VERSION_1;
422         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
423                 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
424                 atomic_set(&synic->sint_to_gsi[i], -1);
425         }
426 }
427
428 static u64 get_time_ref_counter(struct kvm *kvm)
429 {
430         struct kvm_hv *hv = &kvm->arch.hyperv;
431         struct kvm_vcpu *vcpu;
432         u64 tsc;
433
434         /*
435          * The guest has not set up the TSC page or the clock isn't
436          * stable, fall back to get_kvmclock_ns.
437          */
438         if (!hv->tsc_ref.tsc_sequence)
439                 return div_u64(get_kvmclock_ns(kvm), 100);
440
441         vcpu = kvm_get_vcpu(kvm, 0);
442         tsc = kvm_read_l1_tsc(vcpu, rdtsc());
443         return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
444                 + hv->tsc_ref.tsc_offset;
445 }
446
447 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
448                                 bool vcpu_kick)
449 {
450         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
451
452         set_bit(stimer->index,
453                 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
454         kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
455         if (vcpu_kick)
456                 kvm_vcpu_kick(vcpu);
457 }
458
459 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
460 {
461         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
462
463         trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
464                                     stimer->index);
465
466         hrtimer_cancel(&stimer->timer);
467         clear_bit(stimer->index,
468                   vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
469         stimer->msg_pending = false;
470         stimer->exp_time = 0;
471 }
472
473 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
474 {
475         struct kvm_vcpu_hv_stimer *stimer;
476
477         stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
478         trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
479                                      stimer->index);
480         stimer_mark_pending(stimer, true);
481
482         return HRTIMER_NORESTART;
483 }
484
485 /*
486  * stimer_start() assumptions:
487  * a) stimer->count is not equal to 0
488  * b) stimer->config has HV_STIMER_ENABLE flag
489  */
490 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
491 {
492         u64 time_now;
493         ktime_t ktime_now;
494
495         time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
496         ktime_now = ktime_get();
497
498         if (stimer->config & HV_STIMER_PERIODIC) {
499                 if (stimer->exp_time) {
500                         if (time_now >= stimer->exp_time) {
501                                 u64 remainder;
502
503                                 div64_u64_rem(time_now - stimer->exp_time,
504                                               stimer->count, &remainder);
505                                 stimer->exp_time =
506                                         time_now + (stimer->count - remainder);
507                         }
508                 } else
509                         stimer->exp_time = time_now + stimer->count;
510
511                 trace_kvm_hv_stimer_start_periodic(
512                                         stimer_to_vcpu(stimer)->vcpu_id,
513                                         stimer->index,
514                                         time_now, stimer->exp_time);
515
516                 hrtimer_start(&stimer->timer,
517                               ktime_add_ns(ktime_now,
518                                            100 * (stimer->exp_time - time_now)),
519                               HRTIMER_MODE_ABS);
520                 return 0;
521         }
522         stimer->exp_time = stimer->count;
523         if (time_now >= stimer->count) {
524                 /*
525                  * Expire timer according to Hypervisor Top-Level Functional
526                  * specification v4(15.3.1):
527                  * "If a one shot is enabled and the specified count is in
528                  * the past, it will expire immediately."
529                  */
530                 stimer_mark_pending(stimer, false);
531                 return 0;
532         }
533
534         trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
535                                            stimer->index,
536                                            time_now, stimer->count);
537
538         hrtimer_start(&stimer->timer,
539                       ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
540                       HRTIMER_MODE_ABS);
541         return 0;
542 }
543
544 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
545                              bool host)
546 {
547         trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
548                                        stimer->index, config, host);
549
550         stimer_cleanup(stimer);
551         if ((stimer->config & HV_STIMER_ENABLE) && HV_STIMER_SINT(config) == 0)
552                 config &= ~HV_STIMER_ENABLE;
553         stimer->config = config;
554         stimer_mark_pending(stimer, false);
555         return 0;
556 }
557
558 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
559                             bool host)
560 {
561         trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
562                                       stimer->index, count, host);
563
564         stimer_cleanup(stimer);
565         stimer->count = count;
566         if (stimer->count == 0)
567                 stimer->config &= ~HV_STIMER_ENABLE;
568         else if (stimer->config & HV_STIMER_AUTOENABLE)
569                 stimer->config |= HV_STIMER_ENABLE;
570         stimer_mark_pending(stimer, false);
571         return 0;
572 }
573
574 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
575 {
576         *pconfig = stimer->config;
577         return 0;
578 }
579
580 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
581 {
582         *pcount = stimer->count;
583         return 0;
584 }
585
586 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
587                              struct hv_message *src_msg)
588 {
589         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
590         struct page *page;
591         gpa_t gpa;
592         struct hv_message *dst_msg;
593         int r;
594         struct hv_message_page *msg_page;
595
596         if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
597                 return -ENOENT;
598
599         gpa = synic->msg_page & PAGE_MASK;
600         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
601         if (is_error_page(page))
602                 return -EFAULT;
603
604         msg_page = kmap_atomic(page);
605         dst_msg = &msg_page->sint_message[sint];
606         if (sync_cmpxchg(&dst_msg->header.message_type, HVMSG_NONE,
607                          src_msg->header.message_type) != HVMSG_NONE) {
608                 dst_msg->header.message_flags.msg_pending = 1;
609                 r = -EAGAIN;
610         } else {
611                 memcpy(&dst_msg->u.payload, &src_msg->u.payload,
612                        src_msg->header.payload_size);
613                 dst_msg->header.message_type = src_msg->header.message_type;
614                 dst_msg->header.payload_size = src_msg->header.payload_size;
615                 r = synic_set_irq(synic, sint);
616                 if (r >= 1)
617                         r = 0;
618                 else if (r == 0)
619                         r = -EFAULT;
620         }
621         kunmap_atomic(msg_page);
622         kvm_release_page_dirty(page);
623         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
624         return r;
625 }
626
627 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
628 {
629         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
630         struct hv_message *msg = &stimer->msg;
631         struct hv_timer_message_payload *payload =
632                         (struct hv_timer_message_payload *)&msg->u.payload;
633
634         payload->expiration_time = stimer->exp_time;
635         payload->delivery_time = get_time_ref_counter(vcpu->kvm);
636         return synic_deliver_msg(vcpu_to_synic(vcpu),
637                                  HV_STIMER_SINT(stimer->config), msg);
638 }
639
640 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
641 {
642         int r;
643
644         stimer->msg_pending = true;
645         r = stimer_send_msg(stimer);
646         trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
647                                        stimer->index, r);
648         if (!r) {
649                 stimer->msg_pending = false;
650                 if (!(stimer->config & HV_STIMER_PERIODIC))
651                         stimer->config &= ~HV_STIMER_ENABLE;
652         }
653 }
654
655 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
656 {
657         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
658         struct kvm_vcpu_hv_stimer *stimer;
659         u64 time_now, exp_time;
660         int i;
661
662         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
663                 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
664                         stimer = &hv_vcpu->stimer[i];
665                         if (stimer->config & HV_STIMER_ENABLE) {
666                                 exp_time = stimer->exp_time;
667
668                                 if (exp_time) {
669                                         time_now =
670                                                 get_time_ref_counter(vcpu->kvm);
671                                         if (time_now >= exp_time)
672                                                 stimer_expiration(stimer);
673                                 }
674
675                                 if ((stimer->config & HV_STIMER_ENABLE) &&
676                                     stimer->count) {
677                                         if (!stimer->msg_pending)
678                                                 stimer_start(stimer);
679                                 } else
680                                         stimer_cleanup(stimer);
681                         }
682                 }
683 }
684
685 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
686 {
687         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
688         int i;
689
690         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
691                 stimer_cleanup(&hv_vcpu->stimer[i]);
692 }
693
694 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
695 {
696         struct hv_message *msg = &stimer->msg;
697         struct hv_timer_message_payload *payload =
698                         (struct hv_timer_message_payload *)&msg->u.payload;
699
700         memset(&msg->header, 0, sizeof(msg->header));
701         msg->header.message_type = HVMSG_TIMER_EXPIRED;
702         msg->header.payload_size = sizeof(*payload);
703
704         payload->timer_index = stimer->index;
705         payload->expiration_time = 0;
706         payload->delivery_time = 0;
707 }
708
709 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
710 {
711         memset(stimer, 0, sizeof(*stimer));
712         stimer->index = timer_index;
713         hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
714         stimer->timer.function = stimer_timer_callback;
715         stimer_prepare_msg(stimer);
716 }
717
718 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
719 {
720         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
721         int i;
722
723         synic_init(&hv_vcpu->synic);
724
725         bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
726         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
727                 stimer_init(&hv_vcpu->stimer[i], i);
728 }
729
730 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
731 {
732         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
733
734         hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
735 }
736
737 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
738 {
739         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
740
741         /*
742          * Hyper-V SynIC auto EOI SINT's are
743          * not compatible with APICV, so deactivate APICV
744          */
745         kvm_vcpu_deactivate_apicv(vcpu);
746         synic->active = true;
747         synic->dont_zero_synic_pages = dont_zero_synic_pages;
748         return 0;
749 }
750
751 static bool kvm_hv_msr_partition_wide(u32 msr)
752 {
753         bool r = false;
754
755         switch (msr) {
756         case HV_X64_MSR_GUEST_OS_ID:
757         case HV_X64_MSR_HYPERCALL:
758         case HV_X64_MSR_REFERENCE_TSC:
759         case HV_X64_MSR_TIME_REF_COUNT:
760         case HV_X64_MSR_CRASH_CTL:
761         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
762         case HV_X64_MSR_RESET:
763         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
764         case HV_X64_MSR_TSC_EMULATION_CONTROL:
765         case HV_X64_MSR_TSC_EMULATION_STATUS:
766                 r = true;
767                 break;
768         }
769
770         return r;
771 }
772
773 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
774                                      u32 index, u64 *pdata)
775 {
776         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
777
778         if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
779                 return -EINVAL;
780
781         *pdata = hv->hv_crash_param[index];
782         return 0;
783 }
784
785 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
786 {
787         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
788
789         *pdata = hv->hv_crash_ctl;
790         return 0;
791 }
792
793 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
794 {
795         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
796
797         if (host)
798                 hv->hv_crash_ctl = data & HV_X64_MSR_CRASH_CTL_NOTIFY;
799
800         if (!host && (data & HV_X64_MSR_CRASH_CTL_NOTIFY)) {
801
802                 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
803                           hv->hv_crash_param[0],
804                           hv->hv_crash_param[1],
805                           hv->hv_crash_param[2],
806                           hv->hv_crash_param[3],
807                           hv->hv_crash_param[4]);
808
809                 /* Send notification about crash to user space */
810                 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
811         }
812
813         return 0;
814 }
815
816 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
817                                      u32 index, u64 data)
818 {
819         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
820
821         if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
822                 return -EINVAL;
823
824         hv->hv_crash_param[index] = data;
825         return 0;
826 }
827
828 /*
829  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
830  * between them is possible:
831  *
832  * kvmclock formula:
833  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
834  *           + system_time
835  *
836  * Hyper-V formula:
837  *    nsec/100 = ticks * scale / 2^64 + offset
838  *
839  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
840  * By dividing the kvmclock formula by 100 and equating what's left we get:
841  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
842  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
843  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
844  *
845  * Now expand the kvmclock formula and divide by 100:
846  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
847  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
848  *           + system_time
849  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
850  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
851  *               + system_time / 100
852  *
853  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
854  *    nsec/100 = ticks * scale / 2^64
855  *               - tsc_timestamp * scale / 2^64
856  *               + system_time / 100
857  *
858  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
859  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
860  *
861  * These two equivalencies are implemented in this function.
862  */
863 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
864                                         HV_REFERENCE_TSC_PAGE *tsc_ref)
865 {
866         u64 max_mul;
867
868         if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
869                 return false;
870
871         /*
872          * check if scale would overflow, if so we use the time ref counter
873          *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
874          *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
875          *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
876          */
877         max_mul = 100ull << (32 - hv_clock->tsc_shift);
878         if (hv_clock->tsc_to_system_mul >= max_mul)
879                 return false;
880
881         /*
882          * Otherwise compute the scale and offset according to the formulas
883          * derived above.
884          */
885         tsc_ref->tsc_scale =
886                 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
887                                 hv_clock->tsc_to_system_mul,
888                                 100);
889
890         tsc_ref->tsc_offset = hv_clock->system_time;
891         do_div(tsc_ref->tsc_offset, 100);
892         tsc_ref->tsc_offset -=
893                 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
894         return true;
895 }
896
897 void kvm_hv_setup_tsc_page(struct kvm *kvm,
898                            struct pvclock_vcpu_time_info *hv_clock)
899 {
900         struct kvm_hv *hv = &kvm->arch.hyperv;
901         u32 tsc_seq;
902         u64 gfn;
903
904         BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
905         BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);
906
907         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
908                 return;
909
910         mutex_lock(&kvm->arch.hyperv.hv_lock);
911         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
912                 goto out_unlock;
913
914         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
915         /*
916          * Because the TSC parameters only vary when there is a
917          * change in the master clock, do not bother with caching.
918          */
919         if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
920                                     &tsc_seq, sizeof(tsc_seq))))
921                 goto out_unlock;
922
923         /*
924          * While we're computing and writing the parameters, force the
925          * guest to use the time reference count MSR.
926          */
927         hv->tsc_ref.tsc_sequence = 0;
928         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
929                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
930                 goto out_unlock;
931
932         if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
933                 goto out_unlock;
934
935         /* Ensure sequence is zero before writing the rest of the struct.  */
936         smp_wmb();
937         if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
938                 goto out_unlock;
939
940         /*
941          * Now switch to the TSC page mechanism by writing the sequence.
942          */
943         tsc_seq++;
944         if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
945                 tsc_seq = 1;
946
947         /* Write the struct entirely before the non-zero sequence.  */
948         smp_wmb();
949
950         hv->tsc_ref.tsc_sequence = tsc_seq;
951         kvm_write_guest(kvm, gfn_to_gpa(gfn),
952                         &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
953 out_unlock:
954         mutex_unlock(&kvm->arch.hyperv.hv_lock);
955 }
956
957 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
958                              bool host)
959 {
960         struct kvm *kvm = vcpu->kvm;
961         struct kvm_hv *hv = &kvm->arch.hyperv;
962
963         switch (msr) {
964         case HV_X64_MSR_GUEST_OS_ID:
965                 hv->hv_guest_os_id = data;
966                 /* setting guest os id to zero disables hypercall page */
967                 if (!hv->hv_guest_os_id)
968                         hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
969                 break;
970         case HV_X64_MSR_HYPERCALL: {
971                 u64 gfn;
972                 unsigned long addr;
973                 u8 instructions[4];
974
975                 /* if guest os id is not set hypercall should remain disabled */
976                 if (!hv->hv_guest_os_id)
977                         break;
978                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
979                         hv->hv_hypercall = data;
980                         break;
981                 }
982                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
983                 addr = gfn_to_hva(kvm, gfn);
984                 if (kvm_is_error_hva(addr))
985                         return 1;
986                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
987                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
988                 if (__copy_to_user((void __user *)addr, instructions, 4))
989                         return 1;
990                 hv->hv_hypercall = data;
991                 mark_page_dirty(kvm, gfn);
992                 break;
993         }
994         case HV_X64_MSR_REFERENCE_TSC:
995                 hv->hv_tsc_page = data;
996                 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
997                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
998                 break;
999         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1000                 return kvm_hv_msr_set_crash_data(vcpu,
1001                                                  msr - HV_X64_MSR_CRASH_P0,
1002                                                  data);
1003         case HV_X64_MSR_CRASH_CTL:
1004                 return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1005         case HV_X64_MSR_RESET:
1006                 if (data == 1) {
1007                         vcpu_debug(vcpu, "hyper-v reset requested\n");
1008                         kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1009                 }
1010                 break;
1011         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1012                 hv->hv_reenlightenment_control = data;
1013                 break;
1014         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1015                 hv->hv_tsc_emulation_control = data;
1016                 break;
1017         case HV_X64_MSR_TSC_EMULATION_STATUS:
1018                 hv->hv_tsc_emulation_status = data;
1019                 break;
1020         case HV_X64_MSR_TIME_REF_COUNT:
1021                 /* read-only, but still ignore it if host-initiated */
1022                 if (!host)
1023                         return 1;
1024                 break;
1025         default:
1026                 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1027                             msr, data);
1028                 return 1;
1029         }
1030         return 0;
1031 }
1032
1033 /* Calculate cpu time spent by current task in 100ns units */
1034 static u64 current_task_runtime_100ns(void)
1035 {
1036         u64 utime, stime;
1037
1038         task_cputime_adjusted(current, &utime, &stime);
1039
1040         return div_u64(utime + stime, 100);
1041 }
1042
1043 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1044 {
1045         struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
1046
1047         switch (msr) {
1048         case HV_X64_MSR_VP_INDEX:
1049                 if (!host || (u32)data >= KVM_MAX_VCPUS)
1050                         return 1;
1051                 hv->vp_index = (u32)data;
1052                 break;
1053         case HV_X64_MSR_VP_ASSIST_PAGE: {
1054                 u64 gfn;
1055                 unsigned long addr;
1056
1057                 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1058                         hv->hv_vapic = data;
1059                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1060                                 return 1;
1061                         break;
1062                 }
1063                 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1064                 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1065                 if (kvm_is_error_hva(addr))
1066                         return 1;
1067                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1068                         return 1;
1069                 hv->hv_vapic = data;
1070                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1071                 if (kvm_lapic_enable_pv_eoi(vcpu,
1072                                             gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1073                         return 1;
1074                 break;
1075         }
1076         case HV_X64_MSR_EOI:
1077                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1078         case HV_X64_MSR_ICR:
1079                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1080         case HV_X64_MSR_TPR:
1081                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1082         case HV_X64_MSR_VP_RUNTIME:
1083                 if (!host)
1084                         return 1;
1085                 hv->runtime_offset = data - current_task_runtime_100ns();
1086                 break;
1087         case HV_X64_MSR_SCONTROL:
1088         case HV_X64_MSR_SVERSION:
1089         case HV_X64_MSR_SIEFP:
1090         case HV_X64_MSR_SIMP:
1091         case HV_X64_MSR_EOM:
1092         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1093                 return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1094         case HV_X64_MSR_STIMER0_CONFIG:
1095         case HV_X64_MSR_STIMER1_CONFIG:
1096         case HV_X64_MSR_STIMER2_CONFIG:
1097         case HV_X64_MSR_STIMER3_CONFIG: {
1098                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1099
1100                 return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1101                                          data, host);
1102         }
1103         case HV_X64_MSR_STIMER0_COUNT:
1104         case HV_X64_MSR_STIMER1_COUNT:
1105         case HV_X64_MSR_STIMER2_COUNT:
1106         case HV_X64_MSR_STIMER3_COUNT: {
1107                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1108
1109                 return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1110                                         data, host);
1111         }
1112         case HV_X64_MSR_TSC_FREQUENCY:
1113         case HV_X64_MSR_APIC_FREQUENCY:
1114                 /* read-only, but still ignore it if host-initiated */
1115                 if (!host)
1116                         return 1;
1117                 break;
1118         default:
1119                 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1120                             msr, data);
1121                 return 1;
1122         }
1123
1124         return 0;
1125 }
1126
1127 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1128 {
1129         u64 data = 0;
1130         struct kvm *kvm = vcpu->kvm;
1131         struct kvm_hv *hv = &kvm->arch.hyperv;
1132
1133         switch (msr) {
1134         case HV_X64_MSR_GUEST_OS_ID:
1135                 data = hv->hv_guest_os_id;
1136                 break;
1137         case HV_X64_MSR_HYPERCALL:
1138                 data = hv->hv_hypercall;
1139                 break;
1140         case HV_X64_MSR_TIME_REF_COUNT:
1141                 data = get_time_ref_counter(kvm);
1142                 break;
1143         case HV_X64_MSR_REFERENCE_TSC:
1144                 data = hv->hv_tsc_page;
1145                 break;
1146         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1147                 return kvm_hv_msr_get_crash_data(vcpu,
1148                                                  msr - HV_X64_MSR_CRASH_P0,
1149                                                  pdata);
1150         case HV_X64_MSR_CRASH_CTL:
1151                 return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1152         case HV_X64_MSR_RESET:
1153                 data = 0;
1154                 break;
1155         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1156                 data = hv->hv_reenlightenment_control;
1157                 break;
1158         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1159                 data = hv->hv_tsc_emulation_control;
1160                 break;
1161         case HV_X64_MSR_TSC_EMULATION_STATUS:
1162                 data = hv->hv_tsc_emulation_status;
1163                 break;
1164         default:
1165                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1166                 return 1;
1167         }
1168
1169         *pdata = data;
1170         return 0;
1171 }
1172
1173 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1174                           bool host)
1175 {
1176         u64 data = 0;
1177         struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
1178
1179         switch (msr) {
1180         case HV_X64_MSR_VP_INDEX:
1181                 data = hv->vp_index;
1182                 break;
1183         case HV_X64_MSR_EOI:
1184                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1185         case HV_X64_MSR_ICR:
1186                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1187         case HV_X64_MSR_TPR:
1188                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1189         case HV_X64_MSR_VP_ASSIST_PAGE:
1190                 data = hv->hv_vapic;
1191                 break;
1192         case HV_X64_MSR_VP_RUNTIME:
1193                 data = current_task_runtime_100ns() + hv->runtime_offset;
1194                 break;
1195         case HV_X64_MSR_SCONTROL:
1196         case HV_X64_MSR_SVERSION:
1197         case HV_X64_MSR_SIEFP:
1198         case HV_X64_MSR_SIMP:
1199         case HV_X64_MSR_EOM:
1200         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1201                 return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
1202         case HV_X64_MSR_STIMER0_CONFIG:
1203         case HV_X64_MSR_STIMER1_CONFIG:
1204         case HV_X64_MSR_STIMER2_CONFIG:
1205         case HV_X64_MSR_STIMER3_CONFIG: {
1206                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1207
1208                 return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1209                                          pdata);
1210         }
1211         case HV_X64_MSR_STIMER0_COUNT:
1212         case HV_X64_MSR_STIMER1_COUNT:
1213         case HV_X64_MSR_STIMER2_COUNT:
1214         case HV_X64_MSR_STIMER3_COUNT: {
1215                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1216
1217                 return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1218                                         pdata);
1219         }
1220         case HV_X64_MSR_TSC_FREQUENCY:
1221                 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1222                 break;
1223         case HV_X64_MSR_APIC_FREQUENCY:
1224                 data = APIC_BUS_FREQUENCY;
1225                 break;
1226         default:
1227                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1228                 return 1;
1229         }
1230         *pdata = data;
1231         return 0;
1232 }
1233
1234 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1235 {
1236         if (kvm_hv_msr_partition_wide(msr)) {
1237                 int r;
1238
1239                 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1240                 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1241                 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1242                 return r;
1243         } else
1244                 return kvm_hv_set_msr(vcpu, msr, data, host);
1245 }
1246
1247 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1248 {
1249         if (kvm_hv_msr_partition_wide(msr)) {
1250                 int r;
1251
1252                 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1253                 r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
1254                 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1255                 return r;
1256         } else
1257                 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1258 }
1259
1260 static __always_inline int get_sparse_bank_no(u64 valid_bank_mask, int bank_no)
1261 {
1262         int i = 0, j;
1263
1264         if (!(valid_bank_mask & BIT_ULL(bank_no)))
1265                 return -1;
1266
1267         for (j = 0; j < bank_no; j++)
1268                 if (valid_bank_mask & BIT_ULL(j))
1269                         i++;
1270
1271         return i;
1272 }
1273
1274 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1275                             u16 rep_cnt, bool ex)
1276 {
1277         struct kvm *kvm = current_vcpu->kvm;
1278         struct kvm_vcpu_hv *hv_current = &current_vcpu->arch.hyperv;
1279         struct hv_tlb_flush_ex flush_ex;
1280         struct hv_tlb_flush flush;
1281         struct kvm_vcpu *vcpu;
1282         unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)] = {0};
1283         unsigned long valid_bank_mask = 0;
1284         u64 sparse_banks[64];
1285         int sparse_banks_len, i;
1286         bool all_cpus;
1287
1288         if (!ex) {
1289                 if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1290                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1291
1292                 trace_kvm_hv_flush_tlb(flush.processor_mask,
1293                                        flush.address_space, flush.flags);
1294
1295                 sparse_banks[0] = flush.processor_mask;
1296                 all_cpus = flush.flags & HV_FLUSH_ALL_PROCESSORS;
1297         } else {
1298                 if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1299                                             sizeof(flush_ex))))
1300                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1301
1302                 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1303                                           flush_ex.hv_vp_set.format,
1304                                           flush_ex.address_space,
1305                                           flush_ex.flags);
1306
1307                 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1308                 all_cpus = flush_ex.hv_vp_set.format !=
1309                         HV_GENERIC_SET_SPARSE_4K;
1310
1311                 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1312                         sizeof(sparse_banks[0]);
1313
1314                 if (!sparse_banks_len && !all_cpus)
1315                         goto ret_success;
1316
1317                 if (!all_cpus &&
1318                     kvm_read_guest(kvm,
1319                                    ingpa + offsetof(struct hv_tlb_flush_ex,
1320                                                     hv_vp_set.bank_contents),
1321                                    sparse_banks,
1322                                    sparse_banks_len))
1323                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1324         }
1325
1326         cpumask_clear(&hv_current->tlb_lush);
1327
1328         kvm_for_each_vcpu(i, vcpu, kvm) {
1329                 struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
1330                 int bank = hv->vp_index / 64, sbank = 0;
1331
1332                 if (!all_cpus) {
1333                         /* Banks >64 can't be represented */
1334                         if (bank >= 64)
1335                                 continue;
1336
1337                         /* Non-ex hypercalls can only address first 64 vCPUs */
1338                         if (!ex && bank)
1339                                 continue;
1340
1341                         if (ex) {
1342                                 /*
1343                                  * Check is the bank of this vCPU is in sparse
1344                                  * set and get the sparse bank number.
1345                                  */
1346                                 sbank = get_sparse_bank_no(valid_bank_mask,
1347                                                            bank);
1348
1349                                 if (sbank < 0)
1350                                         continue;
1351                         }
1352
1353                         if (!(sparse_banks[sbank] & BIT_ULL(hv->vp_index % 64)))
1354                                 continue;
1355                 }
1356
1357                 /*
1358                  * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we
1359                  * can't analyze it here, flush TLB regardless of the specified
1360                  * address space.
1361                  */
1362                 __set_bit(i, vcpu_bitmap);
1363         }
1364
1365         kvm_make_vcpus_request_mask(kvm,
1366                                     KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
1367                                     vcpu_bitmap, &hv_current->tlb_lush);
1368
1369 ret_success:
1370         /* We always do full TLB flush, set rep_done = rep_cnt. */
1371         return (u64)HV_STATUS_SUCCESS |
1372                 ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1373 }
1374
1375 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1376 {
1377         return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
1378 }
1379
1380 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1381 {
1382         bool longmode;
1383
1384         longmode = is_64_bit_mode(vcpu);
1385         if (longmode)
1386                 kvm_register_write(vcpu, VCPU_REGS_RAX, result);
1387         else {
1388                 kvm_register_write(vcpu, VCPU_REGS_RDX, result >> 32);
1389                 kvm_register_write(vcpu, VCPU_REGS_RAX, result & 0xffffffff);
1390         }
1391 }
1392
1393 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1394 {
1395         kvm_hv_hypercall_set_result(vcpu, result);
1396         ++vcpu->stat.hypercalls;
1397         return kvm_skip_emulated_instruction(vcpu);
1398 }
1399
1400 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1401 {
1402         return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1403 }
1404
1405 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1406 {
1407         struct eventfd_ctx *eventfd;
1408
1409         if (unlikely(!fast)) {
1410                 int ret;
1411                 gpa_t gpa = param;
1412
1413                 if ((gpa & (__alignof__(param) - 1)) ||
1414                     offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1415                         return HV_STATUS_INVALID_ALIGNMENT;
1416
1417                 ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1418                 if (ret < 0)
1419                         return HV_STATUS_INVALID_ALIGNMENT;
1420         }
1421
1422         /*
1423          * Per spec, bits 32-47 contain the extra "flag number".  However, we
1424          * have no use for it, and in all known usecases it is zero, so just
1425          * report lookup failure if it isn't.
1426          */
1427         if (param & 0xffff00000000ULL)
1428                 return HV_STATUS_INVALID_PORT_ID;
1429         /* remaining bits are reserved-zero */
1430         if (param & ~KVM_HYPERV_CONN_ID_MASK)
1431                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1432
1433         /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1434         rcu_read_lock();
1435         eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1436         rcu_read_unlock();
1437         if (!eventfd)
1438                 return HV_STATUS_INVALID_PORT_ID;
1439
1440         eventfd_signal(eventfd, 1);
1441         return HV_STATUS_SUCCESS;
1442 }
1443
1444 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1445 {
1446         u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1447         uint16_t code, rep_idx, rep_cnt;
1448         bool fast, longmode, rep;
1449
1450         /*
1451          * hypercall generates UD from non zero cpl and real mode
1452          * per HYPER-V spec
1453          */
1454         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1455                 kvm_queue_exception(vcpu, UD_VECTOR);
1456                 return 1;
1457         }
1458
1459         longmode = is_64_bit_mode(vcpu);
1460
1461         if (!longmode) {
1462                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
1463                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
1464                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
1465                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
1466                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
1467                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
1468         }
1469 #ifdef CONFIG_X86_64
1470         else {
1471                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
1472                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
1473                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
1474         }
1475 #endif
1476
1477         code = param & 0xffff;
1478         fast = !!(param & HV_HYPERCALL_FAST_BIT);
1479         rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1480         rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1481         rep = !!(rep_cnt || rep_idx);
1482
1483         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1484
1485         switch (code) {
1486         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1487                 if (unlikely(rep)) {
1488                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1489                         break;
1490                 }
1491                 kvm_vcpu_on_spin(vcpu, true);
1492                 break;
1493         case HVCALL_SIGNAL_EVENT:
1494                 if (unlikely(rep)) {
1495                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1496                         break;
1497                 }
1498                 ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1499                 if (ret != HV_STATUS_INVALID_PORT_ID)
1500                         break;
1501                 /* maybe userspace knows this conn_id: fall through */
1502         case HVCALL_POST_MESSAGE:
1503                 /* don't bother userspace if it has no way to handle it */
1504                 if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1505                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1506                         break;
1507                 }
1508                 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1509                 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1510                 vcpu->run->hyperv.u.hcall.input = param;
1511                 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1512                 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1513                 vcpu->arch.complete_userspace_io =
1514                                 kvm_hv_hypercall_complete_userspace;
1515                 return 0;
1516         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1517                 if (unlikely(fast || !rep_cnt || rep_idx)) {
1518                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1519                         break;
1520                 }
1521                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1522                 break;
1523         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1524                 if (unlikely(fast || rep)) {
1525                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1526                         break;
1527                 }
1528                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1529                 break;
1530         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1531                 if (unlikely(fast || !rep_cnt || rep_idx)) {
1532                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1533                         break;
1534                 }
1535                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1536                 break;
1537         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1538                 if (unlikely(fast || rep)) {
1539                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1540                         break;
1541                 }
1542                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1543                 break;
1544         default:
1545                 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1546                 break;
1547         }
1548
1549         return kvm_hv_hypercall_complete(vcpu, ret);
1550 }
1551
1552 void kvm_hv_init_vm(struct kvm *kvm)
1553 {
1554         mutex_init(&kvm->arch.hyperv.hv_lock);
1555         idr_init(&kvm->arch.hyperv.conn_to_evt);
1556 }
1557
1558 void kvm_hv_destroy_vm(struct kvm *kvm)
1559 {
1560         struct eventfd_ctx *eventfd;
1561         int i;
1562
1563         idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1564                 eventfd_ctx_put(eventfd);
1565         idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1566 }
1567
1568 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1569 {
1570         struct kvm_hv *hv = &kvm->arch.hyperv;
1571         struct eventfd_ctx *eventfd;
1572         int ret;
1573
1574         eventfd = eventfd_ctx_fdget(fd);
1575         if (IS_ERR(eventfd))
1576                 return PTR_ERR(eventfd);
1577
1578         mutex_lock(&hv->hv_lock);
1579         ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1580                         GFP_KERNEL);
1581         mutex_unlock(&hv->hv_lock);
1582
1583         if (ret >= 0)
1584                 return 0;
1585
1586         if (ret == -ENOSPC)
1587                 ret = -EEXIST;
1588         eventfd_ctx_put(eventfd);
1589         return ret;
1590 }
1591
1592 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1593 {
1594         struct kvm_hv *hv = &kvm->arch.hyperv;
1595         struct eventfd_ctx *eventfd;
1596
1597         mutex_lock(&hv->hv_lock);
1598         eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1599         mutex_unlock(&hv->hv_lock);
1600
1601         if (!eventfd)
1602                 return -ENOENT;
1603
1604         synchronize_srcu(&kvm->srcu);
1605         eventfd_ctx_put(eventfd);
1606         return 0;
1607 }
1608
1609 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1610 {
1611         if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1612             (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1613                 return -EINVAL;
1614
1615         if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1616                 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1617         return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1618 }