Merge tag 'iomap-5.7-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / arch / x86 / kvm / cpuid.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_CPUID_H
3 #define ARCH_X86_KVM_CPUID_H
4
5 #include "x86.h"
6 #include <asm/cpu.h>
7 #include <asm/processor.h>
8
9 extern u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
10 void kvm_set_cpu_caps(void);
11
12 int kvm_update_cpuid(struct kvm_vcpu *vcpu);
13 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
14                                               u32 function, u32 index);
15 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
16                             struct kvm_cpuid_entry2 __user *entries,
17                             unsigned int type);
18 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
19                              struct kvm_cpuid *cpuid,
20                              struct kvm_cpuid_entry __user *entries);
21 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
22                               struct kvm_cpuid2 *cpuid,
23                               struct kvm_cpuid_entry2 __user *entries);
24 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
25                               struct kvm_cpuid2 *cpuid,
26                               struct kvm_cpuid_entry2 __user *entries);
27 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
28                u32 *ecx, u32 *edx, bool exact_only);
29
30 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu);
31
32 static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
33 {
34         return vcpu->arch.maxphyaddr;
35 }
36
37 struct cpuid_reg {
38         u32 function;
39         u32 index;
40         int reg;
41 };
42
43 static const struct cpuid_reg reverse_cpuid[] = {
44         [CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
45         [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
46         [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
47         [CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
48         [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
49         [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
50         [CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
51         [CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
52         [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
53         [CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
54         [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
55         [CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
56         [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
57         [CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
58         [CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
59 };
60
61 /*
62  * Reverse CPUID and its derivatives can only be used for hardware-defined
63  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
64  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
65  * is nonsensical as the bit number/mask is an arbitrary software-defined value
66  * and can't be used by KVM to query/control guest capabilities.  And obviously
67  * the leaf being queried must have an entry in the lookup table.
68  */
69 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
70 {
71         BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
72         BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
73         BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
74         BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
75         BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
76         BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
77 }
78
79 /*
80  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
81  * the hardware defined bit number (stored in bits 4:0) and a software defined
82  * "word" (stored in bits 31:5).  The word is used to index into arrays of
83  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
84  */
85 static __always_inline u32 __feature_bit(int x86_feature)
86 {
87         reverse_cpuid_check(x86_feature / 32);
88         return 1 << (x86_feature & 31);
89 }
90
91 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
92
93 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
94 {
95         unsigned int x86_leaf = x86_feature / 32;
96
97         reverse_cpuid_check(x86_leaf);
98         return reverse_cpuid[x86_leaf];
99 }
100
101 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
102                                                   u32 reg)
103 {
104         switch (reg) {
105         case CPUID_EAX:
106                 return &entry->eax;
107         case CPUID_EBX:
108                 return &entry->ebx;
109         case CPUID_ECX:
110                 return &entry->ecx;
111         case CPUID_EDX:
112                 return &entry->edx;
113         default:
114                 BUILD_BUG();
115                 return NULL;
116         }
117 }
118
119 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
120                                                 unsigned int x86_feature)
121 {
122         const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
123
124         return __cpuid_entry_get_reg(entry, cpuid.reg);
125 }
126
127 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
128                                            unsigned int x86_feature)
129 {
130         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
131
132         return *reg & __feature_bit(x86_feature);
133 }
134
135 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
136                                             unsigned int x86_feature)
137 {
138         return cpuid_entry_get(entry, x86_feature);
139 }
140
141 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
142                                               unsigned int x86_feature)
143 {
144         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
145
146         *reg &= ~__feature_bit(x86_feature);
147 }
148
149 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
150                                             unsigned int x86_feature)
151 {
152         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
153
154         *reg |= __feature_bit(x86_feature);
155 }
156
157 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
158                                                unsigned int x86_feature,
159                                                bool set)
160 {
161         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
162
163         /*
164          * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
165          * compiler into using CMOV instead of Jcc when possible.
166          */
167         if (set)
168                 *reg |= __feature_bit(x86_feature);
169         else
170                 *reg &= ~__feature_bit(x86_feature);
171 }
172
173 static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry,
174                                                  enum cpuid_leafs leaf)
175 {
176         u32 *reg = cpuid_entry_get_reg(entry, leaf * 32);
177
178         BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps));
179         *reg = kvm_cpu_caps[leaf];
180 }
181
182 static __always_inline u32 *guest_cpuid_get_register(struct kvm_vcpu *vcpu,
183                                                      unsigned int x86_feature)
184 {
185         const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
186         struct kvm_cpuid_entry2 *entry;
187
188         entry = kvm_find_cpuid_entry(vcpu, cpuid.function, cpuid.index);
189         if (!entry)
190                 return NULL;
191
192         return __cpuid_entry_get_reg(entry, cpuid.reg);
193 }
194
195 static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu,
196                                             unsigned int x86_feature)
197 {
198         u32 *reg;
199
200         reg = guest_cpuid_get_register(vcpu, x86_feature);
201         if (!reg)
202                 return false;
203
204         return *reg & __feature_bit(x86_feature);
205 }
206
207 static __always_inline void guest_cpuid_clear(struct kvm_vcpu *vcpu,
208                                               unsigned int x86_feature)
209 {
210         u32 *reg;
211
212         reg = guest_cpuid_get_register(vcpu, x86_feature);
213         if (reg)
214                 *reg &= ~__feature_bit(x86_feature);
215 }
216
217 static inline bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
218 {
219         struct kvm_cpuid_entry2 *best;
220
221         best = kvm_find_cpuid_entry(vcpu, 0, 0);
222         return best &&
223                (is_guest_vendor_amd(best->ebx, best->ecx, best->edx) ||
224                 is_guest_vendor_hygon(best->ebx, best->ecx, best->edx));
225 }
226
227 static inline int guest_cpuid_family(struct kvm_vcpu *vcpu)
228 {
229         struct kvm_cpuid_entry2 *best;
230
231         best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
232         if (!best)
233                 return -1;
234
235         return x86_family(best->eax);
236 }
237
238 static inline int guest_cpuid_model(struct kvm_vcpu *vcpu)
239 {
240         struct kvm_cpuid_entry2 *best;
241
242         best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
243         if (!best)
244                 return -1;
245
246         return x86_model(best->eax);
247 }
248
249 static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu)
250 {
251         struct kvm_cpuid_entry2 *best;
252
253         best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
254         if (!best)
255                 return -1;
256
257         return x86_stepping(best->eax);
258 }
259
260 static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu)
261 {
262         return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT;
263 }
264
265 static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu)
266 {
267         return vcpu->arch.msr_misc_features_enables &
268                   MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
269 }
270
271 static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
272 {
273         unsigned int x86_leaf = x86_feature / 32;
274
275         reverse_cpuid_check(x86_leaf);
276         kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
277 }
278
279 static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
280 {
281         unsigned int x86_leaf = x86_feature / 32;
282
283         reverse_cpuid_check(x86_leaf);
284         kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
285 }
286
287 static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature)
288 {
289         unsigned int x86_leaf = x86_feature / 32;
290
291         reverse_cpuid_check(x86_leaf);
292         return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature);
293 }
294
295 static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
296 {
297         return !!kvm_cpu_cap_get(x86_feature);
298 }
299
300 static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
301 {
302         if (boot_cpu_has(x86_feature))
303                 kvm_cpu_cap_set(x86_feature);
304 }
305
306 #endif