Merge tag 'smp-urgent-2020-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kvm / cpuid.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_CPUID_H
3 #define ARCH_X86_KVM_CPUID_H
4
5 #include "x86.h"
6 #include <asm/cpu.h>
7 #include <asm/processor.h>
8 #include <uapi/asm/kvm_para.h>
9
10 extern u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
11 void kvm_set_cpu_caps(void);
12
13 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
14 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
15                                               u32 function, u32 index);
16 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
17                             struct kvm_cpuid_entry2 __user *entries,
18                             unsigned int type);
19 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
20                              struct kvm_cpuid *cpuid,
21                              struct kvm_cpuid_entry __user *entries);
22 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
23                               struct kvm_cpuid2 *cpuid,
24                               struct kvm_cpuid_entry2 __user *entries);
25 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
26                               struct kvm_cpuid2 *cpuid,
27                               struct kvm_cpuid_entry2 __user *entries);
28 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
29                u32 *ecx, u32 *edx, bool exact_only);
30
31 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu);
32
33 static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
34 {
35         return vcpu->arch.maxphyaddr;
36 }
37
38 static inline bool kvm_vcpu_is_illegal_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
39 {
40         return (gpa >= BIT_ULL(cpuid_maxphyaddr(vcpu)));
41 }
42
43 struct cpuid_reg {
44         u32 function;
45         u32 index;
46         int reg;
47 };
48
49 static const struct cpuid_reg reverse_cpuid[] = {
50         [CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
51         [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
52         [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
53         [CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
54         [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
55         [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
56         [CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
57         [CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
58         [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
59         [CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
60         [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
61         [CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
62         [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
63         [CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
64         [CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
65 };
66
67 /*
68  * Reverse CPUID and its derivatives can only be used for hardware-defined
69  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
70  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
71  * is nonsensical as the bit number/mask is an arbitrary software-defined value
72  * and can't be used by KVM to query/control guest capabilities.  And obviously
73  * the leaf being queried must have an entry in the lookup table.
74  */
75 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
76 {
77         BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
78         BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
79         BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
80         BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
81         BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
82         BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
83 }
84
85 /*
86  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
87  * the hardware defined bit number (stored in bits 4:0) and a software defined
88  * "word" (stored in bits 31:5).  The word is used to index into arrays of
89  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
90  */
91 static __always_inline u32 __feature_bit(int x86_feature)
92 {
93         reverse_cpuid_check(x86_feature / 32);
94         return 1 << (x86_feature & 31);
95 }
96
97 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
98
99 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
100 {
101         unsigned int x86_leaf = x86_feature / 32;
102
103         reverse_cpuid_check(x86_leaf);
104         return reverse_cpuid[x86_leaf];
105 }
106
107 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
108                                                   u32 reg)
109 {
110         switch (reg) {
111         case CPUID_EAX:
112                 return &entry->eax;
113         case CPUID_EBX:
114                 return &entry->ebx;
115         case CPUID_ECX:
116                 return &entry->ecx;
117         case CPUID_EDX:
118                 return &entry->edx;
119         default:
120                 BUILD_BUG();
121                 return NULL;
122         }
123 }
124
125 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
126                                                 unsigned int x86_feature)
127 {
128         const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
129
130         return __cpuid_entry_get_reg(entry, cpuid.reg);
131 }
132
133 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
134                                            unsigned int x86_feature)
135 {
136         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
137
138         return *reg & __feature_bit(x86_feature);
139 }
140
141 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
142                                             unsigned int x86_feature)
143 {
144         return cpuid_entry_get(entry, x86_feature);
145 }
146
147 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
148                                               unsigned int x86_feature)
149 {
150         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
151
152         *reg &= ~__feature_bit(x86_feature);
153 }
154
155 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
156                                             unsigned int x86_feature)
157 {
158         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
159
160         *reg |= __feature_bit(x86_feature);
161 }
162
163 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
164                                                unsigned int x86_feature,
165                                                bool set)
166 {
167         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
168
169         /*
170          * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
171          * compiler into using CMOV instead of Jcc when possible.
172          */
173         if (set)
174                 *reg |= __feature_bit(x86_feature);
175         else
176                 *reg &= ~__feature_bit(x86_feature);
177 }
178
179 static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry,
180                                                  enum cpuid_leafs leaf)
181 {
182         u32 *reg = cpuid_entry_get_reg(entry, leaf * 32);
183
184         BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps));
185         *reg = kvm_cpu_caps[leaf];
186 }
187
188 static __always_inline u32 *guest_cpuid_get_register(struct kvm_vcpu *vcpu,
189                                                      unsigned int x86_feature)
190 {
191         const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
192         struct kvm_cpuid_entry2 *entry;
193
194         entry = kvm_find_cpuid_entry(vcpu, cpuid.function, cpuid.index);
195         if (!entry)
196                 return NULL;
197
198         return __cpuid_entry_get_reg(entry, cpuid.reg);
199 }
200
201 static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu,
202                                             unsigned int x86_feature)
203 {
204         u32 *reg;
205
206         reg = guest_cpuid_get_register(vcpu, x86_feature);
207         if (!reg)
208                 return false;
209
210         return *reg & __feature_bit(x86_feature);
211 }
212
213 static __always_inline void guest_cpuid_clear(struct kvm_vcpu *vcpu,
214                                               unsigned int x86_feature)
215 {
216         u32 *reg;
217
218         reg = guest_cpuid_get_register(vcpu, x86_feature);
219         if (reg)
220                 *reg &= ~__feature_bit(x86_feature);
221 }
222
223 static inline bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
224 {
225         struct kvm_cpuid_entry2 *best;
226
227         best = kvm_find_cpuid_entry(vcpu, 0, 0);
228         return best &&
229                (is_guest_vendor_amd(best->ebx, best->ecx, best->edx) ||
230                 is_guest_vendor_hygon(best->ebx, best->ecx, best->edx));
231 }
232
233 static inline int guest_cpuid_family(struct kvm_vcpu *vcpu)
234 {
235         struct kvm_cpuid_entry2 *best;
236
237         best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
238         if (!best)
239                 return -1;
240
241         return x86_family(best->eax);
242 }
243
244 static inline int guest_cpuid_model(struct kvm_vcpu *vcpu)
245 {
246         struct kvm_cpuid_entry2 *best;
247
248         best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
249         if (!best)
250                 return -1;
251
252         return x86_model(best->eax);
253 }
254
255 static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu)
256 {
257         struct kvm_cpuid_entry2 *best;
258
259         best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
260         if (!best)
261                 return -1;
262
263         return x86_stepping(best->eax);
264 }
265
266 static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu)
267 {
268         return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT;
269 }
270
271 static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu)
272 {
273         return vcpu->arch.msr_misc_features_enables &
274                   MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
275 }
276
277 static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
278 {
279         unsigned int x86_leaf = x86_feature / 32;
280
281         reverse_cpuid_check(x86_leaf);
282         kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
283 }
284
285 static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
286 {
287         unsigned int x86_leaf = x86_feature / 32;
288
289         reverse_cpuid_check(x86_leaf);
290         kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
291 }
292
293 static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature)
294 {
295         unsigned int x86_leaf = x86_feature / 32;
296
297         reverse_cpuid_check(x86_leaf);
298         return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature);
299 }
300
301 static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
302 {
303         return !!kvm_cpu_cap_get(x86_feature);
304 }
305
306 static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
307 {
308         if (boot_cpu_has(x86_feature))
309                 kvm_cpu_cap_set(x86_feature);
310 }
311
312 static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
313 {
314         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
315 }
316
317 static __always_inline bool guest_pv_has(struct kvm_vcpu *vcpu,
318                                          unsigned int kvm_feature)
319 {
320         if (!vcpu->arch.pv_cpuid.enforce)
321                 return true;
322
323         return vcpu->arch.pv_cpuid.features & (1u << kvm_feature);
324 }
325
326 #endif