Merge tag 'for-linus-5.4-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29         int feature_bit = 0;
30         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31
32         xstate_bv &= XFEATURE_MASK_EXTEND;
33         while (xstate_bv) {
34                 if (xstate_bv & 0x1) {
35                         u32 eax, ebx, ecx, edx, offset;
36                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37                         offset = compacted ? ret : ebx;
38                         ret = max(ret, offset + eax);
39                 }
40
41                 xstate_bv >>= 1;
42                 feature_bit++;
43         }
44
45         return ret;
46 }
47
48 bool kvm_mpx_supported(void)
49 {
50         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51                  && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54
55 u64 kvm_supported_xcr0(void)
56 {
57         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58
59         if (!kvm_mpx_supported())
60                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61
62         return xcr0;
63 }
64
65 #define F(x) bit(X86_FEATURE_##x)
66
67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69         struct kvm_cpuid_entry2 *best;
70         struct kvm_lapic *apic = vcpu->arch.apic;
71
72         best = kvm_find_cpuid_entry(vcpu, 1, 0);
73         if (!best)
74                 return 0;
75
76         /* Update OSXSAVE bit */
77         if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
78                 best->ecx &= ~F(OSXSAVE);
79                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80                         best->ecx |= F(OSXSAVE);
81         }
82
83         best->edx &= ~F(APIC);
84         if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
85                 best->edx |= F(APIC);
86
87         if (apic) {
88                 if (best->ecx & F(TSC_DEADLINE_TIMER))
89                         apic->lapic_timer.timer_mode_mask = 3 << 17;
90                 else
91                         apic->lapic_timer.timer_mode_mask = 1 << 17;
92         }
93
94         best = kvm_find_cpuid_entry(vcpu, 7, 0);
95         if (best) {
96                 /* Update OSPKE bit */
97                 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
98                         best->ecx &= ~F(OSPKE);
99                         if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
100                                 best->ecx |= F(OSPKE);
101                 }
102         }
103
104         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
105         if (!best) {
106                 vcpu->arch.guest_supported_xcr0 = 0;
107                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
108         } else {
109                 vcpu->arch.guest_supported_xcr0 =
110                         (best->eax | ((u64)best->edx << 32)) &
111                         kvm_supported_xcr0();
112                 vcpu->arch.guest_xstate_size = best->ebx =
113                         xstate_required_size(vcpu->arch.xcr0, false);
114         }
115
116         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
117         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
118                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
119
120         /*
121          * The existing code assumes virtual address is 48-bit or 57-bit in the
122          * canonical address checks; exit if it is ever changed.
123          */
124         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125         if (best) {
126                 int vaddr_bits = (best->eax & 0xff00) >> 8;
127
128                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
129                         return -EINVAL;
130         }
131
132         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
133         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
134                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
135                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
136
137         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
138                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
139                 if (best) {
140                         if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
141                                 best->ecx |= F(MWAIT);
142                         else
143                                 best->ecx &= ~F(MWAIT);
144                 }
145         }
146
147         /* Update physical-address width */
148         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
149         kvm_mmu_reset_context(vcpu);
150
151         kvm_pmu_refresh(vcpu);
152         return 0;
153 }
154
155 static int is_efer_nx(void)
156 {
157         unsigned long long efer = 0;
158
159         rdmsrl_safe(MSR_EFER, &efer);
160         return efer & EFER_NX;
161 }
162
163 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
164 {
165         int i;
166         struct kvm_cpuid_entry2 *e, *entry;
167
168         entry = NULL;
169         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
170                 e = &vcpu->arch.cpuid_entries[i];
171                 if (e->function == 0x80000001) {
172                         entry = e;
173                         break;
174                 }
175         }
176         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
177                 entry->edx &= ~F(NX);
178                 printk(KERN_INFO "kvm: guest NX capability removed\n");
179         }
180 }
181
182 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
183 {
184         struct kvm_cpuid_entry2 *best;
185
186         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
187         if (!best || best->eax < 0x80000008)
188                 goto not_found;
189         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
190         if (best)
191                 return best->eax & 0xff;
192 not_found:
193         return 36;
194 }
195 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
196
197 /* when an old userspace process fills a new kernel module */
198 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
199                              struct kvm_cpuid *cpuid,
200                              struct kvm_cpuid_entry __user *entries)
201 {
202         int r, i;
203         struct kvm_cpuid_entry *cpuid_entries = NULL;
204
205         r = -E2BIG;
206         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
207                 goto out;
208         r = -ENOMEM;
209         if (cpuid->nent) {
210                 cpuid_entries =
211                         vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
212                                            cpuid->nent));
213                 if (!cpuid_entries)
214                         goto out;
215                 r = -EFAULT;
216                 if (copy_from_user(cpuid_entries, entries,
217                                    cpuid->nent * sizeof(struct kvm_cpuid_entry)))
218                         goto out;
219         }
220         for (i = 0; i < cpuid->nent; i++) {
221                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
222                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
223                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
224                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
225                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
226                 vcpu->arch.cpuid_entries[i].index = 0;
227                 vcpu->arch.cpuid_entries[i].flags = 0;
228                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
229                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
230                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
231         }
232         vcpu->arch.cpuid_nent = cpuid->nent;
233         cpuid_fix_nx_cap(vcpu);
234         kvm_apic_set_version(vcpu);
235         kvm_x86_ops->cpuid_update(vcpu);
236         r = kvm_update_cpuid(vcpu);
237
238 out:
239         vfree(cpuid_entries);
240         return r;
241 }
242
243 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
244                               struct kvm_cpuid2 *cpuid,
245                               struct kvm_cpuid_entry2 __user *entries)
246 {
247         int r;
248
249         r = -E2BIG;
250         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
251                 goto out;
252         r = -EFAULT;
253         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
254                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
255                 goto out;
256         vcpu->arch.cpuid_nent = cpuid->nent;
257         kvm_apic_set_version(vcpu);
258         kvm_x86_ops->cpuid_update(vcpu);
259         r = kvm_update_cpuid(vcpu);
260 out:
261         return r;
262 }
263
264 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
265                               struct kvm_cpuid2 *cpuid,
266                               struct kvm_cpuid_entry2 __user *entries)
267 {
268         int r;
269
270         r = -E2BIG;
271         if (cpuid->nent < vcpu->arch.cpuid_nent)
272                 goto out;
273         r = -EFAULT;
274         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
275                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
276                 goto out;
277         return 0;
278
279 out:
280         cpuid->nent = vcpu->arch.cpuid_nent;
281         return r;
282 }
283
284 static void cpuid_mask(u32 *word, int wordnum)
285 {
286         *word &= boot_cpu_data.x86_capability[wordnum];
287 }
288
289 static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
290                            u32 index)
291 {
292         entry->function = function;
293         entry->index = index;
294         entry->flags = 0;
295
296         cpuid_count(entry->function, entry->index,
297                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
298
299         switch (function) {
300         case 2:
301                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
302                 break;
303         case 4:
304         case 7:
305         case 0xb:
306         case 0xd:
307         case 0xf:
308         case 0x10:
309         case 0x12:
310         case 0x14:
311         case 0x17:
312         case 0x18:
313         case 0x1f:
314         case 0x8000001d:
315                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
316                 break;
317         }
318 }
319
320 static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
321                                     u32 func, int *nent, int maxnent)
322 {
323         entry->function = func;
324         entry->index = 0;
325         entry->flags = 0;
326
327         switch (func) {
328         case 0:
329                 entry->eax = 7;
330                 ++*nent;
331                 break;
332         case 1:
333                 entry->ecx = F(MOVBE);
334                 ++*nent;
335                 break;
336         case 7:
337                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
338                 entry->eax = 0;
339                 entry->ecx = F(RDPID);
340                 ++*nent;
341         default:
342                 break;
343         }
344
345         return 0;
346 }
347
348 static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
349 {
350         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
351         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
352         unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
353         unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
354         unsigned f_la57;
355
356         /* cpuid 7.0.ebx */
357         const u32 kvm_cpuid_7_0_ebx_x86_features =
358                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
359                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
360                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
361                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
362                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
363
364         /* cpuid 7.0.ecx*/
365         const u32 kvm_cpuid_7_0_ecx_x86_features =
366                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
367                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
368                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
369                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/;
370
371         /* cpuid 7.0.edx*/
372         const u32 kvm_cpuid_7_0_edx_x86_features =
373                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
374                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
375                 F(MD_CLEAR);
376
377         /* cpuid 7.1.eax */
378         const u32 kvm_cpuid_7_1_eax_x86_features =
379                 F(AVX512_BF16);
380
381         switch (index) {
382         case 0:
383                 entry->eax = min(entry->eax, 1u);
384                 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
385                 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
386                 /* TSC_ADJUST is emulated */
387                 entry->ebx |= F(TSC_ADJUST);
388
389                 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
390                 f_la57 = entry->ecx & F(LA57);
391                 cpuid_mask(&entry->ecx, CPUID_7_ECX);
392                 /* Set LA57 based on hardware capability. */
393                 entry->ecx |= f_la57;
394                 entry->ecx |= f_umip;
395                 /* PKU is not yet implemented for shadow paging. */
396                 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
397                         entry->ecx &= ~F(PKU);
398
399                 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
400                 cpuid_mask(&entry->edx, CPUID_7_EDX);
401                 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
402                         entry->edx |= F(SPEC_CTRL);
403                 if (boot_cpu_has(X86_FEATURE_STIBP))
404                         entry->edx |= F(INTEL_STIBP);
405                 if (boot_cpu_has(X86_FEATURE_SSBD))
406                         entry->edx |= F(SPEC_CTRL_SSBD);
407                 /*
408                  * We emulate ARCH_CAPABILITIES in software even
409                  * if the host doesn't support it.
410                  */
411                 entry->edx |= F(ARCH_CAPABILITIES);
412                 break;
413         case 1:
414                 entry->eax &= kvm_cpuid_7_1_eax_x86_features;
415                 entry->ebx = 0;
416                 entry->ecx = 0;
417                 entry->edx = 0;
418                 break;
419         default:
420                 WARN_ON_ONCE(1);
421                 entry->eax = 0;
422                 entry->ebx = 0;
423                 entry->ecx = 0;
424                 entry->edx = 0;
425                 break;
426         }
427 }
428
429 static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
430                                   int *nent, int maxnent)
431 {
432         int r;
433         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
434 #ifdef CONFIG_X86_64
435         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
436                                 ? F(GBPAGES) : 0;
437         unsigned f_lm = F(LM);
438 #else
439         unsigned f_gbpages = 0;
440         unsigned f_lm = 0;
441 #endif
442         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
443         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
444         unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
445
446         /* cpuid 1.edx */
447         const u32 kvm_cpuid_1_edx_x86_features =
448                 F(FPU) | F(VME) | F(DE) | F(PSE) |
449                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
450                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
451                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
452                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
453                 0 /* Reserved, DS, ACPI */ | F(MMX) |
454                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
455                 0 /* HTT, TM, Reserved, PBE */;
456         /* cpuid 0x80000001.edx */
457         const u32 kvm_cpuid_8000_0001_edx_x86_features =
458                 F(FPU) | F(VME) | F(DE) | F(PSE) |
459                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
460                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
461                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
462                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
463                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
464                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
465                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
466         /* cpuid 1.ecx */
467         const u32 kvm_cpuid_1_ecx_x86_features =
468                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
469                  * but *not* advertised to guests via CPUID ! */
470                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
471                 0 /* DS-CPL, VMX, SMX, EST */ |
472                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
473                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
474                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
475                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
476                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
477                 F(F16C) | F(RDRAND);
478         /* cpuid 0x80000001.ecx */
479         const u32 kvm_cpuid_8000_0001_ecx_x86_features =
480                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
481                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
482                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
483                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
484                 F(TOPOEXT) | F(PERFCTR_CORE);
485
486         /* cpuid 0x80000008.ebx */
487         const u32 kvm_cpuid_8000_0008_ebx_x86_features =
488                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
489                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON);
490
491         /* cpuid 0xC0000001.edx */
492         const u32 kvm_cpuid_C000_0001_edx_x86_features =
493                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
494                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
495                 F(PMM) | F(PMM_EN);
496
497         /* cpuid 0xD.1.eax */
498         const u32 kvm_cpuid_D_1_eax_x86_features =
499                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
500
501         /* all calls to cpuid_count() should be made on the same cpu */
502         get_cpu();
503
504         r = -E2BIG;
505
506         if (*nent >= maxnent)
507                 goto out;
508
509         do_host_cpuid(entry, function, 0);
510         ++*nent;
511
512         switch (function) {
513         case 0:
514                 /* Limited to the highest leaf implemented in KVM. */
515                 entry->eax = min(entry->eax, 0x1fU);
516                 break;
517         case 1:
518                 entry->edx &= kvm_cpuid_1_edx_x86_features;
519                 cpuid_mask(&entry->edx, CPUID_1_EDX);
520                 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
521                 cpuid_mask(&entry->ecx, CPUID_1_ECX);
522                 /* we support x2apic emulation even if host does not support
523                  * it since we emulate x2apic in software */
524                 entry->ecx |= F(X2APIC);
525                 break;
526         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
527          * may return different values. This forces us to get_cpu() before
528          * issuing the first command, and also to emulate this annoying behavior
529          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
530         case 2: {
531                 int t, times = entry->eax & 0xff;
532
533                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
534                 for (t = 1; t < times; ++t) {
535                         if (*nent >= maxnent)
536                                 goto out;
537
538                         do_host_cpuid(&entry[t], function, 0);
539                         ++*nent;
540                 }
541                 break;
542         }
543         /* functions 4 and 0x8000001d have additional index. */
544         case 4:
545         case 0x8000001d: {
546                 int i, cache_type;
547
548                 /* read more entries until cache_type is zero */
549                 for (i = 1; ; ++i) {
550                         if (*nent >= maxnent)
551                                 goto out;
552
553                         cache_type = entry[i - 1].eax & 0x1f;
554                         if (!cache_type)
555                                 break;
556                         do_host_cpuid(&entry[i], function, i);
557                         ++*nent;
558                 }
559                 break;
560         }
561         case 6: /* Thermal management */
562                 entry->eax = 0x4; /* allow ARAT */
563                 entry->ebx = 0;
564                 entry->ecx = 0;
565                 entry->edx = 0;
566                 break;
567         /* function 7 has additional index. */
568         case 7: {
569                 int i;
570
571                 for (i = 0; ; ) {
572                         do_cpuid_7_mask(&entry[i], i);
573                         if (i == entry->eax)
574                                 break;
575                         if (*nent >= maxnent)
576                                 goto out;
577
578                         ++i;
579                         do_host_cpuid(&entry[i], function, i);
580                         ++*nent;
581                 }
582                 break;
583         }
584         case 9:
585                 break;
586         case 0xa: { /* Architectural Performance Monitoring */
587                 struct x86_pmu_capability cap;
588                 union cpuid10_eax eax;
589                 union cpuid10_edx edx;
590
591                 perf_get_x86_pmu_capability(&cap);
592
593                 /*
594                  * Only support guest architectural pmu on a host
595                  * with architectural pmu.
596                  */
597                 if (!cap.version)
598                         memset(&cap, 0, sizeof(cap));
599
600                 eax.split.version_id = min(cap.version, 2);
601                 eax.split.num_counters = cap.num_counters_gp;
602                 eax.split.bit_width = cap.bit_width_gp;
603                 eax.split.mask_length = cap.events_mask_len;
604
605                 edx.split.num_counters_fixed = cap.num_counters_fixed;
606                 edx.split.bit_width_fixed = cap.bit_width_fixed;
607                 edx.split.reserved = 0;
608
609                 entry->eax = eax.full;
610                 entry->ebx = cap.events_mask;
611                 entry->ecx = 0;
612                 entry->edx = edx.full;
613                 break;
614         }
615         /*
616          * Per Intel's SDM, the 0x1f is a superset of 0xb,
617          * thus they can be handled by common code.
618          */
619         case 0x1f:
620         case 0xb: {
621                 int i, level_type;
622
623                 /* read more entries until level_type is zero */
624                 for (i = 1; ; ++i) {
625                         if (*nent >= maxnent)
626                                 goto out;
627
628                         level_type = entry[i - 1].ecx & 0xff00;
629                         if (!level_type)
630                                 break;
631                         do_host_cpuid(&entry[i], function, i);
632                         ++*nent;
633                 }
634                 break;
635         }
636         case 0xd: {
637                 int idx, i;
638                 u64 supported = kvm_supported_xcr0();
639
640                 entry->eax &= supported;
641                 entry->ebx = xstate_required_size(supported, false);
642                 entry->ecx = entry->ebx;
643                 entry->edx &= supported >> 32;
644                 if (!supported)
645                         break;
646
647                 for (idx = 1, i = 1; idx < 64; ++idx) {
648                         u64 mask = ((u64)1 << idx);
649                         if (*nent >= maxnent)
650                                 goto out;
651
652                         do_host_cpuid(&entry[i], function, idx);
653                         if (idx == 1) {
654                                 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
655                                 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
656                                 entry[i].ebx = 0;
657                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
658                                         entry[i].ebx =
659                                                 xstate_required_size(supported,
660                                                                      true);
661                         } else {
662                                 if (entry[i].eax == 0 || !(supported & mask))
663                                         continue;
664                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
665                                         continue;
666                         }
667                         entry[i].ecx = 0;
668                         entry[i].edx = 0;
669                         ++*nent;
670                         ++i;
671                 }
672                 break;
673         }
674         /* Intel PT */
675         case 0x14: {
676                 int t, times = entry->eax;
677
678                 if (!f_intel_pt)
679                         break;
680
681                 for (t = 1; t <= times; ++t) {
682                         if (*nent >= maxnent)
683                                 goto out;
684                         do_host_cpuid(&entry[t], function, t);
685                         ++*nent;
686                 }
687                 break;
688         }
689         case KVM_CPUID_SIGNATURE: {
690                 static const char signature[12] = "KVMKVMKVM\0\0";
691                 const u32 *sigptr = (const u32 *)signature;
692                 entry->eax = KVM_CPUID_FEATURES;
693                 entry->ebx = sigptr[0];
694                 entry->ecx = sigptr[1];
695                 entry->edx = sigptr[2];
696                 break;
697         }
698         case KVM_CPUID_FEATURES:
699                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
700                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
701                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
702                              (1 << KVM_FEATURE_ASYNC_PF) |
703                              (1 << KVM_FEATURE_PV_EOI) |
704                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
705                              (1 << KVM_FEATURE_PV_UNHALT) |
706                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
707                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
708                              (1 << KVM_FEATURE_PV_SEND_IPI) |
709                              (1 << KVM_FEATURE_POLL_CONTROL) |
710                              (1 << KVM_FEATURE_PV_SCHED_YIELD);
711
712                 if (sched_info_on())
713                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
714
715                 entry->ebx = 0;
716                 entry->ecx = 0;
717                 entry->edx = 0;
718                 break;
719         case 0x80000000:
720                 entry->eax = min(entry->eax, 0x8000001f);
721                 break;
722         case 0x80000001:
723                 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
724                 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
725                 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
726                 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
727                 break;
728         case 0x80000007: /* Advanced power management */
729                 /* invariant TSC is CPUID.80000007H:EDX[8] */
730                 entry->edx &= (1 << 8);
731                 /* mask against host */
732                 entry->edx &= boot_cpu_data.x86_power;
733                 entry->eax = entry->ebx = entry->ecx = 0;
734                 break;
735         case 0x80000008: {
736                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
737                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
738                 unsigned phys_as = entry->eax & 0xff;
739
740                 if (!g_phys_as)
741                         g_phys_as = phys_as;
742                 entry->eax = g_phys_as | (virt_as << 8);
743                 entry->edx = 0;
744                 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
745                 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
746                 /*
747                  * AMD has separate bits for each SPEC_CTRL bit.
748                  * arch/x86/kernel/cpu/bugs.c is kind enough to
749                  * record that in cpufeatures so use them.
750                  */
751                 if (boot_cpu_has(X86_FEATURE_IBPB))
752                         entry->ebx |= F(AMD_IBPB);
753                 if (boot_cpu_has(X86_FEATURE_IBRS))
754                         entry->ebx |= F(AMD_IBRS);
755                 if (boot_cpu_has(X86_FEATURE_STIBP))
756                         entry->ebx |= F(AMD_STIBP);
757                 if (boot_cpu_has(X86_FEATURE_SSBD))
758                         entry->ebx |= F(AMD_SSBD);
759                 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
760                         entry->ebx |= F(AMD_SSB_NO);
761                 /*
762                  * The preference is to use SPEC CTRL MSR instead of the
763                  * VIRT_SPEC MSR.
764                  */
765                 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
766                     !boot_cpu_has(X86_FEATURE_AMD_SSBD))
767                         entry->ebx |= F(VIRT_SSBD);
768                 break;
769         }
770         case 0x80000019:
771                 entry->ecx = entry->edx = 0;
772                 break;
773         case 0x8000001a:
774         case 0x8000001e:
775                 break;
776         /*Add support for Centaur's CPUID instruction*/
777         case 0xC0000000:
778                 /*Just support up to 0xC0000004 now*/
779                 entry->eax = min(entry->eax, 0xC0000004);
780                 break;
781         case 0xC0000001:
782                 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
783                 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
784                 break;
785         case 3: /* Processor serial number */
786         case 5: /* MONITOR/MWAIT */
787         case 0xC0000002:
788         case 0xC0000003:
789         case 0xC0000004:
790         default:
791                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
792                 break;
793         }
794
795         kvm_x86_ops->set_supported_cpuid(function, entry);
796
797         r = 0;
798
799 out:
800         put_cpu();
801
802         return r;
803 }
804
805 static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
806                          int *nent, int maxnent, unsigned int type)
807 {
808         if (type == KVM_GET_EMULATED_CPUID)
809                 return __do_cpuid_func_emulated(entry, func, nent, maxnent);
810
811         return __do_cpuid_func(entry, func, nent, maxnent);
812 }
813
814 #undef F
815
816 struct kvm_cpuid_param {
817         u32 func;
818         bool (*qualifier)(const struct kvm_cpuid_param *param);
819 };
820
821 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
822 {
823         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
824 }
825
826 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
827                                  __u32 num_entries, unsigned int ioctl_type)
828 {
829         int i;
830         __u32 pad[3];
831
832         if (ioctl_type != KVM_GET_EMULATED_CPUID)
833                 return false;
834
835         /*
836          * We want to make sure that ->padding is being passed clean from
837          * userspace in case we want to use it for something in the future.
838          *
839          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
840          * have to give ourselves satisfied only with the emulated side. /me
841          * sheds a tear.
842          */
843         for (i = 0; i < num_entries; i++) {
844                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
845                         return true;
846
847                 if (pad[0] || pad[1] || pad[2])
848                         return true;
849         }
850         return false;
851 }
852
853 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
854                             struct kvm_cpuid_entry2 __user *entries,
855                             unsigned int type)
856 {
857         struct kvm_cpuid_entry2 *cpuid_entries;
858         int limit, nent = 0, r = -E2BIG, i;
859         u32 func;
860         static const struct kvm_cpuid_param param[] = {
861                 { .func = 0 },
862                 { .func = 0x80000000 },
863                 { .func = 0xC0000000, .qualifier = is_centaur_cpu },
864                 { .func = KVM_CPUID_SIGNATURE },
865         };
866
867         if (cpuid->nent < 1)
868                 goto out;
869         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
870                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
871
872         if (sanity_check_entries(entries, cpuid->nent, type))
873                 return -EINVAL;
874
875         r = -ENOMEM;
876         cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
877                                            cpuid->nent));
878         if (!cpuid_entries)
879                 goto out;
880
881         r = 0;
882         for (i = 0; i < ARRAY_SIZE(param); i++) {
883                 const struct kvm_cpuid_param *ent = &param[i];
884
885                 if (ent->qualifier && !ent->qualifier(ent))
886                         continue;
887
888                 r = do_cpuid_func(&cpuid_entries[nent], ent->func,
889                                   &nent, cpuid->nent, type);
890
891                 if (r)
892                         goto out_free;
893
894                 limit = cpuid_entries[nent - 1].eax;
895                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
896                         r = do_cpuid_func(&cpuid_entries[nent], func,
897                                           &nent, cpuid->nent, type);
898
899                 if (r)
900                         goto out_free;
901         }
902
903         r = -EFAULT;
904         if (copy_to_user(entries, cpuid_entries,
905                          nent * sizeof(struct kvm_cpuid_entry2)))
906                 goto out_free;
907         cpuid->nent = nent;
908         r = 0;
909
910 out_free:
911         vfree(cpuid_entries);
912 out:
913         return r;
914 }
915
916 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
917 {
918         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
919         struct kvm_cpuid_entry2 *ej;
920         int j = i;
921         int nent = vcpu->arch.cpuid_nent;
922
923         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
924         /* when no next entry is found, the current entry[i] is reselected */
925         do {
926                 j = (j + 1) % nent;
927                 ej = &vcpu->arch.cpuid_entries[j];
928         } while (ej->function != e->function);
929
930         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
931
932         return j;
933 }
934
935 /* find an entry with matching function, matching index (if needed), and that
936  * should be read next (if it's stateful) */
937 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
938         u32 function, u32 index)
939 {
940         if (e->function != function)
941                 return 0;
942         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
943                 return 0;
944         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
945             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
946                 return 0;
947         return 1;
948 }
949
950 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
951                                               u32 function, u32 index)
952 {
953         int i;
954         struct kvm_cpuid_entry2 *best = NULL;
955
956         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
957                 struct kvm_cpuid_entry2 *e;
958
959                 e = &vcpu->arch.cpuid_entries[i];
960                 if (is_matching_cpuid_entry(e, function, index)) {
961                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
962                                 move_to_next_stateful_cpuid_entry(vcpu, i);
963                         best = e;
964                         break;
965                 }
966         }
967         return best;
968 }
969 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
970
971 /*
972  * If no match is found, check whether we exceed the vCPU's limit
973  * and return the content of the highest valid _standard_ leaf instead.
974  * This is to satisfy the CPUID specification.
975  */
976 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
977                                                   u32 function, u32 index)
978 {
979         struct kvm_cpuid_entry2 *maxlevel;
980
981         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
982         if (!maxlevel || maxlevel->eax >= function)
983                 return NULL;
984         if (function & 0x80000000) {
985                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
986                 if (!maxlevel)
987                         return NULL;
988         }
989         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
990 }
991
992 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
993                u32 *ecx, u32 *edx, bool check_limit)
994 {
995         u32 function = *eax, index = *ecx;
996         struct kvm_cpuid_entry2 *best;
997         bool entry_found = true;
998
999         best = kvm_find_cpuid_entry(vcpu, function, index);
1000
1001         if (!best) {
1002                 entry_found = false;
1003                 if (!check_limit)
1004                         goto out;
1005
1006                 best = check_cpuid_limit(vcpu, function, index);
1007         }
1008
1009 out:
1010         if (best) {
1011                 *eax = best->eax;
1012                 *ebx = best->ebx;
1013                 *ecx = best->ecx;
1014                 *edx = best->edx;
1015         } else
1016                 *eax = *ebx = *ecx = *edx = 0;
1017         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
1018         return entry_found;
1019 }
1020 EXPORT_SYMBOL_GPL(kvm_cpuid);
1021
1022 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1023 {
1024         u32 eax, ebx, ecx, edx;
1025
1026         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1027                 return 1;
1028
1029         eax = kvm_rax_read(vcpu);
1030         ecx = kvm_rcx_read(vcpu);
1031         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
1032         kvm_rax_write(vcpu, eax);
1033         kvm_rbx_write(vcpu, ebx);
1034         kvm_rcx_write(vcpu, ecx);
1035         kvm_rdx_write(vcpu, edx);
1036         return kvm_skip_emulated_instruction(vcpu);
1037 }
1038 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);