Merge tag '9p-for-5.10-rc1' of git://github.com/martinetd/linux
[linux-2.6-microblaze.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 /*
28  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
30  */
31 u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
33
34 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
35 {
36         int feature_bit = 0;
37         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
38
39         xstate_bv &= XFEATURE_MASK_EXTEND;
40         while (xstate_bv) {
41                 if (xstate_bv & 0x1) {
42                         u32 eax, ebx, ecx, edx, offset;
43                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44                         offset = compacted ? ret : ebx;
45                         ret = max(ret, offset + eax);
46                 }
47
48                 xstate_bv >>= 1;
49                 feature_bit++;
50         }
51
52         return ret;
53 }
54
55 #define F feature_bit
56
57 static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
58 {
59         struct kvm_cpuid_entry2 *best;
60
61         /*
62          * The existing code assumes virtual address is 48-bit or 57-bit in the
63          * canonical address checks; exit if it is ever changed.
64          */
65         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
66         if (best) {
67                 int vaddr_bits = (best->eax & 0xff00) >> 8;
68
69                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
70                         return -EINVAL;
71         }
72
73         return 0;
74 }
75
76 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
77 {
78         struct kvm_cpuid_entry2 *best;
79
80         best = kvm_find_cpuid_entry(vcpu, 1, 0);
81         if (best) {
82                 /* Update OSXSAVE bit */
83                 if (boot_cpu_has(X86_FEATURE_XSAVE))
84                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
85                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
86
87                 cpuid_entry_change(best, X86_FEATURE_APIC,
88                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
89         }
90
91         best = kvm_find_cpuid_entry(vcpu, 7, 0);
92         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
93                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
94                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
95
96         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
97         if (best)
98                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
99
100         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
101         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
102                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
103                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
104
105         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
106         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
107                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
108                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
109
110         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
111                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
112                 if (best)
113                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
114                                            vcpu->arch.ia32_misc_enable_msr &
115                                            MSR_IA32_MISC_ENABLE_MWAIT);
116         }
117 }
118
119 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
120 {
121         struct kvm_lapic *apic = vcpu->arch.apic;
122         struct kvm_cpuid_entry2 *best;
123
124         kvm_x86_ops.vcpu_after_set_cpuid(vcpu);
125
126         best = kvm_find_cpuid_entry(vcpu, 1, 0);
127         if (best && apic) {
128                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
129                         apic->lapic_timer.timer_mode_mask = 3 << 17;
130                 else
131                         apic->lapic_timer.timer_mode_mask = 1 << 17;
132
133                 kvm_apic_set_version(vcpu);
134         }
135
136         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
137         if (!best)
138                 vcpu->arch.guest_supported_xcr0 = 0;
139         else
140                 vcpu->arch.guest_supported_xcr0 =
141                         (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
142
143         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
144         kvm_mmu_reset_context(vcpu);
145
146         kvm_pmu_refresh(vcpu);
147         vcpu->arch.cr4_guest_rsvd_bits =
148             __cr4_reserved_bits(guest_cpuid_has, vcpu);
149         kvm_x86_ops.update_exception_bitmap(vcpu);
150 }
151
152 static int is_efer_nx(void)
153 {
154         return host_efer & EFER_NX;
155 }
156
157 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
158 {
159         int i;
160         struct kvm_cpuid_entry2 *e, *entry;
161
162         entry = NULL;
163         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
164                 e = &vcpu->arch.cpuid_entries[i];
165                 if (e->function == 0x80000001) {
166                         entry = e;
167                         break;
168                 }
169         }
170         if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
171                 cpuid_entry_clear(entry, X86_FEATURE_NX);
172                 printk(KERN_INFO "kvm: guest NX capability removed\n");
173         }
174 }
175
176 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
177 {
178         struct kvm_cpuid_entry2 *best;
179
180         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
181         if (!best || best->eax < 0x80000008)
182                 goto not_found;
183         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
184         if (best)
185                 return best->eax & 0xff;
186 not_found:
187         return 36;
188 }
189 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
190
191 /* when an old userspace process fills a new kernel module */
192 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
193                              struct kvm_cpuid *cpuid,
194                              struct kvm_cpuid_entry __user *entries)
195 {
196         int r, i;
197         struct kvm_cpuid_entry *cpuid_entries = NULL;
198
199         r = -E2BIG;
200         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
201                 goto out;
202         if (cpuid->nent) {
203                 cpuid_entries = vmemdup_user(entries,
204                                              array_size(sizeof(struct kvm_cpuid_entry),
205                                                         cpuid->nent));
206                 if (IS_ERR(cpuid_entries)) {
207                         r = PTR_ERR(cpuid_entries);
208                         goto out;
209                 }
210         }
211         for (i = 0; i < cpuid->nent; i++) {
212                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
213                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
214                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
215                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
216                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
217                 vcpu->arch.cpuid_entries[i].index = 0;
218                 vcpu->arch.cpuid_entries[i].flags = 0;
219                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
220                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
221                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
222         }
223         vcpu->arch.cpuid_nent = cpuid->nent;
224         r = kvm_check_cpuid(vcpu);
225         if (r) {
226                 vcpu->arch.cpuid_nent = 0;
227                 kvfree(cpuid_entries);
228                 goto out;
229         }
230
231         cpuid_fix_nx_cap(vcpu);
232         kvm_update_cpuid_runtime(vcpu);
233         kvm_vcpu_after_set_cpuid(vcpu);
234
235         kvfree(cpuid_entries);
236 out:
237         return r;
238 }
239
240 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
241                               struct kvm_cpuid2 *cpuid,
242                               struct kvm_cpuid_entry2 __user *entries)
243 {
244         int r;
245
246         r = -E2BIG;
247         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
248                 goto out;
249         r = -EFAULT;
250         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
251                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
252                 goto out;
253         vcpu->arch.cpuid_nent = cpuid->nent;
254         r = kvm_check_cpuid(vcpu);
255         if (r) {
256                 vcpu->arch.cpuid_nent = 0;
257                 goto out;
258         }
259
260         kvm_update_cpuid_runtime(vcpu);
261         kvm_vcpu_after_set_cpuid(vcpu);
262 out:
263         return r;
264 }
265
266 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
267                               struct kvm_cpuid2 *cpuid,
268                               struct kvm_cpuid_entry2 __user *entries)
269 {
270         int r;
271
272         r = -E2BIG;
273         if (cpuid->nent < vcpu->arch.cpuid_nent)
274                 goto out;
275         r = -EFAULT;
276         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
277                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
278                 goto out;
279         return 0;
280
281 out:
282         cpuid->nent = vcpu->arch.cpuid_nent;
283         return r;
284 }
285
286 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
287 {
288         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
289         struct kvm_cpuid_entry2 entry;
290
291         reverse_cpuid_check(leaf);
292         kvm_cpu_caps[leaf] &= mask;
293
294         cpuid_count(cpuid.function, cpuid.index,
295                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
296
297         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
298 }
299
300 void kvm_set_cpu_caps(void)
301 {
302         unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
303 #ifdef CONFIG_X86_64
304         unsigned int f_gbpages = F(GBPAGES);
305         unsigned int f_lm = F(LM);
306 #else
307         unsigned int f_gbpages = 0;
308         unsigned int f_lm = 0;
309 #endif
310
311         BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
312                      sizeof(boot_cpu_data.x86_capability));
313
314         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
315                sizeof(kvm_cpu_caps));
316
317         kvm_cpu_cap_mask(CPUID_1_ECX,
318                 /*
319                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
320                  * advertised to guests via CPUID!
321                  */
322                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
323                 0 /* DS-CPL, VMX, SMX, EST */ |
324                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
325                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
326                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
327                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
328                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
329                 F(F16C) | F(RDRAND)
330         );
331         /* KVM emulates x2apic in software irrespective of host support. */
332         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
333
334         kvm_cpu_cap_mask(CPUID_1_EDX,
335                 F(FPU) | F(VME) | F(DE) | F(PSE) |
336                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
337                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
338                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
339                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
340                 0 /* Reserved, DS, ACPI */ | F(MMX) |
341                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
342                 0 /* HTT, TM, Reserved, PBE */
343         );
344
345         kvm_cpu_cap_mask(CPUID_7_0_EBX,
346                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
347                 F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
348                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
349                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
350                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
351         );
352
353         kvm_cpu_cap_mask(CPUID_7_ECX,
354                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
355                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
356                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
357                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
358         );
359         /* Set LA57 based on hardware capability. */
360         if (cpuid_ecx(7) & F(LA57))
361                 kvm_cpu_cap_set(X86_FEATURE_LA57);
362
363         /*
364          * PKU not yet implemented for shadow paging and requires OSPKE
365          * to be set on the host. Clear it if that is not the case
366          */
367         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
368                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
369
370         kvm_cpu_cap_mask(CPUID_7_EDX,
371                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
372                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
373                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
374                 F(SERIALIZE) | F(TSXLDTRK)
375         );
376
377         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
378         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
379         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
380
381         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
382                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
383         if (boot_cpu_has(X86_FEATURE_STIBP))
384                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
385         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
386                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
387
388         kvm_cpu_cap_mask(CPUID_7_1_EAX,
389                 F(AVX512_BF16)
390         );
391
392         kvm_cpu_cap_mask(CPUID_D_1_EAX,
393                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
394         );
395
396         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
397                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
398                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
399                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
400                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
401                 F(TOPOEXT) | F(PERFCTR_CORE)
402         );
403
404         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
405                 F(FPU) | F(VME) | F(DE) | F(PSE) |
406                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
407                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
408                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
409                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
410                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
411                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
412                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
413         );
414
415         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
416                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
417
418         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
419                 F(CLZERO) | F(XSAVEERPTR) |
420                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
421                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
422         );
423
424         /*
425          * AMD has separate bits for each SPEC_CTRL bit.
426          * arch/x86/kernel/cpu/bugs.c is kind enough to
427          * record that in cpufeatures so use them.
428          */
429         if (boot_cpu_has(X86_FEATURE_IBPB))
430                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
431         if (boot_cpu_has(X86_FEATURE_IBRS))
432                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
433         if (boot_cpu_has(X86_FEATURE_STIBP))
434                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
435         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
436                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
437         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
438                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
439         /*
440          * The preference is to use SPEC CTRL MSR instead of the
441          * VIRT_SPEC MSR.
442          */
443         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
444             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
445                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
446
447         /*
448          * Hide all SVM features by default, SVM will set the cap bits for
449          * features it emulates and/or exposes for L1.
450          */
451         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
452
453         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
454                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
455                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
456                 F(PMM) | F(PMM_EN)
457         );
458 }
459 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
460
461 struct kvm_cpuid_array {
462         struct kvm_cpuid_entry2 *entries;
463         int maxnent;
464         int nent;
465 };
466
467 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
468                                               u32 function, u32 index)
469 {
470         struct kvm_cpuid_entry2 *entry;
471
472         if (array->nent >= array->maxnent)
473                 return NULL;
474
475         entry = &array->entries[array->nent++];
476
477         entry->function = function;
478         entry->index = index;
479         entry->flags = 0;
480
481         cpuid_count(entry->function, entry->index,
482                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
483
484         switch (function) {
485         case 4:
486         case 7:
487         case 0xb:
488         case 0xd:
489         case 0xf:
490         case 0x10:
491         case 0x12:
492         case 0x14:
493         case 0x17:
494         case 0x18:
495         case 0x1f:
496         case 0x8000001d:
497                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
498                 break;
499         }
500
501         return entry;
502 }
503
504 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
505 {
506         struct kvm_cpuid_entry2 *entry;
507
508         if (array->nent >= array->maxnent)
509                 return -E2BIG;
510
511         entry = &array->entries[array->nent];
512         entry->function = func;
513         entry->index = 0;
514         entry->flags = 0;
515
516         switch (func) {
517         case 0:
518                 entry->eax = 7;
519                 ++array->nent;
520                 break;
521         case 1:
522                 entry->ecx = F(MOVBE);
523                 ++array->nent;
524                 break;
525         case 7:
526                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
527                 entry->eax = 0;
528                 entry->ecx = F(RDPID);
529                 ++array->nent;
530         default:
531                 break;
532         }
533
534         return 0;
535 }
536
537 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
538 {
539         struct kvm_cpuid_entry2 *entry;
540         int r, i, max_idx;
541
542         /* all calls to cpuid_count() should be made on the same cpu */
543         get_cpu();
544
545         r = -E2BIG;
546
547         entry = do_host_cpuid(array, function, 0);
548         if (!entry)
549                 goto out;
550
551         switch (function) {
552         case 0:
553                 /* Limited to the highest leaf implemented in KVM. */
554                 entry->eax = min(entry->eax, 0x1fU);
555                 break;
556         case 1:
557                 cpuid_entry_override(entry, CPUID_1_EDX);
558                 cpuid_entry_override(entry, CPUID_1_ECX);
559                 break;
560         case 2:
561                 /*
562                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
563                  * CPUID(function=2, index=0) may return different results each
564                  * time, with the least-significant byte in EAX enumerating the
565                  * number of times software should do CPUID(2, 0).
566                  *
567                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
568                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
569                  * return 01H. Software should ignore this value and not
570                  * interpret it as an informational descriptor", while AMD's
571                  * APM states that CPUID(2) is reserved.
572                  *
573                  * WARN if a frankenstein CPU that supports virtualization and
574                  * a stateful CPUID.0x2 is encountered.
575                  */
576                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
577                 break;
578         /* functions 4 and 0x8000001d have additional index. */
579         case 4:
580         case 0x8000001d:
581                 /*
582                  * Read entries until the cache type in the previous entry is
583                  * zero, i.e. indicates an invalid entry.
584                  */
585                 for (i = 1; entry->eax & 0x1f; ++i) {
586                         entry = do_host_cpuid(array, function, i);
587                         if (!entry)
588                                 goto out;
589                 }
590                 break;
591         case 6: /* Thermal management */
592                 entry->eax = 0x4; /* allow ARAT */
593                 entry->ebx = 0;
594                 entry->ecx = 0;
595                 entry->edx = 0;
596                 break;
597         /* function 7 has additional index. */
598         case 7:
599                 entry->eax = min(entry->eax, 1u);
600                 cpuid_entry_override(entry, CPUID_7_0_EBX);
601                 cpuid_entry_override(entry, CPUID_7_ECX);
602                 cpuid_entry_override(entry, CPUID_7_EDX);
603
604                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
605                 if (entry->eax == 1) {
606                         entry = do_host_cpuid(array, function, 1);
607                         if (!entry)
608                                 goto out;
609
610                         cpuid_entry_override(entry, CPUID_7_1_EAX);
611                         entry->ebx = 0;
612                         entry->ecx = 0;
613                         entry->edx = 0;
614                 }
615                 break;
616         case 9:
617                 break;
618         case 0xa: { /* Architectural Performance Monitoring */
619                 struct x86_pmu_capability cap;
620                 union cpuid10_eax eax;
621                 union cpuid10_edx edx;
622
623                 perf_get_x86_pmu_capability(&cap);
624
625                 /*
626                  * Only support guest architectural pmu on a host
627                  * with architectural pmu.
628                  */
629                 if (!cap.version)
630                         memset(&cap, 0, sizeof(cap));
631
632                 eax.split.version_id = min(cap.version, 2);
633                 eax.split.num_counters = cap.num_counters_gp;
634                 eax.split.bit_width = cap.bit_width_gp;
635                 eax.split.mask_length = cap.events_mask_len;
636
637                 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
638                 edx.split.bit_width_fixed = cap.bit_width_fixed;
639                 edx.split.reserved = 0;
640
641                 entry->eax = eax.full;
642                 entry->ebx = cap.events_mask;
643                 entry->ecx = 0;
644                 entry->edx = edx.full;
645                 break;
646         }
647         /*
648          * Per Intel's SDM, the 0x1f is a superset of 0xb,
649          * thus they can be handled by common code.
650          */
651         case 0x1f:
652         case 0xb:
653                 /*
654                  * Populate entries until the level type (ECX[15:8]) of the
655                  * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
656                  * the starting entry, filled by the primary do_host_cpuid().
657                  */
658                 for (i = 1; entry->ecx & 0xff00; ++i) {
659                         entry = do_host_cpuid(array, function, i);
660                         if (!entry)
661                                 goto out;
662                 }
663                 break;
664         case 0xd:
665                 entry->eax &= supported_xcr0;
666                 entry->ebx = xstate_required_size(supported_xcr0, false);
667                 entry->ecx = entry->ebx;
668                 entry->edx &= supported_xcr0 >> 32;
669                 if (!supported_xcr0)
670                         break;
671
672                 entry = do_host_cpuid(array, function, 1);
673                 if (!entry)
674                         goto out;
675
676                 cpuid_entry_override(entry, CPUID_D_1_EAX);
677                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
678                         entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
679                                                           true);
680                 else {
681                         WARN_ON_ONCE(supported_xss != 0);
682                         entry->ebx = 0;
683                 }
684                 entry->ecx &= supported_xss;
685                 entry->edx &= supported_xss >> 32;
686
687                 for (i = 2; i < 64; ++i) {
688                         bool s_state;
689                         if (supported_xcr0 & BIT_ULL(i))
690                                 s_state = false;
691                         else if (supported_xss & BIT_ULL(i))
692                                 s_state = true;
693                         else
694                                 continue;
695
696                         entry = do_host_cpuid(array, function, i);
697                         if (!entry)
698                                 goto out;
699
700                         /*
701                          * The supported check above should have filtered out
702                          * invalid sub-leafs.  Only valid sub-leafs should
703                          * reach this point, and they should have a non-zero
704                          * save state size.  Furthermore, check whether the
705                          * processor agrees with supported_xcr0/supported_xss
706                          * on whether this is an XCR0- or IA32_XSS-managed area.
707                          */
708                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
709                                 --array->nent;
710                                 continue;
711                         }
712                         entry->edx = 0;
713                 }
714                 break;
715         /* Intel PT */
716         case 0x14:
717                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
718                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
719                         break;
720                 }
721
722                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
723                         if (!do_host_cpuid(array, function, i))
724                                 goto out;
725                 }
726                 break;
727         case KVM_CPUID_SIGNATURE: {
728                 static const char signature[12] = "KVMKVMKVM\0\0";
729                 const u32 *sigptr = (const u32 *)signature;
730                 entry->eax = KVM_CPUID_FEATURES;
731                 entry->ebx = sigptr[0];
732                 entry->ecx = sigptr[1];
733                 entry->edx = sigptr[2];
734                 break;
735         }
736         case KVM_CPUID_FEATURES:
737                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
738                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
739                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
740                              (1 << KVM_FEATURE_ASYNC_PF) |
741                              (1 << KVM_FEATURE_PV_EOI) |
742                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
743                              (1 << KVM_FEATURE_PV_UNHALT) |
744                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
745                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
746                              (1 << KVM_FEATURE_PV_SEND_IPI) |
747                              (1 << KVM_FEATURE_POLL_CONTROL) |
748                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
749                              (1 << KVM_FEATURE_ASYNC_PF_INT);
750
751                 if (sched_info_on())
752                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
753
754                 entry->ebx = 0;
755                 entry->ecx = 0;
756                 entry->edx = 0;
757                 break;
758         case 0x80000000:
759                 entry->eax = min(entry->eax, 0x8000001f);
760                 break;
761         case 0x80000001:
762                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
763                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
764                 break;
765         case 0x80000006:
766                 /* L2 cache and TLB: pass through host info. */
767                 break;
768         case 0x80000007: /* Advanced power management */
769                 /* invariant TSC is CPUID.80000007H:EDX[8] */
770                 entry->edx &= (1 << 8);
771                 /* mask against host */
772                 entry->edx &= boot_cpu_data.x86_power;
773                 entry->eax = entry->ebx = entry->ecx = 0;
774                 break;
775         case 0x80000008: {
776                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
777                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
778                 unsigned phys_as = entry->eax & 0xff;
779
780                 if (!g_phys_as)
781                         g_phys_as = phys_as;
782                 entry->eax = g_phys_as | (virt_as << 8);
783                 entry->edx = 0;
784                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
785                 break;
786         }
787         case 0x8000000A:
788                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
789                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
790                         break;
791                 }
792                 entry->eax = 1; /* SVM revision 1 */
793                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
794                                    ASID emulation to nested SVM */
795                 entry->ecx = 0; /* Reserved */
796                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
797                 break;
798         case 0x80000019:
799                 entry->ecx = entry->edx = 0;
800                 break;
801         case 0x8000001a:
802         case 0x8000001e:
803                 break;
804         /* Support memory encryption cpuid if host supports it */
805         case 0x8000001F:
806                 if (!boot_cpu_has(X86_FEATURE_SEV))
807                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
808                 break;
809         /*Add support for Centaur's CPUID instruction*/
810         case 0xC0000000:
811                 /*Just support up to 0xC0000004 now*/
812                 entry->eax = min(entry->eax, 0xC0000004);
813                 break;
814         case 0xC0000001:
815                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
816                 break;
817         case 3: /* Processor serial number */
818         case 5: /* MONITOR/MWAIT */
819         case 0xC0000002:
820         case 0xC0000003:
821         case 0xC0000004:
822         default:
823                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
824                 break;
825         }
826
827         r = 0;
828
829 out:
830         put_cpu();
831
832         return r;
833 }
834
835 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
836                          unsigned int type)
837 {
838         if (type == KVM_GET_EMULATED_CPUID)
839                 return __do_cpuid_func_emulated(array, func);
840
841         return __do_cpuid_func(array, func);
842 }
843
844 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
845
846 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
847                           unsigned int type)
848 {
849         u32 limit;
850         int r;
851
852         if (func == CENTAUR_CPUID_SIGNATURE &&
853             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
854                 return 0;
855
856         r = do_cpuid_func(array, func, type);
857         if (r)
858                 return r;
859
860         limit = array->entries[array->nent - 1].eax;
861         for (func = func + 1; func <= limit; ++func) {
862                 r = do_cpuid_func(array, func, type);
863                 if (r)
864                         break;
865         }
866
867         return r;
868 }
869
870 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
871                                  __u32 num_entries, unsigned int ioctl_type)
872 {
873         int i;
874         __u32 pad[3];
875
876         if (ioctl_type != KVM_GET_EMULATED_CPUID)
877                 return false;
878
879         /*
880          * We want to make sure that ->padding is being passed clean from
881          * userspace in case we want to use it for something in the future.
882          *
883          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
884          * have to give ourselves satisfied only with the emulated side. /me
885          * sheds a tear.
886          */
887         for (i = 0; i < num_entries; i++) {
888                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
889                         return true;
890
891                 if (pad[0] || pad[1] || pad[2])
892                         return true;
893         }
894         return false;
895 }
896
897 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
898                             struct kvm_cpuid_entry2 __user *entries,
899                             unsigned int type)
900 {
901         static const u32 funcs[] = {
902                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
903         };
904
905         struct kvm_cpuid_array array = {
906                 .nent = 0,
907         };
908         int r, i;
909
910         if (cpuid->nent < 1)
911                 return -E2BIG;
912         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
913                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
914
915         if (sanity_check_entries(entries, cpuid->nent, type))
916                 return -EINVAL;
917
918         array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
919                                            cpuid->nent));
920         if (!array.entries)
921                 return -ENOMEM;
922
923         array.maxnent = cpuid->nent;
924
925         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
926                 r = get_cpuid_func(&array, funcs[i], type);
927                 if (r)
928                         goto out_free;
929         }
930         cpuid->nent = array.nent;
931
932         if (copy_to_user(entries, array.entries,
933                          array.nent * sizeof(struct kvm_cpuid_entry2)))
934                 r = -EFAULT;
935
936 out_free:
937         vfree(array.entries);
938         return r;
939 }
940
941 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
942                                               u32 function, u32 index)
943 {
944         struct kvm_cpuid_entry2 *e;
945         int i;
946
947         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
948                 e = &vcpu->arch.cpuid_entries[i];
949
950                 if (e->function == function && (e->index == index ||
951                     !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
952                         return e;
953         }
954         return NULL;
955 }
956 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
957
958 /*
959  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
960  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
961  * returns all zeroes for any undefined leaf, whether or not the leaf is in
962  * range.  Centaur/VIA follows Intel semantics.
963  *
964  * A leaf is considered out-of-range if its function is higher than the maximum
965  * supported leaf of its associated class or if its associated class does not
966  * exist.
967  *
968  * There are three primary classes to be considered, with their respective
969  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
970  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
971  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
972  *
973  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
974  *  - Hypervisor: 0x40000000 - 0x4fffffff
975  *  - Extended:   0x80000000 - 0xbfffffff
976  *  - Centaur:    0xc0000000 - 0xcfffffff
977  *
978  * The Hypervisor class is further subdivided into sub-classes that each act as
979  * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
980  * is advertising support for both HyperV and KVM, the resulting Hypervisor
981  * CPUID sub-classes are:
982  *
983  *  - HyperV:     0x40000000 - 0x400000ff
984  *  - KVM:        0x40000100 - 0x400001ff
985  */
986 static struct kvm_cpuid_entry2 *
987 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
988 {
989         struct kvm_cpuid_entry2 *basic, *class;
990         u32 function = *fn_ptr;
991
992         basic = kvm_find_cpuid_entry(vcpu, 0, 0);
993         if (!basic)
994                 return NULL;
995
996         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
997             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
998                 return NULL;
999
1000         if (function >= 0x40000000 && function <= 0x4fffffff)
1001                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1002         else if (function >= 0xc0000000)
1003                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1004         else
1005                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1006
1007         if (class && function <= class->eax)
1008                 return NULL;
1009
1010         /*
1011          * Leaf specific adjustments are also applied when redirecting to the
1012          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1013          * entry for CPUID.0xb.index (see below), then the output value for EDX
1014          * needs to be pulled from CPUID.0xb.1.
1015          */
1016         *fn_ptr = basic->eax;
1017
1018         /*
1019          * The class does not exist or the requested function is out of range;
1020          * the effective CPUID entry is the max basic leaf.  Note, the index of
1021          * the original requested leaf is observed!
1022          */
1023         return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1024 }
1025
1026 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1027                u32 *ecx, u32 *edx, bool exact_only)
1028 {
1029         u32 orig_function = *eax, function = *eax, index = *ecx;
1030         struct kvm_cpuid_entry2 *entry;
1031         bool exact, used_max_basic = false;
1032
1033         entry = kvm_find_cpuid_entry(vcpu, function, index);
1034         exact = !!entry;
1035
1036         if (!entry && !exact_only) {
1037                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1038                 used_max_basic = !!entry;
1039         }
1040
1041         if (entry) {
1042                 *eax = entry->eax;
1043                 *ebx = entry->ebx;
1044                 *ecx = entry->ecx;
1045                 *edx = entry->edx;
1046                 if (function == 7 && index == 0) {
1047                         u64 data;
1048                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1049                             (data & TSX_CTRL_CPUID_CLEAR))
1050                                 *ebx &= ~(F(RTM) | F(HLE));
1051                 }
1052         } else {
1053                 *eax = *ebx = *ecx = *edx = 0;
1054                 /*
1055                  * When leaf 0BH or 1FH is defined, CL is pass-through
1056                  * and EDX is always the x2APIC ID, even for undefined
1057                  * subleaves. Index 1 will exist iff the leaf is
1058                  * implemented, so we pass through CL iff leaf 1
1059                  * exists. EDX can be copied from any existing index.
1060                  */
1061                 if (function == 0xb || function == 0x1f) {
1062                         entry = kvm_find_cpuid_entry(vcpu, function, 1);
1063                         if (entry) {
1064                                 *ecx = index & 0xff;
1065                                 *edx = entry->edx;
1066                         }
1067                 }
1068         }
1069         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1070                         used_max_basic);
1071         return exact;
1072 }
1073 EXPORT_SYMBOL_GPL(kvm_cpuid);
1074
1075 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1076 {
1077         u32 eax, ebx, ecx, edx;
1078
1079         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1080                 return 1;
1081
1082         eax = kvm_rax_read(vcpu);
1083         ecx = kvm_rcx_read(vcpu);
1084         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1085         kvm_rax_write(vcpu, eax);
1086         kvm_rbx_write(vcpu, ebx);
1087         kvm_rcx_write(vcpu, ecx);
1088         kvm_rdx_write(vcpu, edx);
1089         return kvm_skip_emulated_instruction(vcpu);
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);